xref: /openbmc/linux/kernel/stop_machine.c (revision 2208f39c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * kernel/stop_machine.c
4  *
5  * Copyright (C) 2008, 2005	IBM Corporation.
6  * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
7  * Copyright (C) 2010		SUSE Linux Products GmbH
8  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
9  */
10 #include <linux/compiler.h>
11 #include <linux/completion.h>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kthread.h>
15 #include <linux/export.h>
16 #include <linux/percpu.h>
17 #include <linux/sched.h>
18 #include <linux/stop_machine.h>
19 #include <linux/interrupt.h>
20 #include <linux/kallsyms.h>
21 #include <linux/smpboot.h>
22 #include <linux/atomic.h>
23 #include <linux/nmi.h>
24 #include <linux/sched/wake_q.h>
25 
26 /*
27  * Structure to determine completion condition and record errors.  May
28  * be shared by works on different cpus.
29  */
30 struct cpu_stop_done {
31 	atomic_t		nr_todo;	/* nr left to execute */
32 	int			ret;		/* collected return value */
33 	struct completion	completion;	/* fired if nr_todo reaches 0 */
34 };
35 
36 /* the actual stopper, one per every possible cpu, enabled on online cpus */
37 struct cpu_stopper {
38 	struct task_struct	*thread;
39 
40 	raw_spinlock_t		lock;
41 	bool			enabled;	/* is this stopper enabled? */
42 	struct list_head	works;		/* list of pending works */
43 
44 	struct cpu_stop_work	stop_work;	/* for stop_cpus */
45 };
46 
47 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
48 static bool stop_machine_initialized = false;
49 
50 /* static data for stop_cpus */
51 static DEFINE_MUTEX(stop_cpus_mutex);
52 static bool stop_cpus_in_progress;
53 
54 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
55 {
56 	memset(done, 0, sizeof(*done));
57 	atomic_set(&done->nr_todo, nr_todo);
58 	init_completion(&done->completion);
59 }
60 
61 /* signal completion unless @done is NULL */
62 static void cpu_stop_signal_done(struct cpu_stop_done *done)
63 {
64 	if (atomic_dec_and_test(&done->nr_todo))
65 		complete(&done->completion);
66 }
67 
68 static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
69 					struct cpu_stop_work *work,
70 					struct wake_q_head *wakeq)
71 {
72 	list_add_tail(&work->list, &stopper->works);
73 	wake_q_add(wakeq, stopper->thread);
74 }
75 
76 /* queue @work to @stopper.  if offline, @work is completed immediately */
77 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
78 {
79 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
80 	DEFINE_WAKE_Q(wakeq);
81 	unsigned long flags;
82 	bool enabled;
83 
84 	preempt_disable();
85 	raw_spin_lock_irqsave(&stopper->lock, flags);
86 	enabled = stopper->enabled;
87 	if (enabled)
88 		__cpu_stop_queue_work(stopper, work, &wakeq);
89 	else if (work->done)
90 		cpu_stop_signal_done(work->done);
91 	raw_spin_unlock_irqrestore(&stopper->lock, flags);
92 
93 	wake_up_q(&wakeq);
94 	preempt_enable();
95 
96 	return enabled;
97 }
98 
99 /**
100  * stop_one_cpu - stop a cpu
101  * @cpu: cpu to stop
102  * @fn: function to execute
103  * @arg: argument to @fn
104  *
105  * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
106  * the highest priority preempting any task on the cpu and
107  * monopolizing it.  This function returns after the execution is
108  * complete.
109  *
110  * This function doesn't guarantee @cpu stays online till @fn
111  * completes.  If @cpu goes down in the middle, execution may happen
112  * partially or fully on different cpus.  @fn should either be ready
113  * for that or the caller should ensure that @cpu stays online until
114  * this function completes.
115  *
116  * CONTEXT:
117  * Might sleep.
118  *
119  * RETURNS:
120  * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
121  * otherwise, the return value of @fn.
122  */
123 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
124 {
125 	struct cpu_stop_done done;
126 	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
127 
128 	cpu_stop_init_done(&done, 1);
129 	if (!cpu_stop_queue_work(cpu, &work))
130 		return -ENOENT;
131 	/*
132 	 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
133 	 * cycle by doing a preemption:
134 	 */
135 	cond_resched();
136 	wait_for_completion(&done.completion);
137 	return done.ret;
138 }
139 
140 /* This controls the threads on each CPU. */
141 enum multi_stop_state {
142 	/* Dummy starting state for thread. */
143 	MULTI_STOP_NONE,
144 	/* Awaiting everyone to be scheduled. */
145 	MULTI_STOP_PREPARE,
146 	/* Disable interrupts. */
147 	MULTI_STOP_DISABLE_IRQ,
148 	/* Run the function */
149 	MULTI_STOP_RUN,
150 	/* Exit */
151 	MULTI_STOP_EXIT,
152 };
153 
154 struct multi_stop_data {
155 	cpu_stop_fn_t		fn;
156 	void			*data;
157 	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
158 	unsigned int		num_threads;
159 	const struct cpumask	*active_cpus;
160 
161 	enum multi_stop_state	state;
162 	atomic_t		thread_ack;
163 };
164 
165 static void set_state(struct multi_stop_data *msdata,
166 		      enum multi_stop_state newstate)
167 {
168 	/* Reset ack counter. */
169 	atomic_set(&msdata->thread_ack, msdata->num_threads);
170 	smp_wmb();
171 	WRITE_ONCE(msdata->state, newstate);
172 }
173 
174 /* Last one to ack a state moves to the next state. */
175 static void ack_state(struct multi_stop_data *msdata)
176 {
177 	if (atomic_dec_and_test(&msdata->thread_ack))
178 		set_state(msdata, msdata->state + 1);
179 }
180 
181 notrace void __weak stop_machine_yield(const struct cpumask *cpumask)
182 {
183 	cpu_relax();
184 }
185 
186 /* This is the cpu_stop function which stops the CPU. */
187 static int multi_cpu_stop(void *data)
188 {
189 	struct multi_stop_data *msdata = data;
190 	enum multi_stop_state newstate, curstate = MULTI_STOP_NONE;
191 	int cpu = smp_processor_id(), err = 0;
192 	const struct cpumask *cpumask;
193 	unsigned long flags;
194 	bool is_active;
195 
196 	/*
197 	 * When called from stop_machine_from_inactive_cpu(), irq might
198 	 * already be disabled.  Save the state and restore it on exit.
199 	 */
200 	local_save_flags(flags);
201 
202 	if (!msdata->active_cpus) {
203 		cpumask = cpu_online_mask;
204 		is_active = cpu == cpumask_first(cpumask);
205 	} else {
206 		cpumask = msdata->active_cpus;
207 		is_active = cpumask_test_cpu(cpu, cpumask);
208 	}
209 
210 	/* Simple state machine */
211 	do {
212 		/* Chill out and ensure we re-read multi_stop_state. */
213 		stop_machine_yield(cpumask);
214 		newstate = READ_ONCE(msdata->state);
215 		if (newstate != curstate) {
216 			curstate = newstate;
217 			switch (curstate) {
218 			case MULTI_STOP_DISABLE_IRQ:
219 				local_irq_disable();
220 				hard_irq_disable();
221 				break;
222 			case MULTI_STOP_RUN:
223 				if (is_active)
224 					err = msdata->fn(msdata->data);
225 				break;
226 			default:
227 				break;
228 			}
229 			ack_state(msdata);
230 		} else if (curstate > MULTI_STOP_PREPARE) {
231 			/*
232 			 * At this stage all other CPUs we depend on must spin
233 			 * in the same loop. Any reason for hard-lockup should
234 			 * be detected and reported on their side.
235 			 */
236 			touch_nmi_watchdog();
237 		}
238 		rcu_momentary_dyntick_idle();
239 	} while (curstate != MULTI_STOP_EXIT);
240 
241 	local_irq_restore(flags);
242 	return err;
243 }
244 
245 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
246 				    int cpu2, struct cpu_stop_work *work2)
247 {
248 	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
249 	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
250 	DEFINE_WAKE_Q(wakeq);
251 	int err;
252 
253 retry:
254 	/*
255 	 * The waking up of stopper threads has to happen in the same
256 	 * scheduling context as the queueing.  Otherwise, there is a
257 	 * possibility of one of the above stoppers being woken up by another
258 	 * CPU, and preempting us. This will cause us to not wake up the other
259 	 * stopper forever.
260 	 */
261 	preempt_disable();
262 	raw_spin_lock_irq(&stopper1->lock);
263 	raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
264 
265 	if (!stopper1->enabled || !stopper2->enabled) {
266 		err = -ENOENT;
267 		goto unlock;
268 	}
269 
270 	/*
271 	 * Ensure that if we race with __stop_cpus() the stoppers won't get
272 	 * queued up in reverse order leading to system deadlock.
273 	 *
274 	 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
275 	 * queued a work on cpu1 but not on cpu2, we hold both locks.
276 	 *
277 	 * It can be falsely true but it is safe to spin until it is cleared,
278 	 * queue_stop_cpus_work() does everything under preempt_disable().
279 	 */
280 	if (unlikely(stop_cpus_in_progress)) {
281 		err = -EDEADLK;
282 		goto unlock;
283 	}
284 
285 	err = 0;
286 	__cpu_stop_queue_work(stopper1, work1, &wakeq);
287 	__cpu_stop_queue_work(stopper2, work2, &wakeq);
288 
289 unlock:
290 	raw_spin_unlock(&stopper2->lock);
291 	raw_spin_unlock_irq(&stopper1->lock);
292 
293 	if (unlikely(err == -EDEADLK)) {
294 		preempt_enable();
295 
296 		while (stop_cpus_in_progress)
297 			cpu_relax();
298 
299 		goto retry;
300 	}
301 
302 	wake_up_q(&wakeq);
303 	preempt_enable();
304 
305 	return err;
306 }
307 /**
308  * stop_two_cpus - stops two cpus
309  * @cpu1: the cpu to stop
310  * @cpu2: the other cpu to stop
311  * @fn: function to execute
312  * @arg: argument to @fn
313  *
314  * Stops both the current and specified CPU and runs @fn on one of them.
315  *
316  * returns when both are completed.
317  */
318 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
319 {
320 	struct cpu_stop_done done;
321 	struct cpu_stop_work work1, work2;
322 	struct multi_stop_data msdata;
323 
324 	msdata = (struct multi_stop_data){
325 		.fn = fn,
326 		.data = arg,
327 		.num_threads = 2,
328 		.active_cpus = cpumask_of(cpu1),
329 	};
330 
331 	work1 = work2 = (struct cpu_stop_work){
332 		.fn = multi_cpu_stop,
333 		.arg = &msdata,
334 		.done = &done
335 	};
336 
337 	cpu_stop_init_done(&done, 2);
338 	set_state(&msdata, MULTI_STOP_PREPARE);
339 
340 	if (cpu1 > cpu2)
341 		swap(cpu1, cpu2);
342 	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
343 		return -ENOENT;
344 
345 	wait_for_completion(&done.completion);
346 	return done.ret;
347 }
348 
349 /**
350  * stop_one_cpu_nowait - stop a cpu but don't wait for completion
351  * @cpu: cpu to stop
352  * @fn: function to execute
353  * @arg: argument to @fn
354  * @work_buf: pointer to cpu_stop_work structure
355  *
356  * Similar to stop_one_cpu() but doesn't wait for completion.  The
357  * caller is responsible for ensuring @work_buf is currently unused
358  * and will remain untouched until stopper starts executing @fn.
359  *
360  * CONTEXT:
361  * Don't care.
362  *
363  * RETURNS:
364  * true if cpu_stop_work was queued successfully and @fn will be called,
365  * false otherwise.
366  */
367 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
368 			struct cpu_stop_work *work_buf)
369 {
370 	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
371 	return cpu_stop_queue_work(cpu, work_buf);
372 }
373 
374 static bool queue_stop_cpus_work(const struct cpumask *cpumask,
375 				 cpu_stop_fn_t fn, void *arg,
376 				 struct cpu_stop_done *done)
377 {
378 	struct cpu_stop_work *work;
379 	unsigned int cpu;
380 	bool queued = false;
381 
382 	/*
383 	 * Disable preemption while queueing to avoid getting
384 	 * preempted by a stopper which might wait for other stoppers
385 	 * to enter @fn which can lead to deadlock.
386 	 */
387 	preempt_disable();
388 	stop_cpus_in_progress = true;
389 	barrier();
390 	for_each_cpu(cpu, cpumask) {
391 		work = &per_cpu(cpu_stopper.stop_work, cpu);
392 		work->fn = fn;
393 		work->arg = arg;
394 		work->done = done;
395 		if (cpu_stop_queue_work(cpu, work))
396 			queued = true;
397 	}
398 	barrier();
399 	stop_cpus_in_progress = false;
400 	preempt_enable();
401 
402 	return queued;
403 }
404 
405 static int __stop_cpus(const struct cpumask *cpumask,
406 		       cpu_stop_fn_t fn, void *arg)
407 {
408 	struct cpu_stop_done done;
409 
410 	cpu_stop_init_done(&done, cpumask_weight(cpumask));
411 	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
412 		return -ENOENT;
413 	wait_for_completion(&done.completion);
414 	return done.ret;
415 }
416 
417 /**
418  * stop_cpus - stop multiple cpus
419  * @cpumask: cpus to stop
420  * @fn: function to execute
421  * @arg: argument to @fn
422  *
423  * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
424  * @fn is run in a process context with the highest priority
425  * preempting any task on the cpu and monopolizing it.  This function
426  * returns after all executions are complete.
427  *
428  * This function doesn't guarantee the cpus in @cpumask stay online
429  * till @fn completes.  If some cpus go down in the middle, execution
430  * on the cpu may happen partially or fully on different cpus.  @fn
431  * should either be ready for that or the caller should ensure that
432  * the cpus stay online until this function completes.
433  *
434  * All stop_cpus() calls are serialized making it safe for @fn to wait
435  * for all cpus to start executing it.
436  *
437  * CONTEXT:
438  * Might sleep.
439  *
440  * RETURNS:
441  * -ENOENT if @fn(@arg) was not executed at all because all cpus in
442  * @cpumask were offline; otherwise, 0 if all executions of @fn
443  * returned 0, any non zero return value if any returned non zero.
444  */
445 static int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
446 {
447 	int ret;
448 
449 	/* static works are used, process one request at a time */
450 	mutex_lock(&stop_cpus_mutex);
451 	ret = __stop_cpus(cpumask, fn, arg);
452 	mutex_unlock(&stop_cpus_mutex);
453 	return ret;
454 }
455 
456 static int cpu_stop_should_run(unsigned int cpu)
457 {
458 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
459 	unsigned long flags;
460 	int run;
461 
462 	raw_spin_lock_irqsave(&stopper->lock, flags);
463 	run = !list_empty(&stopper->works);
464 	raw_spin_unlock_irqrestore(&stopper->lock, flags);
465 	return run;
466 }
467 
468 static void cpu_stopper_thread(unsigned int cpu)
469 {
470 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
471 	struct cpu_stop_work *work;
472 
473 repeat:
474 	work = NULL;
475 	raw_spin_lock_irq(&stopper->lock);
476 	if (!list_empty(&stopper->works)) {
477 		work = list_first_entry(&stopper->works,
478 					struct cpu_stop_work, list);
479 		list_del_init(&work->list);
480 	}
481 	raw_spin_unlock_irq(&stopper->lock);
482 
483 	if (work) {
484 		cpu_stop_fn_t fn = work->fn;
485 		void *arg = work->arg;
486 		struct cpu_stop_done *done = work->done;
487 		int ret;
488 
489 		/* cpu stop callbacks must not sleep, make in_atomic() == T */
490 		preempt_count_inc();
491 		ret = fn(arg);
492 		if (done) {
493 			if (ret)
494 				done->ret = ret;
495 			cpu_stop_signal_done(done);
496 		}
497 		preempt_count_dec();
498 		WARN_ONCE(preempt_count(),
499 			  "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg);
500 		goto repeat;
501 	}
502 }
503 
504 void stop_machine_park(int cpu)
505 {
506 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
507 	/*
508 	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
509 	 * the pending works before it parks, until then it is fine to queue
510 	 * the new works.
511 	 */
512 	stopper->enabled = false;
513 	kthread_park(stopper->thread);
514 }
515 
516 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
517 
518 static void cpu_stop_create(unsigned int cpu)
519 {
520 	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
521 }
522 
523 static void cpu_stop_park(unsigned int cpu)
524 {
525 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
526 
527 	WARN_ON(!list_empty(&stopper->works));
528 }
529 
530 void stop_machine_unpark(int cpu)
531 {
532 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
533 
534 	stopper->enabled = true;
535 	kthread_unpark(stopper->thread);
536 }
537 
538 static struct smp_hotplug_thread cpu_stop_threads = {
539 	.store			= &cpu_stopper.thread,
540 	.thread_should_run	= cpu_stop_should_run,
541 	.thread_fn		= cpu_stopper_thread,
542 	.thread_comm		= "migration/%u",
543 	.create			= cpu_stop_create,
544 	.park			= cpu_stop_park,
545 	.selfparking		= true,
546 };
547 
548 static int __init cpu_stop_init(void)
549 {
550 	unsigned int cpu;
551 
552 	for_each_possible_cpu(cpu) {
553 		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
554 
555 		raw_spin_lock_init(&stopper->lock);
556 		INIT_LIST_HEAD(&stopper->works);
557 	}
558 
559 	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
560 	stop_machine_unpark(raw_smp_processor_id());
561 	stop_machine_initialized = true;
562 	return 0;
563 }
564 early_initcall(cpu_stop_init);
565 
566 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
567 			    const struct cpumask *cpus)
568 {
569 	struct multi_stop_data msdata = {
570 		.fn = fn,
571 		.data = data,
572 		.num_threads = num_online_cpus(),
573 		.active_cpus = cpus,
574 	};
575 
576 	lockdep_assert_cpus_held();
577 
578 	if (!stop_machine_initialized) {
579 		/*
580 		 * Handle the case where stop_machine() is called
581 		 * early in boot before stop_machine() has been
582 		 * initialized.
583 		 */
584 		unsigned long flags;
585 		int ret;
586 
587 		WARN_ON_ONCE(msdata.num_threads != 1);
588 
589 		local_irq_save(flags);
590 		hard_irq_disable();
591 		ret = (*fn)(data);
592 		local_irq_restore(flags);
593 
594 		return ret;
595 	}
596 
597 	/* Set the initial state and stop all online cpus. */
598 	set_state(&msdata, MULTI_STOP_PREPARE);
599 	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
600 }
601 
602 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
603 {
604 	int ret;
605 
606 	/* No CPUs can come up or down during this. */
607 	cpus_read_lock();
608 	ret = stop_machine_cpuslocked(fn, data, cpus);
609 	cpus_read_unlock();
610 	return ret;
611 }
612 EXPORT_SYMBOL_GPL(stop_machine);
613 
614 /**
615  * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
616  * @fn: the function to run
617  * @data: the data ptr for the @fn()
618  * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
619  *
620  * This is identical to stop_machine() but can be called from a CPU which
621  * is not active.  The local CPU is in the process of hotplug (so no other
622  * CPU hotplug can start) and not marked active and doesn't have enough
623  * context to sleep.
624  *
625  * This function provides stop_machine() functionality for such state by
626  * using busy-wait for synchronization and executing @fn directly for local
627  * CPU.
628  *
629  * CONTEXT:
630  * Local CPU is inactive.  Temporarily stops all active CPUs.
631  *
632  * RETURNS:
633  * 0 if all executions of @fn returned 0, any non zero return value if any
634  * returned non zero.
635  */
636 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
637 				  const struct cpumask *cpus)
638 {
639 	struct multi_stop_data msdata = { .fn = fn, .data = data,
640 					    .active_cpus = cpus };
641 	struct cpu_stop_done done;
642 	int ret;
643 
644 	/* Local CPU must be inactive and CPU hotplug in progress. */
645 	BUG_ON(cpu_active(raw_smp_processor_id()));
646 	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
647 
648 	/* No proper task established and can't sleep - busy wait for lock. */
649 	while (!mutex_trylock(&stop_cpus_mutex))
650 		cpu_relax();
651 
652 	/* Schedule work on other CPUs and execute directly for local CPU */
653 	set_state(&msdata, MULTI_STOP_PREPARE);
654 	cpu_stop_init_done(&done, num_active_cpus());
655 	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
656 			     &done);
657 	ret = multi_cpu_stop(&msdata);
658 
659 	/* Busy wait for completion. */
660 	while (!completion_done(&done.completion))
661 		cpu_relax();
662 
663 	mutex_unlock(&stop_cpus_mutex);
664 	return ret ?: done.ret;
665 }
666