1 /* 2 * linux/kernel/softirq.c 3 * 4 * Copyright (C) 1992 Linus Torvalds 5 * 6 * Distribute under GPLv2. 7 * 8 * Rewritten. Old one was good in 2.2, but in 2.3 it was immoral. --ANK (990903) 9 * 10 * Remote softirq infrastructure is by Jens Axboe. 11 */ 12 13 #include <linux/export.h> 14 #include <linux/kernel_stat.h> 15 #include <linux/interrupt.h> 16 #include <linux/init.h> 17 #include <linux/mm.h> 18 #include <linux/notifier.h> 19 #include <linux/percpu.h> 20 #include <linux/cpu.h> 21 #include <linux/freezer.h> 22 #include <linux/kthread.h> 23 #include <linux/rcupdate.h> 24 #include <linux/ftrace.h> 25 #include <linux/smp.h> 26 #include <linux/smpboot.h> 27 #include <linux/tick.h> 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/irq.h> 31 32 /* 33 - No shared variables, all the data are CPU local. 34 - If a softirq needs serialization, let it serialize itself 35 by its own spinlocks. 36 - Even if softirq is serialized, only local cpu is marked for 37 execution. Hence, we get something sort of weak cpu binding. 38 Though it is still not clear, will it result in better locality 39 or will not. 40 41 Examples: 42 - NET RX softirq. It is multithreaded and does not require 43 any global serialization. 44 - NET TX softirq. It kicks software netdevice queues, hence 45 it is logically serialized per device, but this serialization 46 is invisible to common code. 47 - Tasklets: serialized wrt itself. 48 */ 49 50 #ifndef __ARCH_IRQ_STAT 51 irq_cpustat_t irq_stat[NR_CPUS] ____cacheline_aligned; 52 EXPORT_SYMBOL(irq_stat); 53 #endif 54 55 static struct softirq_action softirq_vec[NR_SOFTIRQS] __cacheline_aligned_in_smp; 56 57 DEFINE_PER_CPU(struct task_struct *, ksoftirqd); 58 59 char *softirq_to_name[NR_SOFTIRQS] = { 60 "HI", "TIMER", "NET_TX", "NET_RX", "BLOCK", "BLOCK_IOPOLL", 61 "TASKLET", "SCHED", "HRTIMER", "RCU" 62 }; 63 64 /* 65 * we cannot loop indefinitely here to avoid userspace starvation, 66 * but we also don't want to introduce a worst case 1/HZ latency 67 * to the pending events, so lets the scheduler to balance 68 * the softirq load for us. 69 */ 70 static void wakeup_softirqd(void) 71 { 72 /* Interrupts are disabled: no need to stop preemption */ 73 struct task_struct *tsk = __this_cpu_read(ksoftirqd); 74 75 if (tsk && tsk->state != TASK_RUNNING) 76 wake_up_process(tsk); 77 } 78 79 /* 80 * preempt_count and SOFTIRQ_OFFSET usage: 81 * - preempt_count is changed by SOFTIRQ_OFFSET on entering or leaving 82 * softirq processing. 83 * - preempt_count is changed by SOFTIRQ_DISABLE_OFFSET (= 2 * SOFTIRQ_OFFSET) 84 * on local_bh_disable or local_bh_enable. 85 * This lets us distinguish between whether we are currently processing 86 * softirq and whether we just have bh disabled. 87 */ 88 89 /* 90 * This one is for softirq.c-internal use, 91 * where hardirqs are disabled legitimately: 92 */ 93 #ifdef CONFIG_TRACE_IRQFLAGS 94 static void __local_bh_disable(unsigned long ip, unsigned int cnt) 95 { 96 unsigned long flags; 97 98 WARN_ON_ONCE(in_irq()); 99 100 raw_local_irq_save(flags); 101 /* 102 * The preempt tracer hooks into preempt_count_add and will break 103 * lockdep because it calls back into lockdep after SOFTIRQ_OFFSET 104 * is set and before current->softirq_enabled is cleared. 105 * We must manually increment preempt_count here and manually 106 * call the trace_preempt_off later. 107 */ 108 __preempt_count_add(cnt); 109 /* 110 * Were softirqs turned off above: 111 */ 112 if (softirq_count() == cnt) 113 trace_softirqs_off(ip); 114 raw_local_irq_restore(flags); 115 116 if (preempt_count() == cnt) 117 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 118 } 119 #else /* !CONFIG_TRACE_IRQFLAGS */ 120 static inline void __local_bh_disable(unsigned long ip, unsigned int cnt) 121 { 122 preempt_count_add(cnt); 123 barrier(); 124 } 125 #endif /* CONFIG_TRACE_IRQFLAGS */ 126 127 void local_bh_disable(void) 128 { 129 __local_bh_disable(_RET_IP_, SOFTIRQ_DISABLE_OFFSET); 130 } 131 132 EXPORT_SYMBOL(local_bh_disable); 133 134 static void __local_bh_enable(unsigned int cnt) 135 { 136 WARN_ON_ONCE(!irqs_disabled()); 137 138 if (softirq_count() == cnt) 139 trace_softirqs_on(_RET_IP_); 140 preempt_count_sub(cnt); 141 } 142 143 /* 144 * Special-case - softirqs can safely be enabled in 145 * cond_resched_softirq(), or by __do_softirq(), 146 * without processing still-pending softirqs: 147 */ 148 void _local_bh_enable(void) 149 { 150 WARN_ON_ONCE(in_irq()); 151 __local_bh_enable(SOFTIRQ_DISABLE_OFFSET); 152 } 153 154 EXPORT_SYMBOL(_local_bh_enable); 155 156 static inline void _local_bh_enable_ip(unsigned long ip) 157 { 158 WARN_ON_ONCE(in_irq() || irqs_disabled()); 159 #ifdef CONFIG_TRACE_IRQFLAGS 160 local_irq_disable(); 161 #endif 162 /* 163 * Are softirqs going to be turned on now: 164 */ 165 if (softirq_count() == SOFTIRQ_DISABLE_OFFSET) 166 trace_softirqs_on(ip); 167 /* 168 * Keep preemption disabled until we are done with 169 * softirq processing: 170 */ 171 preempt_count_sub(SOFTIRQ_DISABLE_OFFSET - 1); 172 173 if (unlikely(!in_interrupt() && local_softirq_pending())) { 174 /* 175 * Run softirq if any pending. And do it in its own stack 176 * as we may be calling this deep in a task call stack already. 177 */ 178 do_softirq(); 179 } 180 181 preempt_count_dec(); 182 #ifdef CONFIG_TRACE_IRQFLAGS 183 local_irq_enable(); 184 #endif 185 preempt_check_resched(); 186 } 187 188 void local_bh_enable(void) 189 { 190 _local_bh_enable_ip(_RET_IP_); 191 } 192 EXPORT_SYMBOL(local_bh_enable); 193 194 void local_bh_enable_ip(unsigned long ip) 195 { 196 _local_bh_enable_ip(ip); 197 } 198 EXPORT_SYMBOL(local_bh_enable_ip); 199 200 /* 201 * We restart softirq processing for at most MAX_SOFTIRQ_RESTART times, 202 * but break the loop if need_resched() is set or after 2 ms. 203 * The MAX_SOFTIRQ_TIME provides a nice upper bound in most cases, but in 204 * certain cases, such as stop_machine(), jiffies may cease to 205 * increment and so we need the MAX_SOFTIRQ_RESTART limit as 206 * well to make sure we eventually return from this method. 207 * 208 * These limits have been established via experimentation. 209 * The two things to balance is latency against fairness - 210 * we want to handle softirqs as soon as possible, but they 211 * should not be able to lock up the box. 212 */ 213 #define MAX_SOFTIRQ_TIME msecs_to_jiffies(2) 214 #define MAX_SOFTIRQ_RESTART 10 215 216 asmlinkage void __do_softirq(void) 217 { 218 struct softirq_action *h; 219 __u32 pending; 220 unsigned long end = jiffies + MAX_SOFTIRQ_TIME; 221 int cpu; 222 unsigned long old_flags = current->flags; 223 int max_restart = MAX_SOFTIRQ_RESTART; 224 225 /* 226 * Mask out PF_MEMALLOC s current task context is borrowed for the 227 * softirq. A softirq handled such as network RX might set PF_MEMALLOC 228 * again if the socket is related to swap 229 */ 230 current->flags &= ~PF_MEMALLOC; 231 232 pending = local_softirq_pending(); 233 account_irq_enter_time(current); 234 235 __local_bh_disable(_RET_IP_, SOFTIRQ_OFFSET); 236 lockdep_softirq_enter(); 237 238 cpu = smp_processor_id(); 239 restart: 240 /* Reset the pending bitmask before enabling irqs */ 241 set_softirq_pending(0); 242 243 local_irq_enable(); 244 245 h = softirq_vec; 246 247 do { 248 if (pending & 1) { 249 unsigned int vec_nr = h - softirq_vec; 250 int prev_count = preempt_count(); 251 252 kstat_incr_softirqs_this_cpu(vec_nr); 253 254 trace_softirq_entry(vec_nr); 255 h->action(h); 256 trace_softirq_exit(vec_nr); 257 if (unlikely(prev_count != preempt_count())) { 258 printk(KERN_ERR "huh, entered softirq %u %s %p" 259 "with preempt_count %08x," 260 " exited with %08x?\n", vec_nr, 261 softirq_to_name[vec_nr], h->action, 262 prev_count, preempt_count()); 263 preempt_count_set(prev_count); 264 } 265 266 rcu_bh_qs(cpu); 267 } 268 h++; 269 pending >>= 1; 270 } while (pending); 271 272 local_irq_disable(); 273 274 pending = local_softirq_pending(); 275 if (pending) { 276 if (time_before(jiffies, end) && !need_resched() && 277 --max_restart) 278 goto restart; 279 280 wakeup_softirqd(); 281 } 282 283 lockdep_softirq_exit(); 284 285 account_irq_exit_time(current); 286 __local_bh_enable(SOFTIRQ_OFFSET); 287 WARN_ON_ONCE(in_interrupt()); 288 tsk_restore_flags(current, old_flags, PF_MEMALLOC); 289 } 290 291 292 293 asmlinkage void do_softirq(void) 294 { 295 __u32 pending; 296 unsigned long flags; 297 298 if (in_interrupt()) 299 return; 300 301 local_irq_save(flags); 302 303 pending = local_softirq_pending(); 304 305 if (pending) 306 do_softirq_own_stack(); 307 308 local_irq_restore(flags); 309 } 310 311 /* 312 * Enter an interrupt context. 313 */ 314 void irq_enter(void) 315 { 316 int cpu = smp_processor_id(); 317 318 rcu_irq_enter(); 319 if (is_idle_task(current) && !in_interrupt()) { 320 /* 321 * Prevent raise_softirq from needlessly waking up ksoftirqd 322 * here, as softirq will be serviced on return from interrupt. 323 */ 324 local_bh_disable(); 325 tick_check_idle(cpu); 326 _local_bh_enable(); 327 } 328 329 __irq_enter(); 330 } 331 332 static inline void invoke_softirq(void) 333 { 334 if (!force_irqthreads) { 335 #ifdef CONFIG_HAVE_IRQ_EXIT_ON_IRQ_STACK 336 /* 337 * We can safely execute softirq on the current stack if 338 * it is the irq stack, because it should be near empty 339 * at this stage. 340 */ 341 __do_softirq(); 342 #else 343 /* 344 * Otherwise, irq_exit() is called on the task stack that can 345 * be potentially deep already. So call softirq in its own stack 346 * to prevent from any overrun. 347 */ 348 do_softirq_own_stack(); 349 #endif 350 } else { 351 wakeup_softirqd(); 352 } 353 } 354 355 static inline void tick_irq_exit(void) 356 { 357 #ifdef CONFIG_NO_HZ_COMMON 358 int cpu = smp_processor_id(); 359 360 /* Make sure that timer wheel updates are propagated */ 361 if ((idle_cpu(cpu) && !need_resched()) || tick_nohz_full_cpu(cpu)) { 362 if (!in_interrupt()) 363 tick_nohz_irq_exit(); 364 } 365 #endif 366 } 367 368 /* 369 * Exit an interrupt context. Process softirqs if needed and possible: 370 */ 371 void irq_exit(void) 372 { 373 #ifndef __ARCH_IRQ_EXIT_IRQS_DISABLED 374 local_irq_disable(); 375 #else 376 WARN_ON_ONCE(!irqs_disabled()); 377 #endif 378 379 account_irq_exit_time(current); 380 trace_hardirq_exit(); 381 preempt_count_sub(HARDIRQ_OFFSET); 382 if (!in_interrupt() && local_softirq_pending()) 383 invoke_softirq(); 384 385 tick_irq_exit(); 386 rcu_irq_exit(); 387 } 388 389 /* 390 * This function must run with irqs disabled! 391 */ 392 inline void raise_softirq_irqoff(unsigned int nr) 393 { 394 __raise_softirq_irqoff(nr); 395 396 /* 397 * If we're in an interrupt or softirq, we're done 398 * (this also catches softirq-disabled code). We will 399 * actually run the softirq once we return from 400 * the irq or softirq. 401 * 402 * Otherwise we wake up ksoftirqd to make sure we 403 * schedule the softirq soon. 404 */ 405 if (!in_interrupt()) 406 wakeup_softirqd(); 407 } 408 409 void raise_softirq(unsigned int nr) 410 { 411 unsigned long flags; 412 413 local_irq_save(flags); 414 raise_softirq_irqoff(nr); 415 local_irq_restore(flags); 416 } 417 418 void __raise_softirq_irqoff(unsigned int nr) 419 { 420 trace_softirq_raise(nr); 421 or_softirq_pending(1UL << nr); 422 } 423 424 void open_softirq(int nr, void (*action)(struct softirq_action *)) 425 { 426 softirq_vec[nr].action = action; 427 } 428 429 /* 430 * Tasklets 431 */ 432 struct tasklet_head 433 { 434 struct tasklet_struct *head; 435 struct tasklet_struct **tail; 436 }; 437 438 static DEFINE_PER_CPU(struct tasklet_head, tasklet_vec); 439 static DEFINE_PER_CPU(struct tasklet_head, tasklet_hi_vec); 440 441 void __tasklet_schedule(struct tasklet_struct *t) 442 { 443 unsigned long flags; 444 445 local_irq_save(flags); 446 t->next = NULL; 447 *__this_cpu_read(tasklet_vec.tail) = t; 448 __this_cpu_write(tasklet_vec.tail, &(t->next)); 449 raise_softirq_irqoff(TASKLET_SOFTIRQ); 450 local_irq_restore(flags); 451 } 452 453 EXPORT_SYMBOL(__tasklet_schedule); 454 455 void __tasklet_hi_schedule(struct tasklet_struct *t) 456 { 457 unsigned long flags; 458 459 local_irq_save(flags); 460 t->next = NULL; 461 *__this_cpu_read(tasklet_hi_vec.tail) = t; 462 __this_cpu_write(tasklet_hi_vec.tail, &(t->next)); 463 raise_softirq_irqoff(HI_SOFTIRQ); 464 local_irq_restore(flags); 465 } 466 467 EXPORT_SYMBOL(__tasklet_hi_schedule); 468 469 void __tasklet_hi_schedule_first(struct tasklet_struct *t) 470 { 471 BUG_ON(!irqs_disabled()); 472 473 t->next = __this_cpu_read(tasklet_hi_vec.head); 474 __this_cpu_write(tasklet_hi_vec.head, t); 475 __raise_softirq_irqoff(HI_SOFTIRQ); 476 } 477 478 EXPORT_SYMBOL(__tasklet_hi_schedule_first); 479 480 static void tasklet_action(struct softirq_action *a) 481 { 482 struct tasklet_struct *list; 483 484 local_irq_disable(); 485 list = __this_cpu_read(tasklet_vec.head); 486 __this_cpu_write(tasklet_vec.head, NULL); 487 __this_cpu_write(tasklet_vec.tail, &__get_cpu_var(tasklet_vec).head); 488 local_irq_enable(); 489 490 while (list) { 491 struct tasklet_struct *t = list; 492 493 list = list->next; 494 495 if (tasklet_trylock(t)) { 496 if (!atomic_read(&t->count)) { 497 if (!test_and_clear_bit(TASKLET_STATE_SCHED, &t->state)) 498 BUG(); 499 t->func(t->data); 500 tasklet_unlock(t); 501 continue; 502 } 503 tasklet_unlock(t); 504 } 505 506 local_irq_disable(); 507 t->next = NULL; 508 *__this_cpu_read(tasklet_vec.tail) = t; 509 __this_cpu_write(tasklet_vec.tail, &(t->next)); 510 __raise_softirq_irqoff(TASKLET_SOFTIRQ); 511 local_irq_enable(); 512 } 513 } 514 515 static void tasklet_hi_action(struct softirq_action *a) 516 { 517 struct tasklet_struct *list; 518 519 local_irq_disable(); 520 list = __this_cpu_read(tasklet_hi_vec.head); 521 __this_cpu_write(tasklet_hi_vec.head, NULL); 522 __this_cpu_write(tasklet_hi_vec.tail, &__get_cpu_var(tasklet_hi_vec).head); 523 local_irq_enable(); 524 525 while (list) { 526 struct tasklet_struct *t = list; 527 528 list = list->next; 529 530 if (tasklet_trylock(t)) { 531 if (!atomic_read(&t->count)) { 532 if (!test_and_clear_bit(TASKLET_STATE_SCHED, &t->state)) 533 BUG(); 534 t->func(t->data); 535 tasklet_unlock(t); 536 continue; 537 } 538 tasklet_unlock(t); 539 } 540 541 local_irq_disable(); 542 t->next = NULL; 543 *__this_cpu_read(tasklet_hi_vec.tail) = t; 544 __this_cpu_write(tasklet_hi_vec.tail, &(t->next)); 545 __raise_softirq_irqoff(HI_SOFTIRQ); 546 local_irq_enable(); 547 } 548 } 549 550 551 void tasklet_init(struct tasklet_struct *t, 552 void (*func)(unsigned long), unsigned long data) 553 { 554 t->next = NULL; 555 t->state = 0; 556 atomic_set(&t->count, 0); 557 t->func = func; 558 t->data = data; 559 } 560 561 EXPORT_SYMBOL(tasklet_init); 562 563 void tasklet_kill(struct tasklet_struct *t) 564 { 565 if (in_interrupt()) 566 printk("Attempt to kill tasklet from interrupt\n"); 567 568 while (test_and_set_bit(TASKLET_STATE_SCHED, &t->state)) { 569 do { 570 yield(); 571 } while (test_bit(TASKLET_STATE_SCHED, &t->state)); 572 } 573 tasklet_unlock_wait(t); 574 clear_bit(TASKLET_STATE_SCHED, &t->state); 575 } 576 577 EXPORT_SYMBOL(tasklet_kill); 578 579 /* 580 * tasklet_hrtimer 581 */ 582 583 /* 584 * The trampoline is called when the hrtimer expires. It schedules a tasklet 585 * to run __tasklet_hrtimer_trampoline() which in turn will call the intended 586 * hrtimer callback, but from softirq context. 587 */ 588 static enum hrtimer_restart __hrtimer_tasklet_trampoline(struct hrtimer *timer) 589 { 590 struct tasklet_hrtimer *ttimer = 591 container_of(timer, struct tasklet_hrtimer, timer); 592 593 tasklet_hi_schedule(&ttimer->tasklet); 594 return HRTIMER_NORESTART; 595 } 596 597 /* 598 * Helper function which calls the hrtimer callback from 599 * tasklet/softirq context 600 */ 601 static void __tasklet_hrtimer_trampoline(unsigned long data) 602 { 603 struct tasklet_hrtimer *ttimer = (void *)data; 604 enum hrtimer_restart restart; 605 606 restart = ttimer->function(&ttimer->timer); 607 if (restart != HRTIMER_NORESTART) 608 hrtimer_restart(&ttimer->timer); 609 } 610 611 /** 612 * tasklet_hrtimer_init - Init a tasklet/hrtimer combo for softirq callbacks 613 * @ttimer: tasklet_hrtimer which is initialized 614 * @function: hrtimer callback function which gets called from softirq context 615 * @which_clock: clock id (CLOCK_MONOTONIC/CLOCK_REALTIME) 616 * @mode: hrtimer mode (HRTIMER_MODE_ABS/HRTIMER_MODE_REL) 617 */ 618 void tasklet_hrtimer_init(struct tasklet_hrtimer *ttimer, 619 enum hrtimer_restart (*function)(struct hrtimer *), 620 clockid_t which_clock, enum hrtimer_mode mode) 621 { 622 hrtimer_init(&ttimer->timer, which_clock, mode); 623 ttimer->timer.function = __hrtimer_tasklet_trampoline; 624 tasklet_init(&ttimer->tasklet, __tasklet_hrtimer_trampoline, 625 (unsigned long)ttimer); 626 ttimer->function = function; 627 } 628 EXPORT_SYMBOL_GPL(tasklet_hrtimer_init); 629 630 /* 631 * Remote softirq bits 632 */ 633 634 DEFINE_PER_CPU(struct list_head [NR_SOFTIRQS], softirq_work_list); 635 EXPORT_PER_CPU_SYMBOL(softirq_work_list); 636 637 static void __local_trigger(struct call_single_data *cp, int softirq) 638 { 639 struct list_head *head = &__get_cpu_var(softirq_work_list[softirq]); 640 641 list_add_tail(&cp->list, head); 642 643 /* Trigger the softirq only if the list was previously empty. */ 644 if (head->next == &cp->list) 645 raise_softirq_irqoff(softirq); 646 } 647 648 #ifdef CONFIG_USE_GENERIC_SMP_HELPERS 649 static void remote_softirq_receive(void *data) 650 { 651 struct call_single_data *cp = data; 652 unsigned long flags; 653 int softirq; 654 655 softirq = *(int *)cp->info; 656 local_irq_save(flags); 657 __local_trigger(cp, softirq); 658 local_irq_restore(flags); 659 } 660 661 static int __try_remote_softirq(struct call_single_data *cp, int cpu, int softirq) 662 { 663 if (cpu_online(cpu)) { 664 cp->func = remote_softirq_receive; 665 cp->info = &softirq; 666 cp->flags = 0; 667 668 __smp_call_function_single(cpu, cp, 0); 669 return 0; 670 } 671 return 1; 672 } 673 #else /* CONFIG_USE_GENERIC_SMP_HELPERS */ 674 static int __try_remote_softirq(struct call_single_data *cp, int cpu, int softirq) 675 { 676 return 1; 677 } 678 #endif 679 680 /** 681 * __send_remote_softirq - try to schedule softirq work on a remote cpu 682 * @cp: private SMP call function data area 683 * @cpu: the remote cpu 684 * @this_cpu: the currently executing cpu 685 * @softirq: the softirq for the work 686 * 687 * Attempt to schedule softirq work on a remote cpu. If this cannot be 688 * done, the work is instead queued up on the local cpu. 689 * 690 * Interrupts must be disabled. 691 */ 692 void __send_remote_softirq(struct call_single_data *cp, int cpu, int this_cpu, int softirq) 693 { 694 if (cpu == this_cpu || __try_remote_softirq(cp, cpu, softirq)) 695 __local_trigger(cp, softirq); 696 } 697 EXPORT_SYMBOL(__send_remote_softirq); 698 699 /** 700 * send_remote_softirq - try to schedule softirq work on a remote cpu 701 * @cp: private SMP call function data area 702 * @cpu: the remote cpu 703 * @softirq: the softirq for the work 704 * 705 * Like __send_remote_softirq except that disabling interrupts and 706 * computing the current cpu is done for the caller. 707 */ 708 void send_remote_softirq(struct call_single_data *cp, int cpu, int softirq) 709 { 710 unsigned long flags; 711 int this_cpu; 712 713 local_irq_save(flags); 714 this_cpu = smp_processor_id(); 715 __send_remote_softirq(cp, cpu, this_cpu, softirq); 716 local_irq_restore(flags); 717 } 718 EXPORT_SYMBOL(send_remote_softirq); 719 720 static int remote_softirq_cpu_notify(struct notifier_block *self, 721 unsigned long action, void *hcpu) 722 { 723 /* 724 * If a CPU goes away, splice its entries to the current CPU 725 * and trigger a run of the softirq 726 */ 727 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 728 int cpu = (unsigned long) hcpu; 729 int i; 730 731 local_irq_disable(); 732 for (i = 0; i < NR_SOFTIRQS; i++) { 733 struct list_head *head = &per_cpu(softirq_work_list[i], cpu); 734 struct list_head *local_head; 735 736 if (list_empty(head)) 737 continue; 738 739 local_head = &__get_cpu_var(softirq_work_list[i]); 740 list_splice_init(head, local_head); 741 raise_softirq_irqoff(i); 742 } 743 local_irq_enable(); 744 } 745 746 return NOTIFY_OK; 747 } 748 749 static struct notifier_block remote_softirq_cpu_notifier = { 750 .notifier_call = remote_softirq_cpu_notify, 751 }; 752 753 void __init softirq_init(void) 754 { 755 int cpu; 756 757 for_each_possible_cpu(cpu) { 758 int i; 759 760 per_cpu(tasklet_vec, cpu).tail = 761 &per_cpu(tasklet_vec, cpu).head; 762 per_cpu(tasklet_hi_vec, cpu).tail = 763 &per_cpu(tasklet_hi_vec, cpu).head; 764 for (i = 0; i < NR_SOFTIRQS; i++) 765 INIT_LIST_HEAD(&per_cpu(softirq_work_list[i], cpu)); 766 } 767 768 register_hotcpu_notifier(&remote_softirq_cpu_notifier); 769 770 open_softirq(TASKLET_SOFTIRQ, tasklet_action); 771 open_softirq(HI_SOFTIRQ, tasklet_hi_action); 772 } 773 774 static int ksoftirqd_should_run(unsigned int cpu) 775 { 776 return local_softirq_pending(); 777 } 778 779 static void run_ksoftirqd(unsigned int cpu) 780 { 781 local_irq_disable(); 782 if (local_softirq_pending()) { 783 /* 784 * We can safely run softirq on inline stack, as we are not deep 785 * in the task stack here. 786 */ 787 __do_softirq(); 788 rcu_note_context_switch(cpu); 789 local_irq_enable(); 790 cond_resched(); 791 return; 792 } 793 local_irq_enable(); 794 } 795 796 #ifdef CONFIG_HOTPLUG_CPU 797 /* 798 * tasklet_kill_immediate is called to remove a tasklet which can already be 799 * scheduled for execution on @cpu. 800 * 801 * Unlike tasklet_kill, this function removes the tasklet 802 * _immediately_, even if the tasklet is in TASKLET_STATE_SCHED state. 803 * 804 * When this function is called, @cpu must be in the CPU_DEAD state. 805 */ 806 void tasklet_kill_immediate(struct tasklet_struct *t, unsigned int cpu) 807 { 808 struct tasklet_struct **i; 809 810 BUG_ON(cpu_online(cpu)); 811 BUG_ON(test_bit(TASKLET_STATE_RUN, &t->state)); 812 813 if (!test_bit(TASKLET_STATE_SCHED, &t->state)) 814 return; 815 816 /* CPU is dead, so no lock needed. */ 817 for (i = &per_cpu(tasklet_vec, cpu).head; *i; i = &(*i)->next) { 818 if (*i == t) { 819 *i = t->next; 820 /* If this was the tail element, move the tail ptr */ 821 if (*i == NULL) 822 per_cpu(tasklet_vec, cpu).tail = i; 823 return; 824 } 825 } 826 BUG(); 827 } 828 829 static void takeover_tasklets(unsigned int cpu) 830 { 831 /* CPU is dead, so no lock needed. */ 832 local_irq_disable(); 833 834 /* Find end, append list for that CPU. */ 835 if (&per_cpu(tasklet_vec, cpu).head != per_cpu(tasklet_vec, cpu).tail) { 836 *__this_cpu_read(tasklet_vec.tail) = per_cpu(tasklet_vec, cpu).head; 837 this_cpu_write(tasklet_vec.tail, per_cpu(tasklet_vec, cpu).tail); 838 per_cpu(tasklet_vec, cpu).head = NULL; 839 per_cpu(tasklet_vec, cpu).tail = &per_cpu(tasklet_vec, cpu).head; 840 } 841 raise_softirq_irqoff(TASKLET_SOFTIRQ); 842 843 if (&per_cpu(tasklet_hi_vec, cpu).head != per_cpu(tasklet_hi_vec, cpu).tail) { 844 *__this_cpu_read(tasklet_hi_vec.tail) = per_cpu(tasklet_hi_vec, cpu).head; 845 __this_cpu_write(tasklet_hi_vec.tail, per_cpu(tasklet_hi_vec, cpu).tail); 846 per_cpu(tasklet_hi_vec, cpu).head = NULL; 847 per_cpu(tasklet_hi_vec, cpu).tail = &per_cpu(tasklet_hi_vec, cpu).head; 848 } 849 raise_softirq_irqoff(HI_SOFTIRQ); 850 851 local_irq_enable(); 852 } 853 #endif /* CONFIG_HOTPLUG_CPU */ 854 855 static int cpu_callback(struct notifier_block *nfb, 856 unsigned long action, 857 void *hcpu) 858 { 859 switch (action) { 860 #ifdef CONFIG_HOTPLUG_CPU 861 case CPU_DEAD: 862 case CPU_DEAD_FROZEN: 863 takeover_tasklets((unsigned long)hcpu); 864 break; 865 #endif /* CONFIG_HOTPLUG_CPU */ 866 } 867 return NOTIFY_OK; 868 } 869 870 static struct notifier_block cpu_nfb = { 871 .notifier_call = cpu_callback 872 }; 873 874 static struct smp_hotplug_thread softirq_threads = { 875 .store = &ksoftirqd, 876 .thread_should_run = ksoftirqd_should_run, 877 .thread_fn = run_ksoftirqd, 878 .thread_comm = "ksoftirqd/%u", 879 }; 880 881 static __init int spawn_ksoftirqd(void) 882 { 883 register_cpu_notifier(&cpu_nfb); 884 885 BUG_ON(smpboot_register_percpu_thread(&softirq_threads)); 886 887 return 0; 888 } 889 early_initcall(spawn_ksoftirqd); 890 891 /* 892 * [ These __weak aliases are kept in a separate compilation unit, so that 893 * GCC does not inline them incorrectly. ] 894 */ 895 896 int __init __weak early_irq_init(void) 897 { 898 return 0; 899 } 900 901 int __init __weak arch_probe_nr_irqs(void) 902 { 903 return NR_IRQS_LEGACY; 904 } 905 906 int __init __weak arch_early_irq_init(void) 907 { 908 return 0; 909 } 910