xref: /openbmc/linux/kernel/smpboot.c (revision fb960bd2)
1 /*
2  * Common SMP CPU bringup/teardown functions
3  */
4 #include <linux/cpu.h>
5 #include <linux/err.h>
6 #include <linux/smp.h>
7 #include <linux/delay.h>
8 #include <linux/init.h>
9 #include <linux/list.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/sched/task.h>
13 #include <linux/export.h>
14 #include <linux/percpu.h>
15 #include <linux/kthread.h>
16 #include <linux/smpboot.h>
17 
18 #include "smpboot.h"
19 
20 #ifdef CONFIG_SMP
21 
22 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
23 /*
24  * For the hotplug case we keep the task structs around and reuse
25  * them.
26  */
27 static DEFINE_PER_CPU(struct task_struct *, idle_threads);
28 
29 struct task_struct *idle_thread_get(unsigned int cpu)
30 {
31 	struct task_struct *tsk = per_cpu(idle_threads, cpu);
32 
33 	if (!tsk)
34 		return ERR_PTR(-ENOMEM);
35 	init_idle(tsk, cpu);
36 	return tsk;
37 }
38 
39 void __init idle_thread_set_boot_cpu(void)
40 {
41 	per_cpu(idle_threads, smp_processor_id()) = current;
42 }
43 
44 /**
45  * idle_init - Initialize the idle thread for a cpu
46  * @cpu:	The cpu for which the idle thread should be initialized
47  *
48  * Creates the thread if it does not exist.
49  */
50 static inline void idle_init(unsigned int cpu)
51 {
52 	struct task_struct *tsk = per_cpu(idle_threads, cpu);
53 
54 	if (!tsk) {
55 		tsk = fork_idle(cpu);
56 		if (IS_ERR(tsk))
57 			pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
58 		else
59 			per_cpu(idle_threads, cpu) = tsk;
60 	}
61 }
62 
63 /**
64  * idle_threads_init - Initialize idle threads for all cpus
65  */
66 void __init idle_threads_init(void)
67 {
68 	unsigned int cpu, boot_cpu;
69 
70 	boot_cpu = smp_processor_id();
71 
72 	for_each_possible_cpu(cpu) {
73 		if (cpu != boot_cpu)
74 			idle_init(cpu);
75 	}
76 }
77 #endif
78 
79 #endif /* #ifdef CONFIG_SMP */
80 
81 static LIST_HEAD(hotplug_threads);
82 static DEFINE_MUTEX(smpboot_threads_lock);
83 
84 struct smpboot_thread_data {
85 	unsigned int			cpu;
86 	unsigned int			status;
87 	struct smp_hotplug_thread	*ht;
88 };
89 
90 enum {
91 	HP_THREAD_NONE = 0,
92 	HP_THREAD_ACTIVE,
93 	HP_THREAD_PARKED,
94 };
95 
96 /**
97  * smpboot_thread_fn - percpu hotplug thread loop function
98  * @data:	thread data pointer
99  *
100  * Checks for thread stop and park conditions. Calls the necessary
101  * setup, cleanup, park and unpark functions for the registered
102  * thread.
103  *
104  * Returns 1 when the thread should exit, 0 otherwise.
105  */
106 static int smpboot_thread_fn(void *data)
107 {
108 	struct smpboot_thread_data *td = data;
109 	struct smp_hotplug_thread *ht = td->ht;
110 
111 	while (1) {
112 		set_current_state(TASK_INTERRUPTIBLE);
113 		preempt_disable();
114 		if (kthread_should_stop()) {
115 			__set_current_state(TASK_RUNNING);
116 			preempt_enable();
117 			/* cleanup must mirror setup */
118 			if (ht->cleanup && td->status != HP_THREAD_NONE)
119 				ht->cleanup(td->cpu, cpu_online(td->cpu));
120 			kfree(td);
121 			return 0;
122 		}
123 
124 		if (kthread_should_park()) {
125 			__set_current_state(TASK_RUNNING);
126 			preempt_enable();
127 			if (ht->park && td->status == HP_THREAD_ACTIVE) {
128 				BUG_ON(td->cpu != smp_processor_id());
129 				ht->park(td->cpu);
130 				td->status = HP_THREAD_PARKED;
131 			}
132 			kthread_parkme();
133 			/* We might have been woken for stop */
134 			continue;
135 		}
136 
137 		BUG_ON(td->cpu != smp_processor_id());
138 
139 		/* Check for state change setup */
140 		switch (td->status) {
141 		case HP_THREAD_NONE:
142 			__set_current_state(TASK_RUNNING);
143 			preempt_enable();
144 			if (ht->setup)
145 				ht->setup(td->cpu);
146 			td->status = HP_THREAD_ACTIVE;
147 			continue;
148 
149 		case HP_THREAD_PARKED:
150 			__set_current_state(TASK_RUNNING);
151 			preempt_enable();
152 			if (ht->unpark)
153 				ht->unpark(td->cpu);
154 			td->status = HP_THREAD_ACTIVE;
155 			continue;
156 		}
157 
158 		if (!ht->thread_should_run(td->cpu)) {
159 			preempt_enable_no_resched();
160 			schedule();
161 		} else {
162 			__set_current_state(TASK_RUNNING);
163 			preempt_enable();
164 			ht->thread_fn(td->cpu);
165 		}
166 	}
167 }
168 
169 static int
170 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
171 {
172 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
173 	struct smpboot_thread_data *td;
174 
175 	if (tsk)
176 		return 0;
177 
178 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
179 	if (!td)
180 		return -ENOMEM;
181 	td->cpu = cpu;
182 	td->ht = ht;
183 
184 	tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
185 				    ht->thread_comm);
186 	if (IS_ERR(tsk)) {
187 		kfree(td);
188 		return PTR_ERR(tsk);
189 	}
190 	/*
191 	 * Park the thread so that it could start right on the CPU
192 	 * when it is available.
193 	 */
194 	kthread_park(tsk);
195 	get_task_struct(tsk);
196 	*per_cpu_ptr(ht->store, cpu) = tsk;
197 	if (ht->create) {
198 		/*
199 		 * Make sure that the task has actually scheduled out
200 		 * into park position, before calling the create
201 		 * callback. At least the migration thread callback
202 		 * requires that the task is off the runqueue.
203 		 */
204 		if (!wait_task_inactive(tsk, TASK_PARKED))
205 			WARN_ON(1);
206 		else
207 			ht->create(cpu);
208 	}
209 	return 0;
210 }
211 
212 int smpboot_create_threads(unsigned int cpu)
213 {
214 	struct smp_hotplug_thread *cur;
215 	int ret = 0;
216 
217 	mutex_lock(&smpboot_threads_lock);
218 	list_for_each_entry(cur, &hotplug_threads, list) {
219 		ret = __smpboot_create_thread(cur, cpu);
220 		if (ret)
221 			break;
222 	}
223 	mutex_unlock(&smpboot_threads_lock);
224 	return ret;
225 }
226 
227 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
228 {
229 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
230 
231 	if (!ht->selfparking)
232 		kthread_unpark(tsk);
233 }
234 
235 int smpboot_unpark_threads(unsigned int cpu)
236 {
237 	struct smp_hotplug_thread *cur;
238 
239 	mutex_lock(&smpboot_threads_lock);
240 	list_for_each_entry(cur, &hotplug_threads, list)
241 		if (cpumask_test_cpu(cpu, cur->cpumask))
242 			smpboot_unpark_thread(cur, cpu);
243 	mutex_unlock(&smpboot_threads_lock);
244 	return 0;
245 }
246 
247 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
248 {
249 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
250 
251 	if (tsk && !ht->selfparking)
252 		kthread_park(tsk);
253 }
254 
255 int smpboot_park_threads(unsigned int cpu)
256 {
257 	struct smp_hotplug_thread *cur;
258 
259 	mutex_lock(&smpboot_threads_lock);
260 	list_for_each_entry_reverse(cur, &hotplug_threads, list)
261 		smpboot_park_thread(cur, cpu);
262 	mutex_unlock(&smpboot_threads_lock);
263 	return 0;
264 }
265 
266 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
267 {
268 	unsigned int cpu;
269 
270 	/* We need to destroy also the parked threads of offline cpus */
271 	for_each_possible_cpu(cpu) {
272 		struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
273 
274 		if (tsk) {
275 			kthread_stop(tsk);
276 			put_task_struct(tsk);
277 			*per_cpu_ptr(ht->store, cpu) = NULL;
278 		}
279 	}
280 }
281 
282 /**
283  * smpboot_register_percpu_thread_cpumask - Register a per_cpu thread related
284  * 					    to hotplug
285  * @plug_thread:	Hotplug thread descriptor
286  * @cpumask:		The cpumask where threads run
287  *
288  * Creates and starts the threads on all online cpus.
289  */
290 int smpboot_register_percpu_thread_cpumask(struct smp_hotplug_thread *plug_thread,
291 					   const struct cpumask *cpumask)
292 {
293 	unsigned int cpu;
294 	int ret = 0;
295 
296 	if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL))
297 		return -ENOMEM;
298 	cpumask_copy(plug_thread->cpumask, cpumask);
299 
300 	get_online_cpus();
301 	mutex_lock(&smpboot_threads_lock);
302 	for_each_online_cpu(cpu) {
303 		ret = __smpboot_create_thread(plug_thread, cpu);
304 		if (ret) {
305 			smpboot_destroy_threads(plug_thread);
306 			free_cpumask_var(plug_thread->cpumask);
307 			goto out;
308 		}
309 		if (cpumask_test_cpu(cpu, cpumask))
310 			smpboot_unpark_thread(plug_thread, cpu);
311 	}
312 	list_add(&plug_thread->list, &hotplug_threads);
313 out:
314 	mutex_unlock(&smpboot_threads_lock);
315 	put_online_cpus();
316 	return ret;
317 }
318 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread_cpumask);
319 
320 /**
321  * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
322  * @plug_thread:	Hotplug thread descriptor
323  *
324  * Stops all threads on all possible cpus.
325  */
326 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
327 {
328 	get_online_cpus();
329 	mutex_lock(&smpboot_threads_lock);
330 	list_del(&plug_thread->list);
331 	smpboot_destroy_threads(plug_thread);
332 	mutex_unlock(&smpboot_threads_lock);
333 	put_online_cpus();
334 	free_cpumask_var(plug_thread->cpumask);
335 }
336 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
337 
338 /**
339  * smpboot_update_cpumask_percpu_thread - Adjust which per_cpu hotplug threads stay parked
340  * @plug_thread:	Hotplug thread descriptor
341  * @new:		Revised mask to use
342  *
343  * The cpumask field in the smp_hotplug_thread must not be updated directly
344  * by the client, but only by calling this function.
345  * This function can only be called on a registered smp_hotplug_thread.
346  */
347 void smpboot_update_cpumask_percpu_thread(struct smp_hotplug_thread *plug_thread,
348 					  const struct cpumask *new)
349 {
350 	struct cpumask *old = plug_thread->cpumask;
351 	static struct cpumask tmp;
352 	unsigned int cpu;
353 
354 	lockdep_assert_cpus_held();
355 	mutex_lock(&smpboot_threads_lock);
356 
357 	/* Park threads that were exclusively enabled on the old mask. */
358 	cpumask_andnot(&tmp, old, new);
359 	for_each_cpu_and(cpu, &tmp, cpu_online_mask)
360 		smpboot_park_thread(plug_thread, cpu);
361 
362 	/* Unpark threads that are exclusively enabled on the new mask. */
363 	cpumask_andnot(&tmp, new, old);
364 	for_each_cpu_and(cpu, &tmp, cpu_online_mask)
365 		smpboot_unpark_thread(plug_thread, cpu);
366 
367 	cpumask_copy(old, new);
368 
369 	mutex_unlock(&smpboot_threads_lock);
370 }
371 
372 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
373 
374 /*
375  * Called to poll specified CPU's state, for example, when waiting for
376  * a CPU to come online.
377  */
378 int cpu_report_state(int cpu)
379 {
380 	return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
381 }
382 
383 /*
384  * If CPU has died properly, set its state to CPU_UP_PREPARE and
385  * return success.  Otherwise, return -EBUSY if the CPU died after
386  * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
387  * if cpu_wait_death() timed out and the CPU still hasn't gotten around
388  * to dying.  In the latter two cases, the CPU might not be set up
389  * properly, but it is up to the arch-specific code to decide.
390  * Finally, -EIO indicates an unanticipated problem.
391  *
392  * Note that it is permissible to omit this call entirely, as is
393  * done in architectures that do no CPU-hotplug error checking.
394  */
395 int cpu_check_up_prepare(int cpu)
396 {
397 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
398 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
399 		return 0;
400 	}
401 
402 	switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
403 
404 	case CPU_POST_DEAD:
405 
406 		/* The CPU died properly, so just start it up again. */
407 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
408 		return 0;
409 
410 	case CPU_DEAD_FROZEN:
411 
412 		/*
413 		 * Timeout during CPU death, so let caller know.
414 		 * The outgoing CPU completed its processing, but after
415 		 * cpu_wait_death() timed out and reported the error. The
416 		 * caller is free to proceed, in which case the state
417 		 * will be reset properly by cpu_set_state_online().
418 		 * Proceeding despite this -EBUSY return makes sense
419 		 * for systems where the outgoing CPUs take themselves
420 		 * offline, with no post-death manipulation required from
421 		 * a surviving CPU.
422 		 */
423 		return -EBUSY;
424 
425 	case CPU_BROKEN:
426 
427 		/*
428 		 * The most likely reason we got here is that there was
429 		 * a timeout during CPU death, and the outgoing CPU never
430 		 * did complete its processing.  This could happen on
431 		 * a virtualized system if the outgoing VCPU gets preempted
432 		 * for more than five seconds, and the user attempts to
433 		 * immediately online that same CPU.  Trying again later
434 		 * might return -EBUSY above, hence -EAGAIN.
435 		 */
436 		return -EAGAIN;
437 
438 	default:
439 
440 		/* Should not happen.  Famous last words. */
441 		return -EIO;
442 	}
443 }
444 
445 /*
446  * Mark the specified CPU online.
447  *
448  * Note that it is permissible to omit this call entirely, as is
449  * done in architectures that do no CPU-hotplug error checking.
450  */
451 void cpu_set_state_online(int cpu)
452 {
453 	(void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
454 }
455 
456 #ifdef CONFIG_HOTPLUG_CPU
457 
458 /*
459  * Wait for the specified CPU to exit the idle loop and die.
460  */
461 bool cpu_wait_death(unsigned int cpu, int seconds)
462 {
463 	int jf_left = seconds * HZ;
464 	int oldstate;
465 	bool ret = true;
466 	int sleep_jf = 1;
467 
468 	might_sleep();
469 
470 	/* The outgoing CPU will normally get done quite quickly. */
471 	if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
472 		goto update_state;
473 	udelay(5);
474 
475 	/* But if the outgoing CPU dawdles, wait increasingly long times. */
476 	while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
477 		schedule_timeout_uninterruptible(sleep_jf);
478 		jf_left -= sleep_jf;
479 		if (jf_left <= 0)
480 			break;
481 		sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
482 	}
483 update_state:
484 	oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
485 	if (oldstate == CPU_DEAD) {
486 		/* Outgoing CPU died normally, update state. */
487 		smp_mb(); /* atomic_read() before update. */
488 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
489 	} else {
490 		/* Outgoing CPU still hasn't died, set state accordingly. */
491 		if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
492 				   oldstate, CPU_BROKEN) != oldstate)
493 			goto update_state;
494 		ret = false;
495 	}
496 	return ret;
497 }
498 
499 /*
500  * Called by the outgoing CPU to report its successful death.  Return
501  * false if this report follows the surviving CPU's timing out.
502  *
503  * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
504  * timed out.  This approach allows architectures to omit calls to
505  * cpu_check_up_prepare() and cpu_set_state_online() without defeating
506  * the next cpu_wait_death()'s polling loop.
507  */
508 bool cpu_report_death(void)
509 {
510 	int oldstate;
511 	int newstate;
512 	int cpu = smp_processor_id();
513 
514 	do {
515 		oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
516 		if (oldstate != CPU_BROKEN)
517 			newstate = CPU_DEAD;
518 		else
519 			newstate = CPU_DEAD_FROZEN;
520 	} while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
521 				oldstate, newstate) != oldstate);
522 	return newstate == CPU_DEAD;
523 }
524 
525 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
526