1 /* 2 * Common SMP CPU bringup/teardown functions 3 */ 4 #include <linux/cpu.h> 5 #include <linux/err.h> 6 #include <linux/smp.h> 7 #include <linux/delay.h> 8 #include <linux/init.h> 9 #include <linux/list.h> 10 #include <linux/slab.h> 11 #include <linux/sched.h> 12 #include <linux/sched/task.h> 13 #include <linux/export.h> 14 #include <linux/percpu.h> 15 #include <linux/kthread.h> 16 #include <linux/smpboot.h> 17 18 #include "smpboot.h" 19 20 #ifdef CONFIG_SMP 21 22 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD 23 /* 24 * For the hotplug case we keep the task structs around and reuse 25 * them. 26 */ 27 static DEFINE_PER_CPU(struct task_struct *, idle_threads); 28 29 struct task_struct *idle_thread_get(unsigned int cpu) 30 { 31 struct task_struct *tsk = per_cpu(idle_threads, cpu); 32 33 if (!tsk) 34 return ERR_PTR(-ENOMEM); 35 init_idle(tsk, cpu); 36 return tsk; 37 } 38 39 void __init idle_thread_set_boot_cpu(void) 40 { 41 per_cpu(idle_threads, smp_processor_id()) = current; 42 } 43 44 /** 45 * idle_init - Initialize the idle thread for a cpu 46 * @cpu: The cpu for which the idle thread should be initialized 47 * 48 * Creates the thread if it does not exist. 49 */ 50 static inline void idle_init(unsigned int cpu) 51 { 52 struct task_struct *tsk = per_cpu(idle_threads, cpu); 53 54 if (!tsk) { 55 tsk = fork_idle(cpu); 56 if (IS_ERR(tsk)) 57 pr_err("SMP: fork_idle() failed for CPU %u\n", cpu); 58 else 59 per_cpu(idle_threads, cpu) = tsk; 60 } 61 } 62 63 /** 64 * idle_threads_init - Initialize idle threads for all cpus 65 */ 66 void __init idle_threads_init(void) 67 { 68 unsigned int cpu, boot_cpu; 69 70 boot_cpu = smp_processor_id(); 71 72 for_each_possible_cpu(cpu) { 73 if (cpu != boot_cpu) 74 idle_init(cpu); 75 } 76 } 77 #endif 78 79 #endif /* #ifdef CONFIG_SMP */ 80 81 static LIST_HEAD(hotplug_threads); 82 static DEFINE_MUTEX(smpboot_threads_lock); 83 84 struct smpboot_thread_data { 85 unsigned int cpu; 86 unsigned int status; 87 struct smp_hotplug_thread *ht; 88 }; 89 90 enum { 91 HP_THREAD_NONE = 0, 92 HP_THREAD_ACTIVE, 93 HP_THREAD_PARKED, 94 }; 95 96 /** 97 * smpboot_thread_fn - percpu hotplug thread loop function 98 * @data: thread data pointer 99 * 100 * Checks for thread stop and park conditions. Calls the necessary 101 * setup, cleanup, park and unpark functions for the registered 102 * thread. 103 * 104 * Returns 1 when the thread should exit, 0 otherwise. 105 */ 106 static int smpboot_thread_fn(void *data) 107 { 108 struct smpboot_thread_data *td = data; 109 struct smp_hotplug_thread *ht = td->ht; 110 111 while (1) { 112 set_current_state(TASK_INTERRUPTIBLE); 113 preempt_disable(); 114 if (kthread_should_stop()) { 115 __set_current_state(TASK_RUNNING); 116 preempt_enable(); 117 /* cleanup must mirror setup */ 118 if (ht->cleanup && td->status != HP_THREAD_NONE) 119 ht->cleanup(td->cpu, cpu_online(td->cpu)); 120 kfree(td); 121 return 0; 122 } 123 124 if (kthread_should_park()) { 125 __set_current_state(TASK_RUNNING); 126 preempt_enable(); 127 if (ht->park && td->status == HP_THREAD_ACTIVE) { 128 BUG_ON(td->cpu != smp_processor_id()); 129 ht->park(td->cpu); 130 td->status = HP_THREAD_PARKED; 131 } 132 kthread_parkme(); 133 /* We might have been woken for stop */ 134 continue; 135 } 136 137 BUG_ON(td->cpu != smp_processor_id()); 138 139 /* Check for state change setup */ 140 switch (td->status) { 141 case HP_THREAD_NONE: 142 __set_current_state(TASK_RUNNING); 143 preempt_enable(); 144 if (ht->setup) 145 ht->setup(td->cpu); 146 td->status = HP_THREAD_ACTIVE; 147 continue; 148 149 case HP_THREAD_PARKED: 150 __set_current_state(TASK_RUNNING); 151 preempt_enable(); 152 if (ht->unpark) 153 ht->unpark(td->cpu); 154 td->status = HP_THREAD_ACTIVE; 155 continue; 156 } 157 158 if (!ht->thread_should_run(td->cpu)) { 159 preempt_enable_no_resched(); 160 schedule(); 161 } else { 162 __set_current_state(TASK_RUNNING); 163 preempt_enable(); 164 ht->thread_fn(td->cpu); 165 } 166 } 167 } 168 169 static int 170 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu) 171 { 172 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 173 struct smpboot_thread_data *td; 174 175 if (tsk) 176 return 0; 177 178 td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu)); 179 if (!td) 180 return -ENOMEM; 181 td->cpu = cpu; 182 td->ht = ht; 183 184 tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu, 185 ht->thread_comm); 186 if (IS_ERR(tsk)) { 187 kfree(td); 188 return PTR_ERR(tsk); 189 } 190 /* 191 * Park the thread so that it could start right on the CPU 192 * when it is available. 193 */ 194 kthread_park(tsk); 195 get_task_struct(tsk); 196 *per_cpu_ptr(ht->store, cpu) = tsk; 197 if (ht->create) { 198 /* 199 * Make sure that the task has actually scheduled out 200 * into park position, before calling the create 201 * callback. At least the migration thread callback 202 * requires that the task is off the runqueue. 203 */ 204 if (!wait_task_inactive(tsk, TASK_PARKED)) 205 WARN_ON(1); 206 else 207 ht->create(cpu); 208 } 209 return 0; 210 } 211 212 int smpboot_create_threads(unsigned int cpu) 213 { 214 struct smp_hotplug_thread *cur; 215 int ret = 0; 216 217 mutex_lock(&smpboot_threads_lock); 218 list_for_each_entry(cur, &hotplug_threads, list) { 219 ret = __smpboot_create_thread(cur, cpu); 220 if (ret) 221 break; 222 } 223 mutex_unlock(&smpboot_threads_lock); 224 return ret; 225 } 226 227 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu) 228 { 229 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 230 231 if (!ht->selfparking) 232 kthread_unpark(tsk); 233 } 234 235 int smpboot_unpark_threads(unsigned int cpu) 236 { 237 struct smp_hotplug_thread *cur; 238 239 mutex_lock(&smpboot_threads_lock); 240 list_for_each_entry(cur, &hotplug_threads, list) 241 smpboot_unpark_thread(cur, cpu); 242 mutex_unlock(&smpboot_threads_lock); 243 return 0; 244 } 245 246 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu) 247 { 248 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 249 250 if (tsk && !ht->selfparking) 251 kthread_park(tsk); 252 } 253 254 int smpboot_park_threads(unsigned int cpu) 255 { 256 struct smp_hotplug_thread *cur; 257 258 mutex_lock(&smpboot_threads_lock); 259 list_for_each_entry_reverse(cur, &hotplug_threads, list) 260 smpboot_park_thread(cur, cpu); 261 mutex_unlock(&smpboot_threads_lock); 262 return 0; 263 } 264 265 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht) 266 { 267 unsigned int cpu; 268 269 /* We need to destroy also the parked threads of offline cpus */ 270 for_each_possible_cpu(cpu) { 271 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 272 273 if (tsk) { 274 kthread_stop(tsk); 275 put_task_struct(tsk); 276 *per_cpu_ptr(ht->store, cpu) = NULL; 277 } 278 } 279 } 280 281 /** 282 * smpboot_register_percpu_thread - Register a per_cpu thread related 283 * to hotplug 284 * @plug_thread: Hotplug thread descriptor 285 * 286 * Creates and starts the threads on all online cpus. 287 */ 288 int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread) 289 { 290 unsigned int cpu; 291 int ret = 0; 292 293 get_online_cpus(); 294 mutex_lock(&smpboot_threads_lock); 295 for_each_online_cpu(cpu) { 296 ret = __smpboot_create_thread(plug_thread, cpu); 297 if (ret) { 298 smpboot_destroy_threads(plug_thread); 299 goto out; 300 } 301 smpboot_unpark_thread(plug_thread, cpu); 302 } 303 list_add(&plug_thread->list, &hotplug_threads); 304 out: 305 mutex_unlock(&smpboot_threads_lock); 306 put_online_cpus(); 307 return ret; 308 } 309 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread); 310 311 /** 312 * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug 313 * @plug_thread: Hotplug thread descriptor 314 * 315 * Stops all threads on all possible cpus. 316 */ 317 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread) 318 { 319 get_online_cpus(); 320 mutex_lock(&smpboot_threads_lock); 321 list_del(&plug_thread->list); 322 smpboot_destroy_threads(plug_thread); 323 mutex_unlock(&smpboot_threads_lock); 324 put_online_cpus(); 325 } 326 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread); 327 328 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD); 329 330 /* 331 * Called to poll specified CPU's state, for example, when waiting for 332 * a CPU to come online. 333 */ 334 int cpu_report_state(int cpu) 335 { 336 return atomic_read(&per_cpu(cpu_hotplug_state, cpu)); 337 } 338 339 /* 340 * If CPU has died properly, set its state to CPU_UP_PREPARE and 341 * return success. Otherwise, return -EBUSY if the CPU died after 342 * cpu_wait_death() timed out. And yet otherwise again, return -EAGAIN 343 * if cpu_wait_death() timed out and the CPU still hasn't gotten around 344 * to dying. In the latter two cases, the CPU might not be set up 345 * properly, but it is up to the arch-specific code to decide. 346 * Finally, -EIO indicates an unanticipated problem. 347 * 348 * Note that it is permissible to omit this call entirely, as is 349 * done in architectures that do no CPU-hotplug error checking. 350 */ 351 int cpu_check_up_prepare(int cpu) 352 { 353 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 354 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE); 355 return 0; 356 } 357 358 switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) { 359 360 case CPU_POST_DEAD: 361 362 /* The CPU died properly, so just start it up again. */ 363 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE); 364 return 0; 365 366 case CPU_DEAD_FROZEN: 367 368 /* 369 * Timeout during CPU death, so let caller know. 370 * The outgoing CPU completed its processing, but after 371 * cpu_wait_death() timed out and reported the error. The 372 * caller is free to proceed, in which case the state 373 * will be reset properly by cpu_set_state_online(). 374 * Proceeding despite this -EBUSY return makes sense 375 * for systems where the outgoing CPUs take themselves 376 * offline, with no post-death manipulation required from 377 * a surviving CPU. 378 */ 379 return -EBUSY; 380 381 case CPU_BROKEN: 382 383 /* 384 * The most likely reason we got here is that there was 385 * a timeout during CPU death, and the outgoing CPU never 386 * did complete its processing. This could happen on 387 * a virtualized system if the outgoing VCPU gets preempted 388 * for more than five seconds, and the user attempts to 389 * immediately online that same CPU. Trying again later 390 * might return -EBUSY above, hence -EAGAIN. 391 */ 392 return -EAGAIN; 393 394 default: 395 396 /* Should not happen. Famous last words. */ 397 return -EIO; 398 } 399 } 400 401 /* 402 * Mark the specified CPU online. 403 * 404 * Note that it is permissible to omit this call entirely, as is 405 * done in architectures that do no CPU-hotplug error checking. 406 */ 407 void cpu_set_state_online(int cpu) 408 { 409 (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE); 410 } 411 412 #ifdef CONFIG_HOTPLUG_CPU 413 414 /* 415 * Wait for the specified CPU to exit the idle loop and die. 416 */ 417 bool cpu_wait_death(unsigned int cpu, int seconds) 418 { 419 int jf_left = seconds * HZ; 420 int oldstate; 421 bool ret = true; 422 int sleep_jf = 1; 423 424 might_sleep(); 425 426 /* The outgoing CPU will normally get done quite quickly. */ 427 if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD) 428 goto update_state; 429 udelay(5); 430 431 /* But if the outgoing CPU dawdles, wait increasingly long times. */ 432 while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) { 433 schedule_timeout_uninterruptible(sleep_jf); 434 jf_left -= sleep_jf; 435 if (jf_left <= 0) 436 break; 437 sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10); 438 } 439 update_state: 440 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu)); 441 if (oldstate == CPU_DEAD) { 442 /* Outgoing CPU died normally, update state. */ 443 smp_mb(); /* atomic_read() before update. */ 444 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD); 445 } else { 446 /* Outgoing CPU still hasn't died, set state accordingly. */ 447 if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu), 448 oldstate, CPU_BROKEN) != oldstate) 449 goto update_state; 450 ret = false; 451 } 452 return ret; 453 } 454 455 /* 456 * Called by the outgoing CPU to report its successful death. Return 457 * false if this report follows the surviving CPU's timing out. 458 * 459 * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU 460 * timed out. This approach allows architectures to omit calls to 461 * cpu_check_up_prepare() and cpu_set_state_online() without defeating 462 * the next cpu_wait_death()'s polling loop. 463 */ 464 bool cpu_report_death(void) 465 { 466 int oldstate; 467 int newstate; 468 int cpu = smp_processor_id(); 469 470 do { 471 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu)); 472 if (oldstate != CPU_BROKEN) 473 newstate = CPU_DEAD; 474 else 475 newstate = CPU_DEAD_FROZEN; 476 } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu), 477 oldstate, newstate) != oldstate); 478 return newstate == CPU_DEAD; 479 } 480 481 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 482