1 /* 2 * Common SMP CPU bringup/teardown functions 3 */ 4 #include <linux/cpu.h> 5 #include <linux/err.h> 6 #include <linux/smp.h> 7 #include <linux/delay.h> 8 #include <linux/init.h> 9 #include <linux/list.h> 10 #include <linux/slab.h> 11 #include <linux/sched.h> 12 #include <linux/export.h> 13 #include <linux/percpu.h> 14 #include <linux/kthread.h> 15 #include <linux/smpboot.h> 16 17 #include "smpboot.h" 18 19 #ifdef CONFIG_SMP 20 21 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD 22 /* 23 * For the hotplug case we keep the task structs around and reuse 24 * them. 25 */ 26 static DEFINE_PER_CPU(struct task_struct *, idle_threads); 27 28 struct task_struct *idle_thread_get(unsigned int cpu) 29 { 30 struct task_struct *tsk = per_cpu(idle_threads, cpu); 31 32 if (!tsk) 33 return ERR_PTR(-ENOMEM); 34 init_idle(tsk, cpu); 35 return tsk; 36 } 37 38 void __init idle_thread_set_boot_cpu(void) 39 { 40 per_cpu(idle_threads, smp_processor_id()) = current; 41 } 42 43 /** 44 * idle_init - Initialize the idle thread for a cpu 45 * @cpu: The cpu for which the idle thread should be initialized 46 * 47 * Creates the thread if it does not exist. 48 */ 49 static inline void idle_init(unsigned int cpu) 50 { 51 struct task_struct *tsk = per_cpu(idle_threads, cpu); 52 53 if (!tsk) { 54 tsk = fork_idle(cpu); 55 if (IS_ERR(tsk)) 56 pr_err("SMP: fork_idle() failed for CPU %u\n", cpu); 57 else 58 per_cpu(idle_threads, cpu) = tsk; 59 } 60 } 61 62 /** 63 * idle_threads_init - Initialize idle threads for all cpus 64 */ 65 void __init idle_threads_init(void) 66 { 67 unsigned int cpu, boot_cpu; 68 69 boot_cpu = smp_processor_id(); 70 71 for_each_possible_cpu(cpu) { 72 if (cpu != boot_cpu) 73 idle_init(cpu); 74 } 75 } 76 #endif 77 78 #endif /* #ifdef CONFIG_SMP */ 79 80 static LIST_HEAD(hotplug_threads); 81 static DEFINE_MUTEX(smpboot_threads_lock); 82 83 struct smpboot_thread_data { 84 unsigned int cpu; 85 unsigned int status; 86 struct smp_hotplug_thread *ht; 87 }; 88 89 enum { 90 HP_THREAD_NONE = 0, 91 HP_THREAD_ACTIVE, 92 HP_THREAD_PARKED, 93 }; 94 95 /** 96 * smpboot_thread_fn - percpu hotplug thread loop function 97 * @data: thread data pointer 98 * 99 * Checks for thread stop and park conditions. Calls the necessary 100 * setup, cleanup, park and unpark functions for the registered 101 * thread. 102 * 103 * Returns 1 when the thread should exit, 0 otherwise. 104 */ 105 static int smpboot_thread_fn(void *data) 106 { 107 struct smpboot_thread_data *td = data; 108 struct smp_hotplug_thread *ht = td->ht; 109 110 while (1) { 111 set_current_state(TASK_INTERRUPTIBLE); 112 preempt_disable(); 113 if (kthread_should_stop()) { 114 __set_current_state(TASK_RUNNING); 115 preempt_enable(); 116 /* cleanup must mirror setup */ 117 if (ht->cleanup && td->status != HP_THREAD_NONE) 118 ht->cleanup(td->cpu, cpu_online(td->cpu)); 119 kfree(td); 120 return 0; 121 } 122 123 if (kthread_should_park()) { 124 __set_current_state(TASK_RUNNING); 125 preempt_enable(); 126 if (ht->park && td->status == HP_THREAD_ACTIVE) { 127 BUG_ON(td->cpu != smp_processor_id()); 128 ht->park(td->cpu); 129 td->status = HP_THREAD_PARKED; 130 } 131 kthread_parkme(); 132 /* We might have been woken for stop */ 133 continue; 134 } 135 136 BUG_ON(td->cpu != smp_processor_id()); 137 138 /* Check for state change setup */ 139 switch (td->status) { 140 case HP_THREAD_NONE: 141 __set_current_state(TASK_RUNNING); 142 preempt_enable(); 143 if (ht->setup) 144 ht->setup(td->cpu); 145 td->status = HP_THREAD_ACTIVE; 146 continue; 147 148 case HP_THREAD_PARKED: 149 __set_current_state(TASK_RUNNING); 150 preempt_enable(); 151 if (ht->unpark) 152 ht->unpark(td->cpu); 153 td->status = HP_THREAD_ACTIVE; 154 continue; 155 } 156 157 if (!ht->thread_should_run(td->cpu)) { 158 preempt_enable_no_resched(); 159 schedule(); 160 } else { 161 __set_current_state(TASK_RUNNING); 162 preempt_enable(); 163 ht->thread_fn(td->cpu); 164 } 165 } 166 } 167 168 static int 169 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu) 170 { 171 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 172 struct smpboot_thread_data *td; 173 174 if (tsk) 175 return 0; 176 177 td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu)); 178 if (!td) 179 return -ENOMEM; 180 td->cpu = cpu; 181 td->ht = ht; 182 183 tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu, 184 ht->thread_comm); 185 if (IS_ERR(tsk)) { 186 kfree(td); 187 return PTR_ERR(tsk); 188 } 189 get_task_struct(tsk); 190 *per_cpu_ptr(ht->store, cpu) = tsk; 191 if (ht->create) { 192 /* 193 * Make sure that the task has actually scheduled out 194 * into park position, before calling the create 195 * callback. At least the migration thread callback 196 * requires that the task is off the runqueue. 197 */ 198 if (!wait_task_inactive(tsk, TASK_PARKED)) 199 WARN_ON(1); 200 else 201 ht->create(cpu); 202 } 203 return 0; 204 } 205 206 int smpboot_create_threads(unsigned int cpu) 207 { 208 struct smp_hotplug_thread *cur; 209 int ret = 0; 210 211 mutex_lock(&smpboot_threads_lock); 212 list_for_each_entry(cur, &hotplug_threads, list) { 213 ret = __smpboot_create_thread(cur, cpu); 214 if (ret) 215 break; 216 } 217 mutex_unlock(&smpboot_threads_lock); 218 return ret; 219 } 220 221 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu) 222 { 223 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 224 225 if (ht->pre_unpark) 226 ht->pre_unpark(cpu); 227 kthread_unpark(tsk); 228 } 229 230 void smpboot_unpark_threads(unsigned int cpu) 231 { 232 struct smp_hotplug_thread *cur; 233 234 mutex_lock(&smpboot_threads_lock); 235 list_for_each_entry(cur, &hotplug_threads, list) 236 if (cpumask_test_cpu(cpu, cur->cpumask)) 237 smpboot_unpark_thread(cur, cpu); 238 mutex_unlock(&smpboot_threads_lock); 239 } 240 241 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu) 242 { 243 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 244 245 if (tsk && !ht->selfparking) 246 kthread_park(tsk); 247 } 248 249 void smpboot_park_threads(unsigned int cpu) 250 { 251 struct smp_hotplug_thread *cur; 252 253 mutex_lock(&smpboot_threads_lock); 254 list_for_each_entry_reverse(cur, &hotplug_threads, list) 255 smpboot_park_thread(cur, cpu); 256 mutex_unlock(&smpboot_threads_lock); 257 } 258 259 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht) 260 { 261 unsigned int cpu; 262 263 /* We need to destroy also the parked threads of offline cpus */ 264 for_each_possible_cpu(cpu) { 265 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 266 267 if (tsk) { 268 kthread_stop(tsk); 269 put_task_struct(tsk); 270 *per_cpu_ptr(ht->store, cpu) = NULL; 271 } 272 } 273 } 274 275 /** 276 * smpboot_register_percpu_thread_cpumask - Register a per_cpu thread related 277 * to hotplug 278 * @plug_thread: Hotplug thread descriptor 279 * @cpumask: The cpumask where threads run 280 * 281 * Creates and starts the threads on all online cpus. 282 */ 283 int smpboot_register_percpu_thread_cpumask(struct smp_hotplug_thread *plug_thread, 284 const struct cpumask *cpumask) 285 { 286 unsigned int cpu; 287 int ret = 0; 288 289 if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL)) 290 return -ENOMEM; 291 cpumask_copy(plug_thread->cpumask, cpumask); 292 293 get_online_cpus(); 294 mutex_lock(&smpboot_threads_lock); 295 for_each_online_cpu(cpu) { 296 ret = __smpboot_create_thread(plug_thread, cpu); 297 if (ret) { 298 smpboot_destroy_threads(plug_thread); 299 free_cpumask_var(plug_thread->cpumask); 300 goto out; 301 } 302 if (cpumask_test_cpu(cpu, cpumask)) 303 smpboot_unpark_thread(plug_thread, cpu); 304 } 305 list_add(&plug_thread->list, &hotplug_threads); 306 out: 307 mutex_unlock(&smpboot_threads_lock); 308 put_online_cpus(); 309 return ret; 310 } 311 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread_cpumask); 312 313 /** 314 * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug 315 * @plug_thread: Hotplug thread descriptor 316 * 317 * Stops all threads on all possible cpus. 318 */ 319 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread) 320 { 321 get_online_cpus(); 322 mutex_lock(&smpboot_threads_lock); 323 list_del(&plug_thread->list); 324 smpboot_destroy_threads(plug_thread); 325 mutex_unlock(&smpboot_threads_lock); 326 put_online_cpus(); 327 free_cpumask_var(plug_thread->cpumask); 328 } 329 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread); 330 331 /** 332 * smpboot_update_cpumask_percpu_thread - Adjust which per_cpu hotplug threads stay parked 333 * @plug_thread: Hotplug thread descriptor 334 * @new: Revised mask to use 335 * 336 * The cpumask field in the smp_hotplug_thread must not be updated directly 337 * by the client, but only by calling this function. 338 * This function can only be called on a registered smp_hotplug_thread. 339 */ 340 int smpboot_update_cpumask_percpu_thread(struct smp_hotplug_thread *plug_thread, 341 const struct cpumask *new) 342 { 343 struct cpumask *old = plug_thread->cpumask; 344 cpumask_var_t tmp; 345 unsigned int cpu; 346 347 if (!alloc_cpumask_var(&tmp, GFP_KERNEL)) 348 return -ENOMEM; 349 350 get_online_cpus(); 351 mutex_lock(&smpboot_threads_lock); 352 353 /* Park threads that were exclusively enabled on the old mask. */ 354 cpumask_andnot(tmp, old, new); 355 for_each_cpu_and(cpu, tmp, cpu_online_mask) 356 smpboot_park_thread(plug_thread, cpu); 357 358 /* Unpark threads that are exclusively enabled on the new mask. */ 359 cpumask_andnot(tmp, new, old); 360 for_each_cpu_and(cpu, tmp, cpu_online_mask) 361 smpboot_unpark_thread(plug_thread, cpu); 362 363 cpumask_copy(old, new); 364 365 mutex_unlock(&smpboot_threads_lock); 366 put_online_cpus(); 367 368 free_cpumask_var(tmp); 369 370 return 0; 371 } 372 EXPORT_SYMBOL_GPL(smpboot_update_cpumask_percpu_thread); 373 374 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD); 375 376 /* 377 * Called to poll specified CPU's state, for example, when waiting for 378 * a CPU to come online. 379 */ 380 int cpu_report_state(int cpu) 381 { 382 return atomic_read(&per_cpu(cpu_hotplug_state, cpu)); 383 } 384 385 /* 386 * If CPU has died properly, set its state to CPU_UP_PREPARE and 387 * return success. Otherwise, return -EBUSY if the CPU died after 388 * cpu_wait_death() timed out. And yet otherwise again, return -EAGAIN 389 * if cpu_wait_death() timed out and the CPU still hasn't gotten around 390 * to dying. In the latter two cases, the CPU might not be set up 391 * properly, but it is up to the arch-specific code to decide. 392 * Finally, -EIO indicates an unanticipated problem. 393 * 394 * Note that it is permissible to omit this call entirely, as is 395 * done in architectures that do no CPU-hotplug error checking. 396 */ 397 int cpu_check_up_prepare(int cpu) 398 { 399 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 400 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE); 401 return 0; 402 } 403 404 switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) { 405 406 case CPU_POST_DEAD: 407 408 /* The CPU died properly, so just start it up again. */ 409 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE); 410 return 0; 411 412 case CPU_DEAD_FROZEN: 413 414 /* 415 * Timeout during CPU death, so let caller know. 416 * The outgoing CPU completed its processing, but after 417 * cpu_wait_death() timed out and reported the error. The 418 * caller is free to proceed, in which case the state 419 * will be reset properly by cpu_set_state_online(). 420 * Proceeding despite this -EBUSY return makes sense 421 * for systems where the outgoing CPUs take themselves 422 * offline, with no post-death manipulation required from 423 * a surviving CPU. 424 */ 425 return -EBUSY; 426 427 case CPU_BROKEN: 428 429 /* 430 * The most likely reason we got here is that there was 431 * a timeout during CPU death, and the outgoing CPU never 432 * did complete its processing. This could happen on 433 * a virtualized system if the outgoing VCPU gets preempted 434 * for more than five seconds, and the user attempts to 435 * immediately online that same CPU. Trying again later 436 * might return -EBUSY above, hence -EAGAIN. 437 */ 438 return -EAGAIN; 439 440 default: 441 442 /* Should not happen. Famous last words. */ 443 return -EIO; 444 } 445 } 446 447 /* 448 * Mark the specified CPU online. 449 * 450 * Note that it is permissible to omit this call entirely, as is 451 * done in architectures that do no CPU-hotplug error checking. 452 */ 453 void cpu_set_state_online(int cpu) 454 { 455 (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE); 456 } 457 458 #ifdef CONFIG_HOTPLUG_CPU 459 460 /* 461 * Wait for the specified CPU to exit the idle loop and die. 462 */ 463 bool cpu_wait_death(unsigned int cpu, int seconds) 464 { 465 int jf_left = seconds * HZ; 466 int oldstate; 467 bool ret = true; 468 int sleep_jf = 1; 469 470 might_sleep(); 471 472 /* The outgoing CPU will normally get done quite quickly. */ 473 if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD) 474 goto update_state; 475 udelay(5); 476 477 /* But if the outgoing CPU dawdles, wait increasingly long times. */ 478 while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) { 479 schedule_timeout_uninterruptible(sleep_jf); 480 jf_left -= sleep_jf; 481 if (jf_left <= 0) 482 break; 483 sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10); 484 } 485 update_state: 486 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu)); 487 if (oldstate == CPU_DEAD) { 488 /* Outgoing CPU died normally, update state. */ 489 smp_mb(); /* atomic_read() before update. */ 490 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD); 491 } else { 492 /* Outgoing CPU still hasn't died, set state accordingly. */ 493 if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu), 494 oldstate, CPU_BROKEN) != oldstate) 495 goto update_state; 496 ret = false; 497 } 498 return ret; 499 } 500 501 /* 502 * Called by the outgoing CPU to report its successful death. Return 503 * false if this report follows the surviving CPU's timing out. 504 * 505 * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU 506 * timed out. This approach allows architectures to omit calls to 507 * cpu_check_up_prepare() and cpu_set_state_online() without defeating 508 * the next cpu_wait_death()'s polling loop. 509 */ 510 bool cpu_report_death(void) 511 { 512 int oldstate; 513 int newstate; 514 int cpu = smp_processor_id(); 515 516 do { 517 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu)); 518 if (oldstate != CPU_BROKEN) 519 newstate = CPU_DEAD; 520 else 521 newstate = CPU_DEAD_FROZEN; 522 } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu), 523 oldstate, newstate) != oldstate); 524 return newstate == CPU_DEAD; 525 } 526 527 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 528