xref: /openbmc/linux/kernel/smpboot.c (revision eb3fcf00)
1 /*
2  * Common SMP CPU bringup/teardown functions
3  */
4 #include <linux/cpu.h>
5 #include <linux/err.h>
6 #include <linux/smp.h>
7 #include <linux/delay.h>
8 #include <linux/init.h>
9 #include <linux/list.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/export.h>
13 #include <linux/percpu.h>
14 #include <linux/kthread.h>
15 #include <linux/smpboot.h>
16 
17 #include "smpboot.h"
18 
19 #ifdef CONFIG_SMP
20 
21 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
22 /*
23  * For the hotplug case we keep the task structs around and reuse
24  * them.
25  */
26 static DEFINE_PER_CPU(struct task_struct *, idle_threads);
27 
28 struct task_struct *idle_thread_get(unsigned int cpu)
29 {
30 	struct task_struct *tsk = per_cpu(idle_threads, cpu);
31 
32 	if (!tsk)
33 		return ERR_PTR(-ENOMEM);
34 	init_idle(tsk, cpu);
35 	return tsk;
36 }
37 
38 void __init idle_thread_set_boot_cpu(void)
39 {
40 	per_cpu(idle_threads, smp_processor_id()) = current;
41 }
42 
43 /**
44  * idle_init - Initialize the idle thread for a cpu
45  * @cpu:	The cpu for which the idle thread should be initialized
46  *
47  * Creates the thread if it does not exist.
48  */
49 static inline void idle_init(unsigned int cpu)
50 {
51 	struct task_struct *tsk = per_cpu(idle_threads, cpu);
52 
53 	if (!tsk) {
54 		tsk = fork_idle(cpu);
55 		if (IS_ERR(tsk))
56 			pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
57 		else
58 			per_cpu(idle_threads, cpu) = tsk;
59 	}
60 }
61 
62 /**
63  * idle_threads_init - Initialize idle threads for all cpus
64  */
65 void __init idle_threads_init(void)
66 {
67 	unsigned int cpu, boot_cpu;
68 
69 	boot_cpu = smp_processor_id();
70 
71 	for_each_possible_cpu(cpu) {
72 		if (cpu != boot_cpu)
73 			idle_init(cpu);
74 	}
75 }
76 #endif
77 
78 #endif /* #ifdef CONFIG_SMP */
79 
80 static LIST_HEAD(hotplug_threads);
81 static DEFINE_MUTEX(smpboot_threads_lock);
82 
83 struct smpboot_thread_data {
84 	unsigned int			cpu;
85 	unsigned int			status;
86 	struct smp_hotplug_thread	*ht;
87 };
88 
89 enum {
90 	HP_THREAD_NONE = 0,
91 	HP_THREAD_ACTIVE,
92 	HP_THREAD_PARKED,
93 };
94 
95 /**
96  * smpboot_thread_fn - percpu hotplug thread loop function
97  * @data:	thread data pointer
98  *
99  * Checks for thread stop and park conditions. Calls the necessary
100  * setup, cleanup, park and unpark functions for the registered
101  * thread.
102  *
103  * Returns 1 when the thread should exit, 0 otherwise.
104  */
105 static int smpboot_thread_fn(void *data)
106 {
107 	struct smpboot_thread_data *td = data;
108 	struct smp_hotplug_thread *ht = td->ht;
109 
110 	while (1) {
111 		set_current_state(TASK_INTERRUPTIBLE);
112 		preempt_disable();
113 		if (kthread_should_stop()) {
114 			__set_current_state(TASK_RUNNING);
115 			preempt_enable();
116 			/* cleanup must mirror setup */
117 			if (ht->cleanup && td->status != HP_THREAD_NONE)
118 				ht->cleanup(td->cpu, cpu_online(td->cpu));
119 			kfree(td);
120 			return 0;
121 		}
122 
123 		if (kthread_should_park()) {
124 			__set_current_state(TASK_RUNNING);
125 			preempt_enable();
126 			if (ht->park && td->status == HP_THREAD_ACTIVE) {
127 				BUG_ON(td->cpu != smp_processor_id());
128 				ht->park(td->cpu);
129 				td->status = HP_THREAD_PARKED;
130 			}
131 			kthread_parkme();
132 			/* We might have been woken for stop */
133 			continue;
134 		}
135 
136 		BUG_ON(td->cpu != smp_processor_id());
137 
138 		/* Check for state change setup */
139 		switch (td->status) {
140 		case HP_THREAD_NONE:
141 			__set_current_state(TASK_RUNNING);
142 			preempt_enable();
143 			if (ht->setup)
144 				ht->setup(td->cpu);
145 			td->status = HP_THREAD_ACTIVE;
146 			continue;
147 
148 		case HP_THREAD_PARKED:
149 			__set_current_state(TASK_RUNNING);
150 			preempt_enable();
151 			if (ht->unpark)
152 				ht->unpark(td->cpu);
153 			td->status = HP_THREAD_ACTIVE;
154 			continue;
155 		}
156 
157 		if (!ht->thread_should_run(td->cpu)) {
158 			preempt_enable_no_resched();
159 			schedule();
160 		} else {
161 			__set_current_state(TASK_RUNNING);
162 			preempt_enable();
163 			ht->thread_fn(td->cpu);
164 		}
165 	}
166 }
167 
168 static int
169 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
170 {
171 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
172 	struct smpboot_thread_data *td;
173 
174 	if (tsk)
175 		return 0;
176 
177 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
178 	if (!td)
179 		return -ENOMEM;
180 	td->cpu = cpu;
181 	td->ht = ht;
182 
183 	tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
184 				    ht->thread_comm);
185 	if (IS_ERR(tsk)) {
186 		kfree(td);
187 		return PTR_ERR(tsk);
188 	}
189 	get_task_struct(tsk);
190 	*per_cpu_ptr(ht->store, cpu) = tsk;
191 	if (ht->create) {
192 		/*
193 		 * Make sure that the task has actually scheduled out
194 		 * into park position, before calling the create
195 		 * callback. At least the migration thread callback
196 		 * requires that the task is off the runqueue.
197 		 */
198 		if (!wait_task_inactive(tsk, TASK_PARKED))
199 			WARN_ON(1);
200 		else
201 			ht->create(cpu);
202 	}
203 	return 0;
204 }
205 
206 int smpboot_create_threads(unsigned int cpu)
207 {
208 	struct smp_hotplug_thread *cur;
209 	int ret = 0;
210 
211 	mutex_lock(&smpboot_threads_lock);
212 	list_for_each_entry(cur, &hotplug_threads, list) {
213 		ret = __smpboot_create_thread(cur, cpu);
214 		if (ret)
215 			break;
216 	}
217 	mutex_unlock(&smpboot_threads_lock);
218 	return ret;
219 }
220 
221 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
222 {
223 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
224 
225 	if (ht->pre_unpark)
226 		ht->pre_unpark(cpu);
227 	kthread_unpark(tsk);
228 }
229 
230 void smpboot_unpark_threads(unsigned int cpu)
231 {
232 	struct smp_hotplug_thread *cur;
233 
234 	mutex_lock(&smpboot_threads_lock);
235 	list_for_each_entry(cur, &hotplug_threads, list)
236 		if (cpumask_test_cpu(cpu, cur->cpumask))
237 			smpboot_unpark_thread(cur, cpu);
238 	mutex_unlock(&smpboot_threads_lock);
239 }
240 
241 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
242 {
243 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
244 
245 	if (tsk && !ht->selfparking)
246 		kthread_park(tsk);
247 }
248 
249 void smpboot_park_threads(unsigned int cpu)
250 {
251 	struct smp_hotplug_thread *cur;
252 
253 	mutex_lock(&smpboot_threads_lock);
254 	list_for_each_entry_reverse(cur, &hotplug_threads, list)
255 		smpboot_park_thread(cur, cpu);
256 	mutex_unlock(&smpboot_threads_lock);
257 }
258 
259 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
260 {
261 	unsigned int cpu;
262 
263 	/* We need to destroy also the parked threads of offline cpus */
264 	for_each_possible_cpu(cpu) {
265 		struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
266 
267 		if (tsk) {
268 			kthread_stop(tsk);
269 			put_task_struct(tsk);
270 			*per_cpu_ptr(ht->store, cpu) = NULL;
271 		}
272 	}
273 }
274 
275 /**
276  * smpboot_register_percpu_thread_cpumask - Register a per_cpu thread related
277  * 					    to hotplug
278  * @plug_thread:	Hotplug thread descriptor
279  * @cpumask:		The cpumask where threads run
280  *
281  * Creates and starts the threads on all online cpus.
282  */
283 int smpboot_register_percpu_thread_cpumask(struct smp_hotplug_thread *plug_thread,
284 					   const struct cpumask *cpumask)
285 {
286 	unsigned int cpu;
287 	int ret = 0;
288 
289 	if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL))
290 		return -ENOMEM;
291 	cpumask_copy(plug_thread->cpumask, cpumask);
292 
293 	get_online_cpus();
294 	mutex_lock(&smpboot_threads_lock);
295 	for_each_online_cpu(cpu) {
296 		ret = __smpboot_create_thread(plug_thread, cpu);
297 		if (ret) {
298 			smpboot_destroy_threads(plug_thread);
299 			free_cpumask_var(plug_thread->cpumask);
300 			goto out;
301 		}
302 		if (cpumask_test_cpu(cpu, cpumask))
303 			smpboot_unpark_thread(plug_thread, cpu);
304 	}
305 	list_add(&plug_thread->list, &hotplug_threads);
306 out:
307 	mutex_unlock(&smpboot_threads_lock);
308 	put_online_cpus();
309 	return ret;
310 }
311 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread_cpumask);
312 
313 /**
314  * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
315  * @plug_thread:	Hotplug thread descriptor
316  *
317  * Stops all threads on all possible cpus.
318  */
319 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
320 {
321 	get_online_cpus();
322 	mutex_lock(&smpboot_threads_lock);
323 	list_del(&plug_thread->list);
324 	smpboot_destroy_threads(plug_thread);
325 	mutex_unlock(&smpboot_threads_lock);
326 	put_online_cpus();
327 	free_cpumask_var(plug_thread->cpumask);
328 }
329 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
330 
331 /**
332  * smpboot_update_cpumask_percpu_thread - Adjust which per_cpu hotplug threads stay parked
333  * @plug_thread:	Hotplug thread descriptor
334  * @new:		Revised mask to use
335  *
336  * The cpumask field in the smp_hotplug_thread must not be updated directly
337  * by the client, but only by calling this function.
338  * This function can only be called on a registered smp_hotplug_thread.
339  */
340 int smpboot_update_cpumask_percpu_thread(struct smp_hotplug_thread *plug_thread,
341 					 const struct cpumask *new)
342 {
343 	struct cpumask *old = plug_thread->cpumask;
344 	cpumask_var_t tmp;
345 	unsigned int cpu;
346 
347 	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
348 		return -ENOMEM;
349 
350 	get_online_cpus();
351 	mutex_lock(&smpboot_threads_lock);
352 
353 	/* Park threads that were exclusively enabled on the old mask. */
354 	cpumask_andnot(tmp, old, new);
355 	for_each_cpu_and(cpu, tmp, cpu_online_mask)
356 		smpboot_park_thread(plug_thread, cpu);
357 
358 	/* Unpark threads that are exclusively enabled on the new mask. */
359 	cpumask_andnot(tmp, new, old);
360 	for_each_cpu_and(cpu, tmp, cpu_online_mask)
361 		smpboot_unpark_thread(plug_thread, cpu);
362 
363 	cpumask_copy(old, new);
364 
365 	mutex_unlock(&smpboot_threads_lock);
366 	put_online_cpus();
367 
368 	free_cpumask_var(tmp);
369 
370 	return 0;
371 }
372 EXPORT_SYMBOL_GPL(smpboot_update_cpumask_percpu_thread);
373 
374 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
375 
376 /*
377  * Called to poll specified CPU's state, for example, when waiting for
378  * a CPU to come online.
379  */
380 int cpu_report_state(int cpu)
381 {
382 	return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
383 }
384 
385 /*
386  * If CPU has died properly, set its state to CPU_UP_PREPARE and
387  * return success.  Otherwise, return -EBUSY if the CPU died after
388  * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
389  * if cpu_wait_death() timed out and the CPU still hasn't gotten around
390  * to dying.  In the latter two cases, the CPU might not be set up
391  * properly, but it is up to the arch-specific code to decide.
392  * Finally, -EIO indicates an unanticipated problem.
393  *
394  * Note that it is permissible to omit this call entirely, as is
395  * done in architectures that do no CPU-hotplug error checking.
396  */
397 int cpu_check_up_prepare(int cpu)
398 {
399 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
400 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
401 		return 0;
402 	}
403 
404 	switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
405 
406 	case CPU_POST_DEAD:
407 
408 		/* The CPU died properly, so just start it up again. */
409 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
410 		return 0;
411 
412 	case CPU_DEAD_FROZEN:
413 
414 		/*
415 		 * Timeout during CPU death, so let caller know.
416 		 * The outgoing CPU completed its processing, but after
417 		 * cpu_wait_death() timed out and reported the error. The
418 		 * caller is free to proceed, in which case the state
419 		 * will be reset properly by cpu_set_state_online().
420 		 * Proceeding despite this -EBUSY return makes sense
421 		 * for systems where the outgoing CPUs take themselves
422 		 * offline, with no post-death manipulation required from
423 		 * a surviving CPU.
424 		 */
425 		return -EBUSY;
426 
427 	case CPU_BROKEN:
428 
429 		/*
430 		 * The most likely reason we got here is that there was
431 		 * a timeout during CPU death, and the outgoing CPU never
432 		 * did complete its processing.  This could happen on
433 		 * a virtualized system if the outgoing VCPU gets preempted
434 		 * for more than five seconds, and the user attempts to
435 		 * immediately online that same CPU.  Trying again later
436 		 * might return -EBUSY above, hence -EAGAIN.
437 		 */
438 		return -EAGAIN;
439 
440 	default:
441 
442 		/* Should not happen.  Famous last words. */
443 		return -EIO;
444 	}
445 }
446 
447 /*
448  * Mark the specified CPU online.
449  *
450  * Note that it is permissible to omit this call entirely, as is
451  * done in architectures that do no CPU-hotplug error checking.
452  */
453 void cpu_set_state_online(int cpu)
454 {
455 	(void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
456 }
457 
458 #ifdef CONFIG_HOTPLUG_CPU
459 
460 /*
461  * Wait for the specified CPU to exit the idle loop and die.
462  */
463 bool cpu_wait_death(unsigned int cpu, int seconds)
464 {
465 	int jf_left = seconds * HZ;
466 	int oldstate;
467 	bool ret = true;
468 	int sleep_jf = 1;
469 
470 	might_sleep();
471 
472 	/* The outgoing CPU will normally get done quite quickly. */
473 	if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
474 		goto update_state;
475 	udelay(5);
476 
477 	/* But if the outgoing CPU dawdles, wait increasingly long times. */
478 	while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
479 		schedule_timeout_uninterruptible(sleep_jf);
480 		jf_left -= sleep_jf;
481 		if (jf_left <= 0)
482 			break;
483 		sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
484 	}
485 update_state:
486 	oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
487 	if (oldstate == CPU_DEAD) {
488 		/* Outgoing CPU died normally, update state. */
489 		smp_mb(); /* atomic_read() before update. */
490 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
491 	} else {
492 		/* Outgoing CPU still hasn't died, set state accordingly. */
493 		if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
494 				   oldstate, CPU_BROKEN) != oldstate)
495 			goto update_state;
496 		ret = false;
497 	}
498 	return ret;
499 }
500 
501 /*
502  * Called by the outgoing CPU to report its successful death.  Return
503  * false if this report follows the surviving CPU's timing out.
504  *
505  * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
506  * timed out.  This approach allows architectures to omit calls to
507  * cpu_check_up_prepare() and cpu_set_state_online() without defeating
508  * the next cpu_wait_death()'s polling loop.
509  */
510 bool cpu_report_death(void)
511 {
512 	int oldstate;
513 	int newstate;
514 	int cpu = smp_processor_id();
515 
516 	do {
517 		oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
518 		if (oldstate != CPU_BROKEN)
519 			newstate = CPU_DEAD;
520 		else
521 			newstate = CPU_DEAD_FROZEN;
522 	} while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
523 				oldstate, newstate) != oldstate);
524 	return newstate == CPU_DEAD;
525 }
526 
527 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
528