xref: /openbmc/linux/kernel/smpboot.c (revision e3d786a3)
1 /*
2  * Common SMP CPU bringup/teardown functions
3  */
4 #include <linux/cpu.h>
5 #include <linux/err.h>
6 #include <linux/smp.h>
7 #include <linux/delay.h>
8 #include <linux/init.h>
9 #include <linux/list.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/sched/task.h>
13 #include <linux/export.h>
14 #include <linux/percpu.h>
15 #include <linux/kthread.h>
16 #include <linux/smpboot.h>
17 
18 #include "smpboot.h"
19 
20 #ifdef CONFIG_SMP
21 
22 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
23 /*
24  * For the hotplug case we keep the task structs around and reuse
25  * them.
26  */
27 static DEFINE_PER_CPU(struct task_struct *, idle_threads);
28 
29 struct task_struct *idle_thread_get(unsigned int cpu)
30 {
31 	struct task_struct *tsk = per_cpu(idle_threads, cpu);
32 
33 	if (!tsk)
34 		return ERR_PTR(-ENOMEM);
35 	init_idle(tsk, cpu);
36 	return tsk;
37 }
38 
39 void __init idle_thread_set_boot_cpu(void)
40 {
41 	per_cpu(idle_threads, smp_processor_id()) = current;
42 }
43 
44 /**
45  * idle_init - Initialize the idle thread for a cpu
46  * @cpu:	The cpu for which the idle thread should be initialized
47  *
48  * Creates the thread if it does not exist.
49  */
50 static inline void idle_init(unsigned int cpu)
51 {
52 	struct task_struct *tsk = per_cpu(idle_threads, cpu);
53 
54 	if (!tsk) {
55 		tsk = fork_idle(cpu);
56 		if (IS_ERR(tsk))
57 			pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
58 		else
59 			per_cpu(idle_threads, cpu) = tsk;
60 	}
61 }
62 
63 /**
64  * idle_threads_init - Initialize idle threads for all cpus
65  */
66 void __init idle_threads_init(void)
67 {
68 	unsigned int cpu, boot_cpu;
69 
70 	boot_cpu = smp_processor_id();
71 
72 	for_each_possible_cpu(cpu) {
73 		if (cpu != boot_cpu)
74 			idle_init(cpu);
75 	}
76 }
77 #endif
78 
79 #endif /* #ifdef CONFIG_SMP */
80 
81 static LIST_HEAD(hotplug_threads);
82 static DEFINE_MUTEX(smpboot_threads_lock);
83 
84 struct smpboot_thread_data {
85 	unsigned int			cpu;
86 	unsigned int			status;
87 	struct smp_hotplug_thread	*ht;
88 };
89 
90 enum {
91 	HP_THREAD_NONE = 0,
92 	HP_THREAD_ACTIVE,
93 	HP_THREAD_PARKED,
94 };
95 
96 /**
97  * smpboot_thread_fn - percpu hotplug thread loop function
98  * @data:	thread data pointer
99  *
100  * Checks for thread stop and park conditions. Calls the necessary
101  * setup, cleanup, park and unpark functions for the registered
102  * thread.
103  *
104  * Returns 1 when the thread should exit, 0 otherwise.
105  */
106 static int smpboot_thread_fn(void *data)
107 {
108 	struct smpboot_thread_data *td = data;
109 	struct smp_hotplug_thread *ht = td->ht;
110 
111 	while (1) {
112 		set_current_state(TASK_INTERRUPTIBLE);
113 		preempt_disable();
114 		if (kthread_should_stop()) {
115 			__set_current_state(TASK_RUNNING);
116 			preempt_enable();
117 			/* cleanup must mirror setup */
118 			if (ht->cleanup && td->status != HP_THREAD_NONE)
119 				ht->cleanup(td->cpu, cpu_online(td->cpu));
120 			kfree(td);
121 			return 0;
122 		}
123 
124 		if (kthread_should_park()) {
125 			__set_current_state(TASK_RUNNING);
126 			preempt_enable();
127 			if (ht->park && td->status == HP_THREAD_ACTIVE) {
128 				BUG_ON(td->cpu != smp_processor_id());
129 				ht->park(td->cpu);
130 				td->status = HP_THREAD_PARKED;
131 			}
132 			kthread_parkme();
133 			/* We might have been woken for stop */
134 			continue;
135 		}
136 
137 		BUG_ON(td->cpu != smp_processor_id());
138 
139 		/* Check for state change setup */
140 		switch (td->status) {
141 		case HP_THREAD_NONE:
142 			__set_current_state(TASK_RUNNING);
143 			preempt_enable();
144 			if (ht->setup)
145 				ht->setup(td->cpu);
146 			td->status = HP_THREAD_ACTIVE;
147 			continue;
148 
149 		case HP_THREAD_PARKED:
150 			__set_current_state(TASK_RUNNING);
151 			preempt_enable();
152 			if (ht->unpark)
153 				ht->unpark(td->cpu);
154 			td->status = HP_THREAD_ACTIVE;
155 			continue;
156 		}
157 
158 		if (!ht->thread_should_run(td->cpu)) {
159 			preempt_enable_no_resched();
160 			schedule();
161 		} else {
162 			__set_current_state(TASK_RUNNING);
163 			preempt_enable();
164 			ht->thread_fn(td->cpu);
165 		}
166 	}
167 }
168 
169 static int
170 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
171 {
172 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
173 	struct smpboot_thread_data *td;
174 
175 	if (tsk)
176 		return 0;
177 
178 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
179 	if (!td)
180 		return -ENOMEM;
181 	td->cpu = cpu;
182 	td->ht = ht;
183 
184 	tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
185 				    ht->thread_comm);
186 	if (IS_ERR(tsk)) {
187 		kfree(td);
188 		return PTR_ERR(tsk);
189 	}
190 	/*
191 	 * Park the thread so that it could start right on the CPU
192 	 * when it is available.
193 	 */
194 	kthread_park(tsk);
195 	get_task_struct(tsk);
196 	*per_cpu_ptr(ht->store, cpu) = tsk;
197 	if (ht->create) {
198 		/*
199 		 * Make sure that the task has actually scheduled out
200 		 * into park position, before calling the create
201 		 * callback. At least the migration thread callback
202 		 * requires that the task is off the runqueue.
203 		 */
204 		if (!wait_task_inactive(tsk, TASK_PARKED))
205 			WARN_ON(1);
206 		else
207 			ht->create(cpu);
208 	}
209 	return 0;
210 }
211 
212 int smpboot_create_threads(unsigned int cpu)
213 {
214 	struct smp_hotplug_thread *cur;
215 	int ret = 0;
216 
217 	mutex_lock(&smpboot_threads_lock);
218 	list_for_each_entry(cur, &hotplug_threads, list) {
219 		ret = __smpboot_create_thread(cur, cpu);
220 		if (ret)
221 			break;
222 	}
223 	mutex_unlock(&smpboot_threads_lock);
224 	return ret;
225 }
226 
227 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
228 {
229 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
230 
231 	if (!ht->selfparking)
232 		kthread_unpark(tsk);
233 }
234 
235 int smpboot_unpark_threads(unsigned int cpu)
236 {
237 	struct smp_hotplug_thread *cur;
238 
239 	mutex_lock(&smpboot_threads_lock);
240 	list_for_each_entry(cur, &hotplug_threads, list)
241 		smpboot_unpark_thread(cur, cpu);
242 	mutex_unlock(&smpboot_threads_lock);
243 	return 0;
244 }
245 
246 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
247 {
248 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
249 
250 	if (tsk && !ht->selfparking)
251 		kthread_park(tsk);
252 }
253 
254 int smpboot_park_threads(unsigned int cpu)
255 {
256 	struct smp_hotplug_thread *cur;
257 
258 	mutex_lock(&smpboot_threads_lock);
259 	list_for_each_entry_reverse(cur, &hotplug_threads, list)
260 		smpboot_park_thread(cur, cpu);
261 	mutex_unlock(&smpboot_threads_lock);
262 	return 0;
263 }
264 
265 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
266 {
267 	unsigned int cpu;
268 
269 	/* We need to destroy also the parked threads of offline cpus */
270 	for_each_possible_cpu(cpu) {
271 		struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
272 
273 		if (tsk) {
274 			kthread_stop(tsk);
275 			put_task_struct(tsk);
276 			*per_cpu_ptr(ht->store, cpu) = NULL;
277 		}
278 	}
279 }
280 
281 /**
282  * smpboot_register_percpu_thread - Register a per_cpu thread related
283  * 					    to hotplug
284  * @plug_thread:	Hotplug thread descriptor
285  *
286  * Creates and starts the threads on all online cpus.
287  */
288 int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
289 {
290 	unsigned int cpu;
291 	int ret = 0;
292 
293 	get_online_cpus();
294 	mutex_lock(&smpboot_threads_lock);
295 	for_each_online_cpu(cpu) {
296 		ret = __smpboot_create_thread(plug_thread, cpu);
297 		if (ret) {
298 			smpboot_destroy_threads(plug_thread);
299 			goto out;
300 		}
301 		smpboot_unpark_thread(plug_thread, cpu);
302 	}
303 	list_add(&plug_thread->list, &hotplug_threads);
304 out:
305 	mutex_unlock(&smpboot_threads_lock);
306 	put_online_cpus();
307 	return ret;
308 }
309 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
310 
311 /**
312  * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
313  * @plug_thread:	Hotplug thread descriptor
314  *
315  * Stops all threads on all possible cpus.
316  */
317 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
318 {
319 	get_online_cpus();
320 	mutex_lock(&smpboot_threads_lock);
321 	list_del(&plug_thread->list);
322 	smpboot_destroy_threads(plug_thread);
323 	mutex_unlock(&smpboot_threads_lock);
324 	put_online_cpus();
325 }
326 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
327 
328 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
329 
330 /*
331  * Called to poll specified CPU's state, for example, when waiting for
332  * a CPU to come online.
333  */
334 int cpu_report_state(int cpu)
335 {
336 	return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
337 }
338 
339 /*
340  * If CPU has died properly, set its state to CPU_UP_PREPARE and
341  * return success.  Otherwise, return -EBUSY if the CPU died after
342  * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
343  * if cpu_wait_death() timed out and the CPU still hasn't gotten around
344  * to dying.  In the latter two cases, the CPU might not be set up
345  * properly, but it is up to the arch-specific code to decide.
346  * Finally, -EIO indicates an unanticipated problem.
347  *
348  * Note that it is permissible to omit this call entirely, as is
349  * done in architectures that do no CPU-hotplug error checking.
350  */
351 int cpu_check_up_prepare(int cpu)
352 {
353 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
354 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
355 		return 0;
356 	}
357 
358 	switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
359 
360 	case CPU_POST_DEAD:
361 
362 		/* The CPU died properly, so just start it up again. */
363 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
364 		return 0;
365 
366 	case CPU_DEAD_FROZEN:
367 
368 		/*
369 		 * Timeout during CPU death, so let caller know.
370 		 * The outgoing CPU completed its processing, but after
371 		 * cpu_wait_death() timed out and reported the error. The
372 		 * caller is free to proceed, in which case the state
373 		 * will be reset properly by cpu_set_state_online().
374 		 * Proceeding despite this -EBUSY return makes sense
375 		 * for systems where the outgoing CPUs take themselves
376 		 * offline, with no post-death manipulation required from
377 		 * a surviving CPU.
378 		 */
379 		return -EBUSY;
380 
381 	case CPU_BROKEN:
382 
383 		/*
384 		 * The most likely reason we got here is that there was
385 		 * a timeout during CPU death, and the outgoing CPU never
386 		 * did complete its processing.  This could happen on
387 		 * a virtualized system if the outgoing VCPU gets preempted
388 		 * for more than five seconds, and the user attempts to
389 		 * immediately online that same CPU.  Trying again later
390 		 * might return -EBUSY above, hence -EAGAIN.
391 		 */
392 		return -EAGAIN;
393 
394 	default:
395 
396 		/* Should not happen.  Famous last words. */
397 		return -EIO;
398 	}
399 }
400 
401 /*
402  * Mark the specified CPU online.
403  *
404  * Note that it is permissible to omit this call entirely, as is
405  * done in architectures that do no CPU-hotplug error checking.
406  */
407 void cpu_set_state_online(int cpu)
408 {
409 	(void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
410 }
411 
412 #ifdef CONFIG_HOTPLUG_CPU
413 
414 /*
415  * Wait for the specified CPU to exit the idle loop and die.
416  */
417 bool cpu_wait_death(unsigned int cpu, int seconds)
418 {
419 	int jf_left = seconds * HZ;
420 	int oldstate;
421 	bool ret = true;
422 	int sleep_jf = 1;
423 
424 	might_sleep();
425 
426 	/* The outgoing CPU will normally get done quite quickly. */
427 	if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
428 		goto update_state;
429 	udelay(5);
430 
431 	/* But if the outgoing CPU dawdles, wait increasingly long times. */
432 	while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
433 		schedule_timeout_uninterruptible(sleep_jf);
434 		jf_left -= sleep_jf;
435 		if (jf_left <= 0)
436 			break;
437 		sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
438 	}
439 update_state:
440 	oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
441 	if (oldstate == CPU_DEAD) {
442 		/* Outgoing CPU died normally, update state. */
443 		smp_mb(); /* atomic_read() before update. */
444 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
445 	} else {
446 		/* Outgoing CPU still hasn't died, set state accordingly. */
447 		if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
448 				   oldstate, CPU_BROKEN) != oldstate)
449 			goto update_state;
450 		ret = false;
451 	}
452 	return ret;
453 }
454 
455 /*
456  * Called by the outgoing CPU to report its successful death.  Return
457  * false if this report follows the surviving CPU's timing out.
458  *
459  * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
460  * timed out.  This approach allows architectures to omit calls to
461  * cpu_check_up_prepare() and cpu_set_state_online() without defeating
462  * the next cpu_wait_death()'s polling loop.
463  */
464 bool cpu_report_death(void)
465 {
466 	int oldstate;
467 	int newstate;
468 	int cpu = smp_processor_id();
469 
470 	do {
471 		oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
472 		if (oldstate != CPU_BROKEN)
473 			newstate = CPU_DEAD;
474 		else
475 			newstate = CPU_DEAD_FROZEN;
476 	} while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
477 				oldstate, newstate) != oldstate);
478 	return newstate == CPU_DEAD;
479 }
480 
481 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
482