xref: /openbmc/linux/kernel/smpboot.c (revision c0e297dc)
1 /*
2  * Common SMP CPU bringup/teardown functions
3  */
4 #include <linux/cpu.h>
5 #include <linux/err.h>
6 #include <linux/smp.h>
7 #include <linux/delay.h>
8 #include <linux/init.h>
9 #include <linux/list.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/export.h>
13 #include <linux/percpu.h>
14 #include <linux/kthread.h>
15 #include <linux/smpboot.h>
16 
17 #include "smpboot.h"
18 
19 #ifdef CONFIG_SMP
20 
21 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
22 /*
23  * For the hotplug case we keep the task structs around and reuse
24  * them.
25  */
26 static DEFINE_PER_CPU(struct task_struct *, idle_threads);
27 
28 struct task_struct *idle_thread_get(unsigned int cpu)
29 {
30 	struct task_struct *tsk = per_cpu(idle_threads, cpu);
31 
32 	if (!tsk)
33 		return ERR_PTR(-ENOMEM);
34 	init_idle(tsk, cpu);
35 	return tsk;
36 }
37 
38 void __init idle_thread_set_boot_cpu(void)
39 {
40 	per_cpu(idle_threads, smp_processor_id()) = current;
41 }
42 
43 /**
44  * idle_init - Initialize the idle thread for a cpu
45  * @cpu:	The cpu for which the idle thread should be initialized
46  *
47  * Creates the thread if it does not exist.
48  */
49 static inline void idle_init(unsigned int cpu)
50 {
51 	struct task_struct *tsk = per_cpu(idle_threads, cpu);
52 
53 	if (!tsk) {
54 		tsk = fork_idle(cpu);
55 		if (IS_ERR(tsk))
56 			pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
57 		else
58 			per_cpu(idle_threads, cpu) = tsk;
59 	}
60 }
61 
62 /**
63  * idle_threads_init - Initialize idle threads for all cpus
64  */
65 void __init idle_threads_init(void)
66 {
67 	unsigned int cpu, boot_cpu;
68 
69 	boot_cpu = smp_processor_id();
70 
71 	for_each_possible_cpu(cpu) {
72 		if (cpu != boot_cpu)
73 			idle_init(cpu);
74 	}
75 }
76 #endif
77 
78 #endif /* #ifdef CONFIG_SMP */
79 
80 static LIST_HEAD(hotplug_threads);
81 static DEFINE_MUTEX(smpboot_threads_lock);
82 
83 struct smpboot_thread_data {
84 	unsigned int			cpu;
85 	unsigned int			status;
86 	struct smp_hotplug_thread	*ht;
87 };
88 
89 enum {
90 	HP_THREAD_NONE = 0,
91 	HP_THREAD_ACTIVE,
92 	HP_THREAD_PARKED,
93 };
94 
95 /**
96  * smpboot_thread_fn - percpu hotplug thread loop function
97  * @data:	thread data pointer
98  *
99  * Checks for thread stop and park conditions. Calls the necessary
100  * setup, cleanup, park and unpark functions for the registered
101  * thread.
102  *
103  * Returns 1 when the thread should exit, 0 otherwise.
104  */
105 static int smpboot_thread_fn(void *data)
106 {
107 	struct smpboot_thread_data *td = data;
108 	struct smp_hotplug_thread *ht = td->ht;
109 
110 	while (1) {
111 		set_current_state(TASK_INTERRUPTIBLE);
112 		preempt_disable();
113 		if (kthread_should_stop()) {
114 			__set_current_state(TASK_RUNNING);
115 			preempt_enable();
116 			if (ht->cleanup)
117 				ht->cleanup(td->cpu, cpu_online(td->cpu));
118 			kfree(td);
119 			return 0;
120 		}
121 
122 		if (kthread_should_park()) {
123 			__set_current_state(TASK_RUNNING);
124 			preempt_enable();
125 			if (ht->park && td->status == HP_THREAD_ACTIVE) {
126 				BUG_ON(td->cpu != smp_processor_id());
127 				ht->park(td->cpu);
128 				td->status = HP_THREAD_PARKED;
129 			}
130 			kthread_parkme();
131 			/* We might have been woken for stop */
132 			continue;
133 		}
134 
135 		BUG_ON(td->cpu != smp_processor_id());
136 
137 		/* Check for state change setup */
138 		switch (td->status) {
139 		case HP_THREAD_NONE:
140 			__set_current_state(TASK_RUNNING);
141 			preempt_enable();
142 			if (ht->setup)
143 				ht->setup(td->cpu);
144 			td->status = HP_THREAD_ACTIVE;
145 			continue;
146 
147 		case HP_THREAD_PARKED:
148 			__set_current_state(TASK_RUNNING);
149 			preempt_enable();
150 			if (ht->unpark)
151 				ht->unpark(td->cpu);
152 			td->status = HP_THREAD_ACTIVE;
153 			continue;
154 		}
155 
156 		if (!ht->thread_should_run(td->cpu)) {
157 			preempt_enable_no_resched();
158 			schedule();
159 		} else {
160 			__set_current_state(TASK_RUNNING);
161 			preempt_enable();
162 			ht->thread_fn(td->cpu);
163 		}
164 	}
165 }
166 
167 static int
168 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
169 {
170 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
171 	struct smpboot_thread_data *td;
172 
173 	if (tsk)
174 		return 0;
175 
176 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
177 	if (!td)
178 		return -ENOMEM;
179 	td->cpu = cpu;
180 	td->ht = ht;
181 
182 	tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
183 				    ht->thread_comm);
184 	if (IS_ERR(tsk)) {
185 		kfree(td);
186 		return PTR_ERR(tsk);
187 	}
188 	get_task_struct(tsk);
189 	*per_cpu_ptr(ht->store, cpu) = tsk;
190 	if (ht->create) {
191 		/*
192 		 * Make sure that the task has actually scheduled out
193 		 * into park position, before calling the create
194 		 * callback. At least the migration thread callback
195 		 * requires that the task is off the runqueue.
196 		 */
197 		if (!wait_task_inactive(tsk, TASK_PARKED))
198 			WARN_ON(1);
199 		else
200 			ht->create(cpu);
201 	}
202 	return 0;
203 }
204 
205 int smpboot_create_threads(unsigned int cpu)
206 {
207 	struct smp_hotplug_thread *cur;
208 	int ret = 0;
209 
210 	mutex_lock(&smpboot_threads_lock);
211 	list_for_each_entry(cur, &hotplug_threads, list) {
212 		ret = __smpboot_create_thread(cur, cpu);
213 		if (ret)
214 			break;
215 	}
216 	mutex_unlock(&smpboot_threads_lock);
217 	return ret;
218 }
219 
220 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
221 {
222 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
223 
224 	if (ht->pre_unpark)
225 		ht->pre_unpark(cpu);
226 	kthread_unpark(tsk);
227 }
228 
229 void smpboot_unpark_threads(unsigned int cpu)
230 {
231 	struct smp_hotplug_thread *cur;
232 
233 	mutex_lock(&smpboot_threads_lock);
234 	list_for_each_entry(cur, &hotplug_threads, list)
235 		if (cpumask_test_cpu(cpu, cur->cpumask))
236 			smpboot_unpark_thread(cur, cpu);
237 	mutex_unlock(&smpboot_threads_lock);
238 }
239 
240 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
241 {
242 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
243 
244 	if (tsk && !ht->selfparking)
245 		kthread_park(tsk);
246 }
247 
248 void smpboot_park_threads(unsigned int cpu)
249 {
250 	struct smp_hotplug_thread *cur;
251 
252 	mutex_lock(&smpboot_threads_lock);
253 	list_for_each_entry_reverse(cur, &hotplug_threads, list)
254 		smpboot_park_thread(cur, cpu);
255 	mutex_unlock(&smpboot_threads_lock);
256 }
257 
258 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
259 {
260 	unsigned int cpu;
261 
262 	/* Unpark any threads that were voluntarily parked. */
263 	for_each_cpu_not(cpu, ht->cpumask) {
264 		if (cpu_online(cpu)) {
265 			struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
266 			if (tsk)
267 				kthread_unpark(tsk);
268 		}
269 	}
270 
271 	/* We need to destroy also the parked threads of offline cpus */
272 	for_each_possible_cpu(cpu) {
273 		struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
274 
275 		if (tsk) {
276 			kthread_stop(tsk);
277 			put_task_struct(tsk);
278 			*per_cpu_ptr(ht->store, cpu) = NULL;
279 		}
280 	}
281 }
282 
283 /**
284  * smpboot_register_percpu_thread - Register a per_cpu thread related to hotplug
285  * @plug_thread:	Hotplug thread descriptor
286  *
287  * Creates and starts the threads on all online cpus.
288  */
289 int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
290 {
291 	unsigned int cpu;
292 	int ret = 0;
293 
294 	if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL))
295 		return -ENOMEM;
296 	cpumask_copy(plug_thread->cpumask, cpu_possible_mask);
297 
298 	get_online_cpus();
299 	mutex_lock(&smpboot_threads_lock);
300 	for_each_online_cpu(cpu) {
301 		ret = __smpboot_create_thread(plug_thread, cpu);
302 		if (ret) {
303 			smpboot_destroy_threads(plug_thread);
304 			goto out;
305 		}
306 		smpboot_unpark_thread(plug_thread, cpu);
307 	}
308 	list_add(&plug_thread->list, &hotplug_threads);
309 out:
310 	mutex_unlock(&smpboot_threads_lock);
311 	put_online_cpus();
312 	return ret;
313 }
314 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
315 
316 /**
317  * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
318  * @plug_thread:	Hotplug thread descriptor
319  *
320  * Stops all threads on all possible cpus.
321  */
322 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
323 {
324 	get_online_cpus();
325 	mutex_lock(&smpboot_threads_lock);
326 	list_del(&plug_thread->list);
327 	smpboot_destroy_threads(plug_thread);
328 	mutex_unlock(&smpboot_threads_lock);
329 	put_online_cpus();
330 	free_cpumask_var(plug_thread->cpumask);
331 }
332 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
333 
334 /**
335  * smpboot_update_cpumask_percpu_thread - Adjust which per_cpu hotplug threads stay parked
336  * @plug_thread:	Hotplug thread descriptor
337  * @new:		Revised mask to use
338  *
339  * The cpumask field in the smp_hotplug_thread must not be updated directly
340  * by the client, but only by calling this function.
341  * This function can only be called on a registered smp_hotplug_thread.
342  */
343 int smpboot_update_cpumask_percpu_thread(struct smp_hotplug_thread *plug_thread,
344 					 const struct cpumask *new)
345 {
346 	struct cpumask *old = plug_thread->cpumask;
347 	cpumask_var_t tmp;
348 	unsigned int cpu;
349 
350 	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
351 		return -ENOMEM;
352 
353 	get_online_cpus();
354 	mutex_lock(&smpboot_threads_lock);
355 
356 	/* Park threads that were exclusively enabled on the old mask. */
357 	cpumask_andnot(tmp, old, new);
358 	for_each_cpu_and(cpu, tmp, cpu_online_mask)
359 		smpboot_park_thread(plug_thread, cpu);
360 
361 	/* Unpark threads that are exclusively enabled on the new mask. */
362 	cpumask_andnot(tmp, new, old);
363 	for_each_cpu_and(cpu, tmp, cpu_online_mask)
364 		smpboot_unpark_thread(plug_thread, cpu);
365 
366 	cpumask_copy(old, new);
367 
368 	mutex_unlock(&smpboot_threads_lock);
369 	put_online_cpus();
370 
371 	free_cpumask_var(tmp);
372 
373 	return 0;
374 }
375 EXPORT_SYMBOL_GPL(smpboot_update_cpumask_percpu_thread);
376 
377 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
378 
379 /*
380  * Called to poll specified CPU's state, for example, when waiting for
381  * a CPU to come online.
382  */
383 int cpu_report_state(int cpu)
384 {
385 	return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
386 }
387 
388 /*
389  * If CPU has died properly, set its state to CPU_UP_PREPARE and
390  * return success.  Otherwise, return -EBUSY if the CPU died after
391  * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
392  * if cpu_wait_death() timed out and the CPU still hasn't gotten around
393  * to dying.  In the latter two cases, the CPU might not be set up
394  * properly, but it is up to the arch-specific code to decide.
395  * Finally, -EIO indicates an unanticipated problem.
396  *
397  * Note that it is permissible to omit this call entirely, as is
398  * done in architectures that do no CPU-hotplug error checking.
399  */
400 int cpu_check_up_prepare(int cpu)
401 {
402 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
403 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
404 		return 0;
405 	}
406 
407 	switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
408 
409 	case CPU_POST_DEAD:
410 
411 		/* The CPU died properly, so just start it up again. */
412 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
413 		return 0;
414 
415 	case CPU_DEAD_FROZEN:
416 
417 		/*
418 		 * Timeout during CPU death, so let caller know.
419 		 * The outgoing CPU completed its processing, but after
420 		 * cpu_wait_death() timed out and reported the error. The
421 		 * caller is free to proceed, in which case the state
422 		 * will be reset properly by cpu_set_state_online().
423 		 * Proceeding despite this -EBUSY return makes sense
424 		 * for systems where the outgoing CPUs take themselves
425 		 * offline, with no post-death manipulation required from
426 		 * a surviving CPU.
427 		 */
428 		return -EBUSY;
429 
430 	case CPU_BROKEN:
431 
432 		/*
433 		 * The most likely reason we got here is that there was
434 		 * a timeout during CPU death, and the outgoing CPU never
435 		 * did complete its processing.  This could happen on
436 		 * a virtualized system if the outgoing VCPU gets preempted
437 		 * for more than five seconds, and the user attempts to
438 		 * immediately online that same CPU.  Trying again later
439 		 * might return -EBUSY above, hence -EAGAIN.
440 		 */
441 		return -EAGAIN;
442 
443 	default:
444 
445 		/* Should not happen.  Famous last words. */
446 		return -EIO;
447 	}
448 }
449 
450 /*
451  * Mark the specified CPU online.
452  *
453  * Note that it is permissible to omit this call entirely, as is
454  * done in architectures that do no CPU-hotplug error checking.
455  */
456 void cpu_set_state_online(int cpu)
457 {
458 	(void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
459 }
460 
461 #ifdef CONFIG_HOTPLUG_CPU
462 
463 /*
464  * Wait for the specified CPU to exit the idle loop and die.
465  */
466 bool cpu_wait_death(unsigned int cpu, int seconds)
467 {
468 	int jf_left = seconds * HZ;
469 	int oldstate;
470 	bool ret = true;
471 	int sleep_jf = 1;
472 
473 	might_sleep();
474 
475 	/* The outgoing CPU will normally get done quite quickly. */
476 	if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
477 		goto update_state;
478 	udelay(5);
479 
480 	/* But if the outgoing CPU dawdles, wait increasingly long times. */
481 	while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
482 		schedule_timeout_uninterruptible(sleep_jf);
483 		jf_left -= sleep_jf;
484 		if (jf_left <= 0)
485 			break;
486 		sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
487 	}
488 update_state:
489 	oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
490 	if (oldstate == CPU_DEAD) {
491 		/* Outgoing CPU died normally, update state. */
492 		smp_mb(); /* atomic_read() before update. */
493 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
494 	} else {
495 		/* Outgoing CPU still hasn't died, set state accordingly. */
496 		if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
497 				   oldstate, CPU_BROKEN) != oldstate)
498 			goto update_state;
499 		ret = false;
500 	}
501 	return ret;
502 }
503 
504 /*
505  * Called by the outgoing CPU to report its successful death.  Return
506  * false if this report follows the surviving CPU's timing out.
507  *
508  * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
509  * timed out.  This approach allows architectures to omit calls to
510  * cpu_check_up_prepare() and cpu_set_state_online() without defeating
511  * the next cpu_wait_death()'s polling loop.
512  */
513 bool cpu_report_death(void)
514 {
515 	int oldstate;
516 	int newstate;
517 	int cpu = smp_processor_id();
518 
519 	do {
520 		oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
521 		if (oldstate != CPU_BROKEN)
522 			newstate = CPU_DEAD;
523 		else
524 			newstate = CPU_DEAD_FROZEN;
525 	} while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
526 				oldstate, newstate) != oldstate);
527 	return newstate == CPU_DEAD;
528 }
529 
530 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
531