xref: /openbmc/linux/kernel/smpboot.c (revision 9f69e8a7)
1 /*
2  * Common SMP CPU bringup/teardown functions
3  */
4 #include <linux/cpu.h>
5 #include <linux/err.h>
6 #include <linux/smp.h>
7 #include <linux/delay.h>
8 #include <linux/init.h>
9 #include <linux/list.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/export.h>
13 #include <linux/percpu.h>
14 #include <linux/kthread.h>
15 #include <linux/smpboot.h>
16 
17 #include "smpboot.h"
18 
19 #ifdef CONFIG_SMP
20 
21 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
22 /*
23  * For the hotplug case we keep the task structs around and reuse
24  * them.
25  */
26 static DEFINE_PER_CPU(struct task_struct *, idle_threads);
27 
28 struct task_struct *idle_thread_get(unsigned int cpu)
29 {
30 	struct task_struct *tsk = per_cpu(idle_threads, cpu);
31 
32 	if (!tsk)
33 		return ERR_PTR(-ENOMEM);
34 	init_idle(tsk, cpu);
35 	return tsk;
36 }
37 
38 void __init idle_thread_set_boot_cpu(void)
39 {
40 	per_cpu(idle_threads, smp_processor_id()) = current;
41 }
42 
43 /**
44  * idle_init - Initialize the idle thread for a cpu
45  * @cpu:	The cpu for which the idle thread should be initialized
46  *
47  * Creates the thread if it does not exist.
48  */
49 static inline void idle_init(unsigned int cpu)
50 {
51 	struct task_struct *tsk = per_cpu(idle_threads, cpu);
52 
53 	if (!tsk) {
54 		tsk = fork_idle(cpu);
55 		if (IS_ERR(tsk))
56 			pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
57 		else
58 			per_cpu(idle_threads, cpu) = tsk;
59 	}
60 }
61 
62 /**
63  * idle_threads_init - Initialize idle threads for all cpus
64  */
65 void __init idle_threads_init(void)
66 {
67 	unsigned int cpu, boot_cpu;
68 
69 	boot_cpu = smp_processor_id();
70 
71 	for_each_possible_cpu(cpu) {
72 		if (cpu != boot_cpu)
73 			idle_init(cpu);
74 	}
75 }
76 #endif
77 
78 #endif /* #ifdef CONFIG_SMP */
79 
80 static LIST_HEAD(hotplug_threads);
81 static DEFINE_MUTEX(smpboot_threads_lock);
82 
83 struct smpboot_thread_data {
84 	unsigned int			cpu;
85 	unsigned int			status;
86 	struct smp_hotplug_thread	*ht;
87 };
88 
89 enum {
90 	HP_THREAD_NONE = 0,
91 	HP_THREAD_ACTIVE,
92 	HP_THREAD_PARKED,
93 };
94 
95 /**
96  * smpboot_thread_fn - percpu hotplug thread loop function
97  * @data:	thread data pointer
98  *
99  * Checks for thread stop and park conditions. Calls the necessary
100  * setup, cleanup, park and unpark functions for the registered
101  * thread.
102  *
103  * Returns 1 when the thread should exit, 0 otherwise.
104  */
105 static int smpboot_thread_fn(void *data)
106 {
107 	struct smpboot_thread_data *td = data;
108 	struct smp_hotplug_thread *ht = td->ht;
109 
110 	while (1) {
111 		set_current_state(TASK_INTERRUPTIBLE);
112 		preempt_disable();
113 		if (kthread_should_stop()) {
114 			__set_current_state(TASK_RUNNING);
115 			preempt_enable();
116 			if (ht->cleanup)
117 				ht->cleanup(td->cpu, cpu_online(td->cpu));
118 			kfree(td);
119 			return 0;
120 		}
121 
122 		if (kthread_should_park()) {
123 			__set_current_state(TASK_RUNNING);
124 			preempt_enable();
125 			if (ht->park && td->status == HP_THREAD_ACTIVE) {
126 				BUG_ON(td->cpu != smp_processor_id());
127 				ht->park(td->cpu);
128 				td->status = HP_THREAD_PARKED;
129 			}
130 			kthread_parkme();
131 			/* We might have been woken for stop */
132 			continue;
133 		}
134 
135 		BUG_ON(td->cpu != smp_processor_id());
136 
137 		/* Check for state change setup */
138 		switch (td->status) {
139 		case HP_THREAD_NONE:
140 			__set_current_state(TASK_RUNNING);
141 			preempt_enable();
142 			if (ht->setup)
143 				ht->setup(td->cpu);
144 			td->status = HP_THREAD_ACTIVE;
145 			continue;
146 
147 		case HP_THREAD_PARKED:
148 			__set_current_state(TASK_RUNNING);
149 			preempt_enable();
150 			if (ht->unpark)
151 				ht->unpark(td->cpu);
152 			td->status = HP_THREAD_ACTIVE;
153 			continue;
154 		}
155 
156 		if (!ht->thread_should_run(td->cpu)) {
157 			preempt_enable_no_resched();
158 			schedule();
159 		} else {
160 			__set_current_state(TASK_RUNNING);
161 			preempt_enable();
162 			ht->thread_fn(td->cpu);
163 		}
164 	}
165 }
166 
167 static int
168 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
169 {
170 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
171 	struct smpboot_thread_data *td;
172 
173 	if (tsk)
174 		return 0;
175 
176 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
177 	if (!td)
178 		return -ENOMEM;
179 	td->cpu = cpu;
180 	td->ht = ht;
181 
182 	tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
183 				    ht->thread_comm);
184 	if (IS_ERR(tsk)) {
185 		kfree(td);
186 		return PTR_ERR(tsk);
187 	}
188 	get_task_struct(tsk);
189 	*per_cpu_ptr(ht->store, cpu) = tsk;
190 	if (ht->create) {
191 		/*
192 		 * Make sure that the task has actually scheduled out
193 		 * into park position, before calling the create
194 		 * callback. At least the migration thread callback
195 		 * requires that the task is off the runqueue.
196 		 */
197 		if (!wait_task_inactive(tsk, TASK_PARKED))
198 			WARN_ON(1);
199 		else
200 			ht->create(cpu);
201 	}
202 	return 0;
203 }
204 
205 int smpboot_create_threads(unsigned int cpu)
206 {
207 	struct smp_hotplug_thread *cur;
208 	int ret = 0;
209 
210 	mutex_lock(&smpboot_threads_lock);
211 	list_for_each_entry(cur, &hotplug_threads, list) {
212 		ret = __smpboot_create_thread(cur, cpu);
213 		if (ret)
214 			break;
215 	}
216 	mutex_unlock(&smpboot_threads_lock);
217 	return ret;
218 }
219 
220 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
221 {
222 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
223 
224 	if (ht->pre_unpark)
225 		ht->pre_unpark(cpu);
226 	kthread_unpark(tsk);
227 }
228 
229 void smpboot_unpark_threads(unsigned int cpu)
230 {
231 	struct smp_hotplug_thread *cur;
232 
233 	mutex_lock(&smpboot_threads_lock);
234 	list_for_each_entry(cur, &hotplug_threads, list)
235 		smpboot_unpark_thread(cur, cpu);
236 	mutex_unlock(&smpboot_threads_lock);
237 }
238 
239 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
240 {
241 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
242 
243 	if (tsk && !ht->selfparking)
244 		kthread_park(tsk);
245 }
246 
247 void smpboot_park_threads(unsigned int cpu)
248 {
249 	struct smp_hotplug_thread *cur;
250 
251 	mutex_lock(&smpboot_threads_lock);
252 	list_for_each_entry_reverse(cur, &hotplug_threads, list)
253 		smpboot_park_thread(cur, cpu);
254 	mutex_unlock(&smpboot_threads_lock);
255 }
256 
257 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
258 {
259 	unsigned int cpu;
260 
261 	/* We need to destroy also the parked threads of offline cpus */
262 	for_each_possible_cpu(cpu) {
263 		struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
264 
265 		if (tsk) {
266 			kthread_stop(tsk);
267 			put_task_struct(tsk);
268 			*per_cpu_ptr(ht->store, cpu) = NULL;
269 		}
270 	}
271 }
272 
273 /**
274  * smpboot_register_percpu_thread - Register a per_cpu thread related to hotplug
275  * @plug_thread:	Hotplug thread descriptor
276  *
277  * Creates and starts the threads on all online cpus.
278  */
279 int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
280 {
281 	unsigned int cpu;
282 	int ret = 0;
283 
284 	get_online_cpus();
285 	mutex_lock(&smpboot_threads_lock);
286 	for_each_online_cpu(cpu) {
287 		ret = __smpboot_create_thread(plug_thread, cpu);
288 		if (ret) {
289 			smpboot_destroy_threads(plug_thread);
290 			goto out;
291 		}
292 		smpboot_unpark_thread(plug_thread, cpu);
293 	}
294 	list_add(&plug_thread->list, &hotplug_threads);
295 out:
296 	mutex_unlock(&smpboot_threads_lock);
297 	put_online_cpus();
298 	return ret;
299 }
300 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
301 
302 /**
303  * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
304  * @plug_thread:	Hotplug thread descriptor
305  *
306  * Stops all threads on all possible cpus.
307  */
308 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
309 {
310 	get_online_cpus();
311 	mutex_lock(&smpboot_threads_lock);
312 	list_del(&plug_thread->list);
313 	smpboot_destroy_threads(plug_thread);
314 	mutex_unlock(&smpboot_threads_lock);
315 	put_online_cpus();
316 }
317 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
318 
319 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
320 
321 /*
322  * Called to poll specified CPU's state, for example, when waiting for
323  * a CPU to come online.
324  */
325 int cpu_report_state(int cpu)
326 {
327 	return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
328 }
329 
330 /*
331  * If CPU has died properly, set its state to CPU_UP_PREPARE and
332  * return success.  Otherwise, return -EBUSY if the CPU died after
333  * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
334  * if cpu_wait_death() timed out and the CPU still hasn't gotten around
335  * to dying.  In the latter two cases, the CPU might not be set up
336  * properly, but it is up to the arch-specific code to decide.
337  * Finally, -EIO indicates an unanticipated problem.
338  *
339  * Note that it is permissible to omit this call entirely, as is
340  * done in architectures that do no CPU-hotplug error checking.
341  */
342 int cpu_check_up_prepare(int cpu)
343 {
344 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
345 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
346 		return 0;
347 	}
348 
349 	switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
350 
351 	case CPU_POST_DEAD:
352 
353 		/* The CPU died properly, so just start it up again. */
354 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
355 		return 0;
356 
357 	case CPU_DEAD_FROZEN:
358 
359 		/*
360 		 * Timeout during CPU death, so let caller know.
361 		 * The outgoing CPU completed its processing, but after
362 		 * cpu_wait_death() timed out and reported the error. The
363 		 * caller is free to proceed, in which case the state
364 		 * will be reset properly by cpu_set_state_online().
365 		 * Proceeding despite this -EBUSY return makes sense
366 		 * for systems where the outgoing CPUs take themselves
367 		 * offline, with no post-death manipulation required from
368 		 * a surviving CPU.
369 		 */
370 		return -EBUSY;
371 
372 	case CPU_BROKEN:
373 
374 		/*
375 		 * The most likely reason we got here is that there was
376 		 * a timeout during CPU death, and the outgoing CPU never
377 		 * did complete its processing.  This could happen on
378 		 * a virtualized system if the outgoing VCPU gets preempted
379 		 * for more than five seconds, and the user attempts to
380 		 * immediately online that same CPU.  Trying again later
381 		 * might return -EBUSY above, hence -EAGAIN.
382 		 */
383 		return -EAGAIN;
384 
385 	default:
386 
387 		/* Should not happen.  Famous last words. */
388 		return -EIO;
389 	}
390 }
391 
392 /*
393  * Mark the specified CPU online.
394  *
395  * Note that it is permissible to omit this call entirely, as is
396  * done in architectures that do no CPU-hotplug error checking.
397  */
398 void cpu_set_state_online(int cpu)
399 {
400 	(void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
401 }
402 
403 #ifdef CONFIG_HOTPLUG_CPU
404 
405 /*
406  * Wait for the specified CPU to exit the idle loop and die.
407  */
408 bool cpu_wait_death(unsigned int cpu, int seconds)
409 {
410 	int jf_left = seconds * HZ;
411 	int oldstate;
412 	bool ret = true;
413 	int sleep_jf = 1;
414 
415 	might_sleep();
416 
417 	/* The outgoing CPU will normally get done quite quickly. */
418 	if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
419 		goto update_state;
420 	udelay(5);
421 
422 	/* But if the outgoing CPU dawdles, wait increasingly long times. */
423 	while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
424 		schedule_timeout_uninterruptible(sleep_jf);
425 		jf_left -= sleep_jf;
426 		if (jf_left <= 0)
427 			break;
428 		sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
429 	}
430 update_state:
431 	oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
432 	if (oldstate == CPU_DEAD) {
433 		/* Outgoing CPU died normally, update state. */
434 		smp_mb(); /* atomic_read() before update. */
435 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
436 	} else {
437 		/* Outgoing CPU still hasn't died, set state accordingly. */
438 		if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
439 				   oldstate, CPU_BROKEN) != oldstate)
440 			goto update_state;
441 		ret = false;
442 	}
443 	return ret;
444 }
445 
446 /*
447  * Called by the outgoing CPU to report its successful death.  Return
448  * false if this report follows the surviving CPU's timing out.
449  *
450  * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
451  * timed out.  This approach allows architectures to omit calls to
452  * cpu_check_up_prepare() and cpu_set_state_online() without defeating
453  * the next cpu_wait_death()'s polling loop.
454  */
455 bool cpu_report_death(void)
456 {
457 	int oldstate;
458 	int newstate;
459 	int cpu = smp_processor_id();
460 
461 	do {
462 		oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
463 		if (oldstate != CPU_BROKEN)
464 			newstate = CPU_DEAD;
465 		else
466 			newstate = CPU_DEAD_FROZEN;
467 	} while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
468 				oldstate, newstate) != oldstate);
469 	return newstate == CPU_DEAD;
470 }
471 
472 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
473