1 /* 2 * Common SMP CPU bringup/teardown functions 3 */ 4 #include <linux/cpu.h> 5 #include <linux/err.h> 6 #include <linux/smp.h> 7 #include <linux/delay.h> 8 #include <linux/init.h> 9 #include <linux/list.h> 10 #include <linux/slab.h> 11 #include <linux/sched.h> 12 #include <linux/export.h> 13 #include <linux/percpu.h> 14 #include <linux/kthread.h> 15 #include <linux/smpboot.h> 16 17 #include "smpboot.h" 18 19 #ifdef CONFIG_SMP 20 21 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD 22 /* 23 * For the hotplug case we keep the task structs around and reuse 24 * them. 25 */ 26 static DEFINE_PER_CPU(struct task_struct *, idle_threads); 27 28 struct task_struct *idle_thread_get(unsigned int cpu) 29 { 30 struct task_struct *tsk = per_cpu(idle_threads, cpu); 31 32 if (!tsk) 33 return ERR_PTR(-ENOMEM); 34 init_idle(tsk, cpu); 35 return tsk; 36 } 37 38 void __init idle_thread_set_boot_cpu(void) 39 { 40 per_cpu(idle_threads, smp_processor_id()) = current; 41 } 42 43 /** 44 * idle_init - Initialize the idle thread for a cpu 45 * @cpu: The cpu for which the idle thread should be initialized 46 * 47 * Creates the thread if it does not exist. 48 */ 49 static inline void idle_init(unsigned int cpu) 50 { 51 struct task_struct *tsk = per_cpu(idle_threads, cpu); 52 53 if (!tsk) { 54 tsk = fork_idle(cpu); 55 if (IS_ERR(tsk)) 56 pr_err("SMP: fork_idle() failed for CPU %u\n", cpu); 57 else 58 per_cpu(idle_threads, cpu) = tsk; 59 } 60 } 61 62 /** 63 * idle_threads_init - Initialize idle threads for all cpus 64 */ 65 void __init idle_threads_init(void) 66 { 67 unsigned int cpu, boot_cpu; 68 69 boot_cpu = smp_processor_id(); 70 71 for_each_possible_cpu(cpu) { 72 if (cpu != boot_cpu) 73 idle_init(cpu); 74 } 75 } 76 #endif 77 78 #endif /* #ifdef CONFIG_SMP */ 79 80 static LIST_HEAD(hotplug_threads); 81 static DEFINE_MUTEX(smpboot_threads_lock); 82 83 struct smpboot_thread_data { 84 unsigned int cpu; 85 unsigned int status; 86 struct smp_hotplug_thread *ht; 87 }; 88 89 enum { 90 HP_THREAD_NONE = 0, 91 HP_THREAD_ACTIVE, 92 HP_THREAD_PARKED, 93 }; 94 95 /** 96 * smpboot_thread_fn - percpu hotplug thread loop function 97 * @data: thread data pointer 98 * 99 * Checks for thread stop and park conditions. Calls the necessary 100 * setup, cleanup, park and unpark functions for the registered 101 * thread. 102 * 103 * Returns 1 when the thread should exit, 0 otherwise. 104 */ 105 static int smpboot_thread_fn(void *data) 106 { 107 struct smpboot_thread_data *td = data; 108 struct smp_hotplug_thread *ht = td->ht; 109 110 while (1) { 111 set_current_state(TASK_INTERRUPTIBLE); 112 preempt_disable(); 113 if (kthread_should_stop()) { 114 __set_current_state(TASK_RUNNING); 115 preempt_enable(); 116 /* cleanup must mirror setup */ 117 if (ht->cleanup && td->status != HP_THREAD_NONE) 118 ht->cleanup(td->cpu, cpu_online(td->cpu)); 119 kfree(td); 120 return 0; 121 } 122 123 if (kthread_should_park()) { 124 __set_current_state(TASK_RUNNING); 125 preempt_enable(); 126 if (ht->park && td->status == HP_THREAD_ACTIVE) { 127 BUG_ON(td->cpu != smp_processor_id()); 128 ht->park(td->cpu); 129 td->status = HP_THREAD_PARKED; 130 } 131 kthread_parkme(); 132 /* We might have been woken for stop */ 133 continue; 134 } 135 136 BUG_ON(td->cpu != smp_processor_id()); 137 138 /* Check for state change setup */ 139 switch (td->status) { 140 case HP_THREAD_NONE: 141 __set_current_state(TASK_RUNNING); 142 preempt_enable(); 143 if (ht->setup) 144 ht->setup(td->cpu); 145 td->status = HP_THREAD_ACTIVE; 146 continue; 147 148 case HP_THREAD_PARKED: 149 __set_current_state(TASK_RUNNING); 150 preempt_enable(); 151 if (ht->unpark) 152 ht->unpark(td->cpu); 153 td->status = HP_THREAD_ACTIVE; 154 continue; 155 } 156 157 if (!ht->thread_should_run(td->cpu)) { 158 preempt_enable_no_resched(); 159 schedule(); 160 } else { 161 __set_current_state(TASK_RUNNING); 162 preempt_enable(); 163 ht->thread_fn(td->cpu); 164 } 165 } 166 } 167 168 static int 169 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu) 170 { 171 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 172 struct smpboot_thread_data *td; 173 174 if (tsk) 175 return 0; 176 177 td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu)); 178 if (!td) 179 return -ENOMEM; 180 td->cpu = cpu; 181 td->ht = ht; 182 183 tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu, 184 ht->thread_comm); 185 if (IS_ERR(tsk)) { 186 kfree(td); 187 return PTR_ERR(tsk); 188 } 189 get_task_struct(tsk); 190 *per_cpu_ptr(ht->store, cpu) = tsk; 191 if (ht->create) { 192 /* 193 * Make sure that the task has actually scheduled out 194 * into park position, before calling the create 195 * callback. At least the migration thread callback 196 * requires that the task is off the runqueue. 197 */ 198 if (!wait_task_inactive(tsk, TASK_PARKED)) 199 WARN_ON(1); 200 else 201 ht->create(cpu); 202 } 203 return 0; 204 } 205 206 int smpboot_create_threads(unsigned int cpu) 207 { 208 struct smp_hotplug_thread *cur; 209 int ret = 0; 210 211 mutex_lock(&smpboot_threads_lock); 212 list_for_each_entry(cur, &hotplug_threads, list) { 213 ret = __smpboot_create_thread(cur, cpu); 214 if (ret) 215 break; 216 } 217 mutex_unlock(&smpboot_threads_lock); 218 return ret; 219 } 220 221 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu) 222 { 223 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 224 225 if (!ht->selfparking) 226 kthread_unpark(tsk); 227 } 228 229 void smpboot_unpark_threads(unsigned int cpu) 230 { 231 struct smp_hotplug_thread *cur; 232 233 mutex_lock(&smpboot_threads_lock); 234 list_for_each_entry(cur, &hotplug_threads, list) 235 if (cpumask_test_cpu(cpu, cur->cpumask)) 236 smpboot_unpark_thread(cur, cpu); 237 mutex_unlock(&smpboot_threads_lock); 238 } 239 240 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu) 241 { 242 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 243 244 if (tsk && !ht->selfparking) 245 kthread_park(tsk); 246 } 247 248 void smpboot_park_threads(unsigned int cpu) 249 { 250 struct smp_hotplug_thread *cur; 251 252 mutex_lock(&smpboot_threads_lock); 253 list_for_each_entry_reverse(cur, &hotplug_threads, list) 254 smpboot_park_thread(cur, cpu); 255 mutex_unlock(&smpboot_threads_lock); 256 } 257 258 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht) 259 { 260 unsigned int cpu; 261 262 /* We need to destroy also the parked threads of offline cpus */ 263 for_each_possible_cpu(cpu) { 264 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 265 266 if (tsk) { 267 kthread_stop(tsk); 268 put_task_struct(tsk); 269 *per_cpu_ptr(ht->store, cpu) = NULL; 270 } 271 } 272 } 273 274 /** 275 * smpboot_register_percpu_thread_cpumask - Register a per_cpu thread related 276 * to hotplug 277 * @plug_thread: Hotplug thread descriptor 278 * @cpumask: The cpumask where threads run 279 * 280 * Creates and starts the threads on all online cpus. 281 */ 282 int smpboot_register_percpu_thread_cpumask(struct smp_hotplug_thread *plug_thread, 283 const struct cpumask *cpumask) 284 { 285 unsigned int cpu; 286 int ret = 0; 287 288 if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL)) 289 return -ENOMEM; 290 cpumask_copy(plug_thread->cpumask, cpumask); 291 292 get_online_cpus(); 293 mutex_lock(&smpboot_threads_lock); 294 for_each_online_cpu(cpu) { 295 ret = __smpboot_create_thread(plug_thread, cpu); 296 if (ret) { 297 smpboot_destroy_threads(plug_thread); 298 free_cpumask_var(plug_thread->cpumask); 299 goto out; 300 } 301 if (cpumask_test_cpu(cpu, cpumask)) 302 smpboot_unpark_thread(plug_thread, cpu); 303 } 304 list_add(&plug_thread->list, &hotplug_threads); 305 out: 306 mutex_unlock(&smpboot_threads_lock); 307 put_online_cpus(); 308 return ret; 309 } 310 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread_cpumask); 311 312 /** 313 * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug 314 * @plug_thread: Hotplug thread descriptor 315 * 316 * Stops all threads on all possible cpus. 317 */ 318 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread) 319 { 320 get_online_cpus(); 321 mutex_lock(&smpboot_threads_lock); 322 list_del(&plug_thread->list); 323 smpboot_destroy_threads(plug_thread); 324 mutex_unlock(&smpboot_threads_lock); 325 put_online_cpus(); 326 free_cpumask_var(plug_thread->cpumask); 327 } 328 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread); 329 330 /** 331 * smpboot_update_cpumask_percpu_thread - Adjust which per_cpu hotplug threads stay parked 332 * @plug_thread: Hotplug thread descriptor 333 * @new: Revised mask to use 334 * 335 * The cpumask field in the smp_hotplug_thread must not be updated directly 336 * by the client, but only by calling this function. 337 * This function can only be called on a registered smp_hotplug_thread. 338 */ 339 int smpboot_update_cpumask_percpu_thread(struct smp_hotplug_thread *plug_thread, 340 const struct cpumask *new) 341 { 342 struct cpumask *old = plug_thread->cpumask; 343 cpumask_var_t tmp; 344 unsigned int cpu; 345 346 if (!alloc_cpumask_var(&tmp, GFP_KERNEL)) 347 return -ENOMEM; 348 349 get_online_cpus(); 350 mutex_lock(&smpboot_threads_lock); 351 352 /* Park threads that were exclusively enabled on the old mask. */ 353 cpumask_andnot(tmp, old, new); 354 for_each_cpu_and(cpu, tmp, cpu_online_mask) 355 smpboot_park_thread(plug_thread, cpu); 356 357 /* Unpark threads that are exclusively enabled on the new mask. */ 358 cpumask_andnot(tmp, new, old); 359 for_each_cpu_and(cpu, tmp, cpu_online_mask) 360 smpboot_unpark_thread(plug_thread, cpu); 361 362 cpumask_copy(old, new); 363 364 mutex_unlock(&smpboot_threads_lock); 365 put_online_cpus(); 366 367 free_cpumask_var(tmp); 368 369 return 0; 370 } 371 EXPORT_SYMBOL_GPL(smpboot_update_cpumask_percpu_thread); 372 373 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD); 374 375 /* 376 * Called to poll specified CPU's state, for example, when waiting for 377 * a CPU to come online. 378 */ 379 int cpu_report_state(int cpu) 380 { 381 return atomic_read(&per_cpu(cpu_hotplug_state, cpu)); 382 } 383 384 /* 385 * If CPU has died properly, set its state to CPU_UP_PREPARE and 386 * return success. Otherwise, return -EBUSY if the CPU died after 387 * cpu_wait_death() timed out. And yet otherwise again, return -EAGAIN 388 * if cpu_wait_death() timed out and the CPU still hasn't gotten around 389 * to dying. In the latter two cases, the CPU might not be set up 390 * properly, but it is up to the arch-specific code to decide. 391 * Finally, -EIO indicates an unanticipated problem. 392 * 393 * Note that it is permissible to omit this call entirely, as is 394 * done in architectures that do no CPU-hotplug error checking. 395 */ 396 int cpu_check_up_prepare(int cpu) 397 { 398 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 399 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE); 400 return 0; 401 } 402 403 switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) { 404 405 case CPU_POST_DEAD: 406 407 /* The CPU died properly, so just start it up again. */ 408 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE); 409 return 0; 410 411 case CPU_DEAD_FROZEN: 412 413 /* 414 * Timeout during CPU death, so let caller know. 415 * The outgoing CPU completed its processing, but after 416 * cpu_wait_death() timed out and reported the error. The 417 * caller is free to proceed, in which case the state 418 * will be reset properly by cpu_set_state_online(). 419 * Proceeding despite this -EBUSY return makes sense 420 * for systems where the outgoing CPUs take themselves 421 * offline, with no post-death manipulation required from 422 * a surviving CPU. 423 */ 424 return -EBUSY; 425 426 case CPU_BROKEN: 427 428 /* 429 * The most likely reason we got here is that there was 430 * a timeout during CPU death, and the outgoing CPU never 431 * did complete its processing. This could happen on 432 * a virtualized system if the outgoing VCPU gets preempted 433 * for more than five seconds, and the user attempts to 434 * immediately online that same CPU. Trying again later 435 * might return -EBUSY above, hence -EAGAIN. 436 */ 437 return -EAGAIN; 438 439 default: 440 441 /* Should not happen. Famous last words. */ 442 return -EIO; 443 } 444 } 445 446 /* 447 * Mark the specified CPU online. 448 * 449 * Note that it is permissible to omit this call entirely, as is 450 * done in architectures that do no CPU-hotplug error checking. 451 */ 452 void cpu_set_state_online(int cpu) 453 { 454 (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE); 455 } 456 457 #ifdef CONFIG_HOTPLUG_CPU 458 459 /* 460 * Wait for the specified CPU to exit the idle loop and die. 461 */ 462 bool cpu_wait_death(unsigned int cpu, int seconds) 463 { 464 int jf_left = seconds * HZ; 465 int oldstate; 466 bool ret = true; 467 int sleep_jf = 1; 468 469 might_sleep(); 470 471 /* The outgoing CPU will normally get done quite quickly. */ 472 if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD) 473 goto update_state; 474 udelay(5); 475 476 /* But if the outgoing CPU dawdles, wait increasingly long times. */ 477 while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) { 478 schedule_timeout_uninterruptible(sleep_jf); 479 jf_left -= sleep_jf; 480 if (jf_left <= 0) 481 break; 482 sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10); 483 } 484 update_state: 485 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu)); 486 if (oldstate == CPU_DEAD) { 487 /* Outgoing CPU died normally, update state. */ 488 smp_mb(); /* atomic_read() before update. */ 489 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD); 490 } else { 491 /* Outgoing CPU still hasn't died, set state accordingly. */ 492 if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu), 493 oldstate, CPU_BROKEN) != oldstate) 494 goto update_state; 495 ret = false; 496 } 497 return ret; 498 } 499 500 /* 501 * Called by the outgoing CPU to report its successful death. Return 502 * false if this report follows the surviving CPU's timing out. 503 * 504 * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU 505 * timed out. This approach allows architectures to omit calls to 506 * cpu_check_up_prepare() and cpu_set_state_online() without defeating 507 * the next cpu_wait_death()'s polling loop. 508 */ 509 bool cpu_report_death(void) 510 { 511 int oldstate; 512 int newstate; 513 int cpu = smp_processor_id(); 514 515 do { 516 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu)); 517 if (oldstate != CPU_BROKEN) 518 newstate = CPU_DEAD; 519 else 520 newstate = CPU_DEAD_FROZEN; 521 } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu), 522 oldstate, newstate) != oldstate); 523 return newstate == CPU_DEAD; 524 } 525 526 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 527