1 /* 2 * Common SMP CPU bringup/teardown functions 3 */ 4 #include <linux/cpu.h> 5 #include <linux/err.h> 6 #include <linux/smp.h> 7 #include <linux/delay.h> 8 #include <linux/init.h> 9 #include <linux/list.h> 10 #include <linux/slab.h> 11 #include <linux/sched.h> 12 #include <linux/export.h> 13 #include <linux/percpu.h> 14 #include <linux/kthread.h> 15 #include <linux/smpboot.h> 16 17 #include "smpboot.h" 18 19 #ifdef CONFIG_SMP 20 21 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD 22 /* 23 * For the hotplug case we keep the task structs around and reuse 24 * them. 25 */ 26 static DEFINE_PER_CPU(struct task_struct *, idle_threads); 27 28 struct task_struct *idle_thread_get(unsigned int cpu) 29 { 30 struct task_struct *tsk = per_cpu(idle_threads, cpu); 31 32 if (!tsk) 33 return ERR_PTR(-ENOMEM); 34 init_idle(tsk, cpu); 35 return tsk; 36 } 37 38 void __init idle_thread_set_boot_cpu(void) 39 { 40 per_cpu(idle_threads, smp_processor_id()) = current; 41 } 42 43 /** 44 * idle_init - Initialize the idle thread for a cpu 45 * @cpu: The cpu for which the idle thread should be initialized 46 * 47 * Creates the thread if it does not exist. 48 */ 49 static inline void idle_init(unsigned int cpu) 50 { 51 struct task_struct *tsk = per_cpu(idle_threads, cpu); 52 53 if (!tsk) { 54 tsk = fork_idle(cpu); 55 if (IS_ERR(tsk)) 56 pr_err("SMP: fork_idle() failed for CPU %u\n", cpu); 57 else 58 per_cpu(idle_threads, cpu) = tsk; 59 } 60 } 61 62 /** 63 * idle_threads_init - Initialize idle threads for all cpus 64 */ 65 void __init idle_threads_init(void) 66 { 67 unsigned int cpu, boot_cpu; 68 69 boot_cpu = smp_processor_id(); 70 71 for_each_possible_cpu(cpu) { 72 if (cpu != boot_cpu) 73 idle_init(cpu); 74 } 75 } 76 #endif 77 78 #endif /* #ifdef CONFIG_SMP */ 79 80 static LIST_HEAD(hotplug_threads); 81 static DEFINE_MUTEX(smpboot_threads_lock); 82 83 struct smpboot_thread_data { 84 unsigned int cpu; 85 unsigned int status; 86 struct smp_hotplug_thread *ht; 87 }; 88 89 enum { 90 HP_THREAD_NONE = 0, 91 HP_THREAD_ACTIVE, 92 HP_THREAD_PARKED, 93 }; 94 95 /** 96 * smpboot_thread_fn - percpu hotplug thread loop function 97 * @data: thread data pointer 98 * 99 * Checks for thread stop and park conditions. Calls the necessary 100 * setup, cleanup, park and unpark functions for the registered 101 * thread. 102 * 103 * Returns 1 when the thread should exit, 0 otherwise. 104 */ 105 static int smpboot_thread_fn(void *data) 106 { 107 struct smpboot_thread_data *td = data; 108 struct smp_hotplug_thread *ht = td->ht; 109 110 while (1) { 111 set_current_state(TASK_INTERRUPTIBLE); 112 preempt_disable(); 113 if (kthread_should_stop()) { 114 __set_current_state(TASK_RUNNING); 115 preempt_enable(); 116 if (ht->cleanup) 117 ht->cleanup(td->cpu, cpu_online(td->cpu)); 118 kfree(td); 119 return 0; 120 } 121 122 if (kthread_should_park()) { 123 __set_current_state(TASK_RUNNING); 124 preempt_enable(); 125 if (ht->park && td->status == HP_THREAD_ACTIVE) { 126 BUG_ON(td->cpu != smp_processor_id()); 127 ht->park(td->cpu); 128 td->status = HP_THREAD_PARKED; 129 } 130 kthread_parkme(); 131 /* We might have been woken for stop */ 132 continue; 133 } 134 135 BUG_ON(td->cpu != smp_processor_id()); 136 137 /* Check for state change setup */ 138 switch (td->status) { 139 case HP_THREAD_NONE: 140 __set_current_state(TASK_RUNNING); 141 preempt_enable(); 142 if (ht->setup) 143 ht->setup(td->cpu); 144 td->status = HP_THREAD_ACTIVE; 145 continue; 146 147 case HP_THREAD_PARKED: 148 __set_current_state(TASK_RUNNING); 149 preempt_enable(); 150 if (ht->unpark) 151 ht->unpark(td->cpu); 152 td->status = HP_THREAD_ACTIVE; 153 continue; 154 } 155 156 if (!ht->thread_should_run(td->cpu)) { 157 preempt_enable_no_resched(); 158 schedule(); 159 } else { 160 __set_current_state(TASK_RUNNING); 161 preempt_enable(); 162 ht->thread_fn(td->cpu); 163 } 164 } 165 } 166 167 static int 168 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu) 169 { 170 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 171 struct smpboot_thread_data *td; 172 173 if (tsk) 174 return 0; 175 176 td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu)); 177 if (!td) 178 return -ENOMEM; 179 td->cpu = cpu; 180 td->ht = ht; 181 182 tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu, 183 ht->thread_comm); 184 if (IS_ERR(tsk)) { 185 kfree(td); 186 return PTR_ERR(tsk); 187 } 188 get_task_struct(tsk); 189 *per_cpu_ptr(ht->store, cpu) = tsk; 190 if (ht->create) { 191 /* 192 * Make sure that the task has actually scheduled out 193 * into park position, before calling the create 194 * callback. At least the migration thread callback 195 * requires that the task is off the runqueue. 196 */ 197 if (!wait_task_inactive(tsk, TASK_PARKED)) 198 WARN_ON(1); 199 else 200 ht->create(cpu); 201 } 202 return 0; 203 } 204 205 int smpboot_create_threads(unsigned int cpu) 206 { 207 struct smp_hotplug_thread *cur; 208 int ret = 0; 209 210 mutex_lock(&smpboot_threads_lock); 211 list_for_each_entry(cur, &hotplug_threads, list) { 212 ret = __smpboot_create_thread(cur, cpu); 213 if (ret) 214 break; 215 } 216 mutex_unlock(&smpboot_threads_lock); 217 return ret; 218 } 219 220 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu) 221 { 222 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 223 224 if (ht->pre_unpark) 225 ht->pre_unpark(cpu); 226 kthread_unpark(tsk); 227 } 228 229 void smpboot_unpark_threads(unsigned int cpu) 230 { 231 struct smp_hotplug_thread *cur; 232 233 mutex_lock(&smpboot_threads_lock); 234 list_for_each_entry(cur, &hotplug_threads, list) 235 smpboot_unpark_thread(cur, cpu); 236 mutex_unlock(&smpboot_threads_lock); 237 } 238 239 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu) 240 { 241 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 242 243 if (tsk && !ht->selfparking) 244 kthread_park(tsk); 245 } 246 247 void smpboot_park_threads(unsigned int cpu) 248 { 249 struct smp_hotplug_thread *cur; 250 251 mutex_lock(&smpboot_threads_lock); 252 list_for_each_entry_reverse(cur, &hotplug_threads, list) 253 smpboot_park_thread(cur, cpu); 254 mutex_unlock(&smpboot_threads_lock); 255 } 256 257 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht) 258 { 259 unsigned int cpu; 260 261 /* We need to destroy also the parked threads of offline cpus */ 262 for_each_possible_cpu(cpu) { 263 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 264 265 if (tsk) { 266 kthread_stop(tsk); 267 put_task_struct(tsk); 268 *per_cpu_ptr(ht->store, cpu) = NULL; 269 } 270 } 271 } 272 273 /** 274 * smpboot_register_percpu_thread - Register a per_cpu thread related to hotplug 275 * @plug_thread: Hotplug thread descriptor 276 * 277 * Creates and starts the threads on all online cpus. 278 */ 279 int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread) 280 { 281 unsigned int cpu; 282 int ret = 0; 283 284 get_online_cpus(); 285 mutex_lock(&smpboot_threads_lock); 286 for_each_online_cpu(cpu) { 287 ret = __smpboot_create_thread(plug_thread, cpu); 288 if (ret) { 289 smpboot_destroy_threads(plug_thread); 290 goto out; 291 } 292 smpboot_unpark_thread(plug_thread, cpu); 293 } 294 list_add(&plug_thread->list, &hotplug_threads); 295 out: 296 mutex_unlock(&smpboot_threads_lock); 297 put_online_cpus(); 298 return ret; 299 } 300 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread); 301 302 /** 303 * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug 304 * @plug_thread: Hotplug thread descriptor 305 * 306 * Stops all threads on all possible cpus. 307 */ 308 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread) 309 { 310 get_online_cpus(); 311 mutex_lock(&smpboot_threads_lock); 312 list_del(&plug_thread->list); 313 smpboot_destroy_threads(plug_thread); 314 mutex_unlock(&smpboot_threads_lock); 315 put_online_cpus(); 316 } 317 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread); 318 319 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD); 320 321 /* 322 * Called to poll specified CPU's state, for example, when waiting for 323 * a CPU to come online. 324 */ 325 int cpu_report_state(int cpu) 326 { 327 return atomic_read(&per_cpu(cpu_hotplug_state, cpu)); 328 } 329 330 /* 331 * If CPU has died properly, set its state to CPU_UP_PREPARE and 332 * return success. Otherwise, return -EBUSY if the CPU died after 333 * cpu_wait_death() timed out. And yet otherwise again, return -EAGAIN 334 * if cpu_wait_death() timed out and the CPU still hasn't gotten around 335 * to dying. In the latter two cases, the CPU might not be set up 336 * properly, but it is up to the arch-specific code to decide. 337 * Finally, -EIO indicates an unanticipated problem. 338 * 339 * Note that it is permissible to omit this call entirely, as is 340 * done in architectures that do no CPU-hotplug error checking. 341 */ 342 int cpu_check_up_prepare(int cpu) 343 { 344 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 345 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE); 346 return 0; 347 } 348 349 switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) { 350 351 case CPU_POST_DEAD: 352 353 /* The CPU died properly, so just start it up again. */ 354 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE); 355 return 0; 356 357 case CPU_DEAD_FROZEN: 358 359 /* 360 * Timeout during CPU death, so let caller know. 361 * The outgoing CPU completed its processing, but after 362 * cpu_wait_death() timed out and reported the error. The 363 * caller is free to proceed, in which case the state 364 * will be reset properly by cpu_set_state_online(). 365 * Proceeding despite this -EBUSY return makes sense 366 * for systems where the outgoing CPUs take themselves 367 * offline, with no post-death manipulation required from 368 * a surviving CPU. 369 */ 370 return -EBUSY; 371 372 case CPU_BROKEN: 373 374 /* 375 * The most likely reason we got here is that there was 376 * a timeout during CPU death, and the outgoing CPU never 377 * did complete its processing. This could happen on 378 * a virtualized system if the outgoing VCPU gets preempted 379 * for more than five seconds, and the user attempts to 380 * immediately online that same CPU. Trying again later 381 * might return -EBUSY above, hence -EAGAIN. 382 */ 383 return -EAGAIN; 384 385 default: 386 387 /* Should not happen. Famous last words. */ 388 return -EIO; 389 } 390 } 391 392 /* 393 * Mark the specified CPU online. 394 * 395 * Note that it is permissible to omit this call entirely, as is 396 * done in architectures that do no CPU-hotplug error checking. 397 */ 398 void cpu_set_state_online(int cpu) 399 { 400 (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE); 401 } 402 403 #ifdef CONFIG_HOTPLUG_CPU 404 405 /* 406 * Wait for the specified CPU to exit the idle loop and die. 407 */ 408 bool cpu_wait_death(unsigned int cpu, int seconds) 409 { 410 int jf_left = seconds * HZ; 411 int oldstate; 412 bool ret = true; 413 int sleep_jf = 1; 414 415 might_sleep(); 416 417 /* The outgoing CPU will normally get done quite quickly. */ 418 if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD) 419 goto update_state; 420 udelay(5); 421 422 /* But if the outgoing CPU dawdles, wait increasingly long times. */ 423 while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) { 424 schedule_timeout_uninterruptible(sleep_jf); 425 jf_left -= sleep_jf; 426 if (jf_left <= 0) 427 break; 428 sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10); 429 } 430 update_state: 431 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu)); 432 if (oldstate == CPU_DEAD) { 433 /* Outgoing CPU died normally, update state. */ 434 smp_mb(); /* atomic_read() before update. */ 435 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD); 436 } else { 437 /* Outgoing CPU still hasn't died, set state accordingly. */ 438 if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu), 439 oldstate, CPU_BROKEN) != oldstate) 440 goto update_state; 441 ret = false; 442 } 443 return ret; 444 } 445 446 /* 447 * Called by the outgoing CPU to report its successful death. Return 448 * false if this report follows the surviving CPU's timing out. 449 * 450 * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU 451 * timed out. This approach allows architectures to omit calls to 452 * cpu_check_up_prepare() and cpu_set_state_online() without defeating 453 * the next cpu_wait_death()'s polling loop. 454 */ 455 bool cpu_report_death(void) 456 { 457 int oldstate; 458 int newstate; 459 int cpu = smp_processor_id(); 460 461 do { 462 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu)); 463 if (oldstate != CPU_BROKEN) 464 newstate = CPU_DEAD; 465 else 466 newstate = CPU_DEAD_FROZEN; 467 } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu), 468 oldstate, newstate) != oldstate); 469 return newstate == CPU_DEAD; 470 } 471 472 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 473