1 /* 2 * Common SMP CPU bringup/teardown functions 3 */ 4 #include <linux/cpu.h> 5 #include <linux/err.h> 6 #include <linux/smp.h> 7 #include <linux/delay.h> 8 #include <linux/init.h> 9 #include <linux/list.h> 10 #include <linux/slab.h> 11 #include <linux/sched.h> 12 #include <linux/export.h> 13 #include <linux/percpu.h> 14 #include <linux/kthread.h> 15 #include <linux/smpboot.h> 16 17 #include "smpboot.h" 18 19 #ifdef CONFIG_SMP 20 21 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD 22 /* 23 * For the hotplug case we keep the task structs around and reuse 24 * them. 25 */ 26 static DEFINE_PER_CPU(struct task_struct *, idle_threads); 27 28 struct task_struct *idle_thread_get(unsigned int cpu) 29 { 30 struct task_struct *tsk = per_cpu(idle_threads, cpu); 31 32 if (!tsk) 33 return ERR_PTR(-ENOMEM); 34 init_idle(tsk, cpu); 35 return tsk; 36 } 37 38 void __init idle_thread_set_boot_cpu(void) 39 { 40 per_cpu(idle_threads, smp_processor_id()) = current; 41 } 42 43 /** 44 * idle_init - Initialize the idle thread for a cpu 45 * @cpu: The cpu for which the idle thread should be initialized 46 * 47 * Creates the thread if it does not exist. 48 */ 49 static inline void idle_init(unsigned int cpu) 50 { 51 struct task_struct *tsk = per_cpu(idle_threads, cpu); 52 53 if (!tsk) { 54 tsk = fork_idle(cpu); 55 if (IS_ERR(tsk)) 56 pr_err("SMP: fork_idle() failed for CPU %u\n", cpu); 57 else 58 per_cpu(idle_threads, cpu) = tsk; 59 } 60 } 61 62 /** 63 * idle_threads_init - Initialize idle threads for all cpus 64 */ 65 void __init idle_threads_init(void) 66 { 67 unsigned int cpu, boot_cpu; 68 69 boot_cpu = smp_processor_id(); 70 71 for_each_possible_cpu(cpu) { 72 if (cpu != boot_cpu) 73 idle_init(cpu); 74 } 75 } 76 #endif 77 78 #endif /* #ifdef CONFIG_SMP */ 79 80 static LIST_HEAD(hotplug_threads); 81 static DEFINE_MUTEX(smpboot_threads_lock); 82 83 struct smpboot_thread_data { 84 unsigned int cpu; 85 unsigned int status; 86 struct smp_hotplug_thread *ht; 87 }; 88 89 enum { 90 HP_THREAD_NONE = 0, 91 HP_THREAD_ACTIVE, 92 HP_THREAD_PARKED, 93 }; 94 95 /** 96 * smpboot_thread_fn - percpu hotplug thread loop function 97 * @data: thread data pointer 98 * 99 * Checks for thread stop and park conditions. Calls the necessary 100 * setup, cleanup, park and unpark functions for the registered 101 * thread. 102 * 103 * Returns 1 when the thread should exit, 0 otherwise. 104 */ 105 static int smpboot_thread_fn(void *data) 106 { 107 struct smpboot_thread_data *td = data; 108 struct smp_hotplug_thread *ht = td->ht; 109 110 while (1) { 111 set_current_state(TASK_INTERRUPTIBLE); 112 preempt_disable(); 113 if (kthread_should_stop()) { 114 __set_current_state(TASK_RUNNING); 115 preempt_enable(); 116 /* cleanup must mirror setup */ 117 if (ht->cleanup && td->status != HP_THREAD_NONE) 118 ht->cleanup(td->cpu, cpu_online(td->cpu)); 119 kfree(td); 120 return 0; 121 } 122 123 if (kthread_should_park()) { 124 __set_current_state(TASK_RUNNING); 125 preempt_enable(); 126 if (ht->park && td->status == HP_THREAD_ACTIVE) { 127 BUG_ON(td->cpu != smp_processor_id()); 128 ht->park(td->cpu); 129 td->status = HP_THREAD_PARKED; 130 } 131 kthread_parkme(); 132 /* We might have been woken for stop */ 133 continue; 134 } 135 136 BUG_ON(td->cpu != smp_processor_id()); 137 138 /* Check for state change setup */ 139 switch (td->status) { 140 case HP_THREAD_NONE: 141 __set_current_state(TASK_RUNNING); 142 preempt_enable(); 143 if (ht->setup) 144 ht->setup(td->cpu); 145 td->status = HP_THREAD_ACTIVE; 146 continue; 147 148 case HP_THREAD_PARKED: 149 __set_current_state(TASK_RUNNING); 150 preempt_enable(); 151 if (ht->unpark) 152 ht->unpark(td->cpu); 153 td->status = HP_THREAD_ACTIVE; 154 continue; 155 } 156 157 if (!ht->thread_should_run(td->cpu)) { 158 preempt_enable_no_resched(); 159 schedule(); 160 } else { 161 __set_current_state(TASK_RUNNING); 162 preempt_enable(); 163 ht->thread_fn(td->cpu); 164 } 165 } 166 } 167 168 static int 169 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu) 170 { 171 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 172 struct smpboot_thread_data *td; 173 174 if (tsk) 175 return 0; 176 177 td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu)); 178 if (!td) 179 return -ENOMEM; 180 td->cpu = cpu; 181 td->ht = ht; 182 183 tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu, 184 ht->thread_comm); 185 if (IS_ERR(tsk)) { 186 kfree(td); 187 return PTR_ERR(tsk); 188 } 189 get_task_struct(tsk); 190 *per_cpu_ptr(ht->store, cpu) = tsk; 191 if (ht->create) { 192 /* 193 * Make sure that the task has actually scheduled out 194 * into park position, before calling the create 195 * callback. At least the migration thread callback 196 * requires that the task is off the runqueue. 197 */ 198 if (!wait_task_inactive(tsk, TASK_PARKED)) 199 WARN_ON(1); 200 else 201 ht->create(cpu); 202 } 203 return 0; 204 } 205 206 int smpboot_create_threads(unsigned int cpu) 207 { 208 struct smp_hotplug_thread *cur; 209 int ret = 0; 210 211 mutex_lock(&smpboot_threads_lock); 212 list_for_each_entry(cur, &hotplug_threads, list) { 213 ret = __smpboot_create_thread(cur, cpu); 214 if (ret) 215 break; 216 } 217 mutex_unlock(&smpboot_threads_lock); 218 return ret; 219 } 220 221 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu) 222 { 223 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 224 225 if (!ht->selfparking) 226 kthread_unpark(tsk); 227 } 228 229 int smpboot_unpark_threads(unsigned int cpu) 230 { 231 struct smp_hotplug_thread *cur; 232 233 mutex_lock(&smpboot_threads_lock); 234 list_for_each_entry(cur, &hotplug_threads, list) 235 if (cpumask_test_cpu(cpu, cur->cpumask)) 236 smpboot_unpark_thread(cur, cpu); 237 mutex_unlock(&smpboot_threads_lock); 238 return 0; 239 } 240 241 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu) 242 { 243 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 244 245 if (tsk && !ht->selfparking) 246 kthread_park(tsk); 247 } 248 249 int smpboot_park_threads(unsigned int cpu) 250 { 251 struct smp_hotplug_thread *cur; 252 253 mutex_lock(&smpboot_threads_lock); 254 list_for_each_entry_reverse(cur, &hotplug_threads, list) 255 smpboot_park_thread(cur, cpu); 256 mutex_unlock(&smpboot_threads_lock); 257 return 0; 258 } 259 260 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht) 261 { 262 unsigned int cpu; 263 264 /* We need to destroy also the parked threads of offline cpus */ 265 for_each_possible_cpu(cpu) { 266 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 267 268 if (tsk) { 269 kthread_stop(tsk); 270 put_task_struct(tsk); 271 *per_cpu_ptr(ht->store, cpu) = NULL; 272 } 273 } 274 } 275 276 /** 277 * smpboot_register_percpu_thread_cpumask - Register a per_cpu thread related 278 * to hotplug 279 * @plug_thread: Hotplug thread descriptor 280 * @cpumask: The cpumask where threads run 281 * 282 * Creates and starts the threads on all online cpus. 283 */ 284 int smpboot_register_percpu_thread_cpumask(struct smp_hotplug_thread *plug_thread, 285 const struct cpumask *cpumask) 286 { 287 unsigned int cpu; 288 int ret = 0; 289 290 if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL)) 291 return -ENOMEM; 292 cpumask_copy(plug_thread->cpumask, cpumask); 293 294 get_online_cpus(); 295 mutex_lock(&smpboot_threads_lock); 296 for_each_online_cpu(cpu) { 297 ret = __smpboot_create_thread(plug_thread, cpu); 298 if (ret) { 299 smpboot_destroy_threads(plug_thread); 300 free_cpumask_var(plug_thread->cpumask); 301 goto out; 302 } 303 if (cpumask_test_cpu(cpu, cpumask)) 304 smpboot_unpark_thread(plug_thread, cpu); 305 } 306 list_add(&plug_thread->list, &hotplug_threads); 307 out: 308 mutex_unlock(&smpboot_threads_lock); 309 put_online_cpus(); 310 return ret; 311 } 312 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread_cpumask); 313 314 /** 315 * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug 316 * @plug_thread: Hotplug thread descriptor 317 * 318 * Stops all threads on all possible cpus. 319 */ 320 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread) 321 { 322 get_online_cpus(); 323 mutex_lock(&smpboot_threads_lock); 324 list_del(&plug_thread->list); 325 smpboot_destroy_threads(plug_thread); 326 mutex_unlock(&smpboot_threads_lock); 327 put_online_cpus(); 328 free_cpumask_var(plug_thread->cpumask); 329 } 330 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread); 331 332 /** 333 * smpboot_update_cpumask_percpu_thread - Adjust which per_cpu hotplug threads stay parked 334 * @plug_thread: Hotplug thread descriptor 335 * @new: Revised mask to use 336 * 337 * The cpumask field in the smp_hotplug_thread must not be updated directly 338 * by the client, but only by calling this function. 339 * This function can only be called on a registered smp_hotplug_thread. 340 */ 341 int smpboot_update_cpumask_percpu_thread(struct smp_hotplug_thread *plug_thread, 342 const struct cpumask *new) 343 { 344 struct cpumask *old = plug_thread->cpumask; 345 cpumask_var_t tmp; 346 unsigned int cpu; 347 348 if (!alloc_cpumask_var(&tmp, GFP_KERNEL)) 349 return -ENOMEM; 350 351 get_online_cpus(); 352 mutex_lock(&smpboot_threads_lock); 353 354 /* Park threads that were exclusively enabled on the old mask. */ 355 cpumask_andnot(tmp, old, new); 356 for_each_cpu_and(cpu, tmp, cpu_online_mask) 357 smpboot_park_thread(plug_thread, cpu); 358 359 /* Unpark threads that are exclusively enabled on the new mask. */ 360 cpumask_andnot(tmp, new, old); 361 for_each_cpu_and(cpu, tmp, cpu_online_mask) 362 smpboot_unpark_thread(plug_thread, cpu); 363 364 cpumask_copy(old, new); 365 366 mutex_unlock(&smpboot_threads_lock); 367 put_online_cpus(); 368 369 free_cpumask_var(tmp); 370 371 return 0; 372 } 373 EXPORT_SYMBOL_GPL(smpboot_update_cpumask_percpu_thread); 374 375 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD); 376 377 /* 378 * Called to poll specified CPU's state, for example, when waiting for 379 * a CPU to come online. 380 */ 381 int cpu_report_state(int cpu) 382 { 383 return atomic_read(&per_cpu(cpu_hotplug_state, cpu)); 384 } 385 386 /* 387 * If CPU has died properly, set its state to CPU_UP_PREPARE and 388 * return success. Otherwise, return -EBUSY if the CPU died after 389 * cpu_wait_death() timed out. And yet otherwise again, return -EAGAIN 390 * if cpu_wait_death() timed out and the CPU still hasn't gotten around 391 * to dying. In the latter two cases, the CPU might not be set up 392 * properly, but it is up to the arch-specific code to decide. 393 * Finally, -EIO indicates an unanticipated problem. 394 * 395 * Note that it is permissible to omit this call entirely, as is 396 * done in architectures that do no CPU-hotplug error checking. 397 */ 398 int cpu_check_up_prepare(int cpu) 399 { 400 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 401 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE); 402 return 0; 403 } 404 405 switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) { 406 407 case CPU_POST_DEAD: 408 409 /* The CPU died properly, so just start it up again. */ 410 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE); 411 return 0; 412 413 case CPU_DEAD_FROZEN: 414 415 /* 416 * Timeout during CPU death, so let caller know. 417 * The outgoing CPU completed its processing, but after 418 * cpu_wait_death() timed out and reported the error. The 419 * caller is free to proceed, in which case the state 420 * will be reset properly by cpu_set_state_online(). 421 * Proceeding despite this -EBUSY return makes sense 422 * for systems where the outgoing CPUs take themselves 423 * offline, with no post-death manipulation required from 424 * a surviving CPU. 425 */ 426 return -EBUSY; 427 428 case CPU_BROKEN: 429 430 /* 431 * The most likely reason we got here is that there was 432 * a timeout during CPU death, and the outgoing CPU never 433 * did complete its processing. This could happen on 434 * a virtualized system if the outgoing VCPU gets preempted 435 * for more than five seconds, and the user attempts to 436 * immediately online that same CPU. Trying again later 437 * might return -EBUSY above, hence -EAGAIN. 438 */ 439 return -EAGAIN; 440 441 default: 442 443 /* Should not happen. Famous last words. */ 444 return -EIO; 445 } 446 } 447 448 /* 449 * Mark the specified CPU online. 450 * 451 * Note that it is permissible to omit this call entirely, as is 452 * done in architectures that do no CPU-hotplug error checking. 453 */ 454 void cpu_set_state_online(int cpu) 455 { 456 (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE); 457 } 458 459 #ifdef CONFIG_HOTPLUG_CPU 460 461 /* 462 * Wait for the specified CPU to exit the idle loop and die. 463 */ 464 bool cpu_wait_death(unsigned int cpu, int seconds) 465 { 466 int jf_left = seconds * HZ; 467 int oldstate; 468 bool ret = true; 469 int sleep_jf = 1; 470 471 might_sleep(); 472 473 /* The outgoing CPU will normally get done quite quickly. */ 474 if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD) 475 goto update_state; 476 udelay(5); 477 478 /* But if the outgoing CPU dawdles, wait increasingly long times. */ 479 while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) { 480 schedule_timeout_uninterruptible(sleep_jf); 481 jf_left -= sleep_jf; 482 if (jf_left <= 0) 483 break; 484 sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10); 485 } 486 update_state: 487 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu)); 488 if (oldstate == CPU_DEAD) { 489 /* Outgoing CPU died normally, update state. */ 490 smp_mb(); /* atomic_read() before update. */ 491 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD); 492 } else { 493 /* Outgoing CPU still hasn't died, set state accordingly. */ 494 if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu), 495 oldstate, CPU_BROKEN) != oldstate) 496 goto update_state; 497 ret = false; 498 } 499 return ret; 500 } 501 502 /* 503 * Called by the outgoing CPU to report its successful death. Return 504 * false if this report follows the surviving CPU's timing out. 505 * 506 * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU 507 * timed out. This approach allows architectures to omit calls to 508 * cpu_check_up_prepare() and cpu_set_state_online() without defeating 509 * the next cpu_wait_death()'s polling loop. 510 */ 511 bool cpu_report_death(void) 512 { 513 int oldstate; 514 int newstate; 515 int cpu = smp_processor_id(); 516 517 do { 518 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu)); 519 if (oldstate != CPU_BROKEN) 520 newstate = CPU_DEAD; 521 else 522 newstate = CPU_DEAD_FROZEN; 523 } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu), 524 oldstate, newstate) != oldstate); 525 return newstate == CPU_DEAD; 526 } 527 528 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 529