xref: /openbmc/linux/kernel/smpboot.c (revision 12cecbf9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Common SMP CPU bringup/teardown functions
4  */
5 #include <linux/cpu.h>
6 #include <linux/err.h>
7 #include <linux/smp.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/list.h>
11 #include <linux/slab.h>
12 #include <linux/sched.h>
13 #include <linux/sched/task.h>
14 #include <linux/export.h>
15 #include <linux/percpu.h>
16 #include <linux/kthread.h>
17 #include <linux/smpboot.h>
18 
19 #include "smpboot.h"
20 
21 #ifdef CONFIG_SMP
22 
23 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
24 /*
25  * For the hotplug case we keep the task structs around and reuse
26  * them.
27  */
28 static DEFINE_PER_CPU(struct task_struct *, idle_threads);
29 
30 struct task_struct *idle_thread_get(unsigned int cpu)
31 {
32 	struct task_struct *tsk = per_cpu(idle_threads, cpu);
33 
34 	if (!tsk)
35 		return ERR_PTR(-ENOMEM);
36 	return tsk;
37 }
38 
39 void __init idle_thread_set_boot_cpu(void)
40 {
41 	per_cpu(idle_threads, smp_processor_id()) = current;
42 }
43 
44 /**
45  * idle_init - Initialize the idle thread for a cpu
46  * @cpu:	The cpu for which the idle thread should be initialized
47  *
48  * Creates the thread if it does not exist.
49  */
50 static __always_inline void idle_init(unsigned int cpu)
51 {
52 	struct task_struct *tsk = per_cpu(idle_threads, cpu);
53 
54 	if (!tsk) {
55 		tsk = fork_idle(cpu);
56 		if (IS_ERR(tsk))
57 			pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
58 		else
59 			per_cpu(idle_threads, cpu) = tsk;
60 	}
61 }
62 
63 /**
64  * idle_threads_init - Initialize idle threads for all cpus
65  */
66 void __init idle_threads_init(void)
67 {
68 	unsigned int cpu, boot_cpu;
69 
70 	boot_cpu = smp_processor_id();
71 
72 	for_each_possible_cpu(cpu) {
73 		if (cpu != boot_cpu)
74 			idle_init(cpu);
75 	}
76 }
77 #endif
78 
79 #endif /* #ifdef CONFIG_SMP */
80 
81 static LIST_HEAD(hotplug_threads);
82 static DEFINE_MUTEX(smpboot_threads_lock);
83 
84 struct smpboot_thread_data {
85 	unsigned int			cpu;
86 	unsigned int			status;
87 	struct smp_hotplug_thread	*ht;
88 };
89 
90 enum {
91 	HP_THREAD_NONE = 0,
92 	HP_THREAD_ACTIVE,
93 	HP_THREAD_PARKED,
94 };
95 
96 /**
97  * smpboot_thread_fn - percpu hotplug thread loop function
98  * @data:	thread data pointer
99  *
100  * Checks for thread stop and park conditions. Calls the necessary
101  * setup, cleanup, park and unpark functions for the registered
102  * thread.
103  *
104  * Returns 1 when the thread should exit, 0 otherwise.
105  */
106 static int smpboot_thread_fn(void *data)
107 {
108 	struct smpboot_thread_data *td = data;
109 	struct smp_hotplug_thread *ht = td->ht;
110 
111 	while (1) {
112 		set_current_state(TASK_INTERRUPTIBLE);
113 		preempt_disable();
114 		if (kthread_should_stop()) {
115 			__set_current_state(TASK_RUNNING);
116 			preempt_enable();
117 			/* cleanup must mirror setup */
118 			if (ht->cleanup && td->status != HP_THREAD_NONE)
119 				ht->cleanup(td->cpu, cpu_online(td->cpu));
120 			kfree(td);
121 			return 0;
122 		}
123 
124 		if (kthread_should_park()) {
125 			__set_current_state(TASK_RUNNING);
126 			preempt_enable();
127 			if (ht->park && td->status == HP_THREAD_ACTIVE) {
128 				BUG_ON(td->cpu != smp_processor_id());
129 				ht->park(td->cpu);
130 				td->status = HP_THREAD_PARKED;
131 			}
132 			kthread_parkme();
133 			/* We might have been woken for stop */
134 			continue;
135 		}
136 
137 		BUG_ON(td->cpu != smp_processor_id());
138 
139 		/* Check for state change setup */
140 		switch (td->status) {
141 		case HP_THREAD_NONE:
142 			__set_current_state(TASK_RUNNING);
143 			preempt_enable();
144 			if (ht->setup)
145 				ht->setup(td->cpu);
146 			td->status = HP_THREAD_ACTIVE;
147 			continue;
148 
149 		case HP_THREAD_PARKED:
150 			__set_current_state(TASK_RUNNING);
151 			preempt_enable();
152 			if (ht->unpark)
153 				ht->unpark(td->cpu);
154 			td->status = HP_THREAD_ACTIVE;
155 			continue;
156 		}
157 
158 		if (!ht->thread_should_run(td->cpu)) {
159 			preempt_enable_no_resched();
160 			schedule();
161 		} else {
162 			__set_current_state(TASK_RUNNING);
163 			preempt_enable();
164 			ht->thread_fn(td->cpu);
165 		}
166 	}
167 }
168 
169 static int
170 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
171 {
172 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
173 	struct smpboot_thread_data *td;
174 
175 	if (tsk)
176 		return 0;
177 
178 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
179 	if (!td)
180 		return -ENOMEM;
181 	td->cpu = cpu;
182 	td->ht = ht;
183 
184 	tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
185 				    ht->thread_comm);
186 	if (IS_ERR(tsk)) {
187 		kfree(td);
188 		return PTR_ERR(tsk);
189 	}
190 	kthread_set_per_cpu(tsk, cpu);
191 	/*
192 	 * Park the thread so that it could start right on the CPU
193 	 * when it is available.
194 	 */
195 	kthread_park(tsk);
196 	get_task_struct(tsk);
197 	*per_cpu_ptr(ht->store, cpu) = tsk;
198 	if (ht->create) {
199 		/*
200 		 * Make sure that the task has actually scheduled out
201 		 * into park position, before calling the create
202 		 * callback. At least the migration thread callback
203 		 * requires that the task is off the runqueue.
204 		 */
205 		if (!wait_task_inactive(tsk, TASK_PARKED))
206 			WARN_ON(1);
207 		else
208 			ht->create(cpu);
209 	}
210 	return 0;
211 }
212 
213 int smpboot_create_threads(unsigned int cpu)
214 {
215 	struct smp_hotplug_thread *cur;
216 	int ret = 0;
217 
218 	mutex_lock(&smpboot_threads_lock);
219 	list_for_each_entry(cur, &hotplug_threads, list) {
220 		ret = __smpboot_create_thread(cur, cpu);
221 		if (ret)
222 			break;
223 	}
224 	mutex_unlock(&smpboot_threads_lock);
225 	return ret;
226 }
227 
228 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
229 {
230 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
231 
232 	if (!ht->selfparking)
233 		kthread_unpark(tsk);
234 }
235 
236 int smpboot_unpark_threads(unsigned int cpu)
237 {
238 	struct smp_hotplug_thread *cur;
239 
240 	mutex_lock(&smpboot_threads_lock);
241 	list_for_each_entry(cur, &hotplug_threads, list)
242 		smpboot_unpark_thread(cur, cpu);
243 	mutex_unlock(&smpboot_threads_lock);
244 	return 0;
245 }
246 
247 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
248 {
249 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
250 
251 	if (tsk && !ht->selfparking)
252 		kthread_park(tsk);
253 }
254 
255 int smpboot_park_threads(unsigned int cpu)
256 {
257 	struct smp_hotplug_thread *cur;
258 
259 	mutex_lock(&smpboot_threads_lock);
260 	list_for_each_entry_reverse(cur, &hotplug_threads, list)
261 		smpboot_park_thread(cur, cpu);
262 	mutex_unlock(&smpboot_threads_lock);
263 	return 0;
264 }
265 
266 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
267 {
268 	unsigned int cpu;
269 
270 	/* We need to destroy also the parked threads of offline cpus */
271 	for_each_possible_cpu(cpu) {
272 		struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
273 
274 		if (tsk) {
275 			kthread_stop(tsk);
276 			put_task_struct(tsk);
277 			*per_cpu_ptr(ht->store, cpu) = NULL;
278 		}
279 	}
280 }
281 
282 /**
283  * smpboot_register_percpu_thread - Register a per_cpu thread related
284  * 					    to hotplug
285  * @plug_thread:	Hotplug thread descriptor
286  *
287  * Creates and starts the threads on all online cpus.
288  */
289 int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
290 {
291 	unsigned int cpu;
292 	int ret = 0;
293 
294 	cpus_read_lock();
295 	mutex_lock(&smpboot_threads_lock);
296 	for_each_online_cpu(cpu) {
297 		ret = __smpboot_create_thread(plug_thread, cpu);
298 		if (ret) {
299 			smpboot_destroy_threads(plug_thread);
300 			goto out;
301 		}
302 		smpboot_unpark_thread(plug_thread, cpu);
303 	}
304 	list_add(&plug_thread->list, &hotplug_threads);
305 out:
306 	mutex_unlock(&smpboot_threads_lock);
307 	cpus_read_unlock();
308 	return ret;
309 }
310 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
311 
312 /**
313  * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
314  * @plug_thread:	Hotplug thread descriptor
315  *
316  * Stops all threads on all possible cpus.
317  */
318 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
319 {
320 	cpus_read_lock();
321 	mutex_lock(&smpboot_threads_lock);
322 	list_del(&plug_thread->list);
323 	smpboot_destroy_threads(plug_thread);
324 	mutex_unlock(&smpboot_threads_lock);
325 	cpus_read_unlock();
326 }
327 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
328 
329 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
330 
331 /*
332  * Called to poll specified CPU's state, for example, when waiting for
333  * a CPU to come online.
334  */
335 int cpu_report_state(int cpu)
336 {
337 	return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
338 }
339 
340 /*
341  * If CPU has died properly, set its state to CPU_UP_PREPARE and
342  * return success.  Otherwise, return -EBUSY if the CPU died after
343  * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
344  * if cpu_wait_death() timed out and the CPU still hasn't gotten around
345  * to dying.  In the latter two cases, the CPU might not be set up
346  * properly, but it is up to the arch-specific code to decide.
347  * Finally, -EIO indicates an unanticipated problem.
348  *
349  * Note that it is permissible to omit this call entirely, as is
350  * done in architectures that do no CPU-hotplug error checking.
351  */
352 int cpu_check_up_prepare(int cpu)
353 {
354 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
355 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
356 		return 0;
357 	}
358 
359 	switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
360 
361 	case CPU_POST_DEAD:
362 
363 		/* The CPU died properly, so just start it up again. */
364 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
365 		return 0;
366 
367 	case CPU_DEAD_FROZEN:
368 
369 		/*
370 		 * Timeout during CPU death, so let caller know.
371 		 * The outgoing CPU completed its processing, but after
372 		 * cpu_wait_death() timed out and reported the error. The
373 		 * caller is free to proceed, in which case the state
374 		 * will be reset properly by cpu_set_state_online().
375 		 * Proceeding despite this -EBUSY return makes sense
376 		 * for systems where the outgoing CPUs take themselves
377 		 * offline, with no post-death manipulation required from
378 		 * a surviving CPU.
379 		 */
380 		return -EBUSY;
381 
382 	case CPU_BROKEN:
383 
384 		/*
385 		 * The most likely reason we got here is that there was
386 		 * a timeout during CPU death, and the outgoing CPU never
387 		 * did complete its processing.  This could happen on
388 		 * a virtualized system if the outgoing VCPU gets preempted
389 		 * for more than five seconds, and the user attempts to
390 		 * immediately online that same CPU.  Trying again later
391 		 * might return -EBUSY above, hence -EAGAIN.
392 		 */
393 		return -EAGAIN;
394 
395 	case CPU_UP_PREPARE:
396 		/*
397 		 * Timeout while waiting for the CPU to show up. Allow to try
398 		 * again later.
399 		 */
400 		return 0;
401 
402 	default:
403 
404 		/* Should not happen.  Famous last words. */
405 		return -EIO;
406 	}
407 }
408 
409 /*
410  * Mark the specified CPU online.
411  *
412  * Note that it is permissible to omit this call entirely, as is
413  * done in architectures that do no CPU-hotplug error checking.
414  */
415 void cpu_set_state_online(int cpu)
416 {
417 	(void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
418 }
419 
420 #ifdef CONFIG_HOTPLUG_CPU
421 
422 /*
423  * Wait for the specified CPU to exit the idle loop and die.
424  */
425 bool cpu_wait_death(unsigned int cpu, int seconds)
426 {
427 	int jf_left = seconds * HZ;
428 	int oldstate;
429 	bool ret = true;
430 	int sleep_jf = 1;
431 
432 	might_sleep();
433 
434 	/* The outgoing CPU will normally get done quite quickly. */
435 	if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
436 		goto update_state;
437 	udelay(5);
438 
439 	/* But if the outgoing CPU dawdles, wait increasingly long times. */
440 	while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
441 		schedule_timeout_uninterruptible(sleep_jf);
442 		jf_left -= sleep_jf;
443 		if (jf_left <= 0)
444 			break;
445 		sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
446 	}
447 update_state:
448 	oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
449 	if (oldstate == CPU_DEAD) {
450 		/* Outgoing CPU died normally, update state. */
451 		smp_mb(); /* atomic_read() before update. */
452 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
453 	} else {
454 		/* Outgoing CPU still hasn't died, set state accordingly. */
455 		if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
456 				   oldstate, CPU_BROKEN) != oldstate)
457 			goto update_state;
458 		ret = false;
459 	}
460 	return ret;
461 }
462 
463 /*
464  * Called by the outgoing CPU to report its successful death.  Return
465  * false if this report follows the surviving CPU's timing out.
466  *
467  * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
468  * timed out.  This approach allows architectures to omit calls to
469  * cpu_check_up_prepare() and cpu_set_state_online() without defeating
470  * the next cpu_wait_death()'s polling loop.
471  */
472 bool cpu_report_death(void)
473 {
474 	int oldstate;
475 	int newstate;
476 	int cpu = smp_processor_id();
477 
478 	do {
479 		oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
480 		if (oldstate != CPU_BROKEN)
481 			newstate = CPU_DEAD;
482 		else
483 			newstate = CPU_DEAD_FROZEN;
484 	} while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
485 				oldstate, newstate) != oldstate);
486 	return newstate == CPU_DEAD;
487 }
488 
489 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
490