xref: /openbmc/linux/kernel/smp.c (revision fb4a5dfc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic helpers for smp ipi calls
4  *
5  * (C) Jens Axboe <jens.axboe@oracle.com> 2008
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/irq_work.h>
11 #include <linux/rcupdate.h>
12 #include <linux/rculist.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/percpu.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/gfp.h>
19 #include <linux/smp.h>
20 #include <linux/cpu.h>
21 #include <linux/sched.h>
22 #include <linux/sched/idle.h>
23 #include <linux/hypervisor.h>
24 #include <linux/sched/clock.h>
25 #include <linux/nmi.h>
26 #include <linux/sched/debug.h>
27 #include <linux/jump_label.h>
28 
29 #include "smpboot.h"
30 #include "sched/smp.h"
31 
32 #define CSD_TYPE(_csd)	((_csd)->node.u_flags & CSD_FLAG_TYPE_MASK)
33 
34 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
35 union cfd_seq_cnt {
36 	u64		val;
37 	struct {
38 		u64	src:16;
39 		u64	dst:16;
40 #define CFD_SEQ_NOCPU	0xffff
41 		u64	type:4;
42 #define CFD_SEQ_QUEUE	0
43 #define CFD_SEQ_IPI	1
44 #define CFD_SEQ_NOIPI	2
45 #define CFD_SEQ_PING	3
46 #define CFD_SEQ_PINGED	4
47 #define CFD_SEQ_HANDLE	5
48 #define CFD_SEQ_DEQUEUE	6
49 #define CFD_SEQ_IDLE	7
50 #define CFD_SEQ_GOTIPI	8
51 #define CFD_SEQ_HDLEND	9
52 		u64	cnt:28;
53 	}		u;
54 };
55 
56 static char *seq_type[] = {
57 	[CFD_SEQ_QUEUE]		= "queue",
58 	[CFD_SEQ_IPI]		= "ipi",
59 	[CFD_SEQ_NOIPI]		= "noipi",
60 	[CFD_SEQ_PING]		= "ping",
61 	[CFD_SEQ_PINGED]	= "pinged",
62 	[CFD_SEQ_HANDLE]	= "handle",
63 	[CFD_SEQ_DEQUEUE]	= "dequeue (src CPU 0 == empty)",
64 	[CFD_SEQ_IDLE]		= "idle",
65 	[CFD_SEQ_GOTIPI]	= "gotipi",
66 	[CFD_SEQ_HDLEND]	= "hdlend (src CPU 0 == early)",
67 };
68 
69 struct cfd_seq_local {
70 	u64	ping;
71 	u64	pinged;
72 	u64	handle;
73 	u64	dequeue;
74 	u64	idle;
75 	u64	gotipi;
76 	u64	hdlend;
77 };
78 #endif
79 
80 struct cfd_percpu {
81 	call_single_data_t	csd;
82 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
83 	u64	seq_queue;
84 	u64	seq_ipi;
85 	u64	seq_noipi;
86 #endif
87 };
88 
89 struct call_function_data {
90 	struct cfd_percpu	__percpu *pcpu;
91 	cpumask_var_t		cpumask;
92 	cpumask_var_t		cpumask_ipi;
93 };
94 
95 static DEFINE_PER_CPU_ALIGNED(struct call_function_data, cfd_data);
96 
97 static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue);
98 
99 static void __flush_smp_call_function_queue(bool warn_cpu_offline);
100 
101 int smpcfd_prepare_cpu(unsigned int cpu)
102 {
103 	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
104 
105 	if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL,
106 				     cpu_to_node(cpu)))
107 		return -ENOMEM;
108 	if (!zalloc_cpumask_var_node(&cfd->cpumask_ipi, GFP_KERNEL,
109 				     cpu_to_node(cpu))) {
110 		free_cpumask_var(cfd->cpumask);
111 		return -ENOMEM;
112 	}
113 	cfd->pcpu = alloc_percpu(struct cfd_percpu);
114 	if (!cfd->pcpu) {
115 		free_cpumask_var(cfd->cpumask);
116 		free_cpumask_var(cfd->cpumask_ipi);
117 		return -ENOMEM;
118 	}
119 
120 	return 0;
121 }
122 
123 int smpcfd_dead_cpu(unsigned int cpu)
124 {
125 	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
126 
127 	free_cpumask_var(cfd->cpumask);
128 	free_cpumask_var(cfd->cpumask_ipi);
129 	free_percpu(cfd->pcpu);
130 	return 0;
131 }
132 
133 int smpcfd_dying_cpu(unsigned int cpu)
134 {
135 	/*
136 	 * The IPIs for the smp-call-function callbacks queued by other
137 	 * CPUs might arrive late, either due to hardware latencies or
138 	 * because this CPU disabled interrupts (inside stop-machine)
139 	 * before the IPIs were sent. So flush out any pending callbacks
140 	 * explicitly (without waiting for the IPIs to arrive), to
141 	 * ensure that the outgoing CPU doesn't go offline with work
142 	 * still pending.
143 	 */
144 	__flush_smp_call_function_queue(false);
145 	irq_work_run();
146 	return 0;
147 }
148 
149 void __init call_function_init(void)
150 {
151 	int i;
152 
153 	for_each_possible_cpu(i)
154 		init_llist_head(&per_cpu(call_single_queue, i));
155 
156 	smpcfd_prepare_cpu(smp_processor_id());
157 }
158 
159 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
160 
161 static DEFINE_STATIC_KEY_FALSE(csdlock_debug_enabled);
162 static DEFINE_STATIC_KEY_FALSE(csdlock_debug_extended);
163 
164 static int __init csdlock_debug(char *str)
165 {
166 	unsigned int val = 0;
167 
168 	if (str && !strcmp(str, "ext")) {
169 		val = 1;
170 		static_branch_enable(&csdlock_debug_extended);
171 	} else
172 		get_option(&str, &val);
173 
174 	if (val)
175 		static_branch_enable(&csdlock_debug_enabled);
176 
177 	return 1;
178 }
179 __setup("csdlock_debug=", csdlock_debug);
180 
181 static DEFINE_PER_CPU(call_single_data_t *, cur_csd);
182 static DEFINE_PER_CPU(smp_call_func_t, cur_csd_func);
183 static DEFINE_PER_CPU(void *, cur_csd_info);
184 static DEFINE_PER_CPU(struct cfd_seq_local, cfd_seq_local);
185 
186 static ulong csd_lock_timeout = 5000;  /* CSD lock timeout in milliseconds. */
187 module_param(csd_lock_timeout, ulong, 0444);
188 
189 static atomic_t csd_bug_count = ATOMIC_INIT(0);
190 static u64 cfd_seq;
191 
192 #define CFD_SEQ(s, d, t, c)	\
193 	(union cfd_seq_cnt){ .u.src = s, .u.dst = d, .u.type = t, .u.cnt = c }
194 
195 static u64 cfd_seq_inc(unsigned int src, unsigned int dst, unsigned int type)
196 {
197 	union cfd_seq_cnt new, old;
198 
199 	new = CFD_SEQ(src, dst, type, 0);
200 
201 	do {
202 		old.val = READ_ONCE(cfd_seq);
203 		new.u.cnt = old.u.cnt + 1;
204 	} while (cmpxchg(&cfd_seq, old.val, new.val) != old.val);
205 
206 	return old.val;
207 }
208 
209 #define cfd_seq_store(var, src, dst, type)				\
210 	do {								\
211 		if (static_branch_unlikely(&csdlock_debug_extended))	\
212 			var = cfd_seq_inc(src, dst, type);		\
213 	} while (0)
214 
215 /* Record current CSD work for current CPU, NULL to erase. */
216 static void __csd_lock_record(struct __call_single_data *csd)
217 {
218 	if (!csd) {
219 		smp_mb(); /* NULL cur_csd after unlock. */
220 		__this_cpu_write(cur_csd, NULL);
221 		return;
222 	}
223 	__this_cpu_write(cur_csd_func, csd->func);
224 	__this_cpu_write(cur_csd_info, csd->info);
225 	smp_wmb(); /* func and info before csd. */
226 	__this_cpu_write(cur_csd, csd);
227 	smp_mb(); /* Update cur_csd before function call. */
228 		  /* Or before unlock, as the case may be. */
229 }
230 
231 static __always_inline void csd_lock_record(struct __call_single_data *csd)
232 {
233 	if (static_branch_unlikely(&csdlock_debug_enabled))
234 		__csd_lock_record(csd);
235 }
236 
237 static int csd_lock_wait_getcpu(struct __call_single_data *csd)
238 {
239 	unsigned int csd_type;
240 
241 	csd_type = CSD_TYPE(csd);
242 	if (csd_type == CSD_TYPE_ASYNC || csd_type == CSD_TYPE_SYNC)
243 		return csd->node.dst; /* Other CSD_TYPE_ values might not have ->dst. */
244 	return -1;
245 }
246 
247 static void cfd_seq_data_add(u64 val, unsigned int src, unsigned int dst,
248 			     unsigned int type, union cfd_seq_cnt *data,
249 			     unsigned int *n_data, unsigned int now)
250 {
251 	union cfd_seq_cnt new[2];
252 	unsigned int i, j, k;
253 
254 	new[0].val = val;
255 	new[1] = CFD_SEQ(src, dst, type, new[0].u.cnt + 1);
256 
257 	for (i = 0; i < 2; i++) {
258 		if (new[i].u.cnt <= now)
259 			new[i].u.cnt |= 0x80000000U;
260 		for (j = 0; j < *n_data; j++) {
261 			if (new[i].u.cnt == data[j].u.cnt) {
262 				/* Direct read value trumps generated one. */
263 				if (i == 0)
264 					data[j].val = new[i].val;
265 				break;
266 			}
267 			if (new[i].u.cnt < data[j].u.cnt) {
268 				for (k = *n_data; k > j; k--)
269 					data[k].val = data[k - 1].val;
270 				data[j].val = new[i].val;
271 				(*n_data)++;
272 				break;
273 			}
274 		}
275 		if (j == *n_data) {
276 			data[j].val = new[i].val;
277 			(*n_data)++;
278 		}
279 	}
280 }
281 
282 static const char *csd_lock_get_type(unsigned int type)
283 {
284 	return (type >= ARRAY_SIZE(seq_type)) ? "?" : seq_type[type];
285 }
286 
287 static void csd_lock_print_extended(struct __call_single_data *csd, int cpu)
288 {
289 	struct cfd_seq_local *seq = &per_cpu(cfd_seq_local, cpu);
290 	unsigned int srccpu = csd->node.src;
291 	struct call_function_data *cfd = per_cpu_ptr(&cfd_data, srccpu);
292 	struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu);
293 	unsigned int now;
294 	union cfd_seq_cnt data[2 * ARRAY_SIZE(seq_type)];
295 	unsigned int n_data = 0, i;
296 
297 	data[0].val = READ_ONCE(cfd_seq);
298 	now = data[0].u.cnt;
299 
300 	cfd_seq_data_add(pcpu->seq_queue,			srccpu, cpu,	       CFD_SEQ_QUEUE,  data, &n_data, now);
301 	cfd_seq_data_add(pcpu->seq_ipi,				srccpu, cpu,	       CFD_SEQ_IPI,    data, &n_data, now);
302 	cfd_seq_data_add(pcpu->seq_noipi,			srccpu, cpu,	       CFD_SEQ_NOIPI,  data, &n_data, now);
303 
304 	cfd_seq_data_add(per_cpu(cfd_seq_local.ping, srccpu),	srccpu, CFD_SEQ_NOCPU, CFD_SEQ_PING,   data, &n_data, now);
305 	cfd_seq_data_add(per_cpu(cfd_seq_local.pinged, srccpu), srccpu, CFD_SEQ_NOCPU, CFD_SEQ_PINGED, data, &n_data, now);
306 
307 	cfd_seq_data_add(seq->idle,    CFD_SEQ_NOCPU, cpu, CFD_SEQ_IDLE,    data, &n_data, now);
308 	cfd_seq_data_add(seq->gotipi,  CFD_SEQ_NOCPU, cpu, CFD_SEQ_GOTIPI,  data, &n_data, now);
309 	cfd_seq_data_add(seq->handle,  CFD_SEQ_NOCPU, cpu, CFD_SEQ_HANDLE,  data, &n_data, now);
310 	cfd_seq_data_add(seq->dequeue, CFD_SEQ_NOCPU, cpu, CFD_SEQ_DEQUEUE, data, &n_data, now);
311 	cfd_seq_data_add(seq->hdlend,  CFD_SEQ_NOCPU, cpu, CFD_SEQ_HDLEND,  data, &n_data, now);
312 
313 	for (i = 0; i < n_data; i++) {
314 		pr_alert("\tcsd: cnt(%07x): %04x->%04x %s\n",
315 			 data[i].u.cnt & ~0x80000000U, data[i].u.src,
316 			 data[i].u.dst, csd_lock_get_type(data[i].u.type));
317 	}
318 	pr_alert("\tcsd: cnt now: %07x\n", now);
319 }
320 
321 /*
322  * Complain if too much time spent waiting.  Note that only
323  * the CSD_TYPE_SYNC/ASYNC types provide the destination CPU,
324  * so waiting on other types gets much less information.
325  */
326 static bool csd_lock_wait_toolong(struct __call_single_data *csd, u64 ts0, u64 *ts1, int *bug_id)
327 {
328 	int cpu = -1;
329 	int cpux;
330 	bool firsttime;
331 	u64 ts2, ts_delta;
332 	call_single_data_t *cpu_cur_csd;
333 	unsigned int flags = READ_ONCE(csd->node.u_flags);
334 	unsigned long long csd_lock_timeout_ns = csd_lock_timeout * NSEC_PER_MSEC;
335 
336 	if (!(flags & CSD_FLAG_LOCK)) {
337 		if (!unlikely(*bug_id))
338 			return true;
339 		cpu = csd_lock_wait_getcpu(csd);
340 		pr_alert("csd: CSD lock (#%d) got unstuck on CPU#%02d, CPU#%02d released the lock.\n",
341 			 *bug_id, raw_smp_processor_id(), cpu);
342 		return true;
343 	}
344 
345 	ts2 = sched_clock();
346 	ts_delta = ts2 - *ts1;
347 	if (likely(ts_delta <= csd_lock_timeout_ns || csd_lock_timeout_ns == 0))
348 		return false;
349 
350 	firsttime = !*bug_id;
351 	if (firsttime)
352 		*bug_id = atomic_inc_return(&csd_bug_count);
353 	cpu = csd_lock_wait_getcpu(csd);
354 	if (WARN_ONCE(cpu < 0 || cpu >= nr_cpu_ids, "%s: cpu = %d\n", __func__, cpu))
355 		cpux = 0;
356 	else
357 		cpux = cpu;
358 	cpu_cur_csd = smp_load_acquire(&per_cpu(cur_csd, cpux)); /* Before func and info. */
359 	pr_alert("csd: %s non-responsive CSD lock (#%d) on CPU#%d, waiting %llu ns for CPU#%02d %pS(%ps).\n",
360 		 firsttime ? "Detected" : "Continued", *bug_id, raw_smp_processor_id(), ts2 - ts0,
361 		 cpu, csd->func, csd->info);
362 	if (cpu_cur_csd && csd != cpu_cur_csd) {
363 		pr_alert("\tcsd: CSD lock (#%d) handling prior %pS(%ps) request.\n",
364 			 *bug_id, READ_ONCE(per_cpu(cur_csd_func, cpux)),
365 			 READ_ONCE(per_cpu(cur_csd_info, cpux)));
366 	} else {
367 		pr_alert("\tcsd: CSD lock (#%d) %s.\n",
368 			 *bug_id, !cpu_cur_csd ? "unresponsive" : "handling this request");
369 	}
370 	if (cpu >= 0) {
371 		if (static_branch_unlikely(&csdlock_debug_extended))
372 			csd_lock_print_extended(csd, cpu);
373 		dump_cpu_task(cpu);
374 		if (!cpu_cur_csd) {
375 			pr_alert("csd: Re-sending CSD lock (#%d) IPI from CPU#%02d to CPU#%02d\n", *bug_id, raw_smp_processor_id(), cpu);
376 			arch_send_call_function_single_ipi(cpu);
377 		}
378 	}
379 	dump_stack();
380 	*ts1 = ts2;
381 
382 	return false;
383 }
384 
385 /*
386  * csd_lock/csd_unlock used to serialize access to per-cpu csd resources
387  *
388  * For non-synchronous ipi calls the csd can still be in use by the
389  * previous function call. For multi-cpu calls its even more interesting
390  * as we'll have to ensure no other cpu is observing our csd.
391  */
392 static void __csd_lock_wait(struct __call_single_data *csd)
393 {
394 	int bug_id = 0;
395 	u64 ts0, ts1;
396 
397 	ts1 = ts0 = sched_clock();
398 	for (;;) {
399 		if (csd_lock_wait_toolong(csd, ts0, &ts1, &bug_id))
400 			break;
401 		cpu_relax();
402 	}
403 	smp_acquire__after_ctrl_dep();
404 }
405 
406 static __always_inline void csd_lock_wait(struct __call_single_data *csd)
407 {
408 	if (static_branch_unlikely(&csdlock_debug_enabled)) {
409 		__csd_lock_wait(csd);
410 		return;
411 	}
412 
413 	smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
414 }
415 
416 static void __smp_call_single_queue_debug(int cpu, struct llist_node *node)
417 {
418 	unsigned int this_cpu = smp_processor_id();
419 	struct cfd_seq_local *seq = this_cpu_ptr(&cfd_seq_local);
420 	struct call_function_data *cfd = this_cpu_ptr(&cfd_data);
421 	struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu);
422 
423 	cfd_seq_store(pcpu->seq_queue, this_cpu, cpu, CFD_SEQ_QUEUE);
424 	if (llist_add(node, &per_cpu(call_single_queue, cpu))) {
425 		cfd_seq_store(pcpu->seq_ipi, this_cpu, cpu, CFD_SEQ_IPI);
426 		cfd_seq_store(seq->ping, this_cpu, cpu, CFD_SEQ_PING);
427 		send_call_function_single_ipi(cpu);
428 		cfd_seq_store(seq->pinged, this_cpu, cpu, CFD_SEQ_PINGED);
429 	} else {
430 		cfd_seq_store(pcpu->seq_noipi, this_cpu, cpu, CFD_SEQ_NOIPI);
431 	}
432 }
433 #else
434 #define cfd_seq_store(var, src, dst, type)
435 
436 static void csd_lock_record(struct __call_single_data *csd)
437 {
438 }
439 
440 static __always_inline void csd_lock_wait(struct __call_single_data *csd)
441 {
442 	smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
443 }
444 #endif
445 
446 static __always_inline void csd_lock(struct __call_single_data *csd)
447 {
448 	csd_lock_wait(csd);
449 	csd->node.u_flags |= CSD_FLAG_LOCK;
450 
451 	/*
452 	 * prevent CPU from reordering the above assignment
453 	 * to ->flags with any subsequent assignments to other
454 	 * fields of the specified call_single_data_t structure:
455 	 */
456 	smp_wmb();
457 }
458 
459 static __always_inline void csd_unlock(struct __call_single_data *csd)
460 {
461 	WARN_ON(!(csd->node.u_flags & CSD_FLAG_LOCK));
462 
463 	/*
464 	 * ensure we're all done before releasing data:
465 	 */
466 	smp_store_release(&csd->node.u_flags, 0);
467 }
468 
469 static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data);
470 
471 void __smp_call_single_queue(int cpu, struct llist_node *node)
472 {
473 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
474 	if (static_branch_unlikely(&csdlock_debug_extended)) {
475 		unsigned int type;
476 
477 		type = CSD_TYPE(container_of(node, call_single_data_t,
478 					     node.llist));
479 		if (type == CSD_TYPE_SYNC || type == CSD_TYPE_ASYNC) {
480 			__smp_call_single_queue_debug(cpu, node);
481 			return;
482 		}
483 	}
484 #endif
485 
486 	/*
487 	 * The list addition should be visible before sending the IPI
488 	 * handler locks the list to pull the entry off it because of
489 	 * normal cache coherency rules implied by spinlocks.
490 	 *
491 	 * If IPIs can go out of order to the cache coherency protocol
492 	 * in an architecture, sufficient synchronisation should be added
493 	 * to arch code to make it appear to obey cache coherency WRT
494 	 * locking and barrier primitives. Generic code isn't really
495 	 * equipped to do the right thing...
496 	 */
497 	if (llist_add(node, &per_cpu(call_single_queue, cpu)))
498 		send_call_function_single_ipi(cpu);
499 }
500 
501 /*
502  * Insert a previously allocated call_single_data_t element
503  * for execution on the given CPU. data must already have
504  * ->func, ->info, and ->flags set.
505  */
506 static int generic_exec_single(int cpu, struct __call_single_data *csd)
507 {
508 	if (cpu == smp_processor_id()) {
509 		smp_call_func_t func = csd->func;
510 		void *info = csd->info;
511 		unsigned long flags;
512 
513 		/*
514 		 * We can unlock early even for the synchronous on-stack case,
515 		 * since we're doing this from the same CPU..
516 		 */
517 		csd_lock_record(csd);
518 		csd_unlock(csd);
519 		local_irq_save(flags);
520 		func(info);
521 		csd_lock_record(NULL);
522 		local_irq_restore(flags);
523 		return 0;
524 	}
525 
526 	if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) {
527 		csd_unlock(csd);
528 		return -ENXIO;
529 	}
530 
531 	__smp_call_single_queue(cpu, &csd->node.llist);
532 
533 	return 0;
534 }
535 
536 /**
537  * generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks
538  *
539  * Invoked by arch to handle an IPI for call function single.
540  * Must be called with interrupts disabled.
541  */
542 void generic_smp_call_function_single_interrupt(void)
543 {
544 	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->gotipi, CFD_SEQ_NOCPU,
545 		      smp_processor_id(), CFD_SEQ_GOTIPI);
546 	__flush_smp_call_function_queue(true);
547 }
548 
549 /**
550  * __flush_smp_call_function_queue - Flush pending smp-call-function callbacks
551  *
552  * @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an
553  *		      offline CPU. Skip this check if set to 'false'.
554  *
555  * Flush any pending smp-call-function callbacks queued on this CPU. This is
556  * invoked by the generic IPI handler, as well as by a CPU about to go offline,
557  * to ensure that all pending IPI callbacks are run before it goes completely
558  * offline.
559  *
560  * Loop through the call_single_queue and run all the queued callbacks.
561  * Must be called with interrupts disabled.
562  */
563 static void __flush_smp_call_function_queue(bool warn_cpu_offline)
564 {
565 	call_single_data_t *csd, *csd_next;
566 	struct llist_node *entry, *prev;
567 	struct llist_head *head;
568 	static bool warned;
569 
570 	lockdep_assert_irqs_disabled();
571 
572 	head = this_cpu_ptr(&call_single_queue);
573 	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->handle, CFD_SEQ_NOCPU,
574 		      smp_processor_id(), CFD_SEQ_HANDLE);
575 	entry = llist_del_all(head);
576 	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->dequeue,
577 		      /* Special meaning of source cpu: 0 == queue empty */
578 		      entry ? CFD_SEQ_NOCPU : 0,
579 		      smp_processor_id(), CFD_SEQ_DEQUEUE);
580 	entry = llist_reverse_order(entry);
581 
582 	/* There shouldn't be any pending callbacks on an offline CPU. */
583 	if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) &&
584 		     !warned && entry != NULL)) {
585 		warned = true;
586 		WARN(1, "IPI on offline CPU %d\n", smp_processor_id());
587 
588 		/*
589 		 * We don't have to use the _safe() variant here
590 		 * because we are not invoking the IPI handlers yet.
591 		 */
592 		llist_for_each_entry(csd, entry, node.llist) {
593 			switch (CSD_TYPE(csd)) {
594 			case CSD_TYPE_ASYNC:
595 			case CSD_TYPE_SYNC:
596 			case CSD_TYPE_IRQ_WORK:
597 				pr_warn("IPI callback %pS sent to offline CPU\n",
598 					csd->func);
599 				break;
600 
601 			case CSD_TYPE_TTWU:
602 				pr_warn("IPI task-wakeup sent to offline CPU\n");
603 				break;
604 
605 			default:
606 				pr_warn("IPI callback, unknown type %d, sent to offline CPU\n",
607 					CSD_TYPE(csd));
608 				break;
609 			}
610 		}
611 	}
612 
613 	/*
614 	 * First; run all SYNC callbacks, people are waiting for us.
615 	 */
616 	prev = NULL;
617 	llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
618 		/* Do we wait until *after* callback? */
619 		if (CSD_TYPE(csd) == CSD_TYPE_SYNC) {
620 			smp_call_func_t func = csd->func;
621 			void *info = csd->info;
622 
623 			if (prev) {
624 				prev->next = &csd_next->node.llist;
625 			} else {
626 				entry = &csd_next->node.llist;
627 			}
628 
629 			csd_lock_record(csd);
630 			func(info);
631 			csd_unlock(csd);
632 			csd_lock_record(NULL);
633 		} else {
634 			prev = &csd->node.llist;
635 		}
636 	}
637 
638 	if (!entry) {
639 		cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->hdlend,
640 			      0, smp_processor_id(),
641 			      CFD_SEQ_HDLEND);
642 		return;
643 	}
644 
645 	/*
646 	 * Second; run all !SYNC callbacks.
647 	 */
648 	prev = NULL;
649 	llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
650 		int type = CSD_TYPE(csd);
651 
652 		if (type != CSD_TYPE_TTWU) {
653 			if (prev) {
654 				prev->next = &csd_next->node.llist;
655 			} else {
656 				entry = &csd_next->node.llist;
657 			}
658 
659 			if (type == CSD_TYPE_ASYNC) {
660 				smp_call_func_t func = csd->func;
661 				void *info = csd->info;
662 
663 				csd_lock_record(csd);
664 				csd_unlock(csd);
665 				func(info);
666 				csd_lock_record(NULL);
667 			} else if (type == CSD_TYPE_IRQ_WORK) {
668 				irq_work_single(csd);
669 			}
670 
671 		} else {
672 			prev = &csd->node.llist;
673 		}
674 	}
675 
676 	/*
677 	 * Third; only CSD_TYPE_TTWU is left, issue those.
678 	 */
679 	if (entry)
680 		sched_ttwu_pending(entry);
681 
682 	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->hdlend, CFD_SEQ_NOCPU,
683 		      smp_processor_id(), CFD_SEQ_HDLEND);
684 }
685 
686 
687 /**
688  * flush_smp_call_function_queue - Flush pending smp-call-function callbacks
689  *				   from task context (idle, migration thread)
690  *
691  * When TIF_POLLING_NRFLAG is supported and a CPU is in idle and has it
692  * set, then remote CPUs can avoid sending IPIs and wake the idle CPU by
693  * setting TIF_NEED_RESCHED. The idle task on the woken up CPU has to
694  * handle queued SMP function calls before scheduling.
695  *
696  * The migration thread has to ensure that an eventually pending wakeup has
697  * been handled before it migrates a task.
698  */
699 void flush_smp_call_function_queue(void)
700 {
701 	unsigned int was_pending;
702 	unsigned long flags;
703 
704 	if (llist_empty(this_cpu_ptr(&call_single_queue)))
705 		return;
706 
707 	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->idle, CFD_SEQ_NOCPU,
708 		      smp_processor_id(), CFD_SEQ_IDLE);
709 	local_irq_save(flags);
710 	/* Get the already pending soft interrupts for RT enabled kernels */
711 	was_pending = local_softirq_pending();
712 	__flush_smp_call_function_queue(true);
713 	if (local_softirq_pending())
714 		do_softirq_post_smp_call_flush(was_pending);
715 
716 	local_irq_restore(flags);
717 }
718 
719 /*
720  * smp_call_function_single - Run a function on a specific CPU
721  * @func: The function to run. This must be fast and non-blocking.
722  * @info: An arbitrary pointer to pass to the function.
723  * @wait: If true, wait until function has completed on other CPUs.
724  *
725  * Returns 0 on success, else a negative status code.
726  */
727 int smp_call_function_single(int cpu, smp_call_func_t func, void *info,
728 			     int wait)
729 {
730 	call_single_data_t *csd;
731 	call_single_data_t csd_stack = {
732 		.node = { .u_flags = CSD_FLAG_LOCK | CSD_TYPE_SYNC, },
733 	};
734 	int this_cpu;
735 	int err;
736 
737 	/*
738 	 * prevent preemption and reschedule on another processor,
739 	 * as well as CPU removal
740 	 */
741 	this_cpu = get_cpu();
742 
743 	/*
744 	 * Can deadlock when called with interrupts disabled.
745 	 * We allow cpu's that are not yet online though, as no one else can
746 	 * send smp call function interrupt to this cpu and as such deadlocks
747 	 * can't happen.
748 	 */
749 	WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
750 		     && !oops_in_progress);
751 
752 	/*
753 	 * When @wait we can deadlock when we interrupt between llist_add() and
754 	 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
755 	 * csd_lock() on because the interrupt context uses the same csd
756 	 * storage.
757 	 */
758 	WARN_ON_ONCE(!in_task());
759 
760 	csd = &csd_stack;
761 	if (!wait) {
762 		csd = this_cpu_ptr(&csd_data);
763 		csd_lock(csd);
764 	}
765 
766 	csd->func = func;
767 	csd->info = info;
768 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
769 	csd->node.src = smp_processor_id();
770 	csd->node.dst = cpu;
771 #endif
772 
773 	err = generic_exec_single(cpu, csd);
774 
775 	if (wait)
776 		csd_lock_wait(csd);
777 
778 	put_cpu();
779 
780 	return err;
781 }
782 EXPORT_SYMBOL(smp_call_function_single);
783 
784 /**
785  * smp_call_function_single_async() - Run an asynchronous function on a
786  * 			         specific CPU.
787  * @cpu: The CPU to run on.
788  * @csd: Pre-allocated and setup data structure
789  *
790  * Like smp_call_function_single(), but the call is asynchonous and
791  * can thus be done from contexts with disabled interrupts.
792  *
793  * The caller passes his own pre-allocated data structure
794  * (ie: embedded in an object) and is responsible for synchronizing it
795  * such that the IPIs performed on the @csd are strictly serialized.
796  *
797  * If the function is called with one csd which has not yet been
798  * processed by previous call to smp_call_function_single_async(), the
799  * function will return immediately with -EBUSY showing that the csd
800  * object is still in progress.
801  *
802  * NOTE: Be careful, there is unfortunately no current debugging facility to
803  * validate the correctness of this serialization.
804  *
805  * Return: %0 on success or negative errno value on error
806  */
807 int smp_call_function_single_async(int cpu, struct __call_single_data *csd)
808 {
809 	int err = 0;
810 
811 	preempt_disable();
812 
813 	if (csd->node.u_flags & CSD_FLAG_LOCK) {
814 		err = -EBUSY;
815 		goto out;
816 	}
817 
818 	csd->node.u_flags = CSD_FLAG_LOCK;
819 	smp_wmb();
820 
821 	err = generic_exec_single(cpu, csd);
822 
823 out:
824 	preempt_enable();
825 
826 	return err;
827 }
828 EXPORT_SYMBOL_GPL(smp_call_function_single_async);
829 
830 /*
831  * smp_call_function_any - Run a function on any of the given cpus
832  * @mask: The mask of cpus it can run on.
833  * @func: The function to run. This must be fast and non-blocking.
834  * @info: An arbitrary pointer to pass to the function.
835  * @wait: If true, wait until function has completed.
836  *
837  * Returns 0 on success, else a negative status code (if no cpus were online).
838  *
839  * Selection preference:
840  *	1) current cpu if in @mask
841  *	2) any cpu of current node if in @mask
842  *	3) any other online cpu in @mask
843  */
844 int smp_call_function_any(const struct cpumask *mask,
845 			  smp_call_func_t func, void *info, int wait)
846 {
847 	unsigned int cpu;
848 	const struct cpumask *nodemask;
849 	int ret;
850 
851 	/* Try for same CPU (cheapest) */
852 	cpu = get_cpu();
853 	if (cpumask_test_cpu(cpu, mask))
854 		goto call;
855 
856 	/* Try for same node. */
857 	nodemask = cpumask_of_node(cpu_to_node(cpu));
858 	for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids;
859 	     cpu = cpumask_next_and(cpu, nodemask, mask)) {
860 		if (cpu_online(cpu))
861 			goto call;
862 	}
863 
864 	/* Any online will do: smp_call_function_single handles nr_cpu_ids. */
865 	cpu = cpumask_any_and(mask, cpu_online_mask);
866 call:
867 	ret = smp_call_function_single(cpu, func, info, wait);
868 	put_cpu();
869 	return ret;
870 }
871 EXPORT_SYMBOL_GPL(smp_call_function_any);
872 
873 /*
874  * Flags to be used as scf_flags argument of smp_call_function_many_cond().
875  *
876  * %SCF_WAIT:		Wait until function execution is completed
877  * %SCF_RUN_LOCAL:	Run also locally if local cpu is set in cpumask
878  */
879 #define SCF_WAIT	(1U << 0)
880 #define SCF_RUN_LOCAL	(1U << 1)
881 
882 static void smp_call_function_many_cond(const struct cpumask *mask,
883 					smp_call_func_t func, void *info,
884 					unsigned int scf_flags,
885 					smp_cond_func_t cond_func)
886 {
887 	int cpu, last_cpu, this_cpu = smp_processor_id();
888 	struct call_function_data *cfd;
889 	bool wait = scf_flags & SCF_WAIT;
890 	bool run_remote = false;
891 	bool run_local = false;
892 	int nr_cpus = 0;
893 
894 	lockdep_assert_preemption_disabled();
895 
896 	/*
897 	 * Can deadlock when called with interrupts disabled.
898 	 * We allow cpu's that are not yet online though, as no one else can
899 	 * send smp call function interrupt to this cpu and as such deadlocks
900 	 * can't happen.
901 	 */
902 	if (cpu_online(this_cpu) && !oops_in_progress &&
903 	    !early_boot_irqs_disabled)
904 		lockdep_assert_irqs_enabled();
905 
906 	/*
907 	 * When @wait we can deadlock when we interrupt between llist_add() and
908 	 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
909 	 * csd_lock() on because the interrupt context uses the same csd
910 	 * storage.
911 	 */
912 	WARN_ON_ONCE(!in_task());
913 
914 	/* Check if we need local execution. */
915 	if ((scf_flags & SCF_RUN_LOCAL) && cpumask_test_cpu(this_cpu, mask))
916 		run_local = true;
917 
918 	/* Check if we need remote execution, i.e., any CPU excluding this one. */
919 	cpu = cpumask_first_and(mask, cpu_online_mask);
920 	if (cpu == this_cpu)
921 		cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
922 	if (cpu < nr_cpu_ids)
923 		run_remote = true;
924 
925 	if (run_remote) {
926 		cfd = this_cpu_ptr(&cfd_data);
927 		cpumask_and(cfd->cpumask, mask, cpu_online_mask);
928 		__cpumask_clear_cpu(this_cpu, cfd->cpumask);
929 
930 		cpumask_clear(cfd->cpumask_ipi);
931 		for_each_cpu(cpu, cfd->cpumask) {
932 			struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu);
933 			call_single_data_t *csd = &pcpu->csd;
934 
935 			if (cond_func && !cond_func(cpu, info))
936 				continue;
937 
938 			csd_lock(csd);
939 			if (wait)
940 				csd->node.u_flags |= CSD_TYPE_SYNC;
941 			csd->func = func;
942 			csd->info = info;
943 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
944 			csd->node.src = smp_processor_id();
945 			csd->node.dst = cpu;
946 #endif
947 			cfd_seq_store(pcpu->seq_queue, this_cpu, cpu, CFD_SEQ_QUEUE);
948 			if (llist_add(&csd->node.llist, &per_cpu(call_single_queue, cpu))) {
949 				__cpumask_set_cpu(cpu, cfd->cpumask_ipi);
950 				nr_cpus++;
951 				last_cpu = cpu;
952 
953 				cfd_seq_store(pcpu->seq_ipi, this_cpu, cpu, CFD_SEQ_IPI);
954 			} else {
955 				cfd_seq_store(pcpu->seq_noipi, this_cpu, cpu, CFD_SEQ_NOIPI);
956 			}
957 		}
958 
959 		cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->ping, this_cpu, CFD_SEQ_NOCPU, CFD_SEQ_PING);
960 
961 		/*
962 		 * Choose the most efficient way to send an IPI. Note that the
963 		 * number of CPUs might be zero due to concurrent changes to the
964 		 * provided mask.
965 		 */
966 		if (nr_cpus == 1)
967 			send_call_function_single_ipi(last_cpu);
968 		else if (likely(nr_cpus > 1))
969 			arch_send_call_function_ipi_mask(cfd->cpumask_ipi);
970 
971 		cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->pinged, this_cpu, CFD_SEQ_NOCPU, CFD_SEQ_PINGED);
972 	}
973 
974 	if (run_local && (!cond_func || cond_func(this_cpu, info))) {
975 		unsigned long flags;
976 
977 		local_irq_save(flags);
978 		func(info);
979 		local_irq_restore(flags);
980 	}
981 
982 	if (run_remote && wait) {
983 		for_each_cpu(cpu, cfd->cpumask) {
984 			call_single_data_t *csd;
985 
986 			csd = &per_cpu_ptr(cfd->pcpu, cpu)->csd;
987 			csd_lock_wait(csd);
988 		}
989 	}
990 }
991 
992 /**
993  * smp_call_function_many(): Run a function on a set of CPUs.
994  * @mask: The set of cpus to run on (only runs on online subset).
995  * @func: The function to run. This must be fast and non-blocking.
996  * @info: An arbitrary pointer to pass to the function.
997  * @wait: Bitmask that controls the operation. If %SCF_WAIT is set, wait
998  *        (atomically) until function has completed on other CPUs. If
999  *        %SCF_RUN_LOCAL is set, the function will also be run locally
1000  *        if the local CPU is set in the @cpumask.
1001  *
1002  * If @wait is true, then returns once @func has returned.
1003  *
1004  * You must not call this function with disabled interrupts or from a
1005  * hardware interrupt handler or from a bottom half handler. Preemption
1006  * must be disabled when calling this function.
1007  */
1008 void smp_call_function_many(const struct cpumask *mask,
1009 			    smp_call_func_t func, void *info, bool wait)
1010 {
1011 	smp_call_function_many_cond(mask, func, info, wait * SCF_WAIT, NULL);
1012 }
1013 EXPORT_SYMBOL(smp_call_function_many);
1014 
1015 /**
1016  * smp_call_function(): Run a function on all other CPUs.
1017  * @func: The function to run. This must be fast and non-blocking.
1018  * @info: An arbitrary pointer to pass to the function.
1019  * @wait: If true, wait (atomically) until function has completed
1020  *        on other CPUs.
1021  *
1022  * Returns 0.
1023  *
1024  * If @wait is true, then returns once @func has returned; otherwise
1025  * it returns just before the target cpu calls @func.
1026  *
1027  * You must not call this function with disabled interrupts or from a
1028  * hardware interrupt handler or from a bottom half handler.
1029  */
1030 void smp_call_function(smp_call_func_t func, void *info, int wait)
1031 {
1032 	preempt_disable();
1033 	smp_call_function_many(cpu_online_mask, func, info, wait);
1034 	preempt_enable();
1035 }
1036 EXPORT_SYMBOL(smp_call_function);
1037 
1038 /* Setup configured maximum number of CPUs to activate */
1039 unsigned int setup_max_cpus = NR_CPUS;
1040 EXPORT_SYMBOL(setup_max_cpus);
1041 
1042 
1043 /*
1044  * Setup routine for controlling SMP activation
1045  *
1046  * Command-line option of "nosmp" or "maxcpus=0" will disable SMP
1047  * activation entirely (the MPS table probe still happens, though).
1048  *
1049  * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
1050  * greater than 0, limits the maximum number of CPUs activated in
1051  * SMP mode to <NUM>.
1052  */
1053 
1054 void __weak arch_disable_smp_support(void) { }
1055 
1056 static int __init nosmp(char *str)
1057 {
1058 	setup_max_cpus = 0;
1059 	arch_disable_smp_support();
1060 
1061 	return 0;
1062 }
1063 
1064 early_param("nosmp", nosmp);
1065 
1066 /* this is hard limit */
1067 static int __init nrcpus(char *str)
1068 {
1069 	int nr_cpus;
1070 
1071 	if (get_option(&str, &nr_cpus) && nr_cpus > 0 && nr_cpus < nr_cpu_ids)
1072 		nr_cpu_ids = nr_cpus;
1073 
1074 	return 0;
1075 }
1076 
1077 early_param("nr_cpus", nrcpus);
1078 
1079 static int __init maxcpus(char *str)
1080 {
1081 	get_option(&str, &setup_max_cpus);
1082 	if (setup_max_cpus == 0)
1083 		arch_disable_smp_support();
1084 
1085 	return 0;
1086 }
1087 
1088 early_param("maxcpus", maxcpus);
1089 
1090 /* Setup number of possible processor ids */
1091 unsigned int nr_cpu_ids __read_mostly = NR_CPUS;
1092 EXPORT_SYMBOL(nr_cpu_ids);
1093 
1094 /* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */
1095 void __init setup_nr_cpu_ids(void)
1096 {
1097 	nr_cpu_ids = find_last_bit(cpumask_bits(cpu_possible_mask),NR_CPUS) + 1;
1098 }
1099 
1100 /* Called by boot processor to activate the rest. */
1101 void __init smp_init(void)
1102 {
1103 	int num_nodes, num_cpus;
1104 
1105 	idle_threads_init();
1106 	cpuhp_threads_init();
1107 
1108 	pr_info("Bringing up secondary CPUs ...\n");
1109 
1110 	bringup_nonboot_cpus(setup_max_cpus);
1111 
1112 	num_nodes = num_online_nodes();
1113 	num_cpus  = num_online_cpus();
1114 	pr_info("Brought up %d node%s, %d CPU%s\n",
1115 		num_nodes, (num_nodes > 1 ? "s" : ""),
1116 		num_cpus,  (num_cpus  > 1 ? "s" : ""));
1117 
1118 	/* Any cleanup work */
1119 	smp_cpus_done(setup_max_cpus);
1120 }
1121 
1122 /*
1123  * on_each_cpu_cond(): Call a function on each processor for which
1124  * the supplied function cond_func returns true, optionally waiting
1125  * for all the required CPUs to finish. This may include the local
1126  * processor.
1127  * @cond_func:	A callback function that is passed a cpu id and
1128  *		the info parameter. The function is called
1129  *		with preemption disabled. The function should
1130  *		return a blooean value indicating whether to IPI
1131  *		the specified CPU.
1132  * @func:	The function to run on all applicable CPUs.
1133  *		This must be fast and non-blocking.
1134  * @info:	An arbitrary pointer to pass to both functions.
1135  * @wait:	If true, wait (atomically) until function has
1136  *		completed on other CPUs.
1137  *
1138  * Preemption is disabled to protect against CPUs going offline but not online.
1139  * CPUs going online during the call will not be seen or sent an IPI.
1140  *
1141  * You must not call this function with disabled interrupts or
1142  * from a hardware interrupt handler or from a bottom half handler.
1143  */
1144 void on_each_cpu_cond_mask(smp_cond_func_t cond_func, smp_call_func_t func,
1145 			   void *info, bool wait, const struct cpumask *mask)
1146 {
1147 	unsigned int scf_flags = SCF_RUN_LOCAL;
1148 
1149 	if (wait)
1150 		scf_flags |= SCF_WAIT;
1151 
1152 	preempt_disable();
1153 	smp_call_function_many_cond(mask, func, info, scf_flags, cond_func);
1154 	preempt_enable();
1155 }
1156 EXPORT_SYMBOL(on_each_cpu_cond_mask);
1157 
1158 static void do_nothing(void *unused)
1159 {
1160 }
1161 
1162 /**
1163  * kick_all_cpus_sync - Force all cpus out of idle
1164  *
1165  * Used to synchronize the update of pm_idle function pointer. It's
1166  * called after the pointer is updated and returns after the dummy
1167  * callback function has been executed on all cpus. The execution of
1168  * the function can only happen on the remote cpus after they have
1169  * left the idle function which had been called via pm_idle function
1170  * pointer. So it's guaranteed that nothing uses the previous pointer
1171  * anymore.
1172  */
1173 void kick_all_cpus_sync(void)
1174 {
1175 	/* Make sure the change is visible before we kick the cpus */
1176 	smp_mb();
1177 	smp_call_function(do_nothing, NULL, 1);
1178 }
1179 EXPORT_SYMBOL_GPL(kick_all_cpus_sync);
1180 
1181 /**
1182  * wake_up_all_idle_cpus - break all cpus out of idle
1183  * wake_up_all_idle_cpus try to break all cpus which is in idle state even
1184  * including idle polling cpus, for non-idle cpus, we will do nothing
1185  * for them.
1186  */
1187 void wake_up_all_idle_cpus(void)
1188 {
1189 	int cpu;
1190 
1191 	for_each_possible_cpu(cpu) {
1192 		preempt_disable();
1193 		if (cpu != smp_processor_id() && cpu_online(cpu))
1194 			wake_up_if_idle(cpu);
1195 		preempt_enable();
1196 	}
1197 }
1198 EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus);
1199 
1200 /**
1201  * struct smp_call_on_cpu_struct - Call a function on a specific CPU
1202  * @work: &work_struct
1203  * @done: &completion to signal
1204  * @func: function to call
1205  * @data: function's data argument
1206  * @ret: return value from @func
1207  * @cpu: target CPU (%-1 for any CPU)
1208  *
1209  * Used to call a function on a specific cpu and wait for it to return.
1210  * Optionally make sure the call is done on a specified physical cpu via vcpu
1211  * pinning in order to support virtualized environments.
1212  */
1213 struct smp_call_on_cpu_struct {
1214 	struct work_struct	work;
1215 	struct completion	done;
1216 	int			(*func)(void *);
1217 	void			*data;
1218 	int			ret;
1219 	int			cpu;
1220 };
1221 
1222 static void smp_call_on_cpu_callback(struct work_struct *work)
1223 {
1224 	struct smp_call_on_cpu_struct *sscs;
1225 
1226 	sscs = container_of(work, struct smp_call_on_cpu_struct, work);
1227 	if (sscs->cpu >= 0)
1228 		hypervisor_pin_vcpu(sscs->cpu);
1229 	sscs->ret = sscs->func(sscs->data);
1230 	if (sscs->cpu >= 0)
1231 		hypervisor_pin_vcpu(-1);
1232 
1233 	complete(&sscs->done);
1234 }
1235 
1236 int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys)
1237 {
1238 	struct smp_call_on_cpu_struct sscs = {
1239 		.done = COMPLETION_INITIALIZER_ONSTACK(sscs.done),
1240 		.func = func,
1241 		.data = par,
1242 		.cpu  = phys ? cpu : -1,
1243 	};
1244 
1245 	INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback);
1246 
1247 	if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1248 		return -ENXIO;
1249 
1250 	queue_work_on(cpu, system_wq, &sscs.work);
1251 	wait_for_completion(&sscs.done);
1252 
1253 	return sscs.ret;
1254 }
1255 EXPORT_SYMBOL_GPL(smp_call_on_cpu);
1256