xref: /openbmc/linux/kernel/smp.c (revision 877013bc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic helpers for smp ipi calls
4  *
5  * (C) Jens Axboe <jens.axboe@oracle.com> 2008
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/irq_work.h>
11 #include <linux/rcupdate.h>
12 #include <linux/rculist.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/percpu.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/gfp.h>
19 #include <linux/smp.h>
20 #include <linux/cpu.h>
21 #include <linux/sched.h>
22 #include <linux/sched/idle.h>
23 #include <linux/hypervisor.h>
24 #include <linux/sched/clock.h>
25 #include <linux/nmi.h>
26 #include <linux/sched/debug.h>
27 #include <linux/jump_label.h>
28 
29 #include "smpboot.h"
30 #include "sched/smp.h"
31 
32 #define CSD_TYPE(_csd)	((_csd)->node.u_flags & CSD_FLAG_TYPE_MASK)
33 
34 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
35 union cfd_seq_cnt {
36 	u64		val;
37 	struct {
38 		u64	src:16;
39 		u64	dst:16;
40 #define CFD_SEQ_NOCPU	0xffff
41 		u64	type:4;
42 #define CFD_SEQ_QUEUE	0
43 #define CFD_SEQ_IPI	1
44 #define CFD_SEQ_NOIPI	2
45 #define CFD_SEQ_PING	3
46 #define CFD_SEQ_PINGED	4
47 #define CFD_SEQ_HANDLE	5
48 #define CFD_SEQ_DEQUEUE	6
49 #define CFD_SEQ_IDLE	7
50 #define CFD_SEQ_GOTIPI	8
51 #define CFD_SEQ_HDLEND	9
52 		u64	cnt:28;
53 	}		u;
54 };
55 
56 static char *seq_type[] = {
57 	[CFD_SEQ_QUEUE]		= "queue",
58 	[CFD_SEQ_IPI]		= "ipi",
59 	[CFD_SEQ_NOIPI]		= "noipi",
60 	[CFD_SEQ_PING]		= "ping",
61 	[CFD_SEQ_PINGED]	= "pinged",
62 	[CFD_SEQ_HANDLE]	= "handle",
63 	[CFD_SEQ_DEQUEUE]	= "dequeue (src CPU 0 == empty)",
64 	[CFD_SEQ_IDLE]		= "idle",
65 	[CFD_SEQ_GOTIPI]	= "gotipi",
66 	[CFD_SEQ_HDLEND]	= "hdlend (src CPU 0 == early)",
67 };
68 
69 struct cfd_seq_local {
70 	u64	ping;
71 	u64	pinged;
72 	u64	handle;
73 	u64	dequeue;
74 	u64	idle;
75 	u64	gotipi;
76 	u64	hdlend;
77 };
78 #endif
79 
80 struct cfd_percpu {
81 	call_single_data_t	csd;
82 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
83 	u64	seq_queue;
84 	u64	seq_ipi;
85 	u64	seq_noipi;
86 #endif
87 };
88 
89 struct call_function_data {
90 	struct cfd_percpu	__percpu *pcpu;
91 	cpumask_var_t		cpumask;
92 	cpumask_var_t		cpumask_ipi;
93 };
94 
95 static DEFINE_PER_CPU_ALIGNED(struct call_function_data, cfd_data);
96 
97 static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue);
98 
99 static void flush_smp_call_function_queue(bool warn_cpu_offline);
100 
101 int smpcfd_prepare_cpu(unsigned int cpu)
102 {
103 	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
104 
105 	if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL,
106 				     cpu_to_node(cpu)))
107 		return -ENOMEM;
108 	if (!zalloc_cpumask_var_node(&cfd->cpumask_ipi, GFP_KERNEL,
109 				     cpu_to_node(cpu))) {
110 		free_cpumask_var(cfd->cpumask);
111 		return -ENOMEM;
112 	}
113 	cfd->pcpu = alloc_percpu(struct cfd_percpu);
114 	if (!cfd->pcpu) {
115 		free_cpumask_var(cfd->cpumask);
116 		free_cpumask_var(cfd->cpumask_ipi);
117 		return -ENOMEM;
118 	}
119 
120 	return 0;
121 }
122 
123 int smpcfd_dead_cpu(unsigned int cpu)
124 {
125 	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
126 
127 	free_cpumask_var(cfd->cpumask);
128 	free_cpumask_var(cfd->cpumask_ipi);
129 	free_percpu(cfd->pcpu);
130 	return 0;
131 }
132 
133 int smpcfd_dying_cpu(unsigned int cpu)
134 {
135 	/*
136 	 * The IPIs for the smp-call-function callbacks queued by other
137 	 * CPUs might arrive late, either due to hardware latencies or
138 	 * because this CPU disabled interrupts (inside stop-machine)
139 	 * before the IPIs were sent. So flush out any pending callbacks
140 	 * explicitly (without waiting for the IPIs to arrive), to
141 	 * ensure that the outgoing CPU doesn't go offline with work
142 	 * still pending.
143 	 */
144 	flush_smp_call_function_queue(false);
145 	irq_work_run();
146 	return 0;
147 }
148 
149 void __init call_function_init(void)
150 {
151 	int i;
152 
153 	for_each_possible_cpu(i)
154 		init_llist_head(&per_cpu(call_single_queue, i));
155 
156 	smpcfd_prepare_cpu(smp_processor_id());
157 }
158 
159 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
160 
161 static DEFINE_STATIC_KEY_FALSE(csdlock_debug_enabled);
162 static DEFINE_STATIC_KEY_FALSE(csdlock_debug_extended);
163 
164 static int __init csdlock_debug(char *str)
165 {
166 	unsigned int val = 0;
167 
168 	if (str && !strcmp(str, "ext")) {
169 		val = 1;
170 		static_branch_enable(&csdlock_debug_extended);
171 	} else
172 		get_option(&str, &val);
173 
174 	if (val)
175 		static_branch_enable(&csdlock_debug_enabled);
176 
177 	return 0;
178 }
179 early_param("csdlock_debug", csdlock_debug);
180 
181 static DEFINE_PER_CPU(call_single_data_t *, cur_csd);
182 static DEFINE_PER_CPU(smp_call_func_t, cur_csd_func);
183 static DEFINE_PER_CPU(void *, cur_csd_info);
184 static DEFINE_PER_CPU(struct cfd_seq_local, cfd_seq_local);
185 
186 #define CSD_LOCK_TIMEOUT (5ULL * NSEC_PER_SEC)
187 static atomic_t csd_bug_count = ATOMIC_INIT(0);
188 static u64 cfd_seq;
189 
190 #define CFD_SEQ(s, d, t, c)	\
191 	(union cfd_seq_cnt){ .u.src = s, .u.dst = d, .u.type = t, .u.cnt = c }
192 
193 static u64 cfd_seq_inc(unsigned int src, unsigned int dst, unsigned int type)
194 {
195 	union cfd_seq_cnt new, old;
196 
197 	new = CFD_SEQ(src, dst, type, 0);
198 
199 	do {
200 		old.val = READ_ONCE(cfd_seq);
201 		new.u.cnt = old.u.cnt + 1;
202 	} while (cmpxchg(&cfd_seq, old.val, new.val) != old.val);
203 
204 	return old.val;
205 }
206 
207 #define cfd_seq_store(var, src, dst, type)				\
208 	do {								\
209 		if (static_branch_unlikely(&csdlock_debug_extended))	\
210 			var = cfd_seq_inc(src, dst, type);		\
211 	} while (0)
212 
213 /* Record current CSD work for current CPU, NULL to erase. */
214 static void __csd_lock_record(struct __call_single_data *csd)
215 {
216 	if (!csd) {
217 		smp_mb(); /* NULL cur_csd after unlock. */
218 		__this_cpu_write(cur_csd, NULL);
219 		return;
220 	}
221 	__this_cpu_write(cur_csd_func, csd->func);
222 	__this_cpu_write(cur_csd_info, csd->info);
223 	smp_wmb(); /* func and info before csd. */
224 	__this_cpu_write(cur_csd, csd);
225 	smp_mb(); /* Update cur_csd before function call. */
226 		  /* Or before unlock, as the case may be. */
227 }
228 
229 static __always_inline void csd_lock_record(struct __call_single_data *csd)
230 {
231 	if (static_branch_unlikely(&csdlock_debug_enabled))
232 		__csd_lock_record(csd);
233 }
234 
235 static int csd_lock_wait_getcpu(struct __call_single_data *csd)
236 {
237 	unsigned int csd_type;
238 
239 	csd_type = CSD_TYPE(csd);
240 	if (csd_type == CSD_TYPE_ASYNC || csd_type == CSD_TYPE_SYNC)
241 		return csd->node.dst; /* Other CSD_TYPE_ values might not have ->dst. */
242 	return -1;
243 }
244 
245 static void cfd_seq_data_add(u64 val, unsigned int src, unsigned int dst,
246 			     unsigned int type, union cfd_seq_cnt *data,
247 			     unsigned int *n_data, unsigned int now)
248 {
249 	union cfd_seq_cnt new[2];
250 	unsigned int i, j, k;
251 
252 	new[0].val = val;
253 	new[1] = CFD_SEQ(src, dst, type, new[0].u.cnt + 1);
254 
255 	for (i = 0; i < 2; i++) {
256 		if (new[i].u.cnt <= now)
257 			new[i].u.cnt |= 0x80000000U;
258 		for (j = 0; j < *n_data; j++) {
259 			if (new[i].u.cnt == data[j].u.cnt) {
260 				/* Direct read value trumps generated one. */
261 				if (i == 0)
262 					data[j].val = new[i].val;
263 				break;
264 			}
265 			if (new[i].u.cnt < data[j].u.cnt) {
266 				for (k = *n_data; k > j; k--)
267 					data[k].val = data[k - 1].val;
268 				data[j].val = new[i].val;
269 				(*n_data)++;
270 				break;
271 			}
272 		}
273 		if (j == *n_data) {
274 			data[j].val = new[i].val;
275 			(*n_data)++;
276 		}
277 	}
278 }
279 
280 static const char *csd_lock_get_type(unsigned int type)
281 {
282 	return (type >= ARRAY_SIZE(seq_type)) ? "?" : seq_type[type];
283 }
284 
285 static void csd_lock_print_extended(struct __call_single_data *csd, int cpu)
286 {
287 	struct cfd_seq_local *seq = &per_cpu(cfd_seq_local, cpu);
288 	unsigned int srccpu = csd->node.src;
289 	struct call_function_data *cfd = per_cpu_ptr(&cfd_data, srccpu);
290 	struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu);
291 	unsigned int now;
292 	union cfd_seq_cnt data[2 * ARRAY_SIZE(seq_type)];
293 	unsigned int n_data = 0, i;
294 
295 	data[0].val = READ_ONCE(cfd_seq);
296 	now = data[0].u.cnt;
297 
298 	cfd_seq_data_add(pcpu->seq_queue,			srccpu, cpu,	       CFD_SEQ_QUEUE,  data, &n_data, now);
299 	cfd_seq_data_add(pcpu->seq_ipi,				srccpu, cpu,	       CFD_SEQ_IPI,    data, &n_data, now);
300 	cfd_seq_data_add(pcpu->seq_noipi,			srccpu, cpu,	       CFD_SEQ_NOIPI,  data, &n_data, now);
301 
302 	cfd_seq_data_add(per_cpu(cfd_seq_local.ping, srccpu),	srccpu, CFD_SEQ_NOCPU, CFD_SEQ_PING,   data, &n_data, now);
303 	cfd_seq_data_add(per_cpu(cfd_seq_local.pinged, srccpu), srccpu, CFD_SEQ_NOCPU, CFD_SEQ_PINGED, data, &n_data, now);
304 
305 	cfd_seq_data_add(seq->idle,    CFD_SEQ_NOCPU, cpu, CFD_SEQ_IDLE,    data, &n_data, now);
306 	cfd_seq_data_add(seq->gotipi,  CFD_SEQ_NOCPU, cpu, CFD_SEQ_GOTIPI,  data, &n_data, now);
307 	cfd_seq_data_add(seq->handle,  CFD_SEQ_NOCPU, cpu, CFD_SEQ_HANDLE,  data, &n_data, now);
308 	cfd_seq_data_add(seq->dequeue, CFD_SEQ_NOCPU, cpu, CFD_SEQ_DEQUEUE, data, &n_data, now);
309 	cfd_seq_data_add(seq->hdlend,  CFD_SEQ_NOCPU, cpu, CFD_SEQ_HDLEND,  data, &n_data, now);
310 
311 	for (i = 0; i < n_data; i++) {
312 		pr_alert("\tcsd: cnt(%07x): %04x->%04x %s\n",
313 			 data[i].u.cnt & ~0x80000000U, data[i].u.src,
314 			 data[i].u.dst, csd_lock_get_type(data[i].u.type));
315 	}
316 	pr_alert("\tcsd: cnt now: %07x\n", now);
317 }
318 
319 /*
320  * Complain if too much time spent waiting.  Note that only
321  * the CSD_TYPE_SYNC/ASYNC types provide the destination CPU,
322  * so waiting on other types gets much less information.
323  */
324 static bool csd_lock_wait_toolong(struct __call_single_data *csd, u64 ts0, u64 *ts1, int *bug_id)
325 {
326 	int cpu = -1;
327 	int cpux;
328 	bool firsttime;
329 	u64 ts2, ts_delta;
330 	call_single_data_t *cpu_cur_csd;
331 	unsigned int flags = READ_ONCE(csd->node.u_flags);
332 
333 	if (!(flags & CSD_FLAG_LOCK)) {
334 		if (!unlikely(*bug_id))
335 			return true;
336 		cpu = csd_lock_wait_getcpu(csd);
337 		pr_alert("csd: CSD lock (#%d) got unstuck on CPU#%02d, CPU#%02d released the lock.\n",
338 			 *bug_id, raw_smp_processor_id(), cpu);
339 		return true;
340 	}
341 
342 	ts2 = sched_clock();
343 	ts_delta = ts2 - *ts1;
344 	if (likely(ts_delta <= CSD_LOCK_TIMEOUT))
345 		return false;
346 
347 	firsttime = !*bug_id;
348 	if (firsttime)
349 		*bug_id = atomic_inc_return(&csd_bug_count);
350 	cpu = csd_lock_wait_getcpu(csd);
351 	if (WARN_ONCE(cpu < 0 || cpu >= nr_cpu_ids, "%s: cpu = %d\n", __func__, cpu))
352 		cpux = 0;
353 	else
354 		cpux = cpu;
355 	cpu_cur_csd = smp_load_acquire(&per_cpu(cur_csd, cpux)); /* Before func and info. */
356 	pr_alert("csd: %s non-responsive CSD lock (#%d) on CPU#%d, waiting %llu ns for CPU#%02d %pS(%ps).\n",
357 		 firsttime ? "Detected" : "Continued", *bug_id, raw_smp_processor_id(), ts2 - ts0,
358 		 cpu, csd->func, csd->info);
359 	if (cpu_cur_csd && csd != cpu_cur_csd) {
360 		pr_alert("\tcsd: CSD lock (#%d) handling prior %pS(%ps) request.\n",
361 			 *bug_id, READ_ONCE(per_cpu(cur_csd_func, cpux)),
362 			 READ_ONCE(per_cpu(cur_csd_info, cpux)));
363 	} else {
364 		pr_alert("\tcsd: CSD lock (#%d) %s.\n",
365 			 *bug_id, !cpu_cur_csd ? "unresponsive" : "handling this request");
366 	}
367 	if (cpu >= 0) {
368 		if (static_branch_unlikely(&csdlock_debug_extended))
369 			csd_lock_print_extended(csd, cpu);
370 		if (!trigger_single_cpu_backtrace(cpu))
371 			dump_cpu_task(cpu);
372 		if (!cpu_cur_csd) {
373 			pr_alert("csd: Re-sending CSD lock (#%d) IPI from CPU#%02d to CPU#%02d\n", *bug_id, raw_smp_processor_id(), cpu);
374 			arch_send_call_function_single_ipi(cpu);
375 		}
376 	}
377 	dump_stack();
378 	*ts1 = ts2;
379 
380 	return false;
381 }
382 
383 /*
384  * csd_lock/csd_unlock used to serialize access to per-cpu csd resources
385  *
386  * For non-synchronous ipi calls the csd can still be in use by the
387  * previous function call. For multi-cpu calls its even more interesting
388  * as we'll have to ensure no other cpu is observing our csd.
389  */
390 static void __csd_lock_wait(struct __call_single_data *csd)
391 {
392 	int bug_id = 0;
393 	u64 ts0, ts1;
394 
395 	ts1 = ts0 = sched_clock();
396 	for (;;) {
397 		if (csd_lock_wait_toolong(csd, ts0, &ts1, &bug_id))
398 			break;
399 		cpu_relax();
400 	}
401 	smp_acquire__after_ctrl_dep();
402 }
403 
404 static __always_inline void csd_lock_wait(struct __call_single_data *csd)
405 {
406 	if (static_branch_unlikely(&csdlock_debug_enabled)) {
407 		__csd_lock_wait(csd);
408 		return;
409 	}
410 
411 	smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
412 }
413 
414 static void __smp_call_single_queue_debug(int cpu, struct llist_node *node)
415 {
416 	unsigned int this_cpu = smp_processor_id();
417 	struct cfd_seq_local *seq = this_cpu_ptr(&cfd_seq_local);
418 	struct call_function_data *cfd = this_cpu_ptr(&cfd_data);
419 	struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu);
420 
421 	cfd_seq_store(pcpu->seq_queue, this_cpu, cpu, CFD_SEQ_QUEUE);
422 	if (llist_add(node, &per_cpu(call_single_queue, cpu))) {
423 		cfd_seq_store(pcpu->seq_ipi, this_cpu, cpu, CFD_SEQ_IPI);
424 		cfd_seq_store(seq->ping, this_cpu, cpu, CFD_SEQ_PING);
425 		send_call_function_single_ipi(cpu);
426 		cfd_seq_store(seq->pinged, this_cpu, cpu, CFD_SEQ_PINGED);
427 	} else {
428 		cfd_seq_store(pcpu->seq_noipi, this_cpu, cpu, CFD_SEQ_NOIPI);
429 	}
430 }
431 #else
432 #define cfd_seq_store(var, src, dst, type)
433 
434 static void csd_lock_record(struct __call_single_data *csd)
435 {
436 }
437 
438 static __always_inline void csd_lock_wait(struct __call_single_data *csd)
439 {
440 	smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
441 }
442 #endif
443 
444 static __always_inline void csd_lock(struct __call_single_data *csd)
445 {
446 	csd_lock_wait(csd);
447 	csd->node.u_flags |= CSD_FLAG_LOCK;
448 
449 	/*
450 	 * prevent CPU from reordering the above assignment
451 	 * to ->flags with any subsequent assignments to other
452 	 * fields of the specified call_single_data_t structure:
453 	 */
454 	smp_wmb();
455 }
456 
457 static __always_inline void csd_unlock(struct __call_single_data *csd)
458 {
459 	WARN_ON(!(csd->node.u_flags & CSD_FLAG_LOCK));
460 
461 	/*
462 	 * ensure we're all done before releasing data:
463 	 */
464 	smp_store_release(&csd->node.u_flags, 0);
465 }
466 
467 static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data);
468 
469 void __smp_call_single_queue(int cpu, struct llist_node *node)
470 {
471 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
472 	if (static_branch_unlikely(&csdlock_debug_extended)) {
473 		unsigned int type;
474 
475 		type = CSD_TYPE(container_of(node, call_single_data_t,
476 					     node.llist));
477 		if (type == CSD_TYPE_SYNC || type == CSD_TYPE_ASYNC) {
478 			__smp_call_single_queue_debug(cpu, node);
479 			return;
480 		}
481 	}
482 #endif
483 
484 	/*
485 	 * The list addition should be visible before sending the IPI
486 	 * handler locks the list to pull the entry off it because of
487 	 * normal cache coherency rules implied by spinlocks.
488 	 *
489 	 * If IPIs can go out of order to the cache coherency protocol
490 	 * in an architecture, sufficient synchronisation should be added
491 	 * to arch code to make it appear to obey cache coherency WRT
492 	 * locking and barrier primitives. Generic code isn't really
493 	 * equipped to do the right thing...
494 	 */
495 	if (llist_add(node, &per_cpu(call_single_queue, cpu)))
496 		send_call_function_single_ipi(cpu);
497 }
498 
499 /*
500  * Insert a previously allocated call_single_data_t element
501  * for execution on the given CPU. data must already have
502  * ->func, ->info, and ->flags set.
503  */
504 static int generic_exec_single(int cpu, struct __call_single_data *csd)
505 {
506 	if (cpu == smp_processor_id()) {
507 		smp_call_func_t func = csd->func;
508 		void *info = csd->info;
509 		unsigned long flags;
510 
511 		/*
512 		 * We can unlock early even for the synchronous on-stack case,
513 		 * since we're doing this from the same CPU..
514 		 */
515 		csd_lock_record(csd);
516 		csd_unlock(csd);
517 		local_irq_save(flags);
518 		func(info);
519 		csd_lock_record(NULL);
520 		local_irq_restore(flags);
521 		return 0;
522 	}
523 
524 	if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) {
525 		csd_unlock(csd);
526 		return -ENXIO;
527 	}
528 
529 	__smp_call_single_queue(cpu, &csd->node.llist);
530 
531 	return 0;
532 }
533 
534 /**
535  * generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks
536  *
537  * Invoked by arch to handle an IPI for call function single.
538  * Must be called with interrupts disabled.
539  */
540 void generic_smp_call_function_single_interrupt(void)
541 {
542 	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->gotipi, CFD_SEQ_NOCPU,
543 		      smp_processor_id(), CFD_SEQ_GOTIPI);
544 	flush_smp_call_function_queue(true);
545 }
546 
547 /**
548  * flush_smp_call_function_queue - Flush pending smp-call-function callbacks
549  *
550  * @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an
551  *		      offline CPU. Skip this check if set to 'false'.
552  *
553  * Flush any pending smp-call-function callbacks queued on this CPU. This is
554  * invoked by the generic IPI handler, as well as by a CPU about to go offline,
555  * to ensure that all pending IPI callbacks are run before it goes completely
556  * offline.
557  *
558  * Loop through the call_single_queue and run all the queued callbacks.
559  * Must be called with interrupts disabled.
560  */
561 static void flush_smp_call_function_queue(bool warn_cpu_offline)
562 {
563 	call_single_data_t *csd, *csd_next;
564 	struct llist_node *entry, *prev;
565 	struct llist_head *head;
566 	static bool warned;
567 
568 	lockdep_assert_irqs_disabled();
569 
570 	head = this_cpu_ptr(&call_single_queue);
571 	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->handle, CFD_SEQ_NOCPU,
572 		      smp_processor_id(), CFD_SEQ_HANDLE);
573 	entry = llist_del_all(head);
574 	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->dequeue,
575 		      /* Special meaning of source cpu: 0 == queue empty */
576 		      entry ? CFD_SEQ_NOCPU : 0,
577 		      smp_processor_id(), CFD_SEQ_DEQUEUE);
578 	entry = llist_reverse_order(entry);
579 
580 	/* There shouldn't be any pending callbacks on an offline CPU. */
581 	if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) &&
582 		     !warned && !llist_empty(head))) {
583 		warned = true;
584 		WARN(1, "IPI on offline CPU %d\n", smp_processor_id());
585 
586 		/*
587 		 * We don't have to use the _safe() variant here
588 		 * because we are not invoking the IPI handlers yet.
589 		 */
590 		llist_for_each_entry(csd, entry, node.llist) {
591 			switch (CSD_TYPE(csd)) {
592 			case CSD_TYPE_ASYNC:
593 			case CSD_TYPE_SYNC:
594 			case CSD_TYPE_IRQ_WORK:
595 				pr_warn("IPI callback %pS sent to offline CPU\n",
596 					csd->func);
597 				break;
598 
599 			case CSD_TYPE_TTWU:
600 				pr_warn("IPI task-wakeup sent to offline CPU\n");
601 				break;
602 
603 			default:
604 				pr_warn("IPI callback, unknown type %d, sent to offline CPU\n",
605 					CSD_TYPE(csd));
606 				break;
607 			}
608 		}
609 	}
610 
611 	/*
612 	 * First; run all SYNC callbacks, people are waiting for us.
613 	 */
614 	prev = NULL;
615 	llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
616 		/* Do we wait until *after* callback? */
617 		if (CSD_TYPE(csd) == CSD_TYPE_SYNC) {
618 			smp_call_func_t func = csd->func;
619 			void *info = csd->info;
620 
621 			if (prev) {
622 				prev->next = &csd_next->node.llist;
623 			} else {
624 				entry = &csd_next->node.llist;
625 			}
626 
627 			csd_lock_record(csd);
628 			func(info);
629 			csd_unlock(csd);
630 			csd_lock_record(NULL);
631 		} else {
632 			prev = &csd->node.llist;
633 		}
634 	}
635 
636 	if (!entry) {
637 		cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->hdlend,
638 			      0, smp_processor_id(),
639 			      CFD_SEQ_HDLEND);
640 		return;
641 	}
642 
643 	/*
644 	 * Second; run all !SYNC callbacks.
645 	 */
646 	prev = NULL;
647 	llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
648 		int type = CSD_TYPE(csd);
649 
650 		if (type != CSD_TYPE_TTWU) {
651 			if (prev) {
652 				prev->next = &csd_next->node.llist;
653 			} else {
654 				entry = &csd_next->node.llist;
655 			}
656 
657 			if (type == CSD_TYPE_ASYNC) {
658 				smp_call_func_t func = csd->func;
659 				void *info = csd->info;
660 
661 				csd_lock_record(csd);
662 				csd_unlock(csd);
663 				func(info);
664 				csd_lock_record(NULL);
665 			} else if (type == CSD_TYPE_IRQ_WORK) {
666 				irq_work_single(csd);
667 			}
668 
669 		} else {
670 			prev = &csd->node.llist;
671 		}
672 	}
673 
674 	/*
675 	 * Third; only CSD_TYPE_TTWU is left, issue those.
676 	 */
677 	if (entry)
678 		sched_ttwu_pending(entry);
679 
680 	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->hdlend, CFD_SEQ_NOCPU,
681 		      smp_processor_id(), CFD_SEQ_HDLEND);
682 }
683 
684 void flush_smp_call_function_from_idle(void)
685 {
686 	unsigned long flags;
687 
688 	if (llist_empty(this_cpu_ptr(&call_single_queue)))
689 		return;
690 
691 	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->idle, CFD_SEQ_NOCPU,
692 		      smp_processor_id(), CFD_SEQ_IDLE);
693 	local_irq_save(flags);
694 	flush_smp_call_function_queue(true);
695 	if (local_softirq_pending())
696 		do_softirq();
697 
698 	local_irq_restore(flags);
699 }
700 
701 /*
702  * smp_call_function_single - Run a function on a specific CPU
703  * @func: The function to run. This must be fast and non-blocking.
704  * @info: An arbitrary pointer to pass to the function.
705  * @wait: If true, wait until function has completed on other CPUs.
706  *
707  * Returns 0 on success, else a negative status code.
708  */
709 int smp_call_function_single(int cpu, smp_call_func_t func, void *info,
710 			     int wait)
711 {
712 	call_single_data_t *csd;
713 	call_single_data_t csd_stack = {
714 		.node = { .u_flags = CSD_FLAG_LOCK | CSD_TYPE_SYNC, },
715 	};
716 	int this_cpu;
717 	int err;
718 
719 	/*
720 	 * prevent preemption and reschedule on another processor,
721 	 * as well as CPU removal
722 	 */
723 	this_cpu = get_cpu();
724 
725 	/*
726 	 * Can deadlock when called with interrupts disabled.
727 	 * We allow cpu's that are not yet online though, as no one else can
728 	 * send smp call function interrupt to this cpu and as such deadlocks
729 	 * can't happen.
730 	 */
731 	WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
732 		     && !oops_in_progress);
733 
734 	/*
735 	 * When @wait we can deadlock when we interrupt between llist_add() and
736 	 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
737 	 * csd_lock() on because the interrupt context uses the same csd
738 	 * storage.
739 	 */
740 	WARN_ON_ONCE(!in_task());
741 
742 	csd = &csd_stack;
743 	if (!wait) {
744 		csd = this_cpu_ptr(&csd_data);
745 		csd_lock(csd);
746 	}
747 
748 	csd->func = func;
749 	csd->info = info;
750 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
751 	csd->node.src = smp_processor_id();
752 	csd->node.dst = cpu;
753 #endif
754 
755 	err = generic_exec_single(cpu, csd);
756 
757 	if (wait)
758 		csd_lock_wait(csd);
759 
760 	put_cpu();
761 
762 	return err;
763 }
764 EXPORT_SYMBOL(smp_call_function_single);
765 
766 /**
767  * smp_call_function_single_async(): Run an asynchronous function on a
768  * 			         specific CPU.
769  * @cpu: The CPU to run on.
770  * @csd: Pre-allocated and setup data structure
771  *
772  * Like smp_call_function_single(), but the call is asynchonous and
773  * can thus be done from contexts with disabled interrupts.
774  *
775  * The caller passes his own pre-allocated data structure
776  * (ie: embedded in an object) and is responsible for synchronizing it
777  * such that the IPIs performed on the @csd are strictly serialized.
778  *
779  * If the function is called with one csd which has not yet been
780  * processed by previous call to smp_call_function_single_async(), the
781  * function will return immediately with -EBUSY showing that the csd
782  * object is still in progress.
783  *
784  * NOTE: Be careful, there is unfortunately no current debugging facility to
785  * validate the correctness of this serialization.
786  */
787 int smp_call_function_single_async(int cpu, struct __call_single_data *csd)
788 {
789 	int err = 0;
790 
791 	preempt_disable();
792 
793 	if (csd->node.u_flags & CSD_FLAG_LOCK) {
794 		err = -EBUSY;
795 		goto out;
796 	}
797 
798 	csd->node.u_flags = CSD_FLAG_LOCK;
799 	smp_wmb();
800 
801 	err = generic_exec_single(cpu, csd);
802 
803 out:
804 	preempt_enable();
805 
806 	return err;
807 }
808 EXPORT_SYMBOL_GPL(smp_call_function_single_async);
809 
810 /*
811  * smp_call_function_any - Run a function on any of the given cpus
812  * @mask: The mask of cpus it can run on.
813  * @func: The function to run. This must be fast and non-blocking.
814  * @info: An arbitrary pointer to pass to the function.
815  * @wait: If true, wait until function has completed.
816  *
817  * Returns 0 on success, else a negative status code (if no cpus were online).
818  *
819  * Selection preference:
820  *	1) current cpu if in @mask
821  *	2) any cpu of current node if in @mask
822  *	3) any other online cpu in @mask
823  */
824 int smp_call_function_any(const struct cpumask *mask,
825 			  smp_call_func_t func, void *info, int wait)
826 {
827 	unsigned int cpu;
828 	const struct cpumask *nodemask;
829 	int ret;
830 
831 	/* Try for same CPU (cheapest) */
832 	cpu = get_cpu();
833 	if (cpumask_test_cpu(cpu, mask))
834 		goto call;
835 
836 	/* Try for same node. */
837 	nodemask = cpumask_of_node(cpu_to_node(cpu));
838 	for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids;
839 	     cpu = cpumask_next_and(cpu, nodemask, mask)) {
840 		if (cpu_online(cpu))
841 			goto call;
842 	}
843 
844 	/* Any online will do: smp_call_function_single handles nr_cpu_ids. */
845 	cpu = cpumask_any_and(mask, cpu_online_mask);
846 call:
847 	ret = smp_call_function_single(cpu, func, info, wait);
848 	put_cpu();
849 	return ret;
850 }
851 EXPORT_SYMBOL_GPL(smp_call_function_any);
852 
853 /*
854  * Flags to be used as scf_flags argument of smp_call_function_many_cond().
855  *
856  * %SCF_WAIT:		Wait until function execution is completed
857  * %SCF_RUN_LOCAL:	Run also locally if local cpu is set in cpumask
858  */
859 #define SCF_WAIT	(1U << 0)
860 #define SCF_RUN_LOCAL	(1U << 1)
861 
862 static void smp_call_function_many_cond(const struct cpumask *mask,
863 					smp_call_func_t func, void *info,
864 					unsigned int scf_flags,
865 					smp_cond_func_t cond_func)
866 {
867 	int cpu, last_cpu, this_cpu = smp_processor_id();
868 	struct call_function_data *cfd;
869 	bool wait = scf_flags & SCF_WAIT;
870 	bool run_remote = false;
871 	bool run_local = false;
872 	int nr_cpus = 0;
873 
874 	lockdep_assert_preemption_disabled();
875 
876 	/*
877 	 * Can deadlock when called with interrupts disabled.
878 	 * We allow cpu's that are not yet online though, as no one else can
879 	 * send smp call function interrupt to this cpu and as such deadlocks
880 	 * can't happen.
881 	 */
882 	if (cpu_online(this_cpu) && !oops_in_progress &&
883 	    !early_boot_irqs_disabled)
884 		lockdep_assert_irqs_enabled();
885 
886 	/*
887 	 * When @wait we can deadlock when we interrupt between llist_add() and
888 	 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
889 	 * csd_lock() on because the interrupt context uses the same csd
890 	 * storage.
891 	 */
892 	WARN_ON_ONCE(!in_task());
893 
894 	/* Check if we need local execution. */
895 	if ((scf_flags & SCF_RUN_LOCAL) && cpumask_test_cpu(this_cpu, mask))
896 		run_local = true;
897 
898 	/* Check if we need remote execution, i.e., any CPU excluding this one. */
899 	cpu = cpumask_first_and(mask, cpu_online_mask);
900 	if (cpu == this_cpu)
901 		cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
902 	if (cpu < nr_cpu_ids)
903 		run_remote = true;
904 
905 	if (run_remote) {
906 		cfd = this_cpu_ptr(&cfd_data);
907 		cpumask_and(cfd->cpumask, mask, cpu_online_mask);
908 		__cpumask_clear_cpu(this_cpu, cfd->cpumask);
909 
910 		cpumask_clear(cfd->cpumask_ipi);
911 		for_each_cpu(cpu, cfd->cpumask) {
912 			struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu);
913 			call_single_data_t *csd = &pcpu->csd;
914 
915 			if (cond_func && !cond_func(cpu, info))
916 				continue;
917 
918 			csd_lock(csd);
919 			if (wait)
920 				csd->node.u_flags |= CSD_TYPE_SYNC;
921 			csd->func = func;
922 			csd->info = info;
923 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
924 			csd->node.src = smp_processor_id();
925 			csd->node.dst = cpu;
926 #endif
927 			cfd_seq_store(pcpu->seq_queue, this_cpu, cpu, CFD_SEQ_QUEUE);
928 			if (llist_add(&csd->node.llist, &per_cpu(call_single_queue, cpu))) {
929 				__cpumask_set_cpu(cpu, cfd->cpumask_ipi);
930 				nr_cpus++;
931 				last_cpu = cpu;
932 
933 				cfd_seq_store(pcpu->seq_ipi, this_cpu, cpu, CFD_SEQ_IPI);
934 			} else {
935 				cfd_seq_store(pcpu->seq_noipi, this_cpu, cpu, CFD_SEQ_NOIPI);
936 			}
937 		}
938 
939 		cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->ping, this_cpu, CFD_SEQ_NOCPU, CFD_SEQ_PING);
940 
941 		/*
942 		 * Choose the most efficient way to send an IPI. Note that the
943 		 * number of CPUs might be zero due to concurrent changes to the
944 		 * provided mask.
945 		 */
946 		if (nr_cpus == 1)
947 			send_call_function_single_ipi(last_cpu);
948 		else if (likely(nr_cpus > 1))
949 			arch_send_call_function_ipi_mask(cfd->cpumask_ipi);
950 
951 		cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->pinged, this_cpu, CFD_SEQ_NOCPU, CFD_SEQ_PINGED);
952 	}
953 
954 	if (run_local && (!cond_func || cond_func(this_cpu, info))) {
955 		unsigned long flags;
956 
957 		local_irq_save(flags);
958 		func(info);
959 		local_irq_restore(flags);
960 	}
961 
962 	if (run_remote && wait) {
963 		for_each_cpu(cpu, cfd->cpumask) {
964 			call_single_data_t *csd;
965 
966 			csd = &per_cpu_ptr(cfd->pcpu, cpu)->csd;
967 			csd_lock_wait(csd);
968 		}
969 	}
970 }
971 
972 /**
973  * smp_call_function_many(): Run a function on a set of CPUs.
974  * @mask: The set of cpus to run on (only runs on online subset).
975  * @func: The function to run. This must be fast and non-blocking.
976  * @info: An arbitrary pointer to pass to the function.
977  * @flags: Bitmask that controls the operation. If %SCF_WAIT is set, wait
978  *        (atomically) until function has completed on other CPUs. If
979  *        %SCF_RUN_LOCAL is set, the function will also be run locally
980  *        if the local CPU is set in the @cpumask.
981  *
982  * If @wait is true, then returns once @func has returned.
983  *
984  * You must not call this function with disabled interrupts or from a
985  * hardware interrupt handler or from a bottom half handler. Preemption
986  * must be disabled when calling this function.
987  */
988 void smp_call_function_many(const struct cpumask *mask,
989 			    smp_call_func_t func, void *info, bool wait)
990 {
991 	smp_call_function_many_cond(mask, func, info, wait * SCF_WAIT, NULL);
992 }
993 EXPORT_SYMBOL(smp_call_function_many);
994 
995 /**
996  * smp_call_function(): Run a function on all other CPUs.
997  * @func: The function to run. This must be fast and non-blocking.
998  * @info: An arbitrary pointer to pass to the function.
999  * @wait: If true, wait (atomically) until function has completed
1000  *        on other CPUs.
1001  *
1002  * Returns 0.
1003  *
1004  * If @wait is true, then returns once @func has returned; otherwise
1005  * it returns just before the target cpu calls @func.
1006  *
1007  * You must not call this function with disabled interrupts or from a
1008  * hardware interrupt handler or from a bottom half handler.
1009  */
1010 void smp_call_function(smp_call_func_t func, void *info, int wait)
1011 {
1012 	preempt_disable();
1013 	smp_call_function_many(cpu_online_mask, func, info, wait);
1014 	preempt_enable();
1015 }
1016 EXPORT_SYMBOL(smp_call_function);
1017 
1018 /* Setup configured maximum number of CPUs to activate */
1019 unsigned int setup_max_cpus = NR_CPUS;
1020 EXPORT_SYMBOL(setup_max_cpus);
1021 
1022 
1023 /*
1024  * Setup routine for controlling SMP activation
1025  *
1026  * Command-line option of "nosmp" or "maxcpus=0" will disable SMP
1027  * activation entirely (the MPS table probe still happens, though).
1028  *
1029  * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
1030  * greater than 0, limits the maximum number of CPUs activated in
1031  * SMP mode to <NUM>.
1032  */
1033 
1034 void __weak arch_disable_smp_support(void) { }
1035 
1036 static int __init nosmp(char *str)
1037 {
1038 	setup_max_cpus = 0;
1039 	arch_disable_smp_support();
1040 
1041 	return 0;
1042 }
1043 
1044 early_param("nosmp", nosmp);
1045 
1046 /* this is hard limit */
1047 static int __init nrcpus(char *str)
1048 {
1049 	int nr_cpus;
1050 
1051 	if (get_option(&str, &nr_cpus) && nr_cpus > 0 && nr_cpus < nr_cpu_ids)
1052 		nr_cpu_ids = nr_cpus;
1053 
1054 	return 0;
1055 }
1056 
1057 early_param("nr_cpus", nrcpus);
1058 
1059 static int __init maxcpus(char *str)
1060 {
1061 	get_option(&str, &setup_max_cpus);
1062 	if (setup_max_cpus == 0)
1063 		arch_disable_smp_support();
1064 
1065 	return 0;
1066 }
1067 
1068 early_param("maxcpus", maxcpus);
1069 
1070 /* Setup number of possible processor ids */
1071 unsigned int nr_cpu_ids __read_mostly = NR_CPUS;
1072 EXPORT_SYMBOL(nr_cpu_ids);
1073 
1074 /* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */
1075 void __init setup_nr_cpu_ids(void)
1076 {
1077 	nr_cpu_ids = find_last_bit(cpumask_bits(cpu_possible_mask),NR_CPUS) + 1;
1078 }
1079 
1080 /* Called by boot processor to activate the rest. */
1081 void __init smp_init(void)
1082 {
1083 	int num_nodes, num_cpus;
1084 
1085 	idle_threads_init();
1086 	cpuhp_threads_init();
1087 
1088 	pr_info("Bringing up secondary CPUs ...\n");
1089 
1090 	bringup_nonboot_cpus(setup_max_cpus);
1091 
1092 	num_nodes = num_online_nodes();
1093 	num_cpus  = num_online_cpus();
1094 	pr_info("Brought up %d node%s, %d CPU%s\n",
1095 		num_nodes, (num_nodes > 1 ? "s" : ""),
1096 		num_cpus,  (num_cpus  > 1 ? "s" : ""));
1097 
1098 	/* Any cleanup work */
1099 	smp_cpus_done(setup_max_cpus);
1100 }
1101 
1102 /*
1103  * on_each_cpu_cond(): Call a function on each processor for which
1104  * the supplied function cond_func returns true, optionally waiting
1105  * for all the required CPUs to finish. This may include the local
1106  * processor.
1107  * @cond_func:	A callback function that is passed a cpu id and
1108  *		the info parameter. The function is called
1109  *		with preemption disabled. The function should
1110  *		return a blooean value indicating whether to IPI
1111  *		the specified CPU.
1112  * @func:	The function to run on all applicable CPUs.
1113  *		This must be fast and non-blocking.
1114  * @info:	An arbitrary pointer to pass to both functions.
1115  * @wait:	If true, wait (atomically) until function has
1116  *		completed on other CPUs.
1117  *
1118  * Preemption is disabled to protect against CPUs going offline but not online.
1119  * CPUs going online during the call will not be seen or sent an IPI.
1120  *
1121  * You must not call this function with disabled interrupts or
1122  * from a hardware interrupt handler or from a bottom half handler.
1123  */
1124 void on_each_cpu_cond_mask(smp_cond_func_t cond_func, smp_call_func_t func,
1125 			   void *info, bool wait, const struct cpumask *mask)
1126 {
1127 	unsigned int scf_flags = SCF_RUN_LOCAL;
1128 
1129 	if (wait)
1130 		scf_flags |= SCF_WAIT;
1131 
1132 	preempt_disable();
1133 	smp_call_function_many_cond(mask, func, info, scf_flags, cond_func);
1134 	preempt_enable();
1135 }
1136 EXPORT_SYMBOL(on_each_cpu_cond_mask);
1137 
1138 static void do_nothing(void *unused)
1139 {
1140 }
1141 
1142 /**
1143  * kick_all_cpus_sync - Force all cpus out of idle
1144  *
1145  * Used to synchronize the update of pm_idle function pointer. It's
1146  * called after the pointer is updated and returns after the dummy
1147  * callback function has been executed on all cpus. The execution of
1148  * the function can only happen on the remote cpus after they have
1149  * left the idle function which had been called via pm_idle function
1150  * pointer. So it's guaranteed that nothing uses the previous pointer
1151  * anymore.
1152  */
1153 void kick_all_cpus_sync(void)
1154 {
1155 	/* Make sure the change is visible before we kick the cpus */
1156 	smp_mb();
1157 	smp_call_function(do_nothing, NULL, 1);
1158 }
1159 EXPORT_SYMBOL_GPL(kick_all_cpus_sync);
1160 
1161 /**
1162  * wake_up_all_idle_cpus - break all cpus out of idle
1163  * wake_up_all_idle_cpus try to break all cpus which is in idle state even
1164  * including idle polling cpus, for non-idle cpus, we will do nothing
1165  * for them.
1166  */
1167 void wake_up_all_idle_cpus(void)
1168 {
1169 	int cpu;
1170 
1171 	preempt_disable();
1172 	for_each_online_cpu(cpu) {
1173 		if (cpu == smp_processor_id())
1174 			continue;
1175 
1176 		wake_up_if_idle(cpu);
1177 	}
1178 	preempt_enable();
1179 }
1180 EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus);
1181 
1182 /**
1183  * smp_call_on_cpu - Call a function on a specific cpu
1184  *
1185  * Used to call a function on a specific cpu and wait for it to return.
1186  * Optionally make sure the call is done on a specified physical cpu via vcpu
1187  * pinning in order to support virtualized environments.
1188  */
1189 struct smp_call_on_cpu_struct {
1190 	struct work_struct	work;
1191 	struct completion	done;
1192 	int			(*func)(void *);
1193 	void			*data;
1194 	int			ret;
1195 	int			cpu;
1196 };
1197 
1198 static void smp_call_on_cpu_callback(struct work_struct *work)
1199 {
1200 	struct smp_call_on_cpu_struct *sscs;
1201 
1202 	sscs = container_of(work, struct smp_call_on_cpu_struct, work);
1203 	if (sscs->cpu >= 0)
1204 		hypervisor_pin_vcpu(sscs->cpu);
1205 	sscs->ret = sscs->func(sscs->data);
1206 	if (sscs->cpu >= 0)
1207 		hypervisor_pin_vcpu(-1);
1208 
1209 	complete(&sscs->done);
1210 }
1211 
1212 int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys)
1213 {
1214 	struct smp_call_on_cpu_struct sscs = {
1215 		.done = COMPLETION_INITIALIZER_ONSTACK(sscs.done),
1216 		.func = func,
1217 		.data = par,
1218 		.cpu  = phys ? cpu : -1,
1219 	};
1220 
1221 	INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback);
1222 
1223 	if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1224 		return -ENXIO;
1225 
1226 	queue_work_on(cpu, system_wq, &sscs.work);
1227 	wait_for_completion(&sscs.done);
1228 
1229 	return sscs.ret;
1230 }
1231 EXPORT_SYMBOL_GPL(smp_call_on_cpu);
1232