1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic helpers for smp ipi calls 4 * 5 * (C) Jens Axboe <jens.axboe@oracle.com> 2008 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/irq_work.h> 11 #include <linux/rcupdate.h> 12 #include <linux/rculist.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/percpu.h> 16 #include <linux/init.h> 17 #include <linux/interrupt.h> 18 #include <linux/gfp.h> 19 #include <linux/smp.h> 20 #include <linux/cpu.h> 21 #include <linux/sched.h> 22 #include <linux/sched/idle.h> 23 #include <linux/hypervisor.h> 24 #include <linux/sched/clock.h> 25 #include <linux/nmi.h> 26 #include <linux/sched/debug.h> 27 #include <linux/jump_label.h> 28 29 #include <trace/events/ipi.h> 30 31 #include "smpboot.h" 32 #include "sched/smp.h" 33 34 #define CSD_TYPE(_csd) ((_csd)->node.u_flags & CSD_FLAG_TYPE_MASK) 35 36 struct call_function_data { 37 call_single_data_t __percpu *csd; 38 cpumask_var_t cpumask; 39 cpumask_var_t cpumask_ipi; 40 }; 41 42 static DEFINE_PER_CPU_ALIGNED(struct call_function_data, cfd_data); 43 44 static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue); 45 46 static void __flush_smp_call_function_queue(bool warn_cpu_offline); 47 48 int smpcfd_prepare_cpu(unsigned int cpu) 49 { 50 struct call_function_data *cfd = &per_cpu(cfd_data, cpu); 51 52 if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL, 53 cpu_to_node(cpu))) 54 return -ENOMEM; 55 if (!zalloc_cpumask_var_node(&cfd->cpumask_ipi, GFP_KERNEL, 56 cpu_to_node(cpu))) { 57 free_cpumask_var(cfd->cpumask); 58 return -ENOMEM; 59 } 60 cfd->csd = alloc_percpu(call_single_data_t); 61 if (!cfd->csd) { 62 free_cpumask_var(cfd->cpumask); 63 free_cpumask_var(cfd->cpumask_ipi); 64 return -ENOMEM; 65 } 66 67 return 0; 68 } 69 70 int smpcfd_dead_cpu(unsigned int cpu) 71 { 72 struct call_function_data *cfd = &per_cpu(cfd_data, cpu); 73 74 free_cpumask_var(cfd->cpumask); 75 free_cpumask_var(cfd->cpumask_ipi); 76 free_percpu(cfd->csd); 77 return 0; 78 } 79 80 int smpcfd_dying_cpu(unsigned int cpu) 81 { 82 /* 83 * The IPIs for the smp-call-function callbacks queued by other 84 * CPUs might arrive late, either due to hardware latencies or 85 * because this CPU disabled interrupts (inside stop-machine) 86 * before the IPIs were sent. So flush out any pending callbacks 87 * explicitly (without waiting for the IPIs to arrive), to 88 * ensure that the outgoing CPU doesn't go offline with work 89 * still pending. 90 */ 91 __flush_smp_call_function_queue(false); 92 irq_work_run(); 93 return 0; 94 } 95 96 void __init call_function_init(void) 97 { 98 int i; 99 100 for_each_possible_cpu(i) 101 init_llist_head(&per_cpu(call_single_queue, i)); 102 103 smpcfd_prepare_cpu(smp_processor_id()); 104 } 105 106 static __always_inline void 107 send_call_function_single_ipi(int cpu) 108 { 109 if (call_function_single_prep_ipi(cpu)) { 110 trace_ipi_send_cpu(cpu, _RET_IP_, 111 generic_smp_call_function_single_interrupt); 112 arch_send_call_function_single_ipi(cpu); 113 } 114 } 115 116 static __always_inline void 117 send_call_function_ipi_mask(struct cpumask *mask) 118 { 119 trace_ipi_send_cpumask(mask, _RET_IP_, 120 generic_smp_call_function_single_interrupt); 121 arch_send_call_function_ipi_mask(mask); 122 } 123 124 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG 125 126 static DEFINE_STATIC_KEY_MAYBE(CONFIG_CSD_LOCK_WAIT_DEBUG_DEFAULT, csdlock_debug_enabled); 127 128 /* 129 * Parse the csdlock_debug= kernel boot parameter. 130 * 131 * If you need to restore the old "ext" value that once provided 132 * additional debugging information, reapply the following commits: 133 * 134 * de7b09ef658d ("locking/csd_lock: Prepare more CSD lock debugging") 135 * a5aabace5fb8 ("locking/csd_lock: Add more data to CSD lock debugging") 136 */ 137 static int __init csdlock_debug(char *str) 138 { 139 int ret; 140 unsigned int val = 0; 141 142 ret = get_option(&str, &val); 143 if (ret) { 144 if (val) 145 static_branch_enable(&csdlock_debug_enabled); 146 else 147 static_branch_disable(&csdlock_debug_enabled); 148 } 149 150 return 1; 151 } 152 __setup("csdlock_debug=", csdlock_debug); 153 154 static DEFINE_PER_CPU(call_single_data_t *, cur_csd); 155 static DEFINE_PER_CPU(smp_call_func_t, cur_csd_func); 156 static DEFINE_PER_CPU(void *, cur_csd_info); 157 158 static ulong csd_lock_timeout = 5000; /* CSD lock timeout in milliseconds. */ 159 module_param(csd_lock_timeout, ulong, 0444); 160 161 static atomic_t csd_bug_count = ATOMIC_INIT(0); 162 163 /* Record current CSD work for current CPU, NULL to erase. */ 164 static void __csd_lock_record(struct __call_single_data *csd) 165 { 166 if (!csd) { 167 smp_mb(); /* NULL cur_csd after unlock. */ 168 __this_cpu_write(cur_csd, NULL); 169 return; 170 } 171 __this_cpu_write(cur_csd_func, csd->func); 172 __this_cpu_write(cur_csd_info, csd->info); 173 smp_wmb(); /* func and info before csd. */ 174 __this_cpu_write(cur_csd, csd); 175 smp_mb(); /* Update cur_csd before function call. */ 176 /* Or before unlock, as the case may be. */ 177 } 178 179 static __always_inline void csd_lock_record(struct __call_single_data *csd) 180 { 181 if (static_branch_unlikely(&csdlock_debug_enabled)) 182 __csd_lock_record(csd); 183 } 184 185 static int csd_lock_wait_getcpu(struct __call_single_data *csd) 186 { 187 unsigned int csd_type; 188 189 csd_type = CSD_TYPE(csd); 190 if (csd_type == CSD_TYPE_ASYNC || csd_type == CSD_TYPE_SYNC) 191 return csd->node.dst; /* Other CSD_TYPE_ values might not have ->dst. */ 192 return -1; 193 } 194 195 /* 196 * Complain if too much time spent waiting. Note that only 197 * the CSD_TYPE_SYNC/ASYNC types provide the destination CPU, 198 * so waiting on other types gets much less information. 199 */ 200 static bool csd_lock_wait_toolong(struct __call_single_data *csd, u64 ts0, u64 *ts1, int *bug_id) 201 { 202 int cpu = -1; 203 int cpux; 204 bool firsttime; 205 u64 ts2, ts_delta; 206 call_single_data_t *cpu_cur_csd; 207 unsigned int flags = READ_ONCE(csd->node.u_flags); 208 unsigned long long csd_lock_timeout_ns = csd_lock_timeout * NSEC_PER_MSEC; 209 210 if (!(flags & CSD_FLAG_LOCK)) { 211 if (!unlikely(*bug_id)) 212 return true; 213 cpu = csd_lock_wait_getcpu(csd); 214 pr_alert("csd: CSD lock (#%d) got unstuck on CPU#%02d, CPU#%02d released the lock.\n", 215 *bug_id, raw_smp_processor_id(), cpu); 216 return true; 217 } 218 219 ts2 = sched_clock(); 220 ts_delta = ts2 - *ts1; 221 if (likely(ts_delta <= csd_lock_timeout_ns || csd_lock_timeout_ns == 0)) 222 return false; 223 224 firsttime = !*bug_id; 225 if (firsttime) 226 *bug_id = atomic_inc_return(&csd_bug_count); 227 cpu = csd_lock_wait_getcpu(csd); 228 if (WARN_ONCE(cpu < 0 || cpu >= nr_cpu_ids, "%s: cpu = %d\n", __func__, cpu)) 229 cpux = 0; 230 else 231 cpux = cpu; 232 cpu_cur_csd = smp_load_acquire(&per_cpu(cur_csd, cpux)); /* Before func and info. */ 233 pr_alert("csd: %s non-responsive CSD lock (#%d) on CPU#%d, waiting %llu ns for CPU#%02d %pS(%ps).\n", 234 firsttime ? "Detected" : "Continued", *bug_id, raw_smp_processor_id(), ts2 - ts0, 235 cpu, csd->func, csd->info); 236 if (cpu_cur_csd && csd != cpu_cur_csd) { 237 pr_alert("\tcsd: CSD lock (#%d) handling prior %pS(%ps) request.\n", 238 *bug_id, READ_ONCE(per_cpu(cur_csd_func, cpux)), 239 READ_ONCE(per_cpu(cur_csd_info, cpux))); 240 } else { 241 pr_alert("\tcsd: CSD lock (#%d) %s.\n", 242 *bug_id, !cpu_cur_csd ? "unresponsive" : "handling this request"); 243 } 244 if (cpu >= 0) { 245 dump_cpu_task(cpu); 246 if (!cpu_cur_csd) { 247 pr_alert("csd: Re-sending CSD lock (#%d) IPI from CPU#%02d to CPU#%02d\n", *bug_id, raw_smp_processor_id(), cpu); 248 arch_send_call_function_single_ipi(cpu); 249 } 250 } 251 dump_stack(); 252 *ts1 = ts2; 253 254 return false; 255 } 256 257 /* 258 * csd_lock/csd_unlock used to serialize access to per-cpu csd resources 259 * 260 * For non-synchronous ipi calls the csd can still be in use by the 261 * previous function call. For multi-cpu calls its even more interesting 262 * as we'll have to ensure no other cpu is observing our csd. 263 */ 264 static void __csd_lock_wait(struct __call_single_data *csd) 265 { 266 int bug_id = 0; 267 u64 ts0, ts1; 268 269 ts1 = ts0 = sched_clock(); 270 for (;;) { 271 if (csd_lock_wait_toolong(csd, ts0, &ts1, &bug_id)) 272 break; 273 cpu_relax(); 274 } 275 smp_acquire__after_ctrl_dep(); 276 } 277 278 static __always_inline void csd_lock_wait(struct __call_single_data *csd) 279 { 280 if (static_branch_unlikely(&csdlock_debug_enabled)) { 281 __csd_lock_wait(csd); 282 return; 283 } 284 285 smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK)); 286 } 287 #else 288 static void csd_lock_record(struct __call_single_data *csd) 289 { 290 } 291 292 static __always_inline void csd_lock_wait(struct __call_single_data *csd) 293 { 294 smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK)); 295 } 296 #endif 297 298 static __always_inline void csd_lock(struct __call_single_data *csd) 299 { 300 csd_lock_wait(csd); 301 csd->node.u_flags |= CSD_FLAG_LOCK; 302 303 /* 304 * prevent CPU from reordering the above assignment 305 * to ->flags with any subsequent assignments to other 306 * fields of the specified call_single_data_t structure: 307 */ 308 smp_wmb(); 309 } 310 311 static __always_inline void csd_unlock(struct __call_single_data *csd) 312 { 313 WARN_ON(!(csd->node.u_flags & CSD_FLAG_LOCK)); 314 315 /* 316 * ensure we're all done before releasing data: 317 */ 318 smp_store_release(&csd->node.u_flags, 0); 319 } 320 321 static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data); 322 323 void __smp_call_single_queue(int cpu, struct llist_node *node) 324 { 325 /* 326 * We have to check the type of the CSD before queueing it, because 327 * once queued it can have its flags cleared by 328 * flush_smp_call_function_queue() 329 * even if we haven't sent the smp_call IPI yet (e.g. the stopper 330 * executes migration_cpu_stop() on the remote CPU). 331 */ 332 if (trace_ipi_send_cpu_enabled()) { 333 call_single_data_t *csd; 334 smp_call_func_t func; 335 336 csd = container_of(node, call_single_data_t, node.llist); 337 func = CSD_TYPE(csd) == CSD_TYPE_TTWU ? 338 sched_ttwu_pending : csd->func; 339 340 trace_ipi_send_cpu(cpu, _RET_IP_, func); 341 } 342 343 /* 344 * The list addition should be visible to the target CPU when it pops 345 * the head of the list to pull the entry off it in the IPI handler 346 * because of normal cache coherency rules implied by the underlying 347 * llist ops. 348 * 349 * If IPIs can go out of order to the cache coherency protocol 350 * in an architecture, sufficient synchronisation should be added 351 * to arch code to make it appear to obey cache coherency WRT 352 * locking and barrier primitives. Generic code isn't really 353 * equipped to do the right thing... 354 */ 355 if (llist_add(node, &per_cpu(call_single_queue, cpu))) 356 send_call_function_single_ipi(cpu); 357 } 358 359 /* 360 * Insert a previously allocated call_single_data_t element 361 * for execution on the given CPU. data must already have 362 * ->func, ->info, and ->flags set. 363 */ 364 static int generic_exec_single(int cpu, struct __call_single_data *csd) 365 { 366 if (cpu == smp_processor_id()) { 367 smp_call_func_t func = csd->func; 368 void *info = csd->info; 369 unsigned long flags; 370 371 /* 372 * We can unlock early even for the synchronous on-stack case, 373 * since we're doing this from the same CPU.. 374 */ 375 csd_lock_record(csd); 376 csd_unlock(csd); 377 local_irq_save(flags); 378 func(info); 379 csd_lock_record(NULL); 380 local_irq_restore(flags); 381 return 0; 382 } 383 384 if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) { 385 csd_unlock(csd); 386 return -ENXIO; 387 } 388 389 __smp_call_single_queue(cpu, &csd->node.llist); 390 391 return 0; 392 } 393 394 /** 395 * generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks 396 * 397 * Invoked by arch to handle an IPI for call function single. 398 * Must be called with interrupts disabled. 399 */ 400 void generic_smp_call_function_single_interrupt(void) 401 { 402 __flush_smp_call_function_queue(true); 403 } 404 405 /** 406 * __flush_smp_call_function_queue - Flush pending smp-call-function callbacks 407 * 408 * @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an 409 * offline CPU. Skip this check if set to 'false'. 410 * 411 * Flush any pending smp-call-function callbacks queued on this CPU. This is 412 * invoked by the generic IPI handler, as well as by a CPU about to go offline, 413 * to ensure that all pending IPI callbacks are run before it goes completely 414 * offline. 415 * 416 * Loop through the call_single_queue and run all the queued callbacks. 417 * Must be called with interrupts disabled. 418 */ 419 static void __flush_smp_call_function_queue(bool warn_cpu_offline) 420 { 421 call_single_data_t *csd, *csd_next; 422 struct llist_node *entry, *prev; 423 struct llist_head *head; 424 static bool warned; 425 426 lockdep_assert_irqs_disabled(); 427 428 head = this_cpu_ptr(&call_single_queue); 429 entry = llist_del_all(head); 430 entry = llist_reverse_order(entry); 431 432 /* There shouldn't be any pending callbacks on an offline CPU. */ 433 if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) && 434 !warned && entry != NULL)) { 435 warned = true; 436 WARN(1, "IPI on offline CPU %d\n", smp_processor_id()); 437 438 /* 439 * We don't have to use the _safe() variant here 440 * because we are not invoking the IPI handlers yet. 441 */ 442 llist_for_each_entry(csd, entry, node.llist) { 443 switch (CSD_TYPE(csd)) { 444 case CSD_TYPE_ASYNC: 445 case CSD_TYPE_SYNC: 446 case CSD_TYPE_IRQ_WORK: 447 pr_warn("IPI callback %pS sent to offline CPU\n", 448 csd->func); 449 break; 450 451 case CSD_TYPE_TTWU: 452 pr_warn("IPI task-wakeup sent to offline CPU\n"); 453 break; 454 455 default: 456 pr_warn("IPI callback, unknown type %d, sent to offline CPU\n", 457 CSD_TYPE(csd)); 458 break; 459 } 460 } 461 } 462 463 /* 464 * First; run all SYNC callbacks, people are waiting for us. 465 */ 466 prev = NULL; 467 llist_for_each_entry_safe(csd, csd_next, entry, node.llist) { 468 /* Do we wait until *after* callback? */ 469 if (CSD_TYPE(csd) == CSD_TYPE_SYNC) { 470 smp_call_func_t func = csd->func; 471 void *info = csd->info; 472 473 if (prev) { 474 prev->next = &csd_next->node.llist; 475 } else { 476 entry = &csd_next->node.llist; 477 } 478 479 csd_lock_record(csd); 480 func(info); 481 csd_unlock(csd); 482 csd_lock_record(NULL); 483 } else { 484 prev = &csd->node.llist; 485 } 486 } 487 488 if (!entry) 489 return; 490 491 /* 492 * Second; run all !SYNC callbacks. 493 */ 494 prev = NULL; 495 llist_for_each_entry_safe(csd, csd_next, entry, node.llist) { 496 int type = CSD_TYPE(csd); 497 498 if (type != CSD_TYPE_TTWU) { 499 if (prev) { 500 prev->next = &csd_next->node.llist; 501 } else { 502 entry = &csd_next->node.llist; 503 } 504 505 if (type == CSD_TYPE_ASYNC) { 506 smp_call_func_t func = csd->func; 507 void *info = csd->info; 508 509 csd_lock_record(csd); 510 csd_unlock(csd); 511 func(info); 512 csd_lock_record(NULL); 513 } else if (type == CSD_TYPE_IRQ_WORK) { 514 irq_work_single(csd); 515 } 516 517 } else { 518 prev = &csd->node.llist; 519 } 520 } 521 522 /* 523 * Third; only CSD_TYPE_TTWU is left, issue those. 524 */ 525 if (entry) 526 sched_ttwu_pending(entry); 527 } 528 529 530 /** 531 * flush_smp_call_function_queue - Flush pending smp-call-function callbacks 532 * from task context (idle, migration thread) 533 * 534 * When TIF_POLLING_NRFLAG is supported and a CPU is in idle and has it 535 * set, then remote CPUs can avoid sending IPIs and wake the idle CPU by 536 * setting TIF_NEED_RESCHED. The idle task on the woken up CPU has to 537 * handle queued SMP function calls before scheduling. 538 * 539 * The migration thread has to ensure that an eventually pending wakeup has 540 * been handled before it migrates a task. 541 */ 542 void flush_smp_call_function_queue(void) 543 { 544 unsigned int was_pending; 545 unsigned long flags; 546 547 if (llist_empty(this_cpu_ptr(&call_single_queue))) 548 return; 549 550 local_irq_save(flags); 551 /* Get the already pending soft interrupts for RT enabled kernels */ 552 was_pending = local_softirq_pending(); 553 __flush_smp_call_function_queue(true); 554 if (local_softirq_pending()) 555 do_softirq_post_smp_call_flush(was_pending); 556 557 local_irq_restore(flags); 558 } 559 560 /* 561 * smp_call_function_single - Run a function on a specific CPU 562 * @func: The function to run. This must be fast and non-blocking. 563 * @info: An arbitrary pointer to pass to the function. 564 * @wait: If true, wait until function has completed on other CPUs. 565 * 566 * Returns 0 on success, else a negative status code. 567 */ 568 int smp_call_function_single(int cpu, smp_call_func_t func, void *info, 569 int wait) 570 { 571 call_single_data_t *csd; 572 call_single_data_t csd_stack = { 573 .node = { .u_flags = CSD_FLAG_LOCK | CSD_TYPE_SYNC, }, 574 }; 575 int this_cpu; 576 int err; 577 578 /* 579 * prevent preemption and reschedule on another processor, 580 * as well as CPU removal 581 */ 582 this_cpu = get_cpu(); 583 584 /* 585 * Can deadlock when called with interrupts disabled. 586 * We allow cpu's that are not yet online though, as no one else can 587 * send smp call function interrupt to this cpu and as such deadlocks 588 * can't happen. 589 */ 590 WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled() 591 && !oops_in_progress); 592 593 /* 594 * When @wait we can deadlock when we interrupt between llist_add() and 595 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to 596 * csd_lock() on because the interrupt context uses the same csd 597 * storage. 598 */ 599 WARN_ON_ONCE(!in_task()); 600 601 csd = &csd_stack; 602 if (!wait) { 603 csd = this_cpu_ptr(&csd_data); 604 csd_lock(csd); 605 } 606 607 csd->func = func; 608 csd->info = info; 609 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG 610 csd->node.src = smp_processor_id(); 611 csd->node.dst = cpu; 612 #endif 613 614 err = generic_exec_single(cpu, csd); 615 616 if (wait) 617 csd_lock_wait(csd); 618 619 put_cpu(); 620 621 return err; 622 } 623 EXPORT_SYMBOL(smp_call_function_single); 624 625 /** 626 * smp_call_function_single_async() - Run an asynchronous function on a 627 * specific CPU. 628 * @cpu: The CPU to run on. 629 * @csd: Pre-allocated and setup data structure 630 * 631 * Like smp_call_function_single(), but the call is asynchonous and 632 * can thus be done from contexts with disabled interrupts. 633 * 634 * The caller passes his own pre-allocated data structure 635 * (ie: embedded in an object) and is responsible for synchronizing it 636 * such that the IPIs performed on the @csd are strictly serialized. 637 * 638 * If the function is called with one csd which has not yet been 639 * processed by previous call to smp_call_function_single_async(), the 640 * function will return immediately with -EBUSY showing that the csd 641 * object is still in progress. 642 * 643 * NOTE: Be careful, there is unfortunately no current debugging facility to 644 * validate the correctness of this serialization. 645 * 646 * Return: %0 on success or negative errno value on error 647 */ 648 int smp_call_function_single_async(int cpu, struct __call_single_data *csd) 649 { 650 int err = 0; 651 652 preempt_disable(); 653 654 if (csd->node.u_flags & CSD_FLAG_LOCK) { 655 err = -EBUSY; 656 goto out; 657 } 658 659 csd->node.u_flags = CSD_FLAG_LOCK; 660 smp_wmb(); 661 662 err = generic_exec_single(cpu, csd); 663 664 out: 665 preempt_enable(); 666 667 return err; 668 } 669 EXPORT_SYMBOL_GPL(smp_call_function_single_async); 670 671 /* 672 * smp_call_function_any - Run a function on any of the given cpus 673 * @mask: The mask of cpus it can run on. 674 * @func: The function to run. This must be fast and non-blocking. 675 * @info: An arbitrary pointer to pass to the function. 676 * @wait: If true, wait until function has completed. 677 * 678 * Returns 0 on success, else a negative status code (if no cpus were online). 679 * 680 * Selection preference: 681 * 1) current cpu if in @mask 682 * 2) any cpu of current node if in @mask 683 * 3) any other online cpu in @mask 684 */ 685 int smp_call_function_any(const struct cpumask *mask, 686 smp_call_func_t func, void *info, int wait) 687 { 688 unsigned int cpu; 689 const struct cpumask *nodemask; 690 int ret; 691 692 /* Try for same CPU (cheapest) */ 693 cpu = get_cpu(); 694 if (cpumask_test_cpu(cpu, mask)) 695 goto call; 696 697 /* Try for same node. */ 698 nodemask = cpumask_of_node(cpu_to_node(cpu)); 699 for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids; 700 cpu = cpumask_next_and(cpu, nodemask, mask)) { 701 if (cpu_online(cpu)) 702 goto call; 703 } 704 705 /* Any online will do: smp_call_function_single handles nr_cpu_ids. */ 706 cpu = cpumask_any_and(mask, cpu_online_mask); 707 call: 708 ret = smp_call_function_single(cpu, func, info, wait); 709 put_cpu(); 710 return ret; 711 } 712 EXPORT_SYMBOL_GPL(smp_call_function_any); 713 714 /* 715 * Flags to be used as scf_flags argument of smp_call_function_many_cond(). 716 * 717 * %SCF_WAIT: Wait until function execution is completed 718 * %SCF_RUN_LOCAL: Run also locally if local cpu is set in cpumask 719 */ 720 #define SCF_WAIT (1U << 0) 721 #define SCF_RUN_LOCAL (1U << 1) 722 723 static void smp_call_function_many_cond(const struct cpumask *mask, 724 smp_call_func_t func, void *info, 725 unsigned int scf_flags, 726 smp_cond_func_t cond_func) 727 { 728 int cpu, last_cpu, this_cpu = smp_processor_id(); 729 struct call_function_data *cfd; 730 bool wait = scf_flags & SCF_WAIT; 731 int nr_cpus = 0, nr_queued = 0; 732 bool run_remote = false; 733 bool run_local = false; 734 735 lockdep_assert_preemption_disabled(); 736 737 /* 738 * Can deadlock when called with interrupts disabled. 739 * We allow cpu's that are not yet online though, as no one else can 740 * send smp call function interrupt to this cpu and as such deadlocks 741 * can't happen. 742 */ 743 if (cpu_online(this_cpu) && !oops_in_progress && 744 !early_boot_irqs_disabled) 745 lockdep_assert_irqs_enabled(); 746 747 /* 748 * When @wait we can deadlock when we interrupt between llist_add() and 749 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to 750 * csd_lock() on because the interrupt context uses the same csd 751 * storage. 752 */ 753 WARN_ON_ONCE(!in_task()); 754 755 /* Check if we need local execution. */ 756 if ((scf_flags & SCF_RUN_LOCAL) && cpumask_test_cpu(this_cpu, mask)) 757 run_local = true; 758 759 /* Check if we need remote execution, i.e., any CPU excluding this one. */ 760 cpu = cpumask_first_and(mask, cpu_online_mask); 761 if (cpu == this_cpu) 762 cpu = cpumask_next_and(cpu, mask, cpu_online_mask); 763 if (cpu < nr_cpu_ids) 764 run_remote = true; 765 766 if (run_remote) { 767 cfd = this_cpu_ptr(&cfd_data); 768 cpumask_and(cfd->cpumask, mask, cpu_online_mask); 769 __cpumask_clear_cpu(this_cpu, cfd->cpumask); 770 771 cpumask_clear(cfd->cpumask_ipi); 772 for_each_cpu(cpu, cfd->cpumask) { 773 call_single_data_t *csd = per_cpu_ptr(cfd->csd, cpu); 774 775 if (cond_func && !cond_func(cpu, info)) { 776 __cpumask_clear_cpu(cpu, cfd->cpumask); 777 continue; 778 } 779 780 csd_lock(csd); 781 if (wait) 782 csd->node.u_flags |= CSD_TYPE_SYNC; 783 csd->func = func; 784 csd->info = info; 785 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG 786 csd->node.src = smp_processor_id(); 787 csd->node.dst = cpu; 788 #endif 789 if (llist_add(&csd->node.llist, &per_cpu(call_single_queue, cpu))) { 790 __cpumask_set_cpu(cpu, cfd->cpumask_ipi); 791 nr_cpus++; 792 last_cpu = cpu; 793 } 794 nr_queued++; 795 } 796 797 /* 798 * Trace each smp_function_call_*() as an IPI, actual IPIs 799 * will be traced with func==generic_smp_call_function_single_ipi(). 800 */ 801 if (nr_queued) 802 trace_ipi_send_cpumask(cfd->cpumask, _RET_IP_, func); 803 804 /* 805 * Choose the most efficient way to send an IPI. Note that the 806 * number of CPUs might be zero due to concurrent changes to the 807 * provided mask. 808 */ 809 if (nr_cpus == 1) 810 send_call_function_single_ipi(last_cpu); 811 else if (likely(nr_cpus > 1)) 812 send_call_function_ipi_mask(cfd->cpumask_ipi); 813 } 814 815 if (run_local && (!cond_func || cond_func(this_cpu, info))) { 816 unsigned long flags; 817 818 local_irq_save(flags); 819 func(info); 820 local_irq_restore(flags); 821 } 822 823 if (run_remote && wait) { 824 for_each_cpu(cpu, cfd->cpumask) { 825 call_single_data_t *csd; 826 827 csd = per_cpu_ptr(cfd->csd, cpu); 828 csd_lock_wait(csd); 829 } 830 } 831 } 832 833 /** 834 * smp_call_function_many(): Run a function on a set of CPUs. 835 * @mask: The set of cpus to run on (only runs on online subset). 836 * @func: The function to run. This must be fast and non-blocking. 837 * @info: An arbitrary pointer to pass to the function. 838 * @wait: Bitmask that controls the operation. If %SCF_WAIT is set, wait 839 * (atomically) until function has completed on other CPUs. If 840 * %SCF_RUN_LOCAL is set, the function will also be run locally 841 * if the local CPU is set in the @cpumask. 842 * 843 * If @wait is true, then returns once @func has returned. 844 * 845 * You must not call this function with disabled interrupts or from a 846 * hardware interrupt handler or from a bottom half handler. Preemption 847 * must be disabled when calling this function. 848 */ 849 void smp_call_function_many(const struct cpumask *mask, 850 smp_call_func_t func, void *info, bool wait) 851 { 852 smp_call_function_many_cond(mask, func, info, wait * SCF_WAIT, NULL); 853 } 854 EXPORT_SYMBOL(smp_call_function_many); 855 856 /** 857 * smp_call_function(): Run a function on all other CPUs. 858 * @func: The function to run. This must be fast and non-blocking. 859 * @info: An arbitrary pointer to pass to the function. 860 * @wait: If true, wait (atomically) until function has completed 861 * on other CPUs. 862 * 863 * Returns 0. 864 * 865 * If @wait is true, then returns once @func has returned; otherwise 866 * it returns just before the target cpu calls @func. 867 * 868 * You must not call this function with disabled interrupts or from a 869 * hardware interrupt handler or from a bottom half handler. 870 */ 871 void smp_call_function(smp_call_func_t func, void *info, int wait) 872 { 873 preempt_disable(); 874 smp_call_function_many(cpu_online_mask, func, info, wait); 875 preempt_enable(); 876 } 877 EXPORT_SYMBOL(smp_call_function); 878 879 /* Setup configured maximum number of CPUs to activate */ 880 unsigned int setup_max_cpus = NR_CPUS; 881 EXPORT_SYMBOL(setup_max_cpus); 882 883 884 /* 885 * Setup routine for controlling SMP activation 886 * 887 * Command-line option of "nosmp" or "maxcpus=0" will disable SMP 888 * activation entirely (the MPS table probe still happens, though). 889 * 890 * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer 891 * greater than 0, limits the maximum number of CPUs activated in 892 * SMP mode to <NUM>. 893 */ 894 895 void __weak arch_disable_smp_support(void) { } 896 897 static int __init nosmp(char *str) 898 { 899 setup_max_cpus = 0; 900 arch_disable_smp_support(); 901 902 return 0; 903 } 904 905 early_param("nosmp", nosmp); 906 907 /* this is hard limit */ 908 static int __init nrcpus(char *str) 909 { 910 int nr_cpus; 911 912 if (get_option(&str, &nr_cpus) && nr_cpus > 0 && nr_cpus < nr_cpu_ids) 913 set_nr_cpu_ids(nr_cpus); 914 915 return 0; 916 } 917 918 early_param("nr_cpus", nrcpus); 919 920 static int __init maxcpus(char *str) 921 { 922 get_option(&str, &setup_max_cpus); 923 if (setup_max_cpus == 0) 924 arch_disable_smp_support(); 925 926 return 0; 927 } 928 929 early_param("maxcpus", maxcpus); 930 931 #if (NR_CPUS > 1) && !defined(CONFIG_FORCE_NR_CPUS) 932 /* Setup number of possible processor ids */ 933 unsigned int nr_cpu_ids __read_mostly = NR_CPUS; 934 EXPORT_SYMBOL(nr_cpu_ids); 935 #endif 936 937 /* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */ 938 void __init setup_nr_cpu_ids(void) 939 { 940 set_nr_cpu_ids(find_last_bit(cpumask_bits(cpu_possible_mask), NR_CPUS) + 1); 941 } 942 943 /* Called by boot processor to activate the rest. */ 944 void __init smp_init(void) 945 { 946 int num_nodes, num_cpus; 947 948 idle_threads_init(); 949 cpuhp_threads_init(); 950 951 pr_info("Bringing up secondary CPUs ...\n"); 952 953 bringup_nonboot_cpus(setup_max_cpus); 954 955 num_nodes = num_online_nodes(); 956 num_cpus = num_online_cpus(); 957 pr_info("Brought up %d node%s, %d CPU%s\n", 958 num_nodes, (num_nodes > 1 ? "s" : ""), 959 num_cpus, (num_cpus > 1 ? "s" : "")); 960 961 /* Any cleanup work */ 962 smp_cpus_done(setup_max_cpus); 963 } 964 965 /* 966 * on_each_cpu_cond(): Call a function on each processor for which 967 * the supplied function cond_func returns true, optionally waiting 968 * for all the required CPUs to finish. This may include the local 969 * processor. 970 * @cond_func: A callback function that is passed a cpu id and 971 * the info parameter. The function is called 972 * with preemption disabled. The function should 973 * return a blooean value indicating whether to IPI 974 * the specified CPU. 975 * @func: The function to run on all applicable CPUs. 976 * This must be fast and non-blocking. 977 * @info: An arbitrary pointer to pass to both functions. 978 * @wait: If true, wait (atomically) until function has 979 * completed on other CPUs. 980 * 981 * Preemption is disabled to protect against CPUs going offline but not online. 982 * CPUs going online during the call will not be seen or sent an IPI. 983 * 984 * You must not call this function with disabled interrupts or 985 * from a hardware interrupt handler or from a bottom half handler. 986 */ 987 void on_each_cpu_cond_mask(smp_cond_func_t cond_func, smp_call_func_t func, 988 void *info, bool wait, const struct cpumask *mask) 989 { 990 unsigned int scf_flags = SCF_RUN_LOCAL; 991 992 if (wait) 993 scf_flags |= SCF_WAIT; 994 995 preempt_disable(); 996 smp_call_function_many_cond(mask, func, info, scf_flags, cond_func); 997 preempt_enable(); 998 } 999 EXPORT_SYMBOL(on_each_cpu_cond_mask); 1000 1001 static void do_nothing(void *unused) 1002 { 1003 } 1004 1005 /** 1006 * kick_all_cpus_sync - Force all cpus out of idle 1007 * 1008 * Used to synchronize the update of pm_idle function pointer. It's 1009 * called after the pointer is updated and returns after the dummy 1010 * callback function has been executed on all cpus. The execution of 1011 * the function can only happen on the remote cpus after they have 1012 * left the idle function which had been called via pm_idle function 1013 * pointer. So it's guaranteed that nothing uses the previous pointer 1014 * anymore. 1015 */ 1016 void kick_all_cpus_sync(void) 1017 { 1018 /* Make sure the change is visible before we kick the cpus */ 1019 smp_mb(); 1020 smp_call_function(do_nothing, NULL, 1); 1021 } 1022 EXPORT_SYMBOL_GPL(kick_all_cpus_sync); 1023 1024 /** 1025 * wake_up_all_idle_cpus - break all cpus out of idle 1026 * wake_up_all_idle_cpus try to break all cpus which is in idle state even 1027 * including idle polling cpus, for non-idle cpus, we will do nothing 1028 * for them. 1029 */ 1030 void wake_up_all_idle_cpus(void) 1031 { 1032 int cpu; 1033 1034 for_each_possible_cpu(cpu) { 1035 preempt_disable(); 1036 if (cpu != smp_processor_id() && cpu_online(cpu)) 1037 wake_up_if_idle(cpu); 1038 preempt_enable(); 1039 } 1040 } 1041 EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus); 1042 1043 /** 1044 * struct smp_call_on_cpu_struct - Call a function on a specific CPU 1045 * @work: &work_struct 1046 * @done: &completion to signal 1047 * @func: function to call 1048 * @data: function's data argument 1049 * @ret: return value from @func 1050 * @cpu: target CPU (%-1 for any CPU) 1051 * 1052 * Used to call a function on a specific cpu and wait for it to return. 1053 * Optionally make sure the call is done on a specified physical cpu via vcpu 1054 * pinning in order to support virtualized environments. 1055 */ 1056 struct smp_call_on_cpu_struct { 1057 struct work_struct work; 1058 struct completion done; 1059 int (*func)(void *); 1060 void *data; 1061 int ret; 1062 int cpu; 1063 }; 1064 1065 static void smp_call_on_cpu_callback(struct work_struct *work) 1066 { 1067 struct smp_call_on_cpu_struct *sscs; 1068 1069 sscs = container_of(work, struct smp_call_on_cpu_struct, work); 1070 if (sscs->cpu >= 0) 1071 hypervisor_pin_vcpu(sscs->cpu); 1072 sscs->ret = sscs->func(sscs->data); 1073 if (sscs->cpu >= 0) 1074 hypervisor_pin_vcpu(-1); 1075 1076 complete(&sscs->done); 1077 } 1078 1079 int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys) 1080 { 1081 struct smp_call_on_cpu_struct sscs = { 1082 .done = COMPLETION_INITIALIZER_ONSTACK(sscs.done), 1083 .func = func, 1084 .data = par, 1085 .cpu = phys ? cpu : -1, 1086 }; 1087 1088 INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback); 1089 1090 if (cpu >= nr_cpu_ids || !cpu_online(cpu)) 1091 return -ENXIO; 1092 1093 queue_work_on(cpu, system_wq, &sscs.work); 1094 wait_for_completion(&sscs.done); 1095 1096 return sscs.ret; 1097 } 1098 EXPORT_SYMBOL_GPL(smp_call_on_cpu); 1099