1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic helpers for smp ipi calls 4 * 5 * (C) Jens Axboe <jens.axboe@oracle.com> 2008 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/irq_work.h> 11 #include <linux/rcupdate.h> 12 #include <linux/rculist.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/percpu.h> 16 #include <linux/init.h> 17 #include <linux/interrupt.h> 18 #include <linux/gfp.h> 19 #include <linux/smp.h> 20 #include <linux/cpu.h> 21 #include <linux/sched.h> 22 #include <linux/sched/idle.h> 23 #include <linux/hypervisor.h> 24 #include <linux/sched/clock.h> 25 #include <linux/nmi.h> 26 #include <linux/sched/debug.h> 27 #include <linux/jump_label.h> 28 29 #include "smpboot.h" 30 #include "sched/smp.h" 31 32 #define CSD_TYPE(_csd) ((_csd)->node.u_flags & CSD_FLAG_TYPE_MASK) 33 34 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG 35 union cfd_seq_cnt { 36 u64 val; 37 struct { 38 u64 src:16; 39 u64 dst:16; 40 #define CFD_SEQ_NOCPU 0xffff 41 u64 type:4; 42 #define CFD_SEQ_QUEUE 0 43 #define CFD_SEQ_IPI 1 44 #define CFD_SEQ_NOIPI 2 45 #define CFD_SEQ_PING 3 46 #define CFD_SEQ_PINGED 4 47 #define CFD_SEQ_HANDLE 5 48 #define CFD_SEQ_DEQUEUE 6 49 #define CFD_SEQ_IDLE 7 50 #define CFD_SEQ_GOTIPI 8 51 #define CFD_SEQ_HDLEND 9 52 u64 cnt:28; 53 } u; 54 }; 55 56 static char *seq_type[] = { 57 [CFD_SEQ_QUEUE] = "queue", 58 [CFD_SEQ_IPI] = "ipi", 59 [CFD_SEQ_NOIPI] = "noipi", 60 [CFD_SEQ_PING] = "ping", 61 [CFD_SEQ_PINGED] = "pinged", 62 [CFD_SEQ_HANDLE] = "handle", 63 [CFD_SEQ_DEQUEUE] = "dequeue (src CPU 0 == empty)", 64 [CFD_SEQ_IDLE] = "idle", 65 [CFD_SEQ_GOTIPI] = "gotipi", 66 [CFD_SEQ_HDLEND] = "hdlend (src CPU 0 == early)", 67 }; 68 69 struct cfd_seq_local { 70 u64 ping; 71 u64 pinged; 72 u64 handle; 73 u64 dequeue; 74 u64 idle; 75 u64 gotipi; 76 u64 hdlend; 77 }; 78 #endif 79 80 struct cfd_percpu { 81 call_single_data_t csd; 82 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG 83 u64 seq_queue; 84 u64 seq_ipi; 85 u64 seq_noipi; 86 #endif 87 }; 88 89 struct call_function_data { 90 struct cfd_percpu __percpu *pcpu; 91 cpumask_var_t cpumask; 92 cpumask_var_t cpumask_ipi; 93 }; 94 95 static DEFINE_PER_CPU_ALIGNED(struct call_function_data, cfd_data); 96 97 static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue); 98 99 static void flush_smp_call_function_queue(bool warn_cpu_offline); 100 101 int smpcfd_prepare_cpu(unsigned int cpu) 102 { 103 struct call_function_data *cfd = &per_cpu(cfd_data, cpu); 104 105 if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL, 106 cpu_to_node(cpu))) 107 return -ENOMEM; 108 if (!zalloc_cpumask_var_node(&cfd->cpumask_ipi, GFP_KERNEL, 109 cpu_to_node(cpu))) { 110 free_cpumask_var(cfd->cpumask); 111 return -ENOMEM; 112 } 113 cfd->pcpu = alloc_percpu(struct cfd_percpu); 114 if (!cfd->pcpu) { 115 free_cpumask_var(cfd->cpumask); 116 free_cpumask_var(cfd->cpumask_ipi); 117 return -ENOMEM; 118 } 119 120 return 0; 121 } 122 123 int smpcfd_dead_cpu(unsigned int cpu) 124 { 125 struct call_function_data *cfd = &per_cpu(cfd_data, cpu); 126 127 free_cpumask_var(cfd->cpumask); 128 free_cpumask_var(cfd->cpumask_ipi); 129 free_percpu(cfd->pcpu); 130 return 0; 131 } 132 133 int smpcfd_dying_cpu(unsigned int cpu) 134 { 135 /* 136 * The IPIs for the smp-call-function callbacks queued by other 137 * CPUs might arrive late, either due to hardware latencies or 138 * because this CPU disabled interrupts (inside stop-machine) 139 * before the IPIs were sent. So flush out any pending callbacks 140 * explicitly (without waiting for the IPIs to arrive), to 141 * ensure that the outgoing CPU doesn't go offline with work 142 * still pending. 143 */ 144 flush_smp_call_function_queue(false); 145 irq_work_run(); 146 return 0; 147 } 148 149 void __init call_function_init(void) 150 { 151 int i; 152 153 for_each_possible_cpu(i) 154 init_llist_head(&per_cpu(call_single_queue, i)); 155 156 smpcfd_prepare_cpu(smp_processor_id()); 157 } 158 159 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG 160 161 static DEFINE_STATIC_KEY_FALSE(csdlock_debug_enabled); 162 static DEFINE_STATIC_KEY_FALSE(csdlock_debug_extended); 163 164 static int __init csdlock_debug(char *str) 165 { 166 unsigned int val = 0; 167 168 if (str && !strcmp(str, "ext")) { 169 val = 1; 170 static_branch_enable(&csdlock_debug_extended); 171 } else 172 get_option(&str, &val); 173 174 if (val) 175 static_branch_enable(&csdlock_debug_enabled); 176 177 return 0; 178 } 179 early_param("csdlock_debug", csdlock_debug); 180 181 static DEFINE_PER_CPU(call_single_data_t *, cur_csd); 182 static DEFINE_PER_CPU(smp_call_func_t, cur_csd_func); 183 static DEFINE_PER_CPU(void *, cur_csd_info); 184 static DEFINE_PER_CPU(struct cfd_seq_local, cfd_seq_local); 185 186 static ulong csd_lock_timeout = 5000; /* CSD lock timeout in milliseconds. */ 187 module_param(csd_lock_timeout, ulong, 0444); 188 189 static atomic_t csd_bug_count = ATOMIC_INIT(0); 190 static u64 cfd_seq; 191 192 #define CFD_SEQ(s, d, t, c) \ 193 (union cfd_seq_cnt){ .u.src = s, .u.dst = d, .u.type = t, .u.cnt = c } 194 195 static u64 cfd_seq_inc(unsigned int src, unsigned int dst, unsigned int type) 196 { 197 union cfd_seq_cnt new, old; 198 199 new = CFD_SEQ(src, dst, type, 0); 200 201 do { 202 old.val = READ_ONCE(cfd_seq); 203 new.u.cnt = old.u.cnt + 1; 204 } while (cmpxchg(&cfd_seq, old.val, new.val) != old.val); 205 206 return old.val; 207 } 208 209 #define cfd_seq_store(var, src, dst, type) \ 210 do { \ 211 if (static_branch_unlikely(&csdlock_debug_extended)) \ 212 var = cfd_seq_inc(src, dst, type); \ 213 } while (0) 214 215 /* Record current CSD work for current CPU, NULL to erase. */ 216 static void __csd_lock_record(struct __call_single_data *csd) 217 { 218 if (!csd) { 219 smp_mb(); /* NULL cur_csd after unlock. */ 220 __this_cpu_write(cur_csd, NULL); 221 return; 222 } 223 __this_cpu_write(cur_csd_func, csd->func); 224 __this_cpu_write(cur_csd_info, csd->info); 225 smp_wmb(); /* func and info before csd. */ 226 __this_cpu_write(cur_csd, csd); 227 smp_mb(); /* Update cur_csd before function call. */ 228 /* Or before unlock, as the case may be. */ 229 } 230 231 static __always_inline void csd_lock_record(struct __call_single_data *csd) 232 { 233 if (static_branch_unlikely(&csdlock_debug_enabled)) 234 __csd_lock_record(csd); 235 } 236 237 static int csd_lock_wait_getcpu(struct __call_single_data *csd) 238 { 239 unsigned int csd_type; 240 241 csd_type = CSD_TYPE(csd); 242 if (csd_type == CSD_TYPE_ASYNC || csd_type == CSD_TYPE_SYNC) 243 return csd->node.dst; /* Other CSD_TYPE_ values might not have ->dst. */ 244 return -1; 245 } 246 247 static void cfd_seq_data_add(u64 val, unsigned int src, unsigned int dst, 248 unsigned int type, union cfd_seq_cnt *data, 249 unsigned int *n_data, unsigned int now) 250 { 251 union cfd_seq_cnt new[2]; 252 unsigned int i, j, k; 253 254 new[0].val = val; 255 new[1] = CFD_SEQ(src, dst, type, new[0].u.cnt + 1); 256 257 for (i = 0; i < 2; i++) { 258 if (new[i].u.cnt <= now) 259 new[i].u.cnt |= 0x80000000U; 260 for (j = 0; j < *n_data; j++) { 261 if (new[i].u.cnt == data[j].u.cnt) { 262 /* Direct read value trumps generated one. */ 263 if (i == 0) 264 data[j].val = new[i].val; 265 break; 266 } 267 if (new[i].u.cnt < data[j].u.cnt) { 268 for (k = *n_data; k > j; k--) 269 data[k].val = data[k - 1].val; 270 data[j].val = new[i].val; 271 (*n_data)++; 272 break; 273 } 274 } 275 if (j == *n_data) { 276 data[j].val = new[i].val; 277 (*n_data)++; 278 } 279 } 280 } 281 282 static const char *csd_lock_get_type(unsigned int type) 283 { 284 return (type >= ARRAY_SIZE(seq_type)) ? "?" : seq_type[type]; 285 } 286 287 static void csd_lock_print_extended(struct __call_single_data *csd, int cpu) 288 { 289 struct cfd_seq_local *seq = &per_cpu(cfd_seq_local, cpu); 290 unsigned int srccpu = csd->node.src; 291 struct call_function_data *cfd = per_cpu_ptr(&cfd_data, srccpu); 292 struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu); 293 unsigned int now; 294 union cfd_seq_cnt data[2 * ARRAY_SIZE(seq_type)]; 295 unsigned int n_data = 0, i; 296 297 data[0].val = READ_ONCE(cfd_seq); 298 now = data[0].u.cnt; 299 300 cfd_seq_data_add(pcpu->seq_queue, srccpu, cpu, CFD_SEQ_QUEUE, data, &n_data, now); 301 cfd_seq_data_add(pcpu->seq_ipi, srccpu, cpu, CFD_SEQ_IPI, data, &n_data, now); 302 cfd_seq_data_add(pcpu->seq_noipi, srccpu, cpu, CFD_SEQ_NOIPI, data, &n_data, now); 303 304 cfd_seq_data_add(per_cpu(cfd_seq_local.ping, srccpu), srccpu, CFD_SEQ_NOCPU, CFD_SEQ_PING, data, &n_data, now); 305 cfd_seq_data_add(per_cpu(cfd_seq_local.pinged, srccpu), srccpu, CFD_SEQ_NOCPU, CFD_SEQ_PINGED, data, &n_data, now); 306 307 cfd_seq_data_add(seq->idle, CFD_SEQ_NOCPU, cpu, CFD_SEQ_IDLE, data, &n_data, now); 308 cfd_seq_data_add(seq->gotipi, CFD_SEQ_NOCPU, cpu, CFD_SEQ_GOTIPI, data, &n_data, now); 309 cfd_seq_data_add(seq->handle, CFD_SEQ_NOCPU, cpu, CFD_SEQ_HANDLE, data, &n_data, now); 310 cfd_seq_data_add(seq->dequeue, CFD_SEQ_NOCPU, cpu, CFD_SEQ_DEQUEUE, data, &n_data, now); 311 cfd_seq_data_add(seq->hdlend, CFD_SEQ_NOCPU, cpu, CFD_SEQ_HDLEND, data, &n_data, now); 312 313 for (i = 0; i < n_data; i++) { 314 pr_alert("\tcsd: cnt(%07x): %04x->%04x %s\n", 315 data[i].u.cnt & ~0x80000000U, data[i].u.src, 316 data[i].u.dst, csd_lock_get_type(data[i].u.type)); 317 } 318 pr_alert("\tcsd: cnt now: %07x\n", now); 319 } 320 321 /* 322 * Complain if too much time spent waiting. Note that only 323 * the CSD_TYPE_SYNC/ASYNC types provide the destination CPU, 324 * so waiting on other types gets much less information. 325 */ 326 static bool csd_lock_wait_toolong(struct __call_single_data *csd, u64 ts0, u64 *ts1, int *bug_id) 327 { 328 int cpu = -1; 329 int cpux; 330 bool firsttime; 331 u64 ts2, ts_delta; 332 call_single_data_t *cpu_cur_csd; 333 unsigned int flags = READ_ONCE(csd->node.u_flags); 334 unsigned long long csd_lock_timeout_ns = csd_lock_timeout * NSEC_PER_MSEC; 335 336 if (!(flags & CSD_FLAG_LOCK)) { 337 if (!unlikely(*bug_id)) 338 return true; 339 cpu = csd_lock_wait_getcpu(csd); 340 pr_alert("csd: CSD lock (#%d) got unstuck on CPU#%02d, CPU#%02d released the lock.\n", 341 *bug_id, raw_smp_processor_id(), cpu); 342 return true; 343 } 344 345 ts2 = sched_clock(); 346 ts_delta = ts2 - *ts1; 347 if (likely(ts_delta <= csd_lock_timeout_ns || csd_lock_timeout_ns == 0)) 348 return false; 349 350 firsttime = !*bug_id; 351 if (firsttime) 352 *bug_id = atomic_inc_return(&csd_bug_count); 353 cpu = csd_lock_wait_getcpu(csd); 354 if (WARN_ONCE(cpu < 0 || cpu >= nr_cpu_ids, "%s: cpu = %d\n", __func__, cpu)) 355 cpux = 0; 356 else 357 cpux = cpu; 358 cpu_cur_csd = smp_load_acquire(&per_cpu(cur_csd, cpux)); /* Before func and info. */ 359 pr_alert("csd: %s non-responsive CSD lock (#%d) on CPU#%d, waiting %llu ns for CPU#%02d %pS(%ps).\n", 360 firsttime ? "Detected" : "Continued", *bug_id, raw_smp_processor_id(), ts2 - ts0, 361 cpu, csd->func, csd->info); 362 if (cpu_cur_csd && csd != cpu_cur_csd) { 363 pr_alert("\tcsd: CSD lock (#%d) handling prior %pS(%ps) request.\n", 364 *bug_id, READ_ONCE(per_cpu(cur_csd_func, cpux)), 365 READ_ONCE(per_cpu(cur_csd_info, cpux))); 366 } else { 367 pr_alert("\tcsd: CSD lock (#%d) %s.\n", 368 *bug_id, !cpu_cur_csd ? "unresponsive" : "handling this request"); 369 } 370 if (cpu >= 0) { 371 if (static_branch_unlikely(&csdlock_debug_extended)) 372 csd_lock_print_extended(csd, cpu); 373 if (!trigger_single_cpu_backtrace(cpu)) 374 dump_cpu_task(cpu); 375 if (!cpu_cur_csd) { 376 pr_alert("csd: Re-sending CSD lock (#%d) IPI from CPU#%02d to CPU#%02d\n", *bug_id, raw_smp_processor_id(), cpu); 377 arch_send_call_function_single_ipi(cpu); 378 } 379 } 380 dump_stack(); 381 *ts1 = ts2; 382 383 return false; 384 } 385 386 /* 387 * csd_lock/csd_unlock used to serialize access to per-cpu csd resources 388 * 389 * For non-synchronous ipi calls the csd can still be in use by the 390 * previous function call. For multi-cpu calls its even more interesting 391 * as we'll have to ensure no other cpu is observing our csd. 392 */ 393 static void __csd_lock_wait(struct __call_single_data *csd) 394 { 395 int bug_id = 0; 396 u64 ts0, ts1; 397 398 ts1 = ts0 = sched_clock(); 399 for (;;) { 400 if (csd_lock_wait_toolong(csd, ts0, &ts1, &bug_id)) 401 break; 402 cpu_relax(); 403 } 404 smp_acquire__after_ctrl_dep(); 405 } 406 407 static __always_inline void csd_lock_wait(struct __call_single_data *csd) 408 { 409 if (static_branch_unlikely(&csdlock_debug_enabled)) { 410 __csd_lock_wait(csd); 411 return; 412 } 413 414 smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK)); 415 } 416 417 static void __smp_call_single_queue_debug(int cpu, struct llist_node *node) 418 { 419 unsigned int this_cpu = smp_processor_id(); 420 struct cfd_seq_local *seq = this_cpu_ptr(&cfd_seq_local); 421 struct call_function_data *cfd = this_cpu_ptr(&cfd_data); 422 struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu); 423 424 cfd_seq_store(pcpu->seq_queue, this_cpu, cpu, CFD_SEQ_QUEUE); 425 if (llist_add(node, &per_cpu(call_single_queue, cpu))) { 426 cfd_seq_store(pcpu->seq_ipi, this_cpu, cpu, CFD_SEQ_IPI); 427 cfd_seq_store(seq->ping, this_cpu, cpu, CFD_SEQ_PING); 428 send_call_function_single_ipi(cpu); 429 cfd_seq_store(seq->pinged, this_cpu, cpu, CFD_SEQ_PINGED); 430 } else { 431 cfd_seq_store(pcpu->seq_noipi, this_cpu, cpu, CFD_SEQ_NOIPI); 432 } 433 } 434 #else 435 #define cfd_seq_store(var, src, dst, type) 436 437 static void csd_lock_record(struct __call_single_data *csd) 438 { 439 } 440 441 static __always_inline void csd_lock_wait(struct __call_single_data *csd) 442 { 443 smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK)); 444 } 445 #endif 446 447 static __always_inline void csd_lock(struct __call_single_data *csd) 448 { 449 csd_lock_wait(csd); 450 csd->node.u_flags |= CSD_FLAG_LOCK; 451 452 /* 453 * prevent CPU from reordering the above assignment 454 * to ->flags with any subsequent assignments to other 455 * fields of the specified call_single_data_t structure: 456 */ 457 smp_wmb(); 458 } 459 460 static __always_inline void csd_unlock(struct __call_single_data *csd) 461 { 462 WARN_ON(!(csd->node.u_flags & CSD_FLAG_LOCK)); 463 464 /* 465 * ensure we're all done before releasing data: 466 */ 467 smp_store_release(&csd->node.u_flags, 0); 468 } 469 470 static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data); 471 472 void __smp_call_single_queue(int cpu, struct llist_node *node) 473 { 474 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG 475 if (static_branch_unlikely(&csdlock_debug_extended)) { 476 unsigned int type; 477 478 type = CSD_TYPE(container_of(node, call_single_data_t, 479 node.llist)); 480 if (type == CSD_TYPE_SYNC || type == CSD_TYPE_ASYNC) { 481 __smp_call_single_queue_debug(cpu, node); 482 return; 483 } 484 } 485 #endif 486 487 /* 488 * The list addition should be visible before sending the IPI 489 * handler locks the list to pull the entry off it because of 490 * normal cache coherency rules implied by spinlocks. 491 * 492 * If IPIs can go out of order to the cache coherency protocol 493 * in an architecture, sufficient synchronisation should be added 494 * to arch code to make it appear to obey cache coherency WRT 495 * locking and barrier primitives. Generic code isn't really 496 * equipped to do the right thing... 497 */ 498 if (llist_add(node, &per_cpu(call_single_queue, cpu))) 499 send_call_function_single_ipi(cpu); 500 } 501 502 /* 503 * Insert a previously allocated call_single_data_t element 504 * for execution on the given CPU. data must already have 505 * ->func, ->info, and ->flags set. 506 */ 507 static int generic_exec_single(int cpu, struct __call_single_data *csd) 508 { 509 if (cpu == smp_processor_id()) { 510 smp_call_func_t func = csd->func; 511 void *info = csd->info; 512 unsigned long flags; 513 514 /* 515 * We can unlock early even for the synchronous on-stack case, 516 * since we're doing this from the same CPU.. 517 */ 518 csd_lock_record(csd); 519 csd_unlock(csd); 520 local_irq_save(flags); 521 func(info); 522 csd_lock_record(NULL); 523 local_irq_restore(flags); 524 return 0; 525 } 526 527 if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) { 528 csd_unlock(csd); 529 return -ENXIO; 530 } 531 532 __smp_call_single_queue(cpu, &csd->node.llist); 533 534 return 0; 535 } 536 537 /** 538 * generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks 539 * 540 * Invoked by arch to handle an IPI for call function single. 541 * Must be called with interrupts disabled. 542 */ 543 void generic_smp_call_function_single_interrupt(void) 544 { 545 cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->gotipi, CFD_SEQ_NOCPU, 546 smp_processor_id(), CFD_SEQ_GOTIPI); 547 flush_smp_call_function_queue(true); 548 } 549 550 /** 551 * flush_smp_call_function_queue - Flush pending smp-call-function callbacks 552 * 553 * @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an 554 * offline CPU. Skip this check if set to 'false'. 555 * 556 * Flush any pending smp-call-function callbacks queued on this CPU. This is 557 * invoked by the generic IPI handler, as well as by a CPU about to go offline, 558 * to ensure that all pending IPI callbacks are run before it goes completely 559 * offline. 560 * 561 * Loop through the call_single_queue and run all the queued callbacks. 562 * Must be called with interrupts disabled. 563 */ 564 static void flush_smp_call_function_queue(bool warn_cpu_offline) 565 { 566 call_single_data_t *csd, *csd_next; 567 struct llist_node *entry, *prev; 568 struct llist_head *head; 569 static bool warned; 570 571 lockdep_assert_irqs_disabled(); 572 573 head = this_cpu_ptr(&call_single_queue); 574 cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->handle, CFD_SEQ_NOCPU, 575 smp_processor_id(), CFD_SEQ_HANDLE); 576 entry = llist_del_all(head); 577 cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->dequeue, 578 /* Special meaning of source cpu: 0 == queue empty */ 579 entry ? CFD_SEQ_NOCPU : 0, 580 smp_processor_id(), CFD_SEQ_DEQUEUE); 581 entry = llist_reverse_order(entry); 582 583 /* There shouldn't be any pending callbacks on an offline CPU. */ 584 if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) && 585 !warned && entry != NULL)) { 586 warned = true; 587 WARN(1, "IPI on offline CPU %d\n", smp_processor_id()); 588 589 /* 590 * We don't have to use the _safe() variant here 591 * because we are not invoking the IPI handlers yet. 592 */ 593 llist_for_each_entry(csd, entry, node.llist) { 594 switch (CSD_TYPE(csd)) { 595 case CSD_TYPE_ASYNC: 596 case CSD_TYPE_SYNC: 597 case CSD_TYPE_IRQ_WORK: 598 pr_warn("IPI callback %pS sent to offline CPU\n", 599 csd->func); 600 break; 601 602 case CSD_TYPE_TTWU: 603 pr_warn("IPI task-wakeup sent to offline CPU\n"); 604 break; 605 606 default: 607 pr_warn("IPI callback, unknown type %d, sent to offline CPU\n", 608 CSD_TYPE(csd)); 609 break; 610 } 611 } 612 } 613 614 /* 615 * First; run all SYNC callbacks, people are waiting for us. 616 */ 617 prev = NULL; 618 llist_for_each_entry_safe(csd, csd_next, entry, node.llist) { 619 /* Do we wait until *after* callback? */ 620 if (CSD_TYPE(csd) == CSD_TYPE_SYNC) { 621 smp_call_func_t func = csd->func; 622 void *info = csd->info; 623 624 if (prev) { 625 prev->next = &csd_next->node.llist; 626 } else { 627 entry = &csd_next->node.llist; 628 } 629 630 csd_lock_record(csd); 631 func(info); 632 csd_unlock(csd); 633 csd_lock_record(NULL); 634 } else { 635 prev = &csd->node.llist; 636 } 637 } 638 639 if (!entry) { 640 cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->hdlend, 641 0, smp_processor_id(), 642 CFD_SEQ_HDLEND); 643 return; 644 } 645 646 /* 647 * Second; run all !SYNC callbacks. 648 */ 649 prev = NULL; 650 llist_for_each_entry_safe(csd, csd_next, entry, node.llist) { 651 int type = CSD_TYPE(csd); 652 653 if (type != CSD_TYPE_TTWU) { 654 if (prev) { 655 prev->next = &csd_next->node.llist; 656 } else { 657 entry = &csd_next->node.llist; 658 } 659 660 if (type == CSD_TYPE_ASYNC) { 661 smp_call_func_t func = csd->func; 662 void *info = csd->info; 663 664 csd_lock_record(csd); 665 csd_unlock(csd); 666 func(info); 667 csd_lock_record(NULL); 668 } else if (type == CSD_TYPE_IRQ_WORK) { 669 irq_work_single(csd); 670 } 671 672 } else { 673 prev = &csd->node.llist; 674 } 675 } 676 677 /* 678 * Third; only CSD_TYPE_TTWU is left, issue those. 679 */ 680 if (entry) 681 sched_ttwu_pending(entry); 682 683 cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->hdlend, CFD_SEQ_NOCPU, 684 smp_processor_id(), CFD_SEQ_HDLEND); 685 } 686 687 void flush_smp_call_function_from_idle(void) 688 { 689 unsigned long flags; 690 691 if (llist_empty(this_cpu_ptr(&call_single_queue))) 692 return; 693 694 cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->idle, CFD_SEQ_NOCPU, 695 smp_processor_id(), CFD_SEQ_IDLE); 696 local_irq_save(flags); 697 flush_smp_call_function_queue(true); 698 if (local_softirq_pending()) 699 do_softirq(); 700 701 local_irq_restore(flags); 702 } 703 704 /* 705 * smp_call_function_single - Run a function on a specific CPU 706 * @func: The function to run. This must be fast and non-blocking. 707 * @info: An arbitrary pointer to pass to the function. 708 * @wait: If true, wait until function has completed on other CPUs. 709 * 710 * Returns 0 on success, else a negative status code. 711 */ 712 int smp_call_function_single(int cpu, smp_call_func_t func, void *info, 713 int wait) 714 { 715 call_single_data_t *csd; 716 call_single_data_t csd_stack = { 717 .node = { .u_flags = CSD_FLAG_LOCK | CSD_TYPE_SYNC, }, 718 }; 719 int this_cpu; 720 int err; 721 722 /* 723 * prevent preemption and reschedule on another processor, 724 * as well as CPU removal 725 */ 726 this_cpu = get_cpu(); 727 728 /* 729 * Can deadlock when called with interrupts disabled. 730 * We allow cpu's that are not yet online though, as no one else can 731 * send smp call function interrupt to this cpu and as such deadlocks 732 * can't happen. 733 */ 734 WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled() 735 && !oops_in_progress); 736 737 /* 738 * When @wait we can deadlock when we interrupt between llist_add() and 739 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to 740 * csd_lock() on because the interrupt context uses the same csd 741 * storage. 742 */ 743 WARN_ON_ONCE(!in_task()); 744 745 csd = &csd_stack; 746 if (!wait) { 747 csd = this_cpu_ptr(&csd_data); 748 csd_lock(csd); 749 } 750 751 csd->func = func; 752 csd->info = info; 753 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG 754 csd->node.src = smp_processor_id(); 755 csd->node.dst = cpu; 756 #endif 757 758 err = generic_exec_single(cpu, csd); 759 760 if (wait) 761 csd_lock_wait(csd); 762 763 put_cpu(); 764 765 return err; 766 } 767 EXPORT_SYMBOL(smp_call_function_single); 768 769 /** 770 * smp_call_function_single_async() - Run an asynchronous function on a 771 * specific CPU. 772 * @cpu: The CPU to run on. 773 * @csd: Pre-allocated and setup data structure 774 * 775 * Like smp_call_function_single(), but the call is asynchonous and 776 * can thus be done from contexts with disabled interrupts. 777 * 778 * The caller passes his own pre-allocated data structure 779 * (ie: embedded in an object) and is responsible for synchronizing it 780 * such that the IPIs performed on the @csd are strictly serialized. 781 * 782 * If the function is called with one csd which has not yet been 783 * processed by previous call to smp_call_function_single_async(), the 784 * function will return immediately with -EBUSY showing that the csd 785 * object is still in progress. 786 * 787 * NOTE: Be careful, there is unfortunately no current debugging facility to 788 * validate the correctness of this serialization. 789 * 790 * Return: %0 on success or negative errno value on error 791 */ 792 int smp_call_function_single_async(int cpu, struct __call_single_data *csd) 793 { 794 int err = 0; 795 796 preempt_disable(); 797 798 if (csd->node.u_flags & CSD_FLAG_LOCK) { 799 err = -EBUSY; 800 goto out; 801 } 802 803 csd->node.u_flags = CSD_FLAG_LOCK; 804 smp_wmb(); 805 806 err = generic_exec_single(cpu, csd); 807 808 out: 809 preempt_enable(); 810 811 return err; 812 } 813 EXPORT_SYMBOL_GPL(smp_call_function_single_async); 814 815 /* 816 * smp_call_function_any - Run a function on any of the given cpus 817 * @mask: The mask of cpus it can run on. 818 * @func: The function to run. This must be fast and non-blocking. 819 * @info: An arbitrary pointer to pass to the function. 820 * @wait: If true, wait until function has completed. 821 * 822 * Returns 0 on success, else a negative status code (if no cpus were online). 823 * 824 * Selection preference: 825 * 1) current cpu if in @mask 826 * 2) any cpu of current node if in @mask 827 * 3) any other online cpu in @mask 828 */ 829 int smp_call_function_any(const struct cpumask *mask, 830 smp_call_func_t func, void *info, int wait) 831 { 832 unsigned int cpu; 833 const struct cpumask *nodemask; 834 int ret; 835 836 /* Try for same CPU (cheapest) */ 837 cpu = get_cpu(); 838 if (cpumask_test_cpu(cpu, mask)) 839 goto call; 840 841 /* Try for same node. */ 842 nodemask = cpumask_of_node(cpu_to_node(cpu)); 843 for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids; 844 cpu = cpumask_next_and(cpu, nodemask, mask)) { 845 if (cpu_online(cpu)) 846 goto call; 847 } 848 849 /* Any online will do: smp_call_function_single handles nr_cpu_ids. */ 850 cpu = cpumask_any_and(mask, cpu_online_mask); 851 call: 852 ret = smp_call_function_single(cpu, func, info, wait); 853 put_cpu(); 854 return ret; 855 } 856 EXPORT_SYMBOL_GPL(smp_call_function_any); 857 858 /* 859 * Flags to be used as scf_flags argument of smp_call_function_many_cond(). 860 * 861 * %SCF_WAIT: Wait until function execution is completed 862 * %SCF_RUN_LOCAL: Run also locally if local cpu is set in cpumask 863 */ 864 #define SCF_WAIT (1U << 0) 865 #define SCF_RUN_LOCAL (1U << 1) 866 867 static void smp_call_function_many_cond(const struct cpumask *mask, 868 smp_call_func_t func, void *info, 869 unsigned int scf_flags, 870 smp_cond_func_t cond_func) 871 { 872 int cpu, last_cpu, this_cpu = smp_processor_id(); 873 struct call_function_data *cfd; 874 bool wait = scf_flags & SCF_WAIT; 875 bool run_remote = false; 876 bool run_local = false; 877 int nr_cpus = 0; 878 879 lockdep_assert_preemption_disabled(); 880 881 /* 882 * Can deadlock when called with interrupts disabled. 883 * We allow cpu's that are not yet online though, as no one else can 884 * send smp call function interrupt to this cpu and as such deadlocks 885 * can't happen. 886 */ 887 if (cpu_online(this_cpu) && !oops_in_progress && 888 !early_boot_irqs_disabled) 889 lockdep_assert_irqs_enabled(); 890 891 /* 892 * When @wait we can deadlock when we interrupt between llist_add() and 893 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to 894 * csd_lock() on because the interrupt context uses the same csd 895 * storage. 896 */ 897 WARN_ON_ONCE(!in_task()); 898 899 /* Check if we need local execution. */ 900 if ((scf_flags & SCF_RUN_LOCAL) && cpumask_test_cpu(this_cpu, mask)) 901 run_local = true; 902 903 /* Check if we need remote execution, i.e., any CPU excluding this one. */ 904 cpu = cpumask_first_and(mask, cpu_online_mask); 905 if (cpu == this_cpu) 906 cpu = cpumask_next_and(cpu, mask, cpu_online_mask); 907 if (cpu < nr_cpu_ids) 908 run_remote = true; 909 910 if (run_remote) { 911 cfd = this_cpu_ptr(&cfd_data); 912 cpumask_and(cfd->cpumask, mask, cpu_online_mask); 913 __cpumask_clear_cpu(this_cpu, cfd->cpumask); 914 915 cpumask_clear(cfd->cpumask_ipi); 916 for_each_cpu(cpu, cfd->cpumask) { 917 struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu); 918 call_single_data_t *csd = &pcpu->csd; 919 920 if (cond_func && !cond_func(cpu, info)) 921 continue; 922 923 csd_lock(csd); 924 if (wait) 925 csd->node.u_flags |= CSD_TYPE_SYNC; 926 csd->func = func; 927 csd->info = info; 928 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG 929 csd->node.src = smp_processor_id(); 930 csd->node.dst = cpu; 931 #endif 932 cfd_seq_store(pcpu->seq_queue, this_cpu, cpu, CFD_SEQ_QUEUE); 933 if (llist_add(&csd->node.llist, &per_cpu(call_single_queue, cpu))) { 934 __cpumask_set_cpu(cpu, cfd->cpumask_ipi); 935 nr_cpus++; 936 last_cpu = cpu; 937 938 cfd_seq_store(pcpu->seq_ipi, this_cpu, cpu, CFD_SEQ_IPI); 939 } else { 940 cfd_seq_store(pcpu->seq_noipi, this_cpu, cpu, CFD_SEQ_NOIPI); 941 } 942 } 943 944 cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->ping, this_cpu, CFD_SEQ_NOCPU, CFD_SEQ_PING); 945 946 /* 947 * Choose the most efficient way to send an IPI. Note that the 948 * number of CPUs might be zero due to concurrent changes to the 949 * provided mask. 950 */ 951 if (nr_cpus == 1) 952 send_call_function_single_ipi(last_cpu); 953 else if (likely(nr_cpus > 1)) 954 arch_send_call_function_ipi_mask(cfd->cpumask_ipi); 955 956 cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->pinged, this_cpu, CFD_SEQ_NOCPU, CFD_SEQ_PINGED); 957 } 958 959 if (run_local && (!cond_func || cond_func(this_cpu, info))) { 960 unsigned long flags; 961 962 local_irq_save(flags); 963 func(info); 964 local_irq_restore(flags); 965 } 966 967 if (run_remote && wait) { 968 for_each_cpu(cpu, cfd->cpumask) { 969 call_single_data_t *csd; 970 971 csd = &per_cpu_ptr(cfd->pcpu, cpu)->csd; 972 csd_lock_wait(csd); 973 } 974 } 975 } 976 977 /** 978 * smp_call_function_many(): Run a function on a set of CPUs. 979 * @mask: The set of cpus to run on (only runs on online subset). 980 * @func: The function to run. This must be fast and non-blocking. 981 * @info: An arbitrary pointer to pass to the function. 982 * @wait: Bitmask that controls the operation. If %SCF_WAIT is set, wait 983 * (atomically) until function has completed on other CPUs. If 984 * %SCF_RUN_LOCAL is set, the function will also be run locally 985 * if the local CPU is set in the @cpumask. 986 * 987 * If @wait is true, then returns once @func has returned. 988 * 989 * You must not call this function with disabled interrupts or from a 990 * hardware interrupt handler or from a bottom half handler. Preemption 991 * must be disabled when calling this function. 992 */ 993 void smp_call_function_many(const struct cpumask *mask, 994 smp_call_func_t func, void *info, bool wait) 995 { 996 smp_call_function_many_cond(mask, func, info, wait * SCF_WAIT, NULL); 997 } 998 EXPORT_SYMBOL(smp_call_function_many); 999 1000 /** 1001 * smp_call_function(): Run a function on all other CPUs. 1002 * @func: The function to run. This must be fast and non-blocking. 1003 * @info: An arbitrary pointer to pass to the function. 1004 * @wait: If true, wait (atomically) until function has completed 1005 * on other CPUs. 1006 * 1007 * Returns 0. 1008 * 1009 * If @wait is true, then returns once @func has returned; otherwise 1010 * it returns just before the target cpu calls @func. 1011 * 1012 * You must not call this function with disabled interrupts or from a 1013 * hardware interrupt handler or from a bottom half handler. 1014 */ 1015 void smp_call_function(smp_call_func_t func, void *info, int wait) 1016 { 1017 preempt_disable(); 1018 smp_call_function_many(cpu_online_mask, func, info, wait); 1019 preempt_enable(); 1020 } 1021 EXPORT_SYMBOL(smp_call_function); 1022 1023 /* Setup configured maximum number of CPUs to activate */ 1024 unsigned int setup_max_cpus = NR_CPUS; 1025 EXPORT_SYMBOL(setup_max_cpus); 1026 1027 1028 /* 1029 * Setup routine for controlling SMP activation 1030 * 1031 * Command-line option of "nosmp" or "maxcpus=0" will disable SMP 1032 * activation entirely (the MPS table probe still happens, though). 1033 * 1034 * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer 1035 * greater than 0, limits the maximum number of CPUs activated in 1036 * SMP mode to <NUM>. 1037 */ 1038 1039 void __weak arch_disable_smp_support(void) { } 1040 1041 static int __init nosmp(char *str) 1042 { 1043 setup_max_cpus = 0; 1044 arch_disable_smp_support(); 1045 1046 return 0; 1047 } 1048 1049 early_param("nosmp", nosmp); 1050 1051 /* this is hard limit */ 1052 static int __init nrcpus(char *str) 1053 { 1054 int nr_cpus; 1055 1056 if (get_option(&str, &nr_cpus) && nr_cpus > 0 && nr_cpus < nr_cpu_ids) 1057 nr_cpu_ids = nr_cpus; 1058 1059 return 0; 1060 } 1061 1062 early_param("nr_cpus", nrcpus); 1063 1064 static int __init maxcpus(char *str) 1065 { 1066 get_option(&str, &setup_max_cpus); 1067 if (setup_max_cpus == 0) 1068 arch_disable_smp_support(); 1069 1070 return 0; 1071 } 1072 1073 early_param("maxcpus", maxcpus); 1074 1075 /* Setup number of possible processor ids */ 1076 unsigned int nr_cpu_ids __read_mostly = NR_CPUS; 1077 EXPORT_SYMBOL(nr_cpu_ids); 1078 1079 /* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */ 1080 void __init setup_nr_cpu_ids(void) 1081 { 1082 nr_cpu_ids = find_last_bit(cpumask_bits(cpu_possible_mask),NR_CPUS) + 1; 1083 } 1084 1085 /* Called by boot processor to activate the rest. */ 1086 void __init smp_init(void) 1087 { 1088 int num_nodes, num_cpus; 1089 1090 idle_threads_init(); 1091 cpuhp_threads_init(); 1092 1093 pr_info("Bringing up secondary CPUs ...\n"); 1094 1095 bringup_nonboot_cpus(setup_max_cpus); 1096 1097 num_nodes = num_online_nodes(); 1098 num_cpus = num_online_cpus(); 1099 pr_info("Brought up %d node%s, %d CPU%s\n", 1100 num_nodes, (num_nodes > 1 ? "s" : ""), 1101 num_cpus, (num_cpus > 1 ? "s" : "")); 1102 1103 /* Any cleanup work */ 1104 smp_cpus_done(setup_max_cpus); 1105 } 1106 1107 /* 1108 * on_each_cpu_cond(): Call a function on each processor for which 1109 * the supplied function cond_func returns true, optionally waiting 1110 * for all the required CPUs to finish. This may include the local 1111 * processor. 1112 * @cond_func: A callback function that is passed a cpu id and 1113 * the info parameter. The function is called 1114 * with preemption disabled. The function should 1115 * return a blooean value indicating whether to IPI 1116 * the specified CPU. 1117 * @func: The function to run on all applicable CPUs. 1118 * This must be fast and non-blocking. 1119 * @info: An arbitrary pointer to pass to both functions. 1120 * @wait: If true, wait (atomically) until function has 1121 * completed on other CPUs. 1122 * 1123 * Preemption is disabled to protect against CPUs going offline but not online. 1124 * CPUs going online during the call will not be seen or sent an IPI. 1125 * 1126 * You must not call this function with disabled interrupts or 1127 * from a hardware interrupt handler or from a bottom half handler. 1128 */ 1129 void on_each_cpu_cond_mask(smp_cond_func_t cond_func, smp_call_func_t func, 1130 void *info, bool wait, const struct cpumask *mask) 1131 { 1132 unsigned int scf_flags = SCF_RUN_LOCAL; 1133 1134 if (wait) 1135 scf_flags |= SCF_WAIT; 1136 1137 preempt_disable(); 1138 smp_call_function_many_cond(mask, func, info, scf_flags, cond_func); 1139 preempt_enable(); 1140 } 1141 EXPORT_SYMBOL(on_each_cpu_cond_mask); 1142 1143 static void do_nothing(void *unused) 1144 { 1145 } 1146 1147 /** 1148 * kick_all_cpus_sync - Force all cpus out of idle 1149 * 1150 * Used to synchronize the update of pm_idle function pointer. It's 1151 * called after the pointer is updated and returns after the dummy 1152 * callback function has been executed on all cpus. The execution of 1153 * the function can only happen on the remote cpus after they have 1154 * left the idle function which had been called via pm_idle function 1155 * pointer. So it's guaranteed that nothing uses the previous pointer 1156 * anymore. 1157 */ 1158 void kick_all_cpus_sync(void) 1159 { 1160 /* Make sure the change is visible before we kick the cpus */ 1161 smp_mb(); 1162 smp_call_function(do_nothing, NULL, 1); 1163 } 1164 EXPORT_SYMBOL_GPL(kick_all_cpus_sync); 1165 1166 /** 1167 * wake_up_all_idle_cpus - break all cpus out of idle 1168 * wake_up_all_idle_cpus try to break all cpus which is in idle state even 1169 * including idle polling cpus, for non-idle cpus, we will do nothing 1170 * for them. 1171 */ 1172 void wake_up_all_idle_cpus(void) 1173 { 1174 int cpu; 1175 1176 for_each_possible_cpu(cpu) { 1177 preempt_disable(); 1178 if (cpu != smp_processor_id() && cpu_online(cpu)) 1179 wake_up_if_idle(cpu); 1180 preempt_enable(); 1181 } 1182 } 1183 EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus); 1184 1185 /** 1186 * struct smp_call_on_cpu_struct - Call a function on a specific CPU 1187 * @work: &work_struct 1188 * @done: &completion to signal 1189 * @func: function to call 1190 * @data: function's data argument 1191 * @ret: return value from @func 1192 * @cpu: target CPU (%-1 for any CPU) 1193 * 1194 * Used to call a function on a specific cpu and wait for it to return. 1195 * Optionally make sure the call is done on a specified physical cpu via vcpu 1196 * pinning in order to support virtualized environments. 1197 */ 1198 struct smp_call_on_cpu_struct { 1199 struct work_struct work; 1200 struct completion done; 1201 int (*func)(void *); 1202 void *data; 1203 int ret; 1204 int cpu; 1205 }; 1206 1207 static void smp_call_on_cpu_callback(struct work_struct *work) 1208 { 1209 struct smp_call_on_cpu_struct *sscs; 1210 1211 sscs = container_of(work, struct smp_call_on_cpu_struct, work); 1212 if (sscs->cpu >= 0) 1213 hypervisor_pin_vcpu(sscs->cpu); 1214 sscs->ret = sscs->func(sscs->data); 1215 if (sscs->cpu >= 0) 1216 hypervisor_pin_vcpu(-1); 1217 1218 complete(&sscs->done); 1219 } 1220 1221 int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys) 1222 { 1223 struct smp_call_on_cpu_struct sscs = { 1224 .done = COMPLETION_INITIALIZER_ONSTACK(sscs.done), 1225 .func = func, 1226 .data = par, 1227 .cpu = phys ? cpu : -1, 1228 }; 1229 1230 INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback); 1231 1232 if (cpu >= nr_cpu_ids || !cpu_online(cpu)) 1233 return -ENXIO; 1234 1235 queue_work_on(cpu, system_wq, &sscs.work); 1236 wait_for_completion(&sscs.done); 1237 1238 return sscs.ret; 1239 } 1240 EXPORT_SYMBOL_GPL(smp_call_on_cpu); 1241