xref: /openbmc/linux/kernel/signal.c (revision ff8444011fe5790bae9309f278d660b4c3ddc029)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/proc_fs.h>
27 #include <linux/tty.h>
28 #include <linux/binfmts.h>
29 #include <linux/coredump.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/ptrace.h>
33 #include <linux/signal.h>
34 #include <linux/signalfd.h>
35 #include <linux/ratelimit.h>
36 #include <linux/task_work.h>
37 #include <linux/capability.h>
38 #include <linux/freezer.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/nsproxy.h>
41 #include <linux/user_namespace.h>
42 #include <linux/uprobes.h>
43 #include <linux/compat.h>
44 #include <linux/cn_proc.h>
45 #include <linux/compiler.h>
46 #include <linux/posix-timers.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 #include <linux/sysctl.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/signal.h>
53 
54 #include <asm/param.h>
55 #include <linux/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/siginfo.h>
58 #include <asm/cacheflush.h>
59 #include <asm/syscall.h>	/* for syscall_get_* */
60 
61 /*
62  * SLAB caches for signal bits.
63  */
64 
65 static struct kmem_cache *sigqueue_cachep;
66 
67 int print_fatal_signals __read_mostly;
68 
69 static void __user *sig_handler(struct task_struct *t, int sig)
70 {
71 	return t->sighand->action[sig - 1].sa.sa_handler;
72 }
73 
74 static inline bool sig_handler_ignored(void __user *handler, int sig)
75 {
76 	/* Is it explicitly or implicitly ignored? */
77 	return handler == SIG_IGN ||
78 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
79 }
80 
81 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
82 {
83 	void __user *handler;
84 
85 	handler = sig_handler(t, sig);
86 
87 	/* SIGKILL and SIGSTOP may not be sent to the global init */
88 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
89 		return true;
90 
91 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
92 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
93 		return true;
94 
95 	/* Only allow kernel generated signals to this kthread */
96 	if (unlikely((t->flags & PF_KTHREAD) &&
97 		     (handler == SIG_KTHREAD_KERNEL) && !force))
98 		return true;
99 
100 	return sig_handler_ignored(handler, sig);
101 }
102 
103 static bool sig_ignored(struct task_struct *t, int sig, bool force)
104 {
105 	/*
106 	 * Blocked signals are never ignored, since the
107 	 * signal handler may change by the time it is
108 	 * unblocked.
109 	 */
110 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
111 		return false;
112 
113 	/*
114 	 * Tracers may want to know about even ignored signal unless it
115 	 * is SIGKILL which can't be reported anyway but can be ignored
116 	 * by SIGNAL_UNKILLABLE task.
117 	 */
118 	if (t->ptrace && sig != SIGKILL)
119 		return false;
120 
121 	return sig_task_ignored(t, sig, force);
122 }
123 
124 /*
125  * Re-calculate pending state from the set of locally pending
126  * signals, globally pending signals, and blocked signals.
127  */
128 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
129 {
130 	unsigned long ready;
131 	long i;
132 
133 	switch (_NSIG_WORDS) {
134 	default:
135 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
136 			ready |= signal->sig[i] &~ blocked->sig[i];
137 		break;
138 
139 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
140 		ready |= signal->sig[2] &~ blocked->sig[2];
141 		ready |= signal->sig[1] &~ blocked->sig[1];
142 		ready |= signal->sig[0] &~ blocked->sig[0];
143 		break;
144 
145 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
146 		ready |= signal->sig[0] &~ blocked->sig[0];
147 		break;
148 
149 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
150 	}
151 	return ready !=	0;
152 }
153 
154 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
155 
156 static bool recalc_sigpending_tsk(struct task_struct *t)
157 {
158 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
159 	    PENDING(&t->pending, &t->blocked) ||
160 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
161 	    cgroup_task_frozen(t)) {
162 		set_tsk_thread_flag(t, TIF_SIGPENDING);
163 		return true;
164 	}
165 
166 	/*
167 	 * We must never clear the flag in another thread, or in current
168 	 * when it's possible the current syscall is returning -ERESTART*.
169 	 * So we don't clear it here, and only callers who know they should do.
170 	 */
171 	return false;
172 }
173 
174 /*
175  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
176  * This is superfluous when called on current, the wakeup is a harmless no-op.
177  */
178 void recalc_sigpending_and_wake(struct task_struct *t)
179 {
180 	if (recalc_sigpending_tsk(t))
181 		signal_wake_up(t, 0);
182 }
183 
184 void recalc_sigpending(void)
185 {
186 	if (!recalc_sigpending_tsk(current) && !freezing(current))
187 		clear_thread_flag(TIF_SIGPENDING);
188 
189 }
190 EXPORT_SYMBOL(recalc_sigpending);
191 
192 void calculate_sigpending(void)
193 {
194 	/* Have any signals or users of TIF_SIGPENDING been delayed
195 	 * until after fork?
196 	 */
197 	spin_lock_irq(&current->sighand->siglock);
198 	set_tsk_thread_flag(current, TIF_SIGPENDING);
199 	recalc_sigpending();
200 	spin_unlock_irq(&current->sighand->siglock);
201 }
202 
203 /* Given the mask, find the first available signal that should be serviced. */
204 
205 #define SYNCHRONOUS_MASK \
206 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
207 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
208 
209 int next_signal(struct sigpending *pending, sigset_t *mask)
210 {
211 	unsigned long i, *s, *m, x;
212 	int sig = 0;
213 
214 	s = pending->signal.sig;
215 	m = mask->sig;
216 
217 	/*
218 	 * Handle the first word specially: it contains the
219 	 * synchronous signals that need to be dequeued first.
220 	 */
221 	x = *s &~ *m;
222 	if (x) {
223 		if (x & SYNCHRONOUS_MASK)
224 			x &= SYNCHRONOUS_MASK;
225 		sig = ffz(~x) + 1;
226 		return sig;
227 	}
228 
229 	switch (_NSIG_WORDS) {
230 	default:
231 		for (i = 1; i < _NSIG_WORDS; ++i) {
232 			x = *++s &~ *++m;
233 			if (!x)
234 				continue;
235 			sig = ffz(~x) + i*_NSIG_BPW + 1;
236 			break;
237 		}
238 		break;
239 
240 	case 2:
241 		x = s[1] &~ m[1];
242 		if (!x)
243 			break;
244 		sig = ffz(~x) + _NSIG_BPW + 1;
245 		break;
246 
247 	case 1:
248 		/* Nothing to do */
249 		break;
250 	}
251 
252 	return sig;
253 }
254 
255 static inline void print_dropped_signal(int sig)
256 {
257 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
258 
259 	if (!print_fatal_signals)
260 		return;
261 
262 	if (!__ratelimit(&ratelimit_state))
263 		return;
264 
265 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
266 				current->comm, current->pid, sig);
267 }
268 
269 /**
270  * task_set_jobctl_pending - set jobctl pending bits
271  * @task: target task
272  * @mask: pending bits to set
273  *
274  * Clear @mask from @task->jobctl.  @mask must be subset of
275  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
276  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
277  * cleared.  If @task is already being killed or exiting, this function
278  * becomes noop.
279  *
280  * CONTEXT:
281  * Must be called with @task->sighand->siglock held.
282  *
283  * RETURNS:
284  * %true if @mask is set, %false if made noop because @task was dying.
285  */
286 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
287 {
288 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
289 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
290 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
291 
292 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
293 		return false;
294 
295 	if (mask & JOBCTL_STOP_SIGMASK)
296 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
297 
298 	task->jobctl |= mask;
299 	return true;
300 }
301 
302 /**
303  * task_clear_jobctl_trapping - clear jobctl trapping bit
304  * @task: target task
305  *
306  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
307  * Clear it and wake up the ptracer.  Note that we don't need any further
308  * locking.  @task->siglock guarantees that @task->parent points to the
309  * ptracer.
310  *
311  * CONTEXT:
312  * Must be called with @task->sighand->siglock held.
313  */
314 void task_clear_jobctl_trapping(struct task_struct *task)
315 {
316 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
317 		task->jobctl &= ~JOBCTL_TRAPPING;
318 		smp_mb();	/* advised by wake_up_bit() */
319 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
320 	}
321 }
322 
323 /**
324  * task_clear_jobctl_pending - clear jobctl pending bits
325  * @task: target task
326  * @mask: pending bits to clear
327  *
328  * Clear @mask from @task->jobctl.  @mask must be subset of
329  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
330  * STOP bits are cleared together.
331  *
332  * If clearing of @mask leaves no stop or trap pending, this function calls
333  * task_clear_jobctl_trapping().
334  *
335  * CONTEXT:
336  * Must be called with @task->sighand->siglock held.
337  */
338 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
339 {
340 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
341 
342 	if (mask & JOBCTL_STOP_PENDING)
343 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
344 
345 	task->jobctl &= ~mask;
346 
347 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
348 		task_clear_jobctl_trapping(task);
349 }
350 
351 /**
352  * task_participate_group_stop - participate in a group stop
353  * @task: task participating in a group stop
354  *
355  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
356  * Group stop states are cleared and the group stop count is consumed if
357  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
358  * stop, the appropriate `SIGNAL_*` flags are set.
359  *
360  * CONTEXT:
361  * Must be called with @task->sighand->siglock held.
362  *
363  * RETURNS:
364  * %true if group stop completion should be notified to the parent, %false
365  * otherwise.
366  */
367 static bool task_participate_group_stop(struct task_struct *task)
368 {
369 	struct signal_struct *sig = task->signal;
370 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
371 
372 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
373 
374 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
375 
376 	if (!consume)
377 		return false;
378 
379 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
380 		sig->group_stop_count--;
381 
382 	/*
383 	 * Tell the caller to notify completion iff we are entering into a
384 	 * fresh group stop.  Read comment in do_signal_stop() for details.
385 	 */
386 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
387 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
388 		return true;
389 	}
390 	return false;
391 }
392 
393 void task_join_group_stop(struct task_struct *task)
394 {
395 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
396 	struct signal_struct *sig = current->signal;
397 
398 	if (sig->group_stop_count) {
399 		sig->group_stop_count++;
400 		mask |= JOBCTL_STOP_CONSUME;
401 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
402 		return;
403 
404 	/* Have the new thread join an on-going signal group stop */
405 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
406 }
407 
408 /*
409  * allocate a new signal queue record
410  * - this may be called without locks if and only if t == current, otherwise an
411  *   appropriate lock must be held to stop the target task from exiting
412  */
413 static struct sigqueue *
414 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
415 		 int override_rlimit, const unsigned int sigqueue_flags)
416 {
417 	struct sigqueue *q = NULL;
418 	struct ucounts *ucounts = NULL;
419 	long sigpending;
420 
421 	/*
422 	 * Protect access to @t credentials. This can go away when all
423 	 * callers hold rcu read lock.
424 	 *
425 	 * NOTE! A pending signal will hold on to the user refcount,
426 	 * and we get/put the refcount only when the sigpending count
427 	 * changes from/to zero.
428 	 */
429 	rcu_read_lock();
430 	ucounts = task_ucounts(t);
431 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
432 	rcu_read_unlock();
433 	if (!sigpending)
434 		return NULL;
435 
436 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
437 		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
438 	} else {
439 		print_dropped_signal(sig);
440 	}
441 
442 	if (unlikely(q == NULL)) {
443 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
444 	} else {
445 		INIT_LIST_HEAD(&q->list);
446 		q->flags = sigqueue_flags;
447 		q->ucounts = ucounts;
448 	}
449 	return q;
450 }
451 
452 static void __sigqueue_free(struct sigqueue *q)
453 {
454 	if (q->flags & SIGQUEUE_PREALLOC)
455 		return;
456 	if (q->ucounts) {
457 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
458 		q->ucounts = NULL;
459 	}
460 	kmem_cache_free(sigqueue_cachep, q);
461 }
462 
463 void flush_sigqueue(struct sigpending *queue)
464 {
465 	struct sigqueue *q;
466 
467 	sigemptyset(&queue->signal);
468 	while (!list_empty(&queue->list)) {
469 		q = list_entry(queue->list.next, struct sigqueue , list);
470 		list_del_init(&q->list);
471 		__sigqueue_free(q);
472 	}
473 }
474 
475 /*
476  * Flush all pending signals for this kthread.
477  */
478 void flush_signals(struct task_struct *t)
479 {
480 	unsigned long flags;
481 
482 	spin_lock_irqsave(&t->sighand->siglock, flags);
483 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
484 	flush_sigqueue(&t->pending);
485 	flush_sigqueue(&t->signal->shared_pending);
486 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
487 }
488 EXPORT_SYMBOL(flush_signals);
489 
490 #ifdef CONFIG_POSIX_TIMERS
491 static void __flush_itimer_signals(struct sigpending *pending)
492 {
493 	sigset_t signal, retain;
494 	struct sigqueue *q, *n;
495 
496 	signal = pending->signal;
497 	sigemptyset(&retain);
498 
499 	list_for_each_entry_safe(q, n, &pending->list, list) {
500 		int sig = q->info.si_signo;
501 
502 		if (likely(q->info.si_code != SI_TIMER)) {
503 			sigaddset(&retain, sig);
504 		} else {
505 			sigdelset(&signal, sig);
506 			list_del_init(&q->list);
507 			__sigqueue_free(q);
508 		}
509 	}
510 
511 	sigorsets(&pending->signal, &signal, &retain);
512 }
513 
514 void flush_itimer_signals(void)
515 {
516 	struct task_struct *tsk = current;
517 	unsigned long flags;
518 
519 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
520 	__flush_itimer_signals(&tsk->pending);
521 	__flush_itimer_signals(&tsk->signal->shared_pending);
522 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
523 }
524 #endif
525 
526 void ignore_signals(struct task_struct *t)
527 {
528 	int i;
529 
530 	for (i = 0; i < _NSIG; ++i)
531 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
532 
533 	flush_signals(t);
534 }
535 
536 /*
537  * Flush all handlers for a task.
538  */
539 
540 void
541 flush_signal_handlers(struct task_struct *t, int force_default)
542 {
543 	int i;
544 	struct k_sigaction *ka = &t->sighand->action[0];
545 	for (i = _NSIG ; i != 0 ; i--) {
546 		if (force_default || ka->sa.sa_handler != SIG_IGN)
547 			ka->sa.sa_handler = SIG_DFL;
548 		ka->sa.sa_flags = 0;
549 #ifdef __ARCH_HAS_SA_RESTORER
550 		ka->sa.sa_restorer = NULL;
551 #endif
552 		sigemptyset(&ka->sa.sa_mask);
553 		ka++;
554 	}
555 }
556 
557 bool unhandled_signal(struct task_struct *tsk, int sig)
558 {
559 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
560 	if (is_global_init(tsk))
561 		return true;
562 
563 	if (handler != SIG_IGN && handler != SIG_DFL)
564 		return false;
565 
566 	/* If dying, we handle all new signals by ignoring them */
567 	if (fatal_signal_pending(tsk))
568 		return false;
569 
570 	/* if ptraced, let the tracer determine */
571 	return !tsk->ptrace;
572 }
573 
574 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
575 			   bool *resched_timer)
576 {
577 	struct sigqueue *q, *first = NULL;
578 
579 	/*
580 	 * Collect the siginfo appropriate to this signal.  Check if
581 	 * there is another siginfo for the same signal.
582 	*/
583 	list_for_each_entry(q, &list->list, list) {
584 		if (q->info.si_signo == sig) {
585 			if (first)
586 				goto still_pending;
587 			first = q;
588 		}
589 	}
590 
591 	sigdelset(&list->signal, sig);
592 
593 	if (first) {
594 still_pending:
595 		list_del_init(&first->list);
596 		copy_siginfo(info, &first->info);
597 
598 		*resched_timer =
599 			(first->flags & SIGQUEUE_PREALLOC) &&
600 			(info->si_code == SI_TIMER) &&
601 			(info->si_sys_private);
602 
603 		__sigqueue_free(first);
604 	} else {
605 		/*
606 		 * Ok, it wasn't in the queue.  This must be
607 		 * a fast-pathed signal or we must have been
608 		 * out of queue space.  So zero out the info.
609 		 */
610 		clear_siginfo(info);
611 		info->si_signo = sig;
612 		info->si_errno = 0;
613 		info->si_code = SI_USER;
614 		info->si_pid = 0;
615 		info->si_uid = 0;
616 	}
617 }
618 
619 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
620 			kernel_siginfo_t *info, bool *resched_timer)
621 {
622 	int sig = next_signal(pending, mask);
623 
624 	if (sig)
625 		collect_signal(sig, pending, info, resched_timer);
626 	return sig;
627 }
628 
629 /*
630  * Dequeue a signal and return the element to the caller, which is
631  * expected to free it.
632  *
633  * All callers have to hold the siglock.
634  */
635 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
636 		   kernel_siginfo_t *info, enum pid_type *type)
637 {
638 	bool resched_timer = false;
639 	int signr;
640 
641 	/* We only dequeue private signals from ourselves, we don't let
642 	 * signalfd steal them
643 	 */
644 	*type = PIDTYPE_PID;
645 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
646 	if (!signr) {
647 		*type = PIDTYPE_TGID;
648 		signr = __dequeue_signal(&tsk->signal->shared_pending,
649 					 mask, info, &resched_timer);
650 #ifdef CONFIG_POSIX_TIMERS
651 		/*
652 		 * itimer signal ?
653 		 *
654 		 * itimers are process shared and we restart periodic
655 		 * itimers in the signal delivery path to prevent DoS
656 		 * attacks in the high resolution timer case. This is
657 		 * compliant with the old way of self-restarting
658 		 * itimers, as the SIGALRM is a legacy signal and only
659 		 * queued once. Changing the restart behaviour to
660 		 * restart the timer in the signal dequeue path is
661 		 * reducing the timer noise on heavy loaded !highres
662 		 * systems too.
663 		 */
664 		if (unlikely(signr == SIGALRM)) {
665 			struct hrtimer *tmr = &tsk->signal->real_timer;
666 
667 			if (!hrtimer_is_queued(tmr) &&
668 			    tsk->signal->it_real_incr != 0) {
669 				hrtimer_forward(tmr, tmr->base->get_time(),
670 						tsk->signal->it_real_incr);
671 				hrtimer_restart(tmr);
672 			}
673 		}
674 #endif
675 	}
676 
677 	recalc_sigpending();
678 	if (!signr)
679 		return 0;
680 
681 	if (unlikely(sig_kernel_stop(signr))) {
682 		/*
683 		 * Set a marker that we have dequeued a stop signal.  Our
684 		 * caller might release the siglock and then the pending
685 		 * stop signal it is about to process is no longer in the
686 		 * pending bitmasks, but must still be cleared by a SIGCONT
687 		 * (and overruled by a SIGKILL).  So those cases clear this
688 		 * shared flag after we've set it.  Note that this flag may
689 		 * remain set after the signal we return is ignored or
690 		 * handled.  That doesn't matter because its only purpose
691 		 * is to alert stop-signal processing code when another
692 		 * processor has come along and cleared the flag.
693 		 */
694 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
695 	}
696 #ifdef CONFIG_POSIX_TIMERS
697 	if (resched_timer) {
698 		/*
699 		 * Release the siglock to ensure proper locking order
700 		 * of timer locks outside of siglocks.  Note, we leave
701 		 * irqs disabled here, since the posix-timers code is
702 		 * about to disable them again anyway.
703 		 */
704 		spin_unlock(&tsk->sighand->siglock);
705 		posixtimer_rearm(info);
706 		spin_lock(&tsk->sighand->siglock);
707 
708 		/* Don't expose the si_sys_private value to userspace */
709 		info->si_sys_private = 0;
710 	}
711 #endif
712 	return signr;
713 }
714 EXPORT_SYMBOL_GPL(dequeue_signal);
715 
716 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
717 {
718 	struct task_struct *tsk = current;
719 	struct sigpending *pending = &tsk->pending;
720 	struct sigqueue *q, *sync = NULL;
721 
722 	/*
723 	 * Might a synchronous signal be in the queue?
724 	 */
725 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
726 		return 0;
727 
728 	/*
729 	 * Return the first synchronous signal in the queue.
730 	 */
731 	list_for_each_entry(q, &pending->list, list) {
732 		/* Synchronous signals have a positive si_code */
733 		if ((q->info.si_code > SI_USER) &&
734 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
735 			sync = q;
736 			goto next;
737 		}
738 	}
739 	return 0;
740 next:
741 	/*
742 	 * Check if there is another siginfo for the same signal.
743 	 */
744 	list_for_each_entry_continue(q, &pending->list, list) {
745 		if (q->info.si_signo == sync->info.si_signo)
746 			goto still_pending;
747 	}
748 
749 	sigdelset(&pending->signal, sync->info.si_signo);
750 	recalc_sigpending();
751 still_pending:
752 	list_del_init(&sync->list);
753 	copy_siginfo(info, &sync->info);
754 	__sigqueue_free(sync);
755 	return info->si_signo;
756 }
757 
758 /*
759  * Tell a process that it has a new active signal..
760  *
761  * NOTE! we rely on the previous spin_lock to
762  * lock interrupts for us! We can only be called with
763  * "siglock" held, and the local interrupt must
764  * have been disabled when that got acquired!
765  *
766  * No need to set need_resched since signal event passing
767  * goes through ->blocked
768  */
769 void signal_wake_up_state(struct task_struct *t, unsigned int state)
770 {
771 	lockdep_assert_held(&t->sighand->siglock);
772 
773 	set_tsk_thread_flag(t, TIF_SIGPENDING);
774 
775 	/*
776 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
777 	 * case. We don't check t->state here because there is a race with it
778 	 * executing another processor and just now entering stopped state.
779 	 * By using wake_up_state, we ensure the process will wake up and
780 	 * handle its death signal.
781 	 */
782 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
783 		kick_process(t);
784 }
785 
786 /*
787  * Remove signals in mask from the pending set and queue.
788  * Returns 1 if any signals were found.
789  *
790  * All callers must be holding the siglock.
791  */
792 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
793 {
794 	struct sigqueue *q, *n;
795 	sigset_t m;
796 
797 	sigandsets(&m, mask, &s->signal);
798 	if (sigisemptyset(&m))
799 		return;
800 
801 	sigandnsets(&s->signal, &s->signal, mask);
802 	list_for_each_entry_safe(q, n, &s->list, list) {
803 		if (sigismember(mask, q->info.si_signo)) {
804 			list_del_init(&q->list);
805 			__sigqueue_free(q);
806 		}
807 	}
808 }
809 
810 static inline int is_si_special(const struct kernel_siginfo *info)
811 {
812 	return info <= SEND_SIG_PRIV;
813 }
814 
815 static inline bool si_fromuser(const struct kernel_siginfo *info)
816 {
817 	return info == SEND_SIG_NOINFO ||
818 		(!is_si_special(info) && SI_FROMUSER(info));
819 }
820 
821 /*
822  * called with RCU read lock from check_kill_permission()
823  */
824 static bool kill_ok_by_cred(struct task_struct *t)
825 {
826 	const struct cred *cred = current_cred();
827 	const struct cred *tcred = __task_cred(t);
828 
829 	return uid_eq(cred->euid, tcred->suid) ||
830 	       uid_eq(cred->euid, tcred->uid) ||
831 	       uid_eq(cred->uid, tcred->suid) ||
832 	       uid_eq(cred->uid, tcred->uid) ||
833 	       ns_capable(tcred->user_ns, CAP_KILL);
834 }
835 
836 /*
837  * Bad permissions for sending the signal
838  * - the caller must hold the RCU read lock
839  */
840 static int check_kill_permission(int sig, struct kernel_siginfo *info,
841 				 struct task_struct *t)
842 {
843 	struct pid *sid;
844 	int error;
845 
846 	if (!valid_signal(sig))
847 		return -EINVAL;
848 
849 	if (!si_fromuser(info))
850 		return 0;
851 
852 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
853 	if (error)
854 		return error;
855 
856 	if (!same_thread_group(current, t) &&
857 	    !kill_ok_by_cred(t)) {
858 		switch (sig) {
859 		case SIGCONT:
860 			sid = task_session(t);
861 			/*
862 			 * We don't return the error if sid == NULL. The
863 			 * task was unhashed, the caller must notice this.
864 			 */
865 			if (!sid || sid == task_session(current))
866 				break;
867 			fallthrough;
868 		default:
869 			return -EPERM;
870 		}
871 	}
872 
873 	return security_task_kill(t, info, sig, NULL);
874 }
875 
876 /**
877  * ptrace_trap_notify - schedule trap to notify ptracer
878  * @t: tracee wanting to notify tracer
879  *
880  * This function schedules sticky ptrace trap which is cleared on the next
881  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
882  * ptracer.
883  *
884  * If @t is running, STOP trap will be taken.  If trapped for STOP and
885  * ptracer is listening for events, tracee is woken up so that it can
886  * re-trap for the new event.  If trapped otherwise, STOP trap will be
887  * eventually taken without returning to userland after the existing traps
888  * are finished by PTRACE_CONT.
889  *
890  * CONTEXT:
891  * Must be called with @task->sighand->siglock held.
892  */
893 static void ptrace_trap_notify(struct task_struct *t)
894 {
895 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
896 	lockdep_assert_held(&t->sighand->siglock);
897 
898 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
899 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
900 }
901 
902 /*
903  * Handle magic process-wide effects of stop/continue signals. Unlike
904  * the signal actions, these happen immediately at signal-generation
905  * time regardless of blocking, ignoring, or handling.  This does the
906  * actual continuing for SIGCONT, but not the actual stopping for stop
907  * signals. The process stop is done as a signal action for SIG_DFL.
908  *
909  * Returns true if the signal should be actually delivered, otherwise
910  * it should be dropped.
911  */
912 static bool prepare_signal(int sig, struct task_struct *p, bool force)
913 {
914 	struct signal_struct *signal = p->signal;
915 	struct task_struct *t;
916 	sigset_t flush;
917 
918 	if (signal->flags & SIGNAL_GROUP_EXIT) {
919 		if (signal->core_state)
920 			return sig == SIGKILL;
921 		/*
922 		 * The process is in the middle of dying, drop the signal.
923 		 */
924 		return false;
925 	} else if (sig_kernel_stop(sig)) {
926 		/*
927 		 * This is a stop signal.  Remove SIGCONT from all queues.
928 		 */
929 		siginitset(&flush, sigmask(SIGCONT));
930 		flush_sigqueue_mask(&flush, &signal->shared_pending);
931 		for_each_thread(p, t)
932 			flush_sigqueue_mask(&flush, &t->pending);
933 	} else if (sig == SIGCONT) {
934 		unsigned int why;
935 		/*
936 		 * Remove all stop signals from all queues, wake all threads.
937 		 */
938 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
939 		flush_sigqueue_mask(&flush, &signal->shared_pending);
940 		for_each_thread(p, t) {
941 			flush_sigqueue_mask(&flush, &t->pending);
942 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
943 			if (likely(!(t->ptrace & PT_SEIZED))) {
944 				t->jobctl &= ~JOBCTL_STOPPED;
945 				wake_up_state(t, __TASK_STOPPED);
946 			} else
947 				ptrace_trap_notify(t);
948 		}
949 
950 		/*
951 		 * Notify the parent with CLD_CONTINUED if we were stopped.
952 		 *
953 		 * If we were in the middle of a group stop, we pretend it
954 		 * was already finished, and then continued. Since SIGCHLD
955 		 * doesn't queue we report only CLD_STOPPED, as if the next
956 		 * CLD_CONTINUED was dropped.
957 		 */
958 		why = 0;
959 		if (signal->flags & SIGNAL_STOP_STOPPED)
960 			why |= SIGNAL_CLD_CONTINUED;
961 		else if (signal->group_stop_count)
962 			why |= SIGNAL_CLD_STOPPED;
963 
964 		if (why) {
965 			/*
966 			 * The first thread which returns from do_signal_stop()
967 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
968 			 * notify its parent. See get_signal().
969 			 */
970 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
971 			signal->group_stop_count = 0;
972 			signal->group_exit_code = 0;
973 		}
974 	}
975 
976 	return !sig_ignored(p, sig, force);
977 }
978 
979 /*
980  * Test if P wants to take SIG.  After we've checked all threads with this,
981  * it's equivalent to finding no threads not blocking SIG.  Any threads not
982  * blocking SIG were ruled out because they are not running and already
983  * have pending signals.  Such threads will dequeue from the shared queue
984  * as soon as they're available, so putting the signal on the shared queue
985  * will be equivalent to sending it to one such thread.
986  */
987 static inline bool wants_signal(int sig, struct task_struct *p)
988 {
989 	if (sigismember(&p->blocked, sig))
990 		return false;
991 
992 	if (p->flags & PF_EXITING)
993 		return false;
994 
995 	if (sig == SIGKILL)
996 		return true;
997 
998 	if (task_is_stopped_or_traced(p))
999 		return false;
1000 
1001 	return task_curr(p) || !task_sigpending(p);
1002 }
1003 
1004 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
1005 {
1006 	struct signal_struct *signal = p->signal;
1007 	struct task_struct *t;
1008 
1009 	/*
1010 	 * Now find a thread we can wake up to take the signal off the queue.
1011 	 *
1012 	 * Try the suggested task first (may or may not be the main thread).
1013 	 */
1014 	if (wants_signal(sig, p))
1015 		t = p;
1016 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1017 		/*
1018 		 * There is just one thread and it does not need to be woken.
1019 		 * It will dequeue unblocked signals before it runs again.
1020 		 */
1021 		return;
1022 	else {
1023 		/*
1024 		 * Otherwise try to find a suitable thread.
1025 		 */
1026 		t = signal->curr_target;
1027 		while (!wants_signal(sig, t)) {
1028 			t = next_thread(t);
1029 			if (t == signal->curr_target)
1030 				/*
1031 				 * No thread needs to be woken.
1032 				 * Any eligible threads will see
1033 				 * the signal in the queue soon.
1034 				 */
1035 				return;
1036 		}
1037 		signal->curr_target = t;
1038 	}
1039 
1040 	/*
1041 	 * Found a killable thread.  If the signal will be fatal,
1042 	 * then start taking the whole group down immediately.
1043 	 */
1044 	if (sig_fatal(p, sig) &&
1045 	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1046 	    !sigismember(&t->real_blocked, sig) &&
1047 	    (sig == SIGKILL || !p->ptrace)) {
1048 		/*
1049 		 * This signal will be fatal to the whole group.
1050 		 */
1051 		if (!sig_kernel_coredump(sig)) {
1052 			/*
1053 			 * Start a group exit and wake everybody up.
1054 			 * This way we don't have other threads
1055 			 * running and doing things after a slower
1056 			 * thread has the fatal signal pending.
1057 			 */
1058 			signal->flags = SIGNAL_GROUP_EXIT;
1059 			signal->group_exit_code = sig;
1060 			signal->group_stop_count = 0;
1061 			t = p;
1062 			do {
1063 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1064 				sigaddset(&t->pending.signal, SIGKILL);
1065 				signal_wake_up(t, 1);
1066 			} while_each_thread(p, t);
1067 			return;
1068 		}
1069 	}
1070 
1071 	/*
1072 	 * The signal is already in the shared-pending queue.
1073 	 * Tell the chosen thread to wake up and dequeue it.
1074 	 */
1075 	signal_wake_up(t, sig == SIGKILL);
1076 	return;
1077 }
1078 
1079 static inline bool legacy_queue(struct sigpending *signals, int sig)
1080 {
1081 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1082 }
1083 
1084 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1085 				struct task_struct *t, enum pid_type type, bool force)
1086 {
1087 	struct sigpending *pending;
1088 	struct sigqueue *q;
1089 	int override_rlimit;
1090 	int ret = 0, result;
1091 
1092 	lockdep_assert_held(&t->sighand->siglock);
1093 
1094 	result = TRACE_SIGNAL_IGNORED;
1095 	if (!prepare_signal(sig, t, force))
1096 		goto ret;
1097 
1098 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1099 	/*
1100 	 * Short-circuit ignored signals and support queuing
1101 	 * exactly one non-rt signal, so that we can get more
1102 	 * detailed information about the cause of the signal.
1103 	 */
1104 	result = TRACE_SIGNAL_ALREADY_PENDING;
1105 	if (legacy_queue(pending, sig))
1106 		goto ret;
1107 
1108 	result = TRACE_SIGNAL_DELIVERED;
1109 	/*
1110 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1111 	 */
1112 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1113 		goto out_set;
1114 
1115 	/*
1116 	 * Real-time signals must be queued if sent by sigqueue, or
1117 	 * some other real-time mechanism.  It is implementation
1118 	 * defined whether kill() does so.  We attempt to do so, on
1119 	 * the principle of least surprise, but since kill is not
1120 	 * allowed to fail with EAGAIN when low on memory we just
1121 	 * make sure at least one signal gets delivered and don't
1122 	 * pass on the info struct.
1123 	 */
1124 	if (sig < SIGRTMIN)
1125 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1126 	else
1127 		override_rlimit = 0;
1128 
1129 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1130 
1131 	if (q) {
1132 		list_add_tail(&q->list, &pending->list);
1133 		switch ((unsigned long) info) {
1134 		case (unsigned long) SEND_SIG_NOINFO:
1135 			clear_siginfo(&q->info);
1136 			q->info.si_signo = sig;
1137 			q->info.si_errno = 0;
1138 			q->info.si_code = SI_USER;
1139 			q->info.si_pid = task_tgid_nr_ns(current,
1140 							task_active_pid_ns(t));
1141 			rcu_read_lock();
1142 			q->info.si_uid =
1143 				from_kuid_munged(task_cred_xxx(t, user_ns),
1144 						 current_uid());
1145 			rcu_read_unlock();
1146 			break;
1147 		case (unsigned long) SEND_SIG_PRIV:
1148 			clear_siginfo(&q->info);
1149 			q->info.si_signo = sig;
1150 			q->info.si_errno = 0;
1151 			q->info.si_code = SI_KERNEL;
1152 			q->info.si_pid = 0;
1153 			q->info.si_uid = 0;
1154 			break;
1155 		default:
1156 			copy_siginfo(&q->info, info);
1157 			break;
1158 		}
1159 	} else if (!is_si_special(info) &&
1160 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1161 		/*
1162 		 * Queue overflow, abort.  We may abort if the
1163 		 * signal was rt and sent by user using something
1164 		 * other than kill().
1165 		 */
1166 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1167 		ret = -EAGAIN;
1168 		goto ret;
1169 	} else {
1170 		/*
1171 		 * This is a silent loss of information.  We still
1172 		 * send the signal, but the *info bits are lost.
1173 		 */
1174 		result = TRACE_SIGNAL_LOSE_INFO;
1175 	}
1176 
1177 out_set:
1178 	signalfd_notify(t, sig);
1179 	sigaddset(&pending->signal, sig);
1180 
1181 	/* Let multiprocess signals appear after on-going forks */
1182 	if (type > PIDTYPE_TGID) {
1183 		struct multiprocess_signals *delayed;
1184 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1185 			sigset_t *signal = &delayed->signal;
1186 			/* Can't queue both a stop and a continue signal */
1187 			if (sig == SIGCONT)
1188 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1189 			else if (sig_kernel_stop(sig))
1190 				sigdelset(signal, SIGCONT);
1191 			sigaddset(signal, sig);
1192 		}
1193 	}
1194 
1195 	complete_signal(sig, t, type);
1196 ret:
1197 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1198 	return ret;
1199 }
1200 
1201 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1202 {
1203 	bool ret = false;
1204 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1205 	case SIL_KILL:
1206 	case SIL_CHLD:
1207 	case SIL_RT:
1208 		ret = true;
1209 		break;
1210 	case SIL_TIMER:
1211 	case SIL_POLL:
1212 	case SIL_FAULT:
1213 	case SIL_FAULT_TRAPNO:
1214 	case SIL_FAULT_MCEERR:
1215 	case SIL_FAULT_BNDERR:
1216 	case SIL_FAULT_PKUERR:
1217 	case SIL_FAULT_PERF_EVENT:
1218 	case SIL_SYS:
1219 		ret = false;
1220 		break;
1221 	}
1222 	return ret;
1223 }
1224 
1225 int send_signal_locked(int sig, struct kernel_siginfo *info,
1226 		       struct task_struct *t, enum pid_type type)
1227 {
1228 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1229 	bool force = false;
1230 
1231 	if (info == SEND_SIG_NOINFO) {
1232 		/* Force if sent from an ancestor pid namespace */
1233 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1234 	} else if (info == SEND_SIG_PRIV) {
1235 		/* Don't ignore kernel generated signals */
1236 		force = true;
1237 	} else if (has_si_pid_and_uid(info)) {
1238 		/* SIGKILL and SIGSTOP is special or has ids */
1239 		struct user_namespace *t_user_ns;
1240 
1241 		rcu_read_lock();
1242 		t_user_ns = task_cred_xxx(t, user_ns);
1243 		if (current_user_ns() != t_user_ns) {
1244 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1245 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1246 		}
1247 		rcu_read_unlock();
1248 
1249 		/* A kernel generated signal? */
1250 		force = (info->si_code == SI_KERNEL);
1251 
1252 		/* From an ancestor pid namespace? */
1253 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1254 			info->si_pid = 0;
1255 			force = true;
1256 		}
1257 	}
1258 	return __send_signal_locked(sig, info, t, type, force);
1259 }
1260 
1261 static void print_fatal_signal(int signr)
1262 {
1263 	struct pt_regs *regs = task_pt_regs(current);
1264 	struct file *exe_file;
1265 
1266 	exe_file = get_task_exe_file(current);
1267 	if (exe_file) {
1268 		pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1269 			exe_file, current->comm, signr);
1270 		fput(exe_file);
1271 	} else {
1272 		pr_info("%s: potentially unexpected fatal signal %d.\n",
1273 			current->comm, signr);
1274 	}
1275 
1276 #if defined(__i386__) && !defined(__arch_um__)
1277 	pr_info("code at %08lx: ", regs->ip);
1278 	{
1279 		int i;
1280 		for (i = 0; i < 16; i++) {
1281 			unsigned char insn;
1282 
1283 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1284 				break;
1285 			pr_cont("%02x ", insn);
1286 		}
1287 	}
1288 	pr_cont("\n");
1289 #endif
1290 	preempt_disable();
1291 	show_regs(regs);
1292 	preempt_enable();
1293 }
1294 
1295 static int __init setup_print_fatal_signals(char *str)
1296 {
1297 	get_option (&str, &print_fatal_signals);
1298 
1299 	return 1;
1300 }
1301 
1302 __setup("print-fatal-signals=", setup_print_fatal_signals);
1303 
1304 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1305 			enum pid_type type)
1306 {
1307 	unsigned long flags;
1308 	int ret = -ESRCH;
1309 
1310 	if (lock_task_sighand(p, &flags)) {
1311 		ret = send_signal_locked(sig, info, p, type);
1312 		unlock_task_sighand(p, &flags);
1313 	}
1314 
1315 	return ret;
1316 }
1317 
1318 enum sig_handler {
1319 	HANDLER_CURRENT, /* If reachable use the current handler */
1320 	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1321 	HANDLER_EXIT,	 /* Only visible as the process exit code */
1322 };
1323 
1324 /*
1325  * Force a signal that the process can't ignore: if necessary
1326  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1327  *
1328  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1329  * since we do not want to have a signal handler that was blocked
1330  * be invoked when user space had explicitly blocked it.
1331  *
1332  * We don't want to have recursive SIGSEGV's etc, for example,
1333  * that is why we also clear SIGNAL_UNKILLABLE.
1334  */
1335 static int
1336 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1337 	enum sig_handler handler)
1338 {
1339 	unsigned long int flags;
1340 	int ret, blocked, ignored;
1341 	struct k_sigaction *action;
1342 	int sig = info->si_signo;
1343 
1344 	spin_lock_irqsave(&t->sighand->siglock, flags);
1345 	action = &t->sighand->action[sig-1];
1346 	ignored = action->sa.sa_handler == SIG_IGN;
1347 	blocked = sigismember(&t->blocked, sig);
1348 	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1349 		action->sa.sa_handler = SIG_DFL;
1350 		if (handler == HANDLER_EXIT)
1351 			action->sa.sa_flags |= SA_IMMUTABLE;
1352 		if (blocked) {
1353 			sigdelset(&t->blocked, sig);
1354 			recalc_sigpending_and_wake(t);
1355 		}
1356 	}
1357 	/*
1358 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1359 	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1360 	 */
1361 	if (action->sa.sa_handler == SIG_DFL &&
1362 	    (!t->ptrace || (handler == HANDLER_EXIT)))
1363 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1364 	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1365 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1366 
1367 	return ret;
1368 }
1369 
1370 int force_sig_info(struct kernel_siginfo *info)
1371 {
1372 	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1373 }
1374 
1375 /*
1376  * Nuke all other threads in the group.
1377  */
1378 int zap_other_threads(struct task_struct *p)
1379 {
1380 	struct task_struct *t = p;
1381 	int count = 0;
1382 
1383 	p->signal->group_stop_count = 0;
1384 
1385 	while_each_thread(p, t) {
1386 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1387 		/* Don't require de_thread to wait for the vhost_worker */
1388 		if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
1389 			count++;
1390 
1391 		/* Don't bother with already dead threads */
1392 		if (t->exit_state)
1393 			continue;
1394 		sigaddset(&t->pending.signal, SIGKILL);
1395 		signal_wake_up(t, 1);
1396 	}
1397 
1398 	return count;
1399 }
1400 
1401 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1402 					   unsigned long *flags)
1403 {
1404 	struct sighand_struct *sighand;
1405 
1406 	rcu_read_lock();
1407 	for (;;) {
1408 		sighand = rcu_dereference(tsk->sighand);
1409 		if (unlikely(sighand == NULL))
1410 			break;
1411 
1412 		/*
1413 		 * This sighand can be already freed and even reused, but
1414 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1415 		 * initializes ->siglock: this slab can't go away, it has
1416 		 * the same object type, ->siglock can't be reinitialized.
1417 		 *
1418 		 * We need to ensure that tsk->sighand is still the same
1419 		 * after we take the lock, we can race with de_thread() or
1420 		 * __exit_signal(). In the latter case the next iteration
1421 		 * must see ->sighand == NULL.
1422 		 */
1423 		spin_lock_irqsave(&sighand->siglock, *flags);
1424 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1425 			break;
1426 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1427 	}
1428 	rcu_read_unlock();
1429 
1430 	return sighand;
1431 }
1432 
1433 #ifdef CONFIG_LOCKDEP
1434 void lockdep_assert_task_sighand_held(struct task_struct *task)
1435 {
1436 	struct sighand_struct *sighand;
1437 
1438 	rcu_read_lock();
1439 	sighand = rcu_dereference(task->sighand);
1440 	if (sighand)
1441 		lockdep_assert_held(&sighand->siglock);
1442 	else
1443 		WARN_ON_ONCE(1);
1444 	rcu_read_unlock();
1445 }
1446 #endif
1447 
1448 /*
1449  * send signal info to all the members of a group
1450  */
1451 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1452 			struct task_struct *p, enum pid_type type)
1453 {
1454 	int ret;
1455 
1456 	rcu_read_lock();
1457 	ret = check_kill_permission(sig, info, p);
1458 	rcu_read_unlock();
1459 
1460 	if (!ret && sig)
1461 		ret = do_send_sig_info(sig, info, p, type);
1462 
1463 	return ret;
1464 }
1465 
1466 /*
1467  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1468  * control characters do (^C, ^Z etc)
1469  * - the caller must hold at least a readlock on tasklist_lock
1470  */
1471 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1472 {
1473 	struct task_struct *p = NULL;
1474 	int retval, success;
1475 
1476 	success = 0;
1477 	retval = -ESRCH;
1478 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1479 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1480 		success |= !err;
1481 		retval = err;
1482 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1483 	return success ? 0 : retval;
1484 }
1485 
1486 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1487 {
1488 	int error = -ESRCH;
1489 	struct task_struct *p;
1490 
1491 	for (;;) {
1492 		rcu_read_lock();
1493 		p = pid_task(pid, PIDTYPE_PID);
1494 		if (p)
1495 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1496 		rcu_read_unlock();
1497 		if (likely(!p || error != -ESRCH))
1498 			return error;
1499 
1500 		/*
1501 		 * The task was unhashed in between, try again.  If it
1502 		 * is dead, pid_task() will return NULL, if we race with
1503 		 * de_thread() it will find the new leader.
1504 		 */
1505 	}
1506 }
1507 
1508 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1509 {
1510 	int error;
1511 	rcu_read_lock();
1512 	error = kill_pid_info(sig, info, find_vpid(pid));
1513 	rcu_read_unlock();
1514 	return error;
1515 }
1516 
1517 static inline bool kill_as_cred_perm(const struct cred *cred,
1518 				     struct task_struct *target)
1519 {
1520 	const struct cred *pcred = __task_cred(target);
1521 
1522 	return uid_eq(cred->euid, pcred->suid) ||
1523 	       uid_eq(cred->euid, pcred->uid) ||
1524 	       uid_eq(cred->uid, pcred->suid) ||
1525 	       uid_eq(cred->uid, pcred->uid);
1526 }
1527 
1528 /*
1529  * The usb asyncio usage of siginfo is wrong.  The glibc support
1530  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1531  * AKA after the generic fields:
1532  *	kernel_pid_t	si_pid;
1533  *	kernel_uid32_t	si_uid;
1534  *	sigval_t	si_value;
1535  *
1536  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1537  * after the generic fields is:
1538  *	void __user 	*si_addr;
1539  *
1540  * This is a practical problem when there is a 64bit big endian kernel
1541  * and a 32bit userspace.  As the 32bit address will encoded in the low
1542  * 32bits of the pointer.  Those low 32bits will be stored at higher
1543  * address than appear in a 32 bit pointer.  So userspace will not
1544  * see the address it was expecting for it's completions.
1545  *
1546  * There is nothing in the encoding that can allow
1547  * copy_siginfo_to_user32 to detect this confusion of formats, so
1548  * handle this by requiring the caller of kill_pid_usb_asyncio to
1549  * notice when this situration takes place and to store the 32bit
1550  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1551  * parameter.
1552  */
1553 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1554 			 struct pid *pid, const struct cred *cred)
1555 {
1556 	struct kernel_siginfo info;
1557 	struct task_struct *p;
1558 	unsigned long flags;
1559 	int ret = -EINVAL;
1560 
1561 	if (!valid_signal(sig))
1562 		return ret;
1563 
1564 	clear_siginfo(&info);
1565 	info.si_signo = sig;
1566 	info.si_errno = errno;
1567 	info.si_code = SI_ASYNCIO;
1568 	*((sigval_t *)&info.si_pid) = addr;
1569 
1570 	rcu_read_lock();
1571 	p = pid_task(pid, PIDTYPE_PID);
1572 	if (!p) {
1573 		ret = -ESRCH;
1574 		goto out_unlock;
1575 	}
1576 	if (!kill_as_cred_perm(cred, p)) {
1577 		ret = -EPERM;
1578 		goto out_unlock;
1579 	}
1580 	ret = security_task_kill(p, &info, sig, cred);
1581 	if (ret)
1582 		goto out_unlock;
1583 
1584 	if (sig) {
1585 		if (lock_task_sighand(p, &flags)) {
1586 			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1587 			unlock_task_sighand(p, &flags);
1588 		} else
1589 			ret = -ESRCH;
1590 	}
1591 out_unlock:
1592 	rcu_read_unlock();
1593 	return ret;
1594 }
1595 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1596 
1597 /*
1598  * kill_something_info() interprets pid in interesting ways just like kill(2).
1599  *
1600  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1601  * is probably wrong.  Should make it like BSD or SYSV.
1602  */
1603 
1604 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1605 {
1606 	int ret;
1607 
1608 	if (pid > 0)
1609 		return kill_proc_info(sig, info, pid);
1610 
1611 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1612 	if (pid == INT_MIN)
1613 		return -ESRCH;
1614 
1615 	read_lock(&tasklist_lock);
1616 	if (pid != -1) {
1617 		ret = __kill_pgrp_info(sig, info,
1618 				pid ? find_vpid(-pid) : task_pgrp(current));
1619 	} else {
1620 		int retval = 0, count = 0;
1621 		struct task_struct * p;
1622 
1623 		for_each_process(p) {
1624 			if (task_pid_vnr(p) > 1 &&
1625 					!same_thread_group(p, current)) {
1626 				int err = group_send_sig_info(sig, info, p,
1627 							      PIDTYPE_MAX);
1628 				++count;
1629 				if (err != -EPERM)
1630 					retval = err;
1631 			}
1632 		}
1633 		ret = count ? retval : -ESRCH;
1634 	}
1635 	read_unlock(&tasklist_lock);
1636 
1637 	return ret;
1638 }
1639 
1640 /*
1641  * These are for backward compatibility with the rest of the kernel source.
1642  */
1643 
1644 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1645 {
1646 	/*
1647 	 * Make sure legacy kernel users don't send in bad values
1648 	 * (normal paths check this in check_kill_permission).
1649 	 */
1650 	if (!valid_signal(sig))
1651 		return -EINVAL;
1652 
1653 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1654 }
1655 EXPORT_SYMBOL(send_sig_info);
1656 
1657 #define __si_special(priv) \
1658 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1659 
1660 int
1661 send_sig(int sig, struct task_struct *p, int priv)
1662 {
1663 	return send_sig_info(sig, __si_special(priv), p);
1664 }
1665 EXPORT_SYMBOL(send_sig);
1666 
1667 void force_sig(int sig)
1668 {
1669 	struct kernel_siginfo info;
1670 
1671 	clear_siginfo(&info);
1672 	info.si_signo = sig;
1673 	info.si_errno = 0;
1674 	info.si_code = SI_KERNEL;
1675 	info.si_pid = 0;
1676 	info.si_uid = 0;
1677 	force_sig_info(&info);
1678 }
1679 EXPORT_SYMBOL(force_sig);
1680 
1681 void force_fatal_sig(int sig)
1682 {
1683 	struct kernel_siginfo info;
1684 
1685 	clear_siginfo(&info);
1686 	info.si_signo = sig;
1687 	info.si_errno = 0;
1688 	info.si_code = SI_KERNEL;
1689 	info.si_pid = 0;
1690 	info.si_uid = 0;
1691 	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1692 }
1693 
1694 void force_exit_sig(int sig)
1695 {
1696 	struct kernel_siginfo info;
1697 
1698 	clear_siginfo(&info);
1699 	info.si_signo = sig;
1700 	info.si_errno = 0;
1701 	info.si_code = SI_KERNEL;
1702 	info.si_pid = 0;
1703 	info.si_uid = 0;
1704 	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1705 }
1706 
1707 /*
1708  * When things go south during signal handling, we
1709  * will force a SIGSEGV. And if the signal that caused
1710  * the problem was already a SIGSEGV, we'll want to
1711  * make sure we don't even try to deliver the signal..
1712  */
1713 void force_sigsegv(int sig)
1714 {
1715 	if (sig == SIGSEGV)
1716 		force_fatal_sig(SIGSEGV);
1717 	else
1718 		force_sig(SIGSEGV);
1719 }
1720 
1721 int force_sig_fault_to_task(int sig, int code, void __user *addr
1722 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1723 	, struct task_struct *t)
1724 {
1725 	struct kernel_siginfo info;
1726 
1727 	clear_siginfo(&info);
1728 	info.si_signo = sig;
1729 	info.si_errno = 0;
1730 	info.si_code  = code;
1731 	info.si_addr  = addr;
1732 #ifdef __ia64__
1733 	info.si_imm = imm;
1734 	info.si_flags = flags;
1735 	info.si_isr = isr;
1736 #endif
1737 	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1738 }
1739 
1740 int force_sig_fault(int sig, int code, void __user *addr
1741 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1742 {
1743 	return force_sig_fault_to_task(sig, code, addr
1744 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1745 }
1746 
1747 int send_sig_fault(int sig, int code, void __user *addr
1748 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1749 	, struct task_struct *t)
1750 {
1751 	struct kernel_siginfo info;
1752 
1753 	clear_siginfo(&info);
1754 	info.si_signo = sig;
1755 	info.si_errno = 0;
1756 	info.si_code  = code;
1757 	info.si_addr  = addr;
1758 #ifdef __ia64__
1759 	info.si_imm = imm;
1760 	info.si_flags = flags;
1761 	info.si_isr = isr;
1762 #endif
1763 	return send_sig_info(info.si_signo, &info, t);
1764 }
1765 
1766 int force_sig_mceerr(int code, void __user *addr, short lsb)
1767 {
1768 	struct kernel_siginfo info;
1769 
1770 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1771 	clear_siginfo(&info);
1772 	info.si_signo = SIGBUS;
1773 	info.si_errno = 0;
1774 	info.si_code = code;
1775 	info.si_addr = addr;
1776 	info.si_addr_lsb = lsb;
1777 	return force_sig_info(&info);
1778 }
1779 
1780 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1781 {
1782 	struct kernel_siginfo info;
1783 
1784 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1785 	clear_siginfo(&info);
1786 	info.si_signo = SIGBUS;
1787 	info.si_errno = 0;
1788 	info.si_code = code;
1789 	info.si_addr = addr;
1790 	info.si_addr_lsb = lsb;
1791 	return send_sig_info(info.si_signo, &info, t);
1792 }
1793 EXPORT_SYMBOL(send_sig_mceerr);
1794 
1795 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1796 {
1797 	struct kernel_siginfo info;
1798 
1799 	clear_siginfo(&info);
1800 	info.si_signo = SIGSEGV;
1801 	info.si_errno = 0;
1802 	info.si_code  = SEGV_BNDERR;
1803 	info.si_addr  = addr;
1804 	info.si_lower = lower;
1805 	info.si_upper = upper;
1806 	return force_sig_info(&info);
1807 }
1808 
1809 #ifdef SEGV_PKUERR
1810 int force_sig_pkuerr(void __user *addr, u32 pkey)
1811 {
1812 	struct kernel_siginfo info;
1813 
1814 	clear_siginfo(&info);
1815 	info.si_signo = SIGSEGV;
1816 	info.si_errno = 0;
1817 	info.si_code  = SEGV_PKUERR;
1818 	info.si_addr  = addr;
1819 	info.si_pkey  = pkey;
1820 	return force_sig_info(&info);
1821 }
1822 #endif
1823 
1824 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1825 {
1826 	struct kernel_siginfo info;
1827 
1828 	clear_siginfo(&info);
1829 	info.si_signo     = SIGTRAP;
1830 	info.si_errno     = 0;
1831 	info.si_code      = TRAP_PERF;
1832 	info.si_addr      = addr;
1833 	info.si_perf_data = sig_data;
1834 	info.si_perf_type = type;
1835 
1836 	/*
1837 	 * Signals generated by perf events should not terminate the whole
1838 	 * process if SIGTRAP is blocked, however, delivering the signal
1839 	 * asynchronously is better than not delivering at all. But tell user
1840 	 * space if the signal was asynchronous, so it can clearly be
1841 	 * distinguished from normal synchronous ones.
1842 	 */
1843 	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1844 				     TRAP_PERF_FLAG_ASYNC :
1845 				     0;
1846 
1847 	return send_sig_info(info.si_signo, &info, current);
1848 }
1849 
1850 /**
1851  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1852  * @syscall: syscall number to send to userland
1853  * @reason: filter-supplied reason code to send to userland (via si_errno)
1854  * @force_coredump: true to trigger a coredump
1855  *
1856  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1857  */
1858 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1859 {
1860 	struct kernel_siginfo info;
1861 
1862 	clear_siginfo(&info);
1863 	info.si_signo = SIGSYS;
1864 	info.si_code = SYS_SECCOMP;
1865 	info.si_call_addr = (void __user *)KSTK_EIP(current);
1866 	info.si_errno = reason;
1867 	info.si_arch = syscall_get_arch(current);
1868 	info.si_syscall = syscall;
1869 	return force_sig_info_to_task(&info, current,
1870 		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1871 }
1872 
1873 /* For the crazy architectures that include trap information in
1874  * the errno field, instead of an actual errno value.
1875  */
1876 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1877 {
1878 	struct kernel_siginfo info;
1879 
1880 	clear_siginfo(&info);
1881 	info.si_signo = SIGTRAP;
1882 	info.si_errno = errno;
1883 	info.si_code  = TRAP_HWBKPT;
1884 	info.si_addr  = addr;
1885 	return force_sig_info(&info);
1886 }
1887 
1888 /* For the rare architectures that include trap information using
1889  * si_trapno.
1890  */
1891 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1892 {
1893 	struct kernel_siginfo info;
1894 
1895 	clear_siginfo(&info);
1896 	info.si_signo = sig;
1897 	info.si_errno = 0;
1898 	info.si_code  = code;
1899 	info.si_addr  = addr;
1900 	info.si_trapno = trapno;
1901 	return force_sig_info(&info);
1902 }
1903 
1904 /* For the rare architectures that include trap information using
1905  * si_trapno.
1906  */
1907 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1908 			  struct task_struct *t)
1909 {
1910 	struct kernel_siginfo info;
1911 
1912 	clear_siginfo(&info);
1913 	info.si_signo = sig;
1914 	info.si_errno = 0;
1915 	info.si_code  = code;
1916 	info.si_addr  = addr;
1917 	info.si_trapno = trapno;
1918 	return send_sig_info(info.si_signo, &info, t);
1919 }
1920 
1921 int kill_pgrp(struct pid *pid, int sig, int priv)
1922 {
1923 	int ret;
1924 
1925 	read_lock(&tasklist_lock);
1926 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1927 	read_unlock(&tasklist_lock);
1928 
1929 	return ret;
1930 }
1931 EXPORT_SYMBOL(kill_pgrp);
1932 
1933 int kill_pid(struct pid *pid, int sig, int priv)
1934 {
1935 	return kill_pid_info(sig, __si_special(priv), pid);
1936 }
1937 EXPORT_SYMBOL(kill_pid);
1938 
1939 /*
1940  * These functions support sending signals using preallocated sigqueue
1941  * structures.  This is needed "because realtime applications cannot
1942  * afford to lose notifications of asynchronous events, like timer
1943  * expirations or I/O completions".  In the case of POSIX Timers
1944  * we allocate the sigqueue structure from the timer_create.  If this
1945  * allocation fails we are able to report the failure to the application
1946  * with an EAGAIN error.
1947  */
1948 struct sigqueue *sigqueue_alloc(void)
1949 {
1950 	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1951 }
1952 
1953 void sigqueue_free(struct sigqueue *q)
1954 {
1955 	unsigned long flags;
1956 	spinlock_t *lock = &current->sighand->siglock;
1957 
1958 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1959 	/*
1960 	 * We must hold ->siglock while testing q->list
1961 	 * to serialize with collect_signal() or with
1962 	 * __exit_signal()->flush_sigqueue().
1963 	 */
1964 	spin_lock_irqsave(lock, flags);
1965 	q->flags &= ~SIGQUEUE_PREALLOC;
1966 	/*
1967 	 * If it is queued it will be freed when dequeued,
1968 	 * like the "regular" sigqueue.
1969 	 */
1970 	if (!list_empty(&q->list))
1971 		q = NULL;
1972 	spin_unlock_irqrestore(lock, flags);
1973 
1974 	if (q)
1975 		__sigqueue_free(q);
1976 }
1977 
1978 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1979 {
1980 	int sig = q->info.si_signo;
1981 	struct sigpending *pending;
1982 	struct task_struct *t;
1983 	unsigned long flags;
1984 	int ret, result;
1985 
1986 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1987 
1988 	ret = -1;
1989 	rcu_read_lock();
1990 
1991 	/*
1992 	 * This function is used by POSIX timers to deliver a timer signal.
1993 	 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1994 	 * set), the signal must be delivered to the specific thread (queues
1995 	 * into t->pending).
1996 	 *
1997 	 * Where type is not PIDTYPE_PID, signals must be delivered to the
1998 	 * process. In this case, prefer to deliver to current if it is in
1999 	 * the same thread group as the target process, which avoids
2000 	 * unnecessarily waking up a potentially idle task.
2001 	 */
2002 	t = pid_task(pid, type);
2003 	if (!t)
2004 		goto ret;
2005 	if (type != PIDTYPE_PID && same_thread_group(t, current))
2006 		t = current;
2007 	if (!likely(lock_task_sighand(t, &flags)))
2008 		goto ret;
2009 
2010 	ret = 1; /* the signal is ignored */
2011 	result = TRACE_SIGNAL_IGNORED;
2012 	if (!prepare_signal(sig, t, false))
2013 		goto out;
2014 
2015 	ret = 0;
2016 	if (unlikely(!list_empty(&q->list))) {
2017 		/*
2018 		 * If an SI_TIMER entry is already queue just increment
2019 		 * the overrun count.
2020 		 */
2021 		BUG_ON(q->info.si_code != SI_TIMER);
2022 		q->info.si_overrun++;
2023 		result = TRACE_SIGNAL_ALREADY_PENDING;
2024 		goto out;
2025 	}
2026 	q->info.si_overrun = 0;
2027 
2028 	signalfd_notify(t, sig);
2029 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2030 	list_add_tail(&q->list, &pending->list);
2031 	sigaddset(&pending->signal, sig);
2032 	complete_signal(sig, t, type);
2033 	result = TRACE_SIGNAL_DELIVERED;
2034 out:
2035 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2036 	unlock_task_sighand(t, &flags);
2037 ret:
2038 	rcu_read_unlock();
2039 	return ret;
2040 }
2041 
2042 static void do_notify_pidfd(struct task_struct *task)
2043 {
2044 	struct pid *pid;
2045 
2046 	WARN_ON(task->exit_state == 0);
2047 	pid = task_pid(task);
2048 	wake_up_all(&pid->wait_pidfd);
2049 }
2050 
2051 /*
2052  * Let a parent know about the death of a child.
2053  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2054  *
2055  * Returns true if our parent ignored us and so we've switched to
2056  * self-reaping.
2057  */
2058 bool do_notify_parent(struct task_struct *tsk, int sig)
2059 {
2060 	struct kernel_siginfo info;
2061 	unsigned long flags;
2062 	struct sighand_struct *psig;
2063 	bool autoreap = false;
2064 	u64 utime, stime;
2065 
2066 	WARN_ON_ONCE(sig == -1);
2067 
2068 	/* do_notify_parent_cldstop should have been called instead.  */
2069 	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2070 
2071 	WARN_ON_ONCE(!tsk->ptrace &&
2072 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2073 
2074 	/* Wake up all pidfd waiters */
2075 	do_notify_pidfd(tsk);
2076 
2077 	if (sig != SIGCHLD) {
2078 		/*
2079 		 * This is only possible if parent == real_parent.
2080 		 * Check if it has changed security domain.
2081 		 */
2082 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2083 			sig = SIGCHLD;
2084 	}
2085 
2086 	clear_siginfo(&info);
2087 	info.si_signo = sig;
2088 	info.si_errno = 0;
2089 	/*
2090 	 * We are under tasklist_lock here so our parent is tied to
2091 	 * us and cannot change.
2092 	 *
2093 	 * task_active_pid_ns will always return the same pid namespace
2094 	 * until a task passes through release_task.
2095 	 *
2096 	 * write_lock() currently calls preempt_disable() which is the
2097 	 * same as rcu_read_lock(), but according to Oleg, this is not
2098 	 * correct to rely on this
2099 	 */
2100 	rcu_read_lock();
2101 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2102 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2103 				       task_uid(tsk));
2104 	rcu_read_unlock();
2105 
2106 	task_cputime(tsk, &utime, &stime);
2107 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2108 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2109 
2110 	info.si_status = tsk->exit_code & 0x7f;
2111 	if (tsk->exit_code & 0x80)
2112 		info.si_code = CLD_DUMPED;
2113 	else if (tsk->exit_code & 0x7f)
2114 		info.si_code = CLD_KILLED;
2115 	else {
2116 		info.si_code = CLD_EXITED;
2117 		info.si_status = tsk->exit_code >> 8;
2118 	}
2119 
2120 	psig = tsk->parent->sighand;
2121 	spin_lock_irqsave(&psig->siglock, flags);
2122 	if (!tsk->ptrace && sig == SIGCHLD &&
2123 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2124 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2125 		/*
2126 		 * We are exiting and our parent doesn't care.  POSIX.1
2127 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2128 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2129 		 * automatically and not left for our parent's wait4 call.
2130 		 * Rather than having the parent do it as a magic kind of
2131 		 * signal handler, we just set this to tell do_exit that we
2132 		 * can be cleaned up without becoming a zombie.  Note that
2133 		 * we still call __wake_up_parent in this case, because a
2134 		 * blocked sys_wait4 might now return -ECHILD.
2135 		 *
2136 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2137 		 * is implementation-defined: we do (if you don't want
2138 		 * it, just use SIG_IGN instead).
2139 		 */
2140 		autoreap = true;
2141 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2142 			sig = 0;
2143 	}
2144 	/*
2145 	 * Send with __send_signal as si_pid and si_uid are in the
2146 	 * parent's namespaces.
2147 	 */
2148 	if (valid_signal(sig) && sig)
2149 		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2150 	__wake_up_parent(tsk, tsk->parent);
2151 	spin_unlock_irqrestore(&psig->siglock, flags);
2152 
2153 	return autoreap;
2154 }
2155 
2156 /**
2157  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2158  * @tsk: task reporting the state change
2159  * @for_ptracer: the notification is for ptracer
2160  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2161  *
2162  * Notify @tsk's parent that the stopped/continued state has changed.  If
2163  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2164  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2165  *
2166  * CONTEXT:
2167  * Must be called with tasklist_lock at least read locked.
2168  */
2169 static void do_notify_parent_cldstop(struct task_struct *tsk,
2170 				     bool for_ptracer, int why)
2171 {
2172 	struct kernel_siginfo info;
2173 	unsigned long flags;
2174 	struct task_struct *parent;
2175 	struct sighand_struct *sighand;
2176 	u64 utime, stime;
2177 
2178 	if (for_ptracer) {
2179 		parent = tsk->parent;
2180 	} else {
2181 		tsk = tsk->group_leader;
2182 		parent = tsk->real_parent;
2183 	}
2184 
2185 	clear_siginfo(&info);
2186 	info.si_signo = SIGCHLD;
2187 	info.si_errno = 0;
2188 	/*
2189 	 * see comment in do_notify_parent() about the following 4 lines
2190 	 */
2191 	rcu_read_lock();
2192 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2193 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2194 	rcu_read_unlock();
2195 
2196 	task_cputime(tsk, &utime, &stime);
2197 	info.si_utime = nsec_to_clock_t(utime);
2198 	info.si_stime = nsec_to_clock_t(stime);
2199 
2200  	info.si_code = why;
2201  	switch (why) {
2202  	case CLD_CONTINUED:
2203  		info.si_status = SIGCONT;
2204  		break;
2205  	case CLD_STOPPED:
2206  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2207  		break;
2208  	case CLD_TRAPPED:
2209  		info.si_status = tsk->exit_code & 0x7f;
2210  		break;
2211  	default:
2212  		BUG();
2213  	}
2214 
2215 	sighand = parent->sighand;
2216 	spin_lock_irqsave(&sighand->siglock, flags);
2217 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2218 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2219 		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2220 	/*
2221 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2222 	 */
2223 	__wake_up_parent(tsk, parent);
2224 	spin_unlock_irqrestore(&sighand->siglock, flags);
2225 }
2226 
2227 /*
2228  * This must be called with current->sighand->siglock held.
2229  *
2230  * This should be the path for all ptrace stops.
2231  * We always set current->last_siginfo while stopped here.
2232  * That makes it a way to test a stopped process for
2233  * being ptrace-stopped vs being job-control-stopped.
2234  *
2235  * Returns the signal the ptracer requested the code resume
2236  * with.  If the code did not stop because the tracer is gone,
2237  * the stop signal remains unchanged unless clear_code.
2238  */
2239 static int ptrace_stop(int exit_code, int why, unsigned long message,
2240 		       kernel_siginfo_t *info)
2241 	__releases(&current->sighand->siglock)
2242 	__acquires(&current->sighand->siglock)
2243 {
2244 	bool gstop_done = false;
2245 
2246 	if (arch_ptrace_stop_needed()) {
2247 		/*
2248 		 * The arch code has something special to do before a
2249 		 * ptrace stop.  This is allowed to block, e.g. for faults
2250 		 * on user stack pages.  We can't keep the siglock while
2251 		 * calling arch_ptrace_stop, so we must release it now.
2252 		 * To preserve proper semantics, we must do this before
2253 		 * any signal bookkeeping like checking group_stop_count.
2254 		 */
2255 		spin_unlock_irq(&current->sighand->siglock);
2256 		arch_ptrace_stop();
2257 		spin_lock_irq(&current->sighand->siglock);
2258 	}
2259 
2260 	/*
2261 	 * After this point ptrace_signal_wake_up or signal_wake_up
2262 	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2263 	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2264 	 * signals here to prevent ptrace_stop sleeping in schedule.
2265 	 */
2266 	if (!current->ptrace || __fatal_signal_pending(current))
2267 		return exit_code;
2268 
2269 	set_special_state(TASK_TRACED);
2270 	current->jobctl |= JOBCTL_TRACED;
2271 
2272 	/*
2273 	 * We're committing to trapping.  TRACED should be visible before
2274 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2275 	 * Also, transition to TRACED and updates to ->jobctl should be
2276 	 * atomic with respect to siglock and should be done after the arch
2277 	 * hook as siglock is released and regrabbed across it.
2278 	 *
2279 	 *     TRACER				    TRACEE
2280 	 *
2281 	 *     ptrace_attach()
2282 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2283 	 *     do_wait()
2284 	 *       set_current_state()                smp_wmb();
2285 	 *       ptrace_do_wait()
2286 	 *         wait_task_stopped()
2287 	 *           task_stopped_code()
2288 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2289 	 */
2290 	smp_wmb();
2291 
2292 	current->ptrace_message = message;
2293 	current->last_siginfo = info;
2294 	current->exit_code = exit_code;
2295 
2296 	/*
2297 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2298 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2299 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2300 	 * could be clear now.  We act as if SIGCONT is received after
2301 	 * TASK_TRACED is entered - ignore it.
2302 	 */
2303 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2304 		gstop_done = task_participate_group_stop(current);
2305 
2306 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2307 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2308 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2309 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2310 
2311 	/* entering a trap, clear TRAPPING */
2312 	task_clear_jobctl_trapping(current);
2313 
2314 	spin_unlock_irq(&current->sighand->siglock);
2315 	read_lock(&tasklist_lock);
2316 	/*
2317 	 * Notify parents of the stop.
2318 	 *
2319 	 * While ptraced, there are two parents - the ptracer and
2320 	 * the real_parent of the group_leader.  The ptracer should
2321 	 * know about every stop while the real parent is only
2322 	 * interested in the completion of group stop.  The states
2323 	 * for the two don't interact with each other.  Notify
2324 	 * separately unless they're gonna be duplicates.
2325 	 */
2326 	if (current->ptrace)
2327 		do_notify_parent_cldstop(current, true, why);
2328 	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2329 		do_notify_parent_cldstop(current, false, why);
2330 
2331 	/*
2332 	 * Don't want to allow preemption here, because
2333 	 * sys_ptrace() needs this task to be inactive.
2334 	 *
2335 	 * XXX: implement read_unlock_no_resched().
2336 	 */
2337 	preempt_disable();
2338 	read_unlock(&tasklist_lock);
2339 	cgroup_enter_frozen();
2340 	preempt_enable_no_resched();
2341 	schedule();
2342 	cgroup_leave_frozen(true);
2343 
2344 	/*
2345 	 * We are back.  Now reacquire the siglock before touching
2346 	 * last_siginfo, so that we are sure to have synchronized with
2347 	 * any signal-sending on another CPU that wants to examine it.
2348 	 */
2349 	spin_lock_irq(&current->sighand->siglock);
2350 	exit_code = current->exit_code;
2351 	current->last_siginfo = NULL;
2352 	current->ptrace_message = 0;
2353 	current->exit_code = 0;
2354 
2355 	/* LISTENING can be set only during STOP traps, clear it */
2356 	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2357 
2358 	/*
2359 	 * Queued signals ignored us while we were stopped for tracing.
2360 	 * So check for any that we should take before resuming user mode.
2361 	 * This sets TIF_SIGPENDING, but never clears it.
2362 	 */
2363 	recalc_sigpending_tsk(current);
2364 	return exit_code;
2365 }
2366 
2367 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2368 {
2369 	kernel_siginfo_t info;
2370 
2371 	clear_siginfo(&info);
2372 	info.si_signo = signr;
2373 	info.si_code = exit_code;
2374 	info.si_pid = task_pid_vnr(current);
2375 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2376 
2377 	/* Let the debugger run.  */
2378 	return ptrace_stop(exit_code, why, message, &info);
2379 }
2380 
2381 int ptrace_notify(int exit_code, unsigned long message)
2382 {
2383 	int signr;
2384 
2385 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2386 	if (unlikely(task_work_pending(current)))
2387 		task_work_run();
2388 
2389 	spin_lock_irq(&current->sighand->siglock);
2390 	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2391 	spin_unlock_irq(&current->sighand->siglock);
2392 	return signr;
2393 }
2394 
2395 /**
2396  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2397  * @signr: signr causing group stop if initiating
2398  *
2399  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2400  * and participate in it.  If already set, participate in the existing
2401  * group stop.  If participated in a group stop (and thus slept), %true is
2402  * returned with siglock released.
2403  *
2404  * If ptraced, this function doesn't handle stop itself.  Instead,
2405  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2406  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2407  * places afterwards.
2408  *
2409  * CONTEXT:
2410  * Must be called with @current->sighand->siglock held, which is released
2411  * on %true return.
2412  *
2413  * RETURNS:
2414  * %false if group stop is already cancelled or ptrace trap is scheduled.
2415  * %true if participated in group stop.
2416  */
2417 static bool do_signal_stop(int signr)
2418 	__releases(&current->sighand->siglock)
2419 {
2420 	struct signal_struct *sig = current->signal;
2421 
2422 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2423 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2424 		struct task_struct *t;
2425 
2426 		/* signr will be recorded in task->jobctl for retries */
2427 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2428 
2429 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2430 		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2431 		    unlikely(sig->group_exec_task))
2432 			return false;
2433 		/*
2434 		 * There is no group stop already in progress.  We must
2435 		 * initiate one now.
2436 		 *
2437 		 * While ptraced, a task may be resumed while group stop is
2438 		 * still in effect and then receive a stop signal and
2439 		 * initiate another group stop.  This deviates from the
2440 		 * usual behavior as two consecutive stop signals can't
2441 		 * cause two group stops when !ptraced.  That is why we
2442 		 * also check !task_is_stopped(t) below.
2443 		 *
2444 		 * The condition can be distinguished by testing whether
2445 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2446 		 * group_exit_code in such case.
2447 		 *
2448 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2449 		 * an intervening stop signal is required to cause two
2450 		 * continued events regardless of ptrace.
2451 		 */
2452 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2453 			sig->group_exit_code = signr;
2454 
2455 		sig->group_stop_count = 0;
2456 
2457 		if (task_set_jobctl_pending(current, signr | gstop))
2458 			sig->group_stop_count++;
2459 
2460 		t = current;
2461 		while_each_thread(current, t) {
2462 			/*
2463 			 * Setting state to TASK_STOPPED for a group
2464 			 * stop is always done with the siglock held,
2465 			 * so this check has no races.
2466 			 */
2467 			if (!task_is_stopped(t) &&
2468 			    task_set_jobctl_pending(t, signr | gstop)) {
2469 				sig->group_stop_count++;
2470 				if (likely(!(t->ptrace & PT_SEIZED)))
2471 					signal_wake_up(t, 0);
2472 				else
2473 					ptrace_trap_notify(t);
2474 			}
2475 		}
2476 	}
2477 
2478 	if (likely(!current->ptrace)) {
2479 		int notify = 0;
2480 
2481 		/*
2482 		 * If there are no other threads in the group, or if there
2483 		 * is a group stop in progress and we are the last to stop,
2484 		 * report to the parent.
2485 		 */
2486 		if (task_participate_group_stop(current))
2487 			notify = CLD_STOPPED;
2488 
2489 		current->jobctl |= JOBCTL_STOPPED;
2490 		set_special_state(TASK_STOPPED);
2491 		spin_unlock_irq(&current->sighand->siglock);
2492 
2493 		/*
2494 		 * Notify the parent of the group stop completion.  Because
2495 		 * we're not holding either the siglock or tasklist_lock
2496 		 * here, ptracer may attach inbetween; however, this is for
2497 		 * group stop and should always be delivered to the real
2498 		 * parent of the group leader.  The new ptracer will get
2499 		 * its notification when this task transitions into
2500 		 * TASK_TRACED.
2501 		 */
2502 		if (notify) {
2503 			read_lock(&tasklist_lock);
2504 			do_notify_parent_cldstop(current, false, notify);
2505 			read_unlock(&tasklist_lock);
2506 		}
2507 
2508 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2509 		cgroup_enter_frozen();
2510 		schedule();
2511 		return true;
2512 	} else {
2513 		/*
2514 		 * While ptraced, group stop is handled by STOP trap.
2515 		 * Schedule it and let the caller deal with it.
2516 		 */
2517 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2518 		return false;
2519 	}
2520 }
2521 
2522 /**
2523  * do_jobctl_trap - take care of ptrace jobctl traps
2524  *
2525  * When PT_SEIZED, it's used for both group stop and explicit
2526  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2527  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2528  * the stop signal; otherwise, %SIGTRAP.
2529  *
2530  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2531  * number as exit_code and no siginfo.
2532  *
2533  * CONTEXT:
2534  * Must be called with @current->sighand->siglock held, which may be
2535  * released and re-acquired before returning with intervening sleep.
2536  */
2537 static void do_jobctl_trap(void)
2538 {
2539 	struct signal_struct *signal = current->signal;
2540 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2541 
2542 	if (current->ptrace & PT_SEIZED) {
2543 		if (!signal->group_stop_count &&
2544 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2545 			signr = SIGTRAP;
2546 		WARN_ON_ONCE(!signr);
2547 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2548 				 CLD_STOPPED, 0);
2549 	} else {
2550 		WARN_ON_ONCE(!signr);
2551 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2552 	}
2553 }
2554 
2555 /**
2556  * do_freezer_trap - handle the freezer jobctl trap
2557  *
2558  * Puts the task into frozen state, if only the task is not about to quit.
2559  * In this case it drops JOBCTL_TRAP_FREEZE.
2560  *
2561  * CONTEXT:
2562  * Must be called with @current->sighand->siglock held,
2563  * which is always released before returning.
2564  */
2565 static void do_freezer_trap(void)
2566 	__releases(&current->sighand->siglock)
2567 {
2568 	/*
2569 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2570 	 * let's make another loop to give it a chance to be handled.
2571 	 * In any case, we'll return back.
2572 	 */
2573 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2574 	     JOBCTL_TRAP_FREEZE) {
2575 		spin_unlock_irq(&current->sighand->siglock);
2576 		return;
2577 	}
2578 
2579 	/*
2580 	 * Now we're sure that there is no pending fatal signal and no
2581 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2582 	 * immediately (if there is a non-fatal signal pending), and
2583 	 * put the task into sleep.
2584 	 */
2585 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2586 	clear_thread_flag(TIF_SIGPENDING);
2587 	spin_unlock_irq(&current->sighand->siglock);
2588 	cgroup_enter_frozen();
2589 	schedule();
2590 
2591 	/*
2592 	 * We could've been woken by task_work, run it to clear
2593 	 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary.
2594 	 */
2595 	clear_notify_signal();
2596 	if (unlikely(task_work_pending(current)))
2597 		task_work_run();
2598 }
2599 
2600 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2601 {
2602 	/*
2603 	 * We do not check sig_kernel_stop(signr) but set this marker
2604 	 * unconditionally because we do not know whether debugger will
2605 	 * change signr. This flag has no meaning unless we are going
2606 	 * to stop after return from ptrace_stop(). In this case it will
2607 	 * be checked in do_signal_stop(), we should only stop if it was
2608 	 * not cleared by SIGCONT while we were sleeping. See also the
2609 	 * comment in dequeue_signal().
2610 	 */
2611 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2612 	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2613 
2614 	/* We're back.  Did the debugger cancel the sig?  */
2615 	if (signr == 0)
2616 		return signr;
2617 
2618 	/*
2619 	 * Update the siginfo structure if the signal has
2620 	 * changed.  If the debugger wanted something
2621 	 * specific in the siginfo structure then it should
2622 	 * have updated *info via PTRACE_SETSIGINFO.
2623 	 */
2624 	if (signr != info->si_signo) {
2625 		clear_siginfo(info);
2626 		info->si_signo = signr;
2627 		info->si_errno = 0;
2628 		info->si_code = SI_USER;
2629 		rcu_read_lock();
2630 		info->si_pid = task_pid_vnr(current->parent);
2631 		info->si_uid = from_kuid_munged(current_user_ns(),
2632 						task_uid(current->parent));
2633 		rcu_read_unlock();
2634 	}
2635 
2636 	/* If the (new) signal is now blocked, requeue it.  */
2637 	if (sigismember(&current->blocked, signr) ||
2638 	    fatal_signal_pending(current)) {
2639 		send_signal_locked(signr, info, current, type);
2640 		signr = 0;
2641 	}
2642 
2643 	return signr;
2644 }
2645 
2646 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2647 {
2648 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2649 	case SIL_FAULT:
2650 	case SIL_FAULT_TRAPNO:
2651 	case SIL_FAULT_MCEERR:
2652 	case SIL_FAULT_BNDERR:
2653 	case SIL_FAULT_PKUERR:
2654 	case SIL_FAULT_PERF_EVENT:
2655 		ksig->info.si_addr = arch_untagged_si_addr(
2656 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2657 		break;
2658 	case SIL_KILL:
2659 	case SIL_TIMER:
2660 	case SIL_POLL:
2661 	case SIL_CHLD:
2662 	case SIL_RT:
2663 	case SIL_SYS:
2664 		break;
2665 	}
2666 }
2667 
2668 bool get_signal(struct ksignal *ksig)
2669 {
2670 	struct sighand_struct *sighand = current->sighand;
2671 	struct signal_struct *signal = current->signal;
2672 	int signr;
2673 
2674 	clear_notify_signal();
2675 	if (unlikely(task_work_pending(current)))
2676 		task_work_run();
2677 
2678 	if (!task_sigpending(current))
2679 		return false;
2680 
2681 	if (unlikely(uprobe_deny_signal()))
2682 		return false;
2683 
2684 	/*
2685 	 * Do this once, we can't return to user-mode if freezing() == T.
2686 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2687 	 * thus do not need another check after return.
2688 	 */
2689 	try_to_freeze();
2690 
2691 relock:
2692 	spin_lock_irq(&sighand->siglock);
2693 
2694 	/*
2695 	 * Every stopped thread goes here after wakeup. Check to see if
2696 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2697 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2698 	 */
2699 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2700 		int why;
2701 
2702 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2703 			why = CLD_CONTINUED;
2704 		else
2705 			why = CLD_STOPPED;
2706 
2707 		signal->flags &= ~SIGNAL_CLD_MASK;
2708 
2709 		spin_unlock_irq(&sighand->siglock);
2710 
2711 		/*
2712 		 * Notify the parent that we're continuing.  This event is
2713 		 * always per-process and doesn't make whole lot of sense
2714 		 * for ptracers, who shouldn't consume the state via
2715 		 * wait(2) either, but, for backward compatibility, notify
2716 		 * the ptracer of the group leader too unless it's gonna be
2717 		 * a duplicate.
2718 		 */
2719 		read_lock(&tasklist_lock);
2720 		do_notify_parent_cldstop(current, false, why);
2721 
2722 		if (ptrace_reparented(current->group_leader))
2723 			do_notify_parent_cldstop(current->group_leader,
2724 						true, why);
2725 		read_unlock(&tasklist_lock);
2726 
2727 		goto relock;
2728 	}
2729 
2730 	for (;;) {
2731 		struct k_sigaction *ka;
2732 		enum pid_type type;
2733 
2734 		/* Has this task already been marked for death? */
2735 		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2736 		     signal->group_exec_task) {
2737 			clear_siginfo(&ksig->info);
2738 			ksig->info.si_signo = signr = SIGKILL;
2739 			sigdelset(&current->pending.signal, SIGKILL);
2740 			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2741 				&sighand->action[SIGKILL - 1]);
2742 			recalc_sigpending();
2743 			goto fatal;
2744 		}
2745 
2746 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2747 		    do_signal_stop(0))
2748 			goto relock;
2749 
2750 		if (unlikely(current->jobctl &
2751 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2752 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2753 				do_jobctl_trap();
2754 				spin_unlock_irq(&sighand->siglock);
2755 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2756 				do_freezer_trap();
2757 
2758 			goto relock;
2759 		}
2760 
2761 		/*
2762 		 * If the task is leaving the frozen state, let's update
2763 		 * cgroup counters and reset the frozen bit.
2764 		 */
2765 		if (unlikely(cgroup_task_frozen(current))) {
2766 			spin_unlock_irq(&sighand->siglock);
2767 			cgroup_leave_frozen(false);
2768 			goto relock;
2769 		}
2770 
2771 		/*
2772 		 * Signals generated by the execution of an instruction
2773 		 * need to be delivered before any other pending signals
2774 		 * so that the instruction pointer in the signal stack
2775 		 * frame points to the faulting instruction.
2776 		 */
2777 		type = PIDTYPE_PID;
2778 		signr = dequeue_synchronous_signal(&ksig->info);
2779 		if (!signr)
2780 			signr = dequeue_signal(current, &current->blocked,
2781 					       &ksig->info, &type);
2782 
2783 		if (!signr)
2784 			break; /* will return 0 */
2785 
2786 		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2787 		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2788 			signr = ptrace_signal(signr, &ksig->info, type);
2789 			if (!signr)
2790 				continue;
2791 		}
2792 
2793 		ka = &sighand->action[signr-1];
2794 
2795 		/* Trace actually delivered signals. */
2796 		trace_signal_deliver(signr, &ksig->info, ka);
2797 
2798 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2799 			continue;
2800 		if (ka->sa.sa_handler != SIG_DFL) {
2801 			/* Run the handler.  */
2802 			ksig->ka = *ka;
2803 
2804 			if (ka->sa.sa_flags & SA_ONESHOT)
2805 				ka->sa.sa_handler = SIG_DFL;
2806 
2807 			break; /* will return non-zero "signr" value */
2808 		}
2809 
2810 		/*
2811 		 * Now we are doing the default action for this signal.
2812 		 */
2813 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2814 			continue;
2815 
2816 		/*
2817 		 * Global init gets no signals it doesn't want.
2818 		 * Container-init gets no signals it doesn't want from same
2819 		 * container.
2820 		 *
2821 		 * Note that if global/container-init sees a sig_kernel_only()
2822 		 * signal here, the signal must have been generated internally
2823 		 * or must have come from an ancestor namespace. In either
2824 		 * case, the signal cannot be dropped.
2825 		 */
2826 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2827 				!sig_kernel_only(signr))
2828 			continue;
2829 
2830 		if (sig_kernel_stop(signr)) {
2831 			/*
2832 			 * The default action is to stop all threads in
2833 			 * the thread group.  The job control signals
2834 			 * do nothing in an orphaned pgrp, but SIGSTOP
2835 			 * always works.  Note that siglock needs to be
2836 			 * dropped during the call to is_orphaned_pgrp()
2837 			 * because of lock ordering with tasklist_lock.
2838 			 * This allows an intervening SIGCONT to be posted.
2839 			 * We need to check for that and bail out if necessary.
2840 			 */
2841 			if (signr != SIGSTOP) {
2842 				spin_unlock_irq(&sighand->siglock);
2843 
2844 				/* signals can be posted during this window */
2845 
2846 				if (is_current_pgrp_orphaned())
2847 					goto relock;
2848 
2849 				spin_lock_irq(&sighand->siglock);
2850 			}
2851 
2852 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2853 				/* It released the siglock.  */
2854 				goto relock;
2855 			}
2856 
2857 			/*
2858 			 * We didn't actually stop, due to a race
2859 			 * with SIGCONT or something like that.
2860 			 */
2861 			continue;
2862 		}
2863 
2864 	fatal:
2865 		spin_unlock_irq(&sighand->siglock);
2866 		if (unlikely(cgroup_task_frozen(current)))
2867 			cgroup_leave_frozen(true);
2868 
2869 		/*
2870 		 * Anything else is fatal, maybe with a core dump.
2871 		 */
2872 		current->flags |= PF_SIGNALED;
2873 
2874 		if (sig_kernel_coredump(signr)) {
2875 			if (print_fatal_signals)
2876 				print_fatal_signal(ksig->info.si_signo);
2877 			proc_coredump_connector(current);
2878 			/*
2879 			 * If it was able to dump core, this kills all
2880 			 * other threads in the group and synchronizes with
2881 			 * their demise.  If we lost the race with another
2882 			 * thread getting here, it set group_exit_code
2883 			 * first and our do_group_exit call below will use
2884 			 * that value and ignore the one we pass it.
2885 			 */
2886 			do_coredump(&ksig->info);
2887 		}
2888 
2889 		/*
2890 		 * PF_USER_WORKER threads will catch and exit on fatal signals
2891 		 * themselves. They have cleanup that must be performed, so
2892 		 * we cannot call do_exit() on their behalf.
2893 		 */
2894 		if (current->flags & PF_USER_WORKER)
2895 			goto out;
2896 
2897 		/*
2898 		 * Death signals, no core dump.
2899 		 */
2900 		do_group_exit(ksig->info.si_signo);
2901 		/* NOTREACHED */
2902 	}
2903 	spin_unlock_irq(&sighand->siglock);
2904 out:
2905 	ksig->sig = signr;
2906 
2907 	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2908 		hide_si_addr_tag_bits(ksig);
2909 
2910 	return ksig->sig > 0;
2911 }
2912 
2913 /**
2914  * signal_delivered - called after signal delivery to update blocked signals
2915  * @ksig:		kernel signal struct
2916  * @stepping:		nonzero if debugger single-step or block-step in use
2917  *
2918  * This function should be called when a signal has successfully been
2919  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2920  * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2921  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2922  */
2923 static void signal_delivered(struct ksignal *ksig, int stepping)
2924 {
2925 	sigset_t blocked;
2926 
2927 	/* A signal was successfully delivered, and the
2928 	   saved sigmask was stored on the signal frame,
2929 	   and will be restored by sigreturn.  So we can
2930 	   simply clear the restore sigmask flag.  */
2931 	clear_restore_sigmask();
2932 
2933 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2934 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2935 		sigaddset(&blocked, ksig->sig);
2936 	set_current_blocked(&blocked);
2937 	if (current->sas_ss_flags & SS_AUTODISARM)
2938 		sas_ss_reset(current);
2939 	if (stepping)
2940 		ptrace_notify(SIGTRAP, 0);
2941 }
2942 
2943 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2944 {
2945 	if (failed)
2946 		force_sigsegv(ksig->sig);
2947 	else
2948 		signal_delivered(ksig, stepping);
2949 }
2950 
2951 /*
2952  * It could be that complete_signal() picked us to notify about the
2953  * group-wide signal. Other threads should be notified now to take
2954  * the shared signals in @which since we will not.
2955  */
2956 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2957 {
2958 	sigset_t retarget;
2959 	struct task_struct *t;
2960 
2961 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2962 	if (sigisemptyset(&retarget))
2963 		return;
2964 
2965 	t = tsk;
2966 	while_each_thread(tsk, t) {
2967 		if (t->flags & PF_EXITING)
2968 			continue;
2969 
2970 		if (!has_pending_signals(&retarget, &t->blocked))
2971 			continue;
2972 		/* Remove the signals this thread can handle. */
2973 		sigandsets(&retarget, &retarget, &t->blocked);
2974 
2975 		if (!task_sigpending(t))
2976 			signal_wake_up(t, 0);
2977 
2978 		if (sigisemptyset(&retarget))
2979 			break;
2980 	}
2981 }
2982 
2983 void exit_signals(struct task_struct *tsk)
2984 {
2985 	int group_stop = 0;
2986 	sigset_t unblocked;
2987 
2988 	/*
2989 	 * @tsk is about to have PF_EXITING set - lock out users which
2990 	 * expect stable threadgroup.
2991 	 */
2992 	cgroup_threadgroup_change_begin(tsk);
2993 
2994 	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2995 		sched_mm_cid_exit_signals(tsk);
2996 		tsk->flags |= PF_EXITING;
2997 		cgroup_threadgroup_change_end(tsk);
2998 		return;
2999 	}
3000 
3001 	spin_lock_irq(&tsk->sighand->siglock);
3002 	/*
3003 	 * From now this task is not visible for group-wide signals,
3004 	 * see wants_signal(), do_signal_stop().
3005 	 */
3006 	sched_mm_cid_exit_signals(tsk);
3007 	tsk->flags |= PF_EXITING;
3008 
3009 	cgroup_threadgroup_change_end(tsk);
3010 
3011 	if (!task_sigpending(tsk))
3012 		goto out;
3013 
3014 	unblocked = tsk->blocked;
3015 	signotset(&unblocked);
3016 	retarget_shared_pending(tsk, &unblocked);
3017 
3018 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3019 	    task_participate_group_stop(tsk))
3020 		group_stop = CLD_STOPPED;
3021 out:
3022 	spin_unlock_irq(&tsk->sighand->siglock);
3023 
3024 	/*
3025 	 * If group stop has completed, deliver the notification.  This
3026 	 * should always go to the real parent of the group leader.
3027 	 */
3028 	if (unlikely(group_stop)) {
3029 		read_lock(&tasklist_lock);
3030 		do_notify_parent_cldstop(tsk, false, group_stop);
3031 		read_unlock(&tasklist_lock);
3032 	}
3033 }
3034 
3035 /*
3036  * System call entry points.
3037  */
3038 
3039 /**
3040  *  sys_restart_syscall - restart a system call
3041  */
3042 SYSCALL_DEFINE0(restart_syscall)
3043 {
3044 	struct restart_block *restart = &current->restart_block;
3045 	return restart->fn(restart);
3046 }
3047 
3048 long do_no_restart_syscall(struct restart_block *param)
3049 {
3050 	return -EINTR;
3051 }
3052 
3053 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3054 {
3055 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3056 		sigset_t newblocked;
3057 		/* A set of now blocked but previously unblocked signals. */
3058 		sigandnsets(&newblocked, newset, &current->blocked);
3059 		retarget_shared_pending(tsk, &newblocked);
3060 	}
3061 	tsk->blocked = *newset;
3062 	recalc_sigpending();
3063 }
3064 
3065 /**
3066  * set_current_blocked - change current->blocked mask
3067  * @newset: new mask
3068  *
3069  * It is wrong to change ->blocked directly, this helper should be used
3070  * to ensure the process can't miss a shared signal we are going to block.
3071  */
3072 void set_current_blocked(sigset_t *newset)
3073 {
3074 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3075 	__set_current_blocked(newset);
3076 }
3077 
3078 void __set_current_blocked(const sigset_t *newset)
3079 {
3080 	struct task_struct *tsk = current;
3081 
3082 	/*
3083 	 * In case the signal mask hasn't changed, there is nothing we need
3084 	 * to do. The current->blocked shouldn't be modified by other task.
3085 	 */
3086 	if (sigequalsets(&tsk->blocked, newset))
3087 		return;
3088 
3089 	spin_lock_irq(&tsk->sighand->siglock);
3090 	__set_task_blocked(tsk, newset);
3091 	spin_unlock_irq(&tsk->sighand->siglock);
3092 }
3093 
3094 /*
3095  * This is also useful for kernel threads that want to temporarily
3096  * (or permanently) block certain signals.
3097  *
3098  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3099  * interface happily blocks "unblockable" signals like SIGKILL
3100  * and friends.
3101  */
3102 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3103 {
3104 	struct task_struct *tsk = current;
3105 	sigset_t newset;
3106 
3107 	/* Lockless, only current can change ->blocked, never from irq */
3108 	if (oldset)
3109 		*oldset = tsk->blocked;
3110 
3111 	switch (how) {
3112 	case SIG_BLOCK:
3113 		sigorsets(&newset, &tsk->blocked, set);
3114 		break;
3115 	case SIG_UNBLOCK:
3116 		sigandnsets(&newset, &tsk->blocked, set);
3117 		break;
3118 	case SIG_SETMASK:
3119 		newset = *set;
3120 		break;
3121 	default:
3122 		return -EINVAL;
3123 	}
3124 
3125 	__set_current_blocked(&newset);
3126 	return 0;
3127 }
3128 EXPORT_SYMBOL(sigprocmask);
3129 
3130 /*
3131  * The api helps set app-provided sigmasks.
3132  *
3133  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3134  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3135  *
3136  * Note that it does set_restore_sigmask() in advance, so it must be always
3137  * paired with restore_saved_sigmask_unless() before return from syscall.
3138  */
3139 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3140 {
3141 	sigset_t kmask;
3142 
3143 	if (!umask)
3144 		return 0;
3145 	if (sigsetsize != sizeof(sigset_t))
3146 		return -EINVAL;
3147 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3148 		return -EFAULT;
3149 
3150 	set_restore_sigmask();
3151 	current->saved_sigmask = current->blocked;
3152 	set_current_blocked(&kmask);
3153 
3154 	return 0;
3155 }
3156 
3157 #ifdef CONFIG_COMPAT
3158 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3159 			    size_t sigsetsize)
3160 {
3161 	sigset_t kmask;
3162 
3163 	if (!umask)
3164 		return 0;
3165 	if (sigsetsize != sizeof(compat_sigset_t))
3166 		return -EINVAL;
3167 	if (get_compat_sigset(&kmask, umask))
3168 		return -EFAULT;
3169 
3170 	set_restore_sigmask();
3171 	current->saved_sigmask = current->blocked;
3172 	set_current_blocked(&kmask);
3173 
3174 	return 0;
3175 }
3176 #endif
3177 
3178 /**
3179  *  sys_rt_sigprocmask - change the list of currently blocked signals
3180  *  @how: whether to add, remove, or set signals
3181  *  @nset: stores pending signals
3182  *  @oset: previous value of signal mask if non-null
3183  *  @sigsetsize: size of sigset_t type
3184  */
3185 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3186 		sigset_t __user *, oset, size_t, sigsetsize)
3187 {
3188 	sigset_t old_set, new_set;
3189 	int error;
3190 
3191 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3192 	if (sigsetsize != sizeof(sigset_t))
3193 		return -EINVAL;
3194 
3195 	old_set = current->blocked;
3196 
3197 	if (nset) {
3198 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3199 			return -EFAULT;
3200 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3201 
3202 		error = sigprocmask(how, &new_set, NULL);
3203 		if (error)
3204 			return error;
3205 	}
3206 
3207 	if (oset) {
3208 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3209 			return -EFAULT;
3210 	}
3211 
3212 	return 0;
3213 }
3214 
3215 #ifdef CONFIG_COMPAT
3216 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3217 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3218 {
3219 	sigset_t old_set = current->blocked;
3220 
3221 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3222 	if (sigsetsize != sizeof(sigset_t))
3223 		return -EINVAL;
3224 
3225 	if (nset) {
3226 		sigset_t new_set;
3227 		int error;
3228 		if (get_compat_sigset(&new_set, nset))
3229 			return -EFAULT;
3230 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3231 
3232 		error = sigprocmask(how, &new_set, NULL);
3233 		if (error)
3234 			return error;
3235 	}
3236 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3237 }
3238 #endif
3239 
3240 static void do_sigpending(sigset_t *set)
3241 {
3242 	spin_lock_irq(&current->sighand->siglock);
3243 	sigorsets(set, &current->pending.signal,
3244 		  &current->signal->shared_pending.signal);
3245 	spin_unlock_irq(&current->sighand->siglock);
3246 
3247 	/* Outside the lock because only this thread touches it.  */
3248 	sigandsets(set, &current->blocked, set);
3249 }
3250 
3251 /**
3252  *  sys_rt_sigpending - examine a pending signal that has been raised
3253  *			while blocked
3254  *  @uset: stores pending signals
3255  *  @sigsetsize: size of sigset_t type or larger
3256  */
3257 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3258 {
3259 	sigset_t set;
3260 
3261 	if (sigsetsize > sizeof(*uset))
3262 		return -EINVAL;
3263 
3264 	do_sigpending(&set);
3265 
3266 	if (copy_to_user(uset, &set, sigsetsize))
3267 		return -EFAULT;
3268 
3269 	return 0;
3270 }
3271 
3272 #ifdef CONFIG_COMPAT
3273 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3274 		compat_size_t, sigsetsize)
3275 {
3276 	sigset_t set;
3277 
3278 	if (sigsetsize > sizeof(*uset))
3279 		return -EINVAL;
3280 
3281 	do_sigpending(&set);
3282 
3283 	return put_compat_sigset(uset, &set, sigsetsize);
3284 }
3285 #endif
3286 
3287 static const struct {
3288 	unsigned char limit, layout;
3289 } sig_sicodes[] = {
3290 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3291 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3292 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3293 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3294 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3295 #if defined(SIGEMT)
3296 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3297 #endif
3298 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3299 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3300 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3301 };
3302 
3303 static bool known_siginfo_layout(unsigned sig, int si_code)
3304 {
3305 	if (si_code == SI_KERNEL)
3306 		return true;
3307 	else if ((si_code > SI_USER)) {
3308 		if (sig_specific_sicodes(sig)) {
3309 			if (si_code <= sig_sicodes[sig].limit)
3310 				return true;
3311 		}
3312 		else if (si_code <= NSIGPOLL)
3313 			return true;
3314 	}
3315 	else if (si_code >= SI_DETHREAD)
3316 		return true;
3317 	else if (si_code == SI_ASYNCNL)
3318 		return true;
3319 	return false;
3320 }
3321 
3322 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3323 {
3324 	enum siginfo_layout layout = SIL_KILL;
3325 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3326 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3327 		    (si_code <= sig_sicodes[sig].limit)) {
3328 			layout = sig_sicodes[sig].layout;
3329 			/* Handle the exceptions */
3330 			if ((sig == SIGBUS) &&
3331 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3332 				layout = SIL_FAULT_MCEERR;
3333 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3334 				layout = SIL_FAULT_BNDERR;
3335 #ifdef SEGV_PKUERR
3336 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3337 				layout = SIL_FAULT_PKUERR;
3338 #endif
3339 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3340 				layout = SIL_FAULT_PERF_EVENT;
3341 			else if (IS_ENABLED(CONFIG_SPARC) &&
3342 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3343 				layout = SIL_FAULT_TRAPNO;
3344 			else if (IS_ENABLED(CONFIG_ALPHA) &&
3345 				 ((sig == SIGFPE) ||
3346 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3347 				layout = SIL_FAULT_TRAPNO;
3348 		}
3349 		else if (si_code <= NSIGPOLL)
3350 			layout = SIL_POLL;
3351 	} else {
3352 		if (si_code == SI_TIMER)
3353 			layout = SIL_TIMER;
3354 		else if (si_code == SI_SIGIO)
3355 			layout = SIL_POLL;
3356 		else if (si_code < 0)
3357 			layout = SIL_RT;
3358 	}
3359 	return layout;
3360 }
3361 
3362 static inline char __user *si_expansion(const siginfo_t __user *info)
3363 {
3364 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3365 }
3366 
3367 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3368 {
3369 	char __user *expansion = si_expansion(to);
3370 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3371 		return -EFAULT;
3372 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3373 		return -EFAULT;
3374 	return 0;
3375 }
3376 
3377 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3378 				       const siginfo_t __user *from)
3379 {
3380 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3381 		char __user *expansion = si_expansion(from);
3382 		char buf[SI_EXPANSION_SIZE];
3383 		int i;
3384 		/*
3385 		 * An unknown si_code might need more than
3386 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3387 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3388 		 * will return this data to userspace exactly.
3389 		 */
3390 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3391 			return -EFAULT;
3392 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3393 			if (buf[i] != 0)
3394 				return -E2BIG;
3395 		}
3396 	}
3397 	return 0;
3398 }
3399 
3400 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3401 				    const siginfo_t __user *from)
3402 {
3403 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3404 		return -EFAULT;
3405 	to->si_signo = signo;
3406 	return post_copy_siginfo_from_user(to, from);
3407 }
3408 
3409 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3410 {
3411 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3412 		return -EFAULT;
3413 	return post_copy_siginfo_from_user(to, from);
3414 }
3415 
3416 #ifdef CONFIG_COMPAT
3417 /**
3418  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3419  * @to: compat siginfo destination
3420  * @from: kernel siginfo source
3421  *
3422  * Note: This function does not work properly for the SIGCHLD on x32, but
3423  * fortunately it doesn't have to.  The only valid callers for this function are
3424  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3425  * The latter does not care because SIGCHLD will never cause a coredump.
3426  */
3427 void copy_siginfo_to_external32(struct compat_siginfo *to,
3428 		const struct kernel_siginfo *from)
3429 {
3430 	memset(to, 0, sizeof(*to));
3431 
3432 	to->si_signo = from->si_signo;
3433 	to->si_errno = from->si_errno;
3434 	to->si_code  = from->si_code;
3435 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3436 	case SIL_KILL:
3437 		to->si_pid = from->si_pid;
3438 		to->si_uid = from->si_uid;
3439 		break;
3440 	case SIL_TIMER:
3441 		to->si_tid     = from->si_tid;
3442 		to->si_overrun = from->si_overrun;
3443 		to->si_int     = from->si_int;
3444 		break;
3445 	case SIL_POLL:
3446 		to->si_band = from->si_band;
3447 		to->si_fd   = from->si_fd;
3448 		break;
3449 	case SIL_FAULT:
3450 		to->si_addr = ptr_to_compat(from->si_addr);
3451 		break;
3452 	case SIL_FAULT_TRAPNO:
3453 		to->si_addr = ptr_to_compat(from->si_addr);
3454 		to->si_trapno = from->si_trapno;
3455 		break;
3456 	case SIL_FAULT_MCEERR:
3457 		to->si_addr = ptr_to_compat(from->si_addr);
3458 		to->si_addr_lsb = from->si_addr_lsb;
3459 		break;
3460 	case SIL_FAULT_BNDERR:
3461 		to->si_addr = ptr_to_compat(from->si_addr);
3462 		to->si_lower = ptr_to_compat(from->si_lower);
3463 		to->si_upper = ptr_to_compat(from->si_upper);
3464 		break;
3465 	case SIL_FAULT_PKUERR:
3466 		to->si_addr = ptr_to_compat(from->si_addr);
3467 		to->si_pkey = from->si_pkey;
3468 		break;
3469 	case SIL_FAULT_PERF_EVENT:
3470 		to->si_addr = ptr_to_compat(from->si_addr);
3471 		to->si_perf_data = from->si_perf_data;
3472 		to->si_perf_type = from->si_perf_type;
3473 		to->si_perf_flags = from->si_perf_flags;
3474 		break;
3475 	case SIL_CHLD:
3476 		to->si_pid = from->si_pid;
3477 		to->si_uid = from->si_uid;
3478 		to->si_status = from->si_status;
3479 		to->si_utime = from->si_utime;
3480 		to->si_stime = from->si_stime;
3481 		break;
3482 	case SIL_RT:
3483 		to->si_pid = from->si_pid;
3484 		to->si_uid = from->si_uid;
3485 		to->si_int = from->si_int;
3486 		break;
3487 	case SIL_SYS:
3488 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3489 		to->si_syscall   = from->si_syscall;
3490 		to->si_arch      = from->si_arch;
3491 		break;
3492 	}
3493 }
3494 
3495 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3496 			   const struct kernel_siginfo *from)
3497 {
3498 	struct compat_siginfo new;
3499 
3500 	copy_siginfo_to_external32(&new, from);
3501 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3502 		return -EFAULT;
3503 	return 0;
3504 }
3505 
3506 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3507 					 const struct compat_siginfo *from)
3508 {
3509 	clear_siginfo(to);
3510 	to->si_signo = from->si_signo;
3511 	to->si_errno = from->si_errno;
3512 	to->si_code  = from->si_code;
3513 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3514 	case SIL_KILL:
3515 		to->si_pid = from->si_pid;
3516 		to->si_uid = from->si_uid;
3517 		break;
3518 	case SIL_TIMER:
3519 		to->si_tid     = from->si_tid;
3520 		to->si_overrun = from->si_overrun;
3521 		to->si_int     = from->si_int;
3522 		break;
3523 	case SIL_POLL:
3524 		to->si_band = from->si_band;
3525 		to->si_fd   = from->si_fd;
3526 		break;
3527 	case SIL_FAULT:
3528 		to->si_addr = compat_ptr(from->si_addr);
3529 		break;
3530 	case SIL_FAULT_TRAPNO:
3531 		to->si_addr = compat_ptr(from->si_addr);
3532 		to->si_trapno = from->si_trapno;
3533 		break;
3534 	case SIL_FAULT_MCEERR:
3535 		to->si_addr = compat_ptr(from->si_addr);
3536 		to->si_addr_lsb = from->si_addr_lsb;
3537 		break;
3538 	case SIL_FAULT_BNDERR:
3539 		to->si_addr = compat_ptr(from->si_addr);
3540 		to->si_lower = compat_ptr(from->si_lower);
3541 		to->si_upper = compat_ptr(from->si_upper);
3542 		break;
3543 	case SIL_FAULT_PKUERR:
3544 		to->si_addr = compat_ptr(from->si_addr);
3545 		to->si_pkey = from->si_pkey;
3546 		break;
3547 	case SIL_FAULT_PERF_EVENT:
3548 		to->si_addr = compat_ptr(from->si_addr);
3549 		to->si_perf_data = from->si_perf_data;
3550 		to->si_perf_type = from->si_perf_type;
3551 		to->si_perf_flags = from->si_perf_flags;
3552 		break;
3553 	case SIL_CHLD:
3554 		to->si_pid    = from->si_pid;
3555 		to->si_uid    = from->si_uid;
3556 		to->si_status = from->si_status;
3557 #ifdef CONFIG_X86_X32_ABI
3558 		if (in_x32_syscall()) {
3559 			to->si_utime = from->_sifields._sigchld_x32._utime;
3560 			to->si_stime = from->_sifields._sigchld_x32._stime;
3561 		} else
3562 #endif
3563 		{
3564 			to->si_utime = from->si_utime;
3565 			to->si_stime = from->si_stime;
3566 		}
3567 		break;
3568 	case SIL_RT:
3569 		to->si_pid = from->si_pid;
3570 		to->si_uid = from->si_uid;
3571 		to->si_int = from->si_int;
3572 		break;
3573 	case SIL_SYS:
3574 		to->si_call_addr = compat_ptr(from->si_call_addr);
3575 		to->si_syscall   = from->si_syscall;
3576 		to->si_arch      = from->si_arch;
3577 		break;
3578 	}
3579 	return 0;
3580 }
3581 
3582 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3583 				      const struct compat_siginfo __user *ufrom)
3584 {
3585 	struct compat_siginfo from;
3586 
3587 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3588 		return -EFAULT;
3589 
3590 	from.si_signo = signo;
3591 	return post_copy_siginfo_from_user32(to, &from);
3592 }
3593 
3594 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3595 			     const struct compat_siginfo __user *ufrom)
3596 {
3597 	struct compat_siginfo from;
3598 
3599 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3600 		return -EFAULT;
3601 
3602 	return post_copy_siginfo_from_user32(to, &from);
3603 }
3604 #endif /* CONFIG_COMPAT */
3605 
3606 /**
3607  *  do_sigtimedwait - wait for queued signals specified in @which
3608  *  @which: queued signals to wait for
3609  *  @info: if non-null, the signal's siginfo is returned here
3610  *  @ts: upper bound on process time suspension
3611  */
3612 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3613 		    const struct timespec64 *ts)
3614 {
3615 	ktime_t *to = NULL, timeout = KTIME_MAX;
3616 	struct task_struct *tsk = current;
3617 	sigset_t mask = *which;
3618 	enum pid_type type;
3619 	int sig, ret = 0;
3620 
3621 	if (ts) {
3622 		if (!timespec64_valid(ts))
3623 			return -EINVAL;
3624 		timeout = timespec64_to_ktime(*ts);
3625 		to = &timeout;
3626 	}
3627 
3628 	/*
3629 	 * Invert the set of allowed signals to get those we want to block.
3630 	 */
3631 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3632 	signotset(&mask);
3633 
3634 	spin_lock_irq(&tsk->sighand->siglock);
3635 	sig = dequeue_signal(tsk, &mask, info, &type);
3636 	if (!sig && timeout) {
3637 		/*
3638 		 * None ready, temporarily unblock those we're interested
3639 		 * while we are sleeping in so that we'll be awakened when
3640 		 * they arrive. Unblocking is always fine, we can avoid
3641 		 * set_current_blocked().
3642 		 */
3643 		tsk->real_blocked = tsk->blocked;
3644 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3645 		recalc_sigpending();
3646 		spin_unlock_irq(&tsk->sighand->siglock);
3647 
3648 		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3649 		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3650 					       HRTIMER_MODE_REL);
3651 		spin_lock_irq(&tsk->sighand->siglock);
3652 		__set_task_blocked(tsk, &tsk->real_blocked);
3653 		sigemptyset(&tsk->real_blocked);
3654 		sig = dequeue_signal(tsk, &mask, info, &type);
3655 	}
3656 	spin_unlock_irq(&tsk->sighand->siglock);
3657 
3658 	if (sig)
3659 		return sig;
3660 	return ret ? -EINTR : -EAGAIN;
3661 }
3662 
3663 /**
3664  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3665  *			in @uthese
3666  *  @uthese: queued signals to wait for
3667  *  @uinfo: if non-null, the signal's siginfo is returned here
3668  *  @uts: upper bound on process time suspension
3669  *  @sigsetsize: size of sigset_t type
3670  */
3671 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3672 		siginfo_t __user *, uinfo,
3673 		const struct __kernel_timespec __user *, uts,
3674 		size_t, sigsetsize)
3675 {
3676 	sigset_t these;
3677 	struct timespec64 ts;
3678 	kernel_siginfo_t info;
3679 	int ret;
3680 
3681 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3682 	if (sigsetsize != sizeof(sigset_t))
3683 		return -EINVAL;
3684 
3685 	if (copy_from_user(&these, uthese, sizeof(these)))
3686 		return -EFAULT;
3687 
3688 	if (uts) {
3689 		if (get_timespec64(&ts, uts))
3690 			return -EFAULT;
3691 	}
3692 
3693 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3694 
3695 	if (ret > 0 && uinfo) {
3696 		if (copy_siginfo_to_user(uinfo, &info))
3697 			ret = -EFAULT;
3698 	}
3699 
3700 	return ret;
3701 }
3702 
3703 #ifdef CONFIG_COMPAT_32BIT_TIME
3704 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3705 		siginfo_t __user *, uinfo,
3706 		const struct old_timespec32 __user *, uts,
3707 		size_t, sigsetsize)
3708 {
3709 	sigset_t these;
3710 	struct timespec64 ts;
3711 	kernel_siginfo_t info;
3712 	int ret;
3713 
3714 	if (sigsetsize != sizeof(sigset_t))
3715 		return -EINVAL;
3716 
3717 	if (copy_from_user(&these, uthese, sizeof(these)))
3718 		return -EFAULT;
3719 
3720 	if (uts) {
3721 		if (get_old_timespec32(&ts, uts))
3722 			return -EFAULT;
3723 	}
3724 
3725 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3726 
3727 	if (ret > 0 && uinfo) {
3728 		if (copy_siginfo_to_user(uinfo, &info))
3729 			ret = -EFAULT;
3730 	}
3731 
3732 	return ret;
3733 }
3734 #endif
3735 
3736 #ifdef CONFIG_COMPAT
3737 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3738 		struct compat_siginfo __user *, uinfo,
3739 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3740 {
3741 	sigset_t s;
3742 	struct timespec64 t;
3743 	kernel_siginfo_t info;
3744 	long ret;
3745 
3746 	if (sigsetsize != sizeof(sigset_t))
3747 		return -EINVAL;
3748 
3749 	if (get_compat_sigset(&s, uthese))
3750 		return -EFAULT;
3751 
3752 	if (uts) {
3753 		if (get_timespec64(&t, uts))
3754 			return -EFAULT;
3755 	}
3756 
3757 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3758 
3759 	if (ret > 0 && uinfo) {
3760 		if (copy_siginfo_to_user32(uinfo, &info))
3761 			ret = -EFAULT;
3762 	}
3763 
3764 	return ret;
3765 }
3766 
3767 #ifdef CONFIG_COMPAT_32BIT_TIME
3768 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3769 		struct compat_siginfo __user *, uinfo,
3770 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3771 {
3772 	sigset_t s;
3773 	struct timespec64 t;
3774 	kernel_siginfo_t info;
3775 	long ret;
3776 
3777 	if (sigsetsize != sizeof(sigset_t))
3778 		return -EINVAL;
3779 
3780 	if (get_compat_sigset(&s, uthese))
3781 		return -EFAULT;
3782 
3783 	if (uts) {
3784 		if (get_old_timespec32(&t, uts))
3785 			return -EFAULT;
3786 	}
3787 
3788 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3789 
3790 	if (ret > 0 && uinfo) {
3791 		if (copy_siginfo_to_user32(uinfo, &info))
3792 			ret = -EFAULT;
3793 	}
3794 
3795 	return ret;
3796 }
3797 #endif
3798 #endif
3799 
3800 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3801 {
3802 	clear_siginfo(info);
3803 	info->si_signo = sig;
3804 	info->si_errno = 0;
3805 	info->si_code = SI_USER;
3806 	info->si_pid = task_tgid_vnr(current);
3807 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3808 }
3809 
3810 /**
3811  *  sys_kill - send a signal to a process
3812  *  @pid: the PID of the process
3813  *  @sig: signal to be sent
3814  */
3815 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3816 {
3817 	struct kernel_siginfo info;
3818 
3819 	prepare_kill_siginfo(sig, &info);
3820 
3821 	return kill_something_info(sig, &info, pid);
3822 }
3823 
3824 /*
3825  * Verify that the signaler and signalee either are in the same pid namespace
3826  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3827  * namespace.
3828  */
3829 static bool access_pidfd_pidns(struct pid *pid)
3830 {
3831 	struct pid_namespace *active = task_active_pid_ns(current);
3832 	struct pid_namespace *p = ns_of_pid(pid);
3833 
3834 	for (;;) {
3835 		if (!p)
3836 			return false;
3837 		if (p == active)
3838 			break;
3839 		p = p->parent;
3840 	}
3841 
3842 	return true;
3843 }
3844 
3845 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3846 		siginfo_t __user *info)
3847 {
3848 #ifdef CONFIG_COMPAT
3849 	/*
3850 	 * Avoid hooking up compat syscalls and instead handle necessary
3851 	 * conversions here. Note, this is a stop-gap measure and should not be
3852 	 * considered a generic solution.
3853 	 */
3854 	if (in_compat_syscall())
3855 		return copy_siginfo_from_user32(
3856 			kinfo, (struct compat_siginfo __user *)info);
3857 #endif
3858 	return copy_siginfo_from_user(kinfo, info);
3859 }
3860 
3861 static struct pid *pidfd_to_pid(const struct file *file)
3862 {
3863 	struct pid *pid;
3864 
3865 	pid = pidfd_pid(file);
3866 	if (!IS_ERR(pid))
3867 		return pid;
3868 
3869 	return tgid_pidfd_to_pid(file);
3870 }
3871 
3872 /**
3873  * sys_pidfd_send_signal - Signal a process through a pidfd
3874  * @pidfd:  file descriptor of the process
3875  * @sig:    signal to send
3876  * @info:   signal info
3877  * @flags:  future flags
3878  *
3879  * The syscall currently only signals via PIDTYPE_PID which covers
3880  * kill(<positive-pid>, <signal>. It does not signal threads or process
3881  * groups.
3882  * In order to extend the syscall to threads and process groups the @flags
3883  * argument should be used. In essence, the @flags argument will determine
3884  * what is signaled and not the file descriptor itself. Put in other words,
3885  * grouping is a property of the flags argument not a property of the file
3886  * descriptor.
3887  *
3888  * Return: 0 on success, negative errno on failure
3889  */
3890 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3891 		siginfo_t __user *, info, unsigned int, flags)
3892 {
3893 	int ret;
3894 	struct fd f;
3895 	struct pid *pid;
3896 	kernel_siginfo_t kinfo;
3897 
3898 	/* Enforce flags be set to 0 until we add an extension. */
3899 	if (flags)
3900 		return -EINVAL;
3901 
3902 	f = fdget(pidfd);
3903 	if (!f.file)
3904 		return -EBADF;
3905 
3906 	/* Is this a pidfd? */
3907 	pid = pidfd_to_pid(f.file);
3908 	if (IS_ERR(pid)) {
3909 		ret = PTR_ERR(pid);
3910 		goto err;
3911 	}
3912 
3913 	ret = -EINVAL;
3914 	if (!access_pidfd_pidns(pid))
3915 		goto err;
3916 
3917 	if (info) {
3918 		ret = copy_siginfo_from_user_any(&kinfo, info);
3919 		if (unlikely(ret))
3920 			goto err;
3921 
3922 		ret = -EINVAL;
3923 		if (unlikely(sig != kinfo.si_signo))
3924 			goto err;
3925 
3926 		/* Only allow sending arbitrary signals to yourself. */
3927 		ret = -EPERM;
3928 		if ((task_pid(current) != pid) &&
3929 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3930 			goto err;
3931 	} else {
3932 		prepare_kill_siginfo(sig, &kinfo);
3933 	}
3934 
3935 	ret = kill_pid_info(sig, &kinfo, pid);
3936 
3937 err:
3938 	fdput(f);
3939 	return ret;
3940 }
3941 
3942 static int
3943 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3944 {
3945 	struct task_struct *p;
3946 	int error = -ESRCH;
3947 
3948 	rcu_read_lock();
3949 	p = find_task_by_vpid(pid);
3950 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3951 		error = check_kill_permission(sig, info, p);
3952 		/*
3953 		 * The null signal is a permissions and process existence
3954 		 * probe.  No signal is actually delivered.
3955 		 */
3956 		if (!error && sig) {
3957 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3958 			/*
3959 			 * If lock_task_sighand() failed we pretend the task
3960 			 * dies after receiving the signal. The window is tiny,
3961 			 * and the signal is private anyway.
3962 			 */
3963 			if (unlikely(error == -ESRCH))
3964 				error = 0;
3965 		}
3966 	}
3967 	rcu_read_unlock();
3968 
3969 	return error;
3970 }
3971 
3972 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3973 {
3974 	struct kernel_siginfo info;
3975 
3976 	clear_siginfo(&info);
3977 	info.si_signo = sig;
3978 	info.si_errno = 0;
3979 	info.si_code = SI_TKILL;
3980 	info.si_pid = task_tgid_vnr(current);
3981 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3982 
3983 	return do_send_specific(tgid, pid, sig, &info);
3984 }
3985 
3986 /**
3987  *  sys_tgkill - send signal to one specific thread
3988  *  @tgid: the thread group ID of the thread
3989  *  @pid: the PID of the thread
3990  *  @sig: signal to be sent
3991  *
3992  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3993  *  exists but it's not belonging to the target process anymore. This
3994  *  method solves the problem of threads exiting and PIDs getting reused.
3995  */
3996 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3997 {
3998 	/* This is only valid for single tasks */
3999 	if (pid <= 0 || tgid <= 0)
4000 		return -EINVAL;
4001 
4002 	return do_tkill(tgid, pid, sig);
4003 }
4004 
4005 /**
4006  *  sys_tkill - send signal to one specific task
4007  *  @pid: the PID of the task
4008  *  @sig: signal to be sent
4009  *
4010  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4011  */
4012 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4013 {
4014 	/* This is only valid for single tasks */
4015 	if (pid <= 0)
4016 		return -EINVAL;
4017 
4018 	return do_tkill(0, pid, sig);
4019 }
4020 
4021 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4022 {
4023 	/* Not even root can pretend to send signals from the kernel.
4024 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4025 	 */
4026 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4027 	    (task_pid_vnr(current) != pid))
4028 		return -EPERM;
4029 
4030 	/* POSIX.1b doesn't mention process groups.  */
4031 	return kill_proc_info(sig, info, pid);
4032 }
4033 
4034 /**
4035  *  sys_rt_sigqueueinfo - send signal information to a signal
4036  *  @pid: the PID of the thread
4037  *  @sig: signal to be sent
4038  *  @uinfo: signal info to be sent
4039  */
4040 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4041 		siginfo_t __user *, uinfo)
4042 {
4043 	kernel_siginfo_t info;
4044 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4045 	if (unlikely(ret))
4046 		return ret;
4047 	return do_rt_sigqueueinfo(pid, sig, &info);
4048 }
4049 
4050 #ifdef CONFIG_COMPAT
4051 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4052 			compat_pid_t, pid,
4053 			int, sig,
4054 			struct compat_siginfo __user *, uinfo)
4055 {
4056 	kernel_siginfo_t info;
4057 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4058 	if (unlikely(ret))
4059 		return ret;
4060 	return do_rt_sigqueueinfo(pid, sig, &info);
4061 }
4062 #endif
4063 
4064 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4065 {
4066 	/* This is only valid for single tasks */
4067 	if (pid <= 0 || tgid <= 0)
4068 		return -EINVAL;
4069 
4070 	/* Not even root can pretend to send signals from the kernel.
4071 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4072 	 */
4073 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4074 	    (task_pid_vnr(current) != pid))
4075 		return -EPERM;
4076 
4077 	return do_send_specific(tgid, pid, sig, info);
4078 }
4079 
4080 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4081 		siginfo_t __user *, uinfo)
4082 {
4083 	kernel_siginfo_t info;
4084 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4085 	if (unlikely(ret))
4086 		return ret;
4087 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4088 }
4089 
4090 #ifdef CONFIG_COMPAT
4091 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4092 			compat_pid_t, tgid,
4093 			compat_pid_t, pid,
4094 			int, sig,
4095 			struct compat_siginfo __user *, uinfo)
4096 {
4097 	kernel_siginfo_t info;
4098 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4099 	if (unlikely(ret))
4100 		return ret;
4101 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4102 }
4103 #endif
4104 
4105 /*
4106  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4107  */
4108 void kernel_sigaction(int sig, __sighandler_t action)
4109 {
4110 	spin_lock_irq(&current->sighand->siglock);
4111 	current->sighand->action[sig - 1].sa.sa_handler = action;
4112 	if (action == SIG_IGN) {
4113 		sigset_t mask;
4114 
4115 		sigemptyset(&mask);
4116 		sigaddset(&mask, sig);
4117 
4118 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4119 		flush_sigqueue_mask(&mask, &current->pending);
4120 		recalc_sigpending();
4121 	}
4122 	spin_unlock_irq(&current->sighand->siglock);
4123 }
4124 EXPORT_SYMBOL(kernel_sigaction);
4125 
4126 void __weak sigaction_compat_abi(struct k_sigaction *act,
4127 		struct k_sigaction *oact)
4128 {
4129 }
4130 
4131 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4132 {
4133 	struct task_struct *p = current, *t;
4134 	struct k_sigaction *k;
4135 	sigset_t mask;
4136 
4137 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4138 		return -EINVAL;
4139 
4140 	k = &p->sighand->action[sig-1];
4141 
4142 	spin_lock_irq(&p->sighand->siglock);
4143 	if (k->sa.sa_flags & SA_IMMUTABLE) {
4144 		spin_unlock_irq(&p->sighand->siglock);
4145 		return -EINVAL;
4146 	}
4147 	if (oact)
4148 		*oact = *k;
4149 
4150 	/*
4151 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4152 	 * e.g. by having an architecture use the bit in their uapi.
4153 	 */
4154 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4155 
4156 	/*
4157 	 * Clear unknown flag bits in order to allow userspace to detect missing
4158 	 * support for flag bits and to allow the kernel to use non-uapi bits
4159 	 * internally.
4160 	 */
4161 	if (act)
4162 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4163 	if (oact)
4164 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4165 
4166 	sigaction_compat_abi(act, oact);
4167 
4168 	if (act) {
4169 		sigdelsetmask(&act->sa.sa_mask,
4170 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4171 		*k = *act;
4172 		/*
4173 		 * POSIX 3.3.1.3:
4174 		 *  "Setting a signal action to SIG_IGN for a signal that is
4175 		 *   pending shall cause the pending signal to be discarded,
4176 		 *   whether or not it is blocked."
4177 		 *
4178 		 *  "Setting a signal action to SIG_DFL for a signal that is
4179 		 *   pending and whose default action is to ignore the signal
4180 		 *   (for example, SIGCHLD), shall cause the pending signal to
4181 		 *   be discarded, whether or not it is blocked"
4182 		 */
4183 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4184 			sigemptyset(&mask);
4185 			sigaddset(&mask, sig);
4186 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4187 			for_each_thread(p, t)
4188 				flush_sigqueue_mask(&mask, &t->pending);
4189 		}
4190 	}
4191 
4192 	spin_unlock_irq(&p->sighand->siglock);
4193 	return 0;
4194 }
4195 
4196 #ifdef CONFIG_DYNAMIC_SIGFRAME
4197 static inline void sigaltstack_lock(void)
4198 	__acquires(&current->sighand->siglock)
4199 {
4200 	spin_lock_irq(&current->sighand->siglock);
4201 }
4202 
4203 static inline void sigaltstack_unlock(void)
4204 	__releases(&current->sighand->siglock)
4205 {
4206 	spin_unlock_irq(&current->sighand->siglock);
4207 }
4208 #else
4209 static inline void sigaltstack_lock(void) { }
4210 static inline void sigaltstack_unlock(void) { }
4211 #endif
4212 
4213 static int
4214 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4215 		size_t min_ss_size)
4216 {
4217 	struct task_struct *t = current;
4218 	int ret = 0;
4219 
4220 	if (oss) {
4221 		memset(oss, 0, sizeof(stack_t));
4222 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4223 		oss->ss_size = t->sas_ss_size;
4224 		oss->ss_flags = sas_ss_flags(sp) |
4225 			(current->sas_ss_flags & SS_FLAG_BITS);
4226 	}
4227 
4228 	if (ss) {
4229 		void __user *ss_sp = ss->ss_sp;
4230 		size_t ss_size = ss->ss_size;
4231 		unsigned ss_flags = ss->ss_flags;
4232 		int ss_mode;
4233 
4234 		if (unlikely(on_sig_stack(sp)))
4235 			return -EPERM;
4236 
4237 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4238 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4239 				ss_mode != 0))
4240 			return -EINVAL;
4241 
4242 		/*
4243 		 * Return before taking any locks if no actual
4244 		 * sigaltstack changes were requested.
4245 		 */
4246 		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4247 		    t->sas_ss_size == ss_size &&
4248 		    t->sas_ss_flags == ss_flags)
4249 			return 0;
4250 
4251 		sigaltstack_lock();
4252 		if (ss_mode == SS_DISABLE) {
4253 			ss_size = 0;
4254 			ss_sp = NULL;
4255 		} else {
4256 			if (unlikely(ss_size < min_ss_size))
4257 				ret = -ENOMEM;
4258 			if (!sigaltstack_size_valid(ss_size))
4259 				ret = -ENOMEM;
4260 		}
4261 		if (!ret) {
4262 			t->sas_ss_sp = (unsigned long) ss_sp;
4263 			t->sas_ss_size = ss_size;
4264 			t->sas_ss_flags = ss_flags;
4265 		}
4266 		sigaltstack_unlock();
4267 	}
4268 	return ret;
4269 }
4270 
4271 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4272 {
4273 	stack_t new, old;
4274 	int err;
4275 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4276 		return -EFAULT;
4277 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4278 			      current_user_stack_pointer(),
4279 			      MINSIGSTKSZ);
4280 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4281 		err = -EFAULT;
4282 	return err;
4283 }
4284 
4285 int restore_altstack(const stack_t __user *uss)
4286 {
4287 	stack_t new;
4288 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4289 		return -EFAULT;
4290 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4291 			     MINSIGSTKSZ);
4292 	/* squash all but EFAULT for now */
4293 	return 0;
4294 }
4295 
4296 int __save_altstack(stack_t __user *uss, unsigned long sp)
4297 {
4298 	struct task_struct *t = current;
4299 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4300 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4301 		__put_user(t->sas_ss_size, &uss->ss_size);
4302 	return err;
4303 }
4304 
4305 #ifdef CONFIG_COMPAT
4306 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4307 				 compat_stack_t __user *uoss_ptr)
4308 {
4309 	stack_t uss, uoss;
4310 	int ret;
4311 
4312 	if (uss_ptr) {
4313 		compat_stack_t uss32;
4314 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4315 			return -EFAULT;
4316 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4317 		uss.ss_flags = uss32.ss_flags;
4318 		uss.ss_size = uss32.ss_size;
4319 	}
4320 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4321 			     compat_user_stack_pointer(),
4322 			     COMPAT_MINSIGSTKSZ);
4323 	if (ret >= 0 && uoss_ptr)  {
4324 		compat_stack_t old;
4325 		memset(&old, 0, sizeof(old));
4326 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4327 		old.ss_flags = uoss.ss_flags;
4328 		old.ss_size = uoss.ss_size;
4329 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4330 			ret = -EFAULT;
4331 	}
4332 	return ret;
4333 }
4334 
4335 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4336 			const compat_stack_t __user *, uss_ptr,
4337 			compat_stack_t __user *, uoss_ptr)
4338 {
4339 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4340 }
4341 
4342 int compat_restore_altstack(const compat_stack_t __user *uss)
4343 {
4344 	int err = do_compat_sigaltstack(uss, NULL);
4345 	/* squash all but -EFAULT for now */
4346 	return err == -EFAULT ? err : 0;
4347 }
4348 
4349 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4350 {
4351 	int err;
4352 	struct task_struct *t = current;
4353 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4354 			 &uss->ss_sp) |
4355 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4356 		__put_user(t->sas_ss_size, &uss->ss_size);
4357 	return err;
4358 }
4359 #endif
4360 
4361 #ifdef __ARCH_WANT_SYS_SIGPENDING
4362 
4363 /**
4364  *  sys_sigpending - examine pending signals
4365  *  @uset: where mask of pending signal is returned
4366  */
4367 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4368 {
4369 	sigset_t set;
4370 
4371 	if (sizeof(old_sigset_t) > sizeof(*uset))
4372 		return -EINVAL;
4373 
4374 	do_sigpending(&set);
4375 
4376 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4377 		return -EFAULT;
4378 
4379 	return 0;
4380 }
4381 
4382 #ifdef CONFIG_COMPAT
4383 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4384 {
4385 	sigset_t set;
4386 
4387 	do_sigpending(&set);
4388 
4389 	return put_user(set.sig[0], set32);
4390 }
4391 #endif
4392 
4393 #endif
4394 
4395 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4396 /**
4397  *  sys_sigprocmask - examine and change blocked signals
4398  *  @how: whether to add, remove, or set signals
4399  *  @nset: signals to add or remove (if non-null)
4400  *  @oset: previous value of signal mask if non-null
4401  *
4402  * Some platforms have their own version with special arguments;
4403  * others support only sys_rt_sigprocmask.
4404  */
4405 
4406 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4407 		old_sigset_t __user *, oset)
4408 {
4409 	old_sigset_t old_set, new_set;
4410 	sigset_t new_blocked;
4411 
4412 	old_set = current->blocked.sig[0];
4413 
4414 	if (nset) {
4415 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4416 			return -EFAULT;
4417 
4418 		new_blocked = current->blocked;
4419 
4420 		switch (how) {
4421 		case SIG_BLOCK:
4422 			sigaddsetmask(&new_blocked, new_set);
4423 			break;
4424 		case SIG_UNBLOCK:
4425 			sigdelsetmask(&new_blocked, new_set);
4426 			break;
4427 		case SIG_SETMASK:
4428 			new_blocked.sig[0] = new_set;
4429 			break;
4430 		default:
4431 			return -EINVAL;
4432 		}
4433 
4434 		set_current_blocked(&new_blocked);
4435 	}
4436 
4437 	if (oset) {
4438 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4439 			return -EFAULT;
4440 	}
4441 
4442 	return 0;
4443 }
4444 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4445 
4446 #ifndef CONFIG_ODD_RT_SIGACTION
4447 /**
4448  *  sys_rt_sigaction - alter an action taken by a process
4449  *  @sig: signal to be sent
4450  *  @act: new sigaction
4451  *  @oact: used to save the previous sigaction
4452  *  @sigsetsize: size of sigset_t type
4453  */
4454 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4455 		const struct sigaction __user *, act,
4456 		struct sigaction __user *, oact,
4457 		size_t, sigsetsize)
4458 {
4459 	struct k_sigaction new_sa, old_sa;
4460 	int ret;
4461 
4462 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4463 	if (sigsetsize != sizeof(sigset_t))
4464 		return -EINVAL;
4465 
4466 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4467 		return -EFAULT;
4468 
4469 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4470 	if (ret)
4471 		return ret;
4472 
4473 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4474 		return -EFAULT;
4475 
4476 	return 0;
4477 }
4478 #ifdef CONFIG_COMPAT
4479 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4480 		const struct compat_sigaction __user *, act,
4481 		struct compat_sigaction __user *, oact,
4482 		compat_size_t, sigsetsize)
4483 {
4484 	struct k_sigaction new_ka, old_ka;
4485 #ifdef __ARCH_HAS_SA_RESTORER
4486 	compat_uptr_t restorer;
4487 #endif
4488 	int ret;
4489 
4490 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4491 	if (sigsetsize != sizeof(compat_sigset_t))
4492 		return -EINVAL;
4493 
4494 	if (act) {
4495 		compat_uptr_t handler;
4496 		ret = get_user(handler, &act->sa_handler);
4497 		new_ka.sa.sa_handler = compat_ptr(handler);
4498 #ifdef __ARCH_HAS_SA_RESTORER
4499 		ret |= get_user(restorer, &act->sa_restorer);
4500 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4501 #endif
4502 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4503 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4504 		if (ret)
4505 			return -EFAULT;
4506 	}
4507 
4508 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4509 	if (!ret && oact) {
4510 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4511 			       &oact->sa_handler);
4512 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4513 					 sizeof(oact->sa_mask));
4514 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4515 #ifdef __ARCH_HAS_SA_RESTORER
4516 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4517 				&oact->sa_restorer);
4518 #endif
4519 	}
4520 	return ret;
4521 }
4522 #endif
4523 #endif /* !CONFIG_ODD_RT_SIGACTION */
4524 
4525 #ifdef CONFIG_OLD_SIGACTION
4526 SYSCALL_DEFINE3(sigaction, int, sig,
4527 		const struct old_sigaction __user *, act,
4528 	        struct old_sigaction __user *, oact)
4529 {
4530 	struct k_sigaction new_ka, old_ka;
4531 	int ret;
4532 
4533 	if (act) {
4534 		old_sigset_t mask;
4535 		if (!access_ok(act, sizeof(*act)) ||
4536 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4537 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4538 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4539 		    __get_user(mask, &act->sa_mask))
4540 			return -EFAULT;
4541 #ifdef __ARCH_HAS_KA_RESTORER
4542 		new_ka.ka_restorer = NULL;
4543 #endif
4544 		siginitset(&new_ka.sa.sa_mask, mask);
4545 	}
4546 
4547 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4548 
4549 	if (!ret && oact) {
4550 		if (!access_ok(oact, sizeof(*oact)) ||
4551 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4552 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4553 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4554 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4555 			return -EFAULT;
4556 	}
4557 
4558 	return ret;
4559 }
4560 #endif
4561 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4562 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4563 		const struct compat_old_sigaction __user *, act,
4564 	        struct compat_old_sigaction __user *, oact)
4565 {
4566 	struct k_sigaction new_ka, old_ka;
4567 	int ret;
4568 	compat_old_sigset_t mask;
4569 	compat_uptr_t handler, restorer;
4570 
4571 	if (act) {
4572 		if (!access_ok(act, sizeof(*act)) ||
4573 		    __get_user(handler, &act->sa_handler) ||
4574 		    __get_user(restorer, &act->sa_restorer) ||
4575 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4576 		    __get_user(mask, &act->sa_mask))
4577 			return -EFAULT;
4578 
4579 #ifdef __ARCH_HAS_KA_RESTORER
4580 		new_ka.ka_restorer = NULL;
4581 #endif
4582 		new_ka.sa.sa_handler = compat_ptr(handler);
4583 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4584 		siginitset(&new_ka.sa.sa_mask, mask);
4585 	}
4586 
4587 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4588 
4589 	if (!ret && oact) {
4590 		if (!access_ok(oact, sizeof(*oact)) ||
4591 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4592 			       &oact->sa_handler) ||
4593 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4594 			       &oact->sa_restorer) ||
4595 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4596 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4597 			return -EFAULT;
4598 	}
4599 	return ret;
4600 }
4601 #endif
4602 
4603 #ifdef CONFIG_SGETMASK_SYSCALL
4604 
4605 /*
4606  * For backwards compatibility.  Functionality superseded by sigprocmask.
4607  */
4608 SYSCALL_DEFINE0(sgetmask)
4609 {
4610 	/* SMP safe */
4611 	return current->blocked.sig[0];
4612 }
4613 
4614 SYSCALL_DEFINE1(ssetmask, int, newmask)
4615 {
4616 	int old = current->blocked.sig[0];
4617 	sigset_t newset;
4618 
4619 	siginitset(&newset, newmask);
4620 	set_current_blocked(&newset);
4621 
4622 	return old;
4623 }
4624 #endif /* CONFIG_SGETMASK_SYSCALL */
4625 
4626 #ifdef __ARCH_WANT_SYS_SIGNAL
4627 /*
4628  * For backwards compatibility.  Functionality superseded by sigaction.
4629  */
4630 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4631 {
4632 	struct k_sigaction new_sa, old_sa;
4633 	int ret;
4634 
4635 	new_sa.sa.sa_handler = handler;
4636 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4637 	sigemptyset(&new_sa.sa.sa_mask);
4638 
4639 	ret = do_sigaction(sig, &new_sa, &old_sa);
4640 
4641 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4642 }
4643 #endif /* __ARCH_WANT_SYS_SIGNAL */
4644 
4645 #ifdef __ARCH_WANT_SYS_PAUSE
4646 
4647 SYSCALL_DEFINE0(pause)
4648 {
4649 	while (!signal_pending(current)) {
4650 		__set_current_state(TASK_INTERRUPTIBLE);
4651 		schedule();
4652 	}
4653 	return -ERESTARTNOHAND;
4654 }
4655 
4656 #endif
4657 
4658 static int sigsuspend(sigset_t *set)
4659 {
4660 	current->saved_sigmask = current->blocked;
4661 	set_current_blocked(set);
4662 
4663 	while (!signal_pending(current)) {
4664 		__set_current_state(TASK_INTERRUPTIBLE);
4665 		schedule();
4666 	}
4667 	set_restore_sigmask();
4668 	return -ERESTARTNOHAND;
4669 }
4670 
4671 /**
4672  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4673  *	@unewset value until a signal is received
4674  *  @unewset: new signal mask value
4675  *  @sigsetsize: size of sigset_t type
4676  */
4677 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4678 {
4679 	sigset_t newset;
4680 
4681 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4682 	if (sigsetsize != sizeof(sigset_t))
4683 		return -EINVAL;
4684 
4685 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4686 		return -EFAULT;
4687 	return sigsuspend(&newset);
4688 }
4689 
4690 #ifdef CONFIG_COMPAT
4691 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4692 {
4693 	sigset_t newset;
4694 
4695 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4696 	if (sigsetsize != sizeof(sigset_t))
4697 		return -EINVAL;
4698 
4699 	if (get_compat_sigset(&newset, unewset))
4700 		return -EFAULT;
4701 	return sigsuspend(&newset);
4702 }
4703 #endif
4704 
4705 #ifdef CONFIG_OLD_SIGSUSPEND
4706 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4707 {
4708 	sigset_t blocked;
4709 	siginitset(&blocked, mask);
4710 	return sigsuspend(&blocked);
4711 }
4712 #endif
4713 #ifdef CONFIG_OLD_SIGSUSPEND3
4714 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4715 {
4716 	sigset_t blocked;
4717 	siginitset(&blocked, mask);
4718 	return sigsuspend(&blocked);
4719 }
4720 #endif
4721 
4722 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4723 {
4724 	return NULL;
4725 }
4726 
4727 static inline void siginfo_buildtime_checks(void)
4728 {
4729 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4730 
4731 	/* Verify the offsets in the two siginfos match */
4732 #define CHECK_OFFSET(field) \
4733 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4734 
4735 	/* kill */
4736 	CHECK_OFFSET(si_pid);
4737 	CHECK_OFFSET(si_uid);
4738 
4739 	/* timer */
4740 	CHECK_OFFSET(si_tid);
4741 	CHECK_OFFSET(si_overrun);
4742 	CHECK_OFFSET(si_value);
4743 
4744 	/* rt */
4745 	CHECK_OFFSET(si_pid);
4746 	CHECK_OFFSET(si_uid);
4747 	CHECK_OFFSET(si_value);
4748 
4749 	/* sigchld */
4750 	CHECK_OFFSET(si_pid);
4751 	CHECK_OFFSET(si_uid);
4752 	CHECK_OFFSET(si_status);
4753 	CHECK_OFFSET(si_utime);
4754 	CHECK_OFFSET(si_stime);
4755 
4756 	/* sigfault */
4757 	CHECK_OFFSET(si_addr);
4758 	CHECK_OFFSET(si_trapno);
4759 	CHECK_OFFSET(si_addr_lsb);
4760 	CHECK_OFFSET(si_lower);
4761 	CHECK_OFFSET(si_upper);
4762 	CHECK_OFFSET(si_pkey);
4763 	CHECK_OFFSET(si_perf_data);
4764 	CHECK_OFFSET(si_perf_type);
4765 	CHECK_OFFSET(si_perf_flags);
4766 
4767 	/* sigpoll */
4768 	CHECK_OFFSET(si_band);
4769 	CHECK_OFFSET(si_fd);
4770 
4771 	/* sigsys */
4772 	CHECK_OFFSET(si_call_addr);
4773 	CHECK_OFFSET(si_syscall);
4774 	CHECK_OFFSET(si_arch);
4775 #undef CHECK_OFFSET
4776 
4777 	/* usb asyncio */
4778 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4779 		     offsetof(struct siginfo, si_addr));
4780 	if (sizeof(int) == sizeof(void __user *)) {
4781 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4782 			     sizeof(void __user *));
4783 	} else {
4784 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4785 			      sizeof_field(struct siginfo, si_uid)) !=
4786 			     sizeof(void __user *));
4787 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4788 			     offsetof(struct siginfo, si_uid));
4789 	}
4790 #ifdef CONFIG_COMPAT
4791 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4792 		     offsetof(struct compat_siginfo, si_addr));
4793 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4794 		     sizeof(compat_uptr_t));
4795 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4796 		     sizeof_field(struct siginfo, si_pid));
4797 #endif
4798 }
4799 
4800 #if defined(CONFIG_SYSCTL)
4801 static struct ctl_table signal_debug_table[] = {
4802 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4803 	{
4804 		.procname	= "exception-trace",
4805 		.data		= &show_unhandled_signals,
4806 		.maxlen		= sizeof(int),
4807 		.mode		= 0644,
4808 		.proc_handler	= proc_dointvec
4809 	},
4810 #endif
4811 	{ }
4812 };
4813 
4814 static int __init init_signal_sysctls(void)
4815 {
4816 	register_sysctl_init("debug", signal_debug_table);
4817 	return 0;
4818 }
4819 early_initcall(init_signal_sysctls);
4820 #endif /* CONFIG_SYSCTL */
4821 
4822 void __init signals_init(void)
4823 {
4824 	siginfo_buildtime_checks();
4825 
4826 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4827 }
4828 
4829 #ifdef CONFIG_KGDB_KDB
4830 #include <linux/kdb.h>
4831 /*
4832  * kdb_send_sig - Allows kdb to send signals without exposing
4833  * signal internals.  This function checks if the required locks are
4834  * available before calling the main signal code, to avoid kdb
4835  * deadlocks.
4836  */
4837 void kdb_send_sig(struct task_struct *t, int sig)
4838 {
4839 	static struct task_struct *kdb_prev_t;
4840 	int new_t, ret;
4841 	if (!spin_trylock(&t->sighand->siglock)) {
4842 		kdb_printf("Can't do kill command now.\n"
4843 			   "The sigmask lock is held somewhere else in "
4844 			   "kernel, try again later\n");
4845 		return;
4846 	}
4847 	new_t = kdb_prev_t != t;
4848 	kdb_prev_t = t;
4849 	if (!task_is_running(t) && new_t) {
4850 		spin_unlock(&t->sighand->siglock);
4851 		kdb_printf("Process is not RUNNING, sending a signal from "
4852 			   "kdb risks deadlock\n"
4853 			   "on the run queue locks. "
4854 			   "The signal has _not_ been sent.\n"
4855 			   "Reissue the kill command if you want to risk "
4856 			   "the deadlock.\n");
4857 		return;
4858 	}
4859 	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4860 	spin_unlock(&t->sighand->siglock);
4861 	if (ret)
4862 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4863 			   sig, t->pid);
4864 	else
4865 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4866 }
4867 #endif	/* CONFIG_KGDB_KDB */
4868