1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/security.h> 21 #include <linux/syscalls.h> 22 #include <linux/ptrace.h> 23 #include <linux/signal.h> 24 #include <linux/signalfd.h> 25 #include <linux/capability.h> 26 #include <linux/freezer.h> 27 #include <linux/pid_namespace.h> 28 #include <linux/nsproxy.h> 29 30 #include <asm/param.h> 31 #include <asm/uaccess.h> 32 #include <asm/unistd.h> 33 #include <asm/siginfo.h> 34 #include "audit.h" /* audit_signal_info() */ 35 36 /* 37 * SLAB caches for signal bits. 38 */ 39 40 static struct kmem_cache *sigqueue_cachep; 41 42 43 static int sig_ignored(struct task_struct *t, int sig) 44 { 45 void __user * handler; 46 47 /* 48 * Tracers always want to know about signals.. 49 */ 50 if (t->ptrace & PT_PTRACED) 51 return 0; 52 53 /* 54 * Blocked signals are never ignored, since the 55 * signal handler may change by the time it is 56 * unblocked. 57 */ 58 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 59 return 0; 60 61 /* Is it explicitly or implicitly ignored? */ 62 handler = t->sighand->action[sig-1].sa.sa_handler; 63 return handler == SIG_IGN || 64 (handler == SIG_DFL && sig_kernel_ignore(sig)); 65 } 66 67 /* 68 * Re-calculate pending state from the set of locally pending 69 * signals, globally pending signals, and blocked signals. 70 */ 71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 72 { 73 unsigned long ready; 74 long i; 75 76 switch (_NSIG_WORDS) { 77 default: 78 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 79 ready |= signal->sig[i] &~ blocked->sig[i]; 80 break; 81 82 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 83 ready |= signal->sig[2] &~ blocked->sig[2]; 84 ready |= signal->sig[1] &~ blocked->sig[1]; 85 ready |= signal->sig[0] &~ blocked->sig[0]; 86 break; 87 88 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 89 ready |= signal->sig[0] &~ blocked->sig[0]; 90 break; 91 92 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 93 } 94 return ready != 0; 95 } 96 97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 98 99 static int recalc_sigpending_tsk(struct task_struct *t) 100 { 101 if (t->signal->group_stop_count > 0 || 102 PENDING(&t->pending, &t->blocked) || 103 PENDING(&t->signal->shared_pending, &t->blocked)) { 104 set_tsk_thread_flag(t, TIF_SIGPENDING); 105 return 1; 106 } 107 /* 108 * We must never clear the flag in another thread, or in current 109 * when it's possible the current syscall is returning -ERESTART*. 110 * So we don't clear it here, and only callers who know they should do. 111 */ 112 return 0; 113 } 114 115 /* 116 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 117 * This is superfluous when called on current, the wakeup is a harmless no-op. 118 */ 119 void recalc_sigpending_and_wake(struct task_struct *t) 120 { 121 if (recalc_sigpending_tsk(t)) 122 signal_wake_up(t, 0); 123 } 124 125 void recalc_sigpending(void) 126 { 127 if (!recalc_sigpending_tsk(current) && !freezing(current)) 128 clear_thread_flag(TIF_SIGPENDING); 129 130 } 131 132 /* Given the mask, find the first available signal that should be serviced. */ 133 134 int next_signal(struct sigpending *pending, sigset_t *mask) 135 { 136 unsigned long i, *s, *m, x; 137 int sig = 0; 138 139 s = pending->signal.sig; 140 m = mask->sig; 141 switch (_NSIG_WORDS) { 142 default: 143 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) 144 if ((x = *s &~ *m) != 0) { 145 sig = ffz(~x) + i*_NSIG_BPW + 1; 146 break; 147 } 148 break; 149 150 case 2: if ((x = s[0] &~ m[0]) != 0) 151 sig = 1; 152 else if ((x = s[1] &~ m[1]) != 0) 153 sig = _NSIG_BPW + 1; 154 else 155 break; 156 sig += ffz(~x); 157 break; 158 159 case 1: if ((x = *s &~ *m) != 0) 160 sig = ffz(~x) + 1; 161 break; 162 } 163 164 return sig; 165 } 166 167 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags, 168 int override_rlimit) 169 { 170 struct sigqueue *q = NULL; 171 struct user_struct *user; 172 173 /* 174 * In order to avoid problems with "switch_user()", we want to make 175 * sure that the compiler doesn't re-load "t->user" 176 */ 177 user = t->user; 178 barrier(); 179 atomic_inc(&user->sigpending); 180 if (override_rlimit || 181 atomic_read(&user->sigpending) <= 182 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) 183 q = kmem_cache_alloc(sigqueue_cachep, flags); 184 if (unlikely(q == NULL)) { 185 atomic_dec(&user->sigpending); 186 } else { 187 INIT_LIST_HEAD(&q->list); 188 q->flags = 0; 189 q->user = get_uid(user); 190 } 191 return(q); 192 } 193 194 static void __sigqueue_free(struct sigqueue *q) 195 { 196 if (q->flags & SIGQUEUE_PREALLOC) 197 return; 198 atomic_dec(&q->user->sigpending); 199 free_uid(q->user); 200 kmem_cache_free(sigqueue_cachep, q); 201 } 202 203 void flush_sigqueue(struct sigpending *queue) 204 { 205 struct sigqueue *q; 206 207 sigemptyset(&queue->signal); 208 while (!list_empty(&queue->list)) { 209 q = list_entry(queue->list.next, struct sigqueue , list); 210 list_del_init(&q->list); 211 __sigqueue_free(q); 212 } 213 } 214 215 /* 216 * Flush all pending signals for a task. 217 */ 218 void flush_signals(struct task_struct *t) 219 { 220 unsigned long flags; 221 222 spin_lock_irqsave(&t->sighand->siglock, flags); 223 clear_tsk_thread_flag(t,TIF_SIGPENDING); 224 flush_sigqueue(&t->pending); 225 flush_sigqueue(&t->signal->shared_pending); 226 spin_unlock_irqrestore(&t->sighand->siglock, flags); 227 } 228 229 void ignore_signals(struct task_struct *t) 230 { 231 int i; 232 233 for (i = 0; i < _NSIG; ++i) 234 t->sighand->action[i].sa.sa_handler = SIG_IGN; 235 236 flush_signals(t); 237 } 238 239 /* 240 * Flush all handlers for a task. 241 */ 242 243 void 244 flush_signal_handlers(struct task_struct *t, int force_default) 245 { 246 int i; 247 struct k_sigaction *ka = &t->sighand->action[0]; 248 for (i = _NSIG ; i != 0 ; i--) { 249 if (force_default || ka->sa.sa_handler != SIG_IGN) 250 ka->sa.sa_handler = SIG_DFL; 251 ka->sa.sa_flags = 0; 252 sigemptyset(&ka->sa.sa_mask); 253 ka++; 254 } 255 } 256 257 int unhandled_signal(struct task_struct *tsk, int sig) 258 { 259 if (is_global_init(tsk)) 260 return 1; 261 if (tsk->ptrace & PT_PTRACED) 262 return 0; 263 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) || 264 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL); 265 } 266 267 268 /* Notify the system that a driver wants to block all signals for this 269 * process, and wants to be notified if any signals at all were to be 270 * sent/acted upon. If the notifier routine returns non-zero, then the 271 * signal will be acted upon after all. If the notifier routine returns 0, 272 * then then signal will be blocked. Only one block per process is 273 * allowed. priv is a pointer to private data that the notifier routine 274 * can use to determine if the signal should be blocked or not. */ 275 276 void 277 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 278 { 279 unsigned long flags; 280 281 spin_lock_irqsave(¤t->sighand->siglock, flags); 282 current->notifier_mask = mask; 283 current->notifier_data = priv; 284 current->notifier = notifier; 285 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 286 } 287 288 /* Notify the system that blocking has ended. */ 289 290 void 291 unblock_all_signals(void) 292 { 293 unsigned long flags; 294 295 spin_lock_irqsave(¤t->sighand->siglock, flags); 296 current->notifier = NULL; 297 current->notifier_data = NULL; 298 recalc_sigpending(); 299 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 300 } 301 302 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info) 303 { 304 struct sigqueue *q, *first = NULL; 305 int still_pending = 0; 306 307 if (unlikely(!sigismember(&list->signal, sig))) 308 return 0; 309 310 /* 311 * Collect the siginfo appropriate to this signal. Check if 312 * there is another siginfo for the same signal. 313 */ 314 list_for_each_entry(q, &list->list, list) { 315 if (q->info.si_signo == sig) { 316 if (first) { 317 still_pending = 1; 318 break; 319 } 320 first = q; 321 } 322 } 323 if (first) { 324 list_del_init(&first->list); 325 copy_siginfo(info, &first->info); 326 __sigqueue_free(first); 327 if (!still_pending) 328 sigdelset(&list->signal, sig); 329 } else { 330 331 /* Ok, it wasn't in the queue. This must be 332 a fast-pathed signal or we must have been 333 out of queue space. So zero out the info. 334 */ 335 sigdelset(&list->signal, sig); 336 info->si_signo = sig; 337 info->si_errno = 0; 338 info->si_code = 0; 339 info->si_pid = 0; 340 info->si_uid = 0; 341 } 342 return 1; 343 } 344 345 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 346 siginfo_t *info) 347 { 348 int sig = next_signal(pending, mask); 349 350 if (sig) { 351 if (current->notifier) { 352 if (sigismember(current->notifier_mask, sig)) { 353 if (!(current->notifier)(current->notifier_data)) { 354 clear_thread_flag(TIF_SIGPENDING); 355 return 0; 356 } 357 } 358 } 359 360 if (!collect_signal(sig, pending, info)) 361 sig = 0; 362 } 363 364 return sig; 365 } 366 367 /* 368 * Dequeue a signal and return the element to the caller, which is 369 * expected to free it. 370 * 371 * All callers have to hold the siglock. 372 */ 373 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 374 { 375 int signr = 0; 376 377 /* We only dequeue private signals from ourselves, we don't let 378 * signalfd steal them 379 */ 380 signr = __dequeue_signal(&tsk->pending, mask, info); 381 if (!signr) { 382 signr = __dequeue_signal(&tsk->signal->shared_pending, 383 mask, info); 384 /* 385 * itimer signal ? 386 * 387 * itimers are process shared and we restart periodic 388 * itimers in the signal delivery path to prevent DoS 389 * attacks in the high resolution timer case. This is 390 * compliant with the old way of self restarting 391 * itimers, as the SIGALRM is a legacy signal and only 392 * queued once. Changing the restart behaviour to 393 * restart the timer in the signal dequeue path is 394 * reducing the timer noise on heavy loaded !highres 395 * systems too. 396 */ 397 if (unlikely(signr == SIGALRM)) { 398 struct hrtimer *tmr = &tsk->signal->real_timer; 399 400 if (!hrtimer_is_queued(tmr) && 401 tsk->signal->it_real_incr.tv64 != 0) { 402 hrtimer_forward(tmr, tmr->base->get_time(), 403 tsk->signal->it_real_incr); 404 hrtimer_restart(tmr); 405 } 406 } 407 } 408 recalc_sigpending(); 409 if (signr && unlikely(sig_kernel_stop(signr))) { 410 /* 411 * Set a marker that we have dequeued a stop signal. Our 412 * caller might release the siglock and then the pending 413 * stop signal it is about to process is no longer in the 414 * pending bitmasks, but must still be cleared by a SIGCONT 415 * (and overruled by a SIGKILL). So those cases clear this 416 * shared flag after we've set it. Note that this flag may 417 * remain set after the signal we return is ignored or 418 * handled. That doesn't matter because its only purpose 419 * is to alert stop-signal processing code when another 420 * processor has come along and cleared the flag. 421 */ 422 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) 423 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; 424 } 425 if (signr && 426 ((info->si_code & __SI_MASK) == __SI_TIMER) && 427 info->si_sys_private){ 428 /* 429 * Release the siglock to ensure proper locking order 430 * of timer locks outside of siglocks. Note, we leave 431 * irqs disabled here, since the posix-timers code is 432 * about to disable them again anyway. 433 */ 434 spin_unlock(&tsk->sighand->siglock); 435 do_schedule_next_timer(info); 436 spin_lock(&tsk->sighand->siglock); 437 } 438 return signr; 439 } 440 441 /* 442 * Tell a process that it has a new active signal.. 443 * 444 * NOTE! we rely on the previous spin_lock to 445 * lock interrupts for us! We can only be called with 446 * "siglock" held, and the local interrupt must 447 * have been disabled when that got acquired! 448 * 449 * No need to set need_resched since signal event passing 450 * goes through ->blocked 451 */ 452 void signal_wake_up(struct task_struct *t, int resume) 453 { 454 unsigned int mask; 455 456 set_tsk_thread_flag(t, TIF_SIGPENDING); 457 458 /* 459 * For SIGKILL, we want to wake it up in the stopped/traced/killable 460 * case. We don't check t->state here because there is a race with it 461 * executing another processor and just now entering stopped state. 462 * By using wake_up_state, we ensure the process will wake up and 463 * handle its death signal. 464 */ 465 mask = TASK_INTERRUPTIBLE; 466 if (resume) 467 mask |= TASK_WAKEKILL; 468 if (!wake_up_state(t, mask)) 469 kick_process(t); 470 } 471 472 /* 473 * Remove signals in mask from the pending set and queue. 474 * Returns 1 if any signals were found. 475 * 476 * All callers must be holding the siglock. 477 * 478 * This version takes a sigset mask and looks at all signals, 479 * not just those in the first mask word. 480 */ 481 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 482 { 483 struct sigqueue *q, *n; 484 sigset_t m; 485 486 sigandsets(&m, mask, &s->signal); 487 if (sigisemptyset(&m)) 488 return 0; 489 490 signandsets(&s->signal, &s->signal, mask); 491 list_for_each_entry_safe(q, n, &s->list, list) { 492 if (sigismember(mask, q->info.si_signo)) { 493 list_del_init(&q->list); 494 __sigqueue_free(q); 495 } 496 } 497 return 1; 498 } 499 /* 500 * Remove signals in mask from the pending set and queue. 501 * Returns 1 if any signals were found. 502 * 503 * All callers must be holding the siglock. 504 */ 505 static int rm_from_queue(unsigned long mask, struct sigpending *s) 506 { 507 struct sigqueue *q, *n; 508 509 if (!sigtestsetmask(&s->signal, mask)) 510 return 0; 511 512 sigdelsetmask(&s->signal, mask); 513 list_for_each_entry_safe(q, n, &s->list, list) { 514 if (q->info.si_signo < SIGRTMIN && 515 (mask & sigmask(q->info.si_signo))) { 516 list_del_init(&q->list); 517 __sigqueue_free(q); 518 } 519 } 520 return 1; 521 } 522 523 /* 524 * Bad permissions for sending the signal 525 */ 526 static int check_kill_permission(int sig, struct siginfo *info, 527 struct task_struct *t) 528 { 529 int error = -EINVAL; 530 if (!valid_signal(sig)) 531 return error; 532 533 if (info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) { 534 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 535 if (error) 536 return error; 537 error = -EPERM; 538 if (((sig != SIGCONT) || 539 (task_session_nr(current) != task_session_nr(t))) 540 && (current->euid ^ t->suid) && (current->euid ^ t->uid) 541 && (current->uid ^ t->suid) && (current->uid ^ t->uid) 542 && !capable(CAP_KILL)) 543 return error; 544 } 545 546 return security_task_kill(t, info, sig, 0); 547 } 548 549 /* forward decl */ 550 static void do_notify_parent_cldstop(struct task_struct *tsk, int why); 551 552 /* 553 * Handle magic process-wide effects of stop/continue signals. 554 * Unlike the signal actions, these happen immediately at signal-generation 555 * time regardless of blocking, ignoring, or handling. This does the 556 * actual continuing for SIGCONT, but not the actual stopping for stop 557 * signals. The process stop is done as a signal action for SIG_DFL. 558 */ 559 static void handle_stop_signal(int sig, struct task_struct *p) 560 { 561 struct task_struct *t; 562 563 if (p->signal->flags & SIGNAL_GROUP_EXIT) 564 /* 565 * The process is in the middle of dying already. 566 */ 567 return; 568 569 if (sig_kernel_stop(sig)) { 570 /* 571 * This is a stop signal. Remove SIGCONT from all queues. 572 */ 573 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending); 574 t = p; 575 do { 576 rm_from_queue(sigmask(SIGCONT), &t->pending); 577 t = next_thread(t); 578 } while (t != p); 579 } else if (sig == SIGCONT) { 580 /* 581 * Remove all stop signals from all queues, 582 * and wake all threads. 583 */ 584 if (unlikely(p->signal->group_stop_count > 0)) { 585 /* 586 * There was a group stop in progress. We'll 587 * pretend it finished before we got here. We are 588 * obliged to report it to the parent: if the 589 * SIGSTOP happened "after" this SIGCONT, then it 590 * would have cleared this pending SIGCONT. If it 591 * happened "before" this SIGCONT, then the parent 592 * got the SIGCHLD about the stop finishing before 593 * the continue happened. We do the notification 594 * now, and it's as if the stop had finished and 595 * the SIGCHLD was pending on entry to this kill. 596 */ 597 p->signal->group_stop_count = 0; 598 p->signal->flags = SIGNAL_STOP_CONTINUED; 599 spin_unlock(&p->sighand->siglock); 600 do_notify_parent_cldstop(p, CLD_STOPPED); 601 spin_lock(&p->sighand->siglock); 602 } 603 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 604 t = p; 605 do { 606 unsigned int state; 607 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 608 609 /* 610 * If there is a handler for SIGCONT, we must make 611 * sure that no thread returns to user mode before 612 * we post the signal, in case it was the only 613 * thread eligible to run the signal handler--then 614 * it must not do anything between resuming and 615 * running the handler. With the TIF_SIGPENDING 616 * flag set, the thread will pause and acquire the 617 * siglock that we hold now and until we've queued 618 * the pending signal. 619 * 620 * Wake up the stopped thread _after_ setting 621 * TIF_SIGPENDING 622 */ 623 state = __TASK_STOPPED; 624 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { 625 set_tsk_thread_flag(t, TIF_SIGPENDING); 626 state |= TASK_INTERRUPTIBLE; 627 } 628 wake_up_state(t, state); 629 630 t = next_thread(t); 631 } while (t != p); 632 633 if (p->signal->flags & SIGNAL_STOP_STOPPED) { 634 /* 635 * We were in fact stopped, and are now continued. 636 * Notify the parent with CLD_CONTINUED. 637 */ 638 p->signal->flags = SIGNAL_STOP_CONTINUED; 639 p->signal->group_exit_code = 0; 640 spin_unlock(&p->sighand->siglock); 641 do_notify_parent_cldstop(p, CLD_CONTINUED); 642 spin_lock(&p->sighand->siglock); 643 } else { 644 /* 645 * We are not stopped, but there could be a stop 646 * signal in the middle of being processed after 647 * being removed from the queue. Clear that too. 648 */ 649 p->signal->flags = 0; 650 } 651 } else if (sig == SIGKILL) { 652 /* 653 * Make sure that any pending stop signal already dequeued 654 * is undone by the wakeup for SIGKILL. 655 */ 656 p->signal->flags = 0; 657 } 658 } 659 660 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 661 struct sigpending *signals) 662 { 663 struct sigqueue * q = NULL; 664 int ret = 0; 665 666 /* 667 * Deliver the signal to listening signalfds. This must be called 668 * with the sighand lock held. 669 */ 670 signalfd_notify(t, sig); 671 672 /* 673 * fast-pathed signals for kernel-internal things like SIGSTOP 674 * or SIGKILL. 675 */ 676 if (info == SEND_SIG_FORCED) 677 goto out_set; 678 679 /* Real-time signals must be queued if sent by sigqueue, or 680 some other real-time mechanism. It is implementation 681 defined whether kill() does so. We attempt to do so, on 682 the principle of least surprise, but since kill is not 683 allowed to fail with EAGAIN when low on memory we just 684 make sure at least one signal gets delivered and don't 685 pass on the info struct. */ 686 687 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN && 688 (is_si_special(info) || 689 info->si_code >= 0))); 690 if (q) { 691 list_add_tail(&q->list, &signals->list); 692 switch ((unsigned long) info) { 693 case (unsigned long) SEND_SIG_NOINFO: 694 q->info.si_signo = sig; 695 q->info.si_errno = 0; 696 q->info.si_code = SI_USER; 697 q->info.si_pid = task_pid_vnr(current); 698 q->info.si_uid = current->uid; 699 break; 700 case (unsigned long) SEND_SIG_PRIV: 701 q->info.si_signo = sig; 702 q->info.si_errno = 0; 703 q->info.si_code = SI_KERNEL; 704 q->info.si_pid = 0; 705 q->info.si_uid = 0; 706 break; 707 default: 708 copy_siginfo(&q->info, info); 709 break; 710 } 711 } else if (!is_si_special(info)) { 712 if (sig >= SIGRTMIN && info->si_code != SI_USER) 713 /* 714 * Queue overflow, abort. We may abort if the signal was rt 715 * and sent by user using something other than kill(). 716 */ 717 return -EAGAIN; 718 } 719 720 out_set: 721 sigaddset(&signals->signal, sig); 722 return ret; 723 } 724 725 #define LEGACY_QUEUE(sigptr, sig) \ 726 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig))) 727 728 int print_fatal_signals; 729 730 static void print_fatal_signal(struct pt_regs *regs, int signr) 731 { 732 printk("%s/%d: potentially unexpected fatal signal %d.\n", 733 current->comm, task_pid_nr(current), signr); 734 735 #if defined(__i386__) && !defined(__arch_um__) 736 printk("code at %08lx: ", regs->ip); 737 { 738 int i; 739 for (i = 0; i < 16; i++) { 740 unsigned char insn; 741 742 __get_user(insn, (unsigned char *)(regs->ip + i)); 743 printk("%02x ", insn); 744 } 745 } 746 #endif 747 printk("\n"); 748 show_regs(regs); 749 } 750 751 static int __init setup_print_fatal_signals(char *str) 752 { 753 get_option (&str, &print_fatal_signals); 754 755 return 1; 756 } 757 758 __setup("print-fatal-signals=", setup_print_fatal_signals); 759 760 static int 761 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 762 { 763 int ret = 0; 764 765 BUG_ON(!irqs_disabled()); 766 assert_spin_locked(&t->sighand->siglock); 767 768 /* Short-circuit ignored signals. */ 769 if (sig_ignored(t, sig)) 770 goto out; 771 772 /* Support queueing exactly one non-rt signal, so that we 773 can get more detailed information about the cause of 774 the signal. */ 775 if (LEGACY_QUEUE(&t->pending, sig)) 776 goto out; 777 778 ret = send_signal(sig, info, t, &t->pending); 779 if (!ret && !sigismember(&t->blocked, sig)) 780 signal_wake_up(t, sig == SIGKILL); 781 out: 782 return ret; 783 } 784 785 /* 786 * Force a signal that the process can't ignore: if necessary 787 * we unblock the signal and change any SIG_IGN to SIG_DFL. 788 * 789 * Note: If we unblock the signal, we always reset it to SIG_DFL, 790 * since we do not want to have a signal handler that was blocked 791 * be invoked when user space had explicitly blocked it. 792 * 793 * We don't want to have recursive SIGSEGV's etc, for example. 794 */ 795 int 796 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 797 { 798 unsigned long int flags; 799 int ret, blocked, ignored; 800 struct k_sigaction *action; 801 802 spin_lock_irqsave(&t->sighand->siglock, flags); 803 action = &t->sighand->action[sig-1]; 804 ignored = action->sa.sa_handler == SIG_IGN; 805 blocked = sigismember(&t->blocked, sig); 806 if (blocked || ignored) { 807 action->sa.sa_handler = SIG_DFL; 808 if (blocked) { 809 sigdelset(&t->blocked, sig); 810 recalc_sigpending_and_wake(t); 811 } 812 } 813 ret = specific_send_sig_info(sig, info, t); 814 spin_unlock_irqrestore(&t->sighand->siglock, flags); 815 816 return ret; 817 } 818 819 void 820 force_sig_specific(int sig, struct task_struct *t) 821 { 822 force_sig_info(sig, SEND_SIG_FORCED, t); 823 } 824 825 /* 826 * Test if P wants to take SIG. After we've checked all threads with this, 827 * it's equivalent to finding no threads not blocking SIG. Any threads not 828 * blocking SIG were ruled out because they are not running and already 829 * have pending signals. Such threads will dequeue from the shared queue 830 * as soon as they're available, so putting the signal on the shared queue 831 * will be equivalent to sending it to one such thread. 832 */ 833 static inline int wants_signal(int sig, struct task_struct *p) 834 { 835 if (sigismember(&p->blocked, sig)) 836 return 0; 837 if (p->flags & PF_EXITING) 838 return 0; 839 if (sig == SIGKILL) 840 return 1; 841 if (task_is_stopped_or_traced(p)) 842 return 0; 843 return task_curr(p) || !signal_pending(p); 844 } 845 846 static void 847 __group_complete_signal(int sig, struct task_struct *p) 848 { 849 struct task_struct *t; 850 851 /* 852 * Now find a thread we can wake up to take the signal off the queue. 853 * 854 * If the main thread wants the signal, it gets first crack. 855 * Probably the least surprising to the average bear. 856 */ 857 if (wants_signal(sig, p)) 858 t = p; 859 else if (thread_group_empty(p)) 860 /* 861 * There is just one thread and it does not need to be woken. 862 * It will dequeue unblocked signals before it runs again. 863 */ 864 return; 865 else { 866 /* 867 * Otherwise try to find a suitable thread. 868 */ 869 t = p->signal->curr_target; 870 if (t == NULL) 871 /* restart balancing at this thread */ 872 t = p->signal->curr_target = p; 873 874 while (!wants_signal(sig, t)) { 875 t = next_thread(t); 876 if (t == p->signal->curr_target) 877 /* 878 * No thread needs to be woken. 879 * Any eligible threads will see 880 * the signal in the queue soon. 881 */ 882 return; 883 } 884 p->signal->curr_target = t; 885 } 886 887 /* 888 * Found a killable thread. If the signal will be fatal, 889 * then start taking the whole group down immediately. 890 */ 891 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) && 892 !sigismember(&t->real_blocked, sig) && 893 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) { 894 /* 895 * This signal will be fatal to the whole group. 896 */ 897 if (!sig_kernel_coredump(sig)) { 898 /* 899 * Start a group exit and wake everybody up. 900 * This way we don't have other threads 901 * running and doing things after a slower 902 * thread has the fatal signal pending. 903 */ 904 p->signal->flags = SIGNAL_GROUP_EXIT; 905 p->signal->group_exit_code = sig; 906 p->signal->group_stop_count = 0; 907 t = p; 908 do { 909 sigaddset(&t->pending.signal, SIGKILL); 910 signal_wake_up(t, 1); 911 } while_each_thread(p, t); 912 return; 913 } 914 } 915 916 /* 917 * The signal is already in the shared-pending queue. 918 * Tell the chosen thread to wake up and dequeue it. 919 */ 920 signal_wake_up(t, sig == SIGKILL); 921 return; 922 } 923 924 int 925 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 926 { 927 int ret = 0; 928 929 assert_spin_locked(&p->sighand->siglock); 930 handle_stop_signal(sig, p); 931 932 /* Short-circuit ignored signals. */ 933 if (sig_ignored(p, sig)) 934 return ret; 935 936 if (LEGACY_QUEUE(&p->signal->shared_pending, sig)) 937 /* This is a non-RT signal and we already have one queued. */ 938 return ret; 939 940 /* 941 * Put this signal on the shared-pending queue, or fail with EAGAIN. 942 * We always use the shared queue for process-wide signals, 943 * to avoid several races. 944 */ 945 ret = send_signal(sig, info, p, &p->signal->shared_pending); 946 if (unlikely(ret)) 947 return ret; 948 949 __group_complete_signal(sig, p); 950 return 0; 951 } 952 953 /* 954 * Nuke all other threads in the group. 955 */ 956 void zap_other_threads(struct task_struct *p) 957 { 958 struct task_struct *t; 959 960 p->signal->group_stop_count = 0; 961 962 for (t = next_thread(p); t != p; t = next_thread(t)) { 963 /* 964 * Don't bother with already dead threads 965 */ 966 if (t->exit_state) 967 continue; 968 969 /* SIGKILL will be handled before any pending SIGSTOP */ 970 sigaddset(&t->pending.signal, SIGKILL); 971 signal_wake_up(t, 1); 972 } 973 } 974 975 int __fatal_signal_pending(struct task_struct *tsk) 976 { 977 return sigismember(&tsk->pending.signal, SIGKILL); 978 } 979 EXPORT_SYMBOL(__fatal_signal_pending); 980 981 /* 982 * Must be called under rcu_read_lock() or with tasklist_lock read-held. 983 */ 984 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) 985 { 986 struct sighand_struct *sighand; 987 988 for (;;) { 989 sighand = rcu_dereference(tsk->sighand); 990 if (unlikely(sighand == NULL)) 991 break; 992 993 spin_lock_irqsave(&sighand->siglock, *flags); 994 if (likely(sighand == tsk->sighand)) 995 break; 996 spin_unlock_irqrestore(&sighand->siglock, *flags); 997 } 998 999 return sighand; 1000 } 1001 1002 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1003 { 1004 unsigned long flags; 1005 int ret; 1006 1007 ret = check_kill_permission(sig, info, p); 1008 1009 if (!ret && sig) { 1010 ret = -ESRCH; 1011 if (lock_task_sighand(p, &flags)) { 1012 ret = __group_send_sig_info(sig, info, p); 1013 unlock_task_sighand(p, &flags); 1014 } 1015 } 1016 1017 return ret; 1018 } 1019 1020 /* 1021 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1022 * control characters do (^C, ^Z etc) 1023 */ 1024 1025 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1026 { 1027 struct task_struct *p = NULL; 1028 int retval, success; 1029 1030 success = 0; 1031 retval = -ESRCH; 1032 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1033 int err = group_send_sig_info(sig, info, p); 1034 success |= !err; 1035 retval = err; 1036 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1037 return success ? 0 : retval; 1038 } 1039 1040 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1041 { 1042 int error = -ESRCH; 1043 struct task_struct *p; 1044 1045 rcu_read_lock(); 1046 if (unlikely(sig_needs_tasklist(sig))) 1047 read_lock(&tasklist_lock); 1048 1049 retry: 1050 p = pid_task(pid, PIDTYPE_PID); 1051 if (p) { 1052 error = group_send_sig_info(sig, info, p); 1053 if (unlikely(error == -ESRCH)) 1054 /* 1055 * The task was unhashed in between, try again. 1056 * If it is dead, pid_task() will return NULL, 1057 * if we race with de_thread() it will find the 1058 * new leader. 1059 */ 1060 goto retry; 1061 } 1062 1063 if (unlikely(sig_needs_tasklist(sig))) 1064 read_unlock(&tasklist_lock); 1065 rcu_read_unlock(); 1066 return error; 1067 } 1068 1069 int 1070 kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1071 { 1072 int error; 1073 rcu_read_lock(); 1074 error = kill_pid_info(sig, info, find_vpid(pid)); 1075 rcu_read_unlock(); 1076 return error; 1077 } 1078 1079 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1080 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid, 1081 uid_t uid, uid_t euid, u32 secid) 1082 { 1083 int ret = -EINVAL; 1084 struct task_struct *p; 1085 1086 if (!valid_signal(sig)) 1087 return ret; 1088 1089 read_lock(&tasklist_lock); 1090 p = pid_task(pid, PIDTYPE_PID); 1091 if (!p) { 1092 ret = -ESRCH; 1093 goto out_unlock; 1094 } 1095 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 1096 && (euid != p->suid) && (euid != p->uid) 1097 && (uid != p->suid) && (uid != p->uid)) { 1098 ret = -EPERM; 1099 goto out_unlock; 1100 } 1101 ret = security_task_kill(p, info, sig, secid); 1102 if (ret) 1103 goto out_unlock; 1104 if (sig && p->sighand) { 1105 unsigned long flags; 1106 spin_lock_irqsave(&p->sighand->siglock, flags); 1107 ret = __group_send_sig_info(sig, info, p); 1108 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1109 } 1110 out_unlock: 1111 read_unlock(&tasklist_lock); 1112 return ret; 1113 } 1114 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid); 1115 1116 /* 1117 * kill_something_info() interprets pid in interesting ways just like kill(2). 1118 * 1119 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1120 * is probably wrong. Should make it like BSD or SYSV. 1121 */ 1122 1123 static int kill_something_info(int sig, struct siginfo *info, int pid) 1124 { 1125 int ret; 1126 1127 if (pid > 0) { 1128 rcu_read_lock(); 1129 ret = kill_pid_info(sig, info, find_vpid(pid)); 1130 rcu_read_unlock(); 1131 return ret; 1132 } 1133 1134 read_lock(&tasklist_lock); 1135 if (pid != -1) { 1136 ret = __kill_pgrp_info(sig, info, 1137 pid ? find_vpid(-pid) : task_pgrp(current)); 1138 } else { 1139 int retval = 0, count = 0; 1140 struct task_struct * p; 1141 1142 for_each_process(p) { 1143 if (p->pid > 1 && !same_thread_group(p, current)) { 1144 int err = group_send_sig_info(sig, info, p); 1145 ++count; 1146 if (err != -EPERM) 1147 retval = err; 1148 } 1149 } 1150 ret = count ? retval : -ESRCH; 1151 } 1152 read_unlock(&tasklist_lock); 1153 1154 return ret; 1155 } 1156 1157 /* 1158 * These are for backward compatibility with the rest of the kernel source. 1159 */ 1160 1161 /* 1162 * These two are the most common entry points. They send a signal 1163 * just to the specific thread. 1164 */ 1165 int 1166 send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1167 { 1168 int ret; 1169 unsigned long flags; 1170 1171 /* 1172 * Make sure legacy kernel users don't send in bad values 1173 * (normal paths check this in check_kill_permission). 1174 */ 1175 if (!valid_signal(sig)) 1176 return -EINVAL; 1177 1178 /* 1179 * We need the tasklist lock even for the specific 1180 * thread case (when we don't need to follow the group 1181 * lists) in order to avoid races with "p->sighand" 1182 * going away or changing from under us. 1183 */ 1184 read_lock(&tasklist_lock); 1185 spin_lock_irqsave(&p->sighand->siglock, flags); 1186 ret = specific_send_sig_info(sig, info, p); 1187 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1188 read_unlock(&tasklist_lock); 1189 return ret; 1190 } 1191 1192 #define __si_special(priv) \ 1193 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1194 1195 int 1196 send_sig(int sig, struct task_struct *p, int priv) 1197 { 1198 return send_sig_info(sig, __si_special(priv), p); 1199 } 1200 1201 void 1202 force_sig(int sig, struct task_struct *p) 1203 { 1204 force_sig_info(sig, SEND_SIG_PRIV, p); 1205 } 1206 1207 /* 1208 * When things go south during signal handling, we 1209 * will force a SIGSEGV. And if the signal that caused 1210 * the problem was already a SIGSEGV, we'll want to 1211 * make sure we don't even try to deliver the signal.. 1212 */ 1213 int 1214 force_sigsegv(int sig, struct task_struct *p) 1215 { 1216 if (sig == SIGSEGV) { 1217 unsigned long flags; 1218 spin_lock_irqsave(&p->sighand->siglock, flags); 1219 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1220 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1221 } 1222 force_sig(SIGSEGV, p); 1223 return 0; 1224 } 1225 1226 int kill_pgrp(struct pid *pid, int sig, int priv) 1227 { 1228 int ret; 1229 1230 read_lock(&tasklist_lock); 1231 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1232 read_unlock(&tasklist_lock); 1233 1234 return ret; 1235 } 1236 EXPORT_SYMBOL(kill_pgrp); 1237 1238 int kill_pid(struct pid *pid, int sig, int priv) 1239 { 1240 return kill_pid_info(sig, __si_special(priv), pid); 1241 } 1242 EXPORT_SYMBOL(kill_pid); 1243 1244 int 1245 kill_proc(pid_t pid, int sig, int priv) 1246 { 1247 int ret; 1248 1249 rcu_read_lock(); 1250 ret = kill_pid_info(sig, __si_special(priv), find_pid(pid)); 1251 rcu_read_unlock(); 1252 return ret; 1253 } 1254 1255 /* 1256 * These functions support sending signals using preallocated sigqueue 1257 * structures. This is needed "because realtime applications cannot 1258 * afford to lose notifications of asynchronous events, like timer 1259 * expirations or I/O completions". In the case of Posix Timers 1260 * we allocate the sigqueue structure from the timer_create. If this 1261 * allocation fails we are able to report the failure to the application 1262 * with an EAGAIN error. 1263 */ 1264 1265 struct sigqueue *sigqueue_alloc(void) 1266 { 1267 struct sigqueue *q; 1268 1269 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) 1270 q->flags |= SIGQUEUE_PREALLOC; 1271 return(q); 1272 } 1273 1274 void sigqueue_free(struct sigqueue *q) 1275 { 1276 unsigned long flags; 1277 spinlock_t *lock = ¤t->sighand->siglock; 1278 1279 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1280 /* 1281 * If the signal is still pending remove it from the 1282 * pending queue. We must hold ->siglock while testing 1283 * q->list to serialize with collect_signal(). 1284 */ 1285 spin_lock_irqsave(lock, flags); 1286 if (!list_empty(&q->list)) 1287 list_del_init(&q->list); 1288 spin_unlock_irqrestore(lock, flags); 1289 1290 q->flags &= ~SIGQUEUE_PREALLOC; 1291 __sigqueue_free(q); 1292 } 1293 1294 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1295 { 1296 unsigned long flags; 1297 int ret = 0; 1298 1299 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1300 1301 /* 1302 * The rcu based delayed sighand destroy makes it possible to 1303 * run this without tasklist lock held. The task struct itself 1304 * cannot go away as create_timer did get_task_struct(). 1305 * 1306 * We return -1, when the task is marked exiting, so 1307 * posix_timer_event can redirect it to the group leader 1308 */ 1309 rcu_read_lock(); 1310 1311 if (!likely(lock_task_sighand(p, &flags))) { 1312 ret = -1; 1313 goto out_err; 1314 } 1315 1316 if (unlikely(!list_empty(&q->list))) { 1317 /* 1318 * If an SI_TIMER entry is already queue just increment 1319 * the overrun count. 1320 */ 1321 BUG_ON(q->info.si_code != SI_TIMER); 1322 q->info.si_overrun++; 1323 goto out; 1324 } 1325 /* Short-circuit ignored signals. */ 1326 if (sig_ignored(p, sig)) { 1327 ret = 1; 1328 goto out; 1329 } 1330 /* 1331 * Deliver the signal to listening signalfds. This must be called 1332 * with the sighand lock held. 1333 */ 1334 signalfd_notify(p, sig); 1335 1336 list_add_tail(&q->list, &p->pending.list); 1337 sigaddset(&p->pending.signal, sig); 1338 if (!sigismember(&p->blocked, sig)) 1339 signal_wake_up(p, sig == SIGKILL); 1340 1341 out: 1342 unlock_task_sighand(p, &flags); 1343 out_err: 1344 rcu_read_unlock(); 1345 1346 return ret; 1347 } 1348 1349 int 1350 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1351 { 1352 unsigned long flags; 1353 int ret = 0; 1354 1355 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1356 1357 read_lock(&tasklist_lock); 1358 /* Since it_lock is held, p->sighand cannot be NULL. */ 1359 spin_lock_irqsave(&p->sighand->siglock, flags); 1360 handle_stop_signal(sig, p); 1361 1362 /* Short-circuit ignored signals. */ 1363 if (sig_ignored(p, sig)) { 1364 ret = 1; 1365 goto out; 1366 } 1367 1368 if (unlikely(!list_empty(&q->list))) { 1369 /* 1370 * If an SI_TIMER entry is already queue just increment 1371 * the overrun count. Other uses should not try to 1372 * send the signal multiple times. 1373 */ 1374 BUG_ON(q->info.si_code != SI_TIMER); 1375 q->info.si_overrun++; 1376 goto out; 1377 } 1378 /* 1379 * Deliver the signal to listening signalfds. This must be called 1380 * with the sighand lock held. 1381 */ 1382 signalfd_notify(p, sig); 1383 1384 /* 1385 * Put this signal on the shared-pending queue. 1386 * We always use the shared queue for process-wide signals, 1387 * to avoid several races. 1388 */ 1389 list_add_tail(&q->list, &p->signal->shared_pending.list); 1390 sigaddset(&p->signal->shared_pending.signal, sig); 1391 1392 __group_complete_signal(sig, p); 1393 out: 1394 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1395 read_unlock(&tasklist_lock); 1396 return ret; 1397 } 1398 1399 /* 1400 * Wake up any threads in the parent blocked in wait* syscalls. 1401 */ 1402 static inline void __wake_up_parent(struct task_struct *p, 1403 struct task_struct *parent) 1404 { 1405 wake_up_interruptible_sync(&parent->signal->wait_chldexit); 1406 } 1407 1408 /* 1409 * Let a parent know about the death of a child. 1410 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1411 */ 1412 1413 void do_notify_parent(struct task_struct *tsk, int sig) 1414 { 1415 struct siginfo info; 1416 unsigned long flags; 1417 struct sighand_struct *psig; 1418 1419 BUG_ON(sig == -1); 1420 1421 /* do_notify_parent_cldstop should have been called instead. */ 1422 BUG_ON(task_is_stopped_or_traced(tsk)); 1423 1424 BUG_ON(!tsk->ptrace && 1425 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1426 1427 info.si_signo = sig; 1428 info.si_errno = 0; 1429 /* 1430 * we are under tasklist_lock here so our parent is tied to 1431 * us and cannot exit and release its namespace. 1432 * 1433 * the only it can is to switch its nsproxy with sys_unshare, 1434 * bu uncharing pid namespaces is not allowed, so we'll always 1435 * see relevant namespace 1436 * 1437 * write_lock() currently calls preempt_disable() which is the 1438 * same as rcu_read_lock(), but according to Oleg, this is not 1439 * correct to rely on this 1440 */ 1441 rcu_read_lock(); 1442 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns); 1443 rcu_read_unlock(); 1444 1445 info.si_uid = tsk->uid; 1446 1447 /* FIXME: find out whether or not this is supposed to be c*time. */ 1448 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime, 1449 tsk->signal->utime)); 1450 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime, 1451 tsk->signal->stime)); 1452 1453 info.si_status = tsk->exit_code & 0x7f; 1454 if (tsk->exit_code & 0x80) 1455 info.si_code = CLD_DUMPED; 1456 else if (tsk->exit_code & 0x7f) 1457 info.si_code = CLD_KILLED; 1458 else { 1459 info.si_code = CLD_EXITED; 1460 info.si_status = tsk->exit_code >> 8; 1461 } 1462 1463 psig = tsk->parent->sighand; 1464 spin_lock_irqsave(&psig->siglock, flags); 1465 if (!tsk->ptrace && sig == SIGCHLD && 1466 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1467 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1468 /* 1469 * We are exiting and our parent doesn't care. POSIX.1 1470 * defines special semantics for setting SIGCHLD to SIG_IGN 1471 * or setting the SA_NOCLDWAIT flag: we should be reaped 1472 * automatically and not left for our parent's wait4 call. 1473 * Rather than having the parent do it as a magic kind of 1474 * signal handler, we just set this to tell do_exit that we 1475 * can be cleaned up without becoming a zombie. Note that 1476 * we still call __wake_up_parent in this case, because a 1477 * blocked sys_wait4 might now return -ECHILD. 1478 * 1479 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1480 * is implementation-defined: we do (if you don't want 1481 * it, just use SIG_IGN instead). 1482 */ 1483 tsk->exit_signal = -1; 1484 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1485 sig = 0; 1486 } 1487 if (valid_signal(sig) && sig > 0) 1488 __group_send_sig_info(sig, &info, tsk->parent); 1489 __wake_up_parent(tsk, tsk->parent); 1490 spin_unlock_irqrestore(&psig->siglock, flags); 1491 } 1492 1493 static void do_notify_parent_cldstop(struct task_struct *tsk, int why) 1494 { 1495 struct siginfo info; 1496 unsigned long flags; 1497 struct task_struct *parent; 1498 struct sighand_struct *sighand; 1499 1500 if (tsk->ptrace & PT_PTRACED) 1501 parent = tsk->parent; 1502 else { 1503 tsk = tsk->group_leader; 1504 parent = tsk->real_parent; 1505 } 1506 1507 info.si_signo = SIGCHLD; 1508 info.si_errno = 0; 1509 /* 1510 * see comment in do_notify_parent() abot the following 3 lines 1511 */ 1512 rcu_read_lock(); 1513 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns); 1514 rcu_read_unlock(); 1515 1516 info.si_uid = tsk->uid; 1517 1518 /* FIXME: find out whether or not this is supposed to be c*time. */ 1519 info.si_utime = cputime_to_jiffies(tsk->utime); 1520 info.si_stime = cputime_to_jiffies(tsk->stime); 1521 1522 info.si_code = why; 1523 switch (why) { 1524 case CLD_CONTINUED: 1525 info.si_status = SIGCONT; 1526 break; 1527 case CLD_STOPPED: 1528 info.si_status = tsk->signal->group_exit_code & 0x7f; 1529 break; 1530 case CLD_TRAPPED: 1531 info.si_status = tsk->exit_code & 0x7f; 1532 break; 1533 default: 1534 BUG(); 1535 } 1536 1537 sighand = parent->sighand; 1538 spin_lock_irqsave(&sighand->siglock, flags); 1539 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1540 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1541 __group_send_sig_info(SIGCHLD, &info, parent); 1542 /* 1543 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1544 */ 1545 __wake_up_parent(tsk, parent); 1546 spin_unlock_irqrestore(&sighand->siglock, flags); 1547 } 1548 1549 static inline int may_ptrace_stop(void) 1550 { 1551 if (!likely(current->ptrace & PT_PTRACED)) 1552 return 0; 1553 /* 1554 * Are we in the middle of do_coredump? 1555 * If so and our tracer is also part of the coredump stopping 1556 * is a deadlock situation, and pointless because our tracer 1557 * is dead so don't allow us to stop. 1558 * If SIGKILL was already sent before the caller unlocked 1559 * ->siglock we must see ->core_waiters != 0. Otherwise it 1560 * is safe to enter schedule(). 1561 */ 1562 if (unlikely(current->mm->core_waiters) && 1563 unlikely(current->mm == current->parent->mm)) 1564 return 0; 1565 1566 return 1; 1567 } 1568 1569 /* 1570 * Return nonzero if there is a SIGKILL that should be waking us up. 1571 * Called with the siglock held. 1572 */ 1573 static int sigkill_pending(struct task_struct *tsk) 1574 { 1575 return ((sigismember(&tsk->pending.signal, SIGKILL) || 1576 sigismember(&tsk->signal->shared_pending.signal, SIGKILL)) && 1577 !unlikely(sigismember(&tsk->blocked, SIGKILL))); 1578 } 1579 1580 /* 1581 * This must be called with current->sighand->siglock held. 1582 * 1583 * This should be the path for all ptrace stops. 1584 * We always set current->last_siginfo while stopped here. 1585 * That makes it a way to test a stopped process for 1586 * being ptrace-stopped vs being job-control-stopped. 1587 * 1588 * If we actually decide not to stop at all because the tracer 1589 * is gone, we keep current->exit_code unless clear_code. 1590 */ 1591 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info) 1592 { 1593 int killed = 0; 1594 1595 if (arch_ptrace_stop_needed(exit_code, info)) { 1596 /* 1597 * The arch code has something special to do before a 1598 * ptrace stop. This is allowed to block, e.g. for faults 1599 * on user stack pages. We can't keep the siglock while 1600 * calling arch_ptrace_stop, so we must release it now. 1601 * To preserve proper semantics, we must do this before 1602 * any signal bookkeeping like checking group_stop_count. 1603 * Meanwhile, a SIGKILL could come in before we retake the 1604 * siglock. That must prevent us from sleeping in TASK_TRACED. 1605 * So after regaining the lock, we must check for SIGKILL. 1606 */ 1607 spin_unlock_irq(¤t->sighand->siglock); 1608 arch_ptrace_stop(exit_code, info); 1609 spin_lock_irq(¤t->sighand->siglock); 1610 killed = sigkill_pending(current); 1611 } 1612 1613 /* 1614 * If there is a group stop in progress, 1615 * we must participate in the bookkeeping. 1616 */ 1617 if (current->signal->group_stop_count > 0) 1618 --current->signal->group_stop_count; 1619 1620 current->last_siginfo = info; 1621 current->exit_code = exit_code; 1622 1623 /* Let the debugger run. */ 1624 __set_current_state(TASK_TRACED); 1625 spin_unlock_irq(¤t->sighand->siglock); 1626 read_lock(&tasklist_lock); 1627 if (!unlikely(killed) && may_ptrace_stop()) { 1628 do_notify_parent_cldstop(current, CLD_TRAPPED); 1629 read_unlock(&tasklist_lock); 1630 schedule(); 1631 } else { 1632 /* 1633 * By the time we got the lock, our tracer went away. 1634 * Don't drop the lock yet, another tracer may come. 1635 */ 1636 __set_current_state(TASK_RUNNING); 1637 if (clear_code) 1638 current->exit_code = 0; 1639 read_unlock(&tasklist_lock); 1640 } 1641 1642 /* 1643 * While in TASK_TRACED, we were considered "frozen enough". 1644 * Now that we woke up, it's crucial if we're supposed to be 1645 * frozen that we freeze now before running anything substantial. 1646 */ 1647 try_to_freeze(); 1648 1649 /* 1650 * We are back. Now reacquire the siglock before touching 1651 * last_siginfo, so that we are sure to have synchronized with 1652 * any signal-sending on another CPU that wants to examine it. 1653 */ 1654 spin_lock_irq(¤t->sighand->siglock); 1655 current->last_siginfo = NULL; 1656 1657 /* 1658 * Queued signals ignored us while we were stopped for tracing. 1659 * So check for any that we should take before resuming user mode. 1660 * This sets TIF_SIGPENDING, but never clears it. 1661 */ 1662 recalc_sigpending_tsk(current); 1663 } 1664 1665 void ptrace_notify(int exit_code) 1666 { 1667 siginfo_t info; 1668 1669 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1670 1671 memset(&info, 0, sizeof info); 1672 info.si_signo = SIGTRAP; 1673 info.si_code = exit_code; 1674 info.si_pid = task_pid_vnr(current); 1675 info.si_uid = current->uid; 1676 1677 /* Let the debugger run. */ 1678 spin_lock_irq(¤t->sighand->siglock); 1679 ptrace_stop(exit_code, 1, &info); 1680 spin_unlock_irq(¤t->sighand->siglock); 1681 } 1682 1683 static void 1684 finish_stop(int stop_count) 1685 { 1686 /* 1687 * If there are no other threads in the group, or if there is 1688 * a group stop in progress and we are the last to stop, 1689 * report to the parent. When ptraced, every thread reports itself. 1690 */ 1691 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) { 1692 read_lock(&tasklist_lock); 1693 do_notify_parent_cldstop(current, CLD_STOPPED); 1694 read_unlock(&tasklist_lock); 1695 } 1696 1697 do { 1698 schedule(); 1699 } while (try_to_freeze()); 1700 /* 1701 * Now we don't run again until continued. 1702 */ 1703 current->exit_code = 0; 1704 } 1705 1706 /* 1707 * This performs the stopping for SIGSTOP and other stop signals. 1708 * We have to stop all threads in the thread group. 1709 * Returns nonzero if we've actually stopped and released the siglock. 1710 * Returns zero if we didn't stop and still hold the siglock. 1711 */ 1712 static int do_signal_stop(int signr) 1713 { 1714 struct signal_struct *sig = current->signal; 1715 int stop_count; 1716 1717 if (sig->group_stop_count > 0) { 1718 /* 1719 * There is a group stop in progress. We don't need to 1720 * start another one. 1721 */ 1722 stop_count = --sig->group_stop_count; 1723 } else { 1724 struct task_struct *t; 1725 1726 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) || 1727 unlikely(sig->group_exit_task)) 1728 return 0; 1729 /* 1730 * There is no group stop already in progress. 1731 * We must initiate one now. 1732 */ 1733 sig->group_exit_code = signr; 1734 1735 stop_count = 0; 1736 for (t = next_thread(current); t != current; t = next_thread(t)) 1737 /* 1738 * Setting state to TASK_STOPPED for a group 1739 * stop is always done with the siglock held, 1740 * so this check has no races. 1741 */ 1742 if (!(t->flags & PF_EXITING) && 1743 !task_is_stopped_or_traced(t)) { 1744 stop_count++; 1745 signal_wake_up(t, 0); 1746 } 1747 sig->group_stop_count = stop_count; 1748 } 1749 1750 if (stop_count == 0) 1751 sig->flags = SIGNAL_STOP_STOPPED; 1752 current->exit_code = sig->group_exit_code; 1753 __set_current_state(TASK_STOPPED); 1754 1755 spin_unlock_irq(¤t->sighand->siglock); 1756 finish_stop(stop_count); 1757 return 1; 1758 } 1759 1760 static int ptrace_signal(int signr, siginfo_t *info, 1761 struct pt_regs *regs, void *cookie) 1762 { 1763 if (!(current->ptrace & PT_PTRACED)) 1764 return signr; 1765 1766 ptrace_signal_deliver(regs, cookie); 1767 1768 /* Let the debugger run. */ 1769 ptrace_stop(signr, 0, info); 1770 1771 /* We're back. Did the debugger cancel the sig? */ 1772 signr = current->exit_code; 1773 if (signr == 0) 1774 return signr; 1775 1776 current->exit_code = 0; 1777 1778 /* Update the siginfo structure if the signal has 1779 changed. If the debugger wanted something 1780 specific in the siginfo structure then it should 1781 have updated *info via PTRACE_SETSIGINFO. */ 1782 if (signr != info->si_signo) { 1783 info->si_signo = signr; 1784 info->si_errno = 0; 1785 info->si_code = SI_USER; 1786 info->si_pid = task_pid_vnr(current->parent); 1787 info->si_uid = current->parent->uid; 1788 } 1789 1790 /* If the (new) signal is now blocked, requeue it. */ 1791 if (sigismember(¤t->blocked, signr)) { 1792 specific_send_sig_info(signr, info, current); 1793 signr = 0; 1794 } 1795 1796 return signr; 1797 } 1798 1799 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 1800 struct pt_regs *regs, void *cookie) 1801 { 1802 sigset_t *mask = ¤t->blocked; 1803 int signr = 0; 1804 1805 relock: 1806 /* 1807 * We'll jump back here after any time we were stopped in TASK_STOPPED. 1808 * While in TASK_STOPPED, we were considered "frozen enough". 1809 * Now that we woke up, it's crucial if we're supposed to be 1810 * frozen that we freeze now before running anything substantial. 1811 */ 1812 try_to_freeze(); 1813 1814 spin_lock_irq(¤t->sighand->siglock); 1815 for (;;) { 1816 struct k_sigaction *ka; 1817 1818 if (unlikely(current->signal->group_stop_count > 0) && 1819 do_signal_stop(0)) 1820 goto relock; 1821 1822 signr = dequeue_signal(current, mask, info); 1823 1824 if (!signr) 1825 break; /* will return 0 */ 1826 1827 if (signr != SIGKILL) { 1828 signr = ptrace_signal(signr, info, regs, cookie); 1829 if (!signr) 1830 continue; 1831 } 1832 1833 ka = ¤t->sighand->action[signr-1]; 1834 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 1835 continue; 1836 if (ka->sa.sa_handler != SIG_DFL) { 1837 /* Run the handler. */ 1838 *return_ka = *ka; 1839 1840 if (ka->sa.sa_flags & SA_ONESHOT) 1841 ka->sa.sa_handler = SIG_DFL; 1842 1843 break; /* will return non-zero "signr" value */ 1844 } 1845 1846 /* 1847 * Now we are doing the default action for this signal. 1848 */ 1849 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 1850 continue; 1851 1852 /* 1853 * Global init gets no signals it doesn't want. 1854 */ 1855 if (is_global_init(current)) 1856 continue; 1857 1858 if (sig_kernel_stop(signr)) { 1859 /* 1860 * The default action is to stop all threads in 1861 * the thread group. The job control signals 1862 * do nothing in an orphaned pgrp, but SIGSTOP 1863 * always works. Note that siglock needs to be 1864 * dropped during the call to is_orphaned_pgrp() 1865 * because of lock ordering with tasklist_lock. 1866 * This allows an intervening SIGCONT to be posted. 1867 * We need to check for that and bail out if necessary. 1868 */ 1869 if (signr != SIGSTOP) { 1870 spin_unlock_irq(¤t->sighand->siglock); 1871 1872 /* signals can be posted during this window */ 1873 1874 if (is_current_pgrp_orphaned()) 1875 goto relock; 1876 1877 spin_lock_irq(¤t->sighand->siglock); 1878 } 1879 1880 if (likely(do_signal_stop(signr))) { 1881 /* It released the siglock. */ 1882 goto relock; 1883 } 1884 1885 /* 1886 * We didn't actually stop, due to a race 1887 * with SIGCONT or something like that. 1888 */ 1889 continue; 1890 } 1891 1892 spin_unlock_irq(¤t->sighand->siglock); 1893 1894 /* 1895 * Anything else is fatal, maybe with a core dump. 1896 */ 1897 current->flags |= PF_SIGNALED; 1898 if ((signr != SIGKILL) && print_fatal_signals) 1899 print_fatal_signal(regs, signr); 1900 if (sig_kernel_coredump(signr)) { 1901 /* 1902 * If it was able to dump core, this kills all 1903 * other threads in the group and synchronizes with 1904 * their demise. If we lost the race with another 1905 * thread getting here, it set group_exit_code 1906 * first and our do_group_exit call below will use 1907 * that value and ignore the one we pass it. 1908 */ 1909 do_coredump((long)signr, signr, regs); 1910 } 1911 1912 /* 1913 * Death signals, no core dump. 1914 */ 1915 do_group_exit(signr); 1916 /* NOTREACHED */ 1917 } 1918 spin_unlock_irq(¤t->sighand->siglock); 1919 return signr; 1920 } 1921 1922 void exit_signals(struct task_struct *tsk) 1923 { 1924 int group_stop = 0; 1925 struct task_struct *t; 1926 1927 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 1928 tsk->flags |= PF_EXITING; 1929 return; 1930 } 1931 1932 spin_lock_irq(&tsk->sighand->siglock); 1933 /* 1934 * From now this task is not visible for group-wide signals, 1935 * see wants_signal(), do_signal_stop(). 1936 */ 1937 tsk->flags |= PF_EXITING; 1938 if (!signal_pending(tsk)) 1939 goto out; 1940 1941 /* It could be that __group_complete_signal() choose us to 1942 * notify about group-wide signal. Another thread should be 1943 * woken now to take the signal since we will not. 1944 */ 1945 for (t = tsk; (t = next_thread(t)) != tsk; ) 1946 if (!signal_pending(t) && !(t->flags & PF_EXITING)) 1947 recalc_sigpending_and_wake(t); 1948 1949 if (unlikely(tsk->signal->group_stop_count) && 1950 !--tsk->signal->group_stop_count) { 1951 tsk->signal->flags = SIGNAL_STOP_STOPPED; 1952 group_stop = 1; 1953 } 1954 out: 1955 spin_unlock_irq(&tsk->sighand->siglock); 1956 1957 if (unlikely(group_stop)) { 1958 read_lock(&tasklist_lock); 1959 do_notify_parent_cldstop(tsk, CLD_STOPPED); 1960 read_unlock(&tasklist_lock); 1961 } 1962 } 1963 1964 EXPORT_SYMBOL(recalc_sigpending); 1965 EXPORT_SYMBOL_GPL(dequeue_signal); 1966 EXPORT_SYMBOL(flush_signals); 1967 EXPORT_SYMBOL(force_sig); 1968 EXPORT_SYMBOL(kill_proc); 1969 EXPORT_SYMBOL(ptrace_notify); 1970 EXPORT_SYMBOL(send_sig); 1971 EXPORT_SYMBOL(send_sig_info); 1972 EXPORT_SYMBOL(sigprocmask); 1973 EXPORT_SYMBOL(block_all_signals); 1974 EXPORT_SYMBOL(unblock_all_signals); 1975 1976 1977 /* 1978 * System call entry points. 1979 */ 1980 1981 asmlinkage long sys_restart_syscall(void) 1982 { 1983 struct restart_block *restart = ¤t_thread_info()->restart_block; 1984 return restart->fn(restart); 1985 } 1986 1987 long do_no_restart_syscall(struct restart_block *param) 1988 { 1989 return -EINTR; 1990 } 1991 1992 /* 1993 * We don't need to get the kernel lock - this is all local to this 1994 * particular thread.. (and that's good, because this is _heavily_ 1995 * used by various programs) 1996 */ 1997 1998 /* 1999 * This is also useful for kernel threads that want to temporarily 2000 * (or permanently) block certain signals. 2001 * 2002 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2003 * interface happily blocks "unblockable" signals like SIGKILL 2004 * and friends. 2005 */ 2006 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2007 { 2008 int error; 2009 2010 spin_lock_irq(¤t->sighand->siglock); 2011 if (oldset) 2012 *oldset = current->blocked; 2013 2014 error = 0; 2015 switch (how) { 2016 case SIG_BLOCK: 2017 sigorsets(¤t->blocked, ¤t->blocked, set); 2018 break; 2019 case SIG_UNBLOCK: 2020 signandsets(¤t->blocked, ¤t->blocked, set); 2021 break; 2022 case SIG_SETMASK: 2023 current->blocked = *set; 2024 break; 2025 default: 2026 error = -EINVAL; 2027 } 2028 recalc_sigpending(); 2029 spin_unlock_irq(¤t->sighand->siglock); 2030 2031 return error; 2032 } 2033 2034 asmlinkage long 2035 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize) 2036 { 2037 int error = -EINVAL; 2038 sigset_t old_set, new_set; 2039 2040 /* XXX: Don't preclude handling different sized sigset_t's. */ 2041 if (sigsetsize != sizeof(sigset_t)) 2042 goto out; 2043 2044 if (set) { 2045 error = -EFAULT; 2046 if (copy_from_user(&new_set, set, sizeof(*set))) 2047 goto out; 2048 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2049 2050 error = sigprocmask(how, &new_set, &old_set); 2051 if (error) 2052 goto out; 2053 if (oset) 2054 goto set_old; 2055 } else if (oset) { 2056 spin_lock_irq(¤t->sighand->siglock); 2057 old_set = current->blocked; 2058 spin_unlock_irq(¤t->sighand->siglock); 2059 2060 set_old: 2061 error = -EFAULT; 2062 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2063 goto out; 2064 } 2065 error = 0; 2066 out: 2067 return error; 2068 } 2069 2070 long do_sigpending(void __user *set, unsigned long sigsetsize) 2071 { 2072 long error = -EINVAL; 2073 sigset_t pending; 2074 2075 if (sigsetsize > sizeof(sigset_t)) 2076 goto out; 2077 2078 spin_lock_irq(¤t->sighand->siglock); 2079 sigorsets(&pending, ¤t->pending.signal, 2080 ¤t->signal->shared_pending.signal); 2081 spin_unlock_irq(¤t->sighand->siglock); 2082 2083 /* Outside the lock because only this thread touches it. */ 2084 sigandsets(&pending, ¤t->blocked, &pending); 2085 2086 error = -EFAULT; 2087 if (!copy_to_user(set, &pending, sigsetsize)) 2088 error = 0; 2089 2090 out: 2091 return error; 2092 } 2093 2094 asmlinkage long 2095 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize) 2096 { 2097 return do_sigpending(set, sigsetsize); 2098 } 2099 2100 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2101 2102 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2103 { 2104 int err; 2105 2106 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2107 return -EFAULT; 2108 if (from->si_code < 0) 2109 return __copy_to_user(to, from, sizeof(siginfo_t)) 2110 ? -EFAULT : 0; 2111 /* 2112 * If you change siginfo_t structure, please be sure 2113 * this code is fixed accordingly. 2114 * Please remember to update the signalfd_copyinfo() function 2115 * inside fs/signalfd.c too, in case siginfo_t changes. 2116 * It should never copy any pad contained in the structure 2117 * to avoid security leaks, but must copy the generic 2118 * 3 ints plus the relevant union member. 2119 */ 2120 err = __put_user(from->si_signo, &to->si_signo); 2121 err |= __put_user(from->si_errno, &to->si_errno); 2122 err |= __put_user((short)from->si_code, &to->si_code); 2123 switch (from->si_code & __SI_MASK) { 2124 case __SI_KILL: 2125 err |= __put_user(from->si_pid, &to->si_pid); 2126 err |= __put_user(from->si_uid, &to->si_uid); 2127 break; 2128 case __SI_TIMER: 2129 err |= __put_user(from->si_tid, &to->si_tid); 2130 err |= __put_user(from->si_overrun, &to->si_overrun); 2131 err |= __put_user(from->si_ptr, &to->si_ptr); 2132 break; 2133 case __SI_POLL: 2134 err |= __put_user(from->si_band, &to->si_band); 2135 err |= __put_user(from->si_fd, &to->si_fd); 2136 break; 2137 case __SI_FAULT: 2138 err |= __put_user(from->si_addr, &to->si_addr); 2139 #ifdef __ARCH_SI_TRAPNO 2140 err |= __put_user(from->si_trapno, &to->si_trapno); 2141 #endif 2142 break; 2143 case __SI_CHLD: 2144 err |= __put_user(from->si_pid, &to->si_pid); 2145 err |= __put_user(from->si_uid, &to->si_uid); 2146 err |= __put_user(from->si_status, &to->si_status); 2147 err |= __put_user(from->si_utime, &to->si_utime); 2148 err |= __put_user(from->si_stime, &to->si_stime); 2149 break; 2150 case __SI_RT: /* This is not generated by the kernel as of now. */ 2151 case __SI_MESGQ: /* But this is */ 2152 err |= __put_user(from->si_pid, &to->si_pid); 2153 err |= __put_user(from->si_uid, &to->si_uid); 2154 err |= __put_user(from->si_ptr, &to->si_ptr); 2155 break; 2156 default: /* this is just in case for now ... */ 2157 err |= __put_user(from->si_pid, &to->si_pid); 2158 err |= __put_user(from->si_uid, &to->si_uid); 2159 break; 2160 } 2161 return err; 2162 } 2163 2164 #endif 2165 2166 asmlinkage long 2167 sys_rt_sigtimedwait(const sigset_t __user *uthese, 2168 siginfo_t __user *uinfo, 2169 const struct timespec __user *uts, 2170 size_t sigsetsize) 2171 { 2172 int ret, sig; 2173 sigset_t these; 2174 struct timespec ts; 2175 siginfo_t info; 2176 long timeout = 0; 2177 2178 /* XXX: Don't preclude handling different sized sigset_t's. */ 2179 if (sigsetsize != sizeof(sigset_t)) 2180 return -EINVAL; 2181 2182 if (copy_from_user(&these, uthese, sizeof(these))) 2183 return -EFAULT; 2184 2185 /* 2186 * Invert the set of allowed signals to get those we 2187 * want to block. 2188 */ 2189 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2190 signotset(&these); 2191 2192 if (uts) { 2193 if (copy_from_user(&ts, uts, sizeof(ts))) 2194 return -EFAULT; 2195 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 2196 || ts.tv_sec < 0) 2197 return -EINVAL; 2198 } 2199 2200 spin_lock_irq(¤t->sighand->siglock); 2201 sig = dequeue_signal(current, &these, &info); 2202 if (!sig) { 2203 timeout = MAX_SCHEDULE_TIMEOUT; 2204 if (uts) 2205 timeout = (timespec_to_jiffies(&ts) 2206 + (ts.tv_sec || ts.tv_nsec)); 2207 2208 if (timeout) { 2209 /* None ready -- temporarily unblock those we're 2210 * interested while we are sleeping in so that we'll 2211 * be awakened when they arrive. */ 2212 current->real_blocked = current->blocked; 2213 sigandsets(¤t->blocked, ¤t->blocked, &these); 2214 recalc_sigpending(); 2215 spin_unlock_irq(¤t->sighand->siglock); 2216 2217 timeout = schedule_timeout_interruptible(timeout); 2218 2219 spin_lock_irq(¤t->sighand->siglock); 2220 sig = dequeue_signal(current, &these, &info); 2221 current->blocked = current->real_blocked; 2222 siginitset(¤t->real_blocked, 0); 2223 recalc_sigpending(); 2224 } 2225 } 2226 spin_unlock_irq(¤t->sighand->siglock); 2227 2228 if (sig) { 2229 ret = sig; 2230 if (uinfo) { 2231 if (copy_siginfo_to_user(uinfo, &info)) 2232 ret = -EFAULT; 2233 } 2234 } else { 2235 ret = -EAGAIN; 2236 if (timeout) 2237 ret = -EINTR; 2238 } 2239 2240 return ret; 2241 } 2242 2243 asmlinkage long 2244 sys_kill(int pid, int sig) 2245 { 2246 struct siginfo info; 2247 2248 info.si_signo = sig; 2249 info.si_errno = 0; 2250 info.si_code = SI_USER; 2251 info.si_pid = task_tgid_vnr(current); 2252 info.si_uid = current->uid; 2253 2254 return kill_something_info(sig, &info, pid); 2255 } 2256 2257 static int do_tkill(int tgid, int pid, int sig) 2258 { 2259 int error; 2260 struct siginfo info; 2261 struct task_struct *p; 2262 2263 error = -ESRCH; 2264 info.si_signo = sig; 2265 info.si_errno = 0; 2266 info.si_code = SI_TKILL; 2267 info.si_pid = task_tgid_vnr(current); 2268 info.si_uid = current->uid; 2269 2270 read_lock(&tasklist_lock); 2271 p = find_task_by_vpid(pid); 2272 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2273 error = check_kill_permission(sig, &info, p); 2274 /* 2275 * The null signal is a permissions and process existence 2276 * probe. No signal is actually delivered. 2277 */ 2278 if (!error && sig && p->sighand) { 2279 spin_lock_irq(&p->sighand->siglock); 2280 handle_stop_signal(sig, p); 2281 error = specific_send_sig_info(sig, &info, p); 2282 spin_unlock_irq(&p->sighand->siglock); 2283 } 2284 } 2285 read_unlock(&tasklist_lock); 2286 2287 return error; 2288 } 2289 2290 /** 2291 * sys_tgkill - send signal to one specific thread 2292 * @tgid: the thread group ID of the thread 2293 * @pid: the PID of the thread 2294 * @sig: signal to be sent 2295 * 2296 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2297 * exists but it's not belonging to the target process anymore. This 2298 * method solves the problem of threads exiting and PIDs getting reused. 2299 */ 2300 asmlinkage long sys_tgkill(int tgid, int pid, int sig) 2301 { 2302 /* This is only valid for single tasks */ 2303 if (pid <= 0 || tgid <= 0) 2304 return -EINVAL; 2305 2306 return do_tkill(tgid, pid, sig); 2307 } 2308 2309 /* 2310 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2311 */ 2312 asmlinkage long 2313 sys_tkill(int pid, int sig) 2314 { 2315 /* This is only valid for single tasks */ 2316 if (pid <= 0) 2317 return -EINVAL; 2318 2319 return do_tkill(0, pid, sig); 2320 } 2321 2322 asmlinkage long 2323 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo) 2324 { 2325 siginfo_t info; 2326 2327 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2328 return -EFAULT; 2329 2330 /* Not even root can pretend to send signals from the kernel. 2331 Nor can they impersonate a kill(), which adds source info. */ 2332 if (info.si_code >= 0) 2333 return -EPERM; 2334 info.si_signo = sig; 2335 2336 /* POSIX.1b doesn't mention process groups. */ 2337 return kill_proc_info(sig, &info, pid); 2338 } 2339 2340 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2341 { 2342 struct k_sigaction *k; 2343 sigset_t mask; 2344 2345 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2346 return -EINVAL; 2347 2348 k = ¤t->sighand->action[sig-1]; 2349 2350 spin_lock_irq(¤t->sighand->siglock); 2351 if (oact) 2352 *oact = *k; 2353 2354 if (act) { 2355 sigdelsetmask(&act->sa.sa_mask, 2356 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2357 *k = *act; 2358 /* 2359 * POSIX 3.3.1.3: 2360 * "Setting a signal action to SIG_IGN for a signal that is 2361 * pending shall cause the pending signal to be discarded, 2362 * whether or not it is blocked." 2363 * 2364 * "Setting a signal action to SIG_DFL for a signal that is 2365 * pending and whose default action is to ignore the signal 2366 * (for example, SIGCHLD), shall cause the pending signal to 2367 * be discarded, whether or not it is blocked" 2368 */ 2369 if (act->sa.sa_handler == SIG_IGN || 2370 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) { 2371 struct task_struct *t = current; 2372 sigemptyset(&mask); 2373 sigaddset(&mask, sig); 2374 rm_from_queue_full(&mask, &t->signal->shared_pending); 2375 do { 2376 rm_from_queue_full(&mask, &t->pending); 2377 t = next_thread(t); 2378 } while (t != current); 2379 } 2380 } 2381 2382 spin_unlock_irq(¤t->sighand->siglock); 2383 return 0; 2384 } 2385 2386 int 2387 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 2388 { 2389 stack_t oss; 2390 int error; 2391 2392 if (uoss) { 2393 oss.ss_sp = (void __user *) current->sas_ss_sp; 2394 oss.ss_size = current->sas_ss_size; 2395 oss.ss_flags = sas_ss_flags(sp); 2396 } 2397 2398 if (uss) { 2399 void __user *ss_sp; 2400 size_t ss_size; 2401 int ss_flags; 2402 2403 error = -EFAULT; 2404 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) 2405 || __get_user(ss_sp, &uss->ss_sp) 2406 || __get_user(ss_flags, &uss->ss_flags) 2407 || __get_user(ss_size, &uss->ss_size)) 2408 goto out; 2409 2410 error = -EPERM; 2411 if (on_sig_stack(sp)) 2412 goto out; 2413 2414 error = -EINVAL; 2415 /* 2416 * 2417 * Note - this code used to test ss_flags incorrectly 2418 * old code may have been written using ss_flags==0 2419 * to mean ss_flags==SS_ONSTACK (as this was the only 2420 * way that worked) - this fix preserves that older 2421 * mechanism 2422 */ 2423 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 2424 goto out; 2425 2426 if (ss_flags == SS_DISABLE) { 2427 ss_size = 0; 2428 ss_sp = NULL; 2429 } else { 2430 error = -ENOMEM; 2431 if (ss_size < MINSIGSTKSZ) 2432 goto out; 2433 } 2434 2435 current->sas_ss_sp = (unsigned long) ss_sp; 2436 current->sas_ss_size = ss_size; 2437 } 2438 2439 if (uoss) { 2440 error = -EFAULT; 2441 if (copy_to_user(uoss, &oss, sizeof(oss))) 2442 goto out; 2443 } 2444 2445 error = 0; 2446 out: 2447 return error; 2448 } 2449 2450 #ifdef __ARCH_WANT_SYS_SIGPENDING 2451 2452 asmlinkage long 2453 sys_sigpending(old_sigset_t __user *set) 2454 { 2455 return do_sigpending(set, sizeof(*set)); 2456 } 2457 2458 #endif 2459 2460 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 2461 /* Some platforms have their own version with special arguments others 2462 support only sys_rt_sigprocmask. */ 2463 2464 asmlinkage long 2465 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset) 2466 { 2467 int error; 2468 old_sigset_t old_set, new_set; 2469 2470 if (set) { 2471 error = -EFAULT; 2472 if (copy_from_user(&new_set, set, sizeof(*set))) 2473 goto out; 2474 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 2475 2476 spin_lock_irq(¤t->sighand->siglock); 2477 old_set = current->blocked.sig[0]; 2478 2479 error = 0; 2480 switch (how) { 2481 default: 2482 error = -EINVAL; 2483 break; 2484 case SIG_BLOCK: 2485 sigaddsetmask(¤t->blocked, new_set); 2486 break; 2487 case SIG_UNBLOCK: 2488 sigdelsetmask(¤t->blocked, new_set); 2489 break; 2490 case SIG_SETMASK: 2491 current->blocked.sig[0] = new_set; 2492 break; 2493 } 2494 2495 recalc_sigpending(); 2496 spin_unlock_irq(¤t->sighand->siglock); 2497 if (error) 2498 goto out; 2499 if (oset) 2500 goto set_old; 2501 } else if (oset) { 2502 old_set = current->blocked.sig[0]; 2503 set_old: 2504 error = -EFAULT; 2505 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2506 goto out; 2507 } 2508 error = 0; 2509 out: 2510 return error; 2511 } 2512 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 2513 2514 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 2515 asmlinkage long 2516 sys_rt_sigaction(int sig, 2517 const struct sigaction __user *act, 2518 struct sigaction __user *oact, 2519 size_t sigsetsize) 2520 { 2521 struct k_sigaction new_sa, old_sa; 2522 int ret = -EINVAL; 2523 2524 /* XXX: Don't preclude handling different sized sigset_t's. */ 2525 if (sigsetsize != sizeof(sigset_t)) 2526 goto out; 2527 2528 if (act) { 2529 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 2530 return -EFAULT; 2531 } 2532 2533 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 2534 2535 if (!ret && oact) { 2536 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 2537 return -EFAULT; 2538 } 2539 out: 2540 return ret; 2541 } 2542 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 2543 2544 #ifdef __ARCH_WANT_SYS_SGETMASK 2545 2546 /* 2547 * For backwards compatibility. Functionality superseded by sigprocmask. 2548 */ 2549 asmlinkage long 2550 sys_sgetmask(void) 2551 { 2552 /* SMP safe */ 2553 return current->blocked.sig[0]; 2554 } 2555 2556 asmlinkage long 2557 sys_ssetmask(int newmask) 2558 { 2559 int old; 2560 2561 spin_lock_irq(¤t->sighand->siglock); 2562 old = current->blocked.sig[0]; 2563 2564 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| 2565 sigmask(SIGSTOP))); 2566 recalc_sigpending(); 2567 spin_unlock_irq(¤t->sighand->siglock); 2568 2569 return old; 2570 } 2571 #endif /* __ARCH_WANT_SGETMASK */ 2572 2573 #ifdef __ARCH_WANT_SYS_SIGNAL 2574 /* 2575 * For backwards compatibility. Functionality superseded by sigaction. 2576 */ 2577 asmlinkage unsigned long 2578 sys_signal(int sig, __sighandler_t handler) 2579 { 2580 struct k_sigaction new_sa, old_sa; 2581 int ret; 2582 2583 new_sa.sa.sa_handler = handler; 2584 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 2585 sigemptyset(&new_sa.sa.sa_mask); 2586 2587 ret = do_sigaction(sig, &new_sa, &old_sa); 2588 2589 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 2590 } 2591 #endif /* __ARCH_WANT_SYS_SIGNAL */ 2592 2593 #ifdef __ARCH_WANT_SYS_PAUSE 2594 2595 asmlinkage long 2596 sys_pause(void) 2597 { 2598 current->state = TASK_INTERRUPTIBLE; 2599 schedule(); 2600 return -ERESTARTNOHAND; 2601 } 2602 2603 #endif 2604 2605 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 2606 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize) 2607 { 2608 sigset_t newset; 2609 2610 /* XXX: Don't preclude handling different sized sigset_t's. */ 2611 if (sigsetsize != sizeof(sigset_t)) 2612 return -EINVAL; 2613 2614 if (copy_from_user(&newset, unewset, sizeof(newset))) 2615 return -EFAULT; 2616 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2617 2618 spin_lock_irq(¤t->sighand->siglock); 2619 current->saved_sigmask = current->blocked; 2620 current->blocked = newset; 2621 recalc_sigpending(); 2622 spin_unlock_irq(¤t->sighand->siglock); 2623 2624 current->state = TASK_INTERRUPTIBLE; 2625 schedule(); 2626 set_thread_flag(TIF_RESTORE_SIGMASK); 2627 return -ERESTARTNOHAND; 2628 } 2629 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 2630 2631 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) 2632 { 2633 return NULL; 2634 } 2635 2636 void __init signals_init(void) 2637 { 2638 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 2639 } 2640