xref: /openbmc/linux/kernel/signal.c (revision f42b3800)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
29 
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h"	/* audit_signal_info() */
35 
36 /*
37  * SLAB caches for signal bits.
38  */
39 
40 static struct kmem_cache *sigqueue_cachep;
41 
42 
43 static int sig_ignored(struct task_struct *t, int sig)
44 {
45 	void __user * handler;
46 
47 	/*
48 	 * Tracers always want to know about signals..
49 	 */
50 	if (t->ptrace & PT_PTRACED)
51 		return 0;
52 
53 	/*
54 	 * Blocked signals are never ignored, since the
55 	 * signal handler may change by the time it is
56 	 * unblocked.
57 	 */
58 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
59 		return 0;
60 
61 	/* Is it explicitly or implicitly ignored? */
62 	handler = t->sighand->action[sig-1].sa.sa_handler;
63 	return   handler == SIG_IGN ||
64 		(handler == SIG_DFL && sig_kernel_ignore(sig));
65 }
66 
67 /*
68  * Re-calculate pending state from the set of locally pending
69  * signals, globally pending signals, and blocked signals.
70  */
71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
72 {
73 	unsigned long ready;
74 	long i;
75 
76 	switch (_NSIG_WORDS) {
77 	default:
78 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
79 			ready |= signal->sig[i] &~ blocked->sig[i];
80 		break;
81 
82 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
83 		ready |= signal->sig[2] &~ blocked->sig[2];
84 		ready |= signal->sig[1] &~ blocked->sig[1];
85 		ready |= signal->sig[0] &~ blocked->sig[0];
86 		break;
87 
88 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
89 		ready |= signal->sig[0] &~ blocked->sig[0];
90 		break;
91 
92 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
93 	}
94 	return ready !=	0;
95 }
96 
97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
98 
99 static int recalc_sigpending_tsk(struct task_struct *t)
100 {
101 	if (t->signal->group_stop_count > 0 ||
102 	    PENDING(&t->pending, &t->blocked) ||
103 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
104 		set_tsk_thread_flag(t, TIF_SIGPENDING);
105 		return 1;
106 	}
107 	/*
108 	 * We must never clear the flag in another thread, or in current
109 	 * when it's possible the current syscall is returning -ERESTART*.
110 	 * So we don't clear it here, and only callers who know they should do.
111 	 */
112 	return 0;
113 }
114 
115 /*
116  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
117  * This is superfluous when called on current, the wakeup is a harmless no-op.
118  */
119 void recalc_sigpending_and_wake(struct task_struct *t)
120 {
121 	if (recalc_sigpending_tsk(t))
122 		signal_wake_up(t, 0);
123 }
124 
125 void recalc_sigpending(void)
126 {
127 	if (!recalc_sigpending_tsk(current) && !freezing(current))
128 		clear_thread_flag(TIF_SIGPENDING);
129 
130 }
131 
132 /* Given the mask, find the first available signal that should be serviced. */
133 
134 int next_signal(struct sigpending *pending, sigset_t *mask)
135 {
136 	unsigned long i, *s, *m, x;
137 	int sig = 0;
138 
139 	s = pending->signal.sig;
140 	m = mask->sig;
141 	switch (_NSIG_WORDS) {
142 	default:
143 		for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
144 			if ((x = *s &~ *m) != 0) {
145 				sig = ffz(~x) + i*_NSIG_BPW + 1;
146 				break;
147 			}
148 		break;
149 
150 	case 2: if ((x = s[0] &~ m[0]) != 0)
151 			sig = 1;
152 		else if ((x = s[1] &~ m[1]) != 0)
153 			sig = _NSIG_BPW + 1;
154 		else
155 			break;
156 		sig += ffz(~x);
157 		break;
158 
159 	case 1: if ((x = *s &~ *m) != 0)
160 			sig = ffz(~x) + 1;
161 		break;
162 	}
163 
164 	return sig;
165 }
166 
167 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
168 					 int override_rlimit)
169 {
170 	struct sigqueue *q = NULL;
171 	struct user_struct *user;
172 
173 	/*
174 	 * In order to avoid problems with "switch_user()", we want to make
175 	 * sure that the compiler doesn't re-load "t->user"
176 	 */
177 	user = t->user;
178 	barrier();
179 	atomic_inc(&user->sigpending);
180 	if (override_rlimit ||
181 	    atomic_read(&user->sigpending) <=
182 			t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
183 		q = kmem_cache_alloc(sigqueue_cachep, flags);
184 	if (unlikely(q == NULL)) {
185 		atomic_dec(&user->sigpending);
186 	} else {
187 		INIT_LIST_HEAD(&q->list);
188 		q->flags = 0;
189 		q->user = get_uid(user);
190 	}
191 	return(q);
192 }
193 
194 static void __sigqueue_free(struct sigqueue *q)
195 {
196 	if (q->flags & SIGQUEUE_PREALLOC)
197 		return;
198 	atomic_dec(&q->user->sigpending);
199 	free_uid(q->user);
200 	kmem_cache_free(sigqueue_cachep, q);
201 }
202 
203 void flush_sigqueue(struct sigpending *queue)
204 {
205 	struct sigqueue *q;
206 
207 	sigemptyset(&queue->signal);
208 	while (!list_empty(&queue->list)) {
209 		q = list_entry(queue->list.next, struct sigqueue , list);
210 		list_del_init(&q->list);
211 		__sigqueue_free(q);
212 	}
213 }
214 
215 /*
216  * Flush all pending signals for a task.
217  */
218 void flush_signals(struct task_struct *t)
219 {
220 	unsigned long flags;
221 
222 	spin_lock_irqsave(&t->sighand->siglock, flags);
223 	clear_tsk_thread_flag(t,TIF_SIGPENDING);
224 	flush_sigqueue(&t->pending);
225 	flush_sigqueue(&t->signal->shared_pending);
226 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
227 }
228 
229 void ignore_signals(struct task_struct *t)
230 {
231 	int i;
232 
233 	for (i = 0; i < _NSIG; ++i)
234 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
235 
236 	flush_signals(t);
237 }
238 
239 /*
240  * Flush all handlers for a task.
241  */
242 
243 void
244 flush_signal_handlers(struct task_struct *t, int force_default)
245 {
246 	int i;
247 	struct k_sigaction *ka = &t->sighand->action[0];
248 	for (i = _NSIG ; i != 0 ; i--) {
249 		if (force_default || ka->sa.sa_handler != SIG_IGN)
250 			ka->sa.sa_handler = SIG_DFL;
251 		ka->sa.sa_flags = 0;
252 		sigemptyset(&ka->sa.sa_mask);
253 		ka++;
254 	}
255 }
256 
257 int unhandled_signal(struct task_struct *tsk, int sig)
258 {
259 	if (is_global_init(tsk))
260 		return 1;
261 	if (tsk->ptrace & PT_PTRACED)
262 		return 0;
263 	return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
264 		(tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
265 }
266 
267 
268 /* Notify the system that a driver wants to block all signals for this
269  * process, and wants to be notified if any signals at all were to be
270  * sent/acted upon.  If the notifier routine returns non-zero, then the
271  * signal will be acted upon after all.  If the notifier routine returns 0,
272  * then then signal will be blocked.  Only one block per process is
273  * allowed.  priv is a pointer to private data that the notifier routine
274  * can use to determine if the signal should be blocked or not.  */
275 
276 void
277 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
278 {
279 	unsigned long flags;
280 
281 	spin_lock_irqsave(&current->sighand->siglock, flags);
282 	current->notifier_mask = mask;
283 	current->notifier_data = priv;
284 	current->notifier = notifier;
285 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
286 }
287 
288 /* Notify the system that blocking has ended. */
289 
290 void
291 unblock_all_signals(void)
292 {
293 	unsigned long flags;
294 
295 	spin_lock_irqsave(&current->sighand->siglock, flags);
296 	current->notifier = NULL;
297 	current->notifier_data = NULL;
298 	recalc_sigpending();
299 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
300 }
301 
302 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
303 {
304 	struct sigqueue *q, *first = NULL;
305 	int still_pending = 0;
306 
307 	if (unlikely(!sigismember(&list->signal, sig)))
308 		return 0;
309 
310 	/*
311 	 * Collect the siginfo appropriate to this signal.  Check if
312 	 * there is another siginfo for the same signal.
313 	*/
314 	list_for_each_entry(q, &list->list, list) {
315 		if (q->info.si_signo == sig) {
316 			if (first) {
317 				still_pending = 1;
318 				break;
319 			}
320 			first = q;
321 		}
322 	}
323 	if (first) {
324 		list_del_init(&first->list);
325 		copy_siginfo(info, &first->info);
326 		__sigqueue_free(first);
327 		if (!still_pending)
328 			sigdelset(&list->signal, sig);
329 	} else {
330 
331 		/* Ok, it wasn't in the queue.  This must be
332 		   a fast-pathed signal or we must have been
333 		   out of queue space.  So zero out the info.
334 		 */
335 		sigdelset(&list->signal, sig);
336 		info->si_signo = sig;
337 		info->si_errno = 0;
338 		info->si_code = 0;
339 		info->si_pid = 0;
340 		info->si_uid = 0;
341 	}
342 	return 1;
343 }
344 
345 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
346 			siginfo_t *info)
347 {
348 	int sig = next_signal(pending, mask);
349 
350 	if (sig) {
351 		if (current->notifier) {
352 			if (sigismember(current->notifier_mask, sig)) {
353 				if (!(current->notifier)(current->notifier_data)) {
354 					clear_thread_flag(TIF_SIGPENDING);
355 					return 0;
356 				}
357 			}
358 		}
359 
360 		if (!collect_signal(sig, pending, info))
361 			sig = 0;
362 	}
363 
364 	return sig;
365 }
366 
367 /*
368  * Dequeue a signal and return the element to the caller, which is
369  * expected to free it.
370  *
371  * All callers have to hold the siglock.
372  */
373 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
374 {
375 	int signr = 0;
376 
377 	/* We only dequeue private signals from ourselves, we don't let
378 	 * signalfd steal them
379 	 */
380 	signr = __dequeue_signal(&tsk->pending, mask, info);
381 	if (!signr) {
382 		signr = __dequeue_signal(&tsk->signal->shared_pending,
383 					 mask, info);
384 		/*
385 		 * itimer signal ?
386 		 *
387 		 * itimers are process shared and we restart periodic
388 		 * itimers in the signal delivery path to prevent DoS
389 		 * attacks in the high resolution timer case. This is
390 		 * compliant with the old way of self restarting
391 		 * itimers, as the SIGALRM is a legacy signal and only
392 		 * queued once. Changing the restart behaviour to
393 		 * restart the timer in the signal dequeue path is
394 		 * reducing the timer noise on heavy loaded !highres
395 		 * systems too.
396 		 */
397 		if (unlikely(signr == SIGALRM)) {
398 			struct hrtimer *tmr = &tsk->signal->real_timer;
399 
400 			if (!hrtimer_is_queued(tmr) &&
401 			    tsk->signal->it_real_incr.tv64 != 0) {
402 				hrtimer_forward(tmr, tmr->base->get_time(),
403 						tsk->signal->it_real_incr);
404 				hrtimer_restart(tmr);
405 			}
406 		}
407 	}
408 	recalc_sigpending();
409 	if (signr && unlikely(sig_kernel_stop(signr))) {
410 		/*
411 		 * Set a marker that we have dequeued a stop signal.  Our
412 		 * caller might release the siglock and then the pending
413 		 * stop signal it is about to process is no longer in the
414 		 * pending bitmasks, but must still be cleared by a SIGCONT
415 		 * (and overruled by a SIGKILL).  So those cases clear this
416 		 * shared flag after we've set it.  Note that this flag may
417 		 * remain set after the signal we return is ignored or
418 		 * handled.  That doesn't matter because its only purpose
419 		 * is to alert stop-signal processing code when another
420 		 * processor has come along and cleared the flag.
421 		 */
422 		if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
423 			tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
424 	}
425 	if (signr &&
426 	     ((info->si_code & __SI_MASK) == __SI_TIMER) &&
427 	     info->si_sys_private){
428 		/*
429 		 * Release the siglock to ensure proper locking order
430 		 * of timer locks outside of siglocks.  Note, we leave
431 		 * irqs disabled here, since the posix-timers code is
432 		 * about to disable them again anyway.
433 		 */
434 		spin_unlock(&tsk->sighand->siglock);
435 		do_schedule_next_timer(info);
436 		spin_lock(&tsk->sighand->siglock);
437 	}
438 	return signr;
439 }
440 
441 /*
442  * Tell a process that it has a new active signal..
443  *
444  * NOTE! we rely on the previous spin_lock to
445  * lock interrupts for us! We can only be called with
446  * "siglock" held, and the local interrupt must
447  * have been disabled when that got acquired!
448  *
449  * No need to set need_resched since signal event passing
450  * goes through ->blocked
451  */
452 void signal_wake_up(struct task_struct *t, int resume)
453 {
454 	unsigned int mask;
455 
456 	set_tsk_thread_flag(t, TIF_SIGPENDING);
457 
458 	/*
459 	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
460 	 * case. We don't check t->state here because there is a race with it
461 	 * executing another processor and just now entering stopped state.
462 	 * By using wake_up_state, we ensure the process will wake up and
463 	 * handle its death signal.
464 	 */
465 	mask = TASK_INTERRUPTIBLE;
466 	if (resume)
467 		mask |= TASK_WAKEKILL;
468 	if (!wake_up_state(t, mask))
469 		kick_process(t);
470 }
471 
472 /*
473  * Remove signals in mask from the pending set and queue.
474  * Returns 1 if any signals were found.
475  *
476  * All callers must be holding the siglock.
477  *
478  * This version takes a sigset mask and looks at all signals,
479  * not just those in the first mask word.
480  */
481 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
482 {
483 	struct sigqueue *q, *n;
484 	sigset_t m;
485 
486 	sigandsets(&m, mask, &s->signal);
487 	if (sigisemptyset(&m))
488 		return 0;
489 
490 	signandsets(&s->signal, &s->signal, mask);
491 	list_for_each_entry_safe(q, n, &s->list, list) {
492 		if (sigismember(mask, q->info.si_signo)) {
493 			list_del_init(&q->list);
494 			__sigqueue_free(q);
495 		}
496 	}
497 	return 1;
498 }
499 /*
500  * Remove signals in mask from the pending set and queue.
501  * Returns 1 if any signals were found.
502  *
503  * All callers must be holding the siglock.
504  */
505 static int rm_from_queue(unsigned long mask, struct sigpending *s)
506 {
507 	struct sigqueue *q, *n;
508 
509 	if (!sigtestsetmask(&s->signal, mask))
510 		return 0;
511 
512 	sigdelsetmask(&s->signal, mask);
513 	list_for_each_entry_safe(q, n, &s->list, list) {
514 		if (q->info.si_signo < SIGRTMIN &&
515 		    (mask & sigmask(q->info.si_signo))) {
516 			list_del_init(&q->list);
517 			__sigqueue_free(q);
518 		}
519 	}
520 	return 1;
521 }
522 
523 /*
524  * Bad permissions for sending the signal
525  */
526 static int check_kill_permission(int sig, struct siginfo *info,
527 				 struct task_struct *t)
528 {
529 	int error = -EINVAL;
530 	if (!valid_signal(sig))
531 		return error;
532 
533 	if (info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) {
534 		error = audit_signal_info(sig, t); /* Let audit system see the signal */
535 		if (error)
536 			return error;
537 		error = -EPERM;
538 		if (((sig != SIGCONT) ||
539 			(task_session_nr(current) != task_session_nr(t)))
540 		    && (current->euid ^ t->suid) && (current->euid ^ t->uid)
541 		    && (current->uid ^ t->suid) && (current->uid ^ t->uid)
542 		    && !capable(CAP_KILL))
543 		return error;
544 	}
545 
546 	return security_task_kill(t, info, sig, 0);
547 }
548 
549 /* forward decl */
550 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
551 
552 /*
553  * Handle magic process-wide effects of stop/continue signals.
554  * Unlike the signal actions, these happen immediately at signal-generation
555  * time regardless of blocking, ignoring, or handling.  This does the
556  * actual continuing for SIGCONT, but not the actual stopping for stop
557  * signals.  The process stop is done as a signal action for SIG_DFL.
558  */
559 static void handle_stop_signal(int sig, struct task_struct *p)
560 {
561 	struct task_struct *t;
562 
563 	if (p->signal->flags & SIGNAL_GROUP_EXIT)
564 		/*
565 		 * The process is in the middle of dying already.
566 		 */
567 		return;
568 
569 	if (sig_kernel_stop(sig)) {
570 		/*
571 		 * This is a stop signal.  Remove SIGCONT from all queues.
572 		 */
573 		rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
574 		t = p;
575 		do {
576 			rm_from_queue(sigmask(SIGCONT), &t->pending);
577 			t = next_thread(t);
578 		} while (t != p);
579 	} else if (sig == SIGCONT) {
580 		/*
581 		 * Remove all stop signals from all queues,
582 		 * and wake all threads.
583 		 */
584 		if (unlikely(p->signal->group_stop_count > 0)) {
585 			/*
586 			 * There was a group stop in progress.  We'll
587 			 * pretend it finished before we got here.  We are
588 			 * obliged to report it to the parent: if the
589 			 * SIGSTOP happened "after" this SIGCONT, then it
590 			 * would have cleared this pending SIGCONT.  If it
591 			 * happened "before" this SIGCONT, then the parent
592 			 * got the SIGCHLD about the stop finishing before
593 			 * the continue happened.  We do the notification
594 			 * now, and it's as if the stop had finished and
595 			 * the SIGCHLD was pending on entry to this kill.
596 			 */
597 			p->signal->group_stop_count = 0;
598 			p->signal->flags = SIGNAL_STOP_CONTINUED;
599 			spin_unlock(&p->sighand->siglock);
600 			do_notify_parent_cldstop(p, CLD_STOPPED);
601 			spin_lock(&p->sighand->siglock);
602 		}
603 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
604 		t = p;
605 		do {
606 			unsigned int state;
607 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
608 
609 			/*
610 			 * If there is a handler for SIGCONT, we must make
611 			 * sure that no thread returns to user mode before
612 			 * we post the signal, in case it was the only
613 			 * thread eligible to run the signal handler--then
614 			 * it must not do anything between resuming and
615 			 * running the handler.  With the TIF_SIGPENDING
616 			 * flag set, the thread will pause and acquire the
617 			 * siglock that we hold now and until we've queued
618 			 * the pending signal.
619 			 *
620 			 * Wake up the stopped thread _after_ setting
621 			 * TIF_SIGPENDING
622 			 */
623 			state = __TASK_STOPPED;
624 			if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
625 				set_tsk_thread_flag(t, TIF_SIGPENDING);
626 				state |= TASK_INTERRUPTIBLE;
627 			}
628 			wake_up_state(t, state);
629 
630 			t = next_thread(t);
631 		} while (t != p);
632 
633 		if (p->signal->flags & SIGNAL_STOP_STOPPED) {
634 			/*
635 			 * We were in fact stopped, and are now continued.
636 			 * Notify the parent with CLD_CONTINUED.
637 			 */
638 			p->signal->flags = SIGNAL_STOP_CONTINUED;
639 			p->signal->group_exit_code = 0;
640 			spin_unlock(&p->sighand->siglock);
641 			do_notify_parent_cldstop(p, CLD_CONTINUED);
642 			spin_lock(&p->sighand->siglock);
643 		} else {
644 			/*
645 			 * We are not stopped, but there could be a stop
646 			 * signal in the middle of being processed after
647 			 * being removed from the queue.  Clear that too.
648 			 */
649 			p->signal->flags = 0;
650 		}
651 	} else if (sig == SIGKILL) {
652 		/*
653 		 * Make sure that any pending stop signal already dequeued
654 		 * is undone by the wakeup for SIGKILL.
655 		 */
656 		p->signal->flags = 0;
657 	}
658 }
659 
660 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
661 			struct sigpending *signals)
662 {
663 	struct sigqueue * q = NULL;
664 	int ret = 0;
665 
666 	/*
667 	 * Deliver the signal to listening signalfds. This must be called
668 	 * with the sighand lock held.
669 	 */
670 	signalfd_notify(t, sig);
671 
672 	/*
673 	 * fast-pathed signals for kernel-internal things like SIGSTOP
674 	 * or SIGKILL.
675 	 */
676 	if (info == SEND_SIG_FORCED)
677 		goto out_set;
678 
679 	/* Real-time signals must be queued if sent by sigqueue, or
680 	   some other real-time mechanism.  It is implementation
681 	   defined whether kill() does so.  We attempt to do so, on
682 	   the principle of least surprise, but since kill is not
683 	   allowed to fail with EAGAIN when low on memory we just
684 	   make sure at least one signal gets delivered and don't
685 	   pass on the info struct.  */
686 
687 	q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
688 					     (is_si_special(info) ||
689 					      info->si_code >= 0)));
690 	if (q) {
691 		list_add_tail(&q->list, &signals->list);
692 		switch ((unsigned long) info) {
693 		case (unsigned long) SEND_SIG_NOINFO:
694 			q->info.si_signo = sig;
695 			q->info.si_errno = 0;
696 			q->info.si_code = SI_USER;
697 			q->info.si_pid = task_pid_vnr(current);
698 			q->info.si_uid = current->uid;
699 			break;
700 		case (unsigned long) SEND_SIG_PRIV:
701 			q->info.si_signo = sig;
702 			q->info.si_errno = 0;
703 			q->info.si_code = SI_KERNEL;
704 			q->info.si_pid = 0;
705 			q->info.si_uid = 0;
706 			break;
707 		default:
708 			copy_siginfo(&q->info, info);
709 			break;
710 		}
711 	} else if (!is_si_special(info)) {
712 		if (sig >= SIGRTMIN && info->si_code != SI_USER)
713 		/*
714 		 * Queue overflow, abort.  We may abort if the signal was rt
715 		 * and sent by user using something other than kill().
716 		 */
717 			return -EAGAIN;
718 	}
719 
720 out_set:
721 	sigaddset(&signals->signal, sig);
722 	return ret;
723 }
724 
725 #define LEGACY_QUEUE(sigptr, sig) \
726 	(((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
727 
728 int print_fatal_signals;
729 
730 static void print_fatal_signal(struct pt_regs *regs, int signr)
731 {
732 	printk("%s/%d: potentially unexpected fatal signal %d.\n",
733 		current->comm, task_pid_nr(current), signr);
734 
735 #if defined(__i386__) && !defined(__arch_um__)
736 	printk("code at %08lx: ", regs->ip);
737 	{
738 		int i;
739 		for (i = 0; i < 16; i++) {
740 			unsigned char insn;
741 
742 			__get_user(insn, (unsigned char *)(regs->ip + i));
743 			printk("%02x ", insn);
744 		}
745 	}
746 #endif
747 	printk("\n");
748 	show_regs(regs);
749 }
750 
751 static int __init setup_print_fatal_signals(char *str)
752 {
753 	get_option (&str, &print_fatal_signals);
754 
755 	return 1;
756 }
757 
758 __setup("print-fatal-signals=", setup_print_fatal_signals);
759 
760 static int
761 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
762 {
763 	int ret = 0;
764 
765 	BUG_ON(!irqs_disabled());
766 	assert_spin_locked(&t->sighand->siglock);
767 
768 	/* Short-circuit ignored signals.  */
769 	if (sig_ignored(t, sig))
770 		goto out;
771 
772 	/* Support queueing exactly one non-rt signal, so that we
773 	   can get more detailed information about the cause of
774 	   the signal. */
775 	if (LEGACY_QUEUE(&t->pending, sig))
776 		goto out;
777 
778 	ret = send_signal(sig, info, t, &t->pending);
779 	if (!ret && !sigismember(&t->blocked, sig))
780 		signal_wake_up(t, sig == SIGKILL);
781 out:
782 	return ret;
783 }
784 
785 /*
786  * Force a signal that the process can't ignore: if necessary
787  * we unblock the signal and change any SIG_IGN to SIG_DFL.
788  *
789  * Note: If we unblock the signal, we always reset it to SIG_DFL,
790  * since we do not want to have a signal handler that was blocked
791  * be invoked when user space had explicitly blocked it.
792  *
793  * We don't want to have recursive SIGSEGV's etc, for example.
794  */
795 int
796 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
797 {
798 	unsigned long int flags;
799 	int ret, blocked, ignored;
800 	struct k_sigaction *action;
801 
802 	spin_lock_irqsave(&t->sighand->siglock, flags);
803 	action = &t->sighand->action[sig-1];
804 	ignored = action->sa.sa_handler == SIG_IGN;
805 	blocked = sigismember(&t->blocked, sig);
806 	if (blocked || ignored) {
807 		action->sa.sa_handler = SIG_DFL;
808 		if (blocked) {
809 			sigdelset(&t->blocked, sig);
810 			recalc_sigpending_and_wake(t);
811 		}
812 	}
813 	ret = specific_send_sig_info(sig, info, t);
814 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
815 
816 	return ret;
817 }
818 
819 void
820 force_sig_specific(int sig, struct task_struct *t)
821 {
822 	force_sig_info(sig, SEND_SIG_FORCED, t);
823 }
824 
825 /*
826  * Test if P wants to take SIG.  After we've checked all threads with this,
827  * it's equivalent to finding no threads not blocking SIG.  Any threads not
828  * blocking SIG were ruled out because they are not running and already
829  * have pending signals.  Such threads will dequeue from the shared queue
830  * as soon as they're available, so putting the signal on the shared queue
831  * will be equivalent to sending it to one such thread.
832  */
833 static inline int wants_signal(int sig, struct task_struct *p)
834 {
835 	if (sigismember(&p->blocked, sig))
836 		return 0;
837 	if (p->flags & PF_EXITING)
838 		return 0;
839 	if (sig == SIGKILL)
840 		return 1;
841 	if (task_is_stopped_or_traced(p))
842 		return 0;
843 	return task_curr(p) || !signal_pending(p);
844 }
845 
846 static void
847 __group_complete_signal(int sig, struct task_struct *p)
848 {
849 	struct task_struct *t;
850 
851 	/*
852 	 * Now find a thread we can wake up to take the signal off the queue.
853 	 *
854 	 * If the main thread wants the signal, it gets first crack.
855 	 * Probably the least surprising to the average bear.
856 	 */
857 	if (wants_signal(sig, p))
858 		t = p;
859 	else if (thread_group_empty(p))
860 		/*
861 		 * There is just one thread and it does not need to be woken.
862 		 * It will dequeue unblocked signals before it runs again.
863 		 */
864 		return;
865 	else {
866 		/*
867 		 * Otherwise try to find a suitable thread.
868 		 */
869 		t = p->signal->curr_target;
870 		if (t == NULL)
871 			/* restart balancing at this thread */
872 			t = p->signal->curr_target = p;
873 
874 		while (!wants_signal(sig, t)) {
875 			t = next_thread(t);
876 			if (t == p->signal->curr_target)
877 				/*
878 				 * No thread needs to be woken.
879 				 * Any eligible threads will see
880 				 * the signal in the queue soon.
881 				 */
882 				return;
883 		}
884 		p->signal->curr_target = t;
885 	}
886 
887 	/*
888 	 * Found a killable thread.  If the signal will be fatal,
889 	 * then start taking the whole group down immediately.
890 	 */
891 	if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
892 	    !sigismember(&t->real_blocked, sig) &&
893 	    (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
894 		/*
895 		 * This signal will be fatal to the whole group.
896 		 */
897 		if (!sig_kernel_coredump(sig)) {
898 			/*
899 			 * Start a group exit and wake everybody up.
900 			 * This way we don't have other threads
901 			 * running and doing things after a slower
902 			 * thread has the fatal signal pending.
903 			 */
904 			p->signal->flags = SIGNAL_GROUP_EXIT;
905 			p->signal->group_exit_code = sig;
906 			p->signal->group_stop_count = 0;
907 			t = p;
908 			do {
909 				sigaddset(&t->pending.signal, SIGKILL);
910 				signal_wake_up(t, 1);
911 			} while_each_thread(p, t);
912 			return;
913 		}
914 	}
915 
916 	/*
917 	 * The signal is already in the shared-pending queue.
918 	 * Tell the chosen thread to wake up and dequeue it.
919 	 */
920 	signal_wake_up(t, sig == SIGKILL);
921 	return;
922 }
923 
924 int
925 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
926 {
927 	int ret = 0;
928 
929 	assert_spin_locked(&p->sighand->siglock);
930 	handle_stop_signal(sig, p);
931 
932 	/* Short-circuit ignored signals.  */
933 	if (sig_ignored(p, sig))
934 		return ret;
935 
936 	if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
937 		/* This is a non-RT signal and we already have one queued.  */
938 		return ret;
939 
940 	/*
941 	 * Put this signal on the shared-pending queue, or fail with EAGAIN.
942 	 * We always use the shared queue for process-wide signals,
943 	 * to avoid several races.
944 	 */
945 	ret = send_signal(sig, info, p, &p->signal->shared_pending);
946 	if (unlikely(ret))
947 		return ret;
948 
949 	__group_complete_signal(sig, p);
950 	return 0;
951 }
952 
953 /*
954  * Nuke all other threads in the group.
955  */
956 void zap_other_threads(struct task_struct *p)
957 {
958 	struct task_struct *t;
959 
960 	p->signal->group_stop_count = 0;
961 
962 	for (t = next_thread(p); t != p; t = next_thread(t)) {
963 		/*
964 		 * Don't bother with already dead threads
965 		 */
966 		if (t->exit_state)
967 			continue;
968 
969 		/* SIGKILL will be handled before any pending SIGSTOP */
970 		sigaddset(&t->pending.signal, SIGKILL);
971 		signal_wake_up(t, 1);
972 	}
973 }
974 
975 int __fatal_signal_pending(struct task_struct *tsk)
976 {
977 	return sigismember(&tsk->pending.signal, SIGKILL);
978 }
979 EXPORT_SYMBOL(__fatal_signal_pending);
980 
981 /*
982  * Must be called under rcu_read_lock() or with tasklist_lock read-held.
983  */
984 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
985 {
986 	struct sighand_struct *sighand;
987 
988 	for (;;) {
989 		sighand = rcu_dereference(tsk->sighand);
990 		if (unlikely(sighand == NULL))
991 			break;
992 
993 		spin_lock_irqsave(&sighand->siglock, *flags);
994 		if (likely(sighand == tsk->sighand))
995 			break;
996 		spin_unlock_irqrestore(&sighand->siglock, *flags);
997 	}
998 
999 	return sighand;
1000 }
1001 
1002 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1003 {
1004 	unsigned long flags;
1005 	int ret;
1006 
1007 	ret = check_kill_permission(sig, info, p);
1008 
1009 	if (!ret && sig) {
1010 		ret = -ESRCH;
1011 		if (lock_task_sighand(p, &flags)) {
1012 			ret = __group_send_sig_info(sig, info, p);
1013 			unlock_task_sighand(p, &flags);
1014 		}
1015 	}
1016 
1017 	return ret;
1018 }
1019 
1020 /*
1021  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1022  * control characters do (^C, ^Z etc)
1023  */
1024 
1025 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1026 {
1027 	struct task_struct *p = NULL;
1028 	int retval, success;
1029 
1030 	success = 0;
1031 	retval = -ESRCH;
1032 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1033 		int err = group_send_sig_info(sig, info, p);
1034 		success |= !err;
1035 		retval = err;
1036 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1037 	return success ? 0 : retval;
1038 }
1039 
1040 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1041 {
1042 	int error = -ESRCH;
1043 	struct task_struct *p;
1044 
1045 	rcu_read_lock();
1046 	if (unlikely(sig_needs_tasklist(sig)))
1047 		read_lock(&tasklist_lock);
1048 
1049 retry:
1050 	p = pid_task(pid, PIDTYPE_PID);
1051 	if (p) {
1052 		error = group_send_sig_info(sig, info, p);
1053 		if (unlikely(error == -ESRCH))
1054 			/*
1055 			 * The task was unhashed in between, try again.
1056 			 * If it is dead, pid_task() will return NULL,
1057 			 * if we race with de_thread() it will find the
1058 			 * new leader.
1059 			 */
1060 			goto retry;
1061 	}
1062 
1063 	if (unlikely(sig_needs_tasklist(sig)))
1064 		read_unlock(&tasklist_lock);
1065 	rcu_read_unlock();
1066 	return error;
1067 }
1068 
1069 int
1070 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1071 {
1072 	int error;
1073 	rcu_read_lock();
1074 	error = kill_pid_info(sig, info, find_vpid(pid));
1075 	rcu_read_unlock();
1076 	return error;
1077 }
1078 
1079 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1080 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1081 		      uid_t uid, uid_t euid, u32 secid)
1082 {
1083 	int ret = -EINVAL;
1084 	struct task_struct *p;
1085 
1086 	if (!valid_signal(sig))
1087 		return ret;
1088 
1089 	read_lock(&tasklist_lock);
1090 	p = pid_task(pid, PIDTYPE_PID);
1091 	if (!p) {
1092 		ret = -ESRCH;
1093 		goto out_unlock;
1094 	}
1095 	if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1096 	    && (euid != p->suid) && (euid != p->uid)
1097 	    && (uid != p->suid) && (uid != p->uid)) {
1098 		ret = -EPERM;
1099 		goto out_unlock;
1100 	}
1101 	ret = security_task_kill(p, info, sig, secid);
1102 	if (ret)
1103 		goto out_unlock;
1104 	if (sig && p->sighand) {
1105 		unsigned long flags;
1106 		spin_lock_irqsave(&p->sighand->siglock, flags);
1107 		ret = __group_send_sig_info(sig, info, p);
1108 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1109 	}
1110 out_unlock:
1111 	read_unlock(&tasklist_lock);
1112 	return ret;
1113 }
1114 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1115 
1116 /*
1117  * kill_something_info() interprets pid in interesting ways just like kill(2).
1118  *
1119  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1120  * is probably wrong.  Should make it like BSD or SYSV.
1121  */
1122 
1123 static int kill_something_info(int sig, struct siginfo *info, int pid)
1124 {
1125 	int ret;
1126 
1127 	if (pid > 0) {
1128 		rcu_read_lock();
1129 		ret = kill_pid_info(sig, info, find_vpid(pid));
1130 		rcu_read_unlock();
1131 		return ret;
1132 	}
1133 
1134 	read_lock(&tasklist_lock);
1135 	if (pid != -1) {
1136 		ret = __kill_pgrp_info(sig, info,
1137 				pid ? find_vpid(-pid) : task_pgrp(current));
1138 	} else {
1139 		int retval = 0, count = 0;
1140 		struct task_struct * p;
1141 
1142 		for_each_process(p) {
1143 			if (p->pid > 1 && !same_thread_group(p, current)) {
1144 				int err = group_send_sig_info(sig, info, p);
1145 				++count;
1146 				if (err != -EPERM)
1147 					retval = err;
1148 			}
1149 		}
1150 		ret = count ? retval : -ESRCH;
1151 	}
1152 	read_unlock(&tasklist_lock);
1153 
1154 	return ret;
1155 }
1156 
1157 /*
1158  * These are for backward compatibility with the rest of the kernel source.
1159  */
1160 
1161 /*
1162  * These two are the most common entry points.  They send a signal
1163  * just to the specific thread.
1164  */
1165 int
1166 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1167 {
1168 	int ret;
1169 	unsigned long flags;
1170 
1171 	/*
1172 	 * Make sure legacy kernel users don't send in bad values
1173 	 * (normal paths check this in check_kill_permission).
1174 	 */
1175 	if (!valid_signal(sig))
1176 		return -EINVAL;
1177 
1178 	/*
1179 	 * We need the tasklist lock even for the specific
1180 	 * thread case (when we don't need to follow the group
1181 	 * lists) in order to avoid races with "p->sighand"
1182 	 * going away or changing from under us.
1183 	 */
1184 	read_lock(&tasklist_lock);
1185 	spin_lock_irqsave(&p->sighand->siglock, flags);
1186 	ret = specific_send_sig_info(sig, info, p);
1187 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1188 	read_unlock(&tasklist_lock);
1189 	return ret;
1190 }
1191 
1192 #define __si_special(priv) \
1193 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1194 
1195 int
1196 send_sig(int sig, struct task_struct *p, int priv)
1197 {
1198 	return send_sig_info(sig, __si_special(priv), p);
1199 }
1200 
1201 void
1202 force_sig(int sig, struct task_struct *p)
1203 {
1204 	force_sig_info(sig, SEND_SIG_PRIV, p);
1205 }
1206 
1207 /*
1208  * When things go south during signal handling, we
1209  * will force a SIGSEGV. And if the signal that caused
1210  * the problem was already a SIGSEGV, we'll want to
1211  * make sure we don't even try to deliver the signal..
1212  */
1213 int
1214 force_sigsegv(int sig, struct task_struct *p)
1215 {
1216 	if (sig == SIGSEGV) {
1217 		unsigned long flags;
1218 		spin_lock_irqsave(&p->sighand->siglock, flags);
1219 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1220 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1221 	}
1222 	force_sig(SIGSEGV, p);
1223 	return 0;
1224 }
1225 
1226 int kill_pgrp(struct pid *pid, int sig, int priv)
1227 {
1228 	int ret;
1229 
1230 	read_lock(&tasklist_lock);
1231 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1232 	read_unlock(&tasklist_lock);
1233 
1234 	return ret;
1235 }
1236 EXPORT_SYMBOL(kill_pgrp);
1237 
1238 int kill_pid(struct pid *pid, int sig, int priv)
1239 {
1240 	return kill_pid_info(sig, __si_special(priv), pid);
1241 }
1242 EXPORT_SYMBOL(kill_pid);
1243 
1244 int
1245 kill_proc(pid_t pid, int sig, int priv)
1246 {
1247 	int ret;
1248 
1249 	rcu_read_lock();
1250 	ret = kill_pid_info(sig, __si_special(priv), find_pid(pid));
1251 	rcu_read_unlock();
1252 	return ret;
1253 }
1254 
1255 /*
1256  * These functions support sending signals using preallocated sigqueue
1257  * structures.  This is needed "because realtime applications cannot
1258  * afford to lose notifications of asynchronous events, like timer
1259  * expirations or I/O completions".  In the case of Posix Timers
1260  * we allocate the sigqueue structure from the timer_create.  If this
1261  * allocation fails we are able to report the failure to the application
1262  * with an EAGAIN error.
1263  */
1264 
1265 struct sigqueue *sigqueue_alloc(void)
1266 {
1267 	struct sigqueue *q;
1268 
1269 	if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1270 		q->flags |= SIGQUEUE_PREALLOC;
1271 	return(q);
1272 }
1273 
1274 void sigqueue_free(struct sigqueue *q)
1275 {
1276 	unsigned long flags;
1277 	spinlock_t *lock = &current->sighand->siglock;
1278 
1279 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1280 	/*
1281 	 * If the signal is still pending remove it from the
1282 	 * pending queue. We must hold ->siglock while testing
1283 	 * q->list to serialize with collect_signal().
1284 	 */
1285 	spin_lock_irqsave(lock, flags);
1286 	if (!list_empty(&q->list))
1287 		list_del_init(&q->list);
1288 	spin_unlock_irqrestore(lock, flags);
1289 
1290 	q->flags &= ~SIGQUEUE_PREALLOC;
1291 	__sigqueue_free(q);
1292 }
1293 
1294 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1295 {
1296 	unsigned long flags;
1297 	int ret = 0;
1298 
1299 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1300 
1301 	/*
1302 	 * The rcu based delayed sighand destroy makes it possible to
1303 	 * run this without tasklist lock held. The task struct itself
1304 	 * cannot go away as create_timer did get_task_struct().
1305 	 *
1306 	 * We return -1, when the task is marked exiting, so
1307 	 * posix_timer_event can redirect it to the group leader
1308 	 */
1309 	rcu_read_lock();
1310 
1311 	if (!likely(lock_task_sighand(p, &flags))) {
1312 		ret = -1;
1313 		goto out_err;
1314 	}
1315 
1316 	if (unlikely(!list_empty(&q->list))) {
1317 		/*
1318 		 * If an SI_TIMER entry is already queue just increment
1319 		 * the overrun count.
1320 		 */
1321 		BUG_ON(q->info.si_code != SI_TIMER);
1322 		q->info.si_overrun++;
1323 		goto out;
1324 	}
1325 	/* Short-circuit ignored signals.  */
1326 	if (sig_ignored(p, sig)) {
1327 		ret = 1;
1328 		goto out;
1329 	}
1330 	/*
1331 	 * Deliver the signal to listening signalfds. This must be called
1332 	 * with the sighand lock held.
1333 	 */
1334 	signalfd_notify(p, sig);
1335 
1336 	list_add_tail(&q->list, &p->pending.list);
1337 	sigaddset(&p->pending.signal, sig);
1338 	if (!sigismember(&p->blocked, sig))
1339 		signal_wake_up(p, sig == SIGKILL);
1340 
1341 out:
1342 	unlock_task_sighand(p, &flags);
1343 out_err:
1344 	rcu_read_unlock();
1345 
1346 	return ret;
1347 }
1348 
1349 int
1350 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1351 {
1352 	unsigned long flags;
1353 	int ret = 0;
1354 
1355 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1356 
1357 	read_lock(&tasklist_lock);
1358 	/* Since it_lock is held, p->sighand cannot be NULL. */
1359 	spin_lock_irqsave(&p->sighand->siglock, flags);
1360 	handle_stop_signal(sig, p);
1361 
1362 	/* Short-circuit ignored signals.  */
1363 	if (sig_ignored(p, sig)) {
1364 		ret = 1;
1365 		goto out;
1366 	}
1367 
1368 	if (unlikely(!list_empty(&q->list))) {
1369 		/*
1370 		 * If an SI_TIMER entry is already queue just increment
1371 		 * the overrun count.  Other uses should not try to
1372 		 * send the signal multiple times.
1373 		 */
1374 		BUG_ON(q->info.si_code != SI_TIMER);
1375 		q->info.si_overrun++;
1376 		goto out;
1377 	}
1378 	/*
1379 	 * Deliver the signal to listening signalfds. This must be called
1380 	 * with the sighand lock held.
1381 	 */
1382 	signalfd_notify(p, sig);
1383 
1384 	/*
1385 	 * Put this signal on the shared-pending queue.
1386 	 * We always use the shared queue for process-wide signals,
1387 	 * to avoid several races.
1388 	 */
1389 	list_add_tail(&q->list, &p->signal->shared_pending.list);
1390 	sigaddset(&p->signal->shared_pending.signal, sig);
1391 
1392 	__group_complete_signal(sig, p);
1393 out:
1394 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1395 	read_unlock(&tasklist_lock);
1396 	return ret;
1397 }
1398 
1399 /*
1400  * Wake up any threads in the parent blocked in wait* syscalls.
1401  */
1402 static inline void __wake_up_parent(struct task_struct *p,
1403 				    struct task_struct *parent)
1404 {
1405 	wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1406 }
1407 
1408 /*
1409  * Let a parent know about the death of a child.
1410  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1411  */
1412 
1413 void do_notify_parent(struct task_struct *tsk, int sig)
1414 {
1415 	struct siginfo info;
1416 	unsigned long flags;
1417 	struct sighand_struct *psig;
1418 
1419 	BUG_ON(sig == -1);
1420 
1421  	/* do_notify_parent_cldstop should have been called instead.  */
1422  	BUG_ON(task_is_stopped_or_traced(tsk));
1423 
1424 	BUG_ON(!tsk->ptrace &&
1425 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1426 
1427 	info.si_signo = sig;
1428 	info.si_errno = 0;
1429 	/*
1430 	 * we are under tasklist_lock here so our parent is tied to
1431 	 * us and cannot exit and release its namespace.
1432 	 *
1433 	 * the only it can is to switch its nsproxy with sys_unshare,
1434 	 * bu uncharing pid namespaces is not allowed, so we'll always
1435 	 * see relevant namespace
1436 	 *
1437 	 * write_lock() currently calls preempt_disable() which is the
1438 	 * same as rcu_read_lock(), but according to Oleg, this is not
1439 	 * correct to rely on this
1440 	 */
1441 	rcu_read_lock();
1442 	info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1443 	rcu_read_unlock();
1444 
1445 	info.si_uid = tsk->uid;
1446 
1447 	/* FIXME: find out whether or not this is supposed to be c*time. */
1448 	info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1449 						       tsk->signal->utime));
1450 	info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1451 						       tsk->signal->stime));
1452 
1453 	info.si_status = tsk->exit_code & 0x7f;
1454 	if (tsk->exit_code & 0x80)
1455 		info.si_code = CLD_DUMPED;
1456 	else if (tsk->exit_code & 0x7f)
1457 		info.si_code = CLD_KILLED;
1458 	else {
1459 		info.si_code = CLD_EXITED;
1460 		info.si_status = tsk->exit_code >> 8;
1461 	}
1462 
1463 	psig = tsk->parent->sighand;
1464 	spin_lock_irqsave(&psig->siglock, flags);
1465 	if (!tsk->ptrace && sig == SIGCHLD &&
1466 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1467 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1468 		/*
1469 		 * We are exiting and our parent doesn't care.  POSIX.1
1470 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1471 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1472 		 * automatically and not left for our parent's wait4 call.
1473 		 * Rather than having the parent do it as a magic kind of
1474 		 * signal handler, we just set this to tell do_exit that we
1475 		 * can be cleaned up without becoming a zombie.  Note that
1476 		 * we still call __wake_up_parent in this case, because a
1477 		 * blocked sys_wait4 might now return -ECHILD.
1478 		 *
1479 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1480 		 * is implementation-defined: we do (if you don't want
1481 		 * it, just use SIG_IGN instead).
1482 		 */
1483 		tsk->exit_signal = -1;
1484 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1485 			sig = 0;
1486 	}
1487 	if (valid_signal(sig) && sig > 0)
1488 		__group_send_sig_info(sig, &info, tsk->parent);
1489 	__wake_up_parent(tsk, tsk->parent);
1490 	spin_unlock_irqrestore(&psig->siglock, flags);
1491 }
1492 
1493 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1494 {
1495 	struct siginfo info;
1496 	unsigned long flags;
1497 	struct task_struct *parent;
1498 	struct sighand_struct *sighand;
1499 
1500 	if (tsk->ptrace & PT_PTRACED)
1501 		parent = tsk->parent;
1502 	else {
1503 		tsk = tsk->group_leader;
1504 		parent = tsk->real_parent;
1505 	}
1506 
1507 	info.si_signo = SIGCHLD;
1508 	info.si_errno = 0;
1509 	/*
1510 	 * see comment in do_notify_parent() abot the following 3 lines
1511 	 */
1512 	rcu_read_lock();
1513 	info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1514 	rcu_read_unlock();
1515 
1516 	info.si_uid = tsk->uid;
1517 
1518 	/* FIXME: find out whether or not this is supposed to be c*time. */
1519 	info.si_utime = cputime_to_jiffies(tsk->utime);
1520 	info.si_stime = cputime_to_jiffies(tsk->stime);
1521 
1522  	info.si_code = why;
1523  	switch (why) {
1524  	case CLD_CONTINUED:
1525  		info.si_status = SIGCONT;
1526  		break;
1527  	case CLD_STOPPED:
1528  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1529  		break;
1530  	case CLD_TRAPPED:
1531  		info.si_status = tsk->exit_code & 0x7f;
1532  		break;
1533  	default:
1534  		BUG();
1535  	}
1536 
1537 	sighand = parent->sighand;
1538 	spin_lock_irqsave(&sighand->siglock, flags);
1539 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1540 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1541 		__group_send_sig_info(SIGCHLD, &info, parent);
1542 	/*
1543 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1544 	 */
1545 	__wake_up_parent(tsk, parent);
1546 	spin_unlock_irqrestore(&sighand->siglock, flags);
1547 }
1548 
1549 static inline int may_ptrace_stop(void)
1550 {
1551 	if (!likely(current->ptrace & PT_PTRACED))
1552 		return 0;
1553 	/*
1554 	 * Are we in the middle of do_coredump?
1555 	 * If so and our tracer is also part of the coredump stopping
1556 	 * is a deadlock situation, and pointless because our tracer
1557 	 * is dead so don't allow us to stop.
1558 	 * If SIGKILL was already sent before the caller unlocked
1559 	 * ->siglock we must see ->core_waiters != 0. Otherwise it
1560 	 * is safe to enter schedule().
1561 	 */
1562 	if (unlikely(current->mm->core_waiters) &&
1563 	    unlikely(current->mm == current->parent->mm))
1564 		return 0;
1565 
1566 	return 1;
1567 }
1568 
1569 /*
1570  * Return nonzero if there is a SIGKILL that should be waking us up.
1571  * Called with the siglock held.
1572  */
1573 static int sigkill_pending(struct task_struct *tsk)
1574 {
1575 	return ((sigismember(&tsk->pending.signal, SIGKILL) ||
1576 		 sigismember(&tsk->signal->shared_pending.signal, SIGKILL)) &&
1577 		!unlikely(sigismember(&tsk->blocked, SIGKILL)));
1578 }
1579 
1580 /*
1581  * This must be called with current->sighand->siglock held.
1582  *
1583  * This should be the path for all ptrace stops.
1584  * We always set current->last_siginfo while stopped here.
1585  * That makes it a way to test a stopped process for
1586  * being ptrace-stopped vs being job-control-stopped.
1587  *
1588  * If we actually decide not to stop at all because the tracer
1589  * is gone, we keep current->exit_code unless clear_code.
1590  */
1591 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1592 {
1593 	int killed = 0;
1594 
1595 	if (arch_ptrace_stop_needed(exit_code, info)) {
1596 		/*
1597 		 * The arch code has something special to do before a
1598 		 * ptrace stop.  This is allowed to block, e.g. for faults
1599 		 * on user stack pages.  We can't keep the siglock while
1600 		 * calling arch_ptrace_stop, so we must release it now.
1601 		 * To preserve proper semantics, we must do this before
1602 		 * any signal bookkeeping like checking group_stop_count.
1603 		 * Meanwhile, a SIGKILL could come in before we retake the
1604 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1605 		 * So after regaining the lock, we must check for SIGKILL.
1606 		 */
1607 		spin_unlock_irq(&current->sighand->siglock);
1608 		arch_ptrace_stop(exit_code, info);
1609 		spin_lock_irq(&current->sighand->siglock);
1610 		killed = sigkill_pending(current);
1611 	}
1612 
1613 	/*
1614 	 * If there is a group stop in progress,
1615 	 * we must participate in the bookkeeping.
1616 	 */
1617 	if (current->signal->group_stop_count > 0)
1618 		--current->signal->group_stop_count;
1619 
1620 	current->last_siginfo = info;
1621 	current->exit_code = exit_code;
1622 
1623 	/* Let the debugger run.  */
1624 	__set_current_state(TASK_TRACED);
1625 	spin_unlock_irq(&current->sighand->siglock);
1626 	read_lock(&tasklist_lock);
1627 	if (!unlikely(killed) && may_ptrace_stop()) {
1628 		do_notify_parent_cldstop(current, CLD_TRAPPED);
1629 		read_unlock(&tasklist_lock);
1630 		schedule();
1631 	} else {
1632 		/*
1633 		 * By the time we got the lock, our tracer went away.
1634 		 * Don't drop the lock yet, another tracer may come.
1635 		 */
1636 		__set_current_state(TASK_RUNNING);
1637 		if (clear_code)
1638 			current->exit_code = 0;
1639 		read_unlock(&tasklist_lock);
1640 	}
1641 
1642 	/*
1643 	 * While in TASK_TRACED, we were considered "frozen enough".
1644 	 * Now that we woke up, it's crucial if we're supposed to be
1645 	 * frozen that we freeze now before running anything substantial.
1646 	 */
1647 	try_to_freeze();
1648 
1649 	/*
1650 	 * We are back.  Now reacquire the siglock before touching
1651 	 * last_siginfo, so that we are sure to have synchronized with
1652 	 * any signal-sending on another CPU that wants to examine it.
1653 	 */
1654 	spin_lock_irq(&current->sighand->siglock);
1655 	current->last_siginfo = NULL;
1656 
1657 	/*
1658 	 * Queued signals ignored us while we were stopped for tracing.
1659 	 * So check for any that we should take before resuming user mode.
1660 	 * This sets TIF_SIGPENDING, but never clears it.
1661 	 */
1662 	recalc_sigpending_tsk(current);
1663 }
1664 
1665 void ptrace_notify(int exit_code)
1666 {
1667 	siginfo_t info;
1668 
1669 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1670 
1671 	memset(&info, 0, sizeof info);
1672 	info.si_signo = SIGTRAP;
1673 	info.si_code = exit_code;
1674 	info.si_pid = task_pid_vnr(current);
1675 	info.si_uid = current->uid;
1676 
1677 	/* Let the debugger run.  */
1678 	spin_lock_irq(&current->sighand->siglock);
1679 	ptrace_stop(exit_code, 1, &info);
1680 	spin_unlock_irq(&current->sighand->siglock);
1681 }
1682 
1683 static void
1684 finish_stop(int stop_count)
1685 {
1686 	/*
1687 	 * If there are no other threads in the group, or if there is
1688 	 * a group stop in progress and we are the last to stop,
1689 	 * report to the parent.  When ptraced, every thread reports itself.
1690 	 */
1691 	if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1692 		read_lock(&tasklist_lock);
1693 		do_notify_parent_cldstop(current, CLD_STOPPED);
1694 		read_unlock(&tasklist_lock);
1695 	}
1696 
1697 	do {
1698 		schedule();
1699 	} while (try_to_freeze());
1700 	/*
1701 	 * Now we don't run again until continued.
1702 	 */
1703 	current->exit_code = 0;
1704 }
1705 
1706 /*
1707  * This performs the stopping for SIGSTOP and other stop signals.
1708  * We have to stop all threads in the thread group.
1709  * Returns nonzero if we've actually stopped and released the siglock.
1710  * Returns zero if we didn't stop and still hold the siglock.
1711  */
1712 static int do_signal_stop(int signr)
1713 {
1714 	struct signal_struct *sig = current->signal;
1715 	int stop_count;
1716 
1717 	if (sig->group_stop_count > 0) {
1718 		/*
1719 		 * There is a group stop in progress.  We don't need to
1720 		 * start another one.
1721 		 */
1722 		stop_count = --sig->group_stop_count;
1723 	} else {
1724 		struct task_struct *t;
1725 
1726 		if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1727 		    unlikely(sig->group_exit_task))
1728 			return 0;
1729 		/*
1730 		 * There is no group stop already in progress.
1731 		 * We must initiate one now.
1732 		 */
1733 		sig->group_exit_code = signr;
1734 
1735 		stop_count = 0;
1736 		for (t = next_thread(current); t != current; t = next_thread(t))
1737 			/*
1738 			 * Setting state to TASK_STOPPED for a group
1739 			 * stop is always done with the siglock held,
1740 			 * so this check has no races.
1741 			 */
1742 			if (!(t->flags & PF_EXITING) &&
1743 			    !task_is_stopped_or_traced(t)) {
1744 				stop_count++;
1745 				signal_wake_up(t, 0);
1746 			}
1747 		sig->group_stop_count = stop_count;
1748 	}
1749 
1750 	if (stop_count == 0)
1751 		sig->flags = SIGNAL_STOP_STOPPED;
1752 	current->exit_code = sig->group_exit_code;
1753 	__set_current_state(TASK_STOPPED);
1754 
1755 	spin_unlock_irq(&current->sighand->siglock);
1756 	finish_stop(stop_count);
1757 	return 1;
1758 }
1759 
1760 static int ptrace_signal(int signr, siginfo_t *info,
1761 			 struct pt_regs *regs, void *cookie)
1762 {
1763 	if (!(current->ptrace & PT_PTRACED))
1764 		return signr;
1765 
1766 	ptrace_signal_deliver(regs, cookie);
1767 
1768 	/* Let the debugger run.  */
1769 	ptrace_stop(signr, 0, info);
1770 
1771 	/* We're back.  Did the debugger cancel the sig?  */
1772 	signr = current->exit_code;
1773 	if (signr == 0)
1774 		return signr;
1775 
1776 	current->exit_code = 0;
1777 
1778 	/* Update the siginfo structure if the signal has
1779 	   changed.  If the debugger wanted something
1780 	   specific in the siginfo structure then it should
1781 	   have updated *info via PTRACE_SETSIGINFO.  */
1782 	if (signr != info->si_signo) {
1783 		info->si_signo = signr;
1784 		info->si_errno = 0;
1785 		info->si_code = SI_USER;
1786 		info->si_pid = task_pid_vnr(current->parent);
1787 		info->si_uid = current->parent->uid;
1788 	}
1789 
1790 	/* If the (new) signal is now blocked, requeue it.  */
1791 	if (sigismember(&current->blocked, signr)) {
1792 		specific_send_sig_info(signr, info, current);
1793 		signr = 0;
1794 	}
1795 
1796 	return signr;
1797 }
1798 
1799 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1800 			  struct pt_regs *regs, void *cookie)
1801 {
1802 	sigset_t *mask = &current->blocked;
1803 	int signr = 0;
1804 
1805 relock:
1806 	/*
1807 	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1808 	 * While in TASK_STOPPED, we were considered "frozen enough".
1809 	 * Now that we woke up, it's crucial if we're supposed to be
1810 	 * frozen that we freeze now before running anything substantial.
1811 	 */
1812 	try_to_freeze();
1813 
1814 	spin_lock_irq(&current->sighand->siglock);
1815 	for (;;) {
1816 		struct k_sigaction *ka;
1817 
1818 		if (unlikely(current->signal->group_stop_count > 0) &&
1819 		    do_signal_stop(0))
1820 			goto relock;
1821 
1822 		signr = dequeue_signal(current, mask, info);
1823 
1824 		if (!signr)
1825 			break; /* will return 0 */
1826 
1827 		if (signr != SIGKILL) {
1828 			signr = ptrace_signal(signr, info, regs, cookie);
1829 			if (!signr)
1830 				continue;
1831 		}
1832 
1833 		ka = &current->sighand->action[signr-1];
1834 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
1835 			continue;
1836 		if (ka->sa.sa_handler != SIG_DFL) {
1837 			/* Run the handler.  */
1838 			*return_ka = *ka;
1839 
1840 			if (ka->sa.sa_flags & SA_ONESHOT)
1841 				ka->sa.sa_handler = SIG_DFL;
1842 
1843 			break; /* will return non-zero "signr" value */
1844 		}
1845 
1846 		/*
1847 		 * Now we are doing the default action for this signal.
1848 		 */
1849 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
1850 			continue;
1851 
1852 		/*
1853 		 * Global init gets no signals it doesn't want.
1854 		 */
1855 		if (is_global_init(current))
1856 			continue;
1857 
1858 		if (sig_kernel_stop(signr)) {
1859 			/*
1860 			 * The default action is to stop all threads in
1861 			 * the thread group.  The job control signals
1862 			 * do nothing in an orphaned pgrp, but SIGSTOP
1863 			 * always works.  Note that siglock needs to be
1864 			 * dropped during the call to is_orphaned_pgrp()
1865 			 * because of lock ordering with tasklist_lock.
1866 			 * This allows an intervening SIGCONT to be posted.
1867 			 * We need to check for that and bail out if necessary.
1868 			 */
1869 			if (signr != SIGSTOP) {
1870 				spin_unlock_irq(&current->sighand->siglock);
1871 
1872 				/* signals can be posted during this window */
1873 
1874 				if (is_current_pgrp_orphaned())
1875 					goto relock;
1876 
1877 				spin_lock_irq(&current->sighand->siglock);
1878 			}
1879 
1880 			if (likely(do_signal_stop(signr))) {
1881 				/* It released the siglock.  */
1882 				goto relock;
1883 			}
1884 
1885 			/*
1886 			 * We didn't actually stop, due to a race
1887 			 * with SIGCONT or something like that.
1888 			 */
1889 			continue;
1890 		}
1891 
1892 		spin_unlock_irq(&current->sighand->siglock);
1893 
1894 		/*
1895 		 * Anything else is fatal, maybe with a core dump.
1896 		 */
1897 		current->flags |= PF_SIGNALED;
1898 		if ((signr != SIGKILL) && print_fatal_signals)
1899 			print_fatal_signal(regs, signr);
1900 		if (sig_kernel_coredump(signr)) {
1901 			/*
1902 			 * If it was able to dump core, this kills all
1903 			 * other threads in the group and synchronizes with
1904 			 * their demise.  If we lost the race with another
1905 			 * thread getting here, it set group_exit_code
1906 			 * first and our do_group_exit call below will use
1907 			 * that value and ignore the one we pass it.
1908 			 */
1909 			do_coredump((long)signr, signr, regs);
1910 		}
1911 
1912 		/*
1913 		 * Death signals, no core dump.
1914 		 */
1915 		do_group_exit(signr);
1916 		/* NOTREACHED */
1917 	}
1918 	spin_unlock_irq(&current->sighand->siglock);
1919 	return signr;
1920 }
1921 
1922 void exit_signals(struct task_struct *tsk)
1923 {
1924 	int group_stop = 0;
1925 	struct task_struct *t;
1926 
1927 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1928 		tsk->flags |= PF_EXITING;
1929 		return;
1930 	}
1931 
1932 	spin_lock_irq(&tsk->sighand->siglock);
1933 	/*
1934 	 * From now this task is not visible for group-wide signals,
1935 	 * see wants_signal(), do_signal_stop().
1936 	 */
1937 	tsk->flags |= PF_EXITING;
1938 	if (!signal_pending(tsk))
1939 		goto out;
1940 
1941 	/* It could be that __group_complete_signal() choose us to
1942 	 * notify about group-wide signal. Another thread should be
1943 	 * woken now to take the signal since we will not.
1944 	 */
1945 	for (t = tsk; (t = next_thread(t)) != tsk; )
1946 		if (!signal_pending(t) && !(t->flags & PF_EXITING))
1947 			recalc_sigpending_and_wake(t);
1948 
1949 	if (unlikely(tsk->signal->group_stop_count) &&
1950 			!--tsk->signal->group_stop_count) {
1951 		tsk->signal->flags = SIGNAL_STOP_STOPPED;
1952 		group_stop = 1;
1953 	}
1954 out:
1955 	spin_unlock_irq(&tsk->sighand->siglock);
1956 
1957 	if (unlikely(group_stop)) {
1958 		read_lock(&tasklist_lock);
1959 		do_notify_parent_cldstop(tsk, CLD_STOPPED);
1960 		read_unlock(&tasklist_lock);
1961 	}
1962 }
1963 
1964 EXPORT_SYMBOL(recalc_sigpending);
1965 EXPORT_SYMBOL_GPL(dequeue_signal);
1966 EXPORT_SYMBOL(flush_signals);
1967 EXPORT_SYMBOL(force_sig);
1968 EXPORT_SYMBOL(kill_proc);
1969 EXPORT_SYMBOL(ptrace_notify);
1970 EXPORT_SYMBOL(send_sig);
1971 EXPORT_SYMBOL(send_sig_info);
1972 EXPORT_SYMBOL(sigprocmask);
1973 EXPORT_SYMBOL(block_all_signals);
1974 EXPORT_SYMBOL(unblock_all_signals);
1975 
1976 
1977 /*
1978  * System call entry points.
1979  */
1980 
1981 asmlinkage long sys_restart_syscall(void)
1982 {
1983 	struct restart_block *restart = &current_thread_info()->restart_block;
1984 	return restart->fn(restart);
1985 }
1986 
1987 long do_no_restart_syscall(struct restart_block *param)
1988 {
1989 	return -EINTR;
1990 }
1991 
1992 /*
1993  * We don't need to get the kernel lock - this is all local to this
1994  * particular thread.. (and that's good, because this is _heavily_
1995  * used by various programs)
1996  */
1997 
1998 /*
1999  * This is also useful for kernel threads that want to temporarily
2000  * (or permanently) block certain signals.
2001  *
2002  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2003  * interface happily blocks "unblockable" signals like SIGKILL
2004  * and friends.
2005  */
2006 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2007 {
2008 	int error;
2009 
2010 	spin_lock_irq(&current->sighand->siglock);
2011 	if (oldset)
2012 		*oldset = current->blocked;
2013 
2014 	error = 0;
2015 	switch (how) {
2016 	case SIG_BLOCK:
2017 		sigorsets(&current->blocked, &current->blocked, set);
2018 		break;
2019 	case SIG_UNBLOCK:
2020 		signandsets(&current->blocked, &current->blocked, set);
2021 		break;
2022 	case SIG_SETMASK:
2023 		current->blocked = *set;
2024 		break;
2025 	default:
2026 		error = -EINVAL;
2027 	}
2028 	recalc_sigpending();
2029 	spin_unlock_irq(&current->sighand->siglock);
2030 
2031 	return error;
2032 }
2033 
2034 asmlinkage long
2035 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2036 {
2037 	int error = -EINVAL;
2038 	sigset_t old_set, new_set;
2039 
2040 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2041 	if (sigsetsize != sizeof(sigset_t))
2042 		goto out;
2043 
2044 	if (set) {
2045 		error = -EFAULT;
2046 		if (copy_from_user(&new_set, set, sizeof(*set)))
2047 			goto out;
2048 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2049 
2050 		error = sigprocmask(how, &new_set, &old_set);
2051 		if (error)
2052 			goto out;
2053 		if (oset)
2054 			goto set_old;
2055 	} else if (oset) {
2056 		spin_lock_irq(&current->sighand->siglock);
2057 		old_set = current->blocked;
2058 		spin_unlock_irq(&current->sighand->siglock);
2059 
2060 	set_old:
2061 		error = -EFAULT;
2062 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2063 			goto out;
2064 	}
2065 	error = 0;
2066 out:
2067 	return error;
2068 }
2069 
2070 long do_sigpending(void __user *set, unsigned long sigsetsize)
2071 {
2072 	long error = -EINVAL;
2073 	sigset_t pending;
2074 
2075 	if (sigsetsize > sizeof(sigset_t))
2076 		goto out;
2077 
2078 	spin_lock_irq(&current->sighand->siglock);
2079 	sigorsets(&pending, &current->pending.signal,
2080 		  &current->signal->shared_pending.signal);
2081 	spin_unlock_irq(&current->sighand->siglock);
2082 
2083 	/* Outside the lock because only this thread touches it.  */
2084 	sigandsets(&pending, &current->blocked, &pending);
2085 
2086 	error = -EFAULT;
2087 	if (!copy_to_user(set, &pending, sigsetsize))
2088 		error = 0;
2089 
2090 out:
2091 	return error;
2092 }
2093 
2094 asmlinkage long
2095 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2096 {
2097 	return do_sigpending(set, sigsetsize);
2098 }
2099 
2100 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2101 
2102 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2103 {
2104 	int err;
2105 
2106 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2107 		return -EFAULT;
2108 	if (from->si_code < 0)
2109 		return __copy_to_user(to, from, sizeof(siginfo_t))
2110 			? -EFAULT : 0;
2111 	/*
2112 	 * If you change siginfo_t structure, please be sure
2113 	 * this code is fixed accordingly.
2114 	 * Please remember to update the signalfd_copyinfo() function
2115 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2116 	 * It should never copy any pad contained in the structure
2117 	 * to avoid security leaks, but must copy the generic
2118 	 * 3 ints plus the relevant union member.
2119 	 */
2120 	err = __put_user(from->si_signo, &to->si_signo);
2121 	err |= __put_user(from->si_errno, &to->si_errno);
2122 	err |= __put_user((short)from->si_code, &to->si_code);
2123 	switch (from->si_code & __SI_MASK) {
2124 	case __SI_KILL:
2125 		err |= __put_user(from->si_pid, &to->si_pid);
2126 		err |= __put_user(from->si_uid, &to->si_uid);
2127 		break;
2128 	case __SI_TIMER:
2129 		 err |= __put_user(from->si_tid, &to->si_tid);
2130 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2131 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2132 		break;
2133 	case __SI_POLL:
2134 		err |= __put_user(from->si_band, &to->si_band);
2135 		err |= __put_user(from->si_fd, &to->si_fd);
2136 		break;
2137 	case __SI_FAULT:
2138 		err |= __put_user(from->si_addr, &to->si_addr);
2139 #ifdef __ARCH_SI_TRAPNO
2140 		err |= __put_user(from->si_trapno, &to->si_trapno);
2141 #endif
2142 		break;
2143 	case __SI_CHLD:
2144 		err |= __put_user(from->si_pid, &to->si_pid);
2145 		err |= __put_user(from->si_uid, &to->si_uid);
2146 		err |= __put_user(from->si_status, &to->si_status);
2147 		err |= __put_user(from->si_utime, &to->si_utime);
2148 		err |= __put_user(from->si_stime, &to->si_stime);
2149 		break;
2150 	case __SI_RT: /* This is not generated by the kernel as of now. */
2151 	case __SI_MESGQ: /* But this is */
2152 		err |= __put_user(from->si_pid, &to->si_pid);
2153 		err |= __put_user(from->si_uid, &to->si_uid);
2154 		err |= __put_user(from->si_ptr, &to->si_ptr);
2155 		break;
2156 	default: /* this is just in case for now ... */
2157 		err |= __put_user(from->si_pid, &to->si_pid);
2158 		err |= __put_user(from->si_uid, &to->si_uid);
2159 		break;
2160 	}
2161 	return err;
2162 }
2163 
2164 #endif
2165 
2166 asmlinkage long
2167 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2168 		    siginfo_t __user *uinfo,
2169 		    const struct timespec __user *uts,
2170 		    size_t sigsetsize)
2171 {
2172 	int ret, sig;
2173 	sigset_t these;
2174 	struct timespec ts;
2175 	siginfo_t info;
2176 	long timeout = 0;
2177 
2178 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2179 	if (sigsetsize != sizeof(sigset_t))
2180 		return -EINVAL;
2181 
2182 	if (copy_from_user(&these, uthese, sizeof(these)))
2183 		return -EFAULT;
2184 
2185 	/*
2186 	 * Invert the set of allowed signals to get those we
2187 	 * want to block.
2188 	 */
2189 	sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2190 	signotset(&these);
2191 
2192 	if (uts) {
2193 		if (copy_from_user(&ts, uts, sizeof(ts)))
2194 			return -EFAULT;
2195 		if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2196 		    || ts.tv_sec < 0)
2197 			return -EINVAL;
2198 	}
2199 
2200 	spin_lock_irq(&current->sighand->siglock);
2201 	sig = dequeue_signal(current, &these, &info);
2202 	if (!sig) {
2203 		timeout = MAX_SCHEDULE_TIMEOUT;
2204 		if (uts)
2205 			timeout = (timespec_to_jiffies(&ts)
2206 				   + (ts.tv_sec || ts.tv_nsec));
2207 
2208 		if (timeout) {
2209 			/* None ready -- temporarily unblock those we're
2210 			 * interested while we are sleeping in so that we'll
2211 			 * be awakened when they arrive.  */
2212 			current->real_blocked = current->blocked;
2213 			sigandsets(&current->blocked, &current->blocked, &these);
2214 			recalc_sigpending();
2215 			spin_unlock_irq(&current->sighand->siglock);
2216 
2217 			timeout = schedule_timeout_interruptible(timeout);
2218 
2219 			spin_lock_irq(&current->sighand->siglock);
2220 			sig = dequeue_signal(current, &these, &info);
2221 			current->blocked = current->real_blocked;
2222 			siginitset(&current->real_blocked, 0);
2223 			recalc_sigpending();
2224 		}
2225 	}
2226 	spin_unlock_irq(&current->sighand->siglock);
2227 
2228 	if (sig) {
2229 		ret = sig;
2230 		if (uinfo) {
2231 			if (copy_siginfo_to_user(uinfo, &info))
2232 				ret = -EFAULT;
2233 		}
2234 	} else {
2235 		ret = -EAGAIN;
2236 		if (timeout)
2237 			ret = -EINTR;
2238 	}
2239 
2240 	return ret;
2241 }
2242 
2243 asmlinkage long
2244 sys_kill(int pid, int sig)
2245 {
2246 	struct siginfo info;
2247 
2248 	info.si_signo = sig;
2249 	info.si_errno = 0;
2250 	info.si_code = SI_USER;
2251 	info.si_pid = task_tgid_vnr(current);
2252 	info.si_uid = current->uid;
2253 
2254 	return kill_something_info(sig, &info, pid);
2255 }
2256 
2257 static int do_tkill(int tgid, int pid, int sig)
2258 {
2259 	int error;
2260 	struct siginfo info;
2261 	struct task_struct *p;
2262 
2263 	error = -ESRCH;
2264 	info.si_signo = sig;
2265 	info.si_errno = 0;
2266 	info.si_code = SI_TKILL;
2267 	info.si_pid = task_tgid_vnr(current);
2268 	info.si_uid = current->uid;
2269 
2270 	read_lock(&tasklist_lock);
2271 	p = find_task_by_vpid(pid);
2272 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2273 		error = check_kill_permission(sig, &info, p);
2274 		/*
2275 		 * The null signal is a permissions and process existence
2276 		 * probe.  No signal is actually delivered.
2277 		 */
2278 		if (!error && sig && p->sighand) {
2279 			spin_lock_irq(&p->sighand->siglock);
2280 			handle_stop_signal(sig, p);
2281 			error = specific_send_sig_info(sig, &info, p);
2282 			spin_unlock_irq(&p->sighand->siglock);
2283 		}
2284 	}
2285 	read_unlock(&tasklist_lock);
2286 
2287 	return error;
2288 }
2289 
2290 /**
2291  *  sys_tgkill - send signal to one specific thread
2292  *  @tgid: the thread group ID of the thread
2293  *  @pid: the PID of the thread
2294  *  @sig: signal to be sent
2295  *
2296  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2297  *  exists but it's not belonging to the target process anymore. This
2298  *  method solves the problem of threads exiting and PIDs getting reused.
2299  */
2300 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2301 {
2302 	/* This is only valid for single tasks */
2303 	if (pid <= 0 || tgid <= 0)
2304 		return -EINVAL;
2305 
2306 	return do_tkill(tgid, pid, sig);
2307 }
2308 
2309 /*
2310  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2311  */
2312 asmlinkage long
2313 sys_tkill(int pid, int sig)
2314 {
2315 	/* This is only valid for single tasks */
2316 	if (pid <= 0)
2317 		return -EINVAL;
2318 
2319 	return do_tkill(0, pid, sig);
2320 }
2321 
2322 asmlinkage long
2323 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2324 {
2325 	siginfo_t info;
2326 
2327 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2328 		return -EFAULT;
2329 
2330 	/* Not even root can pretend to send signals from the kernel.
2331 	   Nor can they impersonate a kill(), which adds source info.  */
2332 	if (info.si_code >= 0)
2333 		return -EPERM;
2334 	info.si_signo = sig;
2335 
2336 	/* POSIX.1b doesn't mention process groups.  */
2337 	return kill_proc_info(sig, &info, pid);
2338 }
2339 
2340 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2341 {
2342 	struct k_sigaction *k;
2343 	sigset_t mask;
2344 
2345 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2346 		return -EINVAL;
2347 
2348 	k = &current->sighand->action[sig-1];
2349 
2350 	spin_lock_irq(&current->sighand->siglock);
2351 	if (oact)
2352 		*oact = *k;
2353 
2354 	if (act) {
2355 		sigdelsetmask(&act->sa.sa_mask,
2356 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2357 		*k = *act;
2358 		/*
2359 		 * POSIX 3.3.1.3:
2360 		 *  "Setting a signal action to SIG_IGN for a signal that is
2361 		 *   pending shall cause the pending signal to be discarded,
2362 		 *   whether or not it is blocked."
2363 		 *
2364 		 *  "Setting a signal action to SIG_DFL for a signal that is
2365 		 *   pending and whose default action is to ignore the signal
2366 		 *   (for example, SIGCHLD), shall cause the pending signal to
2367 		 *   be discarded, whether or not it is blocked"
2368 		 */
2369 		if (act->sa.sa_handler == SIG_IGN ||
2370 		   (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2371 			struct task_struct *t = current;
2372 			sigemptyset(&mask);
2373 			sigaddset(&mask, sig);
2374 			rm_from_queue_full(&mask, &t->signal->shared_pending);
2375 			do {
2376 				rm_from_queue_full(&mask, &t->pending);
2377 				t = next_thread(t);
2378 			} while (t != current);
2379 		}
2380 	}
2381 
2382 	spin_unlock_irq(&current->sighand->siglock);
2383 	return 0;
2384 }
2385 
2386 int
2387 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2388 {
2389 	stack_t oss;
2390 	int error;
2391 
2392 	if (uoss) {
2393 		oss.ss_sp = (void __user *) current->sas_ss_sp;
2394 		oss.ss_size = current->sas_ss_size;
2395 		oss.ss_flags = sas_ss_flags(sp);
2396 	}
2397 
2398 	if (uss) {
2399 		void __user *ss_sp;
2400 		size_t ss_size;
2401 		int ss_flags;
2402 
2403 		error = -EFAULT;
2404 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2405 		    || __get_user(ss_sp, &uss->ss_sp)
2406 		    || __get_user(ss_flags, &uss->ss_flags)
2407 		    || __get_user(ss_size, &uss->ss_size))
2408 			goto out;
2409 
2410 		error = -EPERM;
2411 		if (on_sig_stack(sp))
2412 			goto out;
2413 
2414 		error = -EINVAL;
2415 		/*
2416 		 *
2417 		 * Note - this code used to test ss_flags incorrectly
2418 		 *  	  old code may have been written using ss_flags==0
2419 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2420 		 *	  way that worked) - this fix preserves that older
2421 		 *	  mechanism
2422 		 */
2423 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2424 			goto out;
2425 
2426 		if (ss_flags == SS_DISABLE) {
2427 			ss_size = 0;
2428 			ss_sp = NULL;
2429 		} else {
2430 			error = -ENOMEM;
2431 			if (ss_size < MINSIGSTKSZ)
2432 				goto out;
2433 		}
2434 
2435 		current->sas_ss_sp = (unsigned long) ss_sp;
2436 		current->sas_ss_size = ss_size;
2437 	}
2438 
2439 	if (uoss) {
2440 		error = -EFAULT;
2441 		if (copy_to_user(uoss, &oss, sizeof(oss)))
2442 			goto out;
2443 	}
2444 
2445 	error = 0;
2446 out:
2447 	return error;
2448 }
2449 
2450 #ifdef __ARCH_WANT_SYS_SIGPENDING
2451 
2452 asmlinkage long
2453 sys_sigpending(old_sigset_t __user *set)
2454 {
2455 	return do_sigpending(set, sizeof(*set));
2456 }
2457 
2458 #endif
2459 
2460 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2461 /* Some platforms have their own version with special arguments others
2462    support only sys_rt_sigprocmask.  */
2463 
2464 asmlinkage long
2465 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2466 {
2467 	int error;
2468 	old_sigset_t old_set, new_set;
2469 
2470 	if (set) {
2471 		error = -EFAULT;
2472 		if (copy_from_user(&new_set, set, sizeof(*set)))
2473 			goto out;
2474 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2475 
2476 		spin_lock_irq(&current->sighand->siglock);
2477 		old_set = current->blocked.sig[0];
2478 
2479 		error = 0;
2480 		switch (how) {
2481 		default:
2482 			error = -EINVAL;
2483 			break;
2484 		case SIG_BLOCK:
2485 			sigaddsetmask(&current->blocked, new_set);
2486 			break;
2487 		case SIG_UNBLOCK:
2488 			sigdelsetmask(&current->blocked, new_set);
2489 			break;
2490 		case SIG_SETMASK:
2491 			current->blocked.sig[0] = new_set;
2492 			break;
2493 		}
2494 
2495 		recalc_sigpending();
2496 		spin_unlock_irq(&current->sighand->siglock);
2497 		if (error)
2498 			goto out;
2499 		if (oset)
2500 			goto set_old;
2501 	} else if (oset) {
2502 		old_set = current->blocked.sig[0];
2503 	set_old:
2504 		error = -EFAULT;
2505 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2506 			goto out;
2507 	}
2508 	error = 0;
2509 out:
2510 	return error;
2511 }
2512 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2513 
2514 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2515 asmlinkage long
2516 sys_rt_sigaction(int sig,
2517 		 const struct sigaction __user *act,
2518 		 struct sigaction __user *oact,
2519 		 size_t sigsetsize)
2520 {
2521 	struct k_sigaction new_sa, old_sa;
2522 	int ret = -EINVAL;
2523 
2524 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2525 	if (sigsetsize != sizeof(sigset_t))
2526 		goto out;
2527 
2528 	if (act) {
2529 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2530 			return -EFAULT;
2531 	}
2532 
2533 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2534 
2535 	if (!ret && oact) {
2536 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2537 			return -EFAULT;
2538 	}
2539 out:
2540 	return ret;
2541 }
2542 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2543 
2544 #ifdef __ARCH_WANT_SYS_SGETMASK
2545 
2546 /*
2547  * For backwards compatibility.  Functionality superseded by sigprocmask.
2548  */
2549 asmlinkage long
2550 sys_sgetmask(void)
2551 {
2552 	/* SMP safe */
2553 	return current->blocked.sig[0];
2554 }
2555 
2556 asmlinkage long
2557 sys_ssetmask(int newmask)
2558 {
2559 	int old;
2560 
2561 	spin_lock_irq(&current->sighand->siglock);
2562 	old = current->blocked.sig[0];
2563 
2564 	siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2565 						  sigmask(SIGSTOP)));
2566 	recalc_sigpending();
2567 	spin_unlock_irq(&current->sighand->siglock);
2568 
2569 	return old;
2570 }
2571 #endif /* __ARCH_WANT_SGETMASK */
2572 
2573 #ifdef __ARCH_WANT_SYS_SIGNAL
2574 /*
2575  * For backwards compatibility.  Functionality superseded by sigaction.
2576  */
2577 asmlinkage unsigned long
2578 sys_signal(int sig, __sighandler_t handler)
2579 {
2580 	struct k_sigaction new_sa, old_sa;
2581 	int ret;
2582 
2583 	new_sa.sa.sa_handler = handler;
2584 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2585 	sigemptyset(&new_sa.sa.sa_mask);
2586 
2587 	ret = do_sigaction(sig, &new_sa, &old_sa);
2588 
2589 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2590 }
2591 #endif /* __ARCH_WANT_SYS_SIGNAL */
2592 
2593 #ifdef __ARCH_WANT_SYS_PAUSE
2594 
2595 asmlinkage long
2596 sys_pause(void)
2597 {
2598 	current->state = TASK_INTERRUPTIBLE;
2599 	schedule();
2600 	return -ERESTARTNOHAND;
2601 }
2602 
2603 #endif
2604 
2605 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2606 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2607 {
2608 	sigset_t newset;
2609 
2610 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2611 	if (sigsetsize != sizeof(sigset_t))
2612 		return -EINVAL;
2613 
2614 	if (copy_from_user(&newset, unewset, sizeof(newset)))
2615 		return -EFAULT;
2616 	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2617 
2618 	spin_lock_irq(&current->sighand->siglock);
2619 	current->saved_sigmask = current->blocked;
2620 	current->blocked = newset;
2621 	recalc_sigpending();
2622 	spin_unlock_irq(&current->sighand->siglock);
2623 
2624 	current->state = TASK_INTERRUPTIBLE;
2625 	schedule();
2626 	set_thread_flag(TIF_RESTORE_SIGMASK);
2627 	return -ERESTARTNOHAND;
2628 }
2629 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2630 
2631 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2632 {
2633 	return NULL;
2634 }
2635 
2636 void __init signals_init(void)
2637 {
2638 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2639 }
2640