1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/proc_fs.h> 26 #include <linux/tty.h> 27 #include <linux/binfmts.h> 28 #include <linux/coredump.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/ptrace.h> 32 #include <linux/signal.h> 33 #include <linux/signalfd.h> 34 #include <linux/ratelimit.h> 35 #include <linux/tracehook.h> 36 #include <linux/capability.h> 37 #include <linux/freezer.h> 38 #include <linux/pid_namespace.h> 39 #include <linux/nsproxy.h> 40 #include <linux/user_namespace.h> 41 #include <linux/uprobes.h> 42 #include <linux/compat.h> 43 #include <linux/cn_proc.h> 44 #include <linux/compiler.h> 45 #include <linux/posix-timers.h> 46 #include <linux/cgroup.h> 47 #include <linux/audit.h> 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/signal.h> 51 52 #include <asm/param.h> 53 #include <linux/uaccess.h> 54 #include <asm/unistd.h> 55 #include <asm/siginfo.h> 56 #include <asm/cacheflush.h> 57 #include <asm/syscall.h> /* for syscall_get_* */ 58 59 /* 60 * SLAB caches for signal bits. 61 */ 62 63 static struct kmem_cache *sigqueue_cachep; 64 65 int print_fatal_signals __read_mostly; 66 67 static void __user *sig_handler(struct task_struct *t, int sig) 68 { 69 return t->sighand->action[sig - 1].sa.sa_handler; 70 } 71 72 static inline bool sig_handler_ignored(void __user *handler, int sig) 73 { 74 /* Is it explicitly or implicitly ignored? */ 75 return handler == SIG_IGN || 76 (handler == SIG_DFL && sig_kernel_ignore(sig)); 77 } 78 79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 80 { 81 void __user *handler; 82 83 handler = sig_handler(t, sig); 84 85 /* SIGKILL and SIGSTOP may not be sent to the global init */ 86 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 87 return true; 88 89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 90 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 91 return true; 92 93 /* Only allow kernel generated signals to this kthread */ 94 if (unlikely((t->flags & PF_KTHREAD) && 95 (handler == SIG_KTHREAD_KERNEL) && !force)) 96 return true; 97 98 return sig_handler_ignored(handler, sig); 99 } 100 101 static bool sig_ignored(struct task_struct *t, int sig, bool force) 102 { 103 /* 104 * Blocked signals are never ignored, since the 105 * signal handler may change by the time it is 106 * unblocked. 107 */ 108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 109 return false; 110 111 /* 112 * Tracers may want to know about even ignored signal unless it 113 * is SIGKILL which can't be reported anyway but can be ignored 114 * by SIGNAL_UNKILLABLE task. 115 */ 116 if (t->ptrace && sig != SIGKILL) 117 return false; 118 119 return sig_task_ignored(t, sig, force); 120 } 121 122 /* 123 * Re-calculate pending state from the set of locally pending 124 * signals, globally pending signals, and blocked signals. 125 */ 126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 127 { 128 unsigned long ready; 129 long i; 130 131 switch (_NSIG_WORDS) { 132 default: 133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 134 ready |= signal->sig[i] &~ blocked->sig[i]; 135 break; 136 137 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 138 ready |= signal->sig[2] &~ blocked->sig[2]; 139 ready |= signal->sig[1] &~ blocked->sig[1]; 140 ready |= signal->sig[0] &~ blocked->sig[0]; 141 break; 142 143 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 144 ready |= signal->sig[0] &~ blocked->sig[0]; 145 break; 146 147 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 148 } 149 return ready != 0; 150 } 151 152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 153 154 static bool recalc_sigpending_tsk(struct task_struct *t) 155 { 156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 157 PENDING(&t->pending, &t->blocked) || 158 PENDING(&t->signal->shared_pending, &t->blocked) || 159 cgroup_task_frozen(t)) { 160 set_tsk_thread_flag(t, TIF_SIGPENDING); 161 return true; 162 } 163 164 /* 165 * We must never clear the flag in another thread, or in current 166 * when it's possible the current syscall is returning -ERESTART*. 167 * So we don't clear it here, and only callers who know they should do. 168 */ 169 return false; 170 } 171 172 /* 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 174 * This is superfluous when called on current, the wakeup is a harmless no-op. 175 */ 176 void recalc_sigpending_and_wake(struct task_struct *t) 177 { 178 if (recalc_sigpending_tsk(t)) 179 signal_wake_up(t, 0); 180 } 181 182 void recalc_sigpending(void) 183 { 184 if (!recalc_sigpending_tsk(current) && !freezing(current)) 185 clear_thread_flag(TIF_SIGPENDING); 186 187 } 188 EXPORT_SYMBOL(recalc_sigpending); 189 190 void calculate_sigpending(void) 191 { 192 /* Have any signals or users of TIF_SIGPENDING been delayed 193 * until after fork? 194 */ 195 spin_lock_irq(¤t->sighand->siglock); 196 set_tsk_thread_flag(current, TIF_SIGPENDING); 197 recalc_sigpending(); 198 spin_unlock_irq(¤t->sighand->siglock); 199 } 200 201 /* Given the mask, find the first available signal that should be serviced. */ 202 203 #define SYNCHRONOUS_MASK \ 204 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 205 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 206 207 int next_signal(struct sigpending *pending, sigset_t *mask) 208 { 209 unsigned long i, *s, *m, x; 210 int sig = 0; 211 212 s = pending->signal.sig; 213 m = mask->sig; 214 215 /* 216 * Handle the first word specially: it contains the 217 * synchronous signals that need to be dequeued first. 218 */ 219 x = *s &~ *m; 220 if (x) { 221 if (x & SYNCHRONOUS_MASK) 222 x &= SYNCHRONOUS_MASK; 223 sig = ffz(~x) + 1; 224 return sig; 225 } 226 227 switch (_NSIG_WORDS) { 228 default: 229 for (i = 1; i < _NSIG_WORDS; ++i) { 230 x = *++s &~ *++m; 231 if (!x) 232 continue; 233 sig = ffz(~x) + i*_NSIG_BPW + 1; 234 break; 235 } 236 break; 237 238 case 2: 239 x = s[1] &~ m[1]; 240 if (!x) 241 break; 242 sig = ffz(~x) + _NSIG_BPW + 1; 243 break; 244 245 case 1: 246 /* Nothing to do */ 247 break; 248 } 249 250 return sig; 251 } 252 253 static inline void print_dropped_signal(int sig) 254 { 255 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 256 257 if (!print_fatal_signals) 258 return; 259 260 if (!__ratelimit(&ratelimit_state)) 261 return; 262 263 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 264 current->comm, current->pid, sig); 265 } 266 267 /** 268 * task_set_jobctl_pending - set jobctl pending bits 269 * @task: target task 270 * @mask: pending bits to set 271 * 272 * Clear @mask from @task->jobctl. @mask must be subset of 273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 274 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 275 * cleared. If @task is already being killed or exiting, this function 276 * becomes noop. 277 * 278 * CONTEXT: 279 * Must be called with @task->sighand->siglock held. 280 * 281 * RETURNS: 282 * %true if @mask is set, %false if made noop because @task was dying. 283 */ 284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 285 { 286 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 287 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 288 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 289 290 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 291 return false; 292 293 if (mask & JOBCTL_STOP_SIGMASK) 294 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 295 296 task->jobctl |= mask; 297 return true; 298 } 299 300 /** 301 * task_clear_jobctl_trapping - clear jobctl trapping bit 302 * @task: target task 303 * 304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 305 * Clear it and wake up the ptracer. Note that we don't need any further 306 * locking. @task->siglock guarantees that @task->parent points to the 307 * ptracer. 308 * 309 * CONTEXT: 310 * Must be called with @task->sighand->siglock held. 311 */ 312 void task_clear_jobctl_trapping(struct task_struct *task) 313 { 314 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 315 task->jobctl &= ~JOBCTL_TRAPPING; 316 smp_mb(); /* advised by wake_up_bit() */ 317 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 318 } 319 } 320 321 /** 322 * task_clear_jobctl_pending - clear jobctl pending bits 323 * @task: target task 324 * @mask: pending bits to clear 325 * 326 * Clear @mask from @task->jobctl. @mask must be subset of 327 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 328 * STOP bits are cleared together. 329 * 330 * If clearing of @mask leaves no stop or trap pending, this function calls 331 * task_clear_jobctl_trapping(). 332 * 333 * CONTEXT: 334 * Must be called with @task->sighand->siglock held. 335 */ 336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 337 { 338 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 339 340 if (mask & JOBCTL_STOP_PENDING) 341 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 342 343 task->jobctl &= ~mask; 344 345 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 346 task_clear_jobctl_trapping(task); 347 } 348 349 /** 350 * task_participate_group_stop - participate in a group stop 351 * @task: task participating in a group stop 352 * 353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 354 * Group stop states are cleared and the group stop count is consumed if 355 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 356 * stop, the appropriate `SIGNAL_*` flags are set. 357 * 358 * CONTEXT: 359 * Must be called with @task->sighand->siglock held. 360 * 361 * RETURNS: 362 * %true if group stop completion should be notified to the parent, %false 363 * otherwise. 364 */ 365 static bool task_participate_group_stop(struct task_struct *task) 366 { 367 struct signal_struct *sig = task->signal; 368 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 369 370 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 371 372 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 373 374 if (!consume) 375 return false; 376 377 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 378 sig->group_stop_count--; 379 380 /* 381 * Tell the caller to notify completion iff we are entering into a 382 * fresh group stop. Read comment in do_signal_stop() for details. 383 */ 384 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 385 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 386 return true; 387 } 388 return false; 389 } 390 391 void task_join_group_stop(struct task_struct *task) 392 { 393 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 394 struct signal_struct *sig = current->signal; 395 396 if (sig->group_stop_count) { 397 sig->group_stop_count++; 398 mask |= JOBCTL_STOP_CONSUME; 399 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 400 return; 401 402 /* Have the new thread join an on-going signal group stop */ 403 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 404 } 405 406 /* 407 * allocate a new signal queue record 408 * - this may be called without locks if and only if t == current, otherwise an 409 * appropriate lock must be held to stop the target task from exiting 410 */ 411 static struct sigqueue * 412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 413 int override_rlimit, const unsigned int sigqueue_flags) 414 { 415 struct sigqueue *q = NULL; 416 struct ucounts *ucounts = NULL; 417 long sigpending; 418 419 /* 420 * Protect access to @t credentials. This can go away when all 421 * callers hold rcu read lock. 422 * 423 * NOTE! A pending signal will hold on to the user refcount, 424 * and we get/put the refcount only when the sigpending count 425 * changes from/to zero. 426 */ 427 rcu_read_lock(); 428 ucounts = task_ucounts(t); 429 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 430 rcu_read_unlock(); 431 if (!sigpending) 432 return NULL; 433 434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 435 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 436 } else { 437 print_dropped_signal(sig); 438 } 439 440 if (unlikely(q == NULL)) { 441 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 442 } else { 443 INIT_LIST_HEAD(&q->list); 444 q->flags = sigqueue_flags; 445 q->ucounts = ucounts; 446 } 447 return q; 448 } 449 450 static void __sigqueue_free(struct sigqueue *q) 451 { 452 if (q->flags & SIGQUEUE_PREALLOC) 453 return; 454 if (q->ucounts) { 455 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 456 q->ucounts = NULL; 457 } 458 kmem_cache_free(sigqueue_cachep, q); 459 } 460 461 void flush_sigqueue(struct sigpending *queue) 462 { 463 struct sigqueue *q; 464 465 sigemptyset(&queue->signal); 466 while (!list_empty(&queue->list)) { 467 q = list_entry(queue->list.next, struct sigqueue , list); 468 list_del_init(&q->list); 469 __sigqueue_free(q); 470 } 471 } 472 473 /* 474 * Flush all pending signals for this kthread. 475 */ 476 void flush_signals(struct task_struct *t) 477 { 478 unsigned long flags; 479 480 spin_lock_irqsave(&t->sighand->siglock, flags); 481 clear_tsk_thread_flag(t, TIF_SIGPENDING); 482 flush_sigqueue(&t->pending); 483 flush_sigqueue(&t->signal->shared_pending); 484 spin_unlock_irqrestore(&t->sighand->siglock, flags); 485 } 486 EXPORT_SYMBOL(flush_signals); 487 488 #ifdef CONFIG_POSIX_TIMERS 489 static void __flush_itimer_signals(struct sigpending *pending) 490 { 491 sigset_t signal, retain; 492 struct sigqueue *q, *n; 493 494 signal = pending->signal; 495 sigemptyset(&retain); 496 497 list_for_each_entry_safe(q, n, &pending->list, list) { 498 int sig = q->info.si_signo; 499 500 if (likely(q->info.si_code != SI_TIMER)) { 501 sigaddset(&retain, sig); 502 } else { 503 sigdelset(&signal, sig); 504 list_del_init(&q->list); 505 __sigqueue_free(q); 506 } 507 } 508 509 sigorsets(&pending->signal, &signal, &retain); 510 } 511 512 void flush_itimer_signals(void) 513 { 514 struct task_struct *tsk = current; 515 unsigned long flags; 516 517 spin_lock_irqsave(&tsk->sighand->siglock, flags); 518 __flush_itimer_signals(&tsk->pending); 519 __flush_itimer_signals(&tsk->signal->shared_pending); 520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 521 } 522 #endif 523 524 void ignore_signals(struct task_struct *t) 525 { 526 int i; 527 528 for (i = 0; i < _NSIG; ++i) 529 t->sighand->action[i].sa.sa_handler = SIG_IGN; 530 531 flush_signals(t); 532 } 533 534 /* 535 * Flush all handlers for a task. 536 */ 537 538 void 539 flush_signal_handlers(struct task_struct *t, int force_default) 540 { 541 int i; 542 struct k_sigaction *ka = &t->sighand->action[0]; 543 for (i = _NSIG ; i != 0 ; i--) { 544 if (force_default || ka->sa.sa_handler != SIG_IGN) 545 ka->sa.sa_handler = SIG_DFL; 546 ka->sa.sa_flags = 0; 547 #ifdef __ARCH_HAS_SA_RESTORER 548 ka->sa.sa_restorer = NULL; 549 #endif 550 sigemptyset(&ka->sa.sa_mask); 551 ka++; 552 } 553 } 554 555 bool unhandled_signal(struct task_struct *tsk, int sig) 556 { 557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 558 if (is_global_init(tsk)) 559 return true; 560 561 if (handler != SIG_IGN && handler != SIG_DFL) 562 return false; 563 564 /* if ptraced, let the tracer determine */ 565 return !tsk->ptrace; 566 } 567 568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 569 bool *resched_timer) 570 { 571 struct sigqueue *q, *first = NULL; 572 573 /* 574 * Collect the siginfo appropriate to this signal. Check if 575 * there is another siginfo for the same signal. 576 */ 577 list_for_each_entry(q, &list->list, list) { 578 if (q->info.si_signo == sig) { 579 if (first) 580 goto still_pending; 581 first = q; 582 } 583 } 584 585 sigdelset(&list->signal, sig); 586 587 if (first) { 588 still_pending: 589 list_del_init(&first->list); 590 copy_siginfo(info, &first->info); 591 592 *resched_timer = 593 (first->flags & SIGQUEUE_PREALLOC) && 594 (info->si_code == SI_TIMER) && 595 (info->si_sys_private); 596 597 __sigqueue_free(first); 598 } else { 599 /* 600 * Ok, it wasn't in the queue. This must be 601 * a fast-pathed signal or we must have been 602 * out of queue space. So zero out the info. 603 */ 604 clear_siginfo(info); 605 info->si_signo = sig; 606 info->si_errno = 0; 607 info->si_code = SI_USER; 608 info->si_pid = 0; 609 info->si_uid = 0; 610 } 611 } 612 613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 614 kernel_siginfo_t *info, bool *resched_timer) 615 { 616 int sig = next_signal(pending, mask); 617 618 if (sig) 619 collect_signal(sig, pending, info, resched_timer); 620 return sig; 621 } 622 623 /* 624 * Dequeue a signal and return the element to the caller, which is 625 * expected to free it. 626 * 627 * All callers have to hold the siglock. 628 */ 629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info) 630 { 631 bool resched_timer = false; 632 int signr; 633 634 /* We only dequeue private signals from ourselves, we don't let 635 * signalfd steal them 636 */ 637 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 638 if (!signr) { 639 signr = __dequeue_signal(&tsk->signal->shared_pending, 640 mask, info, &resched_timer); 641 #ifdef CONFIG_POSIX_TIMERS 642 /* 643 * itimer signal ? 644 * 645 * itimers are process shared and we restart periodic 646 * itimers in the signal delivery path to prevent DoS 647 * attacks in the high resolution timer case. This is 648 * compliant with the old way of self-restarting 649 * itimers, as the SIGALRM is a legacy signal and only 650 * queued once. Changing the restart behaviour to 651 * restart the timer in the signal dequeue path is 652 * reducing the timer noise on heavy loaded !highres 653 * systems too. 654 */ 655 if (unlikely(signr == SIGALRM)) { 656 struct hrtimer *tmr = &tsk->signal->real_timer; 657 658 if (!hrtimer_is_queued(tmr) && 659 tsk->signal->it_real_incr != 0) { 660 hrtimer_forward(tmr, tmr->base->get_time(), 661 tsk->signal->it_real_incr); 662 hrtimer_restart(tmr); 663 } 664 } 665 #endif 666 } 667 668 recalc_sigpending(); 669 if (!signr) 670 return 0; 671 672 if (unlikely(sig_kernel_stop(signr))) { 673 /* 674 * Set a marker that we have dequeued a stop signal. Our 675 * caller might release the siglock and then the pending 676 * stop signal it is about to process is no longer in the 677 * pending bitmasks, but must still be cleared by a SIGCONT 678 * (and overruled by a SIGKILL). So those cases clear this 679 * shared flag after we've set it. Note that this flag may 680 * remain set after the signal we return is ignored or 681 * handled. That doesn't matter because its only purpose 682 * is to alert stop-signal processing code when another 683 * processor has come along and cleared the flag. 684 */ 685 current->jobctl |= JOBCTL_STOP_DEQUEUED; 686 } 687 #ifdef CONFIG_POSIX_TIMERS 688 if (resched_timer) { 689 /* 690 * Release the siglock to ensure proper locking order 691 * of timer locks outside of siglocks. Note, we leave 692 * irqs disabled here, since the posix-timers code is 693 * about to disable them again anyway. 694 */ 695 spin_unlock(&tsk->sighand->siglock); 696 posixtimer_rearm(info); 697 spin_lock(&tsk->sighand->siglock); 698 699 /* Don't expose the si_sys_private value to userspace */ 700 info->si_sys_private = 0; 701 } 702 #endif 703 return signr; 704 } 705 EXPORT_SYMBOL_GPL(dequeue_signal); 706 707 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 708 { 709 struct task_struct *tsk = current; 710 struct sigpending *pending = &tsk->pending; 711 struct sigqueue *q, *sync = NULL; 712 713 /* 714 * Might a synchronous signal be in the queue? 715 */ 716 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 717 return 0; 718 719 /* 720 * Return the first synchronous signal in the queue. 721 */ 722 list_for_each_entry(q, &pending->list, list) { 723 /* Synchronous signals have a positive si_code */ 724 if ((q->info.si_code > SI_USER) && 725 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 726 sync = q; 727 goto next; 728 } 729 } 730 return 0; 731 next: 732 /* 733 * Check if there is another siginfo for the same signal. 734 */ 735 list_for_each_entry_continue(q, &pending->list, list) { 736 if (q->info.si_signo == sync->info.si_signo) 737 goto still_pending; 738 } 739 740 sigdelset(&pending->signal, sync->info.si_signo); 741 recalc_sigpending(); 742 still_pending: 743 list_del_init(&sync->list); 744 copy_siginfo(info, &sync->info); 745 __sigqueue_free(sync); 746 return info->si_signo; 747 } 748 749 /* 750 * Tell a process that it has a new active signal.. 751 * 752 * NOTE! we rely on the previous spin_lock to 753 * lock interrupts for us! We can only be called with 754 * "siglock" held, and the local interrupt must 755 * have been disabled when that got acquired! 756 * 757 * No need to set need_resched since signal event passing 758 * goes through ->blocked 759 */ 760 void signal_wake_up_state(struct task_struct *t, unsigned int state) 761 { 762 set_tsk_thread_flag(t, TIF_SIGPENDING); 763 /* 764 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 765 * case. We don't check t->state here because there is a race with it 766 * executing another processor and just now entering stopped state. 767 * By using wake_up_state, we ensure the process will wake up and 768 * handle its death signal. 769 */ 770 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 771 kick_process(t); 772 } 773 774 /* 775 * Remove signals in mask from the pending set and queue. 776 * Returns 1 if any signals were found. 777 * 778 * All callers must be holding the siglock. 779 */ 780 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 781 { 782 struct sigqueue *q, *n; 783 sigset_t m; 784 785 sigandsets(&m, mask, &s->signal); 786 if (sigisemptyset(&m)) 787 return; 788 789 sigandnsets(&s->signal, &s->signal, mask); 790 list_for_each_entry_safe(q, n, &s->list, list) { 791 if (sigismember(mask, q->info.si_signo)) { 792 list_del_init(&q->list); 793 __sigqueue_free(q); 794 } 795 } 796 } 797 798 static inline int is_si_special(const struct kernel_siginfo *info) 799 { 800 return info <= SEND_SIG_PRIV; 801 } 802 803 static inline bool si_fromuser(const struct kernel_siginfo *info) 804 { 805 return info == SEND_SIG_NOINFO || 806 (!is_si_special(info) && SI_FROMUSER(info)); 807 } 808 809 /* 810 * called with RCU read lock from check_kill_permission() 811 */ 812 static bool kill_ok_by_cred(struct task_struct *t) 813 { 814 const struct cred *cred = current_cred(); 815 const struct cred *tcred = __task_cred(t); 816 817 return uid_eq(cred->euid, tcred->suid) || 818 uid_eq(cred->euid, tcred->uid) || 819 uid_eq(cred->uid, tcred->suid) || 820 uid_eq(cred->uid, tcred->uid) || 821 ns_capable(tcred->user_ns, CAP_KILL); 822 } 823 824 /* 825 * Bad permissions for sending the signal 826 * - the caller must hold the RCU read lock 827 */ 828 static int check_kill_permission(int sig, struct kernel_siginfo *info, 829 struct task_struct *t) 830 { 831 struct pid *sid; 832 int error; 833 834 if (!valid_signal(sig)) 835 return -EINVAL; 836 837 if (!si_fromuser(info)) 838 return 0; 839 840 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 841 if (error) 842 return error; 843 844 if (!same_thread_group(current, t) && 845 !kill_ok_by_cred(t)) { 846 switch (sig) { 847 case SIGCONT: 848 sid = task_session(t); 849 /* 850 * We don't return the error if sid == NULL. The 851 * task was unhashed, the caller must notice this. 852 */ 853 if (!sid || sid == task_session(current)) 854 break; 855 fallthrough; 856 default: 857 return -EPERM; 858 } 859 } 860 861 return security_task_kill(t, info, sig, NULL); 862 } 863 864 /** 865 * ptrace_trap_notify - schedule trap to notify ptracer 866 * @t: tracee wanting to notify tracer 867 * 868 * This function schedules sticky ptrace trap which is cleared on the next 869 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 870 * ptracer. 871 * 872 * If @t is running, STOP trap will be taken. If trapped for STOP and 873 * ptracer is listening for events, tracee is woken up so that it can 874 * re-trap for the new event. If trapped otherwise, STOP trap will be 875 * eventually taken without returning to userland after the existing traps 876 * are finished by PTRACE_CONT. 877 * 878 * CONTEXT: 879 * Must be called with @task->sighand->siglock held. 880 */ 881 static void ptrace_trap_notify(struct task_struct *t) 882 { 883 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 884 assert_spin_locked(&t->sighand->siglock); 885 886 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 887 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 888 } 889 890 /* 891 * Handle magic process-wide effects of stop/continue signals. Unlike 892 * the signal actions, these happen immediately at signal-generation 893 * time regardless of blocking, ignoring, or handling. This does the 894 * actual continuing for SIGCONT, but not the actual stopping for stop 895 * signals. The process stop is done as a signal action for SIG_DFL. 896 * 897 * Returns true if the signal should be actually delivered, otherwise 898 * it should be dropped. 899 */ 900 static bool prepare_signal(int sig, struct task_struct *p, bool force) 901 { 902 struct signal_struct *signal = p->signal; 903 struct task_struct *t; 904 sigset_t flush; 905 906 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 907 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 908 return sig == SIGKILL; 909 /* 910 * The process is in the middle of dying, nothing to do. 911 */ 912 } else if (sig_kernel_stop(sig)) { 913 /* 914 * This is a stop signal. Remove SIGCONT from all queues. 915 */ 916 siginitset(&flush, sigmask(SIGCONT)); 917 flush_sigqueue_mask(&flush, &signal->shared_pending); 918 for_each_thread(p, t) 919 flush_sigqueue_mask(&flush, &t->pending); 920 } else if (sig == SIGCONT) { 921 unsigned int why; 922 /* 923 * Remove all stop signals from all queues, wake all threads. 924 */ 925 siginitset(&flush, SIG_KERNEL_STOP_MASK); 926 flush_sigqueue_mask(&flush, &signal->shared_pending); 927 for_each_thread(p, t) { 928 flush_sigqueue_mask(&flush, &t->pending); 929 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 930 if (likely(!(t->ptrace & PT_SEIZED))) 931 wake_up_state(t, __TASK_STOPPED); 932 else 933 ptrace_trap_notify(t); 934 } 935 936 /* 937 * Notify the parent with CLD_CONTINUED if we were stopped. 938 * 939 * If we were in the middle of a group stop, we pretend it 940 * was already finished, and then continued. Since SIGCHLD 941 * doesn't queue we report only CLD_STOPPED, as if the next 942 * CLD_CONTINUED was dropped. 943 */ 944 why = 0; 945 if (signal->flags & SIGNAL_STOP_STOPPED) 946 why |= SIGNAL_CLD_CONTINUED; 947 else if (signal->group_stop_count) 948 why |= SIGNAL_CLD_STOPPED; 949 950 if (why) { 951 /* 952 * The first thread which returns from do_signal_stop() 953 * will take ->siglock, notice SIGNAL_CLD_MASK, and 954 * notify its parent. See get_signal(). 955 */ 956 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 957 signal->group_stop_count = 0; 958 signal->group_exit_code = 0; 959 } 960 } 961 962 return !sig_ignored(p, sig, force); 963 } 964 965 /* 966 * Test if P wants to take SIG. After we've checked all threads with this, 967 * it's equivalent to finding no threads not blocking SIG. Any threads not 968 * blocking SIG were ruled out because they are not running and already 969 * have pending signals. Such threads will dequeue from the shared queue 970 * as soon as they're available, so putting the signal on the shared queue 971 * will be equivalent to sending it to one such thread. 972 */ 973 static inline bool wants_signal(int sig, struct task_struct *p) 974 { 975 if (sigismember(&p->blocked, sig)) 976 return false; 977 978 if (p->flags & PF_EXITING) 979 return false; 980 981 if (sig == SIGKILL) 982 return true; 983 984 if (task_is_stopped_or_traced(p)) 985 return false; 986 987 return task_curr(p) || !task_sigpending(p); 988 } 989 990 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 991 { 992 struct signal_struct *signal = p->signal; 993 struct task_struct *t; 994 995 /* 996 * Now find a thread we can wake up to take the signal off the queue. 997 * 998 * If the main thread wants the signal, it gets first crack. 999 * Probably the least surprising to the average bear. 1000 */ 1001 if (wants_signal(sig, p)) 1002 t = p; 1003 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1004 /* 1005 * There is just one thread and it does not need to be woken. 1006 * It will dequeue unblocked signals before it runs again. 1007 */ 1008 return; 1009 else { 1010 /* 1011 * Otherwise try to find a suitable thread. 1012 */ 1013 t = signal->curr_target; 1014 while (!wants_signal(sig, t)) { 1015 t = next_thread(t); 1016 if (t == signal->curr_target) 1017 /* 1018 * No thread needs to be woken. 1019 * Any eligible threads will see 1020 * the signal in the queue soon. 1021 */ 1022 return; 1023 } 1024 signal->curr_target = t; 1025 } 1026 1027 /* 1028 * Found a killable thread. If the signal will be fatal, 1029 * then start taking the whole group down immediately. 1030 */ 1031 if (sig_fatal(p, sig) && 1032 !(signal->flags & SIGNAL_GROUP_EXIT) && 1033 !sigismember(&t->real_blocked, sig) && 1034 (sig == SIGKILL || !p->ptrace)) { 1035 /* 1036 * This signal will be fatal to the whole group. 1037 */ 1038 if (!sig_kernel_coredump(sig)) { 1039 /* 1040 * Start a group exit and wake everybody up. 1041 * This way we don't have other threads 1042 * running and doing things after a slower 1043 * thread has the fatal signal pending. 1044 */ 1045 signal->flags = SIGNAL_GROUP_EXIT; 1046 signal->group_exit_code = sig; 1047 signal->group_stop_count = 0; 1048 t = p; 1049 do { 1050 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1051 sigaddset(&t->pending.signal, SIGKILL); 1052 signal_wake_up(t, 1); 1053 } while_each_thread(p, t); 1054 return; 1055 } 1056 } 1057 1058 /* 1059 * The signal is already in the shared-pending queue. 1060 * Tell the chosen thread to wake up and dequeue it. 1061 */ 1062 signal_wake_up(t, sig == SIGKILL); 1063 return; 1064 } 1065 1066 static inline bool legacy_queue(struct sigpending *signals, int sig) 1067 { 1068 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1069 } 1070 1071 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1072 enum pid_type type, bool force) 1073 { 1074 struct sigpending *pending; 1075 struct sigqueue *q; 1076 int override_rlimit; 1077 int ret = 0, result; 1078 1079 assert_spin_locked(&t->sighand->siglock); 1080 1081 result = TRACE_SIGNAL_IGNORED; 1082 if (!prepare_signal(sig, t, force)) 1083 goto ret; 1084 1085 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1086 /* 1087 * Short-circuit ignored signals and support queuing 1088 * exactly one non-rt signal, so that we can get more 1089 * detailed information about the cause of the signal. 1090 */ 1091 result = TRACE_SIGNAL_ALREADY_PENDING; 1092 if (legacy_queue(pending, sig)) 1093 goto ret; 1094 1095 result = TRACE_SIGNAL_DELIVERED; 1096 /* 1097 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1098 */ 1099 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1100 goto out_set; 1101 1102 /* 1103 * Real-time signals must be queued if sent by sigqueue, or 1104 * some other real-time mechanism. It is implementation 1105 * defined whether kill() does so. We attempt to do so, on 1106 * the principle of least surprise, but since kill is not 1107 * allowed to fail with EAGAIN when low on memory we just 1108 * make sure at least one signal gets delivered and don't 1109 * pass on the info struct. 1110 */ 1111 if (sig < SIGRTMIN) 1112 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1113 else 1114 override_rlimit = 0; 1115 1116 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1117 1118 if (q) { 1119 list_add_tail(&q->list, &pending->list); 1120 switch ((unsigned long) info) { 1121 case (unsigned long) SEND_SIG_NOINFO: 1122 clear_siginfo(&q->info); 1123 q->info.si_signo = sig; 1124 q->info.si_errno = 0; 1125 q->info.si_code = SI_USER; 1126 q->info.si_pid = task_tgid_nr_ns(current, 1127 task_active_pid_ns(t)); 1128 rcu_read_lock(); 1129 q->info.si_uid = 1130 from_kuid_munged(task_cred_xxx(t, user_ns), 1131 current_uid()); 1132 rcu_read_unlock(); 1133 break; 1134 case (unsigned long) SEND_SIG_PRIV: 1135 clear_siginfo(&q->info); 1136 q->info.si_signo = sig; 1137 q->info.si_errno = 0; 1138 q->info.si_code = SI_KERNEL; 1139 q->info.si_pid = 0; 1140 q->info.si_uid = 0; 1141 break; 1142 default: 1143 copy_siginfo(&q->info, info); 1144 break; 1145 } 1146 } else if (!is_si_special(info) && 1147 sig >= SIGRTMIN && info->si_code != SI_USER) { 1148 /* 1149 * Queue overflow, abort. We may abort if the 1150 * signal was rt and sent by user using something 1151 * other than kill(). 1152 */ 1153 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1154 ret = -EAGAIN; 1155 goto ret; 1156 } else { 1157 /* 1158 * This is a silent loss of information. We still 1159 * send the signal, but the *info bits are lost. 1160 */ 1161 result = TRACE_SIGNAL_LOSE_INFO; 1162 } 1163 1164 out_set: 1165 signalfd_notify(t, sig); 1166 sigaddset(&pending->signal, sig); 1167 1168 /* Let multiprocess signals appear after on-going forks */ 1169 if (type > PIDTYPE_TGID) { 1170 struct multiprocess_signals *delayed; 1171 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1172 sigset_t *signal = &delayed->signal; 1173 /* Can't queue both a stop and a continue signal */ 1174 if (sig == SIGCONT) 1175 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1176 else if (sig_kernel_stop(sig)) 1177 sigdelset(signal, SIGCONT); 1178 sigaddset(signal, sig); 1179 } 1180 } 1181 1182 complete_signal(sig, t, type); 1183 ret: 1184 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1185 return ret; 1186 } 1187 1188 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1189 { 1190 bool ret = false; 1191 switch (siginfo_layout(info->si_signo, info->si_code)) { 1192 case SIL_KILL: 1193 case SIL_CHLD: 1194 case SIL_RT: 1195 ret = true; 1196 break; 1197 case SIL_TIMER: 1198 case SIL_POLL: 1199 case SIL_FAULT: 1200 case SIL_FAULT_TRAPNO: 1201 case SIL_FAULT_MCEERR: 1202 case SIL_FAULT_BNDERR: 1203 case SIL_FAULT_PKUERR: 1204 case SIL_FAULT_PERF_EVENT: 1205 case SIL_SYS: 1206 ret = false; 1207 break; 1208 } 1209 return ret; 1210 } 1211 1212 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1213 enum pid_type type) 1214 { 1215 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1216 bool force = false; 1217 1218 if (info == SEND_SIG_NOINFO) { 1219 /* Force if sent from an ancestor pid namespace */ 1220 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1221 } else if (info == SEND_SIG_PRIV) { 1222 /* Don't ignore kernel generated signals */ 1223 force = true; 1224 } else if (has_si_pid_and_uid(info)) { 1225 /* SIGKILL and SIGSTOP is special or has ids */ 1226 struct user_namespace *t_user_ns; 1227 1228 rcu_read_lock(); 1229 t_user_ns = task_cred_xxx(t, user_ns); 1230 if (current_user_ns() != t_user_ns) { 1231 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1232 info->si_uid = from_kuid_munged(t_user_ns, uid); 1233 } 1234 rcu_read_unlock(); 1235 1236 /* A kernel generated signal? */ 1237 force = (info->si_code == SI_KERNEL); 1238 1239 /* From an ancestor pid namespace? */ 1240 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1241 info->si_pid = 0; 1242 force = true; 1243 } 1244 } 1245 return __send_signal(sig, info, t, type, force); 1246 } 1247 1248 static void print_fatal_signal(int signr) 1249 { 1250 struct pt_regs *regs = signal_pt_regs(); 1251 pr_info("potentially unexpected fatal signal %d.\n", signr); 1252 1253 #if defined(__i386__) && !defined(__arch_um__) 1254 pr_info("code at %08lx: ", regs->ip); 1255 { 1256 int i; 1257 for (i = 0; i < 16; i++) { 1258 unsigned char insn; 1259 1260 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1261 break; 1262 pr_cont("%02x ", insn); 1263 } 1264 } 1265 pr_cont("\n"); 1266 #endif 1267 preempt_disable(); 1268 show_regs(regs); 1269 preempt_enable(); 1270 } 1271 1272 static int __init setup_print_fatal_signals(char *str) 1273 { 1274 get_option (&str, &print_fatal_signals); 1275 1276 return 1; 1277 } 1278 1279 __setup("print-fatal-signals=", setup_print_fatal_signals); 1280 1281 int 1282 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1283 { 1284 return send_signal(sig, info, p, PIDTYPE_TGID); 1285 } 1286 1287 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1288 enum pid_type type) 1289 { 1290 unsigned long flags; 1291 int ret = -ESRCH; 1292 1293 if (lock_task_sighand(p, &flags)) { 1294 ret = send_signal(sig, info, p, type); 1295 unlock_task_sighand(p, &flags); 1296 } 1297 1298 return ret; 1299 } 1300 1301 /* 1302 * Force a signal that the process can't ignore: if necessary 1303 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1304 * 1305 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1306 * since we do not want to have a signal handler that was blocked 1307 * be invoked when user space had explicitly blocked it. 1308 * 1309 * We don't want to have recursive SIGSEGV's etc, for example, 1310 * that is why we also clear SIGNAL_UNKILLABLE. 1311 */ 1312 static int 1313 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, bool sigdfl) 1314 { 1315 unsigned long int flags; 1316 int ret, blocked, ignored; 1317 struct k_sigaction *action; 1318 int sig = info->si_signo; 1319 1320 spin_lock_irqsave(&t->sighand->siglock, flags); 1321 action = &t->sighand->action[sig-1]; 1322 ignored = action->sa.sa_handler == SIG_IGN; 1323 blocked = sigismember(&t->blocked, sig); 1324 if (blocked || ignored || sigdfl) { 1325 action->sa.sa_handler = SIG_DFL; 1326 if (blocked) { 1327 sigdelset(&t->blocked, sig); 1328 recalc_sigpending_and_wake(t); 1329 } 1330 } 1331 /* 1332 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1333 * debugging to leave init killable. 1334 */ 1335 if (action->sa.sa_handler == SIG_DFL && !t->ptrace) 1336 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1337 ret = send_signal(sig, info, t, PIDTYPE_PID); 1338 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1339 1340 return ret; 1341 } 1342 1343 int force_sig_info(struct kernel_siginfo *info) 1344 { 1345 return force_sig_info_to_task(info, current, false); 1346 } 1347 1348 /* 1349 * Nuke all other threads in the group. 1350 */ 1351 int zap_other_threads(struct task_struct *p) 1352 { 1353 struct task_struct *t = p; 1354 int count = 0; 1355 1356 p->signal->group_stop_count = 0; 1357 1358 while_each_thread(p, t) { 1359 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1360 count++; 1361 1362 /* Don't bother with already dead threads */ 1363 if (t->exit_state) 1364 continue; 1365 sigaddset(&t->pending.signal, SIGKILL); 1366 signal_wake_up(t, 1); 1367 } 1368 1369 return count; 1370 } 1371 1372 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1373 unsigned long *flags) 1374 { 1375 struct sighand_struct *sighand; 1376 1377 rcu_read_lock(); 1378 for (;;) { 1379 sighand = rcu_dereference(tsk->sighand); 1380 if (unlikely(sighand == NULL)) 1381 break; 1382 1383 /* 1384 * This sighand can be already freed and even reused, but 1385 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1386 * initializes ->siglock: this slab can't go away, it has 1387 * the same object type, ->siglock can't be reinitialized. 1388 * 1389 * We need to ensure that tsk->sighand is still the same 1390 * after we take the lock, we can race with de_thread() or 1391 * __exit_signal(). In the latter case the next iteration 1392 * must see ->sighand == NULL. 1393 */ 1394 spin_lock_irqsave(&sighand->siglock, *flags); 1395 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1396 break; 1397 spin_unlock_irqrestore(&sighand->siglock, *flags); 1398 } 1399 rcu_read_unlock(); 1400 1401 return sighand; 1402 } 1403 1404 #ifdef CONFIG_LOCKDEP 1405 void lockdep_assert_task_sighand_held(struct task_struct *task) 1406 { 1407 struct sighand_struct *sighand; 1408 1409 rcu_read_lock(); 1410 sighand = rcu_dereference(task->sighand); 1411 if (sighand) 1412 lockdep_assert_held(&sighand->siglock); 1413 else 1414 WARN_ON_ONCE(1); 1415 rcu_read_unlock(); 1416 } 1417 #endif 1418 1419 /* 1420 * send signal info to all the members of a group 1421 */ 1422 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1423 struct task_struct *p, enum pid_type type) 1424 { 1425 int ret; 1426 1427 rcu_read_lock(); 1428 ret = check_kill_permission(sig, info, p); 1429 rcu_read_unlock(); 1430 1431 if (!ret && sig) 1432 ret = do_send_sig_info(sig, info, p, type); 1433 1434 return ret; 1435 } 1436 1437 /* 1438 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1439 * control characters do (^C, ^Z etc) 1440 * - the caller must hold at least a readlock on tasklist_lock 1441 */ 1442 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1443 { 1444 struct task_struct *p = NULL; 1445 int retval, success; 1446 1447 success = 0; 1448 retval = -ESRCH; 1449 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1450 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1451 success |= !err; 1452 retval = err; 1453 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1454 return success ? 0 : retval; 1455 } 1456 1457 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1458 { 1459 int error = -ESRCH; 1460 struct task_struct *p; 1461 1462 for (;;) { 1463 rcu_read_lock(); 1464 p = pid_task(pid, PIDTYPE_PID); 1465 if (p) 1466 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1467 rcu_read_unlock(); 1468 if (likely(!p || error != -ESRCH)) 1469 return error; 1470 1471 /* 1472 * The task was unhashed in between, try again. If it 1473 * is dead, pid_task() will return NULL, if we race with 1474 * de_thread() it will find the new leader. 1475 */ 1476 } 1477 } 1478 1479 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1480 { 1481 int error; 1482 rcu_read_lock(); 1483 error = kill_pid_info(sig, info, find_vpid(pid)); 1484 rcu_read_unlock(); 1485 return error; 1486 } 1487 1488 static inline bool kill_as_cred_perm(const struct cred *cred, 1489 struct task_struct *target) 1490 { 1491 const struct cred *pcred = __task_cred(target); 1492 1493 return uid_eq(cred->euid, pcred->suid) || 1494 uid_eq(cred->euid, pcred->uid) || 1495 uid_eq(cred->uid, pcred->suid) || 1496 uid_eq(cred->uid, pcred->uid); 1497 } 1498 1499 /* 1500 * The usb asyncio usage of siginfo is wrong. The glibc support 1501 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1502 * AKA after the generic fields: 1503 * kernel_pid_t si_pid; 1504 * kernel_uid32_t si_uid; 1505 * sigval_t si_value; 1506 * 1507 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1508 * after the generic fields is: 1509 * void __user *si_addr; 1510 * 1511 * This is a practical problem when there is a 64bit big endian kernel 1512 * and a 32bit userspace. As the 32bit address will encoded in the low 1513 * 32bits of the pointer. Those low 32bits will be stored at higher 1514 * address than appear in a 32 bit pointer. So userspace will not 1515 * see the address it was expecting for it's completions. 1516 * 1517 * There is nothing in the encoding that can allow 1518 * copy_siginfo_to_user32 to detect this confusion of formats, so 1519 * handle this by requiring the caller of kill_pid_usb_asyncio to 1520 * notice when this situration takes place and to store the 32bit 1521 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1522 * parameter. 1523 */ 1524 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1525 struct pid *pid, const struct cred *cred) 1526 { 1527 struct kernel_siginfo info; 1528 struct task_struct *p; 1529 unsigned long flags; 1530 int ret = -EINVAL; 1531 1532 if (!valid_signal(sig)) 1533 return ret; 1534 1535 clear_siginfo(&info); 1536 info.si_signo = sig; 1537 info.si_errno = errno; 1538 info.si_code = SI_ASYNCIO; 1539 *((sigval_t *)&info.si_pid) = addr; 1540 1541 rcu_read_lock(); 1542 p = pid_task(pid, PIDTYPE_PID); 1543 if (!p) { 1544 ret = -ESRCH; 1545 goto out_unlock; 1546 } 1547 if (!kill_as_cred_perm(cred, p)) { 1548 ret = -EPERM; 1549 goto out_unlock; 1550 } 1551 ret = security_task_kill(p, &info, sig, cred); 1552 if (ret) 1553 goto out_unlock; 1554 1555 if (sig) { 1556 if (lock_task_sighand(p, &flags)) { 1557 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false); 1558 unlock_task_sighand(p, &flags); 1559 } else 1560 ret = -ESRCH; 1561 } 1562 out_unlock: 1563 rcu_read_unlock(); 1564 return ret; 1565 } 1566 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1567 1568 /* 1569 * kill_something_info() interprets pid in interesting ways just like kill(2). 1570 * 1571 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1572 * is probably wrong. Should make it like BSD or SYSV. 1573 */ 1574 1575 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1576 { 1577 int ret; 1578 1579 if (pid > 0) 1580 return kill_proc_info(sig, info, pid); 1581 1582 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1583 if (pid == INT_MIN) 1584 return -ESRCH; 1585 1586 read_lock(&tasklist_lock); 1587 if (pid != -1) { 1588 ret = __kill_pgrp_info(sig, info, 1589 pid ? find_vpid(-pid) : task_pgrp(current)); 1590 } else { 1591 int retval = 0, count = 0; 1592 struct task_struct * p; 1593 1594 for_each_process(p) { 1595 if (task_pid_vnr(p) > 1 && 1596 !same_thread_group(p, current)) { 1597 int err = group_send_sig_info(sig, info, p, 1598 PIDTYPE_MAX); 1599 ++count; 1600 if (err != -EPERM) 1601 retval = err; 1602 } 1603 } 1604 ret = count ? retval : -ESRCH; 1605 } 1606 read_unlock(&tasklist_lock); 1607 1608 return ret; 1609 } 1610 1611 /* 1612 * These are for backward compatibility with the rest of the kernel source. 1613 */ 1614 1615 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1616 { 1617 /* 1618 * Make sure legacy kernel users don't send in bad values 1619 * (normal paths check this in check_kill_permission). 1620 */ 1621 if (!valid_signal(sig)) 1622 return -EINVAL; 1623 1624 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1625 } 1626 EXPORT_SYMBOL(send_sig_info); 1627 1628 #define __si_special(priv) \ 1629 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1630 1631 int 1632 send_sig(int sig, struct task_struct *p, int priv) 1633 { 1634 return send_sig_info(sig, __si_special(priv), p); 1635 } 1636 EXPORT_SYMBOL(send_sig); 1637 1638 void force_sig(int sig) 1639 { 1640 struct kernel_siginfo info; 1641 1642 clear_siginfo(&info); 1643 info.si_signo = sig; 1644 info.si_errno = 0; 1645 info.si_code = SI_KERNEL; 1646 info.si_pid = 0; 1647 info.si_uid = 0; 1648 force_sig_info(&info); 1649 } 1650 EXPORT_SYMBOL(force_sig); 1651 1652 /* 1653 * When things go south during signal handling, we 1654 * will force a SIGSEGV. And if the signal that caused 1655 * the problem was already a SIGSEGV, we'll want to 1656 * make sure we don't even try to deliver the signal.. 1657 */ 1658 void force_sigsegv(int sig) 1659 { 1660 struct task_struct *p = current; 1661 1662 if (sig == SIGSEGV) { 1663 unsigned long flags; 1664 spin_lock_irqsave(&p->sighand->siglock, flags); 1665 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1666 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1667 } 1668 force_sig(SIGSEGV); 1669 } 1670 1671 int force_sig_fault_to_task(int sig, int code, void __user *addr 1672 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1673 , struct task_struct *t) 1674 { 1675 struct kernel_siginfo info; 1676 1677 clear_siginfo(&info); 1678 info.si_signo = sig; 1679 info.si_errno = 0; 1680 info.si_code = code; 1681 info.si_addr = addr; 1682 #ifdef __ia64__ 1683 info.si_imm = imm; 1684 info.si_flags = flags; 1685 info.si_isr = isr; 1686 #endif 1687 return force_sig_info_to_task(&info, t, false); 1688 } 1689 1690 int force_sig_fault(int sig, int code, void __user *addr 1691 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1692 { 1693 return force_sig_fault_to_task(sig, code, addr 1694 ___ARCH_SI_IA64(imm, flags, isr), current); 1695 } 1696 1697 int send_sig_fault(int sig, int code, void __user *addr 1698 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1699 , struct task_struct *t) 1700 { 1701 struct kernel_siginfo info; 1702 1703 clear_siginfo(&info); 1704 info.si_signo = sig; 1705 info.si_errno = 0; 1706 info.si_code = code; 1707 info.si_addr = addr; 1708 #ifdef __ia64__ 1709 info.si_imm = imm; 1710 info.si_flags = flags; 1711 info.si_isr = isr; 1712 #endif 1713 return send_sig_info(info.si_signo, &info, t); 1714 } 1715 1716 int force_sig_mceerr(int code, void __user *addr, short lsb) 1717 { 1718 struct kernel_siginfo info; 1719 1720 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1721 clear_siginfo(&info); 1722 info.si_signo = SIGBUS; 1723 info.si_errno = 0; 1724 info.si_code = code; 1725 info.si_addr = addr; 1726 info.si_addr_lsb = lsb; 1727 return force_sig_info(&info); 1728 } 1729 1730 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1731 { 1732 struct kernel_siginfo info; 1733 1734 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1735 clear_siginfo(&info); 1736 info.si_signo = SIGBUS; 1737 info.si_errno = 0; 1738 info.si_code = code; 1739 info.si_addr = addr; 1740 info.si_addr_lsb = lsb; 1741 return send_sig_info(info.si_signo, &info, t); 1742 } 1743 EXPORT_SYMBOL(send_sig_mceerr); 1744 1745 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1746 { 1747 struct kernel_siginfo info; 1748 1749 clear_siginfo(&info); 1750 info.si_signo = SIGSEGV; 1751 info.si_errno = 0; 1752 info.si_code = SEGV_BNDERR; 1753 info.si_addr = addr; 1754 info.si_lower = lower; 1755 info.si_upper = upper; 1756 return force_sig_info(&info); 1757 } 1758 1759 #ifdef SEGV_PKUERR 1760 int force_sig_pkuerr(void __user *addr, u32 pkey) 1761 { 1762 struct kernel_siginfo info; 1763 1764 clear_siginfo(&info); 1765 info.si_signo = SIGSEGV; 1766 info.si_errno = 0; 1767 info.si_code = SEGV_PKUERR; 1768 info.si_addr = addr; 1769 info.si_pkey = pkey; 1770 return force_sig_info(&info); 1771 } 1772 #endif 1773 1774 int force_sig_perf(void __user *addr, u32 type, u64 sig_data) 1775 { 1776 struct kernel_siginfo info; 1777 1778 clear_siginfo(&info); 1779 info.si_signo = SIGTRAP; 1780 info.si_errno = 0; 1781 info.si_code = TRAP_PERF; 1782 info.si_addr = addr; 1783 info.si_perf_data = sig_data; 1784 info.si_perf_type = type; 1785 1786 return force_sig_info(&info); 1787 } 1788 1789 /** 1790 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1791 * @syscall: syscall number to send to userland 1792 * @reason: filter-supplied reason code to send to userland (via si_errno) 1793 * 1794 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1795 */ 1796 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1797 { 1798 struct kernel_siginfo info; 1799 1800 clear_siginfo(&info); 1801 info.si_signo = SIGSYS; 1802 info.si_code = SYS_SECCOMP; 1803 info.si_call_addr = (void __user *)KSTK_EIP(current); 1804 info.si_errno = reason; 1805 info.si_arch = syscall_get_arch(current); 1806 info.si_syscall = syscall; 1807 return force_sig_info_to_task(&info, current, force_coredump); 1808 } 1809 1810 /* For the crazy architectures that include trap information in 1811 * the errno field, instead of an actual errno value. 1812 */ 1813 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1814 { 1815 struct kernel_siginfo info; 1816 1817 clear_siginfo(&info); 1818 info.si_signo = SIGTRAP; 1819 info.si_errno = errno; 1820 info.si_code = TRAP_HWBKPT; 1821 info.si_addr = addr; 1822 return force_sig_info(&info); 1823 } 1824 1825 /* For the rare architectures that include trap information using 1826 * si_trapno. 1827 */ 1828 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1829 { 1830 struct kernel_siginfo info; 1831 1832 clear_siginfo(&info); 1833 info.si_signo = sig; 1834 info.si_errno = 0; 1835 info.si_code = code; 1836 info.si_addr = addr; 1837 info.si_trapno = trapno; 1838 return force_sig_info(&info); 1839 } 1840 1841 /* For the rare architectures that include trap information using 1842 * si_trapno. 1843 */ 1844 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1845 struct task_struct *t) 1846 { 1847 struct kernel_siginfo info; 1848 1849 clear_siginfo(&info); 1850 info.si_signo = sig; 1851 info.si_errno = 0; 1852 info.si_code = code; 1853 info.si_addr = addr; 1854 info.si_trapno = trapno; 1855 return send_sig_info(info.si_signo, &info, t); 1856 } 1857 1858 int kill_pgrp(struct pid *pid, int sig, int priv) 1859 { 1860 int ret; 1861 1862 read_lock(&tasklist_lock); 1863 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1864 read_unlock(&tasklist_lock); 1865 1866 return ret; 1867 } 1868 EXPORT_SYMBOL(kill_pgrp); 1869 1870 int kill_pid(struct pid *pid, int sig, int priv) 1871 { 1872 return kill_pid_info(sig, __si_special(priv), pid); 1873 } 1874 EXPORT_SYMBOL(kill_pid); 1875 1876 /* 1877 * These functions support sending signals using preallocated sigqueue 1878 * structures. This is needed "because realtime applications cannot 1879 * afford to lose notifications of asynchronous events, like timer 1880 * expirations or I/O completions". In the case of POSIX Timers 1881 * we allocate the sigqueue structure from the timer_create. If this 1882 * allocation fails we are able to report the failure to the application 1883 * with an EAGAIN error. 1884 */ 1885 struct sigqueue *sigqueue_alloc(void) 1886 { 1887 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1888 } 1889 1890 void sigqueue_free(struct sigqueue *q) 1891 { 1892 unsigned long flags; 1893 spinlock_t *lock = ¤t->sighand->siglock; 1894 1895 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1896 /* 1897 * We must hold ->siglock while testing q->list 1898 * to serialize with collect_signal() or with 1899 * __exit_signal()->flush_sigqueue(). 1900 */ 1901 spin_lock_irqsave(lock, flags); 1902 q->flags &= ~SIGQUEUE_PREALLOC; 1903 /* 1904 * If it is queued it will be freed when dequeued, 1905 * like the "regular" sigqueue. 1906 */ 1907 if (!list_empty(&q->list)) 1908 q = NULL; 1909 spin_unlock_irqrestore(lock, flags); 1910 1911 if (q) 1912 __sigqueue_free(q); 1913 } 1914 1915 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1916 { 1917 int sig = q->info.si_signo; 1918 struct sigpending *pending; 1919 struct task_struct *t; 1920 unsigned long flags; 1921 int ret, result; 1922 1923 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1924 1925 ret = -1; 1926 rcu_read_lock(); 1927 t = pid_task(pid, type); 1928 if (!t || !likely(lock_task_sighand(t, &flags))) 1929 goto ret; 1930 1931 ret = 1; /* the signal is ignored */ 1932 result = TRACE_SIGNAL_IGNORED; 1933 if (!prepare_signal(sig, t, false)) 1934 goto out; 1935 1936 ret = 0; 1937 if (unlikely(!list_empty(&q->list))) { 1938 /* 1939 * If an SI_TIMER entry is already queue just increment 1940 * the overrun count. 1941 */ 1942 BUG_ON(q->info.si_code != SI_TIMER); 1943 q->info.si_overrun++; 1944 result = TRACE_SIGNAL_ALREADY_PENDING; 1945 goto out; 1946 } 1947 q->info.si_overrun = 0; 1948 1949 signalfd_notify(t, sig); 1950 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1951 list_add_tail(&q->list, &pending->list); 1952 sigaddset(&pending->signal, sig); 1953 complete_signal(sig, t, type); 1954 result = TRACE_SIGNAL_DELIVERED; 1955 out: 1956 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 1957 unlock_task_sighand(t, &flags); 1958 ret: 1959 rcu_read_unlock(); 1960 return ret; 1961 } 1962 1963 static void do_notify_pidfd(struct task_struct *task) 1964 { 1965 struct pid *pid; 1966 1967 WARN_ON(task->exit_state == 0); 1968 pid = task_pid(task); 1969 wake_up_all(&pid->wait_pidfd); 1970 } 1971 1972 /* 1973 * Let a parent know about the death of a child. 1974 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1975 * 1976 * Returns true if our parent ignored us and so we've switched to 1977 * self-reaping. 1978 */ 1979 bool do_notify_parent(struct task_struct *tsk, int sig) 1980 { 1981 struct kernel_siginfo info; 1982 unsigned long flags; 1983 struct sighand_struct *psig; 1984 bool autoreap = false; 1985 u64 utime, stime; 1986 1987 BUG_ON(sig == -1); 1988 1989 /* do_notify_parent_cldstop should have been called instead. */ 1990 BUG_ON(task_is_stopped_or_traced(tsk)); 1991 1992 BUG_ON(!tsk->ptrace && 1993 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1994 1995 /* Wake up all pidfd waiters */ 1996 do_notify_pidfd(tsk); 1997 1998 if (sig != SIGCHLD) { 1999 /* 2000 * This is only possible if parent == real_parent. 2001 * Check if it has changed security domain. 2002 */ 2003 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2004 sig = SIGCHLD; 2005 } 2006 2007 clear_siginfo(&info); 2008 info.si_signo = sig; 2009 info.si_errno = 0; 2010 /* 2011 * We are under tasklist_lock here so our parent is tied to 2012 * us and cannot change. 2013 * 2014 * task_active_pid_ns will always return the same pid namespace 2015 * until a task passes through release_task. 2016 * 2017 * write_lock() currently calls preempt_disable() which is the 2018 * same as rcu_read_lock(), but according to Oleg, this is not 2019 * correct to rely on this 2020 */ 2021 rcu_read_lock(); 2022 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2023 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2024 task_uid(tsk)); 2025 rcu_read_unlock(); 2026 2027 task_cputime(tsk, &utime, &stime); 2028 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2029 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2030 2031 info.si_status = tsk->exit_code & 0x7f; 2032 if (tsk->exit_code & 0x80) 2033 info.si_code = CLD_DUMPED; 2034 else if (tsk->exit_code & 0x7f) 2035 info.si_code = CLD_KILLED; 2036 else { 2037 info.si_code = CLD_EXITED; 2038 info.si_status = tsk->exit_code >> 8; 2039 } 2040 2041 psig = tsk->parent->sighand; 2042 spin_lock_irqsave(&psig->siglock, flags); 2043 if (!tsk->ptrace && sig == SIGCHLD && 2044 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2045 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2046 /* 2047 * We are exiting and our parent doesn't care. POSIX.1 2048 * defines special semantics for setting SIGCHLD to SIG_IGN 2049 * or setting the SA_NOCLDWAIT flag: we should be reaped 2050 * automatically and not left for our parent's wait4 call. 2051 * Rather than having the parent do it as a magic kind of 2052 * signal handler, we just set this to tell do_exit that we 2053 * can be cleaned up without becoming a zombie. Note that 2054 * we still call __wake_up_parent in this case, because a 2055 * blocked sys_wait4 might now return -ECHILD. 2056 * 2057 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2058 * is implementation-defined: we do (if you don't want 2059 * it, just use SIG_IGN instead). 2060 */ 2061 autoreap = true; 2062 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2063 sig = 0; 2064 } 2065 /* 2066 * Send with __send_signal as si_pid and si_uid are in the 2067 * parent's namespaces. 2068 */ 2069 if (valid_signal(sig) && sig) 2070 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2071 __wake_up_parent(tsk, tsk->parent); 2072 spin_unlock_irqrestore(&psig->siglock, flags); 2073 2074 return autoreap; 2075 } 2076 2077 /** 2078 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2079 * @tsk: task reporting the state change 2080 * @for_ptracer: the notification is for ptracer 2081 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2082 * 2083 * Notify @tsk's parent that the stopped/continued state has changed. If 2084 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2085 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2086 * 2087 * CONTEXT: 2088 * Must be called with tasklist_lock at least read locked. 2089 */ 2090 static void do_notify_parent_cldstop(struct task_struct *tsk, 2091 bool for_ptracer, int why) 2092 { 2093 struct kernel_siginfo info; 2094 unsigned long flags; 2095 struct task_struct *parent; 2096 struct sighand_struct *sighand; 2097 u64 utime, stime; 2098 2099 if (for_ptracer) { 2100 parent = tsk->parent; 2101 } else { 2102 tsk = tsk->group_leader; 2103 parent = tsk->real_parent; 2104 } 2105 2106 clear_siginfo(&info); 2107 info.si_signo = SIGCHLD; 2108 info.si_errno = 0; 2109 /* 2110 * see comment in do_notify_parent() about the following 4 lines 2111 */ 2112 rcu_read_lock(); 2113 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2114 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2115 rcu_read_unlock(); 2116 2117 task_cputime(tsk, &utime, &stime); 2118 info.si_utime = nsec_to_clock_t(utime); 2119 info.si_stime = nsec_to_clock_t(stime); 2120 2121 info.si_code = why; 2122 switch (why) { 2123 case CLD_CONTINUED: 2124 info.si_status = SIGCONT; 2125 break; 2126 case CLD_STOPPED: 2127 info.si_status = tsk->signal->group_exit_code & 0x7f; 2128 break; 2129 case CLD_TRAPPED: 2130 info.si_status = tsk->exit_code & 0x7f; 2131 break; 2132 default: 2133 BUG(); 2134 } 2135 2136 sighand = parent->sighand; 2137 spin_lock_irqsave(&sighand->siglock, flags); 2138 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2139 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2140 __group_send_sig_info(SIGCHLD, &info, parent); 2141 /* 2142 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2143 */ 2144 __wake_up_parent(tsk, parent); 2145 spin_unlock_irqrestore(&sighand->siglock, flags); 2146 } 2147 2148 static inline bool may_ptrace_stop(void) 2149 { 2150 if (!likely(current->ptrace)) 2151 return false; 2152 /* 2153 * Are we in the middle of do_coredump? 2154 * If so and our tracer is also part of the coredump stopping 2155 * is a deadlock situation, and pointless because our tracer 2156 * is dead so don't allow us to stop. 2157 * If SIGKILL was already sent before the caller unlocked 2158 * ->siglock we must see ->core_state != NULL. Otherwise it 2159 * is safe to enter schedule(). 2160 * 2161 * This is almost outdated, a task with the pending SIGKILL can't 2162 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 2163 * after SIGKILL was already dequeued. 2164 */ 2165 if (unlikely(current->mm->core_state) && 2166 unlikely(current->mm == current->parent->mm)) 2167 return false; 2168 2169 return true; 2170 } 2171 2172 /* 2173 * Return non-zero if there is a SIGKILL that should be waking us up. 2174 * Called with the siglock held. 2175 */ 2176 static bool sigkill_pending(struct task_struct *tsk) 2177 { 2178 return sigismember(&tsk->pending.signal, SIGKILL) || 2179 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 2180 } 2181 2182 /* 2183 * This must be called with current->sighand->siglock held. 2184 * 2185 * This should be the path for all ptrace stops. 2186 * We always set current->last_siginfo while stopped here. 2187 * That makes it a way to test a stopped process for 2188 * being ptrace-stopped vs being job-control-stopped. 2189 * 2190 * If we actually decide not to stop at all because the tracer 2191 * is gone, we keep current->exit_code unless clear_code. 2192 */ 2193 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info) 2194 __releases(¤t->sighand->siglock) 2195 __acquires(¤t->sighand->siglock) 2196 { 2197 bool gstop_done = false; 2198 2199 if (arch_ptrace_stop_needed(exit_code, info)) { 2200 /* 2201 * The arch code has something special to do before a 2202 * ptrace stop. This is allowed to block, e.g. for faults 2203 * on user stack pages. We can't keep the siglock while 2204 * calling arch_ptrace_stop, so we must release it now. 2205 * To preserve proper semantics, we must do this before 2206 * any signal bookkeeping like checking group_stop_count. 2207 * Meanwhile, a SIGKILL could come in before we retake the 2208 * siglock. That must prevent us from sleeping in TASK_TRACED. 2209 * So after regaining the lock, we must check for SIGKILL. 2210 */ 2211 spin_unlock_irq(¤t->sighand->siglock); 2212 arch_ptrace_stop(exit_code, info); 2213 spin_lock_irq(¤t->sighand->siglock); 2214 if (sigkill_pending(current)) 2215 return; 2216 } 2217 2218 set_special_state(TASK_TRACED); 2219 2220 /* 2221 * We're committing to trapping. TRACED should be visible before 2222 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2223 * Also, transition to TRACED and updates to ->jobctl should be 2224 * atomic with respect to siglock and should be done after the arch 2225 * hook as siglock is released and regrabbed across it. 2226 * 2227 * TRACER TRACEE 2228 * 2229 * ptrace_attach() 2230 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2231 * do_wait() 2232 * set_current_state() smp_wmb(); 2233 * ptrace_do_wait() 2234 * wait_task_stopped() 2235 * task_stopped_code() 2236 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2237 */ 2238 smp_wmb(); 2239 2240 current->last_siginfo = info; 2241 current->exit_code = exit_code; 2242 2243 /* 2244 * If @why is CLD_STOPPED, we're trapping to participate in a group 2245 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2246 * across siglock relocks since INTERRUPT was scheduled, PENDING 2247 * could be clear now. We act as if SIGCONT is received after 2248 * TASK_TRACED is entered - ignore it. 2249 */ 2250 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2251 gstop_done = task_participate_group_stop(current); 2252 2253 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2254 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2255 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2256 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2257 2258 /* entering a trap, clear TRAPPING */ 2259 task_clear_jobctl_trapping(current); 2260 2261 spin_unlock_irq(¤t->sighand->siglock); 2262 read_lock(&tasklist_lock); 2263 if (may_ptrace_stop()) { 2264 /* 2265 * Notify parents of the stop. 2266 * 2267 * While ptraced, there are two parents - the ptracer and 2268 * the real_parent of the group_leader. The ptracer should 2269 * know about every stop while the real parent is only 2270 * interested in the completion of group stop. The states 2271 * for the two don't interact with each other. Notify 2272 * separately unless they're gonna be duplicates. 2273 */ 2274 do_notify_parent_cldstop(current, true, why); 2275 if (gstop_done && ptrace_reparented(current)) 2276 do_notify_parent_cldstop(current, false, why); 2277 2278 /* 2279 * Don't want to allow preemption here, because 2280 * sys_ptrace() needs this task to be inactive. 2281 * 2282 * XXX: implement read_unlock_no_resched(). 2283 */ 2284 preempt_disable(); 2285 read_unlock(&tasklist_lock); 2286 cgroup_enter_frozen(); 2287 preempt_enable_no_resched(); 2288 freezable_schedule(); 2289 cgroup_leave_frozen(true); 2290 } else { 2291 /* 2292 * By the time we got the lock, our tracer went away. 2293 * Don't drop the lock yet, another tracer may come. 2294 * 2295 * If @gstop_done, the ptracer went away between group stop 2296 * completion and here. During detach, it would have set 2297 * JOBCTL_STOP_PENDING on us and we'll re-enter 2298 * TASK_STOPPED in do_signal_stop() on return, so notifying 2299 * the real parent of the group stop completion is enough. 2300 */ 2301 if (gstop_done) 2302 do_notify_parent_cldstop(current, false, why); 2303 2304 /* tasklist protects us from ptrace_freeze_traced() */ 2305 __set_current_state(TASK_RUNNING); 2306 if (clear_code) 2307 current->exit_code = 0; 2308 read_unlock(&tasklist_lock); 2309 } 2310 2311 /* 2312 * We are back. Now reacquire the siglock before touching 2313 * last_siginfo, so that we are sure to have synchronized with 2314 * any signal-sending on another CPU that wants to examine it. 2315 */ 2316 spin_lock_irq(¤t->sighand->siglock); 2317 current->last_siginfo = NULL; 2318 2319 /* LISTENING can be set only during STOP traps, clear it */ 2320 current->jobctl &= ~JOBCTL_LISTENING; 2321 2322 /* 2323 * Queued signals ignored us while we were stopped for tracing. 2324 * So check for any that we should take before resuming user mode. 2325 * This sets TIF_SIGPENDING, but never clears it. 2326 */ 2327 recalc_sigpending_tsk(current); 2328 } 2329 2330 static void ptrace_do_notify(int signr, int exit_code, int why) 2331 { 2332 kernel_siginfo_t info; 2333 2334 clear_siginfo(&info); 2335 info.si_signo = signr; 2336 info.si_code = exit_code; 2337 info.si_pid = task_pid_vnr(current); 2338 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2339 2340 /* Let the debugger run. */ 2341 ptrace_stop(exit_code, why, 1, &info); 2342 } 2343 2344 void ptrace_notify(int exit_code) 2345 { 2346 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2347 if (unlikely(current->task_works)) 2348 task_work_run(); 2349 2350 spin_lock_irq(¤t->sighand->siglock); 2351 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 2352 spin_unlock_irq(¤t->sighand->siglock); 2353 } 2354 2355 /** 2356 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2357 * @signr: signr causing group stop if initiating 2358 * 2359 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2360 * and participate in it. If already set, participate in the existing 2361 * group stop. If participated in a group stop (and thus slept), %true is 2362 * returned with siglock released. 2363 * 2364 * If ptraced, this function doesn't handle stop itself. Instead, 2365 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2366 * untouched. The caller must ensure that INTERRUPT trap handling takes 2367 * places afterwards. 2368 * 2369 * CONTEXT: 2370 * Must be called with @current->sighand->siglock held, which is released 2371 * on %true return. 2372 * 2373 * RETURNS: 2374 * %false if group stop is already cancelled or ptrace trap is scheduled. 2375 * %true if participated in group stop. 2376 */ 2377 static bool do_signal_stop(int signr) 2378 __releases(¤t->sighand->siglock) 2379 { 2380 struct signal_struct *sig = current->signal; 2381 2382 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2383 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2384 struct task_struct *t; 2385 2386 /* signr will be recorded in task->jobctl for retries */ 2387 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2388 2389 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2390 unlikely(signal_group_exit(sig))) 2391 return false; 2392 /* 2393 * There is no group stop already in progress. We must 2394 * initiate one now. 2395 * 2396 * While ptraced, a task may be resumed while group stop is 2397 * still in effect and then receive a stop signal and 2398 * initiate another group stop. This deviates from the 2399 * usual behavior as two consecutive stop signals can't 2400 * cause two group stops when !ptraced. That is why we 2401 * also check !task_is_stopped(t) below. 2402 * 2403 * The condition can be distinguished by testing whether 2404 * SIGNAL_STOP_STOPPED is already set. Don't generate 2405 * group_exit_code in such case. 2406 * 2407 * This is not necessary for SIGNAL_STOP_CONTINUED because 2408 * an intervening stop signal is required to cause two 2409 * continued events regardless of ptrace. 2410 */ 2411 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2412 sig->group_exit_code = signr; 2413 2414 sig->group_stop_count = 0; 2415 2416 if (task_set_jobctl_pending(current, signr | gstop)) 2417 sig->group_stop_count++; 2418 2419 t = current; 2420 while_each_thread(current, t) { 2421 /* 2422 * Setting state to TASK_STOPPED for a group 2423 * stop is always done with the siglock held, 2424 * so this check has no races. 2425 */ 2426 if (!task_is_stopped(t) && 2427 task_set_jobctl_pending(t, signr | gstop)) { 2428 sig->group_stop_count++; 2429 if (likely(!(t->ptrace & PT_SEIZED))) 2430 signal_wake_up(t, 0); 2431 else 2432 ptrace_trap_notify(t); 2433 } 2434 } 2435 } 2436 2437 if (likely(!current->ptrace)) { 2438 int notify = 0; 2439 2440 /* 2441 * If there are no other threads in the group, or if there 2442 * is a group stop in progress and we are the last to stop, 2443 * report to the parent. 2444 */ 2445 if (task_participate_group_stop(current)) 2446 notify = CLD_STOPPED; 2447 2448 set_special_state(TASK_STOPPED); 2449 spin_unlock_irq(¤t->sighand->siglock); 2450 2451 /* 2452 * Notify the parent of the group stop completion. Because 2453 * we're not holding either the siglock or tasklist_lock 2454 * here, ptracer may attach inbetween; however, this is for 2455 * group stop and should always be delivered to the real 2456 * parent of the group leader. The new ptracer will get 2457 * its notification when this task transitions into 2458 * TASK_TRACED. 2459 */ 2460 if (notify) { 2461 read_lock(&tasklist_lock); 2462 do_notify_parent_cldstop(current, false, notify); 2463 read_unlock(&tasklist_lock); 2464 } 2465 2466 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2467 cgroup_enter_frozen(); 2468 freezable_schedule(); 2469 return true; 2470 } else { 2471 /* 2472 * While ptraced, group stop is handled by STOP trap. 2473 * Schedule it and let the caller deal with it. 2474 */ 2475 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2476 return false; 2477 } 2478 } 2479 2480 /** 2481 * do_jobctl_trap - take care of ptrace jobctl traps 2482 * 2483 * When PT_SEIZED, it's used for both group stop and explicit 2484 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2485 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2486 * the stop signal; otherwise, %SIGTRAP. 2487 * 2488 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2489 * number as exit_code and no siginfo. 2490 * 2491 * CONTEXT: 2492 * Must be called with @current->sighand->siglock held, which may be 2493 * released and re-acquired before returning with intervening sleep. 2494 */ 2495 static void do_jobctl_trap(void) 2496 { 2497 struct signal_struct *signal = current->signal; 2498 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2499 2500 if (current->ptrace & PT_SEIZED) { 2501 if (!signal->group_stop_count && 2502 !(signal->flags & SIGNAL_STOP_STOPPED)) 2503 signr = SIGTRAP; 2504 WARN_ON_ONCE(!signr); 2505 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2506 CLD_STOPPED); 2507 } else { 2508 WARN_ON_ONCE(!signr); 2509 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2510 current->exit_code = 0; 2511 } 2512 } 2513 2514 /** 2515 * do_freezer_trap - handle the freezer jobctl trap 2516 * 2517 * Puts the task into frozen state, if only the task is not about to quit. 2518 * In this case it drops JOBCTL_TRAP_FREEZE. 2519 * 2520 * CONTEXT: 2521 * Must be called with @current->sighand->siglock held, 2522 * which is always released before returning. 2523 */ 2524 static void do_freezer_trap(void) 2525 __releases(¤t->sighand->siglock) 2526 { 2527 /* 2528 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2529 * let's make another loop to give it a chance to be handled. 2530 * In any case, we'll return back. 2531 */ 2532 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2533 JOBCTL_TRAP_FREEZE) { 2534 spin_unlock_irq(¤t->sighand->siglock); 2535 return; 2536 } 2537 2538 /* 2539 * Now we're sure that there is no pending fatal signal and no 2540 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2541 * immediately (if there is a non-fatal signal pending), and 2542 * put the task into sleep. 2543 */ 2544 __set_current_state(TASK_INTERRUPTIBLE); 2545 clear_thread_flag(TIF_SIGPENDING); 2546 spin_unlock_irq(¤t->sighand->siglock); 2547 cgroup_enter_frozen(); 2548 freezable_schedule(); 2549 } 2550 2551 static int ptrace_signal(int signr, kernel_siginfo_t *info) 2552 { 2553 /* 2554 * We do not check sig_kernel_stop(signr) but set this marker 2555 * unconditionally because we do not know whether debugger will 2556 * change signr. This flag has no meaning unless we are going 2557 * to stop after return from ptrace_stop(). In this case it will 2558 * be checked in do_signal_stop(), we should only stop if it was 2559 * not cleared by SIGCONT while we were sleeping. See also the 2560 * comment in dequeue_signal(). 2561 */ 2562 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2563 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2564 2565 /* We're back. Did the debugger cancel the sig? */ 2566 signr = current->exit_code; 2567 if (signr == 0) 2568 return signr; 2569 2570 current->exit_code = 0; 2571 2572 /* 2573 * Update the siginfo structure if the signal has 2574 * changed. If the debugger wanted something 2575 * specific in the siginfo structure then it should 2576 * have updated *info via PTRACE_SETSIGINFO. 2577 */ 2578 if (signr != info->si_signo) { 2579 clear_siginfo(info); 2580 info->si_signo = signr; 2581 info->si_errno = 0; 2582 info->si_code = SI_USER; 2583 rcu_read_lock(); 2584 info->si_pid = task_pid_vnr(current->parent); 2585 info->si_uid = from_kuid_munged(current_user_ns(), 2586 task_uid(current->parent)); 2587 rcu_read_unlock(); 2588 } 2589 2590 /* If the (new) signal is now blocked, requeue it. */ 2591 if (sigismember(¤t->blocked, signr)) { 2592 send_signal(signr, info, current, PIDTYPE_PID); 2593 signr = 0; 2594 } 2595 2596 return signr; 2597 } 2598 2599 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2600 { 2601 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2602 case SIL_FAULT: 2603 case SIL_FAULT_TRAPNO: 2604 case SIL_FAULT_MCEERR: 2605 case SIL_FAULT_BNDERR: 2606 case SIL_FAULT_PKUERR: 2607 case SIL_FAULT_PERF_EVENT: 2608 ksig->info.si_addr = arch_untagged_si_addr( 2609 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2610 break; 2611 case SIL_KILL: 2612 case SIL_TIMER: 2613 case SIL_POLL: 2614 case SIL_CHLD: 2615 case SIL_RT: 2616 case SIL_SYS: 2617 break; 2618 } 2619 } 2620 2621 bool get_signal(struct ksignal *ksig) 2622 { 2623 struct sighand_struct *sighand = current->sighand; 2624 struct signal_struct *signal = current->signal; 2625 int signr; 2626 2627 if (unlikely(current->task_works)) 2628 task_work_run(); 2629 2630 /* 2631 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so 2632 * that the arch handlers don't all have to do it. If we get here 2633 * without TIF_SIGPENDING, just exit after running signal work. 2634 */ 2635 if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) { 2636 if (test_thread_flag(TIF_NOTIFY_SIGNAL)) 2637 tracehook_notify_signal(); 2638 if (!task_sigpending(current)) 2639 return false; 2640 } 2641 2642 if (unlikely(uprobe_deny_signal())) 2643 return false; 2644 2645 /* 2646 * Do this once, we can't return to user-mode if freezing() == T. 2647 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2648 * thus do not need another check after return. 2649 */ 2650 try_to_freeze(); 2651 2652 relock: 2653 spin_lock_irq(&sighand->siglock); 2654 2655 /* 2656 * Every stopped thread goes here after wakeup. Check to see if 2657 * we should notify the parent, prepare_signal(SIGCONT) encodes 2658 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2659 */ 2660 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2661 int why; 2662 2663 if (signal->flags & SIGNAL_CLD_CONTINUED) 2664 why = CLD_CONTINUED; 2665 else 2666 why = CLD_STOPPED; 2667 2668 signal->flags &= ~SIGNAL_CLD_MASK; 2669 2670 spin_unlock_irq(&sighand->siglock); 2671 2672 /* 2673 * Notify the parent that we're continuing. This event is 2674 * always per-process and doesn't make whole lot of sense 2675 * for ptracers, who shouldn't consume the state via 2676 * wait(2) either, but, for backward compatibility, notify 2677 * the ptracer of the group leader too unless it's gonna be 2678 * a duplicate. 2679 */ 2680 read_lock(&tasklist_lock); 2681 do_notify_parent_cldstop(current, false, why); 2682 2683 if (ptrace_reparented(current->group_leader)) 2684 do_notify_parent_cldstop(current->group_leader, 2685 true, why); 2686 read_unlock(&tasklist_lock); 2687 2688 goto relock; 2689 } 2690 2691 /* Has this task already been marked for death? */ 2692 if (signal_group_exit(signal)) { 2693 ksig->info.si_signo = signr = SIGKILL; 2694 sigdelset(¤t->pending.signal, SIGKILL); 2695 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2696 &sighand->action[SIGKILL - 1]); 2697 recalc_sigpending(); 2698 goto fatal; 2699 } 2700 2701 for (;;) { 2702 struct k_sigaction *ka; 2703 2704 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2705 do_signal_stop(0)) 2706 goto relock; 2707 2708 if (unlikely(current->jobctl & 2709 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2710 if (current->jobctl & JOBCTL_TRAP_MASK) { 2711 do_jobctl_trap(); 2712 spin_unlock_irq(&sighand->siglock); 2713 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2714 do_freezer_trap(); 2715 2716 goto relock; 2717 } 2718 2719 /* 2720 * If the task is leaving the frozen state, let's update 2721 * cgroup counters and reset the frozen bit. 2722 */ 2723 if (unlikely(cgroup_task_frozen(current))) { 2724 spin_unlock_irq(&sighand->siglock); 2725 cgroup_leave_frozen(false); 2726 goto relock; 2727 } 2728 2729 /* 2730 * Signals generated by the execution of an instruction 2731 * need to be delivered before any other pending signals 2732 * so that the instruction pointer in the signal stack 2733 * frame points to the faulting instruction. 2734 */ 2735 signr = dequeue_synchronous_signal(&ksig->info); 2736 if (!signr) 2737 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2738 2739 if (!signr) 2740 break; /* will return 0 */ 2741 2742 if (unlikely(current->ptrace) && signr != SIGKILL) { 2743 signr = ptrace_signal(signr, &ksig->info); 2744 if (!signr) 2745 continue; 2746 } 2747 2748 ka = &sighand->action[signr-1]; 2749 2750 /* Trace actually delivered signals. */ 2751 trace_signal_deliver(signr, &ksig->info, ka); 2752 2753 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2754 continue; 2755 if (ka->sa.sa_handler != SIG_DFL) { 2756 /* Run the handler. */ 2757 ksig->ka = *ka; 2758 2759 if (ka->sa.sa_flags & SA_ONESHOT) 2760 ka->sa.sa_handler = SIG_DFL; 2761 2762 break; /* will return non-zero "signr" value */ 2763 } 2764 2765 /* 2766 * Now we are doing the default action for this signal. 2767 */ 2768 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2769 continue; 2770 2771 /* 2772 * Global init gets no signals it doesn't want. 2773 * Container-init gets no signals it doesn't want from same 2774 * container. 2775 * 2776 * Note that if global/container-init sees a sig_kernel_only() 2777 * signal here, the signal must have been generated internally 2778 * or must have come from an ancestor namespace. In either 2779 * case, the signal cannot be dropped. 2780 */ 2781 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2782 !sig_kernel_only(signr)) 2783 continue; 2784 2785 if (sig_kernel_stop(signr)) { 2786 /* 2787 * The default action is to stop all threads in 2788 * the thread group. The job control signals 2789 * do nothing in an orphaned pgrp, but SIGSTOP 2790 * always works. Note that siglock needs to be 2791 * dropped during the call to is_orphaned_pgrp() 2792 * because of lock ordering with tasklist_lock. 2793 * This allows an intervening SIGCONT to be posted. 2794 * We need to check for that and bail out if necessary. 2795 */ 2796 if (signr != SIGSTOP) { 2797 spin_unlock_irq(&sighand->siglock); 2798 2799 /* signals can be posted during this window */ 2800 2801 if (is_current_pgrp_orphaned()) 2802 goto relock; 2803 2804 spin_lock_irq(&sighand->siglock); 2805 } 2806 2807 if (likely(do_signal_stop(ksig->info.si_signo))) { 2808 /* It released the siglock. */ 2809 goto relock; 2810 } 2811 2812 /* 2813 * We didn't actually stop, due to a race 2814 * with SIGCONT or something like that. 2815 */ 2816 continue; 2817 } 2818 2819 fatal: 2820 spin_unlock_irq(&sighand->siglock); 2821 if (unlikely(cgroup_task_frozen(current))) 2822 cgroup_leave_frozen(true); 2823 2824 /* 2825 * Anything else is fatal, maybe with a core dump. 2826 */ 2827 current->flags |= PF_SIGNALED; 2828 2829 if (sig_kernel_coredump(signr)) { 2830 if (print_fatal_signals) 2831 print_fatal_signal(ksig->info.si_signo); 2832 proc_coredump_connector(current); 2833 /* 2834 * If it was able to dump core, this kills all 2835 * other threads in the group and synchronizes with 2836 * their demise. If we lost the race with another 2837 * thread getting here, it set group_exit_code 2838 * first and our do_group_exit call below will use 2839 * that value and ignore the one we pass it. 2840 */ 2841 do_coredump(&ksig->info); 2842 } 2843 2844 /* 2845 * PF_IO_WORKER threads will catch and exit on fatal signals 2846 * themselves. They have cleanup that must be performed, so 2847 * we cannot call do_exit() on their behalf. 2848 */ 2849 if (current->flags & PF_IO_WORKER) 2850 goto out; 2851 2852 /* 2853 * Death signals, no core dump. 2854 */ 2855 do_group_exit(ksig->info.si_signo); 2856 /* NOTREACHED */ 2857 } 2858 spin_unlock_irq(&sighand->siglock); 2859 out: 2860 ksig->sig = signr; 2861 2862 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2863 hide_si_addr_tag_bits(ksig); 2864 2865 return ksig->sig > 0; 2866 } 2867 2868 /** 2869 * signal_delivered - 2870 * @ksig: kernel signal struct 2871 * @stepping: nonzero if debugger single-step or block-step in use 2872 * 2873 * This function should be called when a signal has successfully been 2874 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2875 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2876 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2877 */ 2878 static void signal_delivered(struct ksignal *ksig, int stepping) 2879 { 2880 sigset_t blocked; 2881 2882 /* A signal was successfully delivered, and the 2883 saved sigmask was stored on the signal frame, 2884 and will be restored by sigreturn. So we can 2885 simply clear the restore sigmask flag. */ 2886 clear_restore_sigmask(); 2887 2888 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2889 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2890 sigaddset(&blocked, ksig->sig); 2891 set_current_blocked(&blocked); 2892 if (current->sas_ss_flags & SS_AUTODISARM) 2893 sas_ss_reset(current); 2894 tracehook_signal_handler(stepping); 2895 } 2896 2897 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2898 { 2899 if (failed) 2900 force_sigsegv(ksig->sig); 2901 else 2902 signal_delivered(ksig, stepping); 2903 } 2904 2905 /* 2906 * It could be that complete_signal() picked us to notify about the 2907 * group-wide signal. Other threads should be notified now to take 2908 * the shared signals in @which since we will not. 2909 */ 2910 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2911 { 2912 sigset_t retarget; 2913 struct task_struct *t; 2914 2915 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2916 if (sigisemptyset(&retarget)) 2917 return; 2918 2919 t = tsk; 2920 while_each_thread(tsk, t) { 2921 if (t->flags & PF_EXITING) 2922 continue; 2923 2924 if (!has_pending_signals(&retarget, &t->blocked)) 2925 continue; 2926 /* Remove the signals this thread can handle. */ 2927 sigandsets(&retarget, &retarget, &t->blocked); 2928 2929 if (!task_sigpending(t)) 2930 signal_wake_up(t, 0); 2931 2932 if (sigisemptyset(&retarget)) 2933 break; 2934 } 2935 } 2936 2937 void exit_signals(struct task_struct *tsk) 2938 { 2939 int group_stop = 0; 2940 sigset_t unblocked; 2941 2942 /* 2943 * @tsk is about to have PF_EXITING set - lock out users which 2944 * expect stable threadgroup. 2945 */ 2946 cgroup_threadgroup_change_begin(tsk); 2947 2948 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2949 tsk->flags |= PF_EXITING; 2950 cgroup_threadgroup_change_end(tsk); 2951 return; 2952 } 2953 2954 spin_lock_irq(&tsk->sighand->siglock); 2955 /* 2956 * From now this task is not visible for group-wide signals, 2957 * see wants_signal(), do_signal_stop(). 2958 */ 2959 tsk->flags |= PF_EXITING; 2960 2961 cgroup_threadgroup_change_end(tsk); 2962 2963 if (!task_sigpending(tsk)) 2964 goto out; 2965 2966 unblocked = tsk->blocked; 2967 signotset(&unblocked); 2968 retarget_shared_pending(tsk, &unblocked); 2969 2970 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2971 task_participate_group_stop(tsk)) 2972 group_stop = CLD_STOPPED; 2973 out: 2974 spin_unlock_irq(&tsk->sighand->siglock); 2975 2976 /* 2977 * If group stop has completed, deliver the notification. This 2978 * should always go to the real parent of the group leader. 2979 */ 2980 if (unlikely(group_stop)) { 2981 read_lock(&tasklist_lock); 2982 do_notify_parent_cldstop(tsk, false, group_stop); 2983 read_unlock(&tasklist_lock); 2984 } 2985 } 2986 2987 /* 2988 * System call entry points. 2989 */ 2990 2991 /** 2992 * sys_restart_syscall - restart a system call 2993 */ 2994 SYSCALL_DEFINE0(restart_syscall) 2995 { 2996 struct restart_block *restart = ¤t->restart_block; 2997 return restart->fn(restart); 2998 } 2999 3000 long do_no_restart_syscall(struct restart_block *param) 3001 { 3002 return -EINTR; 3003 } 3004 3005 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3006 { 3007 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3008 sigset_t newblocked; 3009 /* A set of now blocked but previously unblocked signals. */ 3010 sigandnsets(&newblocked, newset, ¤t->blocked); 3011 retarget_shared_pending(tsk, &newblocked); 3012 } 3013 tsk->blocked = *newset; 3014 recalc_sigpending(); 3015 } 3016 3017 /** 3018 * set_current_blocked - change current->blocked mask 3019 * @newset: new mask 3020 * 3021 * It is wrong to change ->blocked directly, this helper should be used 3022 * to ensure the process can't miss a shared signal we are going to block. 3023 */ 3024 void set_current_blocked(sigset_t *newset) 3025 { 3026 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3027 __set_current_blocked(newset); 3028 } 3029 3030 void __set_current_blocked(const sigset_t *newset) 3031 { 3032 struct task_struct *tsk = current; 3033 3034 /* 3035 * In case the signal mask hasn't changed, there is nothing we need 3036 * to do. The current->blocked shouldn't be modified by other task. 3037 */ 3038 if (sigequalsets(&tsk->blocked, newset)) 3039 return; 3040 3041 spin_lock_irq(&tsk->sighand->siglock); 3042 __set_task_blocked(tsk, newset); 3043 spin_unlock_irq(&tsk->sighand->siglock); 3044 } 3045 3046 /* 3047 * This is also useful for kernel threads that want to temporarily 3048 * (or permanently) block certain signals. 3049 * 3050 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3051 * interface happily blocks "unblockable" signals like SIGKILL 3052 * and friends. 3053 */ 3054 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3055 { 3056 struct task_struct *tsk = current; 3057 sigset_t newset; 3058 3059 /* Lockless, only current can change ->blocked, never from irq */ 3060 if (oldset) 3061 *oldset = tsk->blocked; 3062 3063 switch (how) { 3064 case SIG_BLOCK: 3065 sigorsets(&newset, &tsk->blocked, set); 3066 break; 3067 case SIG_UNBLOCK: 3068 sigandnsets(&newset, &tsk->blocked, set); 3069 break; 3070 case SIG_SETMASK: 3071 newset = *set; 3072 break; 3073 default: 3074 return -EINVAL; 3075 } 3076 3077 __set_current_blocked(&newset); 3078 return 0; 3079 } 3080 EXPORT_SYMBOL(sigprocmask); 3081 3082 /* 3083 * The api helps set app-provided sigmasks. 3084 * 3085 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3086 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3087 * 3088 * Note that it does set_restore_sigmask() in advance, so it must be always 3089 * paired with restore_saved_sigmask_unless() before return from syscall. 3090 */ 3091 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3092 { 3093 sigset_t kmask; 3094 3095 if (!umask) 3096 return 0; 3097 if (sigsetsize != sizeof(sigset_t)) 3098 return -EINVAL; 3099 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3100 return -EFAULT; 3101 3102 set_restore_sigmask(); 3103 current->saved_sigmask = current->blocked; 3104 set_current_blocked(&kmask); 3105 3106 return 0; 3107 } 3108 3109 #ifdef CONFIG_COMPAT 3110 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3111 size_t sigsetsize) 3112 { 3113 sigset_t kmask; 3114 3115 if (!umask) 3116 return 0; 3117 if (sigsetsize != sizeof(compat_sigset_t)) 3118 return -EINVAL; 3119 if (get_compat_sigset(&kmask, umask)) 3120 return -EFAULT; 3121 3122 set_restore_sigmask(); 3123 current->saved_sigmask = current->blocked; 3124 set_current_blocked(&kmask); 3125 3126 return 0; 3127 } 3128 #endif 3129 3130 /** 3131 * sys_rt_sigprocmask - change the list of currently blocked signals 3132 * @how: whether to add, remove, or set signals 3133 * @nset: stores pending signals 3134 * @oset: previous value of signal mask if non-null 3135 * @sigsetsize: size of sigset_t type 3136 */ 3137 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3138 sigset_t __user *, oset, size_t, sigsetsize) 3139 { 3140 sigset_t old_set, new_set; 3141 int error; 3142 3143 /* XXX: Don't preclude handling different sized sigset_t's. */ 3144 if (sigsetsize != sizeof(sigset_t)) 3145 return -EINVAL; 3146 3147 old_set = current->blocked; 3148 3149 if (nset) { 3150 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3151 return -EFAULT; 3152 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3153 3154 error = sigprocmask(how, &new_set, NULL); 3155 if (error) 3156 return error; 3157 } 3158 3159 if (oset) { 3160 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3161 return -EFAULT; 3162 } 3163 3164 return 0; 3165 } 3166 3167 #ifdef CONFIG_COMPAT 3168 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3169 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3170 { 3171 sigset_t old_set = current->blocked; 3172 3173 /* XXX: Don't preclude handling different sized sigset_t's. */ 3174 if (sigsetsize != sizeof(sigset_t)) 3175 return -EINVAL; 3176 3177 if (nset) { 3178 sigset_t new_set; 3179 int error; 3180 if (get_compat_sigset(&new_set, nset)) 3181 return -EFAULT; 3182 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3183 3184 error = sigprocmask(how, &new_set, NULL); 3185 if (error) 3186 return error; 3187 } 3188 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3189 } 3190 #endif 3191 3192 static void do_sigpending(sigset_t *set) 3193 { 3194 spin_lock_irq(¤t->sighand->siglock); 3195 sigorsets(set, ¤t->pending.signal, 3196 ¤t->signal->shared_pending.signal); 3197 spin_unlock_irq(¤t->sighand->siglock); 3198 3199 /* Outside the lock because only this thread touches it. */ 3200 sigandsets(set, ¤t->blocked, set); 3201 } 3202 3203 /** 3204 * sys_rt_sigpending - examine a pending signal that has been raised 3205 * while blocked 3206 * @uset: stores pending signals 3207 * @sigsetsize: size of sigset_t type or larger 3208 */ 3209 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3210 { 3211 sigset_t set; 3212 3213 if (sigsetsize > sizeof(*uset)) 3214 return -EINVAL; 3215 3216 do_sigpending(&set); 3217 3218 if (copy_to_user(uset, &set, sigsetsize)) 3219 return -EFAULT; 3220 3221 return 0; 3222 } 3223 3224 #ifdef CONFIG_COMPAT 3225 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3226 compat_size_t, sigsetsize) 3227 { 3228 sigset_t set; 3229 3230 if (sigsetsize > sizeof(*uset)) 3231 return -EINVAL; 3232 3233 do_sigpending(&set); 3234 3235 return put_compat_sigset(uset, &set, sigsetsize); 3236 } 3237 #endif 3238 3239 static const struct { 3240 unsigned char limit, layout; 3241 } sig_sicodes[] = { 3242 [SIGILL] = { NSIGILL, SIL_FAULT }, 3243 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3244 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3245 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3246 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3247 #if defined(SIGEMT) 3248 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3249 #endif 3250 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3251 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3252 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3253 }; 3254 3255 static bool known_siginfo_layout(unsigned sig, int si_code) 3256 { 3257 if (si_code == SI_KERNEL) 3258 return true; 3259 else if ((si_code > SI_USER)) { 3260 if (sig_specific_sicodes(sig)) { 3261 if (si_code <= sig_sicodes[sig].limit) 3262 return true; 3263 } 3264 else if (si_code <= NSIGPOLL) 3265 return true; 3266 } 3267 else if (si_code >= SI_DETHREAD) 3268 return true; 3269 else if (si_code == SI_ASYNCNL) 3270 return true; 3271 return false; 3272 } 3273 3274 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3275 { 3276 enum siginfo_layout layout = SIL_KILL; 3277 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3278 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3279 (si_code <= sig_sicodes[sig].limit)) { 3280 layout = sig_sicodes[sig].layout; 3281 /* Handle the exceptions */ 3282 if ((sig == SIGBUS) && 3283 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3284 layout = SIL_FAULT_MCEERR; 3285 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3286 layout = SIL_FAULT_BNDERR; 3287 #ifdef SEGV_PKUERR 3288 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3289 layout = SIL_FAULT_PKUERR; 3290 #endif 3291 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3292 layout = SIL_FAULT_PERF_EVENT; 3293 else if (IS_ENABLED(CONFIG_SPARC) && 3294 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3295 layout = SIL_FAULT_TRAPNO; 3296 else if (IS_ENABLED(CONFIG_ALPHA) && 3297 ((sig == SIGFPE) || 3298 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3299 layout = SIL_FAULT_TRAPNO; 3300 } 3301 else if (si_code <= NSIGPOLL) 3302 layout = SIL_POLL; 3303 } else { 3304 if (si_code == SI_TIMER) 3305 layout = SIL_TIMER; 3306 else if (si_code == SI_SIGIO) 3307 layout = SIL_POLL; 3308 else if (si_code < 0) 3309 layout = SIL_RT; 3310 } 3311 return layout; 3312 } 3313 3314 static inline char __user *si_expansion(const siginfo_t __user *info) 3315 { 3316 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3317 } 3318 3319 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3320 { 3321 char __user *expansion = si_expansion(to); 3322 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3323 return -EFAULT; 3324 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3325 return -EFAULT; 3326 return 0; 3327 } 3328 3329 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3330 const siginfo_t __user *from) 3331 { 3332 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3333 char __user *expansion = si_expansion(from); 3334 char buf[SI_EXPANSION_SIZE]; 3335 int i; 3336 /* 3337 * An unknown si_code might need more than 3338 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3339 * extra bytes are 0. This guarantees copy_siginfo_to_user 3340 * will return this data to userspace exactly. 3341 */ 3342 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3343 return -EFAULT; 3344 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3345 if (buf[i] != 0) 3346 return -E2BIG; 3347 } 3348 } 3349 return 0; 3350 } 3351 3352 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3353 const siginfo_t __user *from) 3354 { 3355 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3356 return -EFAULT; 3357 to->si_signo = signo; 3358 return post_copy_siginfo_from_user(to, from); 3359 } 3360 3361 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3362 { 3363 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3364 return -EFAULT; 3365 return post_copy_siginfo_from_user(to, from); 3366 } 3367 3368 #ifdef CONFIG_COMPAT 3369 /** 3370 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3371 * @to: compat siginfo destination 3372 * @from: kernel siginfo source 3373 * 3374 * Note: This function does not work properly for the SIGCHLD on x32, but 3375 * fortunately it doesn't have to. The only valid callers for this function are 3376 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3377 * The latter does not care because SIGCHLD will never cause a coredump. 3378 */ 3379 void copy_siginfo_to_external32(struct compat_siginfo *to, 3380 const struct kernel_siginfo *from) 3381 { 3382 memset(to, 0, sizeof(*to)); 3383 3384 to->si_signo = from->si_signo; 3385 to->si_errno = from->si_errno; 3386 to->si_code = from->si_code; 3387 switch(siginfo_layout(from->si_signo, from->si_code)) { 3388 case SIL_KILL: 3389 to->si_pid = from->si_pid; 3390 to->si_uid = from->si_uid; 3391 break; 3392 case SIL_TIMER: 3393 to->si_tid = from->si_tid; 3394 to->si_overrun = from->si_overrun; 3395 to->si_int = from->si_int; 3396 break; 3397 case SIL_POLL: 3398 to->si_band = from->si_band; 3399 to->si_fd = from->si_fd; 3400 break; 3401 case SIL_FAULT: 3402 to->si_addr = ptr_to_compat(from->si_addr); 3403 break; 3404 case SIL_FAULT_TRAPNO: 3405 to->si_addr = ptr_to_compat(from->si_addr); 3406 to->si_trapno = from->si_trapno; 3407 break; 3408 case SIL_FAULT_MCEERR: 3409 to->si_addr = ptr_to_compat(from->si_addr); 3410 to->si_addr_lsb = from->si_addr_lsb; 3411 break; 3412 case SIL_FAULT_BNDERR: 3413 to->si_addr = ptr_to_compat(from->si_addr); 3414 to->si_lower = ptr_to_compat(from->si_lower); 3415 to->si_upper = ptr_to_compat(from->si_upper); 3416 break; 3417 case SIL_FAULT_PKUERR: 3418 to->si_addr = ptr_to_compat(from->si_addr); 3419 to->si_pkey = from->si_pkey; 3420 break; 3421 case SIL_FAULT_PERF_EVENT: 3422 to->si_addr = ptr_to_compat(from->si_addr); 3423 to->si_perf_data = from->si_perf_data; 3424 to->si_perf_type = from->si_perf_type; 3425 break; 3426 case SIL_CHLD: 3427 to->si_pid = from->si_pid; 3428 to->si_uid = from->si_uid; 3429 to->si_status = from->si_status; 3430 to->si_utime = from->si_utime; 3431 to->si_stime = from->si_stime; 3432 break; 3433 case SIL_RT: 3434 to->si_pid = from->si_pid; 3435 to->si_uid = from->si_uid; 3436 to->si_int = from->si_int; 3437 break; 3438 case SIL_SYS: 3439 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3440 to->si_syscall = from->si_syscall; 3441 to->si_arch = from->si_arch; 3442 break; 3443 } 3444 } 3445 3446 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3447 const struct kernel_siginfo *from) 3448 { 3449 struct compat_siginfo new; 3450 3451 copy_siginfo_to_external32(&new, from); 3452 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3453 return -EFAULT; 3454 return 0; 3455 } 3456 3457 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3458 const struct compat_siginfo *from) 3459 { 3460 clear_siginfo(to); 3461 to->si_signo = from->si_signo; 3462 to->si_errno = from->si_errno; 3463 to->si_code = from->si_code; 3464 switch(siginfo_layout(from->si_signo, from->si_code)) { 3465 case SIL_KILL: 3466 to->si_pid = from->si_pid; 3467 to->si_uid = from->si_uid; 3468 break; 3469 case SIL_TIMER: 3470 to->si_tid = from->si_tid; 3471 to->si_overrun = from->si_overrun; 3472 to->si_int = from->si_int; 3473 break; 3474 case SIL_POLL: 3475 to->si_band = from->si_band; 3476 to->si_fd = from->si_fd; 3477 break; 3478 case SIL_FAULT: 3479 to->si_addr = compat_ptr(from->si_addr); 3480 break; 3481 case SIL_FAULT_TRAPNO: 3482 to->si_addr = compat_ptr(from->si_addr); 3483 to->si_trapno = from->si_trapno; 3484 break; 3485 case SIL_FAULT_MCEERR: 3486 to->si_addr = compat_ptr(from->si_addr); 3487 to->si_addr_lsb = from->si_addr_lsb; 3488 break; 3489 case SIL_FAULT_BNDERR: 3490 to->si_addr = compat_ptr(from->si_addr); 3491 to->si_lower = compat_ptr(from->si_lower); 3492 to->si_upper = compat_ptr(from->si_upper); 3493 break; 3494 case SIL_FAULT_PKUERR: 3495 to->si_addr = compat_ptr(from->si_addr); 3496 to->si_pkey = from->si_pkey; 3497 break; 3498 case SIL_FAULT_PERF_EVENT: 3499 to->si_addr = compat_ptr(from->si_addr); 3500 to->si_perf_data = from->si_perf_data; 3501 to->si_perf_type = from->si_perf_type; 3502 break; 3503 case SIL_CHLD: 3504 to->si_pid = from->si_pid; 3505 to->si_uid = from->si_uid; 3506 to->si_status = from->si_status; 3507 #ifdef CONFIG_X86_X32_ABI 3508 if (in_x32_syscall()) { 3509 to->si_utime = from->_sifields._sigchld_x32._utime; 3510 to->si_stime = from->_sifields._sigchld_x32._stime; 3511 } else 3512 #endif 3513 { 3514 to->si_utime = from->si_utime; 3515 to->si_stime = from->si_stime; 3516 } 3517 break; 3518 case SIL_RT: 3519 to->si_pid = from->si_pid; 3520 to->si_uid = from->si_uid; 3521 to->si_int = from->si_int; 3522 break; 3523 case SIL_SYS: 3524 to->si_call_addr = compat_ptr(from->si_call_addr); 3525 to->si_syscall = from->si_syscall; 3526 to->si_arch = from->si_arch; 3527 break; 3528 } 3529 return 0; 3530 } 3531 3532 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3533 const struct compat_siginfo __user *ufrom) 3534 { 3535 struct compat_siginfo from; 3536 3537 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3538 return -EFAULT; 3539 3540 from.si_signo = signo; 3541 return post_copy_siginfo_from_user32(to, &from); 3542 } 3543 3544 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3545 const struct compat_siginfo __user *ufrom) 3546 { 3547 struct compat_siginfo from; 3548 3549 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3550 return -EFAULT; 3551 3552 return post_copy_siginfo_from_user32(to, &from); 3553 } 3554 #endif /* CONFIG_COMPAT */ 3555 3556 /** 3557 * do_sigtimedwait - wait for queued signals specified in @which 3558 * @which: queued signals to wait for 3559 * @info: if non-null, the signal's siginfo is returned here 3560 * @ts: upper bound on process time suspension 3561 */ 3562 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3563 const struct timespec64 *ts) 3564 { 3565 ktime_t *to = NULL, timeout = KTIME_MAX; 3566 struct task_struct *tsk = current; 3567 sigset_t mask = *which; 3568 int sig, ret = 0; 3569 3570 if (ts) { 3571 if (!timespec64_valid(ts)) 3572 return -EINVAL; 3573 timeout = timespec64_to_ktime(*ts); 3574 to = &timeout; 3575 } 3576 3577 /* 3578 * Invert the set of allowed signals to get those we want to block. 3579 */ 3580 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3581 signotset(&mask); 3582 3583 spin_lock_irq(&tsk->sighand->siglock); 3584 sig = dequeue_signal(tsk, &mask, info); 3585 if (!sig && timeout) { 3586 /* 3587 * None ready, temporarily unblock those we're interested 3588 * while we are sleeping in so that we'll be awakened when 3589 * they arrive. Unblocking is always fine, we can avoid 3590 * set_current_blocked(). 3591 */ 3592 tsk->real_blocked = tsk->blocked; 3593 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3594 recalc_sigpending(); 3595 spin_unlock_irq(&tsk->sighand->siglock); 3596 3597 __set_current_state(TASK_INTERRUPTIBLE); 3598 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3599 HRTIMER_MODE_REL); 3600 spin_lock_irq(&tsk->sighand->siglock); 3601 __set_task_blocked(tsk, &tsk->real_blocked); 3602 sigemptyset(&tsk->real_blocked); 3603 sig = dequeue_signal(tsk, &mask, info); 3604 } 3605 spin_unlock_irq(&tsk->sighand->siglock); 3606 3607 if (sig) 3608 return sig; 3609 return ret ? -EINTR : -EAGAIN; 3610 } 3611 3612 /** 3613 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3614 * in @uthese 3615 * @uthese: queued signals to wait for 3616 * @uinfo: if non-null, the signal's siginfo is returned here 3617 * @uts: upper bound on process time suspension 3618 * @sigsetsize: size of sigset_t type 3619 */ 3620 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3621 siginfo_t __user *, uinfo, 3622 const struct __kernel_timespec __user *, uts, 3623 size_t, sigsetsize) 3624 { 3625 sigset_t these; 3626 struct timespec64 ts; 3627 kernel_siginfo_t info; 3628 int ret; 3629 3630 /* XXX: Don't preclude handling different sized sigset_t's. */ 3631 if (sigsetsize != sizeof(sigset_t)) 3632 return -EINVAL; 3633 3634 if (copy_from_user(&these, uthese, sizeof(these))) 3635 return -EFAULT; 3636 3637 if (uts) { 3638 if (get_timespec64(&ts, uts)) 3639 return -EFAULT; 3640 } 3641 3642 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3643 3644 if (ret > 0 && uinfo) { 3645 if (copy_siginfo_to_user(uinfo, &info)) 3646 ret = -EFAULT; 3647 } 3648 3649 return ret; 3650 } 3651 3652 #ifdef CONFIG_COMPAT_32BIT_TIME 3653 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3654 siginfo_t __user *, uinfo, 3655 const struct old_timespec32 __user *, uts, 3656 size_t, sigsetsize) 3657 { 3658 sigset_t these; 3659 struct timespec64 ts; 3660 kernel_siginfo_t info; 3661 int ret; 3662 3663 if (sigsetsize != sizeof(sigset_t)) 3664 return -EINVAL; 3665 3666 if (copy_from_user(&these, uthese, sizeof(these))) 3667 return -EFAULT; 3668 3669 if (uts) { 3670 if (get_old_timespec32(&ts, uts)) 3671 return -EFAULT; 3672 } 3673 3674 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3675 3676 if (ret > 0 && uinfo) { 3677 if (copy_siginfo_to_user(uinfo, &info)) 3678 ret = -EFAULT; 3679 } 3680 3681 return ret; 3682 } 3683 #endif 3684 3685 #ifdef CONFIG_COMPAT 3686 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3687 struct compat_siginfo __user *, uinfo, 3688 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3689 { 3690 sigset_t s; 3691 struct timespec64 t; 3692 kernel_siginfo_t info; 3693 long ret; 3694 3695 if (sigsetsize != sizeof(sigset_t)) 3696 return -EINVAL; 3697 3698 if (get_compat_sigset(&s, uthese)) 3699 return -EFAULT; 3700 3701 if (uts) { 3702 if (get_timespec64(&t, uts)) 3703 return -EFAULT; 3704 } 3705 3706 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3707 3708 if (ret > 0 && uinfo) { 3709 if (copy_siginfo_to_user32(uinfo, &info)) 3710 ret = -EFAULT; 3711 } 3712 3713 return ret; 3714 } 3715 3716 #ifdef CONFIG_COMPAT_32BIT_TIME 3717 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3718 struct compat_siginfo __user *, uinfo, 3719 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3720 { 3721 sigset_t s; 3722 struct timespec64 t; 3723 kernel_siginfo_t info; 3724 long ret; 3725 3726 if (sigsetsize != sizeof(sigset_t)) 3727 return -EINVAL; 3728 3729 if (get_compat_sigset(&s, uthese)) 3730 return -EFAULT; 3731 3732 if (uts) { 3733 if (get_old_timespec32(&t, uts)) 3734 return -EFAULT; 3735 } 3736 3737 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3738 3739 if (ret > 0 && uinfo) { 3740 if (copy_siginfo_to_user32(uinfo, &info)) 3741 ret = -EFAULT; 3742 } 3743 3744 return ret; 3745 } 3746 #endif 3747 #endif 3748 3749 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3750 { 3751 clear_siginfo(info); 3752 info->si_signo = sig; 3753 info->si_errno = 0; 3754 info->si_code = SI_USER; 3755 info->si_pid = task_tgid_vnr(current); 3756 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3757 } 3758 3759 /** 3760 * sys_kill - send a signal to a process 3761 * @pid: the PID of the process 3762 * @sig: signal to be sent 3763 */ 3764 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3765 { 3766 struct kernel_siginfo info; 3767 3768 prepare_kill_siginfo(sig, &info); 3769 3770 return kill_something_info(sig, &info, pid); 3771 } 3772 3773 /* 3774 * Verify that the signaler and signalee either are in the same pid namespace 3775 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3776 * namespace. 3777 */ 3778 static bool access_pidfd_pidns(struct pid *pid) 3779 { 3780 struct pid_namespace *active = task_active_pid_ns(current); 3781 struct pid_namespace *p = ns_of_pid(pid); 3782 3783 for (;;) { 3784 if (!p) 3785 return false; 3786 if (p == active) 3787 break; 3788 p = p->parent; 3789 } 3790 3791 return true; 3792 } 3793 3794 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3795 siginfo_t __user *info) 3796 { 3797 #ifdef CONFIG_COMPAT 3798 /* 3799 * Avoid hooking up compat syscalls and instead handle necessary 3800 * conversions here. Note, this is a stop-gap measure and should not be 3801 * considered a generic solution. 3802 */ 3803 if (in_compat_syscall()) 3804 return copy_siginfo_from_user32( 3805 kinfo, (struct compat_siginfo __user *)info); 3806 #endif 3807 return copy_siginfo_from_user(kinfo, info); 3808 } 3809 3810 static struct pid *pidfd_to_pid(const struct file *file) 3811 { 3812 struct pid *pid; 3813 3814 pid = pidfd_pid(file); 3815 if (!IS_ERR(pid)) 3816 return pid; 3817 3818 return tgid_pidfd_to_pid(file); 3819 } 3820 3821 /** 3822 * sys_pidfd_send_signal - Signal a process through a pidfd 3823 * @pidfd: file descriptor of the process 3824 * @sig: signal to send 3825 * @info: signal info 3826 * @flags: future flags 3827 * 3828 * The syscall currently only signals via PIDTYPE_PID which covers 3829 * kill(<positive-pid>, <signal>. It does not signal threads or process 3830 * groups. 3831 * In order to extend the syscall to threads and process groups the @flags 3832 * argument should be used. In essence, the @flags argument will determine 3833 * what is signaled and not the file descriptor itself. Put in other words, 3834 * grouping is a property of the flags argument not a property of the file 3835 * descriptor. 3836 * 3837 * Return: 0 on success, negative errno on failure 3838 */ 3839 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3840 siginfo_t __user *, info, unsigned int, flags) 3841 { 3842 int ret; 3843 struct fd f; 3844 struct pid *pid; 3845 kernel_siginfo_t kinfo; 3846 3847 /* Enforce flags be set to 0 until we add an extension. */ 3848 if (flags) 3849 return -EINVAL; 3850 3851 f = fdget(pidfd); 3852 if (!f.file) 3853 return -EBADF; 3854 3855 /* Is this a pidfd? */ 3856 pid = pidfd_to_pid(f.file); 3857 if (IS_ERR(pid)) { 3858 ret = PTR_ERR(pid); 3859 goto err; 3860 } 3861 3862 ret = -EINVAL; 3863 if (!access_pidfd_pidns(pid)) 3864 goto err; 3865 3866 if (info) { 3867 ret = copy_siginfo_from_user_any(&kinfo, info); 3868 if (unlikely(ret)) 3869 goto err; 3870 3871 ret = -EINVAL; 3872 if (unlikely(sig != kinfo.si_signo)) 3873 goto err; 3874 3875 /* Only allow sending arbitrary signals to yourself. */ 3876 ret = -EPERM; 3877 if ((task_pid(current) != pid) && 3878 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3879 goto err; 3880 } else { 3881 prepare_kill_siginfo(sig, &kinfo); 3882 } 3883 3884 ret = kill_pid_info(sig, &kinfo, pid); 3885 3886 err: 3887 fdput(f); 3888 return ret; 3889 } 3890 3891 static int 3892 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3893 { 3894 struct task_struct *p; 3895 int error = -ESRCH; 3896 3897 rcu_read_lock(); 3898 p = find_task_by_vpid(pid); 3899 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3900 error = check_kill_permission(sig, info, p); 3901 /* 3902 * The null signal is a permissions and process existence 3903 * probe. No signal is actually delivered. 3904 */ 3905 if (!error && sig) { 3906 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3907 /* 3908 * If lock_task_sighand() failed we pretend the task 3909 * dies after receiving the signal. The window is tiny, 3910 * and the signal is private anyway. 3911 */ 3912 if (unlikely(error == -ESRCH)) 3913 error = 0; 3914 } 3915 } 3916 rcu_read_unlock(); 3917 3918 return error; 3919 } 3920 3921 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3922 { 3923 struct kernel_siginfo info; 3924 3925 clear_siginfo(&info); 3926 info.si_signo = sig; 3927 info.si_errno = 0; 3928 info.si_code = SI_TKILL; 3929 info.si_pid = task_tgid_vnr(current); 3930 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3931 3932 return do_send_specific(tgid, pid, sig, &info); 3933 } 3934 3935 /** 3936 * sys_tgkill - send signal to one specific thread 3937 * @tgid: the thread group ID of the thread 3938 * @pid: the PID of the thread 3939 * @sig: signal to be sent 3940 * 3941 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3942 * exists but it's not belonging to the target process anymore. This 3943 * method solves the problem of threads exiting and PIDs getting reused. 3944 */ 3945 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3946 { 3947 /* This is only valid for single tasks */ 3948 if (pid <= 0 || tgid <= 0) 3949 return -EINVAL; 3950 3951 return do_tkill(tgid, pid, sig); 3952 } 3953 3954 /** 3955 * sys_tkill - send signal to one specific task 3956 * @pid: the PID of the task 3957 * @sig: signal to be sent 3958 * 3959 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3960 */ 3961 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3962 { 3963 /* This is only valid for single tasks */ 3964 if (pid <= 0) 3965 return -EINVAL; 3966 3967 return do_tkill(0, pid, sig); 3968 } 3969 3970 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 3971 { 3972 /* Not even root can pretend to send signals from the kernel. 3973 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3974 */ 3975 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3976 (task_pid_vnr(current) != pid)) 3977 return -EPERM; 3978 3979 /* POSIX.1b doesn't mention process groups. */ 3980 return kill_proc_info(sig, info, pid); 3981 } 3982 3983 /** 3984 * sys_rt_sigqueueinfo - send signal information to a signal 3985 * @pid: the PID of the thread 3986 * @sig: signal to be sent 3987 * @uinfo: signal info to be sent 3988 */ 3989 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3990 siginfo_t __user *, uinfo) 3991 { 3992 kernel_siginfo_t info; 3993 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3994 if (unlikely(ret)) 3995 return ret; 3996 return do_rt_sigqueueinfo(pid, sig, &info); 3997 } 3998 3999 #ifdef CONFIG_COMPAT 4000 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4001 compat_pid_t, pid, 4002 int, sig, 4003 struct compat_siginfo __user *, uinfo) 4004 { 4005 kernel_siginfo_t info; 4006 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4007 if (unlikely(ret)) 4008 return ret; 4009 return do_rt_sigqueueinfo(pid, sig, &info); 4010 } 4011 #endif 4012 4013 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4014 { 4015 /* This is only valid for single tasks */ 4016 if (pid <= 0 || tgid <= 0) 4017 return -EINVAL; 4018 4019 /* Not even root can pretend to send signals from the kernel. 4020 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4021 */ 4022 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4023 (task_pid_vnr(current) != pid)) 4024 return -EPERM; 4025 4026 return do_send_specific(tgid, pid, sig, info); 4027 } 4028 4029 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4030 siginfo_t __user *, uinfo) 4031 { 4032 kernel_siginfo_t info; 4033 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4034 if (unlikely(ret)) 4035 return ret; 4036 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4037 } 4038 4039 #ifdef CONFIG_COMPAT 4040 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4041 compat_pid_t, tgid, 4042 compat_pid_t, pid, 4043 int, sig, 4044 struct compat_siginfo __user *, uinfo) 4045 { 4046 kernel_siginfo_t info; 4047 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4048 if (unlikely(ret)) 4049 return ret; 4050 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4051 } 4052 #endif 4053 4054 /* 4055 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4056 */ 4057 void kernel_sigaction(int sig, __sighandler_t action) 4058 { 4059 spin_lock_irq(¤t->sighand->siglock); 4060 current->sighand->action[sig - 1].sa.sa_handler = action; 4061 if (action == SIG_IGN) { 4062 sigset_t mask; 4063 4064 sigemptyset(&mask); 4065 sigaddset(&mask, sig); 4066 4067 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4068 flush_sigqueue_mask(&mask, ¤t->pending); 4069 recalc_sigpending(); 4070 } 4071 spin_unlock_irq(¤t->sighand->siglock); 4072 } 4073 EXPORT_SYMBOL(kernel_sigaction); 4074 4075 void __weak sigaction_compat_abi(struct k_sigaction *act, 4076 struct k_sigaction *oact) 4077 { 4078 } 4079 4080 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4081 { 4082 struct task_struct *p = current, *t; 4083 struct k_sigaction *k; 4084 sigset_t mask; 4085 4086 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4087 return -EINVAL; 4088 4089 k = &p->sighand->action[sig-1]; 4090 4091 spin_lock_irq(&p->sighand->siglock); 4092 if (oact) 4093 *oact = *k; 4094 4095 /* 4096 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4097 * e.g. by having an architecture use the bit in their uapi. 4098 */ 4099 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4100 4101 /* 4102 * Clear unknown flag bits in order to allow userspace to detect missing 4103 * support for flag bits and to allow the kernel to use non-uapi bits 4104 * internally. 4105 */ 4106 if (act) 4107 act->sa.sa_flags &= UAPI_SA_FLAGS; 4108 if (oact) 4109 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4110 4111 sigaction_compat_abi(act, oact); 4112 4113 if (act) { 4114 sigdelsetmask(&act->sa.sa_mask, 4115 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4116 *k = *act; 4117 /* 4118 * POSIX 3.3.1.3: 4119 * "Setting a signal action to SIG_IGN for a signal that is 4120 * pending shall cause the pending signal to be discarded, 4121 * whether or not it is blocked." 4122 * 4123 * "Setting a signal action to SIG_DFL for a signal that is 4124 * pending and whose default action is to ignore the signal 4125 * (for example, SIGCHLD), shall cause the pending signal to 4126 * be discarded, whether or not it is blocked" 4127 */ 4128 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4129 sigemptyset(&mask); 4130 sigaddset(&mask, sig); 4131 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4132 for_each_thread(p, t) 4133 flush_sigqueue_mask(&mask, &t->pending); 4134 } 4135 } 4136 4137 spin_unlock_irq(&p->sighand->siglock); 4138 return 0; 4139 } 4140 4141 static int 4142 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4143 size_t min_ss_size) 4144 { 4145 struct task_struct *t = current; 4146 4147 if (oss) { 4148 memset(oss, 0, sizeof(stack_t)); 4149 oss->ss_sp = (void __user *) t->sas_ss_sp; 4150 oss->ss_size = t->sas_ss_size; 4151 oss->ss_flags = sas_ss_flags(sp) | 4152 (current->sas_ss_flags & SS_FLAG_BITS); 4153 } 4154 4155 if (ss) { 4156 void __user *ss_sp = ss->ss_sp; 4157 size_t ss_size = ss->ss_size; 4158 unsigned ss_flags = ss->ss_flags; 4159 int ss_mode; 4160 4161 if (unlikely(on_sig_stack(sp))) 4162 return -EPERM; 4163 4164 ss_mode = ss_flags & ~SS_FLAG_BITS; 4165 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4166 ss_mode != 0)) 4167 return -EINVAL; 4168 4169 if (ss_mode == SS_DISABLE) { 4170 ss_size = 0; 4171 ss_sp = NULL; 4172 } else { 4173 if (unlikely(ss_size < min_ss_size)) 4174 return -ENOMEM; 4175 } 4176 4177 t->sas_ss_sp = (unsigned long) ss_sp; 4178 t->sas_ss_size = ss_size; 4179 t->sas_ss_flags = ss_flags; 4180 } 4181 return 0; 4182 } 4183 4184 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4185 { 4186 stack_t new, old; 4187 int err; 4188 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4189 return -EFAULT; 4190 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4191 current_user_stack_pointer(), 4192 MINSIGSTKSZ); 4193 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4194 err = -EFAULT; 4195 return err; 4196 } 4197 4198 int restore_altstack(const stack_t __user *uss) 4199 { 4200 stack_t new; 4201 if (copy_from_user(&new, uss, sizeof(stack_t))) 4202 return -EFAULT; 4203 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4204 MINSIGSTKSZ); 4205 /* squash all but EFAULT for now */ 4206 return 0; 4207 } 4208 4209 int __save_altstack(stack_t __user *uss, unsigned long sp) 4210 { 4211 struct task_struct *t = current; 4212 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4213 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4214 __put_user(t->sas_ss_size, &uss->ss_size); 4215 return err; 4216 } 4217 4218 #ifdef CONFIG_COMPAT 4219 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4220 compat_stack_t __user *uoss_ptr) 4221 { 4222 stack_t uss, uoss; 4223 int ret; 4224 4225 if (uss_ptr) { 4226 compat_stack_t uss32; 4227 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4228 return -EFAULT; 4229 uss.ss_sp = compat_ptr(uss32.ss_sp); 4230 uss.ss_flags = uss32.ss_flags; 4231 uss.ss_size = uss32.ss_size; 4232 } 4233 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4234 compat_user_stack_pointer(), 4235 COMPAT_MINSIGSTKSZ); 4236 if (ret >= 0 && uoss_ptr) { 4237 compat_stack_t old; 4238 memset(&old, 0, sizeof(old)); 4239 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4240 old.ss_flags = uoss.ss_flags; 4241 old.ss_size = uoss.ss_size; 4242 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4243 ret = -EFAULT; 4244 } 4245 return ret; 4246 } 4247 4248 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4249 const compat_stack_t __user *, uss_ptr, 4250 compat_stack_t __user *, uoss_ptr) 4251 { 4252 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4253 } 4254 4255 int compat_restore_altstack(const compat_stack_t __user *uss) 4256 { 4257 int err = do_compat_sigaltstack(uss, NULL); 4258 /* squash all but -EFAULT for now */ 4259 return err == -EFAULT ? err : 0; 4260 } 4261 4262 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4263 { 4264 int err; 4265 struct task_struct *t = current; 4266 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4267 &uss->ss_sp) | 4268 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4269 __put_user(t->sas_ss_size, &uss->ss_size); 4270 return err; 4271 } 4272 #endif 4273 4274 #ifdef __ARCH_WANT_SYS_SIGPENDING 4275 4276 /** 4277 * sys_sigpending - examine pending signals 4278 * @uset: where mask of pending signal is returned 4279 */ 4280 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4281 { 4282 sigset_t set; 4283 4284 if (sizeof(old_sigset_t) > sizeof(*uset)) 4285 return -EINVAL; 4286 4287 do_sigpending(&set); 4288 4289 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4290 return -EFAULT; 4291 4292 return 0; 4293 } 4294 4295 #ifdef CONFIG_COMPAT 4296 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4297 { 4298 sigset_t set; 4299 4300 do_sigpending(&set); 4301 4302 return put_user(set.sig[0], set32); 4303 } 4304 #endif 4305 4306 #endif 4307 4308 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4309 /** 4310 * sys_sigprocmask - examine and change blocked signals 4311 * @how: whether to add, remove, or set signals 4312 * @nset: signals to add or remove (if non-null) 4313 * @oset: previous value of signal mask if non-null 4314 * 4315 * Some platforms have their own version with special arguments; 4316 * others support only sys_rt_sigprocmask. 4317 */ 4318 4319 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4320 old_sigset_t __user *, oset) 4321 { 4322 old_sigset_t old_set, new_set; 4323 sigset_t new_blocked; 4324 4325 old_set = current->blocked.sig[0]; 4326 4327 if (nset) { 4328 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4329 return -EFAULT; 4330 4331 new_blocked = current->blocked; 4332 4333 switch (how) { 4334 case SIG_BLOCK: 4335 sigaddsetmask(&new_blocked, new_set); 4336 break; 4337 case SIG_UNBLOCK: 4338 sigdelsetmask(&new_blocked, new_set); 4339 break; 4340 case SIG_SETMASK: 4341 new_blocked.sig[0] = new_set; 4342 break; 4343 default: 4344 return -EINVAL; 4345 } 4346 4347 set_current_blocked(&new_blocked); 4348 } 4349 4350 if (oset) { 4351 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4352 return -EFAULT; 4353 } 4354 4355 return 0; 4356 } 4357 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4358 4359 #ifndef CONFIG_ODD_RT_SIGACTION 4360 /** 4361 * sys_rt_sigaction - alter an action taken by a process 4362 * @sig: signal to be sent 4363 * @act: new sigaction 4364 * @oact: used to save the previous sigaction 4365 * @sigsetsize: size of sigset_t type 4366 */ 4367 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4368 const struct sigaction __user *, act, 4369 struct sigaction __user *, oact, 4370 size_t, sigsetsize) 4371 { 4372 struct k_sigaction new_sa, old_sa; 4373 int ret; 4374 4375 /* XXX: Don't preclude handling different sized sigset_t's. */ 4376 if (sigsetsize != sizeof(sigset_t)) 4377 return -EINVAL; 4378 4379 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4380 return -EFAULT; 4381 4382 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4383 if (ret) 4384 return ret; 4385 4386 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4387 return -EFAULT; 4388 4389 return 0; 4390 } 4391 #ifdef CONFIG_COMPAT 4392 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4393 const struct compat_sigaction __user *, act, 4394 struct compat_sigaction __user *, oact, 4395 compat_size_t, sigsetsize) 4396 { 4397 struct k_sigaction new_ka, old_ka; 4398 #ifdef __ARCH_HAS_SA_RESTORER 4399 compat_uptr_t restorer; 4400 #endif 4401 int ret; 4402 4403 /* XXX: Don't preclude handling different sized sigset_t's. */ 4404 if (sigsetsize != sizeof(compat_sigset_t)) 4405 return -EINVAL; 4406 4407 if (act) { 4408 compat_uptr_t handler; 4409 ret = get_user(handler, &act->sa_handler); 4410 new_ka.sa.sa_handler = compat_ptr(handler); 4411 #ifdef __ARCH_HAS_SA_RESTORER 4412 ret |= get_user(restorer, &act->sa_restorer); 4413 new_ka.sa.sa_restorer = compat_ptr(restorer); 4414 #endif 4415 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4416 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4417 if (ret) 4418 return -EFAULT; 4419 } 4420 4421 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4422 if (!ret && oact) { 4423 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4424 &oact->sa_handler); 4425 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4426 sizeof(oact->sa_mask)); 4427 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4428 #ifdef __ARCH_HAS_SA_RESTORER 4429 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4430 &oact->sa_restorer); 4431 #endif 4432 } 4433 return ret; 4434 } 4435 #endif 4436 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4437 4438 #ifdef CONFIG_OLD_SIGACTION 4439 SYSCALL_DEFINE3(sigaction, int, sig, 4440 const struct old_sigaction __user *, act, 4441 struct old_sigaction __user *, oact) 4442 { 4443 struct k_sigaction new_ka, old_ka; 4444 int ret; 4445 4446 if (act) { 4447 old_sigset_t mask; 4448 if (!access_ok(act, sizeof(*act)) || 4449 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4450 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4451 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4452 __get_user(mask, &act->sa_mask)) 4453 return -EFAULT; 4454 #ifdef __ARCH_HAS_KA_RESTORER 4455 new_ka.ka_restorer = NULL; 4456 #endif 4457 siginitset(&new_ka.sa.sa_mask, mask); 4458 } 4459 4460 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4461 4462 if (!ret && oact) { 4463 if (!access_ok(oact, sizeof(*oact)) || 4464 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4465 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4466 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4467 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4468 return -EFAULT; 4469 } 4470 4471 return ret; 4472 } 4473 #endif 4474 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4475 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4476 const struct compat_old_sigaction __user *, act, 4477 struct compat_old_sigaction __user *, oact) 4478 { 4479 struct k_sigaction new_ka, old_ka; 4480 int ret; 4481 compat_old_sigset_t mask; 4482 compat_uptr_t handler, restorer; 4483 4484 if (act) { 4485 if (!access_ok(act, sizeof(*act)) || 4486 __get_user(handler, &act->sa_handler) || 4487 __get_user(restorer, &act->sa_restorer) || 4488 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4489 __get_user(mask, &act->sa_mask)) 4490 return -EFAULT; 4491 4492 #ifdef __ARCH_HAS_KA_RESTORER 4493 new_ka.ka_restorer = NULL; 4494 #endif 4495 new_ka.sa.sa_handler = compat_ptr(handler); 4496 new_ka.sa.sa_restorer = compat_ptr(restorer); 4497 siginitset(&new_ka.sa.sa_mask, mask); 4498 } 4499 4500 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4501 4502 if (!ret && oact) { 4503 if (!access_ok(oact, sizeof(*oact)) || 4504 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4505 &oact->sa_handler) || 4506 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4507 &oact->sa_restorer) || 4508 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4509 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4510 return -EFAULT; 4511 } 4512 return ret; 4513 } 4514 #endif 4515 4516 #ifdef CONFIG_SGETMASK_SYSCALL 4517 4518 /* 4519 * For backwards compatibility. Functionality superseded by sigprocmask. 4520 */ 4521 SYSCALL_DEFINE0(sgetmask) 4522 { 4523 /* SMP safe */ 4524 return current->blocked.sig[0]; 4525 } 4526 4527 SYSCALL_DEFINE1(ssetmask, int, newmask) 4528 { 4529 int old = current->blocked.sig[0]; 4530 sigset_t newset; 4531 4532 siginitset(&newset, newmask); 4533 set_current_blocked(&newset); 4534 4535 return old; 4536 } 4537 #endif /* CONFIG_SGETMASK_SYSCALL */ 4538 4539 #ifdef __ARCH_WANT_SYS_SIGNAL 4540 /* 4541 * For backwards compatibility. Functionality superseded by sigaction. 4542 */ 4543 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4544 { 4545 struct k_sigaction new_sa, old_sa; 4546 int ret; 4547 4548 new_sa.sa.sa_handler = handler; 4549 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4550 sigemptyset(&new_sa.sa.sa_mask); 4551 4552 ret = do_sigaction(sig, &new_sa, &old_sa); 4553 4554 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4555 } 4556 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4557 4558 #ifdef __ARCH_WANT_SYS_PAUSE 4559 4560 SYSCALL_DEFINE0(pause) 4561 { 4562 while (!signal_pending(current)) { 4563 __set_current_state(TASK_INTERRUPTIBLE); 4564 schedule(); 4565 } 4566 return -ERESTARTNOHAND; 4567 } 4568 4569 #endif 4570 4571 static int sigsuspend(sigset_t *set) 4572 { 4573 current->saved_sigmask = current->blocked; 4574 set_current_blocked(set); 4575 4576 while (!signal_pending(current)) { 4577 __set_current_state(TASK_INTERRUPTIBLE); 4578 schedule(); 4579 } 4580 set_restore_sigmask(); 4581 return -ERESTARTNOHAND; 4582 } 4583 4584 /** 4585 * sys_rt_sigsuspend - replace the signal mask for a value with the 4586 * @unewset value until a signal is received 4587 * @unewset: new signal mask value 4588 * @sigsetsize: size of sigset_t type 4589 */ 4590 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4591 { 4592 sigset_t newset; 4593 4594 /* XXX: Don't preclude handling different sized sigset_t's. */ 4595 if (sigsetsize != sizeof(sigset_t)) 4596 return -EINVAL; 4597 4598 if (copy_from_user(&newset, unewset, sizeof(newset))) 4599 return -EFAULT; 4600 return sigsuspend(&newset); 4601 } 4602 4603 #ifdef CONFIG_COMPAT 4604 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4605 { 4606 sigset_t newset; 4607 4608 /* XXX: Don't preclude handling different sized sigset_t's. */ 4609 if (sigsetsize != sizeof(sigset_t)) 4610 return -EINVAL; 4611 4612 if (get_compat_sigset(&newset, unewset)) 4613 return -EFAULT; 4614 return sigsuspend(&newset); 4615 } 4616 #endif 4617 4618 #ifdef CONFIG_OLD_SIGSUSPEND 4619 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4620 { 4621 sigset_t blocked; 4622 siginitset(&blocked, mask); 4623 return sigsuspend(&blocked); 4624 } 4625 #endif 4626 #ifdef CONFIG_OLD_SIGSUSPEND3 4627 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4628 { 4629 sigset_t blocked; 4630 siginitset(&blocked, mask); 4631 return sigsuspend(&blocked); 4632 } 4633 #endif 4634 4635 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4636 { 4637 return NULL; 4638 } 4639 4640 static inline void siginfo_buildtime_checks(void) 4641 { 4642 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4643 4644 /* Verify the offsets in the two siginfos match */ 4645 #define CHECK_OFFSET(field) \ 4646 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4647 4648 /* kill */ 4649 CHECK_OFFSET(si_pid); 4650 CHECK_OFFSET(si_uid); 4651 4652 /* timer */ 4653 CHECK_OFFSET(si_tid); 4654 CHECK_OFFSET(si_overrun); 4655 CHECK_OFFSET(si_value); 4656 4657 /* rt */ 4658 CHECK_OFFSET(si_pid); 4659 CHECK_OFFSET(si_uid); 4660 CHECK_OFFSET(si_value); 4661 4662 /* sigchld */ 4663 CHECK_OFFSET(si_pid); 4664 CHECK_OFFSET(si_uid); 4665 CHECK_OFFSET(si_status); 4666 CHECK_OFFSET(si_utime); 4667 CHECK_OFFSET(si_stime); 4668 4669 /* sigfault */ 4670 CHECK_OFFSET(si_addr); 4671 CHECK_OFFSET(si_trapno); 4672 CHECK_OFFSET(si_addr_lsb); 4673 CHECK_OFFSET(si_lower); 4674 CHECK_OFFSET(si_upper); 4675 CHECK_OFFSET(si_pkey); 4676 CHECK_OFFSET(si_perf_data); 4677 CHECK_OFFSET(si_perf_type); 4678 4679 /* sigpoll */ 4680 CHECK_OFFSET(si_band); 4681 CHECK_OFFSET(si_fd); 4682 4683 /* sigsys */ 4684 CHECK_OFFSET(si_call_addr); 4685 CHECK_OFFSET(si_syscall); 4686 CHECK_OFFSET(si_arch); 4687 #undef CHECK_OFFSET 4688 4689 /* usb asyncio */ 4690 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4691 offsetof(struct siginfo, si_addr)); 4692 if (sizeof(int) == sizeof(void __user *)) { 4693 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4694 sizeof(void __user *)); 4695 } else { 4696 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4697 sizeof_field(struct siginfo, si_uid)) != 4698 sizeof(void __user *)); 4699 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4700 offsetof(struct siginfo, si_uid)); 4701 } 4702 #ifdef CONFIG_COMPAT 4703 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4704 offsetof(struct compat_siginfo, si_addr)); 4705 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4706 sizeof(compat_uptr_t)); 4707 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4708 sizeof_field(struct siginfo, si_pid)); 4709 #endif 4710 } 4711 4712 void __init signals_init(void) 4713 { 4714 siginfo_buildtime_checks(); 4715 4716 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4717 } 4718 4719 #ifdef CONFIG_KGDB_KDB 4720 #include <linux/kdb.h> 4721 /* 4722 * kdb_send_sig - Allows kdb to send signals without exposing 4723 * signal internals. This function checks if the required locks are 4724 * available before calling the main signal code, to avoid kdb 4725 * deadlocks. 4726 */ 4727 void kdb_send_sig(struct task_struct *t, int sig) 4728 { 4729 static struct task_struct *kdb_prev_t; 4730 int new_t, ret; 4731 if (!spin_trylock(&t->sighand->siglock)) { 4732 kdb_printf("Can't do kill command now.\n" 4733 "The sigmask lock is held somewhere else in " 4734 "kernel, try again later\n"); 4735 return; 4736 } 4737 new_t = kdb_prev_t != t; 4738 kdb_prev_t = t; 4739 if (!task_is_running(t) && new_t) { 4740 spin_unlock(&t->sighand->siglock); 4741 kdb_printf("Process is not RUNNING, sending a signal from " 4742 "kdb risks deadlock\n" 4743 "on the run queue locks. " 4744 "The signal has _not_ been sent.\n" 4745 "Reissue the kill command if you want to risk " 4746 "the deadlock.\n"); 4747 return; 4748 } 4749 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4750 spin_unlock(&t->sighand->siglock); 4751 if (ret) 4752 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4753 sig, t->pid); 4754 else 4755 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4756 } 4757 #endif /* CONFIG_KGDB_KDB */ 4758