1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/proc_fs.h> 26 #include <linux/tty.h> 27 #include <linux/binfmts.h> 28 #include <linux/coredump.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/ptrace.h> 32 #include <linux/signal.h> 33 #include <linux/signalfd.h> 34 #include <linux/ratelimit.h> 35 #include <linux/tracehook.h> 36 #include <linux/capability.h> 37 #include <linux/freezer.h> 38 #include <linux/pid_namespace.h> 39 #include <linux/nsproxy.h> 40 #include <linux/user_namespace.h> 41 #include <linux/uprobes.h> 42 #include <linux/compat.h> 43 #include <linux/cn_proc.h> 44 #include <linux/compiler.h> 45 #include <linux/posix-timers.h> 46 #include <linux/livepatch.h> 47 #include <linux/cgroup.h> 48 #include <linux/audit.h> 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/signal.h> 52 53 #include <asm/param.h> 54 #include <linux/uaccess.h> 55 #include <asm/unistd.h> 56 #include <asm/siginfo.h> 57 #include <asm/cacheflush.h> 58 59 /* 60 * SLAB caches for signal bits. 61 */ 62 63 static struct kmem_cache *sigqueue_cachep; 64 65 int print_fatal_signals __read_mostly; 66 67 static void __user *sig_handler(struct task_struct *t, int sig) 68 { 69 return t->sighand->action[sig - 1].sa.sa_handler; 70 } 71 72 static inline bool sig_handler_ignored(void __user *handler, int sig) 73 { 74 /* Is it explicitly or implicitly ignored? */ 75 return handler == SIG_IGN || 76 (handler == SIG_DFL && sig_kernel_ignore(sig)); 77 } 78 79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 80 { 81 void __user *handler; 82 83 handler = sig_handler(t, sig); 84 85 /* SIGKILL and SIGSTOP may not be sent to the global init */ 86 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 87 return true; 88 89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 90 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 91 return true; 92 93 /* Only allow kernel generated signals to this kthread */ 94 if (unlikely((t->flags & PF_KTHREAD) && 95 (handler == SIG_KTHREAD_KERNEL) && !force)) 96 return true; 97 98 return sig_handler_ignored(handler, sig); 99 } 100 101 static bool sig_ignored(struct task_struct *t, int sig, bool force) 102 { 103 /* 104 * Blocked signals are never ignored, since the 105 * signal handler may change by the time it is 106 * unblocked. 107 */ 108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 109 return false; 110 111 /* 112 * Tracers may want to know about even ignored signal unless it 113 * is SIGKILL which can't be reported anyway but can be ignored 114 * by SIGNAL_UNKILLABLE task. 115 */ 116 if (t->ptrace && sig != SIGKILL) 117 return false; 118 119 return sig_task_ignored(t, sig, force); 120 } 121 122 /* 123 * Re-calculate pending state from the set of locally pending 124 * signals, globally pending signals, and blocked signals. 125 */ 126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 127 { 128 unsigned long ready; 129 long i; 130 131 switch (_NSIG_WORDS) { 132 default: 133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 134 ready |= signal->sig[i] &~ blocked->sig[i]; 135 break; 136 137 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 138 ready |= signal->sig[2] &~ blocked->sig[2]; 139 ready |= signal->sig[1] &~ blocked->sig[1]; 140 ready |= signal->sig[0] &~ blocked->sig[0]; 141 break; 142 143 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 144 ready |= signal->sig[0] &~ blocked->sig[0]; 145 break; 146 147 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 148 } 149 return ready != 0; 150 } 151 152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 153 154 static bool recalc_sigpending_tsk(struct task_struct *t) 155 { 156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 157 PENDING(&t->pending, &t->blocked) || 158 PENDING(&t->signal->shared_pending, &t->blocked) || 159 cgroup_task_frozen(t)) { 160 set_tsk_thread_flag(t, TIF_SIGPENDING); 161 return true; 162 } 163 164 /* 165 * We must never clear the flag in another thread, or in current 166 * when it's possible the current syscall is returning -ERESTART*. 167 * So we don't clear it here, and only callers who know they should do. 168 */ 169 return false; 170 } 171 172 /* 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 174 * This is superfluous when called on current, the wakeup is a harmless no-op. 175 */ 176 void recalc_sigpending_and_wake(struct task_struct *t) 177 { 178 if (recalc_sigpending_tsk(t)) 179 signal_wake_up(t, 0); 180 } 181 182 void recalc_sigpending(void) 183 { 184 if (!recalc_sigpending_tsk(current) && !freezing(current) && 185 !klp_patch_pending(current)) 186 clear_thread_flag(TIF_SIGPENDING); 187 188 } 189 EXPORT_SYMBOL(recalc_sigpending); 190 191 void calculate_sigpending(void) 192 { 193 /* Have any signals or users of TIF_SIGPENDING been delayed 194 * until after fork? 195 */ 196 spin_lock_irq(¤t->sighand->siglock); 197 set_tsk_thread_flag(current, TIF_SIGPENDING); 198 recalc_sigpending(); 199 spin_unlock_irq(¤t->sighand->siglock); 200 } 201 202 /* Given the mask, find the first available signal that should be serviced. */ 203 204 #define SYNCHRONOUS_MASK \ 205 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 206 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 207 208 int next_signal(struct sigpending *pending, sigset_t *mask) 209 { 210 unsigned long i, *s, *m, x; 211 int sig = 0; 212 213 s = pending->signal.sig; 214 m = mask->sig; 215 216 /* 217 * Handle the first word specially: it contains the 218 * synchronous signals that need to be dequeued first. 219 */ 220 x = *s &~ *m; 221 if (x) { 222 if (x & SYNCHRONOUS_MASK) 223 x &= SYNCHRONOUS_MASK; 224 sig = ffz(~x) + 1; 225 return sig; 226 } 227 228 switch (_NSIG_WORDS) { 229 default: 230 for (i = 1; i < _NSIG_WORDS; ++i) { 231 x = *++s &~ *++m; 232 if (!x) 233 continue; 234 sig = ffz(~x) + i*_NSIG_BPW + 1; 235 break; 236 } 237 break; 238 239 case 2: 240 x = s[1] &~ m[1]; 241 if (!x) 242 break; 243 sig = ffz(~x) + _NSIG_BPW + 1; 244 break; 245 246 case 1: 247 /* Nothing to do */ 248 break; 249 } 250 251 return sig; 252 } 253 254 static inline void print_dropped_signal(int sig) 255 { 256 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 257 258 if (!print_fatal_signals) 259 return; 260 261 if (!__ratelimit(&ratelimit_state)) 262 return; 263 264 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 265 current->comm, current->pid, sig); 266 } 267 268 /** 269 * task_set_jobctl_pending - set jobctl pending bits 270 * @task: target task 271 * @mask: pending bits to set 272 * 273 * Clear @mask from @task->jobctl. @mask must be subset of 274 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 275 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 276 * cleared. If @task is already being killed or exiting, this function 277 * becomes noop. 278 * 279 * CONTEXT: 280 * Must be called with @task->sighand->siglock held. 281 * 282 * RETURNS: 283 * %true if @mask is set, %false if made noop because @task was dying. 284 */ 285 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 286 { 287 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 288 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 289 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 290 291 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 292 return false; 293 294 if (mask & JOBCTL_STOP_SIGMASK) 295 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 296 297 task->jobctl |= mask; 298 return true; 299 } 300 301 /** 302 * task_clear_jobctl_trapping - clear jobctl trapping bit 303 * @task: target task 304 * 305 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 306 * Clear it and wake up the ptracer. Note that we don't need any further 307 * locking. @task->siglock guarantees that @task->parent points to the 308 * ptracer. 309 * 310 * CONTEXT: 311 * Must be called with @task->sighand->siglock held. 312 */ 313 void task_clear_jobctl_trapping(struct task_struct *task) 314 { 315 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 316 task->jobctl &= ~JOBCTL_TRAPPING; 317 smp_mb(); /* advised by wake_up_bit() */ 318 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 319 } 320 } 321 322 /** 323 * task_clear_jobctl_pending - clear jobctl pending bits 324 * @task: target task 325 * @mask: pending bits to clear 326 * 327 * Clear @mask from @task->jobctl. @mask must be subset of 328 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 329 * STOP bits are cleared together. 330 * 331 * If clearing of @mask leaves no stop or trap pending, this function calls 332 * task_clear_jobctl_trapping(). 333 * 334 * CONTEXT: 335 * Must be called with @task->sighand->siglock held. 336 */ 337 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 338 { 339 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 340 341 if (mask & JOBCTL_STOP_PENDING) 342 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 343 344 task->jobctl &= ~mask; 345 346 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 347 task_clear_jobctl_trapping(task); 348 } 349 350 /** 351 * task_participate_group_stop - participate in a group stop 352 * @task: task participating in a group stop 353 * 354 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 355 * Group stop states are cleared and the group stop count is consumed if 356 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 357 * stop, the appropriate `SIGNAL_*` flags are set. 358 * 359 * CONTEXT: 360 * Must be called with @task->sighand->siglock held. 361 * 362 * RETURNS: 363 * %true if group stop completion should be notified to the parent, %false 364 * otherwise. 365 */ 366 static bool task_participate_group_stop(struct task_struct *task) 367 { 368 struct signal_struct *sig = task->signal; 369 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 370 371 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 372 373 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 374 375 if (!consume) 376 return false; 377 378 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 379 sig->group_stop_count--; 380 381 /* 382 * Tell the caller to notify completion iff we are entering into a 383 * fresh group stop. Read comment in do_signal_stop() for details. 384 */ 385 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 386 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 387 return true; 388 } 389 return false; 390 } 391 392 void task_join_group_stop(struct task_struct *task) 393 { 394 /* Have the new thread join an on-going signal group stop */ 395 unsigned long jobctl = current->jobctl; 396 if (jobctl & JOBCTL_STOP_PENDING) { 397 struct signal_struct *sig = current->signal; 398 unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK; 399 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 400 if (task_set_jobctl_pending(task, signr | gstop)) { 401 sig->group_stop_count++; 402 } 403 } 404 } 405 406 /* 407 * allocate a new signal queue record 408 * - this may be called without locks if and only if t == current, otherwise an 409 * appropriate lock must be held to stop the target task from exiting 410 */ 411 static struct sigqueue * 412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 413 { 414 struct sigqueue *q = NULL; 415 struct user_struct *user; 416 int sigpending; 417 418 /* 419 * Protect access to @t credentials. This can go away when all 420 * callers hold rcu read lock. 421 * 422 * NOTE! A pending signal will hold on to the user refcount, 423 * and we get/put the refcount only when the sigpending count 424 * changes from/to zero. 425 */ 426 rcu_read_lock(); 427 user = __task_cred(t)->user; 428 sigpending = atomic_inc_return(&user->sigpending); 429 if (sigpending == 1) 430 get_uid(user); 431 rcu_read_unlock(); 432 433 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 434 q = kmem_cache_alloc(sigqueue_cachep, flags); 435 } else { 436 print_dropped_signal(sig); 437 } 438 439 if (unlikely(q == NULL)) { 440 if (atomic_dec_and_test(&user->sigpending)) 441 free_uid(user); 442 } else { 443 INIT_LIST_HEAD(&q->list); 444 q->flags = 0; 445 q->user = user; 446 } 447 448 return q; 449 } 450 451 static void __sigqueue_free(struct sigqueue *q) 452 { 453 if (q->flags & SIGQUEUE_PREALLOC) 454 return; 455 if (atomic_dec_and_test(&q->user->sigpending)) 456 free_uid(q->user); 457 kmem_cache_free(sigqueue_cachep, q); 458 } 459 460 void flush_sigqueue(struct sigpending *queue) 461 { 462 struct sigqueue *q; 463 464 sigemptyset(&queue->signal); 465 while (!list_empty(&queue->list)) { 466 q = list_entry(queue->list.next, struct sigqueue , list); 467 list_del_init(&q->list); 468 __sigqueue_free(q); 469 } 470 } 471 472 /* 473 * Flush all pending signals for this kthread. 474 */ 475 void flush_signals(struct task_struct *t) 476 { 477 unsigned long flags; 478 479 spin_lock_irqsave(&t->sighand->siglock, flags); 480 clear_tsk_thread_flag(t, TIF_SIGPENDING); 481 flush_sigqueue(&t->pending); 482 flush_sigqueue(&t->signal->shared_pending); 483 spin_unlock_irqrestore(&t->sighand->siglock, flags); 484 } 485 EXPORT_SYMBOL(flush_signals); 486 487 #ifdef CONFIG_POSIX_TIMERS 488 static void __flush_itimer_signals(struct sigpending *pending) 489 { 490 sigset_t signal, retain; 491 struct sigqueue *q, *n; 492 493 signal = pending->signal; 494 sigemptyset(&retain); 495 496 list_for_each_entry_safe(q, n, &pending->list, list) { 497 int sig = q->info.si_signo; 498 499 if (likely(q->info.si_code != SI_TIMER)) { 500 sigaddset(&retain, sig); 501 } else { 502 sigdelset(&signal, sig); 503 list_del_init(&q->list); 504 __sigqueue_free(q); 505 } 506 } 507 508 sigorsets(&pending->signal, &signal, &retain); 509 } 510 511 void flush_itimer_signals(void) 512 { 513 struct task_struct *tsk = current; 514 unsigned long flags; 515 516 spin_lock_irqsave(&tsk->sighand->siglock, flags); 517 __flush_itimer_signals(&tsk->pending); 518 __flush_itimer_signals(&tsk->signal->shared_pending); 519 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 520 } 521 #endif 522 523 void ignore_signals(struct task_struct *t) 524 { 525 int i; 526 527 for (i = 0; i < _NSIG; ++i) 528 t->sighand->action[i].sa.sa_handler = SIG_IGN; 529 530 flush_signals(t); 531 } 532 533 /* 534 * Flush all handlers for a task. 535 */ 536 537 void 538 flush_signal_handlers(struct task_struct *t, int force_default) 539 { 540 int i; 541 struct k_sigaction *ka = &t->sighand->action[0]; 542 for (i = _NSIG ; i != 0 ; i--) { 543 if (force_default || ka->sa.sa_handler != SIG_IGN) 544 ka->sa.sa_handler = SIG_DFL; 545 ka->sa.sa_flags = 0; 546 #ifdef __ARCH_HAS_SA_RESTORER 547 ka->sa.sa_restorer = NULL; 548 #endif 549 sigemptyset(&ka->sa.sa_mask); 550 ka++; 551 } 552 } 553 554 bool unhandled_signal(struct task_struct *tsk, int sig) 555 { 556 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 557 if (is_global_init(tsk)) 558 return true; 559 560 if (handler != SIG_IGN && handler != SIG_DFL) 561 return false; 562 563 /* if ptraced, let the tracer determine */ 564 return !tsk->ptrace; 565 } 566 567 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 568 bool *resched_timer) 569 { 570 struct sigqueue *q, *first = NULL; 571 572 /* 573 * Collect the siginfo appropriate to this signal. Check if 574 * there is another siginfo for the same signal. 575 */ 576 list_for_each_entry(q, &list->list, list) { 577 if (q->info.si_signo == sig) { 578 if (first) 579 goto still_pending; 580 first = q; 581 } 582 } 583 584 sigdelset(&list->signal, sig); 585 586 if (first) { 587 still_pending: 588 list_del_init(&first->list); 589 copy_siginfo(info, &first->info); 590 591 *resched_timer = 592 (first->flags & SIGQUEUE_PREALLOC) && 593 (info->si_code == SI_TIMER) && 594 (info->si_sys_private); 595 596 __sigqueue_free(first); 597 } else { 598 /* 599 * Ok, it wasn't in the queue. This must be 600 * a fast-pathed signal or we must have been 601 * out of queue space. So zero out the info. 602 */ 603 clear_siginfo(info); 604 info->si_signo = sig; 605 info->si_errno = 0; 606 info->si_code = SI_USER; 607 info->si_pid = 0; 608 info->si_uid = 0; 609 } 610 } 611 612 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 613 kernel_siginfo_t *info, bool *resched_timer) 614 { 615 int sig = next_signal(pending, mask); 616 617 if (sig) 618 collect_signal(sig, pending, info, resched_timer); 619 return sig; 620 } 621 622 /* 623 * Dequeue a signal and return the element to the caller, which is 624 * expected to free it. 625 * 626 * All callers have to hold the siglock. 627 */ 628 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info) 629 { 630 bool resched_timer = false; 631 int signr; 632 633 /* We only dequeue private signals from ourselves, we don't let 634 * signalfd steal them 635 */ 636 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 637 if (!signr) { 638 signr = __dequeue_signal(&tsk->signal->shared_pending, 639 mask, info, &resched_timer); 640 #ifdef CONFIG_POSIX_TIMERS 641 /* 642 * itimer signal ? 643 * 644 * itimers are process shared and we restart periodic 645 * itimers in the signal delivery path to prevent DoS 646 * attacks in the high resolution timer case. This is 647 * compliant with the old way of self-restarting 648 * itimers, as the SIGALRM is a legacy signal and only 649 * queued once. Changing the restart behaviour to 650 * restart the timer in the signal dequeue path is 651 * reducing the timer noise on heavy loaded !highres 652 * systems too. 653 */ 654 if (unlikely(signr == SIGALRM)) { 655 struct hrtimer *tmr = &tsk->signal->real_timer; 656 657 if (!hrtimer_is_queued(tmr) && 658 tsk->signal->it_real_incr != 0) { 659 hrtimer_forward(tmr, tmr->base->get_time(), 660 tsk->signal->it_real_incr); 661 hrtimer_restart(tmr); 662 } 663 } 664 #endif 665 } 666 667 recalc_sigpending(); 668 if (!signr) 669 return 0; 670 671 if (unlikely(sig_kernel_stop(signr))) { 672 /* 673 * Set a marker that we have dequeued a stop signal. Our 674 * caller might release the siglock and then the pending 675 * stop signal it is about to process is no longer in the 676 * pending bitmasks, but must still be cleared by a SIGCONT 677 * (and overruled by a SIGKILL). So those cases clear this 678 * shared flag after we've set it. Note that this flag may 679 * remain set after the signal we return is ignored or 680 * handled. That doesn't matter because its only purpose 681 * is to alert stop-signal processing code when another 682 * processor has come along and cleared the flag. 683 */ 684 current->jobctl |= JOBCTL_STOP_DEQUEUED; 685 } 686 #ifdef CONFIG_POSIX_TIMERS 687 if (resched_timer) { 688 /* 689 * Release the siglock to ensure proper locking order 690 * of timer locks outside of siglocks. Note, we leave 691 * irqs disabled here, since the posix-timers code is 692 * about to disable them again anyway. 693 */ 694 spin_unlock(&tsk->sighand->siglock); 695 posixtimer_rearm(info); 696 spin_lock(&tsk->sighand->siglock); 697 698 /* Don't expose the si_sys_private value to userspace */ 699 info->si_sys_private = 0; 700 } 701 #endif 702 return signr; 703 } 704 EXPORT_SYMBOL_GPL(dequeue_signal); 705 706 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 707 { 708 struct task_struct *tsk = current; 709 struct sigpending *pending = &tsk->pending; 710 struct sigqueue *q, *sync = NULL; 711 712 /* 713 * Might a synchronous signal be in the queue? 714 */ 715 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 716 return 0; 717 718 /* 719 * Return the first synchronous signal in the queue. 720 */ 721 list_for_each_entry(q, &pending->list, list) { 722 /* Synchronous signals have a postive si_code */ 723 if ((q->info.si_code > SI_USER) && 724 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 725 sync = q; 726 goto next; 727 } 728 } 729 return 0; 730 next: 731 /* 732 * Check if there is another siginfo for the same signal. 733 */ 734 list_for_each_entry_continue(q, &pending->list, list) { 735 if (q->info.si_signo == sync->info.si_signo) 736 goto still_pending; 737 } 738 739 sigdelset(&pending->signal, sync->info.si_signo); 740 recalc_sigpending(); 741 still_pending: 742 list_del_init(&sync->list); 743 copy_siginfo(info, &sync->info); 744 __sigqueue_free(sync); 745 return info->si_signo; 746 } 747 748 /* 749 * Tell a process that it has a new active signal.. 750 * 751 * NOTE! we rely on the previous spin_lock to 752 * lock interrupts for us! We can only be called with 753 * "siglock" held, and the local interrupt must 754 * have been disabled when that got acquired! 755 * 756 * No need to set need_resched since signal event passing 757 * goes through ->blocked 758 */ 759 void signal_wake_up_state(struct task_struct *t, unsigned int state) 760 { 761 set_tsk_thread_flag(t, TIF_SIGPENDING); 762 /* 763 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 764 * case. We don't check t->state here because there is a race with it 765 * executing another processor and just now entering stopped state. 766 * By using wake_up_state, we ensure the process will wake up and 767 * handle its death signal. 768 */ 769 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 770 kick_process(t); 771 } 772 773 /* 774 * Remove signals in mask from the pending set and queue. 775 * Returns 1 if any signals were found. 776 * 777 * All callers must be holding the siglock. 778 */ 779 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 780 { 781 struct sigqueue *q, *n; 782 sigset_t m; 783 784 sigandsets(&m, mask, &s->signal); 785 if (sigisemptyset(&m)) 786 return; 787 788 sigandnsets(&s->signal, &s->signal, mask); 789 list_for_each_entry_safe(q, n, &s->list, list) { 790 if (sigismember(mask, q->info.si_signo)) { 791 list_del_init(&q->list); 792 __sigqueue_free(q); 793 } 794 } 795 } 796 797 static inline int is_si_special(const struct kernel_siginfo *info) 798 { 799 return info <= SEND_SIG_PRIV; 800 } 801 802 static inline bool si_fromuser(const struct kernel_siginfo *info) 803 { 804 return info == SEND_SIG_NOINFO || 805 (!is_si_special(info) && SI_FROMUSER(info)); 806 } 807 808 /* 809 * called with RCU read lock from check_kill_permission() 810 */ 811 static bool kill_ok_by_cred(struct task_struct *t) 812 { 813 const struct cred *cred = current_cred(); 814 const struct cred *tcred = __task_cred(t); 815 816 return uid_eq(cred->euid, tcred->suid) || 817 uid_eq(cred->euid, tcred->uid) || 818 uid_eq(cred->uid, tcred->suid) || 819 uid_eq(cred->uid, tcred->uid) || 820 ns_capable(tcred->user_ns, CAP_KILL); 821 } 822 823 /* 824 * Bad permissions for sending the signal 825 * - the caller must hold the RCU read lock 826 */ 827 static int check_kill_permission(int sig, struct kernel_siginfo *info, 828 struct task_struct *t) 829 { 830 struct pid *sid; 831 int error; 832 833 if (!valid_signal(sig)) 834 return -EINVAL; 835 836 if (!si_fromuser(info)) 837 return 0; 838 839 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 840 if (error) 841 return error; 842 843 if (!same_thread_group(current, t) && 844 !kill_ok_by_cred(t)) { 845 switch (sig) { 846 case SIGCONT: 847 sid = task_session(t); 848 /* 849 * We don't return the error if sid == NULL. The 850 * task was unhashed, the caller must notice this. 851 */ 852 if (!sid || sid == task_session(current)) 853 break; 854 /* fall through */ 855 default: 856 return -EPERM; 857 } 858 } 859 860 return security_task_kill(t, info, sig, NULL); 861 } 862 863 /** 864 * ptrace_trap_notify - schedule trap to notify ptracer 865 * @t: tracee wanting to notify tracer 866 * 867 * This function schedules sticky ptrace trap which is cleared on the next 868 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 869 * ptracer. 870 * 871 * If @t is running, STOP trap will be taken. If trapped for STOP and 872 * ptracer is listening for events, tracee is woken up so that it can 873 * re-trap for the new event. If trapped otherwise, STOP trap will be 874 * eventually taken without returning to userland after the existing traps 875 * are finished by PTRACE_CONT. 876 * 877 * CONTEXT: 878 * Must be called with @task->sighand->siglock held. 879 */ 880 static void ptrace_trap_notify(struct task_struct *t) 881 { 882 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 883 assert_spin_locked(&t->sighand->siglock); 884 885 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 886 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 887 } 888 889 /* 890 * Handle magic process-wide effects of stop/continue signals. Unlike 891 * the signal actions, these happen immediately at signal-generation 892 * time regardless of blocking, ignoring, or handling. This does the 893 * actual continuing for SIGCONT, but not the actual stopping for stop 894 * signals. The process stop is done as a signal action for SIG_DFL. 895 * 896 * Returns true if the signal should be actually delivered, otherwise 897 * it should be dropped. 898 */ 899 static bool prepare_signal(int sig, struct task_struct *p, bool force) 900 { 901 struct signal_struct *signal = p->signal; 902 struct task_struct *t; 903 sigset_t flush; 904 905 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 906 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 907 return sig == SIGKILL; 908 /* 909 * The process is in the middle of dying, nothing to do. 910 */ 911 } else if (sig_kernel_stop(sig)) { 912 /* 913 * This is a stop signal. Remove SIGCONT from all queues. 914 */ 915 siginitset(&flush, sigmask(SIGCONT)); 916 flush_sigqueue_mask(&flush, &signal->shared_pending); 917 for_each_thread(p, t) 918 flush_sigqueue_mask(&flush, &t->pending); 919 } else if (sig == SIGCONT) { 920 unsigned int why; 921 /* 922 * Remove all stop signals from all queues, wake all threads. 923 */ 924 siginitset(&flush, SIG_KERNEL_STOP_MASK); 925 flush_sigqueue_mask(&flush, &signal->shared_pending); 926 for_each_thread(p, t) { 927 flush_sigqueue_mask(&flush, &t->pending); 928 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 929 if (likely(!(t->ptrace & PT_SEIZED))) 930 wake_up_state(t, __TASK_STOPPED); 931 else 932 ptrace_trap_notify(t); 933 } 934 935 /* 936 * Notify the parent with CLD_CONTINUED if we were stopped. 937 * 938 * If we were in the middle of a group stop, we pretend it 939 * was already finished, and then continued. Since SIGCHLD 940 * doesn't queue we report only CLD_STOPPED, as if the next 941 * CLD_CONTINUED was dropped. 942 */ 943 why = 0; 944 if (signal->flags & SIGNAL_STOP_STOPPED) 945 why |= SIGNAL_CLD_CONTINUED; 946 else if (signal->group_stop_count) 947 why |= SIGNAL_CLD_STOPPED; 948 949 if (why) { 950 /* 951 * The first thread which returns from do_signal_stop() 952 * will take ->siglock, notice SIGNAL_CLD_MASK, and 953 * notify its parent. See get_signal(). 954 */ 955 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 956 signal->group_stop_count = 0; 957 signal->group_exit_code = 0; 958 } 959 } 960 961 return !sig_ignored(p, sig, force); 962 } 963 964 /* 965 * Test if P wants to take SIG. After we've checked all threads with this, 966 * it's equivalent to finding no threads not blocking SIG. Any threads not 967 * blocking SIG were ruled out because they are not running and already 968 * have pending signals. Such threads will dequeue from the shared queue 969 * as soon as they're available, so putting the signal on the shared queue 970 * will be equivalent to sending it to one such thread. 971 */ 972 static inline bool wants_signal(int sig, struct task_struct *p) 973 { 974 if (sigismember(&p->blocked, sig)) 975 return false; 976 977 if (p->flags & PF_EXITING) 978 return false; 979 980 if (sig == SIGKILL) 981 return true; 982 983 if (task_is_stopped_or_traced(p)) 984 return false; 985 986 return task_curr(p) || !signal_pending(p); 987 } 988 989 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 990 { 991 struct signal_struct *signal = p->signal; 992 struct task_struct *t; 993 994 /* 995 * Now find a thread we can wake up to take the signal off the queue. 996 * 997 * If the main thread wants the signal, it gets first crack. 998 * Probably the least surprising to the average bear. 999 */ 1000 if (wants_signal(sig, p)) 1001 t = p; 1002 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1003 /* 1004 * There is just one thread and it does not need to be woken. 1005 * It will dequeue unblocked signals before it runs again. 1006 */ 1007 return; 1008 else { 1009 /* 1010 * Otherwise try to find a suitable thread. 1011 */ 1012 t = signal->curr_target; 1013 while (!wants_signal(sig, t)) { 1014 t = next_thread(t); 1015 if (t == signal->curr_target) 1016 /* 1017 * No thread needs to be woken. 1018 * Any eligible threads will see 1019 * the signal in the queue soon. 1020 */ 1021 return; 1022 } 1023 signal->curr_target = t; 1024 } 1025 1026 /* 1027 * Found a killable thread. If the signal will be fatal, 1028 * then start taking the whole group down immediately. 1029 */ 1030 if (sig_fatal(p, sig) && 1031 !(signal->flags & SIGNAL_GROUP_EXIT) && 1032 !sigismember(&t->real_blocked, sig) && 1033 (sig == SIGKILL || !p->ptrace)) { 1034 /* 1035 * This signal will be fatal to the whole group. 1036 */ 1037 if (!sig_kernel_coredump(sig)) { 1038 /* 1039 * Start a group exit and wake everybody up. 1040 * This way we don't have other threads 1041 * running and doing things after a slower 1042 * thread has the fatal signal pending. 1043 */ 1044 signal->flags = SIGNAL_GROUP_EXIT; 1045 signal->group_exit_code = sig; 1046 signal->group_stop_count = 0; 1047 t = p; 1048 do { 1049 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1050 sigaddset(&t->pending.signal, SIGKILL); 1051 signal_wake_up(t, 1); 1052 } while_each_thread(p, t); 1053 return; 1054 } 1055 } 1056 1057 /* 1058 * The signal is already in the shared-pending queue. 1059 * Tell the chosen thread to wake up and dequeue it. 1060 */ 1061 signal_wake_up(t, sig == SIGKILL); 1062 return; 1063 } 1064 1065 static inline bool legacy_queue(struct sigpending *signals, int sig) 1066 { 1067 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1068 } 1069 1070 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1071 enum pid_type type, bool force) 1072 { 1073 struct sigpending *pending; 1074 struct sigqueue *q; 1075 int override_rlimit; 1076 int ret = 0, result; 1077 1078 assert_spin_locked(&t->sighand->siglock); 1079 1080 result = TRACE_SIGNAL_IGNORED; 1081 if (!prepare_signal(sig, t, force)) 1082 goto ret; 1083 1084 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1085 /* 1086 * Short-circuit ignored signals and support queuing 1087 * exactly one non-rt signal, so that we can get more 1088 * detailed information about the cause of the signal. 1089 */ 1090 result = TRACE_SIGNAL_ALREADY_PENDING; 1091 if (legacy_queue(pending, sig)) 1092 goto ret; 1093 1094 result = TRACE_SIGNAL_DELIVERED; 1095 /* 1096 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1097 */ 1098 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1099 goto out_set; 1100 1101 /* 1102 * Real-time signals must be queued if sent by sigqueue, or 1103 * some other real-time mechanism. It is implementation 1104 * defined whether kill() does so. We attempt to do so, on 1105 * the principle of least surprise, but since kill is not 1106 * allowed to fail with EAGAIN when low on memory we just 1107 * make sure at least one signal gets delivered and don't 1108 * pass on the info struct. 1109 */ 1110 if (sig < SIGRTMIN) 1111 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1112 else 1113 override_rlimit = 0; 1114 1115 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit); 1116 if (q) { 1117 list_add_tail(&q->list, &pending->list); 1118 switch ((unsigned long) info) { 1119 case (unsigned long) SEND_SIG_NOINFO: 1120 clear_siginfo(&q->info); 1121 q->info.si_signo = sig; 1122 q->info.si_errno = 0; 1123 q->info.si_code = SI_USER; 1124 q->info.si_pid = task_tgid_nr_ns(current, 1125 task_active_pid_ns(t)); 1126 rcu_read_lock(); 1127 q->info.si_uid = 1128 from_kuid_munged(task_cred_xxx(t, user_ns), 1129 current_uid()); 1130 rcu_read_unlock(); 1131 break; 1132 case (unsigned long) SEND_SIG_PRIV: 1133 clear_siginfo(&q->info); 1134 q->info.si_signo = sig; 1135 q->info.si_errno = 0; 1136 q->info.si_code = SI_KERNEL; 1137 q->info.si_pid = 0; 1138 q->info.si_uid = 0; 1139 break; 1140 default: 1141 copy_siginfo(&q->info, info); 1142 break; 1143 } 1144 } else if (!is_si_special(info) && 1145 sig >= SIGRTMIN && info->si_code != SI_USER) { 1146 /* 1147 * Queue overflow, abort. We may abort if the 1148 * signal was rt and sent by user using something 1149 * other than kill(). 1150 */ 1151 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1152 ret = -EAGAIN; 1153 goto ret; 1154 } else { 1155 /* 1156 * This is a silent loss of information. We still 1157 * send the signal, but the *info bits are lost. 1158 */ 1159 result = TRACE_SIGNAL_LOSE_INFO; 1160 } 1161 1162 out_set: 1163 signalfd_notify(t, sig); 1164 sigaddset(&pending->signal, sig); 1165 1166 /* Let multiprocess signals appear after on-going forks */ 1167 if (type > PIDTYPE_TGID) { 1168 struct multiprocess_signals *delayed; 1169 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1170 sigset_t *signal = &delayed->signal; 1171 /* Can't queue both a stop and a continue signal */ 1172 if (sig == SIGCONT) 1173 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1174 else if (sig_kernel_stop(sig)) 1175 sigdelset(signal, SIGCONT); 1176 sigaddset(signal, sig); 1177 } 1178 } 1179 1180 complete_signal(sig, t, type); 1181 ret: 1182 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1183 return ret; 1184 } 1185 1186 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1187 { 1188 bool ret = false; 1189 switch (siginfo_layout(info->si_signo, info->si_code)) { 1190 case SIL_KILL: 1191 case SIL_CHLD: 1192 case SIL_RT: 1193 ret = true; 1194 break; 1195 case SIL_TIMER: 1196 case SIL_POLL: 1197 case SIL_FAULT: 1198 case SIL_FAULT_MCEERR: 1199 case SIL_FAULT_BNDERR: 1200 case SIL_FAULT_PKUERR: 1201 case SIL_SYS: 1202 ret = false; 1203 break; 1204 } 1205 return ret; 1206 } 1207 1208 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1209 enum pid_type type) 1210 { 1211 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1212 bool force = false; 1213 1214 if (info == SEND_SIG_NOINFO) { 1215 /* Force if sent from an ancestor pid namespace */ 1216 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1217 } else if (info == SEND_SIG_PRIV) { 1218 /* Don't ignore kernel generated signals */ 1219 force = true; 1220 } else if (has_si_pid_and_uid(info)) { 1221 /* SIGKILL and SIGSTOP is special or has ids */ 1222 struct user_namespace *t_user_ns; 1223 1224 rcu_read_lock(); 1225 t_user_ns = task_cred_xxx(t, user_ns); 1226 if (current_user_ns() != t_user_ns) { 1227 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1228 info->si_uid = from_kuid_munged(t_user_ns, uid); 1229 } 1230 rcu_read_unlock(); 1231 1232 /* A kernel generated signal? */ 1233 force = (info->si_code == SI_KERNEL); 1234 1235 /* From an ancestor pid namespace? */ 1236 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1237 info->si_pid = 0; 1238 force = true; 1239 } 1240 } 1241 return __send_signal(sig, info, t, type, force); 1242 } 1243 1244 static void print_fatal_signal(int signr) 1245 { 1246 struct pt_regs *regs = signal_pt_regs(); 1247 pr_info("potentially unexpected fatal signal %d.\n", signr); 1248 1249 #if defined(__i386__) && !defined(__arch_um__) 1250 pr_info("code at %08lx: ", regs->ip); 1251 { 1252 int i; 1253 for (i = 0; i < 16; i++) { 1254 unsigned char insn; 1255 1256 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1257 break; 1258 pr_cont("%02x ", insn); 1259 } 1260 } 1261 pr_cont("\n"); 1262 #endif 1263 preempt_disable(); 1264 show_regs(regs); 1265 preempt_enable(); 1266 } 1267 1268 static int __init setup_print_fatal_signals(char *str) 1269 { 1270 get_option (&str, &print_fatal_signals); 1271 1272 return 1; 1273 } 1274 1275 __setup("print-fatal-signals=", setup_print_fatal_signals); 1276 1277 int 1278 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1279 { 1280 return send_signal(sig, info, p, PIDTYPE_TGID); 1281 } 1282 1283 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1284 enum pid_type type) 1285 { 1286 unsigned long flags; 1287 int ret = -ESRCH; 1288 1289 if (lock_task_sighand(p, &flags)) { 1290 ret = send_signal(sig, info, p, type); 1291 unlock_task_sighand(p, &flags); 1292 } 1293 1294 return ret; 1295 } 1296 1297 /* 1298 * Force a signal that the process can't ignore: if necessary 1299 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1300 * 1301 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1302 * since we do not want to have a signal handler that was blocked 1303 * be invoked when user space had explicitly blocked it. 1304 * 1305 * We don't want to have recursive SIGSEGV's etc, for example, 1306 * that is why we also clear SIGNAL_UNKILLABLE. 1307 */ 1308 static int 1309 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t) 1310 { 1311 unsigned long int flags; 1312 int ret, blocked, ignored; 1313 struct k_sigaction *action; 1314 int sig = info->si_signo; 1315 1316 spin_lock_irqsave(&t->sighand->siglock, flags); 1317 action = &t->sighand->action[sig-1]; 1318 ignored = action->sa.sa_handler == SIG_IGN; 1319 blocked = sigismember(&t->blocked, sig); 1320 if (blocked || ignored) { 1321 action->sa.sa_handler = SIG_DFL; 1322 if (blocked) { 1323 sigdelset(&t->blocked, sig); 1324 recalc_sigpending_and_wake(t); 1325 } 1326 } 1327 /* 1328 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1329 * debugging to leave init killable. 1330 */ 1331 if (action->sa.sa_handler == SIG_DFL && !t->ptrace) 1332 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1333 ret = send_signal(sig, info, t, PIDTYPE_PID); 1334 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1335 1336 return ret; 1337 } 1338 1339 int force_sig_info(struct kernel_siginfo *info) 1340 { 1341 return force_sig_info_to_task(info, current); 1342 } 1343 1344 /* 1345 * Nuke all other threads in the group. 1346 */ 1347 int zap_other_threads(struct task_struct *p) 1348 { 1349 struct task_struct *t = p; 1350 int count = 0; 1351 1352 p->signal->group_stop_count = 0; 1353 1354 while_each_thread(p, t) { 1355 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1356 count++; 1357 1358 /* Don't bother with already dead threads */ 1359 if (t->exit_state) 1360 continue; 1361 sigaddset(&t->pending.signal, SIGKILL); 1362 signal_wake_up(t, 1); 1363 } 1364 1365 return count; 1366 } 1367 1368 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1369 unsigned long *flags) 1370 { 1371 struct sighand_struct *sighand; 1372 1373 rcu_read_lock(); 1374 for (;;) { 1375 sighand = rcu_dereference(tsk->sighand); 1376 if (unlikely(sighand == NULL)) 1377 break; 1378 1379 /* 1380 * This sighand can be already freed and even reused, but 1381 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1382 * initializes ->siglock: this slab can't go away, it has 1383 * the same object type, ->siglock can't be reinitialized. 1384 * 1385 * We need to ensure that tsk->sighand is still the same 1386 * after we take the lock, we can race with de_thread() or 1387 * __exit_signal(). In the latter case the next iteration 1388 * must see ->sighand == NULL. 1389 */ 1390 spin_lock_irqsave(&sighand->siglock, *flags); 1391 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1392 break; 1393 spin_unlock_irqrestore(&sighand->siglock, *flags); 1394 } 1395 rcu_read_unlock(); 1396 1397 return sighand; 1398 } 1399 1400 /* 1401 * send signal info to all the members of a group 1402 */ 1403 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1404 struct task_struct *p, enum pid_type type) 1405 { 1406 int ret; 1407 1408 rcu_read_lock(); 1409 ret = check_kill_permission(sig, info, p); 1410 rcu_read_unlock(); 1411 1412 if (!ret && sig) 1413 ret = do_send_sig_info(sig, info, p, type); 1414 1415 return ret; 1416 } 1417 1418 /* 1419 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1420 * control characters do (^C, ^Z etc) 1421 * - the caller must hold at least a readlock on tasklist_lock 1422 */ 1423 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1424 { 1425 struct task_struct *p = NULL; 1426 int retval, success; 1427 1428 success = 0; 1429 retval = -ESRCH; 1430 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1431 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1432 success |= !err; 1433 retval = err; 1434 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1435 return success ? 0 : retval; 1436 } 1437 1438 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1439 { 1440 int error = -ESRCH; 1441 struct task_struct *p; 1442 1443 for (;;) { 1444 rcu_read_lock(); 1445 p = pid_task(pid, PIDTYPE_PID); 1446 if (p) 1447 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1448 rcu_read_unlock(); 1449 if (likely(!p || error != -ESRCH)) 1450 return error; 1451 1452 /* 1453 * The task was unhashed in between, try again. If it 1454 * is dead, pid_task() will return NULL, if we race with 1455 * de_thread() it will find the new leader. 1456 */ 1457 } 1458 } 1459 1460 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1461 { 1462 int error; 1463 rcu_read_lock(); 1464 error = kill_pid_info(sig, info, find_vpid(pid)); 1465 rcu_read_unlock(); 1466 return error; 1467 } 1468 1469 static inline bool kill_as_cred_perm(const struct cred *cred, 1470 struct task_struct *target) 1471 { 1472 const struct cred *pcred = __task_cred(target); 1473 1474 return uid_eq(cred->euid, pcred->suid) || 1475 uid_eq(cred->euid, pcred->uid) || 1476 uid_eq(cred->uid, pcred->suid) || 1477 uid_eq(cred->uid, pcred->uid); 1478 } 1479 1480 /* 1481 * The usb asyncio usage of siginfo is wrong. The glibc support 1482 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1483 * AKA after the generic fields: 1484 * kernel_pid_t si_pid; 1485 * kernel_uid32_t si_uid; 1486 * sigval_t si_value; 1487 * 1488 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1489 * after the generic fields is: 1490 * void __user *si_addr; 1491 * 1492 * This is a practical problem when there is a 64bit big endian kernel 1493 * and a 32bit userspace. As the 32bit address will encoded in the low 1494 * 32bits of the pointer. Those low 32bits will be stored at higher 1495 * address than appear in a 32 bit pointer. So userspace will not 1496 * see the address it was expecting for it's completions. 1497 * 1498 * There is nothing in the encoding that can allow 1499 * copy_siginfo_to_user32 to detect this confusion of formats, so 1500 * handle this by requiring the caller of kill_pid_usb_asyncio to 1501 * notice when this situration takes place and to store the 32bit 1502 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1503 * parameter. 1504 */ 1505 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1506 struct pid *pid, const struct cred *cred) 1507 { 1508 struct kernel_siginfo info; 1509 struct task_struct *p; 1510 unsigned long flags; 1511 int ret = -EINVAL; 1512 1513 if (!valid_signal(sig)) 1514 return ret; 1515 1516 clear_siginfo(&info); 1517 info.si_signo = sig; 1518 info.si_errno = errno; 1519 info.si_code = SI_ASYNCIO; 1520 *((sigval_t *)&info.si_pid) = addr; 1521 1522 rcu_read_lock(); 1523 p = pid_task(pid, PIDTYPE_PID); 1524 if (!p) { 1525 ret = -ESRCH; 1526 goto out_unlock; 1527 } 1528 if (!kill_as_cred_perm(cred, p)) { 1529 ret = -EPERM; 1530 goto out_unlock; 1531 } 1532 ret = security_task_kill(p, &info, sig, cred); 1533 if (ret) 1534 goto out_unlock; 1535 1536 if (sig) { 1537 if (lock_task_sighand(p, &flags)) { 1538 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false); 1539 unlock_task_sighand(p, &flags); 1540 } else 1541 ret = -ESRCH; 1542 } 1543 out_unlock: 1544 rcu_read_unlock(); 1545 return ret; 1546 } 1547 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1548 1549 /* 1550 * kill_something_info() interprets pid in interesting ways just like kill(2). 1551 * 1552 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1553 * is probably wrong. Should make it like BSD or SYSV. 1554 */ 1555 1556 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1557 { 1558 int ret; 1559 1560 if (pid > 0) 1561 return kill_proc_info(sig, info, pid); 1562 1563 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1564 if (pid == INT_MIN) 1565 return -ESRCH; 1566 1567 read_lock(&tasklist_lock); 1568 if (pid != -1) { 1569 ret = __kill_pgrp_info(sig, info, 1570 pid ? find_vpid(-pid) : task_pgrp(current)); 1571 } else { 1572 int retval = 0, count = 0; 1573 struct task_struct * p; 1574 1575 for_each_process(p) { 1576 if (task_pid_vnr(p) > 1 && 1577 !same_thread_group(p, current)) { 1578 int err = group_send_sig_info(sig, info, p, 1579 PIDTYPE_MAX); 1580 ++count; 1581 if (err != -EPERM) 1582 retval = err; 1583 } 1584 } 1585 ret = count ? retval : -ESRCH; 1586 } 1587 read_unlock(&tasklist_lock); 1588 1589 return ret; 1590 } 1591 1592 /* 1593 * These are for backward compatibility with the rest of the kernel source. 1594 */ 1595 1596 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1597 { 1598 /* 1599 * Make sure legacy kernel users don't send in bad values 1600 * (normal paths check this in check_kill_permission). 1601 */ 1602 if (!valid_signal(sig)) 1603 return -EINVAL; 1604 1605 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1606 } 1607 EXPORT_SYMBOL(send_sig_info); 1608 1609 #define __si_special(priv) \ 1610 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1611 1612 int 1613 send_sig(int sig, struct task_struct *p, int priv) 1614 { 1615 return send_sig_info(sig, __si_special(priv), p); 1616 } 1617 EXPORT_SYMBOL(send_sig); 1618 1619 void force_sig(int sig) 1620 { 1621 struct kernel_siginfo info; 1622 1623 clear_siginfo(&info); 1624 info.si_signo = sig; 1625 info.si_errno = 0; 1626 info.si_code = SI_KERNEL; 1627 info.si_pid = 0; 1628 info.si_uid = 0; 1629 force_sig_info(&info); 1630 } 1631 EXPORT_SYMBOL(force_sig); 1632 1633 /* 1634 * When things go south during signal handling, we 1635 * will force a SIGSEGV. And if the signal that caused 1636 * the problem was already a SIGSEGV, we'll want to 1637 * make sure we don't even try to deliver the signal.. 1638 */ 1639 void force_sigsegv(int sig) 1640 { 1641 struct task_struct *p = current; 1642 1643 if (sig == SIGSEGV) { 1644 unsigned long flags; 1645 spin_lock_irqsave(&p->sighand->siglock, flags); 1646 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1647 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1648 } 1649 force_sig(SIGSEGV); 1650 } 1651 1652 int force_sig_fault_to_task(int sig, int code, void __user *addr 1653 ___ARCH_SI_TRAPNO(int trapno) 1654 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1655 , struct task_struct *t) 1656 { 1657 struct kernel_siginfo info; 1658 1659 clear_siginfo(&info); 1660 info.si_signo = sig; 1661 info.si_errno = 0; 1662 info.si_code = code; 1663 info.si_addr = addr; 1664 #ifdef __ARCH_SI_TRAPNO 1665 info.si_trapno = trapno; 1666 #endif 1667 #ifdef __ia64__ 1668 info.si_imm = imm; 1669 info.si_flags = flags; 1670 info.si_isr = isr; 1671 #endif 1672 return force_sig_info_to_task(&info, t); 1673 } 1674 1675 int force_sig_fault(int sig, int code, void __user *addr 1676 ___ARCH_SI_TRAPNO(int trapno) 1677 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1678 { 1679 return force_sig_fault_to_task(sig, code, addr 1680 ___ARCH_SI_TRAPNO(trapno) 1681 ___ARCH_SI_IA64(imm, flags, isr), current); 1682 } 1683 1684 int send_sig_fault(int sig, int code, void __user *addr 1685 ___ARCH_SI_TRAPNO(int trapno) 1686 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1687 , struct task_struct *t) 1688 { 1689 struct kernel_siginfo info; 1690 1691 clear_siginfo(&info); 1692 info.si_signo = sig; 1693 info.si_errno = 0; 1694 info.si_code = code; 1695 info.si_addr = addr; 1696 #ifdef __ARCH_SI_TRAPNO 1697 info.si_trapno = trapno; 1698 #endif 1699 #ifdef __ia64__ 1700 info.si_imm = imm; 1701 info.si_flags = flags; 1702 info.si_isr = isr; 1703 #endif 1704 return send_sig_info(info.si_signo, &info, t); 1705 } 1706 1707 int force_sig_mceerr(int code, void __user *addr, short lsb) 1708 { 1709 struct kernel_siginfo info; 1710 1711 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1712 clear_siginfo(&info); 1713 info.si_signo = SIGBUS; 1714 info.si_errno = 0; 1715 info.si_code = code; 1716 info.si_addr = addr; 1717 info.si_addr_lsb = lsb; 1718 return force_sig_info(&info); 1719 } 1720 1721 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1722 { 1723 struct kernel_siginfo info; 1724 1725 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1726 clear_siginfo(&info); 1727 info.si_signo = SIGBUS; 1728 info.si_errno = 0; 1729 info.si_code = code; 1730 info.si_addr = addr; 1731 info.si_addr_lsb = lsb; 1732 return send_sig_info(info.si_signo, &info, t); 1733 } 1734 EXPORT_SYMBOL(send_sig_mceerr); 1735 1736 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1737 { 1738 struct kernel_siginfo info; 1739 1740 clear_siginfo(&info); 1741 info.si_signo = SIGSEGV; 1742 info.si_errno = 0; 1743 info.si_code = SEGV_BNDERR; 1744 info.si_addr = addr; 1745 info.si_lower = lower; 1746 info.si_upper = upper; 1747 return force_sig_info(&info); 1748 } 1749 1750 #ifdef SEGV_PKUERR 1751 int force_sig_pkuerr(void __user *addr, u32 pkey) 1752 { 1753 struct kernel_siginfo info; 1754 1755 clear_siginfo(&info); 1756 info.si_signo = SIGSEGV; 1757 info.si_errno = 0; 1758 info.si_code = SEGV_PKUERR; 1759 info.si_addr = addr; 1760 info.si_pkey = pkey; 1761 return force_sig_info(&info); 1762 } 1763 #endif 1764 1765 /* For the crazy architectures that include trap information in 1766 * the errno field, instead of an actual errno value. 1767 */ 1768 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1769 { 1770 struct kernel_siginfo info; 1771 1772 clear_siginfo(&info); 1773 info.si_signo = SIGTRAP; 1774 info.si_errno = errno; 1775 info.si_code = TRAP_HWBKPT; 1776 info.si_addr = addr; 1777 return force_sig_info(&info); 1778 } 1779 1780 int kill_pgrp(struct pid *pid, int sig, int priv) 1781 { 1782 int ret; 1783 1784 read_lock(&tasklist_lock); 1785 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1786 read_unlock(&tasklist_lock); 1787 1788 return ret; 1789 } 1790 EXPORT_SYMBOL(kill_pgrp); 1791 1792 int kill_pid(struct pid *pid, int sig, int priv) 1793 { 1794 return kill_pid_info(sig, __si_special(priv), pid); 1795 } 1796 EXPORT_SYMBOL(kill_pid); 1797 1798 /* 1799 * These functions support sending signals using preallocated sigqueue 1800 * structures. This is needed "because realtime applications cannot 1801 * afford to lose notifications of asynchronous events, like timer 1802 * expirations or I/O completions". In the case of POSIX Timers 1803 * we allocate the sigqueue structure from the timer_create. If this 1804 * allocation fails we are able to report the failure to the application 1805 * with an EAGAIN error. 1806 */ 1807 struct sigqueue *sigqueue_alloc(void) 1808 { 1809 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1810 1811 if (q) 1812 q->flags |= SIGQUEUE_PREALLOC; 1813 1814 return q; 1815 } 1816 1817 void sigqueue_free(struct sigqueue *q) 1818 { 1819 unsigned long flags; 1820 spinlock_t *lock = ¤t->sighand->siglock; 1821 1822 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1823 /* 1824 * We must hold ->siglock while testing q->list 1825 * to serialize with collect_signal() or with 1826 * __exit_signal()->flush_sigqueue(). 1827 */ 1828 spin_lock_irqsave(lock, flags); 1829 q->flags &= ~SIGQUEUE_PREALLOC; 1830 /* 1831 * If it is queued it will be freed when dequeued, 1832 * like the "regular" sigqueue. 1833 */ 1834 if (!list_empty(&q->list)) 1835 q = NULL; 1836 spin_unlock_irqrestore(lock, flags); 1837 1838 if (q) 1839 __sigqueue_free(q); 1840 } 1841 1842 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1843 { 1844 int sig = q->info.si_signo; 1845 struct sigpending *pending; 1846 struct task_struct *t; 1847 unsigned long flags; 1848 int ret, result; 1849 1850 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1851 1852 ret = -1; 1853 rcu_read_lock(); 1854 t = pid_task(pid, type); 1855 if (!t || !likely(lock_task_sighand(t, &flags))) 1856 goto ret; 1857 1858 ret = 1; /* the signal is ignored */ 1859 result = TRACE_SIGNAL_IGNORED; 1860 if (!prepare_signal(sig, t, false)) 1861 goto out; 1862 1863 ret = 0; 1864 if (unlikely(!list_empty(&q->list))) { 1865 /* 1866 * If an SI_TIMER entry is already queue just increment 1867 * the overrun count. 1868 */ 1869 BUG_ON(q->info.si_code != SI_TIMER); 1870 q->info.si_overrun++; 1871 result = TRACE_SIGNAL_ALREADY_PENDING; 1872 goto out; 1873 } 1874 q->info.si_overrun = 0; 1875 1876 signalfd_notify(t, sig); 1877 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1878 list_add_tail(&q->list, &pending->list); 1879 sigaddset(&pending->signal, sig); 1880 complete_signal(sig, t, type); 1881 result = TRACE_SIGNAL_DELIVERED; 1882 out: 1883 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 1884 unlock_task_sighand(t, &flags); 1885 ret: 1886 rcu_read_unlock(); 1887 return ret; 1888 } 1889 1890 static void do_notify_pidfd(struct task_struct *task) 1891 { 1892 struct pid *pid; 1893 1894 WARN_ON(task->exit_state == 0); 1895 pid = task_pid(task); 1896 wake_up_all(&pid->wait_pidfd); 1897 } 1898 1899 /* 1900 * Let a parent know about the death of a child. 1901 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1902 * 1903 * Returns true if our parent ignored us and so we've switched to 1904 * self-reaping. 1905 */ 1906 bool do_notify_parent(struct task_struct *tsk, int sig) 1907 { 1908 struct kernel_siginfo info; 1909 unsigned long flags; 1910 struct sighand_struct *psig; 1911 bool autoreap = false; 1912 u64 utime, stime; 1913 1914 BUG_ON(sig == -1); 1915 1916 /* do_notify_parent_cldstop should have been called instead. */ 1917 BUG_ON(task_is_stopped_or_traced(tsk)); 1918 1919 BUG_ON(!tsk->ptrace && 1920 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1921 1922 /* Wake up all pidfd waiters */ 1923 do_notify_pidfd(tsk); 1924 1925 if (sig != SIGCHLD) { 1926 /* 1927 * This is only possible if parent == real_parent. 1928 * Check if it has changed security domain. 1929 */ 1930 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 1931 sig = SIGCHLD; 1932 } 1933 1934 clear_siginfo(&info); 1935 info.si_signo = sig; 1936 info.si_errno = 0; 1937 /* 1938 * We are under tasklist_lock here so our parent is tied to 1939 * us and cannot change. 1940 * 1941 * task_active_pid_ns will always return the same pid namespace 1942 * until a task passes through release_task. 1943 * 1944 * write_lock() currently calls preempt_disable() which is the 1945 * same as rcu_read_lock(), but according to Oleg, this is not 1946 * correct to rely on this 1947 */ 1948 rcu_read_lock(); 1949 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1950 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1951 task_uid(tsk)); 1952 rcu_read_unlock(); 1953 1954 task_cputime(tsk, &utime, &stime); 1955 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 1956 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 1957 1958 info.si_status = tsk->exit_code & 0x7f; 1959 if (tsk->exit_code & 0x80) 1960 info.si_code = CLD_DUMPED; 1961 else if (tsk->exit_code & 0x7f) 1962 info.si_code = CLD_KILLED; 1963 else { 1964 info.si_code = CLD_EXITED; 1965 info.si_status = tsk->exit_code >> 8; 1966 } 1967 1968 psig = tsk->parent->sighand; 1969 spin_lock_irqsave(&psig->siglock, flags); 1970 if (!tsk->ptrace && sig == SIGCHLD && 1971 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1972 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1973 /* 1974 * We are exiting and our parent doesn't care. POSIX.1 1975 * defines special semantics for setting SIGCHLD to SIG_IGN 1976 * or setting the SA_NOCLDWAIT flag: we should be reaped 1977 * automatically and not left for our parent's wait4 call. 1978 * Rather than having the parent do it as a magic kind of 1979 * signal handler, we just set this to tell do_exit that we 1980 * can be cleaned up without becoming a zombie. Note that 1981 * we still call __wake_up_parent in this case, because a 1982 * blocked sys_wait4 might now return -ECHILD. 1983 * 1984 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1985 * is implementation-defined: we do (if you don't want 1986 * it, just use SIG_IGN instead). 1987 */ 1988 autoreap = true; 1989 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1990 sig = 0; 1991 } 1992 if (valid_signal(sig) && sig) 1993 __group_send_sig_info(sig, &info, tsk->parent); 1994 __wake_up_parent(tsk, tsk->parent); 1995 spin_unlock_irqrestore(&psig->siglock, flags); 1996 1997 return autoreap; 1998 } 1999 2000 /** 2001 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2002 * @tsk: task reporting the state change 2003 * @for_ptracer: the notification is for ptracer 2004 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2005 * 2006 * Notify @tsk's parent that the stopped/continued state has changed. If 2007 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2008 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2009 * 2010 * CONTEXT: 2011 * Must be called with tasklist_lock at least read locked. 2012 */ 2013 static void do_notify_parent_cldstop(struct task_struct *tsk, 2014 bool for_ptracer, int why) 2015 { 2016 struct kernel_siginfo info; 2017 unsigned long flags; 2018 struct task_struct *parent; 2019 struct sighand_struct *sighand; 2020 u64 utime, stime; 2021 2022 if (for_ptracer) { 2023 parent = tsk->parent; 2024 } else { 2025 tsk = tsk->group_leader; 2026 parent = tsk->real_parent; 2027 } 2028 2029 clear_siginfo(&info); 2030 info.si_signo = SIGCHLD; 2031 info.si_errno = 0; 2032 /* 2033 * see comment in do_notify_parent() about the following 4 lines 2034 */ 2035 rcu_read_lock(); 2036 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2037 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2038 rcu_read_unlock(); 2039 2040 task_cputime(tsk, &utime, &stime); 2041 info.si_utime = nsec_to_clock_t(utime); 2042 info.si_stime = nsec_to_clock_t(stime); 2043 2044 info.si_code = why; 2045 switch (why) { 2046 case CLD_CONTINUED: 2047 info.si_status = SIGCONT; 2048 break; 2049 case CLD_STOPPED: 2050 info.si_status = tsk->signal->group_exit_code & 0x7f; 2051 break; 2052 case CLD_TRAPPED: 2053 info.si_status = tsk->exit_code & 0x7f; 2054 break; 2055 default: 2056 BUG(); 2057 } 2058 2059 sighand = parent->sighand; 2060 spin_lock_irqsave(&sighand->siglock, flags); 2061 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2062 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2063 __group_send_sig_info(SIGCHLD, &info, parent); 2064 /* 2065 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2066 */ 2067 __wake_up_parent(tsk, parent); 2068 spin_unlock_irqrestore(&sighand->siglock, flags); 2069 } 2070 2071 static inline bool may_ptrace_stop(void) 2072 { 2073 if (!likely(current->ptrace)) 2074 return false; 2075 /* 2076 * Are we in the middle of do_coredump? 2077 * If so and our tracer is also part of the coredump stopping 2078 * is a deadlock situation, and pointless because our tracer 2079 * is dead so don't allow us to stop. 2080 * If SIGKILL was already sent before the caller unlocked 2081 * ->siglock we must see ->core_state != NULL. Otherwise it 2082 * is safe to enter schedule(). 2083 * 2084 * This is almost outdated, a task with the pending SIGKILL can't 2085 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 2086 * after SIGKILL was already dequeued. 2087 */ 2088 if (unlikely(current->mm->core_state) && 2089 unlikely(current->mm == current->parent->mm)) 2090 return false; 2091 2092 return true; 2093 } 2094 2095 /* 2096 * Return non-zero if there is a SIGKILL that should be waking us up. 2097 * Called with the siglock held. 2098 */ 2099 static bool sigkill_pending(struct task_struct *tsk) 2100 { 2101 return sigismember(&tsk->pending.signal, SIGKILL) || 2102 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 2103 } 2104 2105 /* 2106 * This must be called with current->sighand->siglock held. 2107 * 2108 * This should be the path for all ptrace stops. 2109 * We always set current->last_siginfo while stopped here. 2110 * That makes it a way to test a stopped process for 2111 * being ptrace-stopped vs being job-control-stopped. 2112 * 2113 * If we actually decide not to stop at all because the tracer 2114 * is gone, we keep current->exit_code unless clear_code. 2115 */ 2116 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info) 2117 __releases(¤t->sighand->siglock) 2118 __acquires(¤t->sighand->siglock) 2119 { 2120 bool gstop_done = false; 2121 2122 if (arch_ptrace_stop_needed(exit_code, info)) { 2123 /* 2124 * The arch code has something special to do before a 2125 * ptrace stop. This is allowed to block, e.g. for faults 2126 * on user stack pages. We can't keep the siglock while 2127 * calling arch_ptrace_stop, so we must release it now. 2128 * To preserve proper semantics, we must do this before 2129 * any signal bookkeeping like checking group_stop_count. 2130 * Meanwhile, a SIGKILL could come in before we retake the 2131 * siglock. That must prevent us from sleeping in TASK_TRACED. 2132 * So after regaining the lock, we must check for SIGKILL. 2133 */ 2134 spin_unlock_irq(¤t->sighand->siglock); 2135 arch_ptrace_stop(exit_code, info); 2136 spin_lock_irq(¤t->sighand->siglock); 2137 if (sigkill_pending(current)) 2138 return; 2139 } 2140 2141 set_special_state(TASK_TRACED); 2142 2143 /* 2144 * We're committing to trapping. TRACED should be visible before 2145 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2146 * Also, transition to TRACED and updates to ->jobctl should be 2147 * atomic with respect to siglock and should be done after the arch 2148 * hook as siglock is released and regrabbed across it. 2149 * 2150 * TRACER TRACEE 2151 * 2152 * ptrace_attach() 2153 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2154 * do_wait() 2155 * set_current_state() smp_wmb(); 2156 * ptrace_do_wait() 2157 * wait_task_stopped() 2158 * task_stopped_code() 2159 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2160 */ 2161 smp_wmb(); 2162 2163 current->last_siginfo = info; 2164 current->exit_code = exit_code; 2165 2166 /* 2167 * If @why is CLD_STOPPED, we're trapping to participate in a group 2168 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2169 * across siglock relocks since INTERRUPT was scheduled, PENDING 2170 * could be clear now. We act as if SIGCONT is received after 2171 * TASK_TRACED is entered - ignore it. 2172 */ 2173 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2174 gstop_done = task_participate_group_stop(current); 2175 2176 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2177 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2178 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2179 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2180 2181 /* entering a trap, clear TRAPPING */ 2182 task_clear_jobctl_trapping(current); 2183 2184 spin_unlock_irq(¤t->sighand->siglock); 2185 read_lock(&tasklist_lock); 2186 if (may_ptrace_stop()) { 2187 /* 2188 * Notify parents of the stop. 2189 * 2190 * While ptraced, there are two parents - the ptracer and 2191 * the real_parent of the group_leader. The ptracer should 2192 * know about every stop while the real parent is only 2193 * interested in the completion of group stop. The states 2194 * for the two don't interact with each other. Notify 2195 * separately unless they're gonna be duplicates. 2196 */ 2197 do_notify_parent_cldstop(current, true, why); 2198 if (gstop_done && ptrace_reparented(current)) 2199 do_notify_parent_cldstop(current, false, why); 2200 2201 /* 2202 * Don't want to allow preemption here, because 2203 * sys_ptrace() needs this task to be inactive. 2204 * 2205 * XXX: implement read_unlock_no_resched(). 2206 */ 2207 preempt_disable(); 2208 read_unlock(&tasklist_lock); 2209 cgroup_enter_frozen(); 2210 preempt_enable_no_resched(); 2211 freezable_schedule(); 2212 cgroup_leave_frozen(true); 2213 } else { 2214 /* 2215 * By the time we got the lock, our tracer went away. 2216 * Don't drop the lock yet, another tracer may come. 2217 * 2218 * If @gstop_done, the ptracer went away between group stop 2219 * completion and here. During detach, it would have set 2220 * JOBCTL_STOP_PENDING on us and we'll re-enter 2221 * TASK_STOPPED in do_signal_stop() on return, so notifying 2222 * the real parent of the group stop completion is enough. 2223 */ 2224 if (gstop_done) 2225 do_notify_parent_cldstop(current, false, why); 2226 2227 /* tasklist protects us from ptrace_freeze_traced() */ 2228 __set_current_state(TASK_RUNNING); 2229 if (clear_code) 2230 current->exit_code = 0; 2231 read_unlock(&tasklist_lock); 2232 } 2233 2234 /* 2235 * We are back. Now reacquire the siglock before touching 2236 * last_siginfo, so that we are sure to have synchronized with 2237 * any signal-sending on another CPU that wants to examine it. 2238 */ 2239 spin_lock_irq(¤t->sighand->siglock); 2240 current->last_siginfo = NULL; 2241 2242 /* LISTENING can be set only during STOP traps, clear it */ 2243 current->jobctl &= ~JOBCTL_LISTENING; 2244 2245 /* 2246 * Queued signals ignored us while we were stopped for tracing. 2247 * So check for any that we should take before resuming user mode. 2248 * This sets TIF_SIGPENDING, but never clears it. 2249 */ 2250 recalc_sigpending_tsk(current); 2251 } 2252 2253 static void ptrace_do_notify(int signr, int exit_code, int why) 2254 { 2255 kernel_siginfo_t info; 2256 2257 clear_siginfo(&info); 2258 info.si_signo = signr; 2259 info.si_code = exit_code; 2260 info.si_pid = task_pid_vnr(current); 2261 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2262 2263 /* Let the debugger run. */ 2264 ptrace_stop(exit_code, why, 1, &info); 2265 } 2266 2267 void ptrace_notify(int exit_code) 2268 { 2269 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2270 if (unlikely(current->task_works)) 2271 task_work_run(); 2272 2273 spin_lock_irq(¤t->sighand->siglock); 2274 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 2275 spin_unlock_irq(¤t->sighand->siglock); 2276 } 2277 2278 /** 2279 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2280 * @signr: signr causing group stop if initiating 2281 * 2282 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2283 * and participate in it. If already set, participate in the existing 2284 * group stop. If participated in a group stop (and thus slept), %true is 2285 * returned with siglock released. 2286 * 2287 * If ptraced, this function doesn't handle stop itself. Instead, 2288 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2289 * untouched. The caller must ensure that INTERRUPT trap handling takes 2290 * places afterwards. 2291 * 2292 * CONTEXT: 2293 * Must be called with @current->sighand->siglock held, which is released 2294 * on %true return. 2295 * 2296 * RETURNS: 2297 * %false if group stop is already cancelled or ptrace trap is scheduled. 2298 * %true if participated in group stop. 2299 */ 2300 static bool do_signal_stop(int signr) 2301 __releases(¤t->sighand->siglock) 2302 { 2303 struct signal_struct *sig = current->signal; 2304 2305 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2306 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2307 struct task_struct *t; 2308 2309 /* signr will be recorded in task->jobctl for retries */ 2310 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2311 2312 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2313 unlikely(signal_group_exit(sig))) 2314 return false; 2315 /* 2316 * There is no group stop already in progress. We must 2317 * initiate one now. 2318 * 2319 * While ptraced, a task may be resumed while group stop is 2320 * still in effect and then receive a stop signal and 2321 * initiate another group stop. This deviates from the 2322 * usual behavior as two consecutive stop signals can't 2323 * cause two group stops when !ptraced. That is why we 2324 * also check !task_is_stopped(t) below. 2325 * 2326 * The condition can be distinguished by testing whether 2327 * SIGNAL_STOP_STOPPED is already set. Don't generate 2328 * group_exit_code in such case. 2329 * 2330 * This is not necessary for SIGNAL_STOP_CONTINUED because 2331 * an intervening stop signal is required to cause two 2332 * continued events regardless of ptrace. 2333 */ 2334 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2335 sig->group_exit_code = signr; 2336 2337 sig->group_stop_count = 0; 2338 2339 if (task_set_jobctl_pending(current, signr | gstop)) 2340 sig->group_stop_count++; 2341 2342 t = current; 2343 while_each_thread(current, t) { 2344 /* 2345 * Setting state to TASK_STOPPED for a group 2346 * stop is always done with the siglock held, 2347 * so this check has no races. 2348 */ 2349 if (!task_is_stopped(t) && 2350 task_set_jobctl_pending(t, signr | gstop)) { 2351 sig->group_stop_count++; 2352 if (likely(!(t->ptrace & PT_SEIZED))) 2353 signal_wake_up(t, 0); 2354 else 2355 ptrace_trap_notify(t); 2356 } 2357 } 2358 } 2359 2360 if (likely(!current->ptrace)) { 2361 int notify = 0; 2362 2363 /* 2364 * If there are no other threads in the group, or if there 2365 * is a group stop in progress and we are the last to stop, 2366 * report to the parent. 2367 */ 2368 if (task_participate_group_stop(current)) 2369 notify = CLD_STOPPED; 2370 2371 set_special_state(TASK_STOPPED); 2372 spin_unlock_irq(¤t->sighand->siglock); 2373 2374 /* 2375 * Notify the parent of the group stop completion. Because 2376 * we're not holding either the siglock or tasklist_lock 2377 * here, ptracer may attach inbetween; however, this is for 2378 * group stop and should always be delivered to the real 2379 * parent of the group leader. The new ptracer will get 2380 * its notification when this task transitions into 2381 * TASK_TRACED. 2382 */ 2383 if (notify) { 2384 read_lock(&tasklist_lock); 2385 do_notify_parent_cldstop(current, false, notify); 2386 read_unlock(&tasklist_lock); 2387 } 2388 2389 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2390 cgroup_enter_frozen(); 2391 freezable_schedule(); 2392 return true; 2393 } else { 2394 /* 2395 * While ptraced, group stop is handled by STOP trap. 2396 * Schedule it and let the caller deal with it. 2397 */ 2398 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2399 return false; 2400 } 2401 } 2402 2403 /** 2404 * do_jobctl_trap - take care of ptrace jobctl traps 2405 * 2406 * When PT_SEIZED, it's used for both group stop and explicit 2407 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2408 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2409 * the stop signal; otherwise, %SIGTRAP. 2410 * 2411 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2412 * number as exit_code and no siginfo. 2413 * 2414 * CONTEXT: 2415 * Must be called with @current->sighand->siglock held, which may be 2416 * released and re-acquired before returning with intervening sleep. 2417 */ 2418 static void do_jobctl_trap(void) 2419 { 2420 struct signal_struct *signal = current->signal; 2421 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2422 2423 if (current->ptrace & PT_SEIZED) { 2424 if (!signal->group_stop_count && 2425 !(signal->flags & SIGNAL_STOP_STOPPED)) 2426 signr = SIGTRAP; 2427 WARN_ON_ONCE(!signr); 2428 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2429 CLD_STOPPED); 2430 } else { 2431 WARN_ON_ONCE(!signr); 2432 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2433 current->exit_code = 0; 2434 } 2435 } 2436 2437 /** 2438 * do_freezer_trap - handle the freezer jobctl trap 2439 * 2440 * Puts the task into frozen state, if only the task is not about to quit. 2441 * In this case it drops JOBCTL_TRAP_FREEZE. 2442 * 2443 * CONTEXT: 2444 * Must be called with @current->sighand->siglock held, 2445 * which is always released before returning. 2446 */ 2447 static void do_freezer_trap(void) 2448 __releases(¤t->sighand->siglock) 2449 { 2450 /* 2451 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2452 * let's make another loop to give it a chance to be handled. 2453 * In any case, we'll return back. 2454 */ 2455 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2456 JOBCTL_TRAP_FREEZE) { 2457 spin_unlock_irq(¤t->sighand->siglock); 2458 return; 2459 } 2460 2461 /* 2462 * Now we're sure that there is no pending fatal signal and no 2463 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2464 * immediately (if there is a non-fatal signal pending), and 2465 * put the task into sleep. 2466 */ 2467 __set_current_state(TASK_INTERRUPTIBLE); 2468 clear_thread_flag(TIF_SIGPENDING); 2469 spin_unlock_irq(¤t->sighand->siglock); 2470 cgroup_enter_frozen(); 2471 freezable_schedule(); 2472 } 2473 2474 static int ptrace_signal(int signr, kernel_siginfo_t *info) 2475 { 2476 /* 2477 * We do not check sig_kernel_stop(signr) but set this marker 2478 * unconditionally because we do not know whether debugger will 2479 * change signr. This flag has no meaning unless we are going 2480 * to stop after return from ptrace_stop(). In this case it will 2481 * be checked in do_signal_stop(), we should only stop if it was 2482 * not cleared by SIGCONT while we were sleeping. See also the 2483 * comment in dequeue_signal(). 2484 */ 2485 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2486 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2487 2488 /* We're back. Did the debugger cancel the sig? */ 2489 signr = current->exit_code; 2490 if (signr == 0) 2491 return signr; 2492 2493 current->exit_code = 0; 2494 2495 /* 2496 * Update the siginfo structure if the signal has 2497 * changed. If the debugger wanted something 2498 * specific in the siginfo structure then it should 2499 * have updated *info via PTRACE_SETSIGINFO. 2500 */ 2501 if (signr != info->si_signo) { 2502 clear_siginfo(info); 2503 info->si_signo = signr; 2504 info->si_errno = 0; 2505 info->si_code = SI_USER; 2506 rcu_read_lock(); 2507 info->si_pid = task_pid_vnr(current->parent); 2508 info->si_uid = from_kuid_munged(current_user_ns(), 2509 task_uid(current->parent)); 2510 rcu_read_unlock(); 2511 } 2512 2513 /* If the (new) signal is now blocked, requeue it. */ 2514 if (sigismember(¤t->blocked, signr)) { 2515 send_signal(signr, info, current, PIDTYPE_PID); 2516 signr = 0; 2517 } 2518 2519 return signr; 2520 } 2521 2522 bool get_signal(struct ksignal *ksig) 2523 { 2524 struct sighand_struct *sighand = current->sighand; 2525 struct signal_struct *signal = current->signal; 2526 int signr; 2527 2528 if (unlikely(current->task_works)) 2529 task_work_run(); 2530 2531 if (unlikely(uprobe_deny_signal())) 2532 return false; 2533 2534 /* 2535 * Do this once, we can't return to user-mode if freezing() == T. 2536 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2537 * thus do not need another check after return. 2538 */ 2539 try_to_freeze(); 2540 2541 relock: 2542 spin_lock_irq(&sighand->siglock); 2543 /* 2544 * Every stopped thread goes here after wakeup. Check to see if 2545 * we should notify the parent, prepare_signal(SIGCONT) encodes 2546 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2547 */ 2548 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2549 int why; 2550 2551 if (signal->flags & SIGNAL_CLD_CONTINUED) 2552 why = CLD_CONTINUED; 2553 else 2554 why = CLD_STOPPED; 2555 2556 signal->flags &= ~SIGNAL_CLD_MASK; 2557 2558 spin_unlock_irq(&sighand->siglock); 2559 2560 /* 2561 * Notify the parent that we're continuing. This event is 2562 * always per-process and doesn't make whole lot of sense 2563 * for ptracers, who shouldn't consume the state via 2564 * wait(2) either, but, for backward compatibility, notify 2565 * the ptracer of the group leader too unless it's gonna be 2566 * a duplicate. 2567 */ 2568 read_lock(&tasklist_lock); 2569 do_notify_parent_cldstop(current, false, why); 2570 2571 if (ptrace_reparented(current->group_leader)) 2572 do_notify_parent_cldstop(current->group_leader, 2573 true, why); 2574 read_unlock(&tasklist_lock); 2575 2576 goto relock; 2577 } 2578 2579 /* Has this task already been marked for death? */ 2580 if (signal_group_exit(signal)) { 2581 ksig->info.si_signo = signr = SIGKILL; 2582 sigdelset(¤t->pending.signal, SIGKILL); 2583 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2584 &sighand->action[SIGKILL - 1]); 2585 recalc_sigpending(); 2586 goto fatal; 2587 } 2588 2589 for (;;) { 2590 struct k_sigaction *ka; 2591 2592 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2593 do_signal_stop(0)) 2594 goto relock; 2595 2596 if (unlikely(current->jobctl & 2597 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2598 if (current->jobctl & JOBCTL_TRAP_MASK) { 2599 do_jobctl_trap(); 2600 spin_unlock_irq(&sighand->siglock); 2601 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2602 do_freezer_trap(); 2603 2604 goto relock; 2605 } 2606 2607 /* 2608 * If the task is leaving the frozen state, let's update 2609 * cgroup counters and reset the frozen bit. 2610 */ 2611 if (unlikely(cgroup_task_frozen(current))) { 2612 spin_unlock_irq(&sighand->siglock); 2613 cgroup_leave_frozen(false); 2614 goto relock; 2615 } 2616 2617 /* 2618 * Signals generated by the execution of an instruction 2619 * need to be delivered before any other pending signals 2620 * so that the instruction pointer in the signal stack 2621 * frame points to the faulting instruction. 2622 */ 2623 signr = dequeue_synchronous_signal(&ksig->info); 2624 if (!signr) 2625 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2626 2627 if (!signr) 2628 break; /* will return 0 */ 2629 2630 if (unlikely(current->ptrace) && signr != SIGKILL) { 2631 signr = ptrace_signal(signr, &ksig->info); 2632 if (!signr) 2633 continue; 2634 } 2635 2636 ka = &sighand->action[signr-1]; 2637 2638 /* Trace actually delivered signals. */ 2639 trace_signal_deliver(signr, &ksig->info, ka); 2640 2641 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2642 continue; 2643 if (ka->sa.sa_handler != SIG_DFL) { 2644 /* Run the handler. */ 2645 ksig->ka = *ka; 2646 2647 if (ka->sa.sa_flags & SA_ONESHOT) 2648 ka->sa.sa_handler = SIG_DFL; 2649 2650 break; /* will return non-zero "signr" value */ 2651 } 2652 2653 /* 2654 * Now we are doing the default action for this signal. 2655 */ 2656 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2657 continue; 2658 2659 /* 2660 * Global init gets no signals it doesn't want. 2661 * Container-init gets no signals it doesn't want from same 2662 * container. 2663 * 2664 * Note that if global/container-init sees a sig_kernel_only() 2665 * signal here, the signal must have been generated internally 2666 * or must have come from an ancestor namespace. In either 2667 * case, the signal cannot be dropped. 2668 */ 2669 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2670 !sig_kernel_only(signr)) 2671 continue; 2672 2673 if (sig_kernel_stop(signr)) { 2674 /* 2675 * The default action is to stop all threads in 2676 * the thread group. The job control signals 2677 * do nothing in an orphaned pgrp, but SIGSTOP 2678 * always works. Note that siglock needs to be 2679 * dropped during the call to is_orphaned_pgrp() 2680 * because of lock ordering with tasklist_lock. 2681 * This allows an intervening SIGCONT to be posted. 2682 * We need to check for that and bail out if necessary. 2683 */ 2684 if (signr != SIGSTOP) { 2685 spin_unlock_irq(&sighand->siglock); 2686 2687 /* signals can be posted during this window */ 2688 2689 if (is_current_pgrp_orphaned()) 2690 goto relock; 2691 2692 spin_lock_irq(&sighand->siglock); 2693 } 2694 2695 if (likely(do_signal_stop(ksig->info.si_signo))) { 2696 /* It released the siglock. */ 2697 goto relock; 2698 } 2699 2700 /* 2701 * We didn't actually stop, due to a race 2702 * with SIGCONT or something like that. 2703 */ 2704 continue; 2705 } 2706 2707 fatal: 2708 spin_unlock_irq(&sighand->siglock); 2709 if (unlikely(cgroup_task_frozen(current))) 2710 cgroup_leave_frozen(true); 2711 2712 /* 2713 * Anything else is fatal, maybe with a core dump. 2714 */ 2715 current->flags |= PF_SIGNALED; 2716 2717 if (sig_kernel_coredump(signr)) { 2718 if (print_fatal_signals) 2719 print_fatal_signal(ksig->info.si_signo); 2720 proc_coredump_connector(current); 2721 /* 2722 * If it was able to dump core, this kills all 2723 * other threads in the group and synchronizes with 2724 * their demise. If we lost the race with another 2725 * thread getting here, it set group_exit_code 2726 * first and our do_group_exit call below will use 2727 * that value and ignore the one we pass it. 2728 */ 2729 do_coredump(&ksig->info); 2730 } 2731 2732 /* 2733 * Death signals, no core dump. 2734 */ 2735 do_group_exit(ksig->info.si_signo); 2736 /* NOTREACHED */ 2737 } 2738 spin_unlock_irq(&sighand->siglock); 2739 2740 ksig->sig = signr; 2741 return ksig->sig > 0; 2742 } 2743 2744 /** 2745 * signal_delivered - 2746 * @ksig: kernel signal struct 2747 * @stepping: nonzero if debugger single-step or block-step in use 2748 * 2749 * This function should be called when a signal has successfully been 2750 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2751 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2752 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2753 */ 2754 static void signal_delivered(struct ksignal *ksig, int stepping) 2755 { 2756 sigset_t blocked; 2757 2758 /* A signal was successfully delivered, and the 2759 saved sigmask was stored on the signal frame, 2760 and will be restored by sigreturn. So we can 2761 simply clear the restore sigmask flag. */ 2762 clear_restore_sigmask(); 2763 2764 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2765 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2766 sigaddset(&blocked, ksig->sig); 2767 set_current_blocked(&blocked); 2768 tracehook_signal_handler(stepping); 2769 } 2770 2771 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2772 { 2773 if (failed) 2774 force_sigsegv(ksig->sig); 2775 else 2776 signal_delivered(ksig, stepping); 2777 } 2778 2779 /* 2780 * It could be that complete_signal() picked us to notify about the 2781 * group-wide signal. Other threads should be notified now to take 2782 * the shared signals in @which since we will not. 2783 */ 2784 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2785 { 2786 sigset_t retarget; 2787 struct task_struct *t; 2788 2789 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2790 if (sigisemptyset(&retarget)) 2791 return; 2792 2793 t = tsk; 2794 while_each_thread(tsk, t) { 2795 if (t->flags & PF_EXITING) 2796 continue; 2797 2798 if (!has_pending_signals(&retarget, &t->blocked)) 2799 continue; 2800 /* Remove the signals this thread can handle. */ 2801 sigandsets(&retarget, &retarget, &t->blocked); 2802 2803 if (!signal_pending(t)) 2804 signal_wake_up(t, 0); 2805 2806 if (sigisemptyset(&retarget)) 2807 break; 2808 } 2809 } 2810 2811 void exit_signals(struct task_struct *tsk) 2812 { 2813 int group_stop = 0; 2814 sigset_t unblocked; 2815 2816 /* 2817 * @tsk is about to have PF_EXITING set - lock out users which 2818 * expect stable threadgroup. 2819 */ 2820 cgroup_threadgroup_change_begin(tsk); 2821 2822 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2823 tsk->flags |= PF_EXITING; 2824 cgroup_threadgroup_change_end(tsk); 2825 return; 2826 } 2827 2828 spin_lock_irq(&tsk->sighand->siglock); 2829 /* 2830 * From now this task is not visible for group-wide signals, 2831 * see wants_signal(), do_signal_stop(). 2832 */ 2833 tsk->flags |= PF_EXITING; 2834 2835 cgroup_threadgroup_change_end(tsk); 2836 2837 if (!signal_pending(tsk)) 2838 goto out; 2839 2840 unblocked = tsk->blocked; 2841 signotset(&unblocked); 2842 retarget_shared_pending(tsk, &unblocked); 2843 2844 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2845 task_participate_group_stop(tsk)) 2846 group_stop = CLD_STOPPED; 2847 out: 2848 spin_unlock_irq(&tsk->sighand->siglock); 2849 2850 /* 2851 * If group stop has completed, deliver the notification. This 2852 * should always go to the real parent of the group leader. 2853 */ 2854 if (unlikely(group_stop)) { 2855 read_lock(&tasklist_lock); 2856 do_notify_parent_cldstop(tsk, false, group_stop); 2857 read_unlock(&tasklist_lock); 2858 } 2859 } 2860 2861 /* 2862 * System call entry points. 2863 */ 2864 2865 /** 2866 * sys_restart_syscall - restart a system call 2867 */ 2868 SYSCALL_DEFINE0(restart_syscall) 2869 { 2870 struct restart_block *restart = ¤t->restart_block; 2871 return restart->fn(restart); 2872 } 2873 2874 long do_no_restart_syscall(struct restart_block *param) 2875 { 2876 return -EINTR; 2877 } 2878 2879 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2880 { 2881 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2882 sigset_t newblocked; 2883 /* A set of now blocked but previously unblocked signals. */ 2884 sigandnsets(&newblocked, newset, ¤t->blocked); 2885 retarget_shared_pending(tsk, &newblocked); 2886 } 2887 tsk->blocked = *newset; 2888 recalc_sigpending(); 2889 } 2890 2891 /** 2892 * set_current_blocked - change current->blocked mask 2893 * @newset: new mask 2894 * 2895 * It is wrong to change ->blocked directly, this helper should be used 2896 * to ensure the process can't miss a shared signal we are going to block. 2897 */ 2898 void set_current_blocked(sigset_t *newset) 2899 { 2900 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2901 __set_current_blocked(newset); 2902 } 2903 2904 void __set_current_blocked(const sigset_t *newset) 2905 { 2906 struct task_struct *tsk = current; 2907 2908 /* 2909 * In case the signal mask hasn't changed, there is nothing we need 2910 * to do. The current->blocked shouldn't be modified by other task. 2911 */ 2912 if (sigequalsets(&tsk->blocked, newset)) 2913 return; 2914 2915 spin_lock_irq(&tsk->sighand->siglock); 2916 __set_task_blocked(tsk, newset); 2917 spin_unlock_irq(&tsk->sighand->siglock); 2918 } 2919 2920 /* 2921 * This is also useful for kernel threads that want to temporarily 2922 * (or permanently) block certain signals. 2923 * 2924 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2925 * interface happily blocks "unblockable" signals like SIGKILL 2926 * and friends. 2927 */ 2928 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2929 { 2930 struct task_struct *tsk = current; 2931 sigset_t newset; 2932 2933 /* Lockless, only current can change ->blocked, never from irq */ 2934 if (oldset) 2935 *oldset = tsk->blocked; 2936 2937 switch (how) { 2938 case SIG_BLOCK: 2939 sigorsets(&newset, &tsk->blocked, set); 2940 break; 2941 case SIG_UNBLOCK: 2942 sigandnsets(&newset, &tsk->blocked, set); 2943 break; 2944 case SIG_SETMASK: 2945 newset = *set; 2946 break; 2947 default: 2948 return -EINVAL; 2949 } 2950 2951 __set_current_blocked(&newset); 2952 return 0; 2953 } 2954 EXPORT_SYMBOL(sigprocmask); 2955 2956 /* 2957 * The api helps set app-provided sigmasks. 2958 * 2959 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 2960 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 2961 * 2962 * Note that it does set_restore_sigmask() in advance, so it must be always 2963 * paired with restore_saved_sigmask_unless() before return from syscall. 2964 */ 2965 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 2966 { 2967 sigset_t kmask; 2968 2969 if (!umask) 2970 return 0; 2971 if (sigsetsize != sizeof(sigset_t)) 2972 return -EINVAL; 2973 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 2974 return -EFAULT; 2975 2976 set_restore_sigmask(); 2977 current->saved_sigmask = current->blocked; 2978 set_current_blocked(&kmask); 2979 2980 return 0; 2981 } 2982 2983 #ifdef CONFIG_COMPAT 2984 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 2985 size_t sigsetsize) 2986 { 2987 sigset_t kmask; 2988 2989 if (!umask) 2990 return 0; 2991 if (sigsetsize != sizeof(compat_sigset_t)) 2992 return -EINVAL; 2993 if (get_compat_sigset(&kmask, umask)) 2994 return -EFAULT; 2995 2996 set_restore_sigmask(); 2997 current->saved_sigmask = current->blocked; 2998 set_current_blocked(&kmask); 2999 3000 return 0; 3001 } 3002 #endif 3003 3004 /** 3005 * sys_rt_sigprocmask - change the list of currently blocked signals 3006 * @how: whether to add, remove, or set signals 3007 * @nset: stores pending signals 3008 * @oset: previous value of signal mask if non-null 3009 * @sigsetsize: size of sigset_t type 3010 */ 3011 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3012 sigset_t __user *, oset, size_t, sigsetsize) 3013 { 3014 sigset_t old_set, new_set; 3015 int error; 3016 3017 /* XXX: Don't preclude handling different sized sigset_t's. */ 3018 if (sigsetsize != sizeof(sigset_t)) 3019 return -EINVAL; 3020 3021 old_set = current->blocked; 3022 3023 if (nset) { 3024 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3025 return -EFAULT; 3026 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3027 3028 error = sigprocmask(how, &new_set, NULL); 3029 if (error) 3030 return error; 3031 } 3032 3033 if (oset) { 3034 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3035 return -EFAULT; 3036 } 3037 3038 return 0; 3039 } 3040 3041 #ifdef CONFIG_COMPAT 3042 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3043 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3044 { 3045 sigset_t old_set = current->blocked; 3046 3047 /* XXX: Don't preclude handling different sized sigset_t's. */ 3048 if (sigsetsize != sizeof(sigset_t)) 3049 return -EINVAL; 3050 3051 if (nset) { 3052 sigset_t new_set; 3053 int error; 3054 if (get_compat_sigset(&new_set, nset)) 3055 return -EFAULT; 3056 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3057 3058 error = sigprocmask(how, &new_set, NULL); 3059 if (error) 3060 return error; 3061 } 3062 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3063 } 3064 #endif 3065 3066 static void do_sigpending(sigset_t *set) 3067 { 3068 spin_lock_irq(¤t->sighand->siglock); 3069 sigorsets(set, ¤t->pending.signal, 3070 ¤t->signal->shared_pending.signal); 3071 spin_unlock_irq(¤t->sighand->siglock); 3072 3073 /* Outside the lock because only this thread touches it. */ 3074 sigandsets(set, ¤t->blocked, set); 3075 } 3076 3077 /** 3078 * sys_rt_sigpending - examine a pending signal that has been raised 3079 * while blocked 3080 * @uset: stores pending signals 3081 * @sigsetsize: size of sigset_t type or larger 3082 */ 3083 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3084 { 3085 sigset_t set; 3086 3087 if (sigsetsize > sizeof(*uset)) 3088 return -EINVAL; 3089 3090 do_sigpending(&set); 3091 3092 if (copy_to_user(uset, &set, sigsetsize)) 3093 return -EFAULT; 3094 3095 return 0; 3096 } 3097 3098 #ifdef CONFIG_COMPAT 3099 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3100 compat_size_t, sigsetsize) 3101 { 3102 sigset_t set; 3103 3104 if (sigsetsize > sizeof(*uset)) 3105 return -EINVAL; 3106 3107 do_sigpending(&set); 3108 3109 return put_compat_sigset(uset, &set, sigsetsize); 3110 } 3111 #endif 3112 3113 static const struct { 3114 unsigned char limit, layout; 3115 } sig_sicodes[] = { 3116 [SIGILL] = { NSIGILL, SIL_FAULT }, 3117 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3118 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3119 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3120 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3121 #if defined(SIGEMT) 3122 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3123 #endif 3124 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3125 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3126 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3127 }; 3128 3129 static bool known_siginfo_layout(unsigned sig, int si_code) 3130 { 3131 if (si_code == SI_KERNEL) 3132 return true; 3133 else if ((si_code > SI_USER)) { 3134 if (sig_specific_sicodes(sig)) { 3135 if (si_code <= sig_sicodes[sig].limit) 3136 return true; 3137 } 3138 else if (si_code <= NSIGPOLL) 3139 return true; 3140 } 3141 else if (si_code >= SI_DETHREAD) 3142 return true; 3143 else if (si_code == SI_ASYNCNL) 3144 return true; 3145 return false; 3146 } 3147 3148 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3149 { 3150 enum siginfo_layout layout = SIL_KILL; 3151 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3152 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3153 (si_code <= sig_sicodes[sig].limit)) { 3154 layout = sig_sicodes[sig].layout; 3155 /* Handle the exceptions */ 3156 if ((sig == SIGBUS) && 3157 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3158 layout = SIL_FAULT_MCEERR; 3159 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3160 layout = SIL_FAULT_BNDERR; 3161 #ifdef SEGV_PKUERR 3162 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3163 layout = SIL_FAULT_PKUERR; 3164 #endif 3165 } 3166 else if (si_code <= NSIGPOLL) 3167 layout = SIL_POLL; 3168 } else { 3169 if (si_code == SI_TIMER) 3170 layout = SIL_TIMER; 3171 else if (si_code == SI_SIGIO) 3172 layout = SIL_POLL; 3173 else if (si_code < 0) 3174 layout = SIL_RT; 3175 } 3176 return layout; 3177 } 3178 3179 static inline char __user *si_expansion(const siginfo_t __user *info) 3180 { 3181 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3182 } 3183 3184 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3185 { 3186 char __user *expansion = si_expansion(to); 3187 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3188 return -EFAULT; 3189 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3190 return -EFAULT; 3191 return 0; 3192 } 3193 3194 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3195 const siginfo_t __user *from) 3196 { 3197 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3198 char __user *expansion = si_expansion(from); 3199 char buf[SI_EXPANSION_SIZE]; 3200 int i; 3201 /* 3202 * An unknown si_code might need more than 3203 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3204 * extra bytes are 0. This guarantees copy_siginfo_to_user 3205 * will return this data to userspace exactly. 3206 */ 3207 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3208 return -EFAULT; 3209 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3210 if (buf[i] != 0) 3211 return -E2BIG; 3212 } 3213 } 3214 return 0; 3215 } 3216 3217 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3218 const siginfo_t __user *from) 3219 { 3220 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3221 return -EFAULT; 3222 to->si_signo = signo; 3223 return post_copy_siginfo_from_user(to, from); 3224 } 3225 3226 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3227 { 3228 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3229 return -EFAULT; 3230 return post_copy_siginfo_from_user(to, from); 3231 } 3232 3233 #ifdef CONFIG_COMPAT 3234 int copy_siginfo_to_user32(struct compat_siginfo __user *to, 3235 const struct kernel_siginfo *from) 3236 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION) 3237 { 3238 return __copy_siginfo_to_user32(to, from, in_x32_syscall()); 3239 } 3240 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3241 const struct kernel_siginfo *from, bool x32_ABI) 3242 #endif 3243 { 3244 struct compat_siginfo new; 3245 memset(&new, 0, sizeof(new)); 3246 3247 new.si_signo = from->si_signo; 3248 new.si_errno = from->si_errno; 3249 new.si_code = from->si_code; 3250 switch(siginfo_layout(from->si_signo, from->si_code)) { 3251 case SIL_KILL: 3252 new.si_pid = from->si_pid; 3253 new.si_uid = from->si_uid; 3254 break; 3255 case SIL_TIMER: 3256 new.si_tid = from->si_tid; 3257 new.si_overrun = from->si_overrun; 3258 new.si_int = from->si_int; 3259 break; 3260 case SIL_POLL: 3261 new.si_band = from->si_band; 3262 new.si_fd = from->si_fd; 3263 break; 3264 case SIL_FAULT: 3265 new.si_addr = ptr_to_compat(from->si_addr); 3266 #ifdef __ARCH_SI_TRAPNO 3267 new.si_trapno = from->si_trapno; 3268 #endif 3269 break; 3270 case SIL_FAULT_MCEERR: 3271 new.si_addr = ptr_to_compat(from->si_addr); 3272 #ifdef __ARCH_SI_TRAPNO 3273 new.si_trapno = from->si_trapno; 3274 #endif 3275 new.si_addr_lsb = from->si_addr_lsb; 3276 break; 3277 case SIL_FAULT_BNDERR: 3278 new.si_addr = ptr_to_compat(from->si_addr); 3279 #ifdef __ARCH_SI_TRAPNO 3280 new.si_trapno = from->si_trapno; 3281 #endif 3282 new.si_lower = ptr_to_compat(from->si_lower); 3283 new.si_upper = ptr_to_compat(from->si_upper); 3284 break; 3285 case SIL_FAULT_PKUERR: 3286 new.si_addr = ptr_to_compat(from->si_addr); 3287 #ifdef __ARCH_SI_TRAPNO 3288 new.si_trapno = from->si_trapno; 3289 #endif 3290 new.si_pkey = from->si_pkey; 3291 break; 3292 case SIL_CHLD: 3293 new.si_pid = from->si_pid; 3294 new.si_uid = from->si_uid; 3295 new.si_status = from->si_status; 3296 #ifdef CONFIG_X86_X32_ABI 3297 if (x32_ABI) { 3298 new._sifields._sigchld_x32._utime = from->si_utime; 3299 new._sifields._sigchld_x32._stime = from->si_stime; 3300 } else 3301 #endif 3302 { 3303 new.si_utime = from->si_utime; 3304 new.si_stime = from->si_stime; 3305 } 3306 break; 3307 case SIL_RT: 3308 new.si_pid = from->si_pid; 3309 new.si_uid = from->si_uid; 3310 new.si_int = from->si_int; 3311 break; 3312 case SIL_SYS: 3313 new.si_call_addr = ptr_to_compat(from->si_call_addr); 3314 new.si_syscall = from->si_syscall; 3315 new.si_arch = from->si_arch; 3316 break; 3317 } 3318 3319 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3320 return -EFAULT; 3321 3322 return 0; 3323 } 3324 3325 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3326 const struct compat_siginfo *from) 3327 { 3328 clear_siginfo(to); 3329 to->si_signo = from->si_signo; 3330 to->si_errno = from->si_errno; 3331 to->si_code = from->si_code; 3332 switch(siginfo_layout(from->si_signo, from->si_code)) { 3333 case SIL_KILL: 3334 to->si_pid = from->si_pid; 3335 to->si_uid = from->si_uid; 3336 break; 3337 case SIL_TIMER: 3338 to->si_tid = from->si_tid; 3339 to->si_overrun = from->si_overrun; 3340 to->si_int = from->si_int; 3341 break; 3342 case SIL_POLL: 3343 to->si_band = from->si_band; 3344 to->si_fd = from->si_fd; 3345 break; 3346 case SIL_FAULT: 3347 to->si_addr = compat_ptr(from->si_addr); 3348 #ifdef __ARCH_SI_TRAPNO 3349 to->si_trapno = from->si_trapno; 3350 #endif 3351 break; 3352 case SIL_FAULT_MCEERR: 3353 to->si_addr = compat_ptr(from->si_addr); 3354 #ifdef __ARCH_SI_TRAPNO 3355 to->si_trapno = from->si_trapno; 3356 #endif 3357 to->si_addr_lsb = from->si_addr_lsb; 3358 break; 3359 case SIL_FAULT_BNDERR: 3360 to->si_addr = compat_ptr(from->si_addr); 3361 #ifdef __ARCH_SI_TRAPNO 3362 to->si_trapno = from->si_trapno; 3363 #endif 3364 to->si_lower = compat_ptr(from->si_lower); 3365 to->si_upper = compat_ptr(from->si_upper); 3366 break; 3367 case SIL_FAULT_PKUERR: 3368 to->si_addr = compat_ptr(from->si_addr); 3369 #ifdef __ARCH_SI_TRAPNO 3370 to->si_trapno = from->si_trapno; 3371 #endif 3372 to->si_pkey = from->si_pkey; 3373 break; 3374 case SIL_CHLD: 3375 to->si_pid = from->si_pid; 3376 to->si_uid = from->si_uid; 3377 to->si_status = from->si_status; 3378 #ifdef CONFIG_X86_X32_ABI 3379 if (in_x32_syscall()) { 3380 to->si_utime = from->_sifields._sigchld_x32._utime; 3381 to->si_stime = from->_sifields._sigchld_x32._stime; 3382 } else 3383 #endif 3384 { 3385 to->si_utime = from->si_utime; 3386 to->si_stime = from->si_stime; 3387 } 3388 break; 3389 case SIL_RT: 3390 to->si_pid = from->si_pid; 3391 to->si_uid = from->si_uid; 3392 to->si_int = from->si_int; 3393 break; 3394 case SIL_SYS: 3395 to->si_call_addr = compat_ptr(from->si_call_addr); 3396 to->si_syscall = from->si_syscall; 3397 to->si_arch = from->si_arch; 3398 break; 3399 } 3400 return 0; 3401 } 3402 3403 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3404 const struct compat_siginfo __user *ufrom) 3405 { 3406 struct compat_siginfo from; 3407 3408 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3409 return -EFAULT; 3410 3411 from.si_signo = signo; 3412 return post_copy_siginfo_from_user32(to, &from); 3413 } 3414 3415 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3416 const struct compat_siginfo __user *ufrom) 3417 { 3418 struct compat_siginfo from; 3419 3420 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3421 return -EFAULT; 3422 3423 return post_copy_siginfo_from_user32(to, &from); 3424 } 3425 #endif /* CONFIG_COMPAT */ 3426 3427 /** 3428 * do_sigtimedwait - wait for queued signals specified in @which 3429 * @which: queued signals to wait for 3430 * @info: if non-null, the signal's siginfo is returned here 3431 * @ts: upper bound on process time suspension 3432 */ 3433 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3434 const struct timespec64 *ts) 3435 { 3436 ktime_t *to = NULL, timeout = KTIME_MAX; 3437 struct task_struct *tsk = current; 3438 sigset_t mask = *which; 3439 int sig, ret = 0; 3440 3441 if (ts) { 3442 if (!timespec64_valid(ts)) 3443 return -EINVAL; 3444 timeout = timespec64_to_ktime(*ts); 3445 to = &timeout; 3446 } 3447 3448 /* 3449 * Invert the set of allowed signals to get those we want to block. 3450 */ 3451 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3452 signotset(&mask); 3453 3454 spin_lock_irq(&tsk->sighand->siglock); 3455 sig = dequeue_signal(tsk, &mask, info); 3456 if (!sig && timeout) { 3457 /* 3458 * None ready, temporarily unblock those we're interested 3459 * while we are sleeping in so that we'll be awakened when 3460 * they arrive. Unblocking is always fine, we can avoid 3461 * set_current_blocked(). 3462 */ 3463 tsk->real_blocked = tsk->blocked; 3464 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3465 recalc_sigpending(); 3466 spin_unlock_irq(&tsk->sighand->siglock); 3467 3468 __set_current_state(TASK_INTERRUPTIBLE); 3469 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3470 HRTIMER_MODE_REL); 3471 spin_lock_irq(&tsk->sighand->siglock); 3472 __set_task_blocked(tsk, &tsk->real_blocked); 3473 sigemptyset(&tsk->real_blocked); 3474 sig = dequeue_signal(tsk, &mask, info); 3475 } 3476 spin_unlock_irq(&tsk->sighand->siglock); 3477 3478 if (sig) 3479 return sig; 3480 return ret ? -EINTR : -EAGAIN; 3481 } 3482 3483 /** 3484 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3485 * in @uthese 3486 * @uthese: queued signals to wait for 3487 * @uinfo: if non-null, the signal's siginfo is returned here 3488 * @uts: upper bound on process time suspension 3489 * @sigsetsize: size of sigset_t type 3490 */ 3491 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3492 siginfo_t __user *, uinfo, 3493 const struct __kernel_timespec __user *, uts, 3494 size_t, sigsetsize) 3495 { 3496 sigset_t these; 3497 struct timespec64 ts; 3498 kernel_siginfo_t info; 3499 int ret; 3500 3501 /* XXX: Don't preclude handling different sized sigset_t's. */ 3502 if (sigsetsize != sizeof(sigset_t)) 3503 return -EINVAL; 3504 3505 if (copy_from_user(&these, uthese, sizeof(these))) 3506 return -EFAULT; 3507 3508 if (uts) { 3509 if (get_timespec64(&ts, uts)) 3510 return -EFAULT; 3511 } 3512 3513 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3514 3515 if (ret > 0 && uinfo) { 3516 if (copy_siginfo_to_user(uinfo, &info)) 3517 ret = -EFAULT; 3518 } 3519 3520 return ret; 3521 } 3522 3523 #ifdef CONFIG_COMPAT_32BIT_TIME 3524 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3525 siginfo_t __user *, uinfo, 3526 const struct old_timespec32 __user *, uts, 3527 size_t, sigsetsize) 3528 { 3529 sigset_t these; 3530 struct timespec64 ts; 3531 kernel_siginfo_t info; 3532 int ret; 3533 3534 if (sigsetsize != sizeof(sigset_t)) 3535 return -EINVAL; 3536 3537 if (copy_from_user(&these, uthese, sizeof(these))) 3538 return -EFAULT; 3539 3540 if (uts) { 3541 if (get_old_timespec32(&ts, uts)) 3542 return -EFAULT; 3543 } 3544 3545 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3546 3547 if (ret > 0 && uinfo) { 3548 if (copy_siginfo_to_user(uinfo, &info)) 3549 ret = -EFAULT; 3550 } 3551 3552 return ret; 3553 } 3554 #endif 3555 3556 #ifdef CONFIG_COMPAT 3557 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3558 struct compat_siginfo __user *, uinfo, 3559 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3560 { 3561 sigset_t s; 3562 struct timespec64 t; 3563 kernel_siginfo_t info; 3564 long ret; 3565 3566 if (sigsetsize != sizeof(sigset_t)) 3567 return -EINVAL; 3568 3569 if (get_compat_sigset(&s, uthese)) 3570 return -EFAULT; 3571 3572 if (uts) { 3573 if (get_timespec64(&t, uts)) 3574 return -EFAULT; 3575 } 3576 3577 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3578 3579 if (ret > 0 && uinfo) { 3580 if (copy_siginfo_to_user32(uinfo, &info)) 3581 ret = -EFAULT; 3582 } 3583 3584 return ret; 3585 } 3586 3587 #ifdef CONFIG_COMPAT_32BIT_TIME 3588 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3589 struct compat_siginfo __user *, uinfo, 3590 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3591 { 3592 sigset_t s; 3593 struct timespec64 t; 3594 kernel_siginfo_t info; 3595 long ret; 3596 3597 if (sigsetsize != sizeof(sigset_t)) 3598 return -EINVAL; 3599 3600 if (get_compat_sigset(&s, uthese)) 3601 return -EFAULT; 3602 3603 if (uts) { 3604 if (get_old_timespec32(&t, uts)) 3605 return -EFAULT; 3606 } 3607 3608 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3609 3610 if (ret > 0 && uinfo) { 3611 if (copy_siginfo_to_user32(uinfo, &info)) 3612 ret = -EFAULT; 3613 } 3614 3615 return ret; 3616 } 3617 #endif 3618 #endif 3619 3620 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3621 { 3622 clear_siginfo(info); 3623 info->si_signo = sig; 3624 info->si_errno = 0; 3625 info->si_code = SI_USER; 3626 info->si_pid = task_tgid_vnr(current); 3627 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3628 } 3629 3630 /** 3631 * sys_kill - send a signal to a process 3632 * @pid: the PID of the process 3633 * @sig: signal to be sent 3634 */ 3635 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3636 { 3637 struct kernel_siginfo info; 3638 3639 prepare_kill_siginfo(sig, &info); 3640 3641 return kill_something_info(sig, &info, pid); 3642 } 3643 3644 /* 3645 * Verify that the signaler and signalee either are in the same pid namespace 3646 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3647 * namespace. 3648 */ 3649 static bool access_pidfd_pidns(struct pid *pid) 3650 { 3651 struct pid_namespace *active = task_active_pid_ns(current); 3652 struct pid_namespace *p = ns_of_pid(pid); 3653 3654 for (;;) { 3655 if (!p) 3656 return false; 3657 if (p == active) 3658 break; 3659 p = p->parent; 3660 } 3661 3662 return true; 3663 } 3664 3665 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info) 3666 { 3667 #ifdef CONFIG_COMPAT 3668 /* 3669 * Avoid hooking up compat syscalls and instead handle necessary 3670 * conversions here. Note, this is a stop-gap measure and should not be 3671 * considered a generic solution. 3672 */ 3673 if (in_compat_syscall()) 3674 return copy_siginfo_from_user32( 3675 kinfo, (struct compat_siginfo __user *)info); 3676 #endif 3677 return copy_siginfo_from_user(kinfo, info); 3678 } 3679 3680 static struct pid *pidfd_to_pid(const struct file *file) 3681 { 3682 struct pid *pid; 3683 3684 pid = pidfd_pid(file); 3685 if (!IS_ERR(pid)) 3686 return pid; 3687 3688 return tgid_pidfd_to_pid(file); 3689 } 3690 3691 /** 3692 * sys_pidfd_send_signal - Signal a process through a pidfd 3693 * @pidfd: file descriptor of the process 3694 * @sig: signal to send 3695 * @info: signal info 3696 * @flags: future flags 3697 * 3698 * The syscall currently only signals via PIDTYPE_PID which covers 3699 * kill(<positive-pid>, <signal>. It does not signal threads or process 3700 * groups. 3701 * In order to extend the syscall to threads and process groups the @flags 3702 * argument should be used. In essence, the @flags argument will determine 3703 * what is signaled and not the file descriptor itself. Put in other words, 3704 * grouping is a property of the flags argument not a property of the file 3705 * descriptor. 3706 * 3707 * Return: 0 on success, negative errno on failure 3708 */ 3709 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3710 siginfo_t __user *, info, unsigned int, flags) 3711 { 3712 int ret; 3713 struct fd f; 3714 struct pid *pid; 3715 kernel_siginfo_t kinfo; 3716 3717 /* Enforce flags be set to 0 until we add an extension. */ 3718 if (flags) 3719 return -EINVAL; 3720 3721 f = fdget(pidfd); 3722 if (!f.file) 3723 return -EBADF; 3724 3725 /* Is this a pidfd? */ 3726 pid = pidfd_to_pid(f.file); 3727 if (IS_ERR(pid)) { 3728 ret = PTR_ERR(pid); 3729 goto err; 3730 } 3731 3732 ret = -EINVAL; 3733 if (!access_pidfd_pidns(pid)) 3734 goto err; 3735 3736 if (info) { 3737 ret = copy_siginfo_from_user_any(&kinfo, info); 3738 if (unlikely(ret)) 3739 goto err; 3740 3741 ret = -EINVAL; 3742 if (unlikely(sig != kinfo.si_signo)) 3743 goto err; 3744 3745 /* Only allow sending arbitrary signals to yourself. */ 3746 ret = -EPERM; 3747 if ((task_pid(current) != pid) && 3748 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3749 goto err; 3750 } else { 3751 prepare_kill_siginfo(sig, &kinfo); 3752 } 3753 3754 ret = kill_pid_info(sig, &kinfo, pid); 3755 3756 err: 3757 fdput(f); 3758 return ret; 3759 } 3760 3761 static int 3762 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3763 { 3764 struct task_struct *p; 3765 int error = -ESRCH; 3766 3767 rcu_read_lock(); 3768 p = find_task_by_vpid(pid); 3769 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3770 error = check_kill_permission(sig, info, p); 3771 /* 3772 * The null signal is a permissions and process existence 3773 * probe. No signal is actually delivered. 3774 */ 3775 if (!error && sig) { 3776 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3777 /* 3778 * If lock_task_sighand() failed we pretend the task 3779 * dies after receiving the signal. The window is tiny, 3780 * and the signal is private anyway. 3781 */ 3782 if (unlikely(error == -ESRCH)) 3783 error = 0; 3784 } 3785 } 3786 rcu_read_unlock(); 3787 3788 return error; 3789 } 3790 3791 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3792 { 3793 struct kernel_siginfo info; 3794 3795 clear_siginfo(&info); 3796 info.si_signo = sig; 3797 info.si_errno = 0; 3798 info.si_code = SI_TKILL; 3799 info.si_pid = task_tgid_vnr(current); 3800 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3801 3802 return do_send_specific(tgid, pid, sig, &info); 3803 } 3804 3805 /** 3806 * sys_tgkill - send signal to one specific thread 3807 * @tgid: the thread group ID of the thread 3808 * @pid: the PID of the thread 3809 * @sig: signal to be sent 3810 * 3811 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3812 * exists but it's not belonging to the target process anymore. This 3813 * method solves the problem of threads exiting and PIDs getting reused. 3814 */ 3815 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3816 { 3817 /* This is only valid for single tasks */ 3818 if (pid <= 0 || tgid <= 0) 3819 return -EINVAL; 3820 3821 return do_tkill(tgid, pid, sig); 3822 } 3823 3824 /** 3825 * sys_tkill - send signal to one specific task 3826 * @pid: the PID of the task 3827 * @sig: signal to be sent 3828 * 3829 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3830 */ 3831 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3832 { 3833 /* This is only valid for single tasks */ 3834 if (pid <= 0) 3835 return -EINVAL; 3836 3837 return do_tkill(0, pid, sig); 3838 } 3839 3840 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 3841 { 3842 /* Not even root can pretend to send signals from the kernel. 3843 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3844 */ 3845 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3846 (task_pid_vnr(current) != pid)) 3847 return -EPERM; 3848 3849 /* POSIX.1b doesn't mention process groups. */ 3850 return kill_proc_info(sig, info, pid); 3851 } 3852 3853 /** 3854 * sys_rt_sigqueueinfo - send signal information to a signal 3855 * @pid: the PID of the thread 3856 * @sig: signal to be sent 3857 * @uinfo: signal info to be sent 3858 */ 3859 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3860 siginfo_t __user *, uinfo) 3861 { 3862 kernel_siginfo_t info; 3863 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3864 if (unlikely(ret)) 3865 return ret; 3866 return do_rt_sigqueueinfo(pid, sig, &info); 3867 } 3868 3869 #ifdef CONFIG_COMPAT 3870 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3871 compat_pid_t, pid, 3872 int, sig, 3873 struct compat_siginfo __user *, uinfo) 3874 { 3875 kernel_siginfo_t info; 3876 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 3877 if (unlikely(ret)) 3878 return ret; 3879 return do_rt_sigqueueinfo(pid, sig, &info); 3880 } 3881 #endif 3882 3883 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 3884 { 3885 /* This is only valid for single tasks */ 3886 if (pid <= 0 || tgid <= 0) 3887 return -EINVAL; 3888 3889 /* Not even root can pretend to send signals from the kernel. 3890 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3891 */ 3892 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3893 (task_pid_vnr(current) != pid)) 3894 return -EPERM; 3895 3896 return do_send_specific(tgid, pid, sig, info); 3897 } 3898 3899 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3900 siginfo_t __user *, uinfo) 3901 { 3902 kernel_siginfo_t info; 3903 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3904 if (unlikely(ret)) 3905 return ret; 3906 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3907 } 3908 3909 #ifdef CONFIG_COMPAT 3910 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3911 compat_pid_t, tgid, 3912 compat_pid_t, pid, 3913 int, sig, 3914 struct compat_siginfo __user *, uinfo) 3915 { 3916 kernel_siginfo_t info; 3917 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 3918 if (unlikely(ret)) 3919 return ret; 3920 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3921 } 3922 #endif 3923 3924 /* 3925 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 3926 */ 3927 void kernel_sigaction(int sig, __sighandler_t action) 3928 { 3929 spin_lock_irq(¤t->sighand->siglock); 3930 current->sighand->action[sig - 1].sa.sa_handler = action; 3931 if (action == SIG_IGN) { 3932 sigset_t mask; 3933 3934 sigemptyset(&mask); 3935 sigaddset(&mask, sig); 3936 3937 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 3938 flush_sigqueue_mask(&mask, ¤t->pending); 3939 recalc_sigpending(); 3940 } 3941 spin_unlock_irq(¤t->sighand->siglock); 3942 } 3943 EXPORT_SYMBOL(kernel_sigaction); 3944 3945 void __weak sigaction_compat_abi(struct k_sigaction *act, 3946 struct k_sigaction *oact) 3947 { 3948 } 3949 3950 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 3951 { 3952 struct task_struct *p = current, *t; 3953 struct k_sigaction *k; 3954 sigset_t mask; 3955 3956 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3957 return -EINVAL; 3958 3959 k = &p->sighand->action[sig-1]; 3960 3961 spin_lock_irq(&p->sighand->siglock); 3962 if (oact) 3963 *oact = *k; 3964 3965 sigaction_compat_abi(act, oact); 3966 3967 if (act) { 3968 sigdelsetmask(&act->sa.sa_mask, 3969 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3970 *k = *act; 3971 /* 3972 * POSIX 3.3.1.3: 3973 * "Setting a signal action to SIG_IGN for a signal that is 3974 * pending shall cause the pending signal to be discarded, 3975 * whether or not it is blocked." 3976 * 3977 * "Setting a signal action to SIG_DFL for a signal that is 3978 * pending and whose default action is to ignore the signal 3979 * (for example, SIGCHLD), shall cause the pending signal to 3980 * be discarded, whether or not it is blocked" 3981 */ 3982 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 3983 sigemptyset(&mask); 3984 sigaddset(&mask, sig); 3985 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 3986 for_each_thread(p, t) 3987 flush_sigqueue_mask(&mask, &t->pending); 3988 } 3989 } 3990 3991 spin_unlock_irq(&p->sighand->siglock); 3992 return 0; 3993 } 3994 3995 static int 3996 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 3997 size_t min_ss_size) 3998 { 3999 struct task_struct *t = current; 4000 4001 if (oss) { 4002 memset(oss, 0, sizeof(stack_t)); 4003 oss->ss_sp = (void __user *) t->sas_ss_sp; 4004 oss->ss_size = t->sas_ss_size; 4005 oss->ss_flags = sas_ss_flags(sp) | 4006 (current->sas_ss_flags & SS_FLAG_BITS); 4007 } 4008 4009 if (ss) { 4010 void __user *ss_sp = ss->ss_sp; 4011 size_t ss_size = ss->ss_size; 4012 unsigned ss_flags = ss->ss_flags; 4013 int ss_mode; 4014 4015 if (unlikely(on_sig_stack(sp))) 4016 return -EPERM; 4017 4018 ss_mode = ss_flags & ~SS_FLAG_BITS; 4019 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4020 ss_mode != 0)) 4021 return -EINVAL; 4022 4023 if (ss_mode == SS_DISABLE) { 4024 ss_size = 0; 4025 ss_sp = NULL; 4026 } else { 4027 if (unlikely(ss_size < min_ss_size)) 4028 return -ENOMEM; 4029 } 4030 4031 t->sas_ss_sp = (unsigned long) ss_sp; 4032 t->sas_ss_size = ss_size; 4033 t->sas_ss_flags = ss_flags; 4034 } 4035 return 0; 4036 } 4037 4038 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4039 { 4040 stack_t new, old; 4041 int err; 4042 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4043 return -EFAULT; 4044 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4045 current_user_stack_pointer(), 4046 MINSIGSTKSZ); 4047 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4048 err = -EFAULT; 4049 return err; 4050 } 4051 4052 int restore_altstack(const stack_t __user *uss) 4053 { 4054 stack_t new; 4055 if (copy_from_user(&new, uss, sizeof(stack_t))) 4056 return -EFAULT; 4057 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4058 MINSIGSTKSZ); 4059 /* squash all but EFAULT for now */ 4060 return 0; 4061 } 4062 4063 int __save_altstack(stack_t __user *uss, unsigned long sp) 4064 { 4065 struct task_struct *t = current; 4066 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4067 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4068 __put_user(t->sas_ss_size, &uss->ss_size); 4069 if (err) 4070 return err; 4071 if (t->sas_ss_flags & SS_AUTODISARM) 4072 sas_ss_reset(t); 4073 return 0; 4074 } 4075 4076 #ifdef CONFIG_COMPAT 4077 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4078 compat_stack_t __user *uoss_ptr) 4079 { 4080 stack_t uss, uoss; 4081 int ret; 4082 4083 if (uss_ptr) { 4084 compat_stack_t uss32; 4085 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4086 return -EFAULT; 4087 uss.ss_sp = compat_ptr(uss32.ss_sp); 4088 uss.ss_flags = uss32.ss_flags; 4089 uss.ss_size = uss32.ss_size; 4090 } 4091 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4092 compat_user_stack_pointer(), 4093 COMPAT_MINSIGSTKSZ); 4094 if (ret >= 0 && uoss_ptr) { 4095 compat_stack_t old; 4096 memset(&old, 0, sizeof(old)); 4097 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4098 old.ss_flags = uoss.ss_flags; 4099 old.ss_size = uoss.ss_size; 4100 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4101 ret = -EFAULT; 4102 } 4103 return ret; 4104 } 4105 4106 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4107 const compat_stack_t __user *, uss_ptr, 4108 compat_stack_t __user *, uoss_ptr) 4109 { 4110 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4111 } 4112 4113 int compat_restore_altstack(const compat_stack_t __user *uss) 4114 { 4115 int err = do_compat_sigaltstack(uss, NULL); 4116 /* squash all but -EFAULT for now */ 4117 return err == -EFAULT ? err : 0; 4118 } 4119 4120 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4121 { 4122 int err; 4123 struct task_struct *t = current; 4124 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4125 &uss->ss_sp) | 4126 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4127 __put_user(t->sas_ss_size, &uss->ss_size); 4128 if (err) 4129 return err; 4130 if (t->sas_ss_flags & SS_AUTODISARM) 4131 sas_ss_reset(t); 4132 return 0; 4133 } 4134 #endif 4135 4136 #ifdef __ARCH_WANT_SYS_SIGPENDING 4137 4138 /** 4139 * sys_sigpending - examine pending signals 4140 * @uset: where mask of pending signal is returned 4141 */ 4142 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4143 { 4144 sigset_t set; 4145 4146 if (sizeof(old_sigset_t) > sizeof(*uset)) 4147 return -EINVAL; 4148 4149 do_sigpending(&set); 4150 4151 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4152 return -EFAULT; 4153 4154 return 0; 4155 } 4156 4157 #ifdef CONFIG_COMPAT 4158 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4159 { 4160 sigset_t set; 4161 4162 do_sigpending(&set); 4163 4164 return put_user(set.sig[0], set32); 4165 } 4166 #endif 4167 4168 #endif 4169 4170 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4171 /** 4172 * sys_sigprocmask - examine and change blocked signals 4173 * @how: whether to add, remove, or set signals 4174 * @nset: signals to add or remove (if non-null) 4175 * @oset: previous value of signal mask if non-null 4176 * 4177 * Some platforms have their own version with special arguments; 4178 * others support only sys_rt_sigprocmask. 4179 */ 4180 4181 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4182 old_sigset_t __user *, oset) 4183 { 4184 old_sigset_t old_set, new_set; 4185 sigset_t new_blocked; 4186 4187 old_set = current->blocked.sig[0]; 4188 4189 if (nset) { 4190 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4191 return -EFAULT; 4192 4193 new_blocked = current->blocked; 4194 4195 switch (how) { 4196 case SIG_BLOCK: 4197 sigaddsetmask(&new_blocked, new_set); 4198 break; 4199 case SIG_UNBLOCK: 4200 sigdelsetmask(&new_blocked, new_set); 4201 break; 4202 case SIG_SETMASK: 4203 new_blocked.sig[0] = new_set; 4204 break; 4205 default: 4206 return -EINVAL; 4207 } 4208 4209 set_current_blocked(&new_blocked); 4210 } 4211 4212 if (oset) { 4213 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4214 return -EFAULT; 4215 } 4216 4217 return 0; 4218 } 4219 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4220 4221 #ifndef CONFIG_ODD_RT_SIGACTION 4222 /** 4223 * sys_rt_sigaction - alter an action taken by a process 4224 * @sig: signal to be sent 4225 * @act: new sigaction 4226 * @oact: used to save the previous sigaction 4227 * @sigsetsize: size of sigset_t type 4228 */ 4229 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4230 const struct sigaction __user *, act, 4231 struct sigaction __user *, oact, 4232 size_t, sigsetsize) 4233 { 4234 struct k_sigaction new_sa, old_sa; 4235 int ret; 4236 4237 /* XXX: Don't preclude handling different sized sigset_t's. */ 4238 if (sigsetsize != sizeof(sigset_t)) 4239 return -EINVAL; 4240 4241 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4242 return -EFAULT; 4243 4244 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4245 if (ret) 4246 return ret; 4247 4248 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4249 return -EFAULT; 4250 4251 return 0; 4252 } 4253 #ifdef CONFIG_COMPAT 4254 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4255 const struct compat_sigaction __user *, act, 4256 struct compat_sigaction __user *, oact, 4257 compat_size_t, sigsetsize) 4258 { 4259 struct k_sigaction new_ka, old_ka; 4260 #ifdef __ARCH_HAS_SA_RESTORER 4261 compat_uptr_t restorer; 4262 #endif 4263 int ret; 4264 4265 /* XXX: Don't preclude handling different sized sigset_t's. */ 4266 if (sigsetsize != sizeof(compat_sigset_t)) 4267 return -EINVAL; 4268 4269 if (act) { 4270 compat_uptr_t handler; 4271 ret = get_user(handler, &act->sa_handler); 4272 new_ka.sa.sa_handler = compat_ptr(handler); 4273 #ifdef __ARCH_HAS_SA_RESTORER 4274 ret |= get_user(restorer, &act->sa_restorer); 4275 new_ka.sa.sa_restorer = compat_ptr(restorer); 4276 #endif 4277 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4278 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4279 if (ret) 4280 return -EFAULT; 4281 } 4282 4283 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4284 if (!ret && oact) { 4285 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4286 &oact->sa_handler); 4287 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4288 sizeof(oact->sa_mask)); 4289 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4290 #ifdef __ARCH_HAS_SA_RESTORER 4291 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4292 &oact->sa_restorer); 4293 #endif 4294 } 4295 return ret; 4296 } 4297 #endif 4298 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4299 4300 #ifdef CONFIG_OLD_SIGACTION 4301 SYSCALL_DEFINE3(sigaction, int, sig, 4302 const struct old_sigaction __user *, act, 4303 struct old_sigaction __user *, oact) 4304 { 4305 struct k_sigaction new_ka, old_ka; 4306 int ret; 4307 4308 if (act) { 4309 old_sigset_t mask; 4310 if (!access_ok(act, sizeof(*act)) || 4311 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4312 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4313 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4314 __get_user(mask, &act->sa_mask)) 4315 return -EFAULT; 4316 #ifdef __ARCH_HAS_KA_RESTORER 4317 new_ka.ka_restorer = NULL; 4318 #endif 4319 siginitset(&new_ka.sa.sa_mask, mask); 4320 } 4321 4322 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4323 4324 if (!ret && oact) { 4325 if (!access_ok(oact, sizeof(*oact)) || 4326 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4327 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4328 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4329 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4330 return -EFAULT; 4331 } 4332 4333 return ret; 4334 } 4335 #endif 4336 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4337 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4338 const struct compat_old_sigaction __user *, act, 4339 struct compat_old_sigaction __user *, oact) 4340 { 4341 struct k_sigaction new_ka, old_ka; 4342 int ret; 4343 compat_old_sigset_t mask; 4344 compat_uptr_t handler, restorer; 4345 4346 if (act) { 4347 if (!access_ok(act, sizeof(*act)) || 4348 __get_user(handler, &act->sa_handler) || 4349 __get_user(restorer, &act->sa_restorer) || 4350 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4351 __get_user(mask, &act->sa_mask)) 4352 return -EFAULT; 4353 4354 #ifdef __ARCH_HAS_KA_RESTORER 4355 new_ka.ka_restorer = NULL; 4356 #endif 4357 new_ka.sa.sa_handler = compat_ptr(handler); 4358 new_ka.sa.sa_restorer = compat_ptr(restorer); 4359 siginitset(&new_ka.sa.sa_mask, mask); 4360 } 4361 4362 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4363 4364 if (!ret && oact) { 4365 if (!access_ok(oact, sizeof(*oact)) || 4366 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4367 &oact->sa_handler) || 4368 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4369 &oact->sa_restorer) || 4370 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4371 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4372 return -EFAULT; 4373 } 4374 return ret; 4375 } 4376 #endif 4377 4378 #ifdef CONFIG_SGETMASK_SYSCALL 4379 4380 /* 4381 * For backwards compatibility. Functionality superseded by sigprocmask. 4382 */ 4383 SYSCALL_DEFINE0(sgetmask) 4384 { 4385 /* SMP safe */ 4386 return current->blocked.sig[0]; 4387 } 4388 4389 SYSCALL_DEFINE1(ssetmask, int, newmask) 4390 { 4391 int old = current->blocked.sig[0]; 4392 sigset_t newset; 4393 4394 siginitset(&newset, newmask); 4395 set_current_blocked(&newset); 4396 4397 return old; 4398 } 4399 #endif /* CONFIG_SGETMASK_SYSCALL */ 4400 4401 #ifdef __ARCH_WANT_SYS_SIGNAL 4402 /* 4403 * For backwards compatibility. Functionality superseded by sigaction. 4404 */ 4405 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4406 { 4407 struct k_sigaction new_sa, old_sa; 4408 int ret; 4409 4410 new_sa.sa.sa_handler = handler; 4411 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4412 sigemptyset(&new_sa.sa.sa_mask); 4413 4414 ret = do_sigaction(sig, &new_sa, &old_sa); 4415 4416 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4417 } 4418 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4419 4420 #ifdef __ARCH_WANT_SYS_PAUSE 4421 4422 SYSCALL_DEFINE0(pause) 4423 { 4424 while (!signal_pending(current)) { 4425 __set_current_state(TASK_INTERRUPTIBLE); 4426 schedule(); 4427 } 4428 return -ERESTARTNOHAND; 4429 } 4430 4431 #endif 4432 4433 static int sigsuspend(sigset_t *set) 4434 { 4435 current->saved_sigmask = current->blocked; 4436 set_current_blocked(set); 4437 4438 while (!signal_pending(current)) { 4439 __set_current_state(TASK_INTERRUPTIBLE); 4440 schedule(); 4441 } 4442 set_restore_sigmask(); 4443 return -ERESTARTNOHAND; 4444 } 4445 4446 /** 4447 * sys_rt_sigsuspend - replace the signal mask for a value with the 4448 * @unewset value until a signal is received 4449 * @unewset: new signal mask value 4450 * @sigsetsize: size of sigset_t type 4451 */ 4452 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4453 { 4454 sigset_t newset; 4455 4456 /* XXX: Don't preclude handling different sized sigset_t's. */ 4457 if (sigsetsize != sizeof(sigset_t)) 4458 return -EINVAL; 4459 4460 if (copy_from_user(&newset, unewset, sizeof(newset))) 4461 return -EFAULT; 4462 return sigsuspend(&newset); 4463 } 4464 4465 #ifdef CONFIG_COMPAT 4466 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4467 { 4468 sigset_t newset; 4469 4470 /* XXX: Don't preclude handling different sized sigset_t's. */ 4471 if (sigsetsize != sizeof(sigset_t)) 4472 return -EINVAL; 4473 4474 if (get_compat_sigset(&newset, unewset)) 4475 return -EFAULT; 4476 return sigsuspend(&newset); 4477 } 4478 #endif 4479 4480 #ifdef CONFIG_OLD_SIGSUSPEND 4481 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4482 { 4483 sigset_t blocked; 4484 siginitset(&blocked, mask); 4485 return sigsuspend(&blocked); 4486 } 4487 #endif 4488 #ifdef CONFIG_OLD_SIGSUSPEND3 4489 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4490 { 4491 sigset_t blocked; 4492 siginitset(&blocked, mask); 4493 return sigsuspend(&blocked); 4494 } 4495 #endif 4496 4497 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4498 { 4499 return NULL; 4500 } 4501 4502 static inline void siginfo_buildtime_checks(void) 4503 { 4504 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4505 4506 /* Verify the offsets in the two siginfos match */ 4507 #define CHECK_OFFSET(field) \ 4508 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4509 4510 /* kill */ 4511 CHECK_OFFSET(si_pid); 4512 CHECK_OFFSET(si_uid); 4513 4514 /* timer */ 4515 CHECK_OFFSET(si_tid); 4516 CHECK_OFFSET(si_overrun); 4517 CHECK_OFFSET(si_value); 4518 4519 /* rt */ 4520 CHECK_OFFSET(si_pid); 4521 CHECK_OFFSET(si_uid); 4522 CHECK_OFFSET(si_value); 4523 4524 /* sigchld */ 4525 CHECK_OFFSET(si_pid); 4526 CHECK_OFFSET(si_uid); 4527 CHECK_OFFSET(si_status); 4528 CHECK_OFFSET(si_utime); 4529 CHECK_OFFSET(si_stime); 4530 4531 /* sigfault */ 4532 CHECK_OFFSET(si_addr); 4533 CHECK_OFFSET(si_addr_lsb); 4534 CHECK_OFFSET(si_lower); 4535 CHECK_OFFSET(si_upper); 4536 CHECK_OFFSET(si_pkey); 4537 4538 /* sigpoll */ 4539 CHECK_OFFSET(si_band); 4540 CHECK_OFFSET(si_fd); 4541 4542 /* sigsys */ 4543 CHECK_OFFSET(si_call_addr); 4544 CHECK_OFFSET(si_syscall); 4545 CHECK_OFFSET(si_arch); 4546 #undef CHECK_OFFSET 4547 4548 /* usb asyncio */ 4549 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4550 offsetof(struct siginfo, si_addr)); 4551 if (sizeof(int) == sizeof(void __user *)) { 4552 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4553 sizeof(void __user *)); 4554 } else { 4555 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4556 sizeof_field(struct siginfo, si_uid)) != 4557 sizeof(void __user *)); 4558 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4559 offsetof(struct siginfo, si_uid)); 4560 } 4561 #ifdef CONFIG_COMPAT 4562 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4563 offsetof(struct compat_siginfo, si_addr)); 4564 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4565 sizeof(compat_uptr_t)); 4566 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4567 sizeof_field(struct siginfo, si_pid)); 4568 #endif 4569 } 4570 4571 void __init signals_init(void) 4572 { 4573 siginfo_buildtime_checks(); 4574 4575 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 4576 } 4577 4578 #ifdef CONFIG_KGDB_KDB 4579 #include <linux/kdb.h> 4580 /* 4581 * kdb_send_sig - Allows kdb to send signals without exposing 4582 * signal internals. This function checks if the required locks are 4583 * available before calling the main signal code, to avoid kdb 4584 * deadlocks. 4585 */ 4586 void kdb_send_sig(struct task_struct *t, int sig) 4587 { 4588 static struct task_struct *kdb_prev_t; 4589 int new_t, ret; 4590 if (!spin_trylock(&t->sighand->siglock)) { 4591 kdb_printf("Can't do kill command now.\n" 4592 "The sigmask lock is held somewhere else in " 4593 "kernel, try again later\n"); 4594 return; 4595 } 4596 new_t = kdb_prev_t != t; 4597 kdb_prev_t = t; 4598 if (t->state != TASK_RUNNING && new_t) { 4599 spin_unlock(&t->sighand->siglock); 4600 kdb_printf("Process is not RUNNING, sending a signal from " 4601 "kdb risks deadlock\n" 4602 "on the run queue locks. " 4603 "The signal has _not_ been sent.\n" 4604 "Reissue the kill command if you want to risk " 4605 "the deadlock.\n"); 4606 return; 4607 } 4608 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4609 spin_unlock(&t->sighand->siglock); 4610 if (ret) 4611 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4612 sig, t->pid); 4613 else 4614 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4615 } 4616 #endif /* CONFIG_KGDB_KDB */ 4617