1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/proc_fs.h> 26 #include <linux/tty.h> 27 #include <linux/binfmts.h> 28 #include <linux/coredump.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/ptrace.h> 32 #include <linux/signal.h> 33 #include <linux/signalfd.h> 34 #include <linux/ratelimit.h> 35 #include <linux/task_work.h> 36 #include <linux/capability.h> 37 #include <linux/freezer.h> 38 #include <linux/pid_namespace.h> 39 #include <linux/nsproxy.h> 40 #include <linux/user_namespace.h> 41 #include <linux/uprobes.h> 42 #include <linux/compat.h> 43 #include <linux/cn_proc.h> 44 #include <linux/compiler.h> 45 #include <linux/posix-timers.h> 46 #include <linux/cgroup.h> 47 #include <linux/audit.h> 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/signal.h> 51 52 #include <asm/param.h> 53 #include <linux/uaccess.h> 54 #include <asm/unistd.h> 55 #include <asm/siginfo.h> 56 #include <asm/cacheflush.h> 57 #include <asm/syscall.h> /* for syscall_get_* */ 58 59 /* 60 * SLAB caches for signal bits. 61 */ 62 63 static struct kmem_cache *sigqueue_cachep; 64 65 int print_fatal_signals __read_mostly; 66 67 static void __user *sig_handler(struct task_struct *t, int sig) 68 { 69 return t->sighand->action[sig - 1].sa.sa_handler; 70 } 71 72 static inline bool sig_handler_ignored(void __user *handler, int sig) 73 { 74 /* Is it explicitly or implicitly ignored? */ 75 return handler == SIG_IGN || 76 (handler == SIG_DFL && sig_kernel_ignore(sig)); 77 } 78 79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 80 { 81 void __user *handler; 82 83 handler = sig_handler(t, sig); 84 85 /* SIGKILL and SIGSTOP may not be sent to the global init */ 86 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 87 return true; 88 89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 90 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 91 return true; 92 93 /* Only allow kernel generated signals to this kthread */ 94 if (unlikely((t->flags & PF_KTHREAD) && 95 (handler == SIG_KTHREAD_KERNEL) && !force)) 96 return true; 97 98 return sig_handler_ignored(handler, sig); 99 } 100 101 static bool sig_ignored(struct task_struct *t, int sig, bool force) 102 { 103 /* 104 * Blocked signals are never ignored, since the 105 * signal handler may change by the time it is 106 * unblocked. 107 */ 108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 109 return false; 110 111 /* 112 * Tracers may want to know about even ignored signal unless it 113 * is SIGKILL which can't be reported anyway but can be ignored 114 * by SIGNAL_UNKILLABLE task. 115 */ 116 if (t->ptrace && sig != SIGKILL) 117 return false; 118 119 return sig_task_ignored(t, sig, force); 120 } 121 122 /* 123 * Re-calculate pending state from the set of locally pending 124 * signals, globally pending signals, and blocked signals. 125 */ 126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 127 { 128 unsigned long ready; 129 long i; 130 131 switch (_NSIG_WORDS) { 132 default: 133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 134 ready |= signal->sig[i] &~ blocked->sig[i]; 135 break; 136 137 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 138 ready |= signal->sig[2] &~ blocked->sig[2]; 139 ready |= signal->sig[1] &~ blocked->sig[1]; 140 ready |= signal->sig[0] &~ blocked->sig[0]; 141 break; 142 143 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 144 ready |= signal->sig[0] &~ blocked->sig[0]; 145 break; 146 147 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 148 } 149 return ready != 0; 150 } 151 152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 153 154 static bool recalc_sigpending_tsk(struct task_struct *t) 155 { 156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 157 PENDING(&t->pending, &t->blocked) || 158 PENDING(&t->signal->shared_pending, &t->blocked) || 159 cgroup_task_frozen(t)) { 160 set_tsk_thread_flag(t, TIF_SIGPENDING); 161 return true; 162 } 163 164 /* 165 * We must never clear the flag in another thread, or in current 166 * when it's possible the current syscall is returning -ERESTART*. 167 * So we don't clear it here, and only callers who know they should do. 168 */ 169 return false; 170 } 171 172 /* 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 174 * This is superfluous when called on current, the wakeup is a harmless no-op. 175 */ 176 void recalc_sigpending_and_wake(struct task_struct *t) 177 { 178 if (recalc_sigpending_tsk(t)) 179 signal_wake_up(t, 0); 180 } 181 182 void recalc_sigpending(void) 183 { 184 if (!recalc_sigpending_tsk(current) && !freezing(current)) 185 clear_thread_flag(TIF_SIGPENDING); 186 187 } 188 EXPORT_SYMBOL(recalc_sigpending); 189 190 void calculate_sigpending(void) 191 { 192 /* Have any signals or users of TIF_SIGPENDING been delayed 193 * until after fork? 194 */ 195 spin_lock_irq(¤t->sighand->siglock); 196 set_tsk_thread_flag(current, TIF_SIGPENDING); 197 recalc_sigpending(); 198 spin_unlock_irq(¤t->sighand->siglock); 199 } 200 201 /* Given the mask, find the first available signal that should be serviced. */ 202 203 #define SYNCHRONOUS_MASK \ 204 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 205 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 206 207 int next_signal(struct sigpending *pending, sigset_t *mask) 208 { 209 unsigned long i, *s, *m, x; 210 int sig = 0; 211 212 s = pending->signal.sig; 213 m = mask->sig; 214 215 /* 216 * Handle the first word specially: it contains the 217 * synchronous signals that need to be dequeued first. 218 */ 219 x = *s &~ *m; 220 if (x) { 221 if (x & SYNCHRONOUS_MASK) 222 x &= SYNCHRONOUS_MASK; 223 sig = ffz(~x) + 1; 224 return sig; 225 } 226 227 switch (_NSIG_WORDS) { 228 default: 229 for (i = 1; i < _NSIG_WORDS; ++i) { 230 x = *++s &~ *++m; 231 if (!x) 232 continue; 233 sig = ffz(~x) + i*_NSIG_BPW + 1; 234 break; 235 } 236 break; 237 238 case 2: 239 x = s[1] &~ m[1]; 240 if (!x) 241 break; 242 sig = ffz(~x) + _NSIG_BPW + 1; 243 break; 244 245 case 1: 246 /* Nothing to do */ 247 break; 248 } 249 250 return sig; 251 } 252 253 static inline void print_dropped_signal(int sig) 254 { 255 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 256 257 if (!print_fatal_signals) 258 return; 259 260 if (!__ratelimit(&ratelimit_state)) 261 return; 262 263 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 264 current->comm, current->pid, sig); 265 } 266 267 /** 268 * task_set_jobctl_pending - set jobctl pending bits 269 * @task: target task 270 * @mask: pending bits to set 271 * 272 * Clear @mask from @task->jobctl. @mask must be subset of 273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 274 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 275 * cleared. If @task is already being killed or exiting, this function 276 * becomes noop. 277 * 278 * CONTEXT: 279 * Must be called with @task->sighand->siglock held. 280 * 281 * RETURNS: 282 * %true if @mask is set, %false if made noop because @task was dying. 283 */ 284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 285 { 286 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 287 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 288 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 289 290 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 291 return false; 292 293 if (mask & JOBCTL_STOP_SIGMASK) 294 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 295 296 task->jobctl |= mask; 297 return true; 298 } 299 300 /** 301 * task_clear_jobctl_trapping - clear jobctl trapping bit 302 * @task: target task 303 * 304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 305 * Clear it and wake up the ptracer. Note that we don't need any further 306 * locking. @task->siglock guarantees that @task->parent points to the 307 * ptracer. 308 * 309 * CONTEXT: 310 * Must be called with @task->sighand->siglock held. 311 */ 312 void task_clear_jobctl_trapping(struct task_struct *task) 313 { 314 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 315 task->jobctl &= ~JOBCTL_TRAPPING; 316 smp_mb(); /* advised by wake_up_bit() */ 317 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 318 } 319 } 320 321 /** 322 * task_clear_jobctl_pending - clear jobctl pending bits 323 * @task: target task 324 * @mask: pending bits to clear 325 * 326 * Clear @mask from @task->jobctl. @mask must be subset of 327 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 328 * STOP bits are cleared together. 329 * 330 * If clearing of @mask leaves no stop or trap pending, this function calls 331 * task_clear_jobctl_trapping(). 332 * 333 * CONTEXT: 334 * Must be called with @task->sighand->siglock held. 335 */ 336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 337 { 338 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 339 340 if (mask & JOBCTL_STOP_PENDING) 341 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 342 343 task->jobctl &= ~mask; 344 345 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 346 task_clear_jobctl_trapping(task); 347 } 348 349 /** 350 * task_participate_group_stop - participate in a group stop 351 * @task: task participating in a group stop 352 * 353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 354 * Group stop states are cleared and the group stop count is consumed if 355 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 356 * stop, the appropriate `SIGNAL_*` flags are set. 357 * 358 * CONTEXT: 359 * Must be called with @task->sighand->siglock held. 360 * 361 * RETURNS: 362 * %true if group stop completion should be notified to the parent, %false 363 * otherwise. 364 */ 365 static bool task_participate_group_stop(struct task_struct *task) 366 { 367 struct signal_struct *sig = task->signal; 368 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 369 370 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 371 372 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 373 374 if (!consume) 375 return false; 376 377 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 378 sig->group_stop_count--; 379 380 /* 381 * Tell the caller to notify completion iff we are entering into a 382 * fresh group stop. Read comment in do_signal_stop() for details. 383 */ 384 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 385 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 386 return true; 387 } 388 return false; 389 } 390 391 void task_join_group_stop(struct task_struct *task) 392 { 393 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 394 struct signal_struct *sig = current->signal; 395 396 if (sig->group_stop_count) { 397 sig->group_stop_count++; 398 mask |= JOBCTL_STOP_CONSUME; 399 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 400 return; 401 402 /* Have the new thread join an on-going signal group stop */ 403 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 404 } 405 406 /* 407 * allocate a new signal queue record 408 * - this may be called without locks if and only if t == current, otherwise an 409 * appropriate lock must be held to stop the target task from exiting 410 */ 411 static struct sigqueue * 412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 413 int override_rlimit, const unsigned int sigqueue_flags) 414 { 415 struct sigqueue *q = NULL; 416 struct ucounts *ucounts = NULL; 417 long sigpending; 418 419 /* 420 * Protect access to @t credentials. This can go away when all 421 * callers hold rcu read lock. 422 * 423 * NOTE! A pending signal will hold on to the user refcount, 424 * and we get/put the refcount only when the sigpending count 425 * changes from/to zero. 426 */ 427 rcu_read_lock(); 428 ucounts = task_ucounts(t); 429 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 430 rcu_read_unlock(); 431 if (!sigpending) 432 return NULL; 433 434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 435 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 436 } else { 437 print_dropped_signal(sig); 438 } 439 440 if (unlikely(q == NULL)) { 441 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 442 } else { 443 INIT_LIST_HEAD(&q->list); 444 q->flags = sigqueue_flags; 445 q->ucounts = ucounts; 446 } 447 return q; 448 } 449 450 static void __sigqueue_free(struct sigqueue *q) 451 { 452 if (q->flags & SIGQUEUE_PREALLOC) 453 return; 454 if (q->ucounts) { 455 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 456 q->ucounts = NULL; 457 } 458 kmem_cache_free(sigqueue_cachep, q); 459 } 460 461 void flush_sigqueue(struct sigpending *queue) 462 { 463 struct sigqueue *q; 464 465 sigemptyset(&queue->signal); 466 while (!list_empty(&queue->list)) { 467 q = list_entry(queue->list.next, struct sigqueue , list); 468 list_del_init(&q->list); 469 __sigqueue_free(q); 470 } 471 } 472 473 /* 474 * Flush all pending signals for this kthread. 475 */ 476 void flush_signals(struct task_struct *t) 477 { 478 unsigned long flags; 479 480 spin_lock_irqsave(&t->sighand->siglock, flags); 481 clear_tsk_thread_flag(t, TIF_SIGPENDING); 482 flush_sigqueue(&t->pending); 483 flush_sigqueue(&t->signal->shared_pending); 484 spin_unlock_irqrestore(&t->sighand->siglock, flags); 485 } 486 EXPORT_SYMBOL(flush_signals); 487 488 #ifdef CONFIG_POSIX_TIMERS 489 static void __flush_itimer_signals(struct sigpending *pending) 490 { 491 sigset_t signal, retain; 492 struct sigqueue *q, *n; 493 494 signal = pending->signal; 495 sigemptyset(&retain); 496 497 list_for_each_entry_safe(q, n, &pending->list, list) { 498 int sig = q->info.si_signo; 499 500 if (likely(q->info.si_code != SI_TIMER)) { 501 sigaddset(&retain, sig); 502 } else { 503 sigdelset(&signal, sig); 504 list_del_init(&q->list); 505 __sigqueue_free(q); 506 } 507 } 508 509 sigorsets(&pending->signal, &signal, &retain); 510 } 511 512 void flush_itimer_signals(void) 513 { 514 struct task_struct *tsk = current; 515 unsigned long flags; 516 517 spin_lock_irqsave(&tsk->sighand->siglock, flags); 518 __flush_itimer_signals(&tsk->pending); 519 __flush_itimer_signals(&tsk->signal->shared_pending); 520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 521 } 522 #endif 523 524 void ignore_signals(struct task_struct *t) 525 { 526 int i; 527 528 for (i = 0; i < _NSIG; ++i) 529 t->sighand->action[i].sa.sa_handler = SIG_IGN; 530 531 flush_signals(t); 532 } 533 534 /* 535 * Flush all handlers for a task. 536 */ 537 538 void 539 flush_signal_handlers(struct task_struct *t, int force_default) 540 { 541 int i; 542 struct k_sigaction *ka = &t->sighand->action[0]; 543 for (i = _NSIG ; i != 0 ; i--) { 544 if (force_default || ka->sa.sa_handler != SIG_IGN) 545 ka->sa.sa_handler = SIG_DFL; 546 ka->sa.sa_flags = 0; 547 #ifdef __ARCH_HAS_SA_RESTORER 548 ka->sa.sa_restorer = NULL; 549 #endif 550 sigemptyset(&ka->sa.sa_mask); 551 ka++; 552 } 553 } 554 555 bool unhandled_signal(struct task_struct *tsk, int sig) 556 { 557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 558 if (is_global_init(tsk)) 559 return true; 560 561 if (handler != SIG_IGN && handler != SIG_DFL) 562 return false; 563 564 /* if ptraced, let the tracer determine */ 565 return !tsk->ptrace; 566 } 567 568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 569 bool *resched_timer) 570 { 571 struct sigqueue *q, *first = NULL; 572 573 /* 574 * Collect the siginfo appropriate to this signal. Check if 575 * there is another siginfo for the same signal. 576 */ 577 list_for_each_entry(q, &list->list, list) { 578 if (q->info.si_signo == sig) { 579 if (first) 580 goto still_pending; 581 first = q; 582 } 583 } 584 585 sigdelset(&list->signal, sig); 586 587 if (first) { 588 still_pending: 589 list_del_init(&first->list); 590 copy_siginfo(info, &first->info); 591 592 *resched_timer = 593 (first->flags & SIGQUEUE_PREALLOC) && 594 (info->si_code == SI_TIMER) && 595 (info->si_sys_private); 596 597 __sigqueue_free(first); 598 } else { 599 /* 600 * Ok, it wasn't in the queue. This must be 601 * a fast-pathed signal or we must have been 602 * out of queue space. So zero out the info. 603 */ 604 clear_siginfo(info); 605 info->si_signo = sig; 606 info->si_errno = 0; 607 info->si_code = SI_USER; 608 info->si_pid = 0; 609 info->si_uid = 0; 610 } 611 } 612 613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 614 kernel_siginfo_t *info, bool *resched_timer) 615 { 616 int sig = next_signal(pending, mask); 617 618 if (sig) 619 collect_signal(sig, pending, info, resched_timer); 620 return sig; 621 } 622 623 /* 624 * Dequeue a signal and return the element to the caller, which is 625 * expected to free it. 626 * 627 * All callers have to hold the siglock. 628 */ 629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, 630 kernel_siginfo_t *info, enum pid_type *type) 631 { 632 bool resched_timer = false; 633 int signr; 634 635 /* We only dequeue private signals from ourselves, we don't let 636 * signalfd steal them 637 */ 638 *type = PIDTYPE_PID; 639 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 640 if (!signr) { 641 *type = PIDTYPE_TGID; 642 signr = __dequeue_signal(&tsk->signal->shared_pending, 643 mask, info, &resched_timer); 644 #ifdef CONFIG_POSIX_TIMERS 645 /* 646 * itimer signal ? 647 * 648 * itimers are process shared and we restart periodic 649 * itimers in the signal delivery path to prevent DoS 650 * attacks in the high resolution timer case. This is 651 * compliant with the old way of self-restarting 652 * itimers, as the SIGALRM is a legacy signal and only 653 * queued once. Changing the restart behaviour to 654 * restart the timer in the signal dequeue path is 655 * reducing the timer noise on heavy loaded !highres 656 * systems too. 657 */ 658 if (unlikely(signr == SIGALRM)) { 659 struct hrtimer *tmr = &tsk->signal->real_timer; 660 661 if (!hrtimer_is_queued(tmr) && 662 tsk->signal->it_real_incr != 0) { 663 hrtimer_forward(tmr, tmr->base->get_time(), 664 tsk->signal->it_real_incr); 665 hrtimer_restart(tmr); 666 } 667 } 668 #endif 669 } 670 671 recalc_sigpending(); 672 if (!signr) 673 return 0; 674 675 if (unlikely(sig_kernel_stop(signr))) { 676 /* 677 * Set a marker that we have dequeued a stop signal. Our 678 * caller might release the siglock and then the pending 679 * stop signal it is about to process is no longer in the 680 * pending bitmasks, but must still be cleared by a SIGCONT 681 * (and overruled by a SIGKILL). So those cases clear this 682 * shared flag after we've set it. Note that this flag may 683 * remain set after the signal we return is ignored or 684 * handled. That doesn't matter because its only purpose 685 * is to alert stop-signal processing code when another 686 * processor has come along and cleared the flag. 687 */ 688 current->jobctl |= JOBCTL_STOP_DEQUEUED; 689 } 690 #ifdef CONFIG_POSIX_TIMERS 691 if (resched_timer) { 692 /* 693 * Release the siglock to ensure proper locking order 694 * of timer locks outside of siglocks. Note, we leave 695 * irqs disabled here, since the posix-timers code is 696 * about to disable them again anyway. 697 */ 698 spin_unlock(&tsk->sighand->siglock); 699 posixtimer_rearm(info); 700 spin_lock(&tsk->sighand->siglock); 701 702 /* Don't expose the si_sys_private value to userspace */ 703 info->si_sys_private = 0; 704 } 705 #endif 706 return signr; 707 } 708 EXPORT_SYMBOL_GPL(dequeue_signal); 709 710 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 711 { 712 struct task_struct *tsk = current; 713 struct sigpending *pending = &tsk->pending; 714 struct sigqueue *q, *sync = NULL; 715 716 /* 717 * Might a synchronous signal be in the queue? 718 */ 719 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 720 return 0; 721 722 /* 723 * Return the first synchronous signal in the queue. 724 */ 725 list_for_each_entry(q, &pending->list, list) { 726 /* Synchronous signals have a positive si_code */ 727 if ((q->info.si_code > SI_USER) && 728 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 729 sync = q; 730 goto next; 731 } 732 } 733 return 0; 734 next: 735 /* 736 * Check if there is another siginfo for the same signal. 737 */ 738 list_for_each_entry_continue(q, &pending->list, list) { 739 if (q->info.si_signo == sync->info.si_signo) 740 goto still_pending; 741 } 742 743 sigdelset(&pending->signal, sync->info.si_signo); 744 recalc_sigpending(); 745 still_pending: 746 list_del_init(&sync->list); 747 copy_siginfo(info, &sync->info); 748 __sigqueue_free(sync); 749 return info->si_signo; 750 } 751 752 /* 753 * Tell a process that it has a new active signal.. 754 * 755 * NOTE! we rely on the previous spin_lock to 756 * lock interrupts for us! We can only be called with 757 * "siglock" held, and the local interrupt must 758 * have been disabled when that got acquired! 759 * 760 * No need to set need_resched since signal event passing 761 * goes through ->blocked 762 */ 763 void signal_wake_up_state(struct task_struct *t, unsigned int state) 764 { 765 lockdep_assert_held(&t->sighand->siglock); 766 767 set_tsk_thread_flag(t, TIF_SIGPENDING); 768 769 /* 770 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 771 * case. We don't check t->state here because there is a race with it 772 * executing another processor and just now entering stopped state. 773 * By using wake_up_state, we ensure the process will wake up and 774 * handle its death signal. 775 */ 776 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 777 kick_process(t); 778 } 779 780 /* 781 * Remove signals in mask from the pending set and queue. 782 * Returns 1 if any signals were found. 783 * 784 * All callers must be holding the siglock. 785 */ 786 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 787 { 788 struct sigqueue *q, *n; 789 sigset_t m; 790 791 sigandsets(&m, mask, &s->signal); 792 if (sigisemptyset(&m)) 793 return; 794 795 sigandnsets(&s->signal, &s->signal, mask); 796 list_for_each_entry_safe(q, n, &s->list, list) { 797 if (sigismember(mask, q->info.si_signo)) { 798 list_del_init(&q->list); 799 __sigqueue_free(q); 800 } 801 } 802 } 803 804 static inline int is_si_special(const struct kernel_siginfo *info) 805 { 806 return info <= SEND_SIG_PRIV; 807 } 808 809 static inline bool si_fromuser(const struct kernel_siginfo *info) 810 { 811 return info == SEND_SIG_NOINFO || 812 (!is_si_special(info) && SI_FROMUSER(info)); 813 } 814 815 /* 816 * called with RCU read lock from check_kill_permission() 817 */ 818 static bool kill_ok_by_cred(struct task_struct *t) 819 { 820 const struct cred *cred = current_cred(); 821 const struct cred *tcred = __task_cred(t); 822 823 return uid_eq(cred->euid, tcred->suid) || 824 uid_eq(cred->euid, tcred->uid) || 825 uid_eq(cred->uid, tcred->suid) || 826 uid_eq(cred->uid, tcred->uid) || 827 ns_capable(tcred->user_ns, CAP_KILL); 828 } 829 830 /* 831 * Bad permissions for sending the signal 832 * - the caller must hold the RCU read lock 833 */ 834 static int check_kill_permission(int sig, struct kernel_siginfo *info, 835 struct task_struct *t) 836 { 837 struct pid *sid; 838 int error; 839 840 if (!valid_signal(sig)) 841 return -EINVAL; 842 843 if (!si_fromuser(info)) 844 return 0; 845 846 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 847 if (error) 848 return error; 849 850 if (!same_thread_group(current, t) && 851 !kill_ok_by_cred(t)) { 852 switch (sig) { 853 case SIGCONT: 854 sid = task_session(t); 855 /* 856 * We don't return the error if sid == NULL. The 857 * task was unhashed, the caller must notice this. 858 */ 859 if (!sid || sid == task_session(current)) 860 break; 861 fallthrough; 862 default: 863 return -EPERM; 864 } 865 } 866 867 return security_task_kill(t, info, sig, NULL); 868 } 869 870 /** 871 * ptrace_trap_notify - schedule trap to notify ptracer 872 * @t: tracee wanting to notify tracer 873 * 874 * This function schedules sticky ptrace trap which is cleared on the next 875 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 876 * ptracer. 877 * 878 * If @t is running, STOP trap will be taken. If trapped for STOP and 879 * ptracer is listening for events, tracee is woken up so that it can 880 * re-trap for the new event. If trapped otherwise, STOP trap will be 881 * eventually taken without returning to userland after the existing traps 882 * are finished by PTRACE_CONT. 883 * 884 * CONTEXT: 885 * Must be called with @task->sighand->siglock held. 886 */ 887 static void ptrace_trap_notify(struct task_struct *t) 888 { 889 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 890 lockdep_assert_held(&t->sighand->siglock); 891 892 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 893 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 894 } 895 896 /* 897 * Handle magic process-wide effects of stop/continue signals. Unlike 898 * the signal actions, these happen immediately at signal-generation 899 * time regardless of blocking, ignoring, or handling. This does the 900 * actual continuing for SIGCONT, but not the actual stopping for stop 901 * signals. The process stop is done as a signal action for SIG_DFL. 902 * 903 * Returns true if the signal should be actually delivered, otherwise 904 * it should be dropped. 905 */ 906 static bool prepare_signal(int sig, struct task_struct *p, bool force) 907 { 908 struct signal_struct *signal = p->signal; 909 struct task_struct *t; 910 sigset_t flush; 911 912 if (signal->flags & SIGNAL_GROUP_EXIT) { 913 if (signal->core_state) 914 return sig == SIGKILL; 915 /* 916 * The process is in the middle of dying, drop the signal. 917 */ 918 return false; 919 } else if (sig_kernel_stop(sig)) { 920 /* 921 * This is a stop signal. Remove SIGCONT from all queues. 922 */ 923 siginitset(&flush, sigmask(SIGCONT)); 924 flush_sigqueue_mask(&flush, &signal->shared_pending); 925 for_each_thread(p, t) 926 flush_sigqueue_mask(&flush, &t->pending); 927 } else if (sig == SIGCONT) { 928 unsigned int why; 929 /* 930 * Remove all stop signals from all queues, wake all threads. 931 */ 932 siginitset(&flush, SIG_KERNEL_STOP_MASK); 933 flush_sigqueue_mask(&flush, &signal->shared_pending); 934 for_each_thread(p, t) { 935 flush_sigqueue_mask(&flush, &t->pending); 936 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 937 if (likely(!(t->ptrace & PT_SEIZED))) { 938 t->jobctl &= ~JOBCTL_STOPPED; 939 wake_up_state(t, __TASK_STOPPED); 940 } else 941 ptrace_trap_notify(t); 942 } 943 944 /* 945 * Notify the parent with CLD_CONTINUED if we were stopped. 946 * 947 * If we were in the middle of a group stop, we pretend it 948 * was already finished, and then continued. Since SIGCHLD 949 * doesn't queue we report only CLD_STOPPED, as if the next 950 * CLD_CONTINUED was dropped. 951 */ 952 why = 0; 953 if (signal->flags & SIGNAL_STOP_STOPPED) 954 why |= SIGNAL_CLD_CONTINUED; 955 else if (signal->group_stop_count) 956 why |= SIGNAL_CLD_STOPPED; 957 958 if (why) { 959 /* 960 * The first thread which returns from do_signal_stop() 961 * will take ->siglock, notice SIGNAL_CLD_MASK, and 962 * notify its parent. See get_signal(). 963 */ 964 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 965 signal->group_stop_count = 0; 966 signal->group_exit_code = 0; 967 } 968 } 969 970 return !sig_ignored(p, sig, force); 971 } 972 973 /* 974 * Test if P wants to take SIG. After we've checked all threads with this, 975 * it's equivalent to finding no threads not blocking SIG. Any threads not 976 * blocking SIG were ruled out because they are not running and already 977 * have pending signals. Such threads will dequeue from the shared queue 978 * as soon as they're available, so putting the signal on the shared queue 979 * will be equivalent to sending it to one such thread. 980 */ 981 static inline bool wants_signal(int sig, struct task_struct *p) 982 { 983 if (sigismember(&p->blocked, sig)) 984 return false; 985 986 if (p->flags & PF_EXITING) 987 return false; 988 989 if (sig == SIGKILL) 990 return true; 991 992 if (task_is_stopped_or_traced(p)) 993 return false; 994 995 return task_curr(p) || !task_sigpending(p); 996 } 997 998 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 999 { 1000 struct signal_struct *signal = p->signal; 1001 struct task_struct *t; 1002 1003 /* 1004 * Now find a thread we can wake up to take the signal off the queue. 1005 * 1006 * If the main thread wants the signal, it gets first crack. 1007 * Probably the least surprising to the average bear. 1008 */ 1009 if (wants_signal(sig, p)) 1010 t = p; 1011 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1012 /* 1013 * There is just one thread and it does not need to be woken. 1014 * It will dequeue unblocked signals before it runs again. 1015 */ 1016 return; 1017 else { 1018 /* 1019 * Otherwise try to find a suitable thread. 1020 */ 1021 t = signal->curr_target; 1022 while (!wants_signal(sig, t)) { 1023 t = next_thread(t); 1024 if (t == signal->curr_target) 1025 /* 1026 * No thread needs to be woken. 1027 * Any eligible threads will see 1028 * the signal in the queue soon. 1029 */ 1030 return; 1031 } 1032 signal->curr_target = t; 1033 } 1034 1035 /* 1036 * Found a killable thread. If the signal will be fatal, 1037 * then start taking the whole group down immediately. 1038 */ 1039 if (sig_fatal(p, sig) && 1040 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1041 !sigismember(&t->real_blocked, sig) && 1042 (sig == SIGKILL || !p->ptrace)) { 1043 /* 1044 * This signal will be fatal to the whole group. 1045 */ 1046 if (!sig_kernel_coredump(sig)) { 1047 /* 1048 * Start a group exit and wake everybody up. 1049 * This way we don't have other threads 1050 * running and doing things after a slower 1051 * thread has the fatal signal pending. 1052 */ 1053 signal->flags = SIGNAL_GROUP_EXIT; 1054 signal->group_exit_code = sig; 1055 signal->group_stop_count = 0; 1056 t = p; 1057 do { 1058 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1059 sigaddset(&t->pending.signal, SIGKILL); 1060 signal_wake_up(t, 1); 1061 } while_each_thread(p, t); 1062 return; 1063 } 1064 } 1065 1066 /* 1067 * The signal is already in the shared-pending queue. 1068 * Tell the chosen thread to wake up and dequeue it. 1069 */ 1070 signal_wake_up(t, sig == SIGKILL); 1071 return; 1072 } 1073 1074 static inline bool legacy_queue(struct sigpending *signals, int sig) 1075 { 1076 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1077 } 1078 1079 static int __send_signal_locked(int sig, struct kernel_siginfo *info, 1080 struct task_struct *t, enum pid_type type, bool force) 1081 { 1082 struct sigpending *pending; 1083 struct sigqueue *q; 1084 int override_rlimit; 1085 int ret = 0, result; 1086 1087 lockdep_assert_held(&t->sighand->siglock); 1088 1089 result = TRACE_SIGNAL_IGNORED; 1090 if (!prepare_signal(sig, t, force)) 1091 goto ret; 1092 1093 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1094 /* 1095 * Short-circuit ignored signals and support queuing 1096 * exactly one non-rt signal, so that we can get more 1097 * detailed information about the cause of the signal. 1098 */ 1099 result = TRACE_SIGNAL_ALREADY_PENDING; 1100 if (legacy_queue(pending, sig)) 1101 goto ret; 1102 1103 result = TRACE_SIGNAL_DELIVERED; 1104 /* 1105 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1106 */ 1107 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1108 goto out_set; 1109 1110 /* 1111 * Real-time signals must be queued if sent by sigqueue, or 1112 * some other real-time mechanism. It is implementation 1113 * defined whether kill() does so. We attempt to do so, on 1114 * the principle of least surprise, but since kill is not 1115 * allowed to fail with EAGAIN when low on memory we just 1116 * make sure at least one signal gets delivered and don't 1117 * pass on the info struct. 1118 */ 1119 if (sig < SIGRTMIN) 1120 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1121 else 1122 override_rlimit = 0; 1123 1124 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1125 1126 if (q) { 1127 list_add_tail(&q->list, &pending->list); 1128 switch ((unsigned long) info) { 1129 case (unsigned long) SEND_SIG_NOINFO: 1130 clear_siginfo(&q->info); 1131 q->info.si_signo = sig; 1132 q->info.si_errno = 0; 1133 q->info.si_code = SI_USER; 1134 q->info.si_pid = task_tgid_nr_ns(current, 1135 task_active_pid_ns(t)); 1136 rcu_read_lock(); 1137 q->info.si_uid = 1138 from_kuid_munged(task_cred_xxx(t, user_ns), 1139 current_uid()); 1140 rcu_read_unlock(); 1141 break; 1142 case (unsigned long) SEND_SIG_PRIV: 1143 clear_siginfo(&q->info); 1144 q->info.si_signo = sig; 1145 q->info.si_errno = 0; 1146 q->info.si_code = SI_KERNEL; 1147 q->info.si_pid = 0; 1148 q->info.si_uid = 0; 1149 break; 1150 default: 1151 copy_siginfo(&q->info, info); 1152 break; 1153 } 1154 } else if (!is_si_special(info) && 1155 sig >= SIGRTMIN && info->si_code != SI_USER) { 1156 /* 1157 * Queue overflow, abort. We may abort if the 1158 * signal was rt and sent by user using something 1159 * other than kill(). 1160 */ 1161 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1162 ret = -EAGAIN; 1163 goto ret; 1164 } else { 1165 /* 1166 * This is a silent loss of information. We still 1167 * send the signal, but the *info bits are lost. 1168 */ 1169 result = TRACE_SIGNAL_LOSE_INFO; 1170 } 1171 1172 out_set: 1173 signalfd_notify(t, sig); 1174 sigaddset(&pending->signal, sig); 1175 1176 /* Let multiprocess signals appear after on-going forks */ 1177 if (type > PIDTYPE_TGID) { 1178 struct multiprocess_signals *delayed; 1179 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1180 sigset_t *signal = &delayed->signal; 1181 /* Can't queue both a stop and a continue signal */ 1182 if (sig == SIGCONT) 1183 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1184 else if (sig_kernel_stop(sig)) 1185 sigdelset(signal, SIGCONT); 1186 sigaddset(signal, sig); 1187 } 1188 } 1189 1190 complete_signal(sig, t, type); 1191 ret: 1192 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1193 return ret; 1194 } 1195 1196 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1197 { 1198 bool ret = false; 1199 switch (siginfo_layout(info->si_signo, info->si_code)) { 1200 case SIL_KILL: 1201 case SIL_CHLD: 1202 case SIL_RT: 1203 ret = true; 1204 break; 1205 case SIL_TIMER: 1206 case SIL_POLL: 1207 case SIL_FAULT: 1208 case SIL_FAULT_TRAPNO: 1209 case SIL_FAULT_MCEERR: 1210 case SIL_FAULT_BNDERR: 1211 case SIL_FAULT_PKUERR: 1212 case SIL_FAULT_PERF_EVENT: 1213 case SIL_SYS: 1214 ret = false; 1215 break; 1216 } 1217 return ret; 1218 } 1219 1220 int send_signal_locked(int sig, struct kernel_siginfo *info, 1221 struct task_struct *t, enum pid_type type) 1222 { 1223 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1224 bool force = false; 1225 1226 if (info == SEND_SIG_NOINFO) { 1227 /* Force if sent from an ancestor pid namespace */ 1228 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1229 } else if (info == SEND_SIG_PRIV) { 1230 /* Don't ignore kernel generated signals */ 1231 force = true; 1232 } else if (has_si_pid_and_uid(info)) { 1233 /* SIGKILL and SIGSTOP is special or has ids */ 1234 struct user_namespace *t_user_ns; 1235 1236 rcu_read_lock(); 1237 t_user_ns = task_cred_xxx(t, user_ns); 1238 if (current_user_ns() != t_user_ns) { 1239 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1240 info->si_uid = from_kuid_munged(t_user_ns, uid); 1241 } 1242 rcu_read_unlock(); 1243 1244 /* A kernel generated signal? */ 1245 force = (info->si_code == SI_KERNEL); 1246 1247 /* From an ancestor pid namespace? */ 1248 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1249 info->si_pid = 0; 1250 force = true; 1251 } 1252 } 1253 return __send_signal_locked(sig, info, t, type, force); 1254 } 1255 1256 static void print_fatal_signal(int signr) 1257 { 1258 struct pt_regs *regs = task_pt_regs(current); 1259 pr_info("potentially unexpected fatal signal %d.\n", signr); 1260 1261 #if defined(__i386__) && !defined(__arch_um__) 1262 pr_info("code at %08lx: ", regs->ip); 1263 { 1264 int i; 1265 for (i = 0; i < 16; i++) { 1266 unsigned char insn; 1267 1268 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1269 break; 1270 pr_cont("%02x ", insn); 1271 } 1272 } 1273 pr_cont("\n"); 1274 #endif 1275 preempt_disable(); 1276 show_regs(regs); 1277 preempt_enable(); 1278 } 1279 1280 static int __init setup_print_fatal_signals(char *str) 1281 { 1282 get_option (&str, &print_fatal_signals); 1283 1284 return 1; 1285 } 1286 1287 __setup("print-fatal-signals=", setup_print_fatal_signals); 1288 1289 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1290 enum pid_type type) 1291 { 1292 unsigned long flags; 1293 int ret = -ESRCH; 1294 1295 if (lock_task_sighand(p, &flags)) { 1296 ret = send_signal_locked(sig, info, p, type); 1297 unlock_task_sighand(p, &flags); 1298 } 1299 1300 return ret; 1301 } 1302 1303 enum sig_handler { 1304 HANDLER_CURRENT, /* If reachable use the current handler */ 1305 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1306 HANDLER_EXIT, /* Only visible as the process exit code */ 1307 }; 1308 1309 /* 1310 * Force a signal that the process can't ignore: if necessary 1311 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1312 * 1313 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1314 * since we do not want to have a signal handler that was blocked 1315 * be invoked when user space had explicitly blocked it. 1316 * 1317 * We don't want to have recursive SIGSEGV's etc, for example, 1318 * that is why we also clear SIGNAL_UNKILLABLE. 1319 */ 1320 static int 1321 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1322 enum sig_handler handler) 1323 { 1324 unsigned long int flags; 1325 int ret, blocked, ignored; 1326 struct k_sigaction *action; 1327 int sig = info->si_signo; 1328 1329 spin_lock_irqsave(&t->sighand->siglock, flags); 1330 action = &t->sighand->action[sig-1]; 1331 ignored = action->sa.sa_handler == SIG_IGN; 1332 blocked = sigismember(&t->blocked, sig); 1333 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1334 action->sa.sa_handler = SIG_DFL; 1335 if (handler == HANDLER_EXIT) 1336 action->sa.sa_flags |= SA_IMMUTABLE; 1337 if (blocked) { 1338 sigdelset(&t->blocked, sig); 1339 recalc_sigpending_and_wake(t); 1340 } 1341 } 1342 /* 1343 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1344 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1345 */ 1346 if (action->sa.sa_handler == SIG_DFL && 1347 (!t->ptrace || (handler == HANDLER_EXIT))) 1348 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1349 ret = send_signal_locked(sig, info, t, PIDTYPE_PID); 1350 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1351 1352 return ret; 1353 } 1354 1355 int force_sig_info(struct kernel_siginfo *info) 1356 { 1357 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1358 } 1359 1360 /* 1361 * Nuke all other threads in the group. 1362 */ 1363 int zap_other_threads(struct task_struct *p) 1364 { 1365 struct task_struct *t = p; 1366 int count = 0; 1367 1368 p->signal->group_stop_count = 0; 1369 1370 while_each_thread(p, t) { 1371 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1372 count++; 1373 1374 /* Don't bother with already dead threads */ 1375 if (t->exit_state) 1376 continue; 1377 sigaddset(&t->pending.signal, SIGKILL); 1378 signal_wake_up(t, 1); 1379 } 1380 1381 return count; 1382 } 1383 1384 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1385 unsigned long *flags) 1386 { 1387 struct sighand_struct *sighand; 1388 1389 rcu_read_lock(); 1390 for (;;) { 1391 sighand = rcu_dereference(tsk->sighand); 1392 if (unlikely(sighand == NULL)) 1393 break; 1394 1395 /* 1396 * This sighand can be already freed and even reused, but 1397 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1398 * initializes ->siglock: this slab can't go away, it has 1399 * the same object type, ->siglock can't be reinitialized. 1400 * 1401 * We need to ensure that tsk->sighand is still the same 1402 * after we take the lock, we can race with de_thread() or 1403 * __exit_signal(). In the latter case the next iteration 1404 * must see ->sighand == NULL. 1405 */ 1406 spin_lock_irqsave(&sighand->siglock, *flags); 1407 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1408 break; 1409 spin_unlock_irqrestore(&sighand->siglock, *flags); 1410 } 1411 rcu_read_unlock(); 1412 1413 return sighand; 1414 } 1415 1416 #ifdef CONFIG_LOCKDEP 1417 void lockdep_assert_task_sighand_held(struct task_struct *task) 1418 { 1419 struct sighand_struct *sighand; 1420 1421 rcu_read_lock(); 1422 sighand = rcu_dereference(task->sighand); 1423 if (sighand) 1424 lockdep_assert_held(&sighand->siglock); 1425 else 1426 WARN_ON_ONCE(1); 1427 rcu_read_unlock(); 1428 } 1429 #endif 1430 1431 /* 1432 * send signal info to all the members of a group 1433 */ 1434 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1435 struct task_struct *p, enum pid_type type) 1436 { 1437 int ret; 1438 1439 rcu_read_lock(); 1440 ret = check_kill_permission(sig, info, p); 1441 rcu_read_unlock(); 1442 1443 if (!ret && sig) 1444 ret = do_send_sig_info(sig, info, p, type); 1445 1446 return ret; 1447 } 1448 1449 /* 1450 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1451 * control characters do (^C, ^Z etc) 1452 * - the caller must hold at least a readlock on tasklist_lock 1453 */ 1454 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1455 { 1456 struct task_struct *p = NULL; 1457 int retval, success; 1458 1459 success = 0; 1460 retval = -ESRCH; 1461 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1462 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1463 success |= !err; 1464 retval = err; 1465 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1466 return success ? 0 : retval; 1467 } 1468 1469 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1470 { 1471 int error = -ESRCH; 1472 struct task_struct *p; 1473 1474 for (;;) { 1475 rcu_read_lock(); 1476 p = pid_task(pid, PIDTYPE_PID); 1477 if (p) 1478 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1479 rcu_read_unlock(); 1480 if (likely(!p || error != -ESRCH)) 1481 return error; 1482 1483 /* 1484 * The task was unhashed in between, try again. If it 1485 * is dead, pid_task() will return NULL, if we race with 1486 * de_thread() it will find the new leader. 1487 */ 1488 } 1489 } 1490 1491 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1492 { 1493 int error; 1494 rcu_read_lock(); 1495 error = kill_pid_info(sig, info, find_vpid(pid)); 1496 rcu_read_unlock(); 1497 return error; 1498 } 1499 1500 static inline bool kill_as_cred_perm(const struct cred *cred, 1501 struct task_struct *target) 1502 { 1503 const struct cred *pcred = __task_cred(target); 1504 1505 return uid_eq(cred->euid, pcred->suid) || 1506 uid_eq(cred->euid, pcred->uid) || 1507 uid_eq(cred->uid, pcred->suid) || 1508 uid_eq(cred->uid, pcred->uid); 1509 } 1510 1511 /* 1512 * The usb asyncio usage of siginfo is wrong. The glibc support 1513 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1514 * AKA after the generic fields: 1515 * kernel_pid_t si_pid; 1516 * kernel_uid32_t si_uid; 1517 * sigval_t si_value; 1518 * 1519 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1520 * after the generic fields is: 1521 * void __user *si_addr; 1522 * 1523 * This is a practical problem when there is a 64bit big endian kernel 1524 * and a 32bit userspace. As the 32bit address will encoded in the low 1525 * 32bits of the pointer. Those low 32bits will be stored at higher 1526 * address than appear in a 32 bit pointer. So userspace will not 1527 * see the address it was expecting for it's completions. 1528 * 1529 * There is nothing in the encoding that can allow 1530 * copy_siginfo_to_user32 to detect this confusion of formats, so 1531 * handle this by requiring the caller of kill_pid_usb_asyncio to 1532 * notice when this situration takes place and to store the 32bit 1533 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1534 * parameter. 1535 */ 1536 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1537 struct pid *pid, const struct cred *cred) 1538 { 1539 struct kernel_siginfo info; 1540 struct task_struct *p; 1541 unsigned long flags; 1542 int ret = -EINVAL; 1543 1544 if (!valid_signal(sig)) 1545 return ret; 1546 1547 clear_siginfo(&info); 1548 info.si_signo = sig; 1549 info.si_errno = errno; 1550 info.si_code = SI_ASYNCIO; 1551 *((sigval_t *)&info.si_pid) = addr; 1552 1553 rcu_read_lock(); 1554 p = pid_task(pid, PIDTYPE_PID); 1555 if (!p) { 1556 ret = -ESRCH; 1557 goto out_unlock; 1558 } 1559 if (!kill_as_cred_perm(cred, p)) { 1560 ret = -EPERM; 1561 goto out_unlock; 1562 } 1563 ret = security_task_kill(p, &info, sig, cred); 1564 if (ret) 1565 goto out_unlock; 1566 1567 if (sig) { 1568 if (lock_task_sighand(p, &flags)) { 1569 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false); 1570 unlock_task_sighand(p, &flags); 1571 } else 1572 ret = -ESRCH; 1573 } 1574 out_unlock: 1575 rcu_read_unlock(); 1576 return ret; 1577 } 1578 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1579 1580 /* 1581 * kill_something_info() interprets pid in interesting ways just like kill(2). 1582 * 1583 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1584 * is probably wrong. Should make it like BSD or SYSV. 1585 */ 1586 1587 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1588 { 1589 int ret; 1590 1591 if (pid > 0) 1592 return kill_proc_info(sig, info, pid); 1593 1594 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1595 if (pid == INT_MIN) 1596 return -ESRCH; 1597 1598 read_lock(&tasklist_lock); 1599 if (pid != -1) { 1600 ret = __kill_pgrp_info(sig, info, 1601 pid ? find_vpid(-pid) : task_pgrp(current)); 1602 } else { 1603 int retval = 0, count = 0; 1604 struct task_struct * p; 1605 1606 for_each_process(p) { 1607 if (task_pid_vnr(p) > 1 && 1608 !same_thread_group(p, current)) { 1609 int err = group_send_sig_info(sig, info, p, 1610 PIDTYPE_MAX); 1611 ++count; 1612 if (err != -EPERM) 1613 retval = err; 1614 } 1615 } 1616 ret = count ? retval : -ESRCH; 1617 } 1618 read_unlock(&tasklist_lock); 1619 1620 return ret; 1621 } 1622 1623 /* 1624 * These are for backward compatibility with the rest of the kernel source. 1625 */ 1626 1627 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1628 { 1629 /* 1630 * Make sure legacy kernel users don't send in bad values 1631 * (normal paths check this in check_kill_permission). 1632 */ 1633 if (!valid_signal(sig)) 1634 return -EINVAL; 1635 1636 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1637 } 1638 EXPORT_SYMBOL(send_sig_info); 1639 1640 #define __si_special(priv) \ 1641 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1642 1643 int 1644 send_sig(int sig, struct task_struct *p, int priv) 1645 { 1646 return send_sig_info(sig, __si_special(priv), p); 1647 } 1648 EXPORT_SYMBOL(send_sig); 1649 1650 void force_sig(int sig) 1651 { 1652 struct kernel_siginfo info; 1653 1654 clear_siginfo(&info); 1655 info.si_signo = sig; 1656 info.si_errno = 0; 1657 info.si_code = SI_KERNEL; 1658 info.si_pid = 0; 1659 info.si_uid = 0; 1660 force_sig_info(&info); 1661 } 1662 EXPORT_SYMBOL(force_sig); 1663 1664 void force_fatal_sig(int sig) 1665 { 1666 struct kernel_siginfo info; 1667 1668 clear_siginfo(&info); 1669 info.si_signo = sig; 1670 info.si_errno = 0; 1671 info.si_code = SI_KERNEL; 1672 info.si_pid = 0; 1673 info.si_uid = 0; 1674 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1675 } 1676 1677 void force_exit_sig(int sig) 1678 { 1679 struct kernel_siginfo info; 1680 1681 clear_siginfo(&info); 1682 info.si_signo = sig; 1683 info.si_errno = 0; 1684 info.si_code = SI_KERNEL; 1685 info.si_pid = 0; 1686 info.si_uid = 0; 1687 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1688 } 1689 1690 /* 1691 * When things go south during signal handling, we 1692 * will force a SIGSEGV. And if the signal that caused 1693 * the problem was already a SIGSEGV, we'll want to 1694 * make sure we don't even try to deliver the signal.. 1695 */ 1696 void force_sigsegv(int sig) 1697 { 1698 if (sig == SIGSEGV) 1699 force_fatal_sig(SIGSEGV); 1700 else 1701 force_sig(SIGSEGV); 1702 } 1703 1704 int force_sig_fault_to_task(int sig, int code, void __user *addr 1705 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1706 , struct task_struct *t) 1707 { 1708 struct kernel_siginfo info; 1709 1710 clear_siginfo(&info); 1711 info.si_signo = sig; 1712 info.si_errno = 0; 1713 info.si_code = code; 1714 info.si_addr = addr; 1715 #ifdef __ia64__ 1716 info.si_imm = imm; 1717 info.si_flags = flags; 1718 info.si_isr = isr; 1719 #endif 1720 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1721 } 1722 1723 int force_sig_fault(int sig, int code, void __user *addr 1724 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1725 { 1726 return force_sig_fault_to_task(sig, code, addr 1727 ___ARCH_SI_IA64(imm, flags, isr), current); 1728 } 1729 1730 int send_sig_fault(int sig, int code, void __user *addr 1731 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1732 , struct task_struct *t) 1733 { 1734 struct kernel_siginfo info; 1735 1736 clear_siginfo(&info); 1737 info.si_signo = sig; 1738 info.si_errno = 0; 1739 info.si_code = code; 1740 info.si_addr = addr; 1741 #ifdef __ia64__ 1742 info.si_imm = imm; 1743 info.si_flags = flags; 1744 info.si_isr = isr; 1745 #endif 1746 return send_sig_info(info.si_signo, &info, t); 1747 } 1748 1749 int force_sig_mceerr(int code, void __user *addr, short lsb) 1750 { 1751 struct kernel_siginfo info; 1752 1753 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1754 clear_siginfo(&info); 1755 info.si_signo = SIGBUS; 1756 info.si_errno = 0; 1757 info.si_code = code; 1758 info.si_addr = addr; 1759 info.si_addr_lsb = lsb; 1760 return force_sig_info(&info); 1761 } 1762 1763 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1764 { 1765 struct kernel_siginfo info; 1766 1767 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1768 clear_siginfo(&info); 1769 info.si_signo = SIGBUS; 1770 info.si_errno = 0; 1771 info.si_code = code; 1772 info.si_addr = addr; 1773 info.si_addr_lsb = lsb; 1774 return send_sig_info(info.si_signo, &info, t); 1775 } 1776 EXPORT_SYMBOL(send_sig_mceerr); 1777 1778 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1779 { 1780 struct kernel_siginfo info; 1781 1782 clear_siginfo(&info); 1783 info.si_signo = SIGSEGV; 1784 info.si_errno = 0; 1785 info.si_code = SEGV_BNDERR; 1786 info.si_addr = addr; 1787 info.si_lower = lower; 1788 info.si_upper = upper; 1789 return force_sig_info(&info); 1790 } 1791 1792 #ifdef SEGV_PKUERR 1793 int force_sig_pkuerr(void __user *addr, u32 pkey) 1794 { 1795 struct kernel_siginfo info; 1796 1797 clear_siginfo(&info); 1798 info.si_signo = SIGSEGV; 1799 info.si_errno = 0; 1800 info.si_code = SEGV_PKUERR; 1801 info.si_addr = addr; 1802 info.si_pkey = pkey; 1803 return force_sig_info(&info); 1804 } 1805 #endif 1806 1807 int send_sig_perf(void __user *addr, u32 type, u64 sig_data) 1808 { 1809 struct kernel_siginfo info; 1810 1811 clear_siginfo(&info); 1812 info.si_signo = SIGTRAP; 1813 info.si_errno = 0; 1814 info.si_code = TRAP_PERF; 1815 info.si_addr = addr; 1816 info.si_perf_data = sig_data; 1817 info.si_perf_type = type; 1818 1819 /* 1820 * Signals generated by perf events should not terminate the whole 1821 * process if SIGTRAP is blocked, however, delivering the signal 1822 * asynchronously is better than not delivering at all. But tell user 1823 * space if the signal was asynchronous, so it can clearly be 1824 * distinguished from normal synchronous ones. 1825 */ 1826 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ? 1827 TRAP_PERF_FLAG_ASYNC : 1828 0; 1829 1830 return send_sig_info(info.si_signo, &info, current); 1831 } 1832 1833 /** 1834 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1835 * @syscall: syscall number to send to userland 1836 * @reason: filter-supplied reason code to send to userland (via si_errno) 1837 * @force_coredump: true to trigger a coredump 1838 * 1839 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1840 */ 1841 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1842 { 1843 struct kernel_siginfo info; 1844 1845 clear_siginfo(&info); 1846 info.si_signo = SIGSYS; 1847 info.si_code = SYS_SECCOMP; 1848 info.si_call_addr = (void __user *)KSTK_EIP(current); 1849 info.si_errno = reason; 1850 info.si_arch = syscall_get_arch(current); 1851 info.si_syscall = syscall; 1852 return force_sig_info_to_task(&info, current, 1853 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1854 } 1855 1856 /* For the crazy architectures that include trap information in 1857 * the errno field, instead of an actual errno value. 1858 */ 1859 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1860 { 1861 struct kernel_siginfo info; 1862 1863 clear_siginfo(&info); 1864 info.si_signo = SIGTRAP; 1865 info.si_errno = errno; 1866 info.si_code = TRAP_HWBKPT; 1867 info.si_addr = addr; 1868 return force_sig_info(&info); 1869 } 1870 1871 /* For the rare architectures that include trap information using 1872 * si_trapno. 1873 */ 1874 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1875 { 1876 struct kernel_siginfo info; 1877 1878 clear_siginfo(&info); 1879 info.si_signo = sig; 1880 info.si_errno = 0; 1881 info.si_code = code; 1882 info.si_addr = addr; 1883 info.si_trapno = trapno; 1884 return force_sig_info(&info); 1885 } 1886 1887 /* For the rare architectures that include trap information using 1888 * si_trapno. 1889 */ 1890 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1891 struct task_struct *t) 1892 { 1893 struct kernel_siginfo info; 1894 1895 clear_siginfo(&info); 1896 info.si_signo = sig; 1897 info.si_errno = 0; 1898 info.si_code = code; 1899 info.si_addr = addr; 1900 info.si_trapno = trapno; 1901 return send_sig_info(info.si_signo, &info, t); 1902 } 1903 1904 int kill_pgrp(struct pid *pid, int sig, int priv) 1905 { 1906 int ret; 1907 1908 read_lock(&tasklist_lock); 1909 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1910 read_unlock(&tasklist_lock); 1911 1912 return ret; 1913 } 1914 EXPORT_SYMBOL(kill_pgrp); 1915 1916 int kill_pid(struct pid *pid, int sig, int priv) 1917 { 1918 return kill_pid_info(sig, __si_special(priv), pid); 1919 } 1920 EXPORT_SYMBOL(kill_pid); 1921 1922 /* 1923 * These functions support sending signals using preallocated sigqueue 1924 * structures. This is needed "because realtime applications cannot 1925 * afford to lose notifications of asynchronous events, like timer 1926 * expirations or I/O completions". In the case of POSIX Timers 1927 * we allocate the sigqueue structure from the timer_create. If this 1928 * allocation fails we are able to report the failure to the application 1929 * with an EAGAIN error. 1930 */ 1931 struct sigqueue *sigqueue_alloc(void) 1932 { 1933 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1934 } 1935 1936 void sigqueue_free(struct sigqueue *q) 1937 { 1938 unsigned long flags; 1939 spinlock_t *lock = ¤t->sighand->siglock; 1940 1941 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1942 /* 1943 * We must hold ->siglock while testing q->list 1944 * to serialize with collect_signal() or with 1945 * __exit_signal()->flush_sigqueue(). 1946 */ 1947 spin_lock_irqsave(lock, flags); 1948 q->flags &= ~SIGQUEUE_PREALLOC; 1949 /* 1950 * If it is queued it will be freed when dequeued, 1951 * like the "regular" sigqueue. 1952 */ 1953 if (!list_empty(&q->list)) 1954 q = NULL; 1955 spin_unlock_irqrestore(lock, flags); 1956 1957 if (q) 1958 __sigqueue_free(q); 1959 } 1960 1961 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1962 { 1963 int sig = q->info.si_signo; 1964 struct sigpending *pending; 1965 struct task_struct *t; 1966 unsigned long flags; 1967 int ret, result; 1968 1969 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1970 1971 ret = -1; 1972 rcu_read_lock(); 1973 t = pid_task(pid, type); 1974 if (!t || !likely(lock_task_sighand(t, &flags))) 1975 goto ret; 1976 1977 ret = 1; /* the signal is ignored */ 1978 result = TRACE_SIGNAL_IGNORED; 1979 if (!prepare_signal(sig, t, false)) 1980 goto out; 1981 1982 ret = 0; 1983 if (unlikely(!list_empty(&q->list))) { 1984 /* 1985 * If an SI_TIMER entry is already queue just increment 1986 * the overrun count. 1987 */ 1988 BUG_ON(q->info.si_code != SI_TIMER); 1989 q->info.si_overrun++; 1990 result = TRACE_SIGNAL_ALREADY_PENDING; 1991 goto out; 1992 } 1993 q->info.si_overrun = 0; 1994 1995 signalfd_notify(t, sig); 1996 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1997 list_add_tail(&q->list, &pending->list); 1998 sigaddset(&pending->signal, sig); 1999 complete_signal(sig, t, type); 2000 result = TRACE_SIGNAL_DELIVERED; 2001 out: 2002 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 2003 unlock_task_sighand(t, &flags); 2004 ret: 2005 rcu_read_unlock(); 2006 return ret; 2007 } 2008 2009 static void do_notify_pidfd(struct task_struct *task) 2010 { 2011 struct pid *pid; 2012 2013 WARN_ON(task->exit_state == 0); 2014 pid = task_pid(task); 2015 wake_up_all(&pid->wait_pidfd); 2016 } 2017 2018 /* 2019 * Let a parent know about the death of a child. 2020 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2021 * 2022 * Returns true if our parent ignored us and so we've switched to 2023 * self-reaping. 2024 */ 2025 bool do_notify_parent(struct task_struct *tsk, int sig) 2026 { 2027 struct kernel_siginfo info; 2028 unsigned long flags; 2029 struct sighand_struct *psig; 2030 bool autoreap = false; 2031 u64 utime, stime; 2032 2033 WARN_ON_ONCE(sig == -1); 2034 2035 /* do_notify_parent_cldstop should have been called instead. */ 2036 WARN_ON_ONCE(task_is_stopped_or_traced(tsk)); 2037 2038 WARN_ON_ONCE(!tsk->ptrace && 2039 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2040 2041 /* Wake up all pidfd waiters */ 2042 do_notify_pidfd(tsk); 2043 2044 if (sig != SIGCHLD) { 2045 /* 2046 * This is only possible if parent == real_parent. 2047 * Check if it has changed security domain. 2048 */ 2049 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2050 sig = SIGCHLD; 2051 } 2052 2053 clear_siginfo(&info); 2054 info.si_signo = sig; 2055 info.si_errno = 0; 2056 /* 2057 * We are under tasklist_lock here so our parent is tied to 2058 * us and cannot change. 2059 * 2060 * task_active_pid_ns will always return the same pid namespace 2061 * until a task passes through release_task. 2062 * 2063 * write_lock() currently calls preempt_disable() which is the 2064 * same as rcu_read_lock(), but according to Oleg, this is not 2065 * correct to rely on this 2066 */ 2067 rcu_read_lock(); 2068 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2069 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2070 task_uid(tsk)); 2071 rcu_read_unlock(); 2072 2073 task_cputime(tsk, &utime, &stime); 2074 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2075 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2076 2077 info.si_status = tsk->exit_code & 0x7f; 2078 if (tsk->exit_code & 0x80) 2079 info.si_code = CLD_DUMPED; 2080 else if (tsk->exit_code & 0x7f) 2081 info.si_code = CLD_KILLED; 2082 else { 2083 info.si_code = CLD_EXITED; 2084 info.si_status = tsk->exit_code >> 8; 2085 } 2086 2087 psig = tsk->parent->sighand; 2088 spin_lock_irqsave(&psig->siglock, flags); 2089 if (!tsk->ptrace && sig == SIGCHLD && 2090 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2091 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2092 /* 2093 * We are exiting and our parent doesn't care. POSIX.1 2094 * defines special semantics for setting SIGCHLD to SIG_IGN 2095 * or setting the SA_NOCLDWAIT flag: we should be reaped 2096 * automatically and not left for our parent's wait4 call. 2097 * Rather than having the parent do it as a magic kind of 2098 * signal handler, we just set this to tell do_exit that we 2099 * can be cleaned up without becoming a zombie. Note that 2100 * we still call __wake_up_parent in this case, because a 2101 * blocked sys_wait4 might now return -ECHILD. 2102 * 2103 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2104 * is implementation-defined: we do (if you don't want 2105 * it, just use SIG_IGN instead). 2106 */ 2107 autoreap = true; 2108 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2109 sig = 0; 2110 } 2111 /* 2112 * Send with __send_signal as si_pid and si_uid are in the 2113 * parent's namespaces. 2114 */ 2115 if (valid_signal(sig) && sig) 2116 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2117 __wake_up_parent(tsk, tsk->parent); 2118 spin_unlock_irqrestore(&psig->siglock, flags); 2119 2120 return autoreap; 2121 } 2122 2123 /** 2124 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2125 * @tsk: task reporting the state change 2126 * @for_ptracer: the notification is for ptracer 2127 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2128 * 2129 * Notify @tsk's parent that the stopped/continued state has changed. If 2130 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2131 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2132 * 2133 * CONTEXT: 2134 * Must be called with tasklist_lock at least read locked. 2135 */ 2136 static void do_notify_parent_cldstop(struct task_struct *tsk, 2137 bool for_ptracer, int why) 2138 { 2139 struct kernel_siginfo info; 2140 unsigned long flags; 2141 struct task_struct *parent; 2142 struct sighand_struct *sighand; 2143 u64 utime, stime; 2144 2145 if (for_ptracer) { 2146 parent = tsk->parent; 2147 } else { 2148 tsk = tsk->group_leader; 2149 parent = tsk->real_parent; 2150 } 2151 2152 clear_siginfo(&info); 2153 info.si_signo = SIGCHLD; 2154 info.si_errno = 0; 2155 /* 2156 * see comment in do_notify_parent() about the following 4 lines 2157 */ 2158 rcu_read_lock(); 2159 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2160 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2161 rcu_read_unlock(); 2162 2163 task_cputime(tsk, &utime, &stime); 2164 info.si_utime = nsec_to_clock_t(utime); 2165 info.si_stime = nsec_to_clock_t(stime); 2166 2167 info.si_code = why; 2168 switch (why) { 2169 case CLD_CONTINUED: 2170 info.si_status = SIGCONT; 2171 break; 2172 case CLD_STOPPED: 2173 info.si_status = tsk->signal->group_exit_code & 0x7f; 2174 break; 2175 case CLD_TRAPPED: 2176 info.si_status = tsk->exit_code & 0x7f; 2177 break; 2178 default: 2179 BUG(); 2180 } 2181 2182 sighand = parent->sighand; 2183 spin_lock_irqsave(&sighand->siglock, flags); 2184 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2185 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2186 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID); 2187 /* 2188 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2189 */ 2190 __wake_up_parent(tsk, parent); 2191 spin_unlock_irqrestore(&sighand->siglock, flags); 2192 } 2193 2194 /* 2195 * This must be called with current->sighand->siglock held. 2196 * 2197 * This should be the path for all ptrace stops. 2198 * We always set current->last_siginfo while stopped here. 2199 * That makes it a way to test a stopped process for 2200 * being ptrace-stopped vs being job-control-stopped. 2201 * 2202 * Returns the signal the ptracer requested the code resume 2203 * with. If the code did not stop because the tracer is gone, 2204 * the stop signal remains unchanged unless clear_code. 2205 */ 2206 static int ptrace_stop(int exit_code, int why, unsigned long message, 2207 kernel_siginfo_t *info) 2208 __releases(¤t->sighand->siglock) 2209 __acquires(¤t->sighand->siglock) 2210 { 2211 bool gstop_done = false; 2212 2213 if (arch_ptrace_stop_needed()) { 2214 /* 2215 * The arch code has something special to do before a 2216 * ptrace stop. This is allowed to block, e.g. for faults 2217 * on user stack pages. We can't keep the siglock while 2218 * calling arch_ptrace_stop, so we must release it now. 2219 * To preserve proper semantics, we must do this before 2220 * any signal bookkeeping like checking group_stop_count. 2221 */ 2222 spin_unlock_irq(¤t->sighand->siglock); 2223 arch_ptrace_stop(); 2224 spin_lock_irq(¤t->sighand->siglock); 2225 } 2226 2227 /* 2228 * After this point ptrace_signal_wake_up or signal_wake_up 2229 * will clear TASK_TRACED if ptrace_unlink happens or a fatal 2230 * signal comes in. Handle previous ptrace_unlinks and fatal 2231 * signals here to prevent ptrace_stop sleeping in schedule. 2232 */ 2233 if (!current->ptrace || __fatal_signal_pending(current)) 2234 return exit_code; 2235 2236 set_special_state(TASK_TRACED); 2237 current->jobctl |= JOBCTL_TRACED; 2238 2239 /* 2240 * We're committing to trapping. TRACED should be visible before 2241 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2242 * Also, transition to TRACED and updates to ->jobctl should be 2243 * atomic with respect to siglock and should be done after the arch 2244 * hook as siglock is released and regrabbed across it. 2245 * 2246 * TRACER TRACEE 2247 * 2248 * ptrace_attach() 2249 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2250 * do_wait() 2251 * set_current_state() smp_wmb(); 2252 * ptrace_do_wait() 2253 * wait_task_stopped() 2254 * task_stopped_code() 2255 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2256 */ 2257 smp_wmb(); 2258 2259 current->ptrace_message = message; 2260 current->last_siginfo = info; 2261 current->exit_code = exit_code; 2262 2263 /* 2264 * If @why is CLD_STOPPED, we're trapping to participate in a group 2265 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2266 * across siglock relocks since INTERRUPT was scheduled, PENDING 2267 * could be clear now. We act as if SIGCONT is received after 2268 * TASK_TRACED is entered - ignore it. 2269 */ 2270 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2271 gstop_done = task_participate_group_stop(current); 2272 2273 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2274 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2275 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2276 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2277 2278 /* entering a trap, clear TRAPPING */ 2279 task_clear_jobctl_trapping(current); 2280 2281 spin_unlock_irq(¤t->sighand->siglock); 2282 read_lock(&tasklist_lock); 2283 /* 2284 * Notify parents of the stop. 2285 * 2286 * While ptraced, there are two parents - the ptracer and 2287 * the real_parent of the group_leader. The ptracer should 2288 * know about every stop while the real parent is only 2289 * interested in the completion of group stop. The states 2290 * for the two don't interact with each other. Notify 2291 * separately unless they're gonna be duplicates. 2292 */ 2293 if (current->ptrace) 2294 do_notify_parent_cldstop(current, true, why); 2295 if (gstop_done && (!current->ptrace || ptrace_reparented(current))) 2296 do_notify_parent_cldstop(current, false, why); 2297 2298 /* 2299 * Don't want to allow preemption here, because 2300 * sys_ptrace() needs this task to be inactive. 2301 * 2302 * XXX: implement read_unlock_no_resched(). 2303 */ 2304 preempt_disable(); 2305 read_unlock(&tasklist_lock); 2306 cgroup_enter_frozen(); 2307 preempt_enable_no_resched(); 2308 schedule(); 2309 cgroup_leave_frozen(true); 2310 2311 /* 2312 * We are back. Now reacquire the siglock before touching 2313 * last_siginfo, so that we are sure to have synchronized with 2314 * any signal-sending on another CPU that wants to examine it. 2315 */ 2316 spin_lock_irq(¤t->sighand->siglock); 2317 exit_code = current->exit_code; 2318 current->last_siginfo = NULL; 2319 current->ptrace_message = 0; 2320 current->exit_code = 0; 2321 2322 /* LISTENING can be set only during STOP traps, clear it */ 2323 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN); 2324 2325 /* 2326 * Queued signals ignored us while we were stopped for tracing. 2327 * So check for any that we should take before resuming user mode. 2328 * This sets TIF_SIGPENDING, but never clears it. 2329 */ 2330 recalc_sigpending_tsk(current); 2331 return exit_code; 2332 } 2333 2334 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) 2335 { 2336 kernel_siginfo_t info; 2337 2338 clear_siginfo(&info); 2339 info.si_signo = signr; 2340 info.si_code = exit_code; 2341 info.si_pid = task_pid_vnr(current); 2342 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2343 2344 /* Let the debugger run. */ 2345 return ptrace_stop(exit_code, why, message, &info); 2346 } 2347 2348 int ptrace_notify(int exit_code, unsigned long message) 2349 { 2350 int signr; 2351 2352 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2353 if (unlikely(task_work_pending(current))) 2354 task_work_run(); 2355 2356 spin_lock_irq(¤t->sighand->siglock); 2357 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); 2358 spin_unlock_irq(¤t->sighand->siglock); 2359 return signr; 2360 } 2361 2362 /** 2363 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2364 * @signr: signr causing group stop if initiating 2365 * 2366 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2367 * and participate in it. If already set, participate in the existing 2368 * group stop. If participated in a group stop (and thus slept), %true is 2369 * returned with siglock released. 2370 * 2371 * If ptraced, this function doesn't handle stop itself. Instead, 2372 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2373 * untouched. The caller must ensure that INTERRUPT trap handling takes 2374 * places afterwards. 2375 * 2376 * CONTEXT: 2377 * Must be called with @current->sighand->siglock held, which is released 2378 * on %true return. 2379 * 2380 * RETURNS: 2381 * %false if group stop is already cancelled or ptrace trap is scheduled. 2382 * %true if participated in group stop. 2383 */ 2384 static bool do_signal_stop(int signr) 2385 __releases(¤t->sighand->siglock) 2386 { 2387 struct signal_struct *sig = current->signal; 2388 2389 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2390 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2391 struct task_struct *t; 2392 2393 /* signr will be recorded in task->jobctl for retries */ 2394 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2395 2396 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2397 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2398 unlikely(sig->group_exec_task)) 2399 return false; 2400 /* 2401 * There is no group stop already in progress. We must 2402 * initiate one now. 2403 * 2404 * While ptraced, a task may be resumed while group stop is 2405 * still in effect and then receive a stop signal and 2406 * initiate another group stop. This deviates from the 2407 * usual behavior as two consecutive stop signals can't 2408 * cause two group stops when !ptraced. That is why we 2409 * also check !task_is_stopped(t) below. 2410 * 2411 * The condition can be distinguished by testing whether 2412 * SIGNAL_STOP_STOPPED is already set. Don't generate 2413 * group_exit_code in such case. 2414 * 2415 * This is not necessary for SIGNAL_STOP_CONTINUED because 2416 * an intervening stop signal is required to cause two 2417 * continued events regardless of ptrace. 2418 */ 2419 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2420 sig->group_exit_code = signr; 2421 2422 sig->group_stop_count = 0; 2423 2424 if (task_set_jobctl_pending(current, signr | gstop)) 2425 sig->group_stop_count++; 2426 2427 t = current; 2428 while_each_thread(current, t) { 2429 /* 2430 * Setting state to TASK_STOPPED for a group 2431 * stop is always done with the siglock held, 2432 * so this check has no races. 2433 */ 2434 if (!task_is_stopped(t) && 2435 task_set_jobctl_pending(t, signr | gstop)) { 2436 sig->group_stop_count++; 2437 if (likely(!(t->ptrace & PT_SEIZED))) 2438 signal_wake_up(t, 0); 2439 else 2440 ptrace_trap_notify(t); 2441 } 2442 } 2443 } 2444 2445 if (likely(!current->ptrace)) { 2446 int notify = 0; 2447 2448 /* 2449 * If there are no other threads in the group, or if there 2450 * is a group stop in progress and we are the last to stop, 2451 * report to the parent. 2452 */ 2453 if (task_participate_group_stop(current)) 2454 notify = CLD_STOPPED; 2455 2456 current->jobctl |= JOBCTL_STOPPED; 2457 set_special_state(TASK_STOPPED); 2458 spin_unlock_irq(¤t->sighand->siglock); 2459 2460 /* 2461 * Notify the parent of the group stop completion. Because 2462 * we're not holding either the siglock or tasklist_lock 2463 * here, ptracer may attach inbetween; however, this is for 2464 * group stop and should always be delivered to the real 2465 * parent of the group leader. The new ptracer will get 2466 * its notification when this task transitions into 2467 * TASK_TRACED. 2468 */ 2469 if (notify) { 2470 read_lock(&tasklist_lock); 2471 do_notify_parent_cldstop(current, false, notify); 2472 read_unlock(&tasklist_lock); 2473 } 2474 2475 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2476 cgroup_enter_frozen(); 2477 schedule(); 2478 return true; 2479 } else { 2480 /* 2481 * While ptraced, group stop is handled by STOP trap. 2482 * Schedule it and let the caller deal with it. 2483 */ 2484 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2485 return false; 2486 } 2487 } 2488 2489 /** 2490 * do_jobctl_trap - take care of ptrace jobctl traps 2491 * 2492 * When PT_SEIZED, it's used for both group stop and explicit 2493 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2494 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2495 * the stop signal; otherwise, %SIGTRAP. 2496 * 2497 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2498 * number as exit_code and no siginfo. 2499 * 2500 * CONTEXT: 2501 * Must be called with @current->sighand->siglock held, which may be 2502 * released and re-acquired before returning with intervening sleep. 2503 */ 2504 static void do_jobctl_trap(void) 2505 { 2506 struct signal_struct *signal = current->signal; 2507 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2508 2509 if (current->ptrace & PT_SEIZED) { 2510 if (!signal->group_stop_count && 2511 !(signal->flags & SIGNAL_STOP_STOPPED)) 2512 signr = SIGTRAP; 2513 WARN_ON_ONCE(!signr); 2514 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2515 CLD_STOPPED, 0); 2516 } else { 2517 WARN_ON_ONCE(!signr); 2518 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2519 } 2520 } 2521 2522 /** 2523 * do_freezer_trap - handle the freezer jobctl trap 2524 * 2525 * Puts the task into frozen state, if only the task is not about to quit. 2526 * In this case it drops JOBCTL_TRAP_FREEZE. 2527 * 2528 * CONTEXT: 2529 * Must be called with @current->sighand->siglock held, 2530 * which is always released before returning. 2531 */ 2532 static void do_freezer_trap(void) 2533 __releases(¤t->sighand->siglock) 2534 { 2535 /* 2536 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2537 * let's make another loop to give it a chance to be handled. 2538 * In any case, we'll return back. 2539 */ 2540 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2541 JOBCTL_TRAP_FREEZE) { 2542 spin_unlock_irq(¤t->sighand->siglock); 2543 return; 2544 } 2545 2546 /* 2547 * Now we're sure that there is no pending fatal signal and no 2548 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2549 * immediately (if there is a non-fatal signal pending), and 2550 * put the task into sleep. 2551 */ 2552 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2553 clear_thread_flag(TIF_SIGPENDING); 2554 spin_unlock_irq(¤t->sighand->siglock); 2555 cgroup_enter_frozen(); 2556 schedule(); 2557 } 2558 2559 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2560 { 2561 /* 2562 * We do not check sig_kernel_stop(signr) but set this marker 2563 * unconditionally because we do not know whether debugger will 2564 * change signr. This flag has no meaning unless we are going 2565 * to stop after return from ptrace_stop(). In this case it will 2566 * be checked in do_signal_stop(), we should only stop if it was 2567 * not cleared by SIGCONT while we were sleeping. See also the 2568 * comment in dequeue_signal(). 2569 */ 2570 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2571 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info); 2572 2573 /* We're back. Did the debugger cancel the sig? */ 2574 if (signr == 0) 2575 return signr; 2576 2577 /* 2578 * Update the siginfo structure if the signal has 2579 * changed. If the debugger wanted something 2580 * specific in the siginfo structure then it should 2581 * have updated *info via PTRACE_SETSIGINFO. 2582 */ 2583 if (signr != info->si_signo) { 2584 clear_siginfo(info); 2585 info->si_signo = signr; 2586 info->si_errno = 0; 2587 info->si_code = SI_USER; 2588 rcu_read_lock(); 2589 info->si_pid = task_pid_vnr(current->parent); 2590 info->si_uid = from_kuid_munged(current_user_ns(), 2591 task_uid(current->parent)); 2592 rcu_read_unlock(); 2593 } 2594 2595 /* If the (new) signal is now blocked, requeue it. */ 2596 if (sigismember(¤t->blocked, signr) || 2597 fatal_signal_pending(current)) { 2598 send_signal_locked(signr, info, current, type); 2599 signr = 0; 2600 } 2601 2602 return signr; 2603 } 2604 2605 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2606 { 2607 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2608 case SIL_FAULT: 2609 case SIL_FAULT_TRAPNO: 2610 case SIL_FAULT_MCEERR: 2611 case SIL_FAULT_BNDERR: 2612 case SIL_FAULT_PKUERR: 2613 case SIL_FAULT_PERF_EVENT: 2614 ksig->info.si_addr = arch_untagged_si_addr( 2615 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2616 break; 2617 case SIL_KILL: 2618 case SIL_TIMER: 2619 case SIL_POLL: 2620 case SIL_CHLD: 2621 case SIL_RT: 2622 case SIL_SYS: 2623 break; 2624 } 2625 } 2626 2627 bool get_signal(struct ksignal *ksig) 2628 { 2629 struct sighand_struct *sighand = current->sighand; 2630 struct signal_struct *signal = current->signal; 2631 int signr; 2632 2633 clear_notify_signal(); 2634 if (unlikely(task_work_pending(current))) 2635 task_work_run(); 2636 2637 if (!task_sigpending(current)) 2638 return false; 2639 2640 if (unlikely(uprobe_deny_signal())) 2641 return false; 2642 2643 /* 2644 * Do this once, we can't return to user-mode if freezing() == T. 2645 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2646 * thus do not need another check after return. 2647 */ 2648 try_to_freeze(); 2649 2650 relock: 2651 spin_lock_irq(&sighand->siglock); 2652 2653 /* 2654 * Every stopped thread goes here after wakeup. Check to see if 2655 * we should notify the parent, prepare_signal(SIGCONT) encodes 2656 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2657 */ 2658 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2659 int why; 2660 2661 if (signal->flags & SIGNAL_CLD_CONTINUED) 2662 why = CLD_CONTINUED; 2663 else 2664 why = CLD_STOPPED; 2665 2666 signal->flags &= ~SIGNAL_CLD_MASK; 2667 2668 spin_unlock_irq(&sighand->siglock); 2669 2670 /* 2671 * Notify the parent that we're continuing. This event is 2672 * always per-process and doesn't make whole lot of sense 2673 * for ptracers, who shouldn't consume the state via 2674 * wait(2) either, but, for backward compatibility, notify 2675 * the ptracer of the group leader too unless it's gonna be 2676 * a duplicate. 2677 */ 2678 read_lock(&tasklist_lock); 2679 do_notify_parent_cldstop(current, false, why); 2680 2681 if (ptrace_reparented(current->group_leader)) 2682 do_notify_parent_cldstop(current->group_leader, 2683 true, why); 2684 read_unlock(&tasklist_lock); 2685 2686 goto relock; 2687 } 2688 2689 for (;;) { 2690 struct k_sigaction *ka; 2691 enum pid_type type; 2692 2693 /* Has this task already been marked for death? */ 2694 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2695 signal->group_exec_task) { 2696 clear_siginfo(&ksig->info); 2697 ksig->info.si_signo = signr = SIGKILL; 2698 sigdelset(¤t->pending.signal, SIGKILL); 2699 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2700 &sighand->action[SIGKILL - 1]); 2701 recalc_sigpending(); 2702 goto fatal; 2703 } 2704 2705 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2706 do_signal_stop(0)) 2707 goto relock; 2708 2709 if (unlikely(current->jobctl & 2710 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2711 if (current->jobctl & JOBCTL_TRAP_MASK) { 2712 do_jobctl_trap(); 2713 spin_unlock_irq(&sighand->siglock); 2714 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2715 do_freezer_trap(); 2716 2717 goto relock; 2718 } 2719 2720 /* 2721 * If the task is leaving the frozen state, let's update 2722 * cgroup counters and reset the frozen bit. 2723 */ 2724 if (unlikely(cgroup_task_frozen(current))) { 2725 spin_unlock_irq(&sighand->siglock); 2726 cgroup_leave_frozen(false); 2727 goto relock; 2728 } 2729 2730 /* 2731 * Signals generated by the execution of an instruction 2732 * need to be delivered before any other pending signals 2733 * so that the instruction pointer in the signal stack 2734 * frame points to the faulting instruction. 2735 */ 2736 type = PIDTYPE_PID; 2737 signr = dequeue_synchronous_signal(&ksig->info); 2738 if (!signr) 2739 signr = dequeue_signal(current, ¤t->blocked, 2740 &ksig->info, &type); 2741 2742 if (!signr) 2743 break; /* will return 0 */ 2744 2745 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2746 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2747 signr = ptrace_signal(signr, &ksig->info, type); 2748 if (!signr) 2749 continue; 2750 } 2751 2752 ka = &sighand->action[signr-1]; 2753 2754 /* Trace actually delivered signals. */ 2755 trace_signal_deliver(signr, &ksig->info, ka); 2756 2757 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2758 continue; 2759 if (ka->sa.sa_handler != SIG_DFL) { 2760 /* Run the handler. */ 2761 ksig->ka = *ka; 2762 2763 if (ka->sa.sa_flags & SA_ONESHOT) 2764 ka->sa.sa_handler = SIG_DFL; 2765 2766 break; /* will return non-zero "signr" value */ 2767 } 2768 2769 /* 2770 * Now we are doing the default action for this signal. 2771 */ 2772 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2773 continue; 2774 2775 /* 2776 * Global init gets no signals it doesn't want. 2777 * Container-init gets no signals it doesn't want from same 2778 * container. 2779 * 2780 * Note that if global/container-init sees a sig_kernel_only() 2781 * signal here, the signal must have been generated internally 2782 * or must have come from an ancestor namespace. In either 2783 * case, the signal cannot be dropped. 2784 */ 2785 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2786 !sig_kernel_only(signr)) 2787 continue; 2788 2789 if (sig_kernel_stop(signr)) { 2790 /* 2791 * The default action is to stop all threads in 2792 * the thread group. The job control signals 2793 * do nothing in an orphaned pgrp, but SIGSTOP 2794 * always works. Note that siglock needs to be 2795 * dropped during the call to is_orphaned_pgrp() 2796 * because of lock ordering with tasklist_lock. 2797 * This allows an intervening SIGCONT to be posted. 2798 * We need to check for that and bail out if necessary. 2799 */ 2800 if (signr != SIGSTOP) { 2801 spin_unlock_irq(&sighand->siglock); 2802 2803 /* signals can be posted during this window */ 2804 2805 if (is_current_pgrp_orphaned()) 2806 goto relock; 2807 2808 spin_lock_irq(&sighand->siglock); 2809 } 2810 2811 if (likely(do_signal_stop(ksig->info.si_signo))) { 2812 /* It released the siglock. */ 2813 goto relock; 2814 } 2815 2816 /* 2817 * We didn't actually stop, due to a race 2818 * with SIGCONT or something like that. 2819 */ 2820 continue; 2821 } 2822 2823 fatal: 2824 spin_unlock_irq(&sighand->siglock); 2825 if (unlikely(cgroup_task_frozen(current))) 2826 cgroup_leave_frozen(true); 2827 2828 /* 2829 * Anything else is fatal, maybe with a core dump. 2830 */ 2831 current->flags |= PF_SIGNALED; 2832 2833 if (sig_kernel_coredump(signr)) { 2834 if (print_fatal_signals) 2835 print_fatal_signal(ksig->info.si_signo); 2836 proc_coredump_connector(current); 2837 /* 2838 * If it was able to dump core, this kills all 2839 * other threads in the group and synchronizes with 2840 * their demise. If we lost the race with another 2841 * thread getting here, it set group_exit_code 2842 * first and our do_group_exit call below will use 2843 * that value and ignore the one we pass it. 2844 */ 2845 do_coredump(&ksig->info); 2846 } 2847 2848 /* 2849 * PF_IO_WORKER threads will catch and exit on fatal signals 2850 * themselves. They have cleanup that must be performed, so 2851 * we cannot call do_exit() on their behalf. 2852 */ 2853 if (current->flags & PF_IO_WORKER) 2854 goto out; 2855 2856 /* 2857 * Death signals, no core dump. 2858 */ 2859 do_group_exit(ksig->info.si_signo); 2860 /* NOTREACHED */ 2861 } 2862 spin_unlock_irq(&sighand->siglock); 2863 out: 2864 ksig->sig = signr; 2865 2866 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2867 hide_si_addr_tag_bits(ksig); 2868 2869 return ksig->sig > 0; 2870 } 2871 2872 /** 2873 * signal_delivered - called after signal delivery to update blocked signals 2874 * @ksig: kernel signal struct 2875 * @stepping: nonzero if debugger single-step or block-step in use 2876 * 2877 * This function should be called when a signal has successfully been 2878 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2879 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 2880 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2881 */ 2882 static void signal_delivered(struct ksignal *ksig, int stepping) 2883 { 2884 sigset_t blocked; 2885 2886 /* A signal was successfully delivered, and the 2887 saved sigmask was stored on the signal frame, 2888 and will be restored by sigreturn. So we can 2889 simply clear the restore sigmask flag. */ 2890 clear_restore_sigmask(); 2891 2892 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2893 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2894 sigaddset(&blocked, ksig->sig); 2895 set_current_blocked(&blocked); 2896 if (current->sas_ss_flags & SS_AUTODISARM) 2897 sas_ss_reset(current); 2898 if (stepping) 2899 ptrace_notify(SIGTRAP, 0); 2900 } 2901 2902 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2903 { 2904 if (failed) 2905 force_sigsegv(ksig->sig); 2906 else 2907 signal_delivered(ksig, stepping); 2908 } 2909 2910 /* 2911 * It could be that complete_signal() picked us to notify about the 2912 * group-wide signal. Other threads should be notified now to take 2913 * the shared signals in @which since we will not. 2914 */ 2915 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2916 { 2917 sigset_t retarget; 2918 struct task_struct *t; 2919 2920 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2921 if (sigisemptyset(&retarget)) 2922 return; 2923 2924 t = tsk; 2925 while_each_thread(tsk, t) { 2926 if (t->flags & PF_EXITING) 2927 continue; 2928 2929 if (!has_pending_signals(&retarget, &t->blocked)) 2930 continue; 2931 /* Remove the signals this thread can handle. */ 2932 sigandsets(&retarget, &retarget, &t->blocked); 2933 2934 if (!task_sigpending(t)) 2935 signal_wake_up(t, 0); 2936 2937 if (sigisemptyset(&retarget)) 2938 break; 2939 } 2940 } 2941 2942 void exit_signals(struct task_struct *tsk) 2943 { 2944 int group_stop = 0; 2945 sigset_t unblocked; 2946 2947 /* 2948 * @tsk is about to have PF_EXITING set - lock out users which 2949 * expect stable threadgroup. 2950 */ 2951 cgroup_threadgroup_change_begin(tsk); 2952 2953 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 2954 tsk->flags |= PF_EXITING; 2955 cgroup_threadgroup_change_end(tsk); 2956 return; 2957 } 2958 2959 spin_lock_irq(&tsk->sighand->siglock); 2960 /* 2961 * From now this task is not visible for group-wide signals, 2962 * see wants_signal(), do_signal_stop(). 2963 */ 2964 tsk->flags |= PF_EXITING; 2965 2966 cgroup_threadgroup_change_end(tsk); 2967 2968 if (!task_sigpending(tsk)) 2969 goto out; 2970 2971 unblocked = tsk->blocked; 2972 signotset(&unblocked); 2973 retarget_shared_pending(tsk, &unblocked); 2974 2975 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2976 task_participate_group_stop(tsk)) 2977 group_stop = CLD_STOPPED; 2978 out: 2979 spin_unlock_irq(&tsk->sighand->siglock); 2980 2981 /* 2982 * If group stop has completed, deliver the notification. This 2983 * should always go to the real parent of the group leader. 2984 */ 2985 if (unlikely(group_stop)) { 2986 read_lock(&tasklist_lock); 2987 do_notify_parent_cldstop(tsk, false, group_stop); 2988 read_unlock(&tasklist_lock); 2989 } 2990 } 2991 2992 /* 2993 * System call entry points. 2994 */ 2995 2996 /** 2997 * sys_restart_syscall - restart a system call 2998 */ 2999 SYSCALL_DEFINE0(restart_syscall) 3000 { 3001 struct restart_block *restart = ¤t->restart_block; 3002 return restart->fn(restart); 3003 } 3004 3005 long do_no_restart_syscall(struct restart_block *param) 3006 { 3007 return -EINTR; 3008 } 3009 3010 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3011 { 3012 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3013 sigset_t newblocked; 3014 /* A set of now blocked but previously unblocked signals. */ 3015 sigandnsets(&newblocked, newset, ¤t->blocked); 3016 retarget_shared_pending(tsk, &newblocked); 3017 } 3018 tsk->blocked = *newset; 3019 recalc_sigpending(); 3020 } 3021 3022 /** 3023 * set_current_blocked - change current->blocked mask 3024 * @newset: new mask 3025 * 3026 * It is wrong to change ->blocked directly, this helper should be used 3027 * to ensure the process can't miss a shared signal we are going to block. 3028 */ 3029 void set_current_blocked(sigset_t *newset) 3030 { 3031 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3032 __set_current_blocked(newset); 3033 } 3034 3035 void __set_current_blocked(const sigset_t *newset) 3036 { 3037 struct task_struct *tsk = current; 3038 3039 /* 3040 * In case the signal mask hasn't changed, there is nothing we need 3041 * to do. The current->blocked shouldn't be modified by other task. 3042 */ 3043 if (sigequalsets(&tsk->blocked, newset)) 3044 return; 3045 3046 spin_lock_irq(&tsk->sighand->siglock); 3047 __set_task_blocked(tsk, newset); 3048 spin_unlock_irq(&tsk->sighand->siglock); 3049 } 3050 3051 /* 3052 * This is also useful for kernel threads that want to temporarily 3053 * (or permanently) block certain signals. 3054 * 3055 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3056 * interface happily blocks "unblockable" signals like SIGKILL 3057 * and friends. 3058 */ 3059 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3060 { 3061 struct task_struct *tsk = current; 3062 sigset_t newset; 3063 3064 /* Lockless, only current can change ->blocked, never from irq */ 3065 if (oldset) 3066 *oldset = tsk->blocked; 3067 3068 switch (how) { 3069 case SIG_BLOCK: 3070 sigorsets(&newset, &tsk->blocked, set); 3071 break; 3072 case SIG_UNBLOCK: 3073 sigandnsets(&newset, &tsk->blocked, set); 3074 break; 3075 case SIG_SETMASK: 3076 newset = *set; 3077 break; 3078 default: 3079 return -EINVAL; 3080 } 3081 3082 __set_current_blocked(&newset); 3083 return 0; 3084 } 3085 EXPORT_SYMBOL(sigprocmask); 3086 3087 /* 3088 * The api helps set app-provided sigmasks. 3089 * 3090 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3091 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3092 * 3093 * Note that it does set_restore_sigmask() in advance, so it must be always 3094 * paired with restore_saved_sigmask_unless() before return from syscall. 3095 */ 3096 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3097 { 3098 sigset_t kmask; 3099 3100 if (!umask) 3101 return 0; 3102 if (sigsetsize != sizeof(sigset_t)) 3103 return -EINVAL; 3104 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3105 return -EFAULT; 3106 3107 set_restore_sigmask(); 3108 current->saved_sigmask = current->blocked; 3109 set_current_blocked(&kmask); 3110 3111 return 0; 3112 } 3113 3114 #ifdef CONFIG_COMPAT 3115 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3116 size_t sigsetsize) 3117 { 3118 sigset_t kmask; 3119 3120 if (!umask) 3121 return 0; 3122 if (sigsetsize != sizeof(compat_sigset_t)) 3123 return -EINVAL; 3124 if (get_compat_sigset(&kmask, umask)) 3125 return -EFAULT; 3126 3127 set_restore_sigmask(); 3128 current->saved_sigmask = current->blocked; 3129 set_current_blocked(&kmask); 3130 3131 return 0; 3132 } 3133 #endif 3134 3135 /** 3136 * sys_rt_sigprocmask - change the list of currently blocked signals 3137 * @how: whether to add, remove, or set signals 3138 * @nset: stores pending signals 3139 * @oset: previous value of signal mask if non-null 3140 * @sigsetsize: size of sigset_t type 3141 */ 3142 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3143 sigset_t __user *, oset, size_t, sigsetsize) 3144 { 3145 sigset_t old_set, new_set; 3146 int error; 3147 3148 /* XXX: Don't preclude handling different sized sigset_t's. */ 3149 if (sigsetsize != sizeof(sigset_t)) 3150 return -EINVAL; 3151 3152 old_set = current->blocked; 3153 3154 if (nset) { 3155 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3156 return -EFAULT; 3157 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3158 3159 error = sigprocmask(how, &new_set, NULL); 3160 if (error) 3161 return error; 3162 } 3163 3164 if (oset) { 3165 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3166 return -EFAULT; 3167 } 3168 3169 return 0; 3170 } 3171 3172 #ifdef CONFIG_COMPAT 3173 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3174 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3175 { 3176 sigset_t old_set = current->blocked; 3177 3178 /* XXX: Don't preclude handling different sized sigset_t's. */ 3179 if (sigsetsize != sizeof(sigset_t)) 3180 return -EINVAL; 3181 3182 if (nset) { 3183 sigset_t new_set; 3184 int error; 3185 if (get_compat_sigset(&new_set, nset)) 3186 return -EFAULT; 3187 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3188 3189 error = sigprocmask(how, &new_set, NULL); 3190 if (error) 3191 return error; 3192 } 3193 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3194 } 3195 #endif 3196 3197 static void do_sigpending(sigset_t *set) 3198 { 3199 spin_lock_irq(¤t->sighand->siglock); 3200 sigorsets(set, ¤t->pending.signal, 3201 ¤t->signal->shared_pending.signal); 3202 spin_unlock_irq(¤t->sighand->siglock); 3203 3204 /* Outside the lock because only this thread touches it. */ 3205 sigandsets(set, ¤t->blocked, set); 3206 } 3207 3208 /** 3209 * sys_rt_sigpending - examine a pending signal that has been raised 3210 * while blocked 3211 * @uset: stores pending signals 3212 * @sigsetsize: size of sigset_t type or larger 3213 */ 3214 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3215 { 3216 sigset_t set; 3217 3218 if (sigsetsize > sizeof(*uset)) 3219 return -EINVAL; 3220 3221 do_sigpending(&set); 3222 3223 if (copy_to_user(uset, &set, sigsetsize)) 3224 return -EFAULT; 3225 3226 return 0; 3227 } 3228 3229 #ifdef CONFIG_COMPAT 3230 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3231 compat_size_t, sigsetsize) 3232 { 3233 sigset_t set; 3234 3235 if (sigsetsize > sizeof(*uset)) 3236 return -EINVAL; 3237 3238 do_sigpending(&set); 3239 3240 return put_compat_sigset(uset, &set, sigsetsize); 3241 } 3242 #endif 3243 3244 static const struct { 3245 unsigned char limit, layout; 3246 } sig_sicodes[] = { 3247 [SIGILL] = { NSIGILL, SIL_FAULT }, 3248 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3249 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3250 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3251 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3252 #if defined(SIGEMT) 3253 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3254 #endif 3255 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3256 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3257 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3258 }; 3259 3260 static bool known_siginfo_layout(unsigned sig, int si_code) 3261 { 3262 if (si_code == SI_KERNEL) 3263 return true; 3264 else if ((si_code > SI_USER)) { 3265 if (sig_specific_sicodes(sig)) { 3266 if (si_code <= sig_sicodes[sig].limit) 3267 return true; 3268 } 3269 else if (si_code <= NSIGPOLL) 3270 return true; 3271 } 3272 else if (si_code >= SI_DETHREAD) 3273 return true; 3274 else if (si_code == SI_ASYNCNL) 3275 return true; 3276 return false; 3277 } 3278 3279 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3280 { 3281 enum siginfo_layout layout = SIL_KILL; 3282 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3283 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3284 (si_code <= sig_sicodes[sig].limit)) { 3285 layout = sig_sicodes[sig].layout; 3286 /* Handle the exceptions */ 3287 if ((sig == SIGBUS) && 3288 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3289 layout = SIL_FAULT_MCEERR; 3290 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3291 layout = SIL_FAULT_BNDERR; 3292 #ifdef SEGV_PKUERR 3293 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3294 layout = SIL_FAULT_PKUERR; 3295 #endif 3296 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3297 layout = SIL_FAULT_PERF_EVENT; 3298 else if (IS_ENABLED(CONFIG_SPARC) && 3299 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3300 layout = SIL_FAULT_TRAPNO; 3301 else if (IS_ENABLED(CONFIG_ALPHA) && 3302 ((sig == SIGFPE) || 3303 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3304 layout = SIL_FAULT_TRAPNO; 3305 } 3306 else if (si_code <= NSIGPOLL) 3307 layout = SIL_POLL; 3308 } else { 3309 if (si_code == SI_TIMER) 3310 layout = SIL_TIMER; 3311 else if (si_code == SI_SIGIO) 3312 layout = SIL_POLL; 3313 else if (si_code < 0) 3314 layout = SIL_RT; 3315 } 3316 return layout; 3317 } 3318 3319 static inline char __user *si_expansion(const siginfo_t __user *info) 3320 { 3321 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3322 } 3323 3324 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3325 { 3326 char __user *expansion = si_expansion(to); 3327 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3328 return -EFAULT; 3329 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3330 return -EFAULT; 3331 return 0; 3332 } 3333 3334 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3335 const siginfo_t __user *from) 3336 { 3337 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3338 char __user *expansion = si_expansion(from); 3339 char buf[SI_EXPANSION_SIZE]; 3340 int i; 3341 /* 3342 * An unknown si_code might need more than 3343 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3344 * extra bytes are 0. This guarantees copy_siginfo_to_user 3345 * will return this data to userspace exactly. 3346 */ 3347 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3348 return -EFAULT; 3349 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3350 if (buf[i] != 0) 3351 return -E2BIG; 3352 } 3353 } 3354 return 0; 3355 } 3356 3357 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3358 const siginfo_t __user *from) 3359 { 3360 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3361 return -EFAULT; 3362 to->si_signo = signo; 3363 return post_copy_siginfo_from_user(to, from); 3364 } 3365 3366 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3367 { 3368 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3369 return -EFAULT; 3370 return post_copy_siginfo_from_user(to, from); 3371 } 3372 3373 #ifdef CONFIG_COMPAT 3374 /** 3375 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3376 * @to: compat siginfo destination 3377 * @from: kernel siginfo source 3378 * 3379 * Note: This function does not work properly for the SIGCHLD on x32, but 3380 * fortunately it doesn't have to. The only valid callers for this function are 3381 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3382 * The latter does not care because SIGCHLD will never cause a coredump. 3383 */ 3384 void copy_siginfo_to_external32(struct compat_siginfo *to, 3385 const struct kernel_siginfo *from) 3386 { 3387 memset(to, 0, sizeof(*to)); 3388 3389 to->si_signo = from->si_signo; 3390 to->si_errno = from->si_errno; 3391 to->si_code = from->si_code; 3392 switch(siginfo_layout(from->si_signo, from->si_code)) { 3393 case SIL_KILL: 3394 to->si_pid = from->si_pid; 3395 to->si_uid = from->si_uid; 3396 break; 3397 case SIL_TIMER: 3398 to->si_tid = from->si_tid; 3399 to->si_overrun = from->si_overrun; 3400 to->si_int = from->si_int; 3401 break; 3402 case SIL_POLL: 3403 to->si_band = from->si_band; 3404 to->si_fd = from->si_fd; 3405 break; 3406 case SIL_FAULT: 3407 to->si_addr = ptr_to_compat(from->si_addr); 3408 break; 3409 case SIL_FAULT_TRAPNO: 3410 to->si_addr = ptr_to_compat(from->si_addr); 3411 to->si_trapno = from->si_trapno; 3412 break; 3413 case SIL_FAULT_MCEERR: 3414 to->si_addr = ptr_to_compat(from->si_addr); 3415 to->si_addr_lsb = from->si_addr_lsb; 3416 break; 3417 case SIL_FAULT_BNDERR: 3418 to->si_addr = ptr_to_compat(from->si_addr); 3419 to->si_lower = ptr_to_compat(from->si_lower); 3420 to->si_upper = ptr_to_compat(from->si_upper); 3421 break; 3422 case SIL_FAULT_PKUERR: 3423 to->si_addr = ptr_to_compat(from->si_addr); 3424 to->si_pkey = from->si_pkey; 3425 break; 3426 case SIL_FAULT_PERF_EVENT: 3427 to->si_addr = ptr_to_compat(from->si_addr); 3428 to->si_perf_data = from->si_perf_data; 3429 to->si_perf_type = from->si_perf_type; 3430 to->si_perf_flags = from->si_perf_flags; 3431 break; 3432 case SIL_CHLD: 3433 to->si_pid = from->si_pid; 3434 to->si_uid = from->si_uid; 3435 to->si_status = from->si_status; 3436 to->si_utime = from->si_utime; 3437 to->si_stime = from->si_stime; 3438 break; 3439 case SIL_RT: 3440 to->si_pid = from->si_pid; 3441 to->si_uid = from->si_uid; 3442 to->si_int = from->si_int; 3443 break; 3444 case SIL_SYS: 3445 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3446 to->si_syscall = from->si_syscall; 3447 to->si_arch = from->si_arch; 3448 break; 3449 } 3450 } 3451 3452 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3453 const struct kernel_siginfo *from) 3454 { 3455 struct compat_siginfo new; 3456 3457 copy_siginfo_to_external32(&new, from); 3458 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3459 return -EFAULT; 3460 return 0; 3461 } 3462 3463 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3464 const struct compat_siginfo *from) 3465 { 3466 clear_siginfo(to); 3467 to->si_signo = from->si_signo; 3468 to->si_errno = from->si_errno; 3469 to->si_code = from->si_code; 3470 switch(siginfo_layout(from->si_signo, from->si_code)) { 3471 case SIL_KILL: 3472 to->si_pid = from->si_pid; 3473 to->si_uid = from->si_uid; 3474 break; 3475 case SIL_TIMER: 3476 to->si_tid = from->si_tid; 3477 to->si_overrun = from->si_overrun; 3478 to->si_int = from->si_int; 3479 break; 3480 case SIL_POLL: 3481 to->si_band = from->si_band; 3482 to->si_fd = from->si_fd; 3483 break; 3484 case SIL_FAULT: 3485 to->si_addr = compat_ptr(from->si_addr); 3486 break; 3487 case SIL_FAULT_TRAPNO: 3488 to->si_addr = compat_ptr(from->si_addr); 3489 to->si_trapno = from->si_trapno; 3490 break; 3491 case SIL_FAULT_MCEERR: 3492 to->si_addr = compat_ptr(from->si_addr); 3493 to->si_addr_lsb = from->si_addr_lsb; 3494 break; 3495 case SIL_FAULT_BNDERR: 3496 to->si_addr = compat_ptr(from->si_addr); 3497 to->si_lower = compat_ptr(from->si_lower); 3498 to->si_upper = compat_ptr(from->si_upper); 3499 break; 3500 case SIL_FAULT_PKUERR: 3501 to->si_addr = compat_ptr(from->si_addr); 3502 to->si_pkey = from->si_pkey; 3503 break; 3504 case SIL_FAULT_PERF_EVENT: 3505 to->si_addr = compat_ptr(from->si_addr); 3506 to->si_perf_data = from->si_perf_data; 3507 to->si_perf_type = from->si_perf_type; 3508 to->si_perf_flags = from->si_perf_flags; 3509 break; 3510 case SIL_CHLD: 3511 to->si_pid = from->si_pid; 3512 to->si_uid = from->si_uid; 3513 to->si_status = from->si_status; 3514 #ifdef CONFIG_X86_X32_ABI 3515 if (in_x32_syscall()) { 3516 to->si_utime = from->_sifields._sigchld_x32._utime; 3517 to->si_stime = from->_sifields._sigchld_x32._stime; 3518 } else 3519 #endif 3520 { 3521 to->si_utime = from->si_utime; 3522 to->si_stime = from->si_stime; 3523 } 3524 break; 3525 case SIL_RT: 3526 to->si_pid = from->si_pid; 3527 to->si_uid = from->si_uid; 3528 to->si_int = from->si_int; 3529 break; 3530 case SIL_SYS: 3531 to->si_call_addr = compat_ptr(from->si_call_addr); 3532 to->si_syscall = from->si_syscall; 3533 to->si_arch = from->si_arch; 3534 break; 3535 } 3536 return 0; 3537 } 3538 3539 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3540 const struct compat_siginfo __user *ufrom) 3541 { 3542 struct compat_siginfo from; 3543 3544 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3545 return -EFAULT; 3546 3547 from.si_signo = signo; 3548 return post_copy_siginfo_from_user32(to, &from); 3549 } 3550 3551 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3552 const struct compat_siginfo __user *ufrom) 3553 { 3554 struct compat_siginfo from; 3555 3556 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3557 return -EFAULT; 3558 3559 return post_copy_siginfo_from_user32(to, &from); 3560 } 3561 #endif /* CONFIG_COMPAT */ 3562 3563 /** 3564 * do_sigtimedwait - wait for queued signals specified in @which 3565 * @which: queued signals to wait for 3566 * @info: if non-null, the signal's siginfo is returned here 3567 * @ts: upper bound on process time suspension 3568 */ 3569 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3570 const struct timespec64 *ts) 3571 { 3572 ktime_t *to = NULL, timeout = KTIME_MAX; 3573 struct task_struct *tsk = current; 3574 sigset_t mask = *which; 3575 enum pid_type type; 3576 int sig, ret = 0; 3577 3578 if (ts) { 3579 if (!timespec64_valid(ts)) 3580 return -EINVAL; 3581 timeout = timespec64_to_ktime(*ts); 3582 to = &timeout; 3583 } 3584 3585 /* 3586 * Invert the set of allowed signals to get those we want to block. 3587 */ 3588 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3589 signotset(&mask); 3590 3591 spin_lock_irq(&tsk->sighand->siglock); 3592 sig = dequeue_signal(tsk, &mask, info, &type); 3593 if (!sig && timeout) { 3594 /* 3595 * None ready, temporarily unblock those we're interested 3596 * while we are sleeping in so that we'll be awakened when 3597 * they arrive. Unblocking is always fine, we can avoid 3598 * set_current_blocked(). 3599 */ 3600 tsk->real_blocked = tsk->blocked; 3601 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3602 recalc_sigpending(); 3603 spin_unlock_irq(&tsk->sighand->siglock); 3604 3605 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 3606 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3607 HRTIMER_MODE_REL); 3608 spin_lock_irq(&tsk->sighand->siglock); 3609 __set_task_blocked(tsk, &tsk->real_blocked); 3610 sigemptyset(&tsk->real_blocked); 3611 sig = dequeue_signal(tsk, &mask, info, &type); 3612 } 3613 spin_unlock_irq(&tsk->sighand->siglock); 3614 3615 if (sig) 3616 return sig; 3617 return ret ? -EINTR : -EAGAIN; 3618 } 3619 3620 /** 3621 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3622 * in @uthese 3623 * @uthese: queued signals to wait for 3624 * @uinfo: if non-null, the signal's siginfo is returned here 3625 * @uts: upper bound on process time suspension 3626 * @sigsetsize: size of sigset_t type 3627 */ 3628 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3629 siginfo_t __user *, uinfo, 3630 const struct __kernel_timespec __user *, uts, 3631 size_t, sigsetsize) 3632 { 3633 sigset_t these; 3634 struct timespec64 ts; 3635 kernel_siginfo_t info; 3636 int ret; 3637 3638 /* XXX: Don't preclude handling different sized sigset_t's. */ 3639 if (sigsetsize != sizeof(sigset_t)) 3640 return -EINVAL; 3641 3642 if (copy_from_user(&these, uthese, sizeof(these))) 3643 return -EFAULT; 3644 3645 if (uts) { 3646 if (get_timespec64(&ts, uts)) 3647 return -EFAULT; 3648 } 3649 3650 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3651 3652 if (ret > 0 && uinfo) { 3653 if (copy_siginfo_to_user(uinfo, &info)) 3654 ret = -EFAULT; 3655 } 3656 3657 return ret; 3658 } 3659 3660 #ifdef CONFIG_COMPAT_32BIT_TIME 3661 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3662 siginfo_t __user *, uinfo, 3663 const struct old_timespec32 __user *, uts, 3664 size_t, sigsetsize) 3665 { 3666 sigset_t these; 3667 struct timespec64 ts; 3668 kernel_siginfo_t info; 3669 int ret; 3670 3671 if (sigsetsize != sizeof(sigset_t)) 3672 return -EINVAL; 3673 3674 if (copy_from_user(&these, uthese, sizeof(these))) 3675 return -EFAULT; 3676 3677 if (uts) { 3678 if (get_old_timespec32(&ts, uts)) 3679 return -EFAULT; 3680 } 3681 3682 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3683 3684 if (ret > 0 && uinfo) { 3685 if (copy_siginfo_to_user(uinfo, &info)) 3686 ret = -EFAULT; 3687 } 3688 3689 return ret; 3690 } 3691 #endif 3692 3693 #ifdef CONFIG_COMPAT 3694 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3695 struct compat_siginfo __user *, uinfo, 3696 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3697 { 3698 sigset_t s; 3699 struct timespec64 t; 3700 kernel_siginfo_t info; 3701 long ret; 3702 3703 if (sigsetsize != sizeof(sigset_t)) 3704 return -EINVAL; 3705 3706 if (get_compat_sigset(&s, uthese)) 3707 return -EFAULT; 3708 3709 if (uts) { 3710 if (get_timespec64(&t, uts)) 3711 return -EFAULT; 3712 } 3713 3714 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3715 3716 if (ret > 0 && uinfo) { 3717 if (copy_siginfo_to_user32(uinfo, &info)) 3718 ret = -EFAULT; 3719 } 3720 3721 return ret; 3722 } 3723 3724 #ifdef CONFIG_COMPAT_32BIT_TIME 3725 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3726 struct compat_siginfo __user *, uinfo, 3727 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3728 { 3729 sigset_t s; 3730 struct timespec64 t; 3731 kernel_siginfo_t info; 3732 long ret; 3733 3734 if (sigsetsize != sizeof(sigset_t)) 3735 return -EINVAL; 3736 3737 if (get_compat_sigset(&s, uthese)) 3738 return -EFAULT; 3739 3740 if (uts) { 3741 if (get_old_timespec32(&t, uts)) 3742 return -EFAULT; 3743 } 3744 3745 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3746 3747 if (ret > 0 && uinfo) { 3748 if (copy_siginfo_to_user32(uinfo, &info)) 3749 ret = -EFAULT; 3750 } 3751 3752 return ret; 3753 } 3754 #endif 3755 #endif 3756 3757 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3758 { 3759 clear_siginfo(info); 3760 info->si_signo = sig; 3761 info->si_errno = 0; 3762 info->si_code = SI_USER; 3763 info->si_pid = task_tgid_vnr(current); 3764 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3765 } 3766 3767 /** 3768 * sys_kill - send a signal to a process 3769 * @pid: the PID of the process 3770 * @sig: signal to be sent 3771 */ 3772 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3773 { 3774 struct kernel_siginfo info; 3775 3776 prepare_kill_siginfo(sig, &info); 3777 3778 return kill_something_info(sig, &info, pid); 3779 } 3780 3781 /* 3782 * Verify that the signaler and signalee either are in the same pid namespace 3783 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3784 * namespace. 3785 */ 3786 static bool access_pidfd_pidns(struct pid *pid) 3787 { 3788 struct pid_namespace *active = task_active_pid_ns(current); 3789 struct pid_namespace *p = ns_of_pid(pid); 3790 3791 for (;;) { 3792 if (!p) 3793 return false; 3794 if (p == active) 3795 break; 3796 p = p->parent; 3797 } 3798 3799 return true; 3800 } 3801 3802 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3803 siginfo_t __user *info) 3804 { 3805 #ifdef CONFIG_COMPAT 3806 /* 3807 * Avoid hooking up compat syscalls and instead handle necessary 3808 * conversions here. Note, this is a stop-gap measure and should not be 3809 * considered a generic solution. 3810 */ 3811 if (in_compat_syscall()) 3812 return copy_siginfo_from_user32( 3813 kinfo, (struct compat_siginfo __user *)info); 3814 #endif 3815 return copy_siginfo_from_user(kinfo, info); 3816 } 3817 3818 static struct pid *pidfd_to_pid(const struct file *file) 3819 { 3820 struct pid *pid; 3821 3822 pid = pidfd_pid(file); 3823 if (!IS_ERR(pid)) 3824 return pid; 3825 3826 return tgid_pidfd_to_pid(file); 3827 } 3828 3829 /** 3830 * sys_pidfd_send_signal - Signal a process through a pidfd 3831 * @pidfd: file descriptor of the process 3832 * @sig: signal to send 3833 * @info: signal info 3834 * @flags: future flags 3835 * 3836 * The syscall currently only signals via PIDTYPE_PID which covers 3837 * kill(<positive-pid>, <signal>. It does not signal threads or process 3838 * groups. 3839 * In order to extend the syscall to threads and process groups the @flags 3840 * argument should be used. In essence, the @flags argument will determine 3841 * what is signaled and not the file descriptor itself. Put in other words, 3842 * grouping is a property of the flags argument not a property of the file 3843 * descriptor. 3844 * 3845 * Return: 0 on success, negative errno on failure 3846 */ 3847 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3848 siginfo_t __user *, info, unsigned int, flags) 3849 { 3850 int ret; 3851 struct fd f; 3852 struct pid *pid; 3853 kernel_siginfo_t kinfo; 3854 3855 /* Enforce flags be set to 0 until we add an extension. */ 3856 if (flags) 3857 return -EINVAL; 3858 3859 f = fdget(pidfd); 3860 if (!f.file) 3861 return -EBADF; 3862 3863 /* Is this a pidfd? */ 3864 pid = pidfd_to_pid(f.file); 3865 if (IS_ERR(pid)) { 3866 ret = PTR_ERR(pid); 3867 goto err; 3868 } 3869 3870 ret = -EINVAL; 3871 if (!access_pidfd_pidns(pid)) 3872 goto err; 3873 3874 if (info) { 3875 ret = copy_siginfo_from_user_any(&kinfo, info); 3876 if (unlikely(ret)) 3877 goto err; 3878 3879 ret = -EINVAL; 3880 if (unlikely(sig != kinfo.si_signo)) 3881 goto err; 3882 3883 /* Only allow sending arbitrary signals to yourself. */ 3884 ret = -EPERM; 3885 if ((task_pid(current) != pid) && 3886 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3887 goto err; 3888 } else { 3889 prepare_kill_siginfo(sig, &kinfo); 3890 } 3891 3892 ret = kill_pid_info(sig, &kinfo, pid); 3893 3894 err: 3895 fdput(f); 3896 return ret; 3897 } 3898 3899 static int 3900 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3901 { 3902 struct task_struct *p; 3903 int error = -ESRCH; 3904 3905 rcu_read_lock(); 3906 p = find_task_by_vpid(pid); 3907 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3908 error = check_kill_permission(sig, info, p); 3909 /* 3910 * The null signal is a permissions and process existence 3911 * probe. No signal is actually delivered. 3912 */ 3913 if (!error && sig) { 3914 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3915 /* 3916 * If lock_task_sighand() failed we pretend the task 3917 * dies after receiving the signal. The window is tiny, 3918 * and the signal is private anyway. 3919 */ 3920 if (unlikely(error == -ESRCH)) 3921 error = 0; 3922 } 3923 } 3924 rcu_read_unlock(); 3925 3926 return error; 3927 } 3928 3929 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3930 { 3931 struct kernel_siginfo info; 3932 3933 clear_siginfo(&info); 3934 info.si_signo = sig; 3935 info.si_errno = 0; 3936 info.si_code = SI_TKILL; 3937 info.si_pid = task_tgid_vnr(current); 3938 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3939 3940 return do_send_specific(tgid, pid, sig, &info); 3941 } 3942 3943 /** 3944 * sys_tgkill - send signal to one specific thread 3945 * @tgid: the thread group ID of the thread 3946 * @pid: the PID of the thread 3947 * @sig: signal to be sent 3948 * 3949 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3950 * exists but it's not belonging to the target process anymore. This 3951 * method solves the problem of threads exiting and PIDs getting reused. 3952 */ 3953 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3954 { 3955 /* This is only valid for single tasks */ 3956 if (pid <= 0 || tgid <= 0) 3957 return -EINVAL; 3958 3959 return do_tkill(tgid, pid, sig); 3960 } 3961 3962 /** 3963 * sys_tkill - send signal to one specific task 3964 * @pid: the PID of the task 3965 * @sig: signal to be sent 3966 * 3967 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3968 */ 3969 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3970 { 3971 /* This is only valid for single tasks */ 3972 if (pid <= 0) 3973 return -EINVAL; 3974 3975 return do_tkill(0, pid, sig); 3976 } 3977 3978 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 3979 { 3980 /* Not even root can pretend to send signals from the kernel. 3981 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3982 */ 3983 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3984 (task_pid_vnr(current) != pid)) 3985 return -EPERM; 3986 3987 /* POSIX.1b doesn't mention process groups. */ 3988 return kill_proc_info(sig, info, pid); 3989 } 3990 3991 /** 3992 * sys_rt_sigqueueinfo - send signal information to a signal 3993 * @pid: the PID of the thread 3994 * @sig: signal to be sent 3995 * @uinfo: signal info to be sent 3996 */ 3997 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3998 siginfo_t __user *, uinfo) 3999 { 4000 kernel_siginfo_t info; 4001 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4002 if (unlikely(ret)) 4003 return ret; 4004 return do_rt_sigqueueinfo(pid, sig, &info); 4005 } 4006 4007 #ifdef CONFIG_COMPAT 4008 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4009 compat_pid_t, pid, 4010 int, sig, 4011 struct compat_siginfo __user *, uinfo) 4012 { 4013 kernel_siginfo_t info; 4014 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4015 if (unlikely(ret)) 4016 return ret; 4017 return do_rt_sigqueueinfo(pid, sig, &info); 4018 } 4019 #endif 4020 4021 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4022 { 4023 /* This is only valid for single tasks */ 4024 if (pid <= 0 || tgid <= 0) 4025 return -EINVAL; 4026 4027 /* Not even root can pretend to send signals from the kernel. 4028 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4029 */ 4030 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4031 (task_pid_vnr(current) != pid)) 4032 return -EPERM; 4033 4034 return do_send_specific(tgid, pid, sig, info); 4035 } 4036 4037 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4038 siginfo_t __user *, uinfo) 4039 { 4040 kernel_siginfo_t info; 4041 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4042 if (unlikely(ret)) 4043 return ret; 4044 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4045 } 4046 4047 #ifdef CONFIG_COMPAT 4048 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4049 compat_pid_t, tgid, 4050 compat_pid_t, pid, 4051 int, sig, 4052 struct compat_siginfo __user *, uinfo) 4053 { 4054 kernel_siginfo_t info; 4055 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4056 if (unlikely(ret)) 4057 return ret; 4058 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4059 } 4060 #endif 4061 4062 /* 4063 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4064 */ 4065 void kernel_sigaction(int sig, __sighandler_t action) 4066 { 4067 spin_lock_irq(¤t->sighand->siglock); 4068 current->sighand->action[sig - 1].sa.sa_handler = action; 4069 if (action == SIG_IGN) { 4070 sigset_t mask; 4071 4072 sigemptyset(&mask); 4073 sigaddset(&mask, sig); 4074 4075 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4076 flush_sigqueue_mask(&mask, ¤t->pending); 4077 recalc_sigpending(); 4078 } 4079 spin_unlock_irq(¤t->sighand->siglock); 4080 } 4081 EXPORT_SYMBOL(kernel_sigaction); 4082 4083 void __weak sigaction_compat_abi(struct k_sigaction *act, 4084 struct k_sigaction *oact) 4085 { 4086 } 4087 4088 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4089 { 4090 struct task_struct *p = current, *t; 4091 struct k_sigaction *k; 4092 sigset_t mask; 4093 4094 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4095 return -EINVAL; 4096 4097 k = &p->sighand->action[sig-1]; 4098 4099 spin_lock_irq(&p->sighand->siglock); 4100 if (k->sa.sa_flags & SA_IMMUTABLE) { 4101 spin_unlock_irq(&p->sighand->siglock); 4102 return -EINVAL; 4103 } 4104 if (oact) 4105 *oact = *k; 4106 4107 /* 4108 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4109 * e.g. by having an architecture use the bit in their uapi. 4110 */ 4111 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4112 4113 /* 4114 * Clear unknown flag bits in order to allow userspace to detect missing 4115 * support for flag bits and to allow the kernel to use non-uapi bits 4116 * internally. 4117 */ 4118 if (act) 4119 act->sa.sa_flags &= UAPI_SA_FLAGS; 4120 if (oact) 4121 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4122 4123 sigaction_compat_abi(act, oact); 4124 4125 if (act) { 4126 sigdelsetmask(&act->sa.sa_mask, 4127 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4128 *k = *act; 4129 /* 4130 * POSIX 3.3.1.3: 4131 * "Setting a signal action to SIG_IGN for a signal that is 4132 * pending shall cause the pending signal to be discarded, 4133 * whether or not it is blocked." 4134 * 4135 * "Setting a signal action to SIG_DFL for a signal that is 4136 * pending and whose default action is to ignore the signal 4137 * (for example, SIGCHLD), shall cause the pending signal to 4138 * be discarded, whether or not it is blocked" 4139 */ 4140 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4141 sigemptyset(&mask); 4142 sigaddset(&mask, sig); 4143 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4144 for_each_thread(p, t) 4145 flush_sigqueue_mask(&mask, &t->pending); 4146 } 4147 } 4148 4149 spin_unlock_irq(&p->sighand->siglock); 4150 return 0; 4151 } 4152 4153 #ifdef CONFIG_DYNAMIC_SIGFRAME 4154 static inline void sigaltstack_lock(void) 4155 __acquires(¤t->sighand->siglock) 4156 { 4157 spin_lock_irq(¤t->sighand->siglock); 4158 } 4159 4160 static inline void sigaltstack_unlock(void) 4161 __releases(¤t->sighand->siglock) 4162 { 4163 spin_unlock_irq(¤t->sighand->siglock); 4164 } 4165 #else 4166 static inline void sigaltstack_lock(void) { } 4167 static inline void sigaltstack_unlock(void) { } 4168 #endif 4169 4170 static int 4171 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4172 size_t min_ss_size) 4173 { 4174 struct task_struct *t = current; 4175 int ret = 0; 4176 4177 if (oss) { 4178 memset(oss, 0, sizeof(stack_t)); 4179 oss->ss_sp = (void __user *) t->sas_ss_sp; 4180 oss->ss_size = t->sas_ss_size; 4181 oss->ss_flags = sas_ss_flags(sp) | 4182 (current->sas_ss_flags & SS_FLAG_BITS); 4183 } 4184 4185 if (ss) { 4186 void __user *ss_sp = ss->ss_sp; 4187 size_t ss_size = ss->ss_size; 4188 unsigned ss_flags = ss->ss_flags; 4189 int ss_mode; 4190 4191 if (unlikely(on_sig_stack(sp))) 4192 return -EPERM; 4193 4194 ss_mode = ss_flags & ~SS_FLAG_BITS; 4195 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4196 ss_mode != 0)) 4197 return -EINVAL; 4198 4199 /* 4200 * Return before taking any locks if no actual 4201 * sigaltstack changes were requested. 4202 */ 4203 if (t->sas_ss_sp == (unsigned long)ss_sp && 4204 t->sas_ss_size == ss_size && 4205 t->sas_ss_flags == ss_flags) 4206 return 0; 4207 4208 sigaltstack_lock(); 4209 if (ss_mode == SS_DISABLE) { 4210 ss_size = 0; 4211 ss_sp = NULL; 4212 } else { 4213 if (unlikely(ss_size < min_ss_size)) 4214 ret = -ENOMEM; 4215 if (!sigaltstack_size_valid(ss_size)) 4216 ret = -ENOMEM; 4217 } 4218 if (!ret) { 4219 t->sas_ss_sp = (unsigned long) ss_sp; 4220 t->sas_ss_size = ss_size; 4221 t->sas_ss_flags = ss_flags; 4222 } 4223 sigaltstack_unlock(); 4224 } 4225 return ret; 4226 } 4227 4228 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4229 { 4230 stack_t new, old; 4231 int err; 4232 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4233 return -EFAULT; 4234 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4235 current_user_stack_pointer(), 4236 MINSIGSTKSZ); 4237 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4238 err = -EFAULT; 4239 return err; 4240 } 4241 4242 int restore_altstack(const stack_t __user *uss) 4243 { 4244 stack_t new; 4245 if (copy_from_user(&new, uss, sizeof(stack_t))) 4246 return -EFAULT; 4247 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4248 MINSIGSTKSZ); 4249 /* squash all but EFAULT for now */ 4250 return 0; 4251 } 4252 4253 int __save_altstack(stack_t __user *uss, unsigned long sp) 4254 { 4255 struct task_struct *t = current; 4256 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4257 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4258 __put_user(t->sas_ss_size, &uss->ss_size); 4259 return err; 4260 } 4261 4262 #ifdef CONFIG_COMPAT 4263 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4264 compat_stack_t __user *uoss_ptr) 4265 { 4266 stack_t uss, uoss; 4267 int ret; 4268 4269 if (uss_ptr) { 4270 compat_stack_t uss32; 4271 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4272 return -EFAULT; 4273 uss.ss_sp = compat_ptr(uss32.ss_sp); 4274 uss.ss_flags = uss32.ss_flags; 4275 uss.ss_size = uss32.ss_size; 4276 } 4277 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4278 compat_user_stack_pointer(), 4279 COMPAT_MINSIGSTKSZ); 4280 if (ret >= 0 && uoss_ptr) { 4281 compat_stack_t old; 4282 memset(&old, 0, sizeof(old)); 4283 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4284 old.ss_flags = uoss.ss_flags; 4285 old.ss_size = uoss.ss_size; 4286 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4287 ret = -EFAULT; 4288 } 4289 return ret; 4290 } 4291 4292 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4293 const compat_stack_t __user *, uss_ptr, 4294 compat_stack_t __user *, uoss_ptr) 4295 { 4296 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4297 } 4298 4299 int compat_restore_altstack(const compat_stack_t __user *uss) 4300 { 4301 int err = do_compat_sigaltstack(uss, NULL); 4302 /* squash all but -EFAULT for now */ 4303 return err == -EFAULT ? err : 0; 4304 } 4305 4306 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4307 { 4308 int err; 4309 struct task_struct *t = current; 4310 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4311 &uss->ss_sp) | 4312 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4313 __put_user(t->sas_ss_size, &uss->ss_size); 4314 return err; 4315 } 4316 #endif 4317 4318 #ifdef __ARCH_WANT_SYS_SIGPENDING 4319 4320 /** 4321 * sys_sigpending - examine pending signals 4322 * @uset: where mask of pending signal is returned 4323 */ 4324 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4325 { 4326 sigset_t set; 4327 4328 if (sizeof(old_sigset_t) > sizeof(*uset)) 4329 return -EINVAL; 4330 4331 do_sigpending(&set); 4332 4333 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4334 return -EFAULT; 4335 4336 return 0; 4337 } 4338 4339 #ifdef CONFIG_COMPAT 4340 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4341 { 4342 sigset_t set; 4343 4344 do_sigpending(&set); 4345 4346 return put_user(set.sig[0], set32); 4347 } 4348 #endif 4349 4350 #endif 4351 4352 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4353 /** 4354 * sys_sigprocmask - examine and change blocked signals 4355 * @how: whether to add, remove, or set signals 4356 * @nset: signals to add or remove (if non-null) 4357 * @oset: previous value of signal mask if non-null 4358 * 4359 * Some platforms have their own version with special arguments; 4360 * others support only sys_rt_sigprocmask. 4361 */ 4362 4363 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4364 old_sigset_t __user *, oset) 4365 { 4366 old_sigset_t old_set, new_set; 4367 sigset_t new_blocked; 4368 4369 old_set = current->blocked.sig[0]; 4370 4371 if (nset) { 4372 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4373 return -EFAULT; 4374 4375 new_blocked = current->blocked; 4376 4377 switch (how) { 4378 case SIG_BLOCK: 4379 sigaddsetmask(&new_blocked, new_set); 4380 break; 4381 case SIG_UNBLOCK: 4382 sigdelsetmask(&new_blocked, new_set); 4383 break; 4384 case SIG_SETMASK: 4385 new_blocked.sig[0] = new_set; 4386 break; 4387 default: 4388 return -EINVAL; 4389 } 4390 4391 set_current_blocked(&new_blocked); 4392 } 4393 4394 if (oset) { 4395 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4396 return -EFAULT; 4397 } 4398 4399 return 0; 4400 } 4401 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4402 4403 #ifndef CONFIG_ODD_RT_SIGACTION 4404 /** 4405 * sys_rt_sigaction - alter an action taken by a process 4406 * @sig: signal to be sent 4407 * @act: new sigaction 4408 * @oact: used to save the previous sigaction 4409 * @sigsetsize: size of sigset_t type 4410 */ 4411 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4412 const struct sigaction __user *, act, 4413 struct sigaction __user *, oact, 4414 size_t, sigsetsize) 4415 { 4416 struct k_sigaction new_sa, old_sa; 4417 int ret; 4418 4419 /* XXX: Don't preclude handling different sized sigset_t's. */ 4420 if (sigsetsize != sizeof(sigset_t)) 4421 return -EINVAL; 4422 4423 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4424 return -EFAULT; 4425 4426 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4427 if (ret) 4428 return ret; 4429 4430 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4431 return -EFAULT; 4432 4433 return 0; 4434 } 4435 #ifdef CONFIG_COMPAT 4436 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4437 const struct compat_sigaction __user *, act, 4438 struct compat_sigaction __user *, oact, 4439 compat_size_t, sigsetsize) 4440 { 4441 struct k_sigaction new_ka, old_ka; 4442 #ifdef __ARCH_HAS_SA_RESTORER 4443 compat_uptr_t restorer; 4444 #endif 4445 int ret; 4446 4447 /* XXX: Don't preclude handling different sized sigset_t's. */ 4448 if (sigsetsize != sizeof(compat_sigset_t)) 4449 return -EINVAL; 4450 4451 if (act) { 4452 compat_uptr_t handler; 4453 ret = get_user(handler, &act->sa_handler); 4454 new_ka.sa.sa_handler = compat_ptr(handler); 4455 #ifdef __ARCH_HAS_SA_RESTORER 4456 ret |= get_user(restorer, &act->sa_restorer); 4457 new_ka.sa.sa_restorer = compat_ptr(restorer); 4458 #endif 4459 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4460 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4461 if (ret) 4462 return -EFAULT; 4463 } 4464 4465 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4466 if (!ret && oact) { 4467 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4468 &oact->sa_handler); 4469 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4470 sizeof(oact->sa_mask)); 4471 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4472 #ifdef __ARCH_HAS_SA_RESTORER 4473 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4474 &oact->sa_restorer); 4475 #endif 4476 } 4477 return ret; 4478 } 4479 #endif 4480 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4481 4482 #ifdef CONFIG_OLD_SIGACTION 4483 SYSCALL_DEFINE3(sigaction, int, sig, 4484 const struct old_sigaction __user *, act, 4485 struct old_sigaction __user *, oact) 4486 { 4487 struct k_sigaction new_ka, old_ka; 4488 int ret; 4489 4490 if (act) { 4491 old_sigset_t mask; 4492 if (!access_ok(act, sizeof(*act)) || 4493 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4494 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4495 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4496 __get_user(mask, &act->sa_mask)) 4497 return -EFAULT; 4498 #ifdef __ARCH_HAS_KA_RESTORER 4499 new_ka.ka_restorer = NULL; 4500 #endif 4501 siginitset(&new_ka.sa.sa_mask, mask); 4502 } 4503 4504 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4505 4506 if (!ret && oact) { 4507 if (!access_ok(oact, sizeof(*oact)) || 4508 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4509 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4510 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4511 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4512 return -EFAULT; 4513 } 4514 4515 return ret; 4516 } 4517 #endif 4518 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4519 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4520 const struct compat_old_sigaction __user *, act, 4521 struct compat_old_sigaction __user *, oact) 4522 { 4523 struct k_sigaction new_ka, old_ka; 4524 int ret; 4525 compat_old_sigset_t mask; 4526 compat_uptr_t handler, restorer; 4527 4528 if (act) { 4529 if (!access_ok(act, sizeof(*act)) || 4530 __get_user(handler, &act->sa_handler) || 4531 __get_user(restorer, &act->sa_restorer) || 4532 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4533 __get_user(mask, &act->sa_mask)) 4534 return -EFAULT; 4535 4536 #ifdef __ARCH_HAS_KA_RESTORER 4537 new_ka.ka_restorer = NULL; 4538 #endif 4539 new_ka.sa.sa_handler = compat_ptr(handler); 4540 new_ka.sa.sa_restorer = compat_ptr(restorer); 4541 siginitset(&new_ka.sa.sa_mask, mask); 4542 } 4543 4544 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4545 4546 if (!ret && oact) { 4547 if (!access_ok(oact, sizeof(*oact)) || 4548 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4549 &oact->sa_handler) || 4550 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4551 &oact->sa_restorer) || 4552 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4553 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4554 return -EFAULT; 4555 } 4556 return ret; 4557 } 4558 #endif 4559 4560 #ifdef CONFIG_SGETMASK_SYSCALL 4561 4562 /* 4563 * For backwards compatibility. Functionality superseded by sigprocmask. 4564 */ 4565 SYSCALL_DEFINE0(sgetmask) 4566 { 4567 /* SMP safe */ 4568 return current->blocked.sig[0]; 4569 } 4570 4571 SYSCALL_DEFINE1(ssetmask, int, newmask) 4572 { 4573 int old = current->blocked.sig[0]; 4574 sigset_t newset; 4575 4576 siginitset(&newset, newmask); 4577 set_current_blocked(&newset); 4578 4579 return old; 4580 } 4581 #endif /* CONFIG_SGETMASK_SYSCALL */ 4582 4583 #ifdef __ARCH_WANT_SYS_SIGNAL 4584 /* 4585 * For backwards compatibility. Functionality superseded by sigaction. 4586 */ 4587 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4588 { 4589 struct k_sigaction new_sa, old_sa; 4590 int ret; 4591 4592 new_sa.sa.sa_handler = handler; 4593 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4594 sigemptyset(&new_sa.sa.sa_mask); 4595 4596 ret = do_sigaction(sig, &new_sa, &old_sa); 4597 4598 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4599 } 4600 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4601 4602 #ifdef __ARCH_WANT_SYS_PAUSE 4603 4604 SYSCALL_DEFINE0(pause) 4605 { 4606 while (!signal_pending(current)) { 4607 __set_current_state(TASK_INTERRUPTIBLE); 4608 schedule(); 4609 } 4610 return -ERESTARTNOHAND; 4611 } 4612 4613 #endif 4614 4615 static int sigsuspend(sigset_t *set) 4616 { 4617 current->saved_sigmask = current->blocked; 4618 set_current_blocked(set); 4619 4620 while (!signal_pending(current)) { 4621 __set_current_state(TASK_INTERRUPTIBLE); 4622 schedule(); 4623 } 4624 set_restore_sigmask(); 4625 return -ERESTARTNOHAND; 4626 } 4627 4628 /** 4629 * sys_rt_sigsuspend - replace the signal mask for a value with the 4630 * @unewset value until a signal is received 4631 * @unewset: new signal mask value 4632 * @sigsetsize: size of sigset_t type 4633 */ 4634 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4635 { 4636 sigset_t newset; 4637 4638 /* XXX: Don't preclude handling different sized sigset_t's. */ 4639 if (sigsetsize != sizeof(sigset_t)) 4640 return -EINVAL; 4641 4642 if (copy_from_user(&newset, unewset, sizeof(newset))) 4643 return -EFAULT; 4644 return sigsuspend(&newset); 4645 } 4646 4647 #ifdef CONFIG_COMPAT 4648 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4649 { 4650 sigset_t newset; 4651 4652 /* XXX: Don't preclude handling different sized sigset_t's. */ 4653 if (sigsetsize != sizeof(sigset_t)) 4654 return -EINVAL; 4655 4656 if (get_compat_sigset(&newset, unewset)) 4657 return -EFAULT; 4658 return sigsuspend(&newset); 4659 } 4660 #endif 4661 4662 #ifdef CONFIG_OLD_SIGSUSPEND 4663 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4664 { 4665 sigset_t blocked; 4666 siginitset(&blocked, mask); 4667 return sigsuspend(&blocked); 4668 } 4669 #endif 4670 #ifdef CONFIG_OLD_SIGSUSPEND3 4671 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4672 { 4673 sigset_t blocked; 4674 siginitset(&blocked, mask); 4675 return sigsuspend(&blocked); 4676 } 4677 #endif 4678 4679 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4680 { 4681 return NULL; 4682 } 4683 4684 static inline void siginfo_buildtime_checks(void) 4685 { 4686 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4687 4688 /* Verify the offsets in the two siginfos match */ 4689 #define CHECK_OFFSET(field) \ 4690 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4691 4692 /* kill */ 4693 CHECK_OFFSET(si_pid); 4694 CHECK_OFFSET(si_uid); 4695 4696 /* timer */ 4697 CHECK_OFFSET(si_tid); 4698 CHECK_OFFSET(si_overrun); 4699 CHECK_OFFSET(si_value); 4700 4701 /* rt */ 4702 CHECK_OFFSET(si_pid); 4703 CHECK_OFFSET(si_uid); 4704 CHECK_OFFSET(si_value); 4705 4706 /* sigchld */ 4707 CHECK_OFFSET(si_pid); 4708 CHECK_OFFSET(si_uid); 4709 CHECK_OFFSET(si_status); 4710 CHECK_OFFSET(si_utime); 4711 CHECK_OFFSET(si_stime); 4712 4713 /* sigfault */ 4714 CHECK_OFFSET(si_addr); 4715 CHECK_OFFSET(si_trapno); 4716 CHECK_OFFSET(si_addr_lsb); 4717 CHECK_OFFSET(si_lower); 4718 CHECK_OFFSET(si_upper); 4719 CHECK_OFFSET(si_pkey); 4720 CHECK_OFFSET(si_perf_data); 4721 CHECK_OFFSET(si_perf_type); 4722 CHECK_OFFSET(si_perf_flags); 4723 4724 /* sigpoll */ 4725 CHECK_OFFSET(si_band); 4726 CHECK_OFFSET(si_fd); 4727 4728 /* sigsys */ 4729 CHECK_OFFSET(si_call_addr); 4730 CHECK_OFFSET(si_syscall); 4731 CHECK_OFFSET(si_arch); 4732 #undef CHECK_OFFSET 4733 4734 /* usb asyncio */ 4735 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4736 offsetof(struct siginfo, si_addr)); 4737 if (sizeof(int) == sizeof(void __user *)) { 4738 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4739 sizeof(void __user *)); 4740 } else { 4741 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4742 sizeof_field(struct siginfo, si_uid)) != 4743 sizeof(void __user *)); 4744 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4745 offsetof(struct siginfo, si_uid)); 4746 } 4747 #ifdef CONFIG_COMPAT 4748 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4749 offsetof(struct compat_siginfo, si_addr)); 4750 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4751 sizeof(compat_uptr_t)); 4752 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4753 sizeof_field(struct siginfo, si_pid)); 4754 #endif 4755 } 4756 4757 void __init signals_init(void) 4758 { 4759 siginfo_buildtime_checks(); 4760 4761 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4762 } 4763 4764 #ifdef CONFIG_KGDB_KDB 4765 #include <linux/kdb.h> 4766 /* 4767 * kdb_send_sig - Allows kdb to send signals without exposing 4768 * signal internals. This function checks if the required locks are 4769 * available before calling the main signal code, to avoid kdb 4770 * deadlocks. 4771 */ 4772 void kdb_send_sig(struct task_struct *t, int sig) 4773 { 4774 static struct task_struct *kdb_prev_t; 4775 int new_t, ret; 4776 if (!spin_trylock(&t->sighand->siglock)) { 4777 kdb_printf("Can't do kill command now.\n" 4778 "The sigmask lock is held somewhere else in " 4779 "kernel, try again later\n"); 4780 return; 4781 } 4782 new_t = kdb_prev_t != t; 4783 kdb_prev_t = t; 4784 if (!task_is_running(t) && new_t) { 4785 spin_unlock(&t->sighand->siglock); 4786 kdb_printf("Process is not RUNNING, sending a signal from " 4787 "kdb risks deadlock\n" 4788 "on the run queue locks. " 4789 "The signal has _not_ been sent.\n" 4790 "Reissue the kill command if you want to risk " 4791 "the deadlock.\n"); 4792 return; 4793 } 4794 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4795 spin_unlock(&t->sighand->siglock); 4796 if (ret) 4797 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4798 sig, t->pid); 4799 else 4800 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4801 } 4802 #endif /* CONFIG_KGDB_KDB */ 4803