1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/proc_fs.h> 26 #include <linux/tty.h> 27 #include <linux/binfmts.h> 28 #include <linux/coredump.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/ptrace.h> 32 #include <linux/signal.h> 33 #include <linux/signalfd.h> 34 #include <linux/ratelimit.h> 35 #include <linux/task_work.h> 36 #include <linux/capability.h> 37 #include <linux/freezer.h> 38 #include <linux/pid_namespace.h> 39 #include <linux/nsproxy.h> 40 #include <linux/user_namespace.h> 41 #include <linux/uprobes.h> 42 #include <linux/compat.h> 43 #include <linux/cn_proc.h> 44 #include <linux/compiler.h> 45 #include <linux/posix-timers.h> 46 #include <linux/cgroup.h> 47 #include <linux/audit.h> 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/signal.h> 51 52 #include <asm/param.h> 53 #include <linux/uaccess.h> 54 #include <asm/unistd.h> 55 #include <asm/siginfo.h> 56 #include <asm/cacheflush.h> 57 #include <asm/syscall.h> /* for syscall_get_* */ 58 59 /* 60 * SLAB caches for signal bits. 61 */ 62 63 static struct kmem_cache *sigqueue_cachep; 64 65 int print_fatal_signals __read_mostly; 66 67 static void __user *sig_handler(struct task_struct *t, int sig) 68 { 69 return t->sighand->action[sig - 1].sa.sa_handler; 70 } 71 72 static inline bool sig_handler_ignored(void __user *handler, int sig) 73 { 74 /* Is it explicitly or implicitly ignored? */ 75 return handler == SIG_IGN || 76 (handler == SIG_DFL && sig_kernel_ignore(sig)); 77 } 78 79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 80 { 81 void __user *handler; 82 83 handler = sig_handler(t, sig); 84 85 /* SIGKILL and SIGSTOP may not be sent to the global init */ 86 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 87 return true; 88 89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 90 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 91 return true; 92 93 /* Only allow kernel generated signals to this kthread */ 94 if (unlikely((t->flags & PF_KTHREAD) && 95 (handler == SIG_KTHREAD_KERNEL) && !force)) 96 return true; 97 98 return sig_handler_ignored(handler, sig); 99 } 100 101 static bool sig_ignored(struct task_struct *t, int sig, bool force) 102 { 103 /* 104 * Blocked signals are never ignored, since the 105 * signal handler may change by the time it is 106 * unblocked. 107 */ 108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 109 return false; 110 111 /* 112 * Tracers may want to know about even ignored signal unless it 113 * is SIGKILL which can't be reported anyway but can be ignored 114 * by SIGNAL_UNKILLABLE task. 115 */ 116 if (t->ptrace && sig != SIGKILL) 117 return false; 118 119 return sig_task_ignored(t, sig, force); 120 } 121 122 /* 123 * Re-calculate pending state from the set of locally pending 124 * signals, globally pending signals, and blocked signals. 125 */ 126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 127 { 128 unsigned long ready; 129 long i; 130 131 switch (_NSIG_WORDS) { 132 default: 133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 134 ready |= signal->sig[i] &~ blocked->sig[i]; 135 break; 136 137 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 138 ready |= signal->sig[2] &~ blocked->sig[2]; 139 ready |= signal->sig[1] &~ blocked->sig[1]; 140 ready |= signal->sig[0] &~ blocked->sig[0]; 141 break; 142 143 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 144 ready |= signal->sig[0] &~ blocked->sig[0]; 145 break; 146 147 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 148 } 149 return ready != 0; 150 } 151 152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 153 154 static bool recalc_sigpending_tsk(struct task_struct *t) 155 { 156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 157 PENDING(&t->pending, &t->blocked) || 158 PENDING(&t->signal->shared_pending, &t->blocked) || 159 cgroup_task_frozen(t)) { 160 set_tsk_thread_flag(t, TIF_SIGPENDING); 161 return true; 162 } 163 164 /* 165 * We must never clear the flag in another thread, or in current 166 * when it's possible the current syscall is returning -ERESTART*. 167 * So we don't clear it here, and only callers who know they should do. 168 */ 169 return false; 170 } 171 172 /* 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 174 * This is superfluous when called on current, the wakeup is a harmless no-op. 175 */ 176 void recalc_sigpending_and_wake(struct task_struct *t) 177 { 178 if (recalc_sigpending_tsk(t)) 179 signal_wake_up(t, 0); 180 } 181 182 void recalc_sigpending(void) 183 { 184 if (!recalc_sigpending_tsk(current) && !freezing(current)) 185 clear_thread_flag(TIF_SIGPENDING); 186 187 } 188 EXPORT_SYMBOL(recalc_sigpending); 189 190 void calculate_sigpending(void) 191 { 192 /* Have any signals or users of TIF_SIGPENDING been delayed 193 * until after fork? 194 */ 195 spin_lock_irq(¤t->sighand->siglock); 196 set_tsk_thread_flag(current, TIF_SIGPENDING); 197 recalc_sigpending(); 198 spin_unlock_irq(¤t->sighand->siglock); 199 } 200 201 /* Given the mask, find the first available signal that should be serviced. */ 202 203 #define SYNCHRONOUS_MASK \ 204 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 205 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 206 207 int next_signal(struct sigpending *pending, sigset_t *mask) 208 { 209 unsigned long i, *s, *m, x; 210 int sig = 0; 211 212 s = pending->signal.sig; 213 m = mask->sig; 214 215 /* 216 * Handle the first word specially: it contains the 217 * synchronous signals that need to be dequeued first. 218 */ 219 x = *s &~ *m; 220 if (x) { 221 if (x & SYNCHRONOUS_MASK) 222 x &= SYNCHRONOUS_MASK; 223 sig = ffz(~x) + 1; 224 return sig; 225 } 226 227 switch (_NSIG_WORDS) { 228 default: 229 for (i = 1; i < _NSIG_WORDS; ++i) { 230 x = *++s &~ *++m; 231 if (!x) 232 continue; 233 sig = ffz(~x) + i*_NSIG_BPW + 1; 234 break; 235 } 236 break; 237 238 case 2: 239 x = s[1] &~ m[1]; 240 if (!x) 241 break; 242 sig = ffz(~x) + _NSIG_BPW + 1; 243 break; 244 245 case 1: 246 /* Nothing to do */ 247 break; 248 } 249 250 return sig; 251 } 252 253 static inline void print_dropped_signal(int sig) 254 { 255 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 256 257 if (!print_fatal_signals) 258 return; 259 260 if (!__ratelimit(&ratelimit_state)) 261 return; 262 263 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 264 current->comm, current->pid, sig); 265 } 266 267 /** 268 * task_set_jobctl_pending - set jobctl pending bits 269 * @task: target task 270 * @mask: pending bits to set 271 * 272 * Clear @mask from @task->jobctl. @mask must be subset of 273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 274 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 275 * cleared. If @task is already being killed or exiting, this function 276 * becomes noop. 277 * 278 * CONTEXT: 279 * Must be called with @task->sighand->siglock held. 280 * 281 * RETURNS: 282 * %true if @mask is set, %false if made noop because @task was dying. 283 */ 284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 285 { 286 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 287 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 288 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 289 290 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 291 return false; 292 293 if (mask & JOBCTL_STOP_SIGMASK) 294 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 295 296 task->jobctl |= mask; 297 return true; 298 } 299 300 /** 301 * task_clear_jobctl_trapping - clear jobctl trapping bit 302 * @task: target task 303 * 304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 305 * Clear it and wake up the ptracer. Note that we don't need any further 306 * locking. @task->siglock guarantees that @task->parent points to the 307 * ptracer. 308 * 309 * CONTEXT: 310 * Must be called with @task->sighand->siglock held. 311 */ 312 void task_clear_jobctl_trapping(struct task_struct *task) 313 { 314 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 315 task->jobctl &= ~JOBCTL_TRAPPING; 316 smp_mb(); /* advised by wake_up_bit() */ 317 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 318 } 319 } 320 321 /** 322 * task_clear_jobctl_pending - clear jobctl pending bits 323 * @task: target task 324 * @mask: pending bits to clear 325 * 326 * Clear @mask from @task->jobctl. @mask must be subset of 327 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 328 * STOP bits are cleared together. 329 * 330 * If clearing of @mask leaves no stop or trap pending, this function calls 331 * task_clear_jobctl_trapping(). 332 * 333 * CONTEXT: 334 * Must be called with @task->sighand->siglock held. 335 */ 336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 337 { 338 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 339 340 if (mask & JOBCTL_STOP_PENDING) 341 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 342 343 task->jobctl &= ~mask; 344 345 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 346 task_clear_jobctl_trapping(task); 347 } 348 349 /** 350 * task_participate_group_stop - participate in a group stop 351 * @task: task participating in a group stop 352 * 353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 354 * Group stop states are cleared and the group stop count is consumed if 355 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 356 * stop, the appropriate `SIGNAL_*` flags are set. 357 * 358 * CONTEXT: 359 * Must be called with @task->sighand->siglock held. 360 * 361 * RETURNS: 362 * %true if group stop completion should be notified to the parent, %false 363 * otherwise. 364 */ 365 static bool task_participate_group_stop(struct task_struct *task) 366 { 367 struct signal_struct *sig = task->signal; 368 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 369 370 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 371 372 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 373 374 if (!consume) 375 return false; 376 377 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 378 sig->group_stop_count--; 379 380 /* 381 * Tell the caller to notify completion iff we are entering into a 382 * fresh group stop. Read comment in do_signal_stop() for details. 383 */ 384 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 385 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 386 return true; 387 } 388 return false; 389 } 390 391 void task_join_group_stop(struct task_struct *task) 392 { 393 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 394 struct signal_struct *sig = current->signal; 395 396 if (sig->group_stop_count) { 397 sig->group_stop_count++; 398 mask |= JOBCTL_STOP_CONSUME; 399 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 400 return; 401 402 /* Have the new thread join an on-going signal group stop */ 403 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 404 } 405 406 /* 407 * allocate a new signal queue record 408 * - this may be called without locks if and only if t == current, otherwise an 409 * appropriate lock must be held to stop the target task from exiting 410 */ 411 static struct sigqueue * 412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 413 int override_rlimit, const unsigned int sigqueue_flags) 414 { 415 struct sigqueue *q = NULL; 416 struct ucounts *ucounts = NULL; 417 long sigpending; 418 419 /* 420 * Protect access to @t credentials. This can go away when all 421 * callers hold rcu read lock. 422 * 423 * NOTE! A pending signal will hold on to the user refcount, 424 * and we get/put the refcount only when the sigpending count 425 * changes from/to zero. 426 */ 427 rcu_read_lock(); 428 ucounts = task_ucounts(t); 429 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 430 rcu_read_unlock(); 431 if (!sigpending) 432 return NULL; 433 434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 435 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 436 } else { 437 print_dropped_signal(sig); 438 } 439 440 if (unlikely(q == NULL)) { 441 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 442 } else { 443 INIT_LIST_HEAD(&q->list); 444 q->flags = sigqueue_flags; 445 q->ucounts = ucounts; 446 } 447 return q; 448 } 449 450 static void __sigqueue_free(struct sigqueue *q) 451 { 452 if (q->flags & SIGQUEUE_PREALLOC) 453 return; 454 if (q->ucounts) { 455 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 456 q->ucounts = NULL; 457 } 458 kmem_cache_free(sigqueue_cachep, q); 459 } 460 461 void flush_sigqueue(struct sigpending *queue) 462 { 463 struct sigqueue *q; 464 465 sigemptyset(&queue->signal); 466 while (!list_empty(&queue->list)) { 467 q = list_entry(queue->list.next, struct sigqueue , list); 468 list_del_init(&q->list); 469 __sigqueue_free(q); 470 } 471 } 472 473 /* 474 * Flush all pending signals for this kthread. 475 */ 476 void flush_signals(struct task_struct *t) 477 { 478 unsigned long flags; 479 480 spin_lock_irqsave(&t->sighand->siglock, flags); 481 clear_tsk_thread_flag(t, TIF_SIGPENDING); 482 flush_sigqueue(&t->pending); 483 flush_sigqueue(&t->signal->shared_pending); 484 spin_unlock_irqrestore(&t->sighand->siglock, flags); 485 } 486 EXPORT_SYMBOL(flush_signals); 487 488 #ifdef CONFIG_POSIX_TIMERS 489 static void __flush_itimer_signals(struct sigpending *pending) 490 { 491 sigset_t signal, retain; 492 struct sigqueue *q, *n; 493 494 signal = pending->signal; 495 sigemptyset(&retain); 496 497 list_for_each_entry_safe(q, n, &pending->list, list) { 498 int sig = q->info.si_signo; 499 500 if (likely(q->info.si_code != SI_TIMER)) { 501 sigaddset(&retain, sig); 502 } else { 503 sigdelset(&signal, sig); 504 list_del_init(&q->list); 505 __sigqueue_free(q); 506 } 507 } 508 509 sigorsets(&pending->signal, &signal, &retain); 510 } 511 512 void flush_itimer_signals(void) 513 { 514 struct task_struct *tsk = current; 515 unsigned long flags; 516 517 spin_lock_irqsave(&tsk->sighand->siglock, flags); 518 __flush_itimer_signals(&tsk->pending); 519 __flush_itimer_signals(&tsk->signal->shared_pending); 520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 521 } 522 #endif 523 524 void ignore_signals(struct task_struct *t) 525 { 526 int i; 527 528 for (i = 0; i < _NSIG; ++i) 529 t->sighand->action[i].sa.sa_handler = SIG_IGN; 530 531 flush_signals(t); 532 } 533 534 /* 535 * Flush all handlers for a task. 536 */ 537 538 void 539 flush_signal_handlers(struct task_struct *t, int force_default) 540 { 541 int i; 542 struct k_sigaction *ka = &t->sighand->action[0]; 543 for (i = _NSIG ; i != 0 ; i--) { 544 if (force_default || ka->sa.sa_handler != SIG_IGN) 545 ka->sa.sa_handler = SIG_DFL; 546 ka->sa.sa_flags = 0; 547 #ifdef __ARCH_HAS_SA_RESTORER 548 ka->sa.sa_restorer = NULL; 549 #endif 550 sigemptyset(&ka->sa.sa_mask); 551 ka++; 552 } 553 } 554 555 bool unhandled_signal(struct task_struct *tsk, int sig) 556 { 557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 558 if (is_global_init(tsk)) 559 return true; 560 561 if (handler != SIG_IGN && handler != SIG_DFL) 562 return false; 563 564 /* if ptraced, let the tracer determine */ 565 return !tsk->ptrace; 566 } 567 568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 569 bool *resched_timer) 570 { 571 struct sigqueue *q, *first = NULL; 572 573 /* 574 * Collect the siginfo appropriate to this signal. Check if 575 * there is another siginfo for the same signal. 576 */ 577 list_for_each_entry(q, &list->list, list) { 578 if (q->info.si_signo == sig) { 579 if (first) 580 goto still_pending; 581 first = q; 582 } 583 } 584 585 sigdelset(&list->signal, sig); 586 587 if (first) { 588 still_pending: 589 list_del_init(&first->list); 590 copy_siginfo(info, &first->info); 591 592 *resched_timer = 593 (first->flags & SIGQUEUE_PREALLOC) && 594 (info->si_code == SI_TIMER) && 595 (info->si_sys_private); 596 597 __sigqueue_free(first); 598 } else { 599 /* 600 * Ok, it wasn't in the queue. This must be 601 * a fast-pathed signal or we must have been 602 * out of queue space. So zero out the info. 603 */ 604 clear_siginfo(info); 605 info->si_signo = sig; 606 info->si_errno = 0; 607 info->si_code = SI_USER; 608 info->si_pid = 0; 609 info->si_uid = 0; 610 } 611 } 612 613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 614 kernel_siginfo_t *info, bool *resched_timer) 615 { 616 int sig = next_signal(pending, mask); 617 618 if (sig) 619 collect_signal(sig, pending, info, resched_timer); 620 return sig; 621 } 622 623 /* 624 * Dequeue a signal and return the element to the caller, which is 625 * expected to free it. 626 * 627 * All callers have to hold the siglock. 628 */ 629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, 630 kernel_siginfo_t *info, enum pid_type *type) 631 { 632 bool resched_timer = false; 633 int signr; 634 635 /* We only dequeue private signals from ourselves, we don't let 636 * signalfd steal them 637 */ 638 *type = PIDTYPE_PID; 639 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 640 if (!signr) { 641 *type = PIDTYPE_TGID; 642 signr = __dequeue_signal(&tsk->signal->shared_pending, 643 mask, info, &resched_timer); 644 #ifdef CONFIG_POSIX_TIMERS 645 /* 646 * itimer signal ? 647 * 648 * itimers are process shared and we restart periodic 649 * itimers in the signal delivery path to prevent DoS 650 * attacks in the high resolution timer case. This is 651 * compliant with the old way of self-restarting 652 * itimers, as the SIGALRM is a legacy signal and only 653 * queued once. Changing the restart behaviour to 654 * restart the timer in the signal dequeue path is 655 * reducing the timer noise on heavy loaded !highres 656 * systems too. 657 */ 658 if (unlikely(signr == SIGALRM)) { 659 struct hrtimer *tmr = &tsk->signal->real_timer; 660 661 if (!hrtimer_is_queued(tmr) && 662 tsk->signal->it_real_incr != 0) { 663 hrtimer_forward(tmr, tmr->base->get_time(), 664 tsk->signal->it_real_incr); 665 hrtimer_restart(tmr); 666 } 667 } 668 #endif 669 } 670 671 recalc_sigpending(); 672 if (!signr) 673 return 0; 674 675 if (unlikely(sig_kernel_stop(signr))) { 676 /* 677 * Set a marker that we have dequeued a stop signal. Our 678 * caller might release the siglock and then the pending 679 * stop signal it is about to process is no longer in the 680 * pending bitmasks, but must still be cleared by a SIGCONT 681 * (and overruled by a SIGKILL). So those cases clear this 682 * shared flag after we've set it. Note that this flag may 683 * remain set after the signal we return is ignored or 684 * handled. That doesn't matter because its only purpose 685 * is to alert stop-signal processing code when another 686 * processor has come along and cleared the flag. 687 */ 688 current->jobctl |= JOBCTL_STOP_DEQUEUED; 689 } 690 #ifdef CONFIG_POSIX_TIMERS 691 if (resched_timer) { 692 /* 693 * Release the siglock to ensure proper locking order 694 * of timer locks outside of siglocks. Note, we leave 695 * irqs disabled here, since the posix-timers code is 696 * about to disable them again anyway. 697 */ 698 spin_unlock(&tsk->sighand->siglock); 699 posixtimer_rearm(info); 700 spin_lock(&tsk->sighand->siglock); 701 702 /* Don't expose the si_sys_private value to userspace */ 703 info->si_sys_private = 0; 704 } 705 #endif 706 return signr; 707 } 708 EXPORT_SYMBOL_GPL(dequeue_signal); 709 710 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 711 { 712 struct task_struct *tsk = current; 713 struct sigpending *pending = &tsk->pending; 714 struct sigqueue *q, *sync = NULL; 715 716 /* 717 * Might a synchronous signal be in the queue? 718 */ 719 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 720 return 0; 721 722 /* 723 * Return the first synchronous signal in the queue. 724 */ 725 list_for_each_entry(q, &pending->list, list) { 726 /* Synchronous signals have a positive si_code */ 727 if ((q->info.si_code > SI_USER) && 728 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 729 sync = q; 730 goto next; 731 } 732 } 733 return 0; 734 next: 735 /* 736 * Check if there is another siginfo for the same signal. 737 */ 738 list_for_each_entry_continue(q, &pending->list, list) { 739 if (q->info.si_signo == sync->info.si_signo) 740 goto still_pending; 741 } 742 743 sigdelset(&pending->signal, sync->info.si_signo); 744 recalc_sigpending(); 745 still_pending: 746 list_del_init(&sync->list); 747 copy_siginfo(info, &sync->info); 748 __sigqueue_free(sync); 749 return info->si_signo; 750 } 751 752 /* 753 * Tell a process that it has a new active signal.. 754 * 755 * NOTE! we rely on the previous spin_lock to 756 * lock interrupts for us! We can only be called with 757 * "siglock" held, and the local interrupt must 758 * have been disabled when that got acquired! 759 * 760 * No need to set need_resched since signal event passing 761 * goes through ->blocked 762 */ 763 void signal_wake_up_state(struct task_struct *t, unsigned int state) 764 { 765 lockdep_assert_held(&t->sighand->siglock); 766 767 set_tsk_thread_flag(t, TIF_SIGPENDING); 768 769 /* 770 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 771 * case. We don't check t->state here because there is a race with it 772 * executing another processor and just now entering stopped state. 773 * By using wake_up_state, we ensure the process will wake up and 774 * handle its death signal. 775 */ 776 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 777 kick_process(t); 778 } 779 780 /* 781 * Remove signals in mask from the pending set and queue. 782 * Returns 1 if any signals were found. 783 * 784 * All callers must be holding the siglock. 785 */ 786 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 787 { 788 struct sigqueue *q, *n; 789 sigset_t m; 790 791 sigandsets(&m, mask, &s->signal); 792 if (sigisemptyset(&m)) 793 return; 794 795 sigandnsets(&s->signal, &s->signal, mask); 796 list_for_each_entry_safe(q, n, &s->list, list) { 797 if (sigismember(mask, q->info.si_signo)) { 798 list_del_init(&q->list); 799 __sigqueue_free(q); 800 } 801 } 802 } 803 804 static inline int is_si_special(const struct kernel_siginfo *info) 805 { 806 return info <= SEND_SIG_PRIV; 807 } 808 809 static inline bool si_fromuser(const struct kernel_siginfo *info) 810 { 811 return info == SEND_SIG_NOINFO || 812 (!is_si_special(info) && SI_FROMUSER(info)); 813 } 814 815 /* 816 * called with RCU read lock from check_kill_permission() 817 */ 818 static bool kill_ok_by_cred(struct task_struct *t) 819 { 820 const struct cred *cred = current_cred(); 821 const struct cred *tcred = __task_cred(t); 822 823 return uid_eq(cred->euid, tcred->suid) || 824 uid_eq(cred->euid, tcred->uid) || 825 uid_eq(cred->uid, tcred->suid) || 826 uid_eq(cred->uid, tcred->uid) || 827 ns_capable(tcred->user_ns, CAP_KILL); 828 } 829 830 /* 831 * Bad permissions for sending the signal 832 * - the caller must hold the RCU read lock 833 */ 834 static int check_kill_permission(int sig, struct kernel_siginfo *info, 835 struct task_struct *t) 836 { 837 struct pid *sid; 838 int error; 839 840 if (!valid_signal(sig)) 841 return -EINVAL; 842 843 if (!si_fromuser(info)) 844 return 0; 845 846 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 847 if (error) 848 return error; 849 850 if (!same_thread_group(current, t) && 851 !kill_ok_by_cred(t)) { 852 switch (sig) { 853 case SIGCONT: 854 sid = task_session(t); 855 /* 856 * We don't return the error if sid == NULL. The 857 * task was unhashed, the caller must notice this. 858 */ 859 if (!sid || sid == task_session(current)) 860 break; 861 fallthrough; 862 default: 863 return -EPERM; 864 } 865 } 866 867 return security_task_kill(t, info, sig, NULL); 868 } 869 870 /** 871 * ptrace_trap_notify - schedule trap to notify ptracer 872 * @t: tracee wanting to notify tracer 873 * 874 * This function schedules sticky ptrace trap which is cleared on the next 875 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 876 * ptracer. 877 * 878 * If @t is running, STOP trap will be taken. If trapped for STOP and 879 * ptracer is listening for events, tracee is woken up so that it can 880 * re-trap for the new event. If trapped otherwise, STOP trap will be 881 * eventually taken without returning to userland after the existing traps 882 * are finished by PTRACE_CONT. 883 * 884 * CONTEXT: 885 * Must be called with @task->sighand->siglock held. 886 */ 887 static void ptrace_trap_notify(struct task_struct *t) 888 { 889 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 890 lockdep_assert_held(&t->sighand->siglock); 891 892 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 893 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 894 } 895 896 /* 897 * Handle magic process-wide effects of stop/continue signals. Unlike 898 * the signal actions, these happen immediately at signal-generation 899 * time regardless of blocking, ignoring, or handling. This does the 900 * actual continuing for SIGCONT, but not the actual stopping for stop 901 * signals. The process stop is done as a signal action for SIG_DFL. 902 * 903 * Returns true if the signal should be actually delivered, otherwise 904 * it should be dropped. 905 */ 906 static bool prepare_signal(int sig, struct task_struct *p, bool force) 907 { 908 struct signal_struct *signal = p->signal; 909 struct task_struct *t; 910 sigset_t flush; 911 912 if (signal->flags & SIGNAL_GROUP_EXIT) { 913 if (signal->core_state) 914 return sig == SIGKILL; 915 /* 916 * The process is in the middle of dying, drop the signal. 917 */ 918 return false; 919 } else if (sig_kernel_stop(sig)) { 920 /* 921 * This is a stop signal. Remove SIGCONT from all queues. 922 */ 923 siginitset(&flush, sigmask(SIGCONT)); 924 flush_sigqueue_mask(&flush, &signal->shared_pending); 925 for_each_thread(p, t) 926 flush_sigqueue_mask(&flush, &t->pending); 927 } else if (sig == SIGCONT) { 928 unsigned int why; 929 /* 930 * Remove all stop signals from all queues, wake all threads. 931 */ 932 siginitset(&flush, SIG_KERNEL_STOP_MASK); 933 flush_sigqueue_mask(&flush, &signal->shared_pending); 934 for_each_thread(p, t) { 935 flush_sigqueue_mask(&flush, &t->pending); 936 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 937 if (likely(!(t->ptrace & PT_SEIZED))) { 938 t->jobctl &= ~JOBCTL_STOPPED; 939 wake_up_state(t, __TASK_STOPPED); 940 } else 941 ptrace_trap_notify(t); 942 } 943 944 /* 945 * Notify the parent with CLD_CONTINUED if we were stopped. 946 * 947 * If we were in the middle of a group stop, we pretend it 948 * was already finished, and then continued. Since SIGCHLD 949 * doesn't queue we report only CLD_STOPPED, as if the next 950 * CLD_CONTINUED was dropped. 951 */ 952 why = 0; 953 if (signal->flags & SIGNAL_STOP_STOPPED) 954 why |= SIGNAL_CLD_CONTINUED; 955 else if (signal->group_stop_count) 956 why |= SIGNAL_CLD_STOPPED; 957 958 if (why) { 959 /* 960 * The first thread which returns from do_signal_stop() 961 * will take ->siglock, notice SIGNAL_CLD_MASK, and 962 * notify its parent. See get_signal(). 963 */ 964 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 965 signal->group_stop_count = 0; 966 signal->group_exit_code = 0; 967 } 968 } 969 970 return !sig_ignored(p, sig, force); 971 } 972 973 /* 974 * Test if P wants to take SIG. After we've checked all threads with this, 975 * it's equivalent to finding no threads not blocking SIG. Any threads not 976 * blocking SIG were ruled out because they are not running and already 977 * have pending signals. Such threads will dequeue from the shared queue 978 * as soon as they're available, so putting the signal on the shared queue 979 * will be equivalent to sending it to one such thread. 980 */ 981 static inline bool wants_signal(int sig, struct task_struct *p) 982 { 983 if (sigismember(&p->blocked, sig)) 984 return false; 985 986 if (p->flags & PF_EXITING) 987 return false; 988 989 if (sig == SIGKILL) 990 return true; 991 992 if (task_is_stopped_or_traced(p)) 993 return false; 994 995 return task_curr(p) || !task_sigpending(p); 996 } 997 998 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 999 { 1000 struct signal_struct *signal = p->signal; 1001 struct task_struct *t; 1002 1003 /* 1004 * Now find a thread we can wake up to take the signal off the queue. 1005 * 1006 * Try the suggested task first (may or may not be the main thread). 1007 */ 1008 if (wants_signal(sig, p)) 1009 t = p; 1010 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1011 /* 1012 * There is just one thread and it does not need to be woken. 1013 * It will dequeue unblocked signals before it runs again. 1014 */ 1015 return; 1016 else { 1017 /* 1018 * Otherwise try to find a suitable thread. 1019 */ 1020 t = signal->curr_target; 1021 while (!wants_signal(sig, t)) { 1022 t = next_thread(t); 1023 if (t == signal->curr_target) 1024 /* 1025 * No thread needs to be woken. 1026 * Any eligible threads will see 1027 * the signal in the queue soon. 1028 */ 1029 return; 1030 } 1031 signal->curr_target = t; 1032 } 1033 1034 /* 1035 * Found a killable thread. If the signal will be fatal, 1036 * then start taking the whole group down immediately. 1037 */ 1038 if (sig_fatal(p, sig) && 1039 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1040 !sigismember(&t->real_blocked, sig) && 1041 (sig == SIGKILL || !p->ptrace)) { 1042 /* 1043 * This signal will be fatal to the whole group. 1044 */ 1045 if (!sig_kernel_coredump(sig)) { 1046 /* 1047 * Start a group exit and wake everybody up. 1048 * This way we don't have other threads 1049 * running and doing things after a slower 1050 * thread has the fatal signal pending. 1051 */ 1052 signal->flags = SIGNAL_GROUP_EXIT; 1053 signal->group_exit_code = sig; 1054 signal->group_stop_count = 0; 1055 t = p; 1056 do { 1057 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1058 sigaddset(&t->pending.signal, SIGKILL); 1059 signal_wake_up(t, 1); 1060 } while_each_thread(p, t); 1061 return; 1062 } 1063 } 1064 1065 /* 1066 * The signal is already in the shared-pending queue. 1067 * Tell the chosen thread to wake up and dequeue it. 1068 */ 1069 signal_wake_up(t, sig == SIGKILL); 1070 return; 1071 } 1072 1073 static inline bool legacy_queue(struct sigpending *signals, int sig) 1074 { 1075 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1076 } 1077 1078 static int __send_signal_locked(int sig, struct kernel_siginfo *info, 1079 struct task_struct *t, enum pid_type type, bool force) 1080 { 1081 struct sigpending *pending; 1082 struct sigqueue *q; 1083 int override_rlimit; 1084 int ret = 0, result; 1085 1086 lockdep_assert_held(&t->sighand->siglock); 1087 1088 result = TRACE_SIGNAL_IGNORED; 1089 if (!prepare_signal(sig, t, force)) 1090 goto ret; 1091 1092 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1093 /* 1094 * Short-circuit ignored signals and support queuing 1095 * exactly one non-rt signal, so that we can get more 1096 * detailed information about the cause of the signal. 1097 */ 1098 result = TRACE_SIGNAL_ALREADY_PENDING; 1099 if (legacy_queue(pending, sig)) 1100 goto ret; 1101 1102 result = TRACE_SIGNAL_DELIVERED; 1103 /* 1104 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1105 */ 1106 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1107 goto out_set; 1108 1109 /* 1110 * Real-time signals must be queued if sent by sigqueue, or 1111 * some other real-time mechanism. It is implementation 1112 * defined whether kill() does so. We attempt to do so, on 1113 * the principle of least surprise, but since kill is not 1114 * allowed to fail with EAGAIN when low on memory we just 1115 * make sure at least one signal gets delivered and don't 1116 * pass on the info struct. 1117 */ 1118 if (sig < SIGRTMIN) 1119 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1120 else 1121 override_rlimit = 0; 1122 1123 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1124 1125 if (q) { 1126 list_add_tail(&q->list, &pending->list); 1127 switch ((unsigned long) info) { 1128 case (unsigned long) SEND_SIG_NOINFO: 1129 clear_siginfo(&q->info); 1130 q->info.si_signo = sig; 1131 q->info.si_errno = 0; 1132 q->info.si_code = SI_USER; 1133 q->info.si_pid = task_tgid_nr_ns(current, 1134 task_active_pid_ns(t)); 1135 rcu_read_lock(); 1136 q->info.si_uid = 1137 from_kuid_munged(task_cred_xxx(t, user_ns), 1138 current_uid()); 1139 rcu_read_unlock(); 1140 break; 1141 case (unsigned long) SEND_SIG_PRIV: 1142 clear_siginfo(&q->info); 1143 q->info.si_signo = sig; 1144 q->info.si_errno = 0; 1145 q->info.si_code = SI_KERNEL; 1146 q->info.si_pid = 0; 1147 q->info.si_uid = 0; 1148 break; 1149 default: 1150 copy_siginfo(&q->info, info); 1151 break; 1152 } 1153 } else if (!is_si_special(info) && 1154 sig >= SIGRTMIN && info->si_code != SI_USER) { 1155 /* 1156 * Queue overflow, abort. We may abort if the 1157 * signal was rt and sent by user using something 1158 * other than kill(). 1159 */ 1160 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1161 ret = -EAGAIN; 1162 goto ret; 1163 } else { 1164 /* 1165 * This is a silent loss of information. We still 1166 * send the signal, but the *info bits are lost. 1167 */ 1168 result = TRACE_SIGNAL_LOSE_INFO; 1169 } 1170 1171 out_set: 1172 signalfd_notify(t, sig); 1173 sigaddset(&pending->signal, sig); 1174 1175 /* Let multiprocess signals appear after on-going forks */ 1176 if (type > PIDTYPE_TGID) { 1177 struct multiprocess_signals *delayed; 1178 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1179 sigset_t *signal = &delayed->signal; 1180 /* Can't queue both a stop and a continue signal */ 1181 if (sig == SIGCONT) 1182 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1183 else if (sig_kernel_stop(sig)) 1184 sigdelset(signal, SIGCONT); 1185 sigaddset(signal, sig); 1186 } 1187 } 1188 1189 complete_signal(sig, t, type); 1190 ret: 1191 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1192 return ret; 1193 } 1194 1195 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1196 { 1197 bool ret = false; 1198 switch (siginfo_layout(info->si_signo, info->si_code)) { 1199 case SIL_KILL: 1200 case SIL_CHLD: 1201 case SIL_RT: 1202 ret = true; 1203 break; 1204 case SIL_TIMER: 1205 case SIL_POLL: 1206 case SIL_FAULT: 1207 case SIL_FAULT_TRAPNO: 1208 case SIL_FAULT_MCEERR: 1209 case SIL_FAULT_BNDERR: 1210 case SIL_FAULT_PKUERR: 1211 case SIL_FAULT_PERF_EVENT: 1212 case SIL_SYS: 1213 ret = false; 1214 break; 1215 } 1216 return ret; 1217 } 1218 1219 int send_signal_locked(int sig, struct kernel_siginfo *info, 1220 struct task_struct *t, enum pid_type type) 1221 { 1222 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1223 bool force = false; 1224 1225 if (info == SEND_SIG_NOINFO) { 1226 /* Force if sent from an ancestor pid namespace */ 1227 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1228 } else if (info == SEND_SIG_PRIV) { 1229 /* Don't ignore kernel generated signals */ 1230 force = true; 1231 } else if (has_si_pid_and_uid(info)) { 1232 /* SIGKILL and SIGSTOP is special or has ids */ 1233 struct user_namespace *t_user_ns; 1234 1235 rcu_read_lock(); 1236 t_user_ns = task_cred_xxx(t, user_ns); 1237 if (current_user_ns() != t_user_ns) { 1238 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1239 info->si_uid = from_kuid_munged(t_user_ns, uid); 1240 } 1241 rcu_read_unlock(); 1242 1243 /* A kernel generated signal? */ 1244 force = (info->si_code == SI_KERNEL); 1245 1246 /* From an ancestor pid namespace? */ 1247 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1248 info->si_pid = 0; 1249 force = true; 1250 } 1251 } 1252 return __send_signal_locked(sig, info, t, type, force); 1253 } 1254 1255 static void print_fatal_signal(int signr) 1256 { 1257 struct pt_regs *regs = task_pt_regs(current); 1258 pr_info("potentially unexpected fatal signal %d.\n", signr); 1259 1260 #if defined(__i386__) && !defined(__arch_um__) 1261 pr_info("code at %08lx: ", regs->ip); 1262 { 1263 int i; 1264 for (i = 0; i < 16; i++) { 1265 unsigned char insn; 1266 1267 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1268 break; 1269 pr_cont("%02x ", insn); 1270 } 1271 } 1272 pr_cont("\n"); 1273 #endif 1274 preempt_disable(); 1275 show_regs(regs); 1276 preempt_enable(); 1277 } 1278 1279 static int __init setup_print_fatal_signals(char *str) 1280 { 1281 get_option (&str, &print_fatal_signals); 1282 1283 return 1; 1284 } 1285 1286 __setup("print-fatal-signals=", setup_print_fatal_signals); 1287 1288 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1289 enum pid_type type) 1290 { 1291 unsigned long flags; 1292 int ret = -ESRCH; 1293 1294 if (lock_task_sighand(p, &flags)) { 1295 ret = send_signal_locked(sig, info, p, type); 1296 unlock_task_sighand(p, &flags); 1297 } 1298 1299 return ret; 1300 } 1301 1302 enum sig_handler { 1303 HANDLER_CURRENT, /* If reachable use the current handler */ 1304 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1305 HANDLER_EXIT, /* Only visible as the process exit code */ 1306 }; 1307 1308 /* 1309 * Force a signal that the process can't ignore: if necessary 1310 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1311 * 1312 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1313 * since we do not want to have a signal handler that was blocked 1314 * be invoked when user space had explicitly blocked it. 1315 * 1316 * We don't want to have recursive SIGSEGV's etc, for example, 1317 * that is why we also clear SIGNAL_UNKILLABLE. 1318 */ 1319 static int 1320 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1321 enum sig_handler handler) 1322 { 1323 unsigned long int flags; 1324 int ret, blocked, ignored; 1325 struct k_sigaction *action; 1326 int sig = info->si_signo; 1327 1328 spin_lock_irqsave(&t->sighand->siglock, flags); 1329 action = &t->sighand->action[sig-1]; 1330 ignored = action->sa.sa_handler == SIG_IGN; 1331 blocked = sigismember(&t->blocked, sig); 1332 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1333 action->sa.sa_handler = SIG_DFL; 1334 if (handler == HANDLER_EXIT) 1335 action->sa.sa_flags |= SA_IMMUTABLE; 1336 if (blocked) { 1337 sigdelset(&t->blocked, sig); 1338 recalc_sigpending_and_wake(t); 1339 } 1340 } 1341 /* 1342 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1343 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1344 */ 1345 if (action->sa.sa_handler == SIG_DFL && 1346 (!t->ptrace || (handler == HANDLER_EXIT))) 1347 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1348 ret = send_signal_locked(sig, info, t, PIDTYPE_PID); 1349 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1350 1351 return ret; 1352 } 1353 1354 int force_sig_info(struct kernel_siginfo *info) 1355 { 1356 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1357 } 1358 1359 /* 1360 * Nuke all other threads in the group. 1361 */ 1362 int zap_other_threads(struct task_struct *p) 1363 { 1364 struct task_struct *t = p; 1365 int count = 0; 1366 1367 p->signal->group_stop_count = 0; 1368 1369 while_each_thread(p, t) { 1370 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1371 /* Don't require de_thread to wait for the vhost_worker */ 1372 if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER) 1373 count++; 1374 1375 /* Don't bother with already dead threads */ 1376 if (t->exit_state) 1377 continue; 1378 sigaddset(&t->pending.signal, SIGKILL); 1379 signal_wake_up(t, 1); 1380 } 1381 1382 return count; 1383 } 1384 1385 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1386 unsigned long *flags) 1387 { 1388 struct sighand_struct *sighand; 1389 1390 rcu_read_lock(); 1391 for (;;) { 1392 sighand = rcu_dereference(tsk->sighand); 1393 if (unlikely(sighand == NULL)) 1394 break; 1395 1396 /* 1397 * This sighand can be already freed and even reused, but 1398 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1399 * initializes ->siglock: this slab can't go away, it has 1400 * the same object type, ->siglock can't be reinitialized. 1401 * 1402 * We need to ensure that tsk->sighand is still the same 1403 * after we take the lock, we can race with de_thread() or 1404 * __exit_signal(). In the latter case the next iteration 1405 * must see ->sighand == NULL. 1406 */ 1407 spin_lock_irqsave(&sighand->siglock, *flags); 1408 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1409 break; 1410 spin_unlock_irqrestore(&sighand->siglock, *flags); 1411 } 1412 rcu_read_unlock(); 1413 1414 return sighand; 1415 } 1416 1417 #ifdef CONFIG_LOCKDEP 1418 void lockdep_assert_task_sighand_held(struct task_struct *task) 1419 { 1420 struct sighand_struct *sighand; 1421 1422 rcu_read_lock(); 1423 sighand = rcu_dereference(task->sighand); 1424 if (sighand) 1425 lockdep_assert_held(&sighand->siglock); 1426 else 1427 WARN_ON_ONCE(1); 1428 rcu_read_unlock(); 1429 } 1430 #endif 1431 1432 /* 1433 * send signal info to all the members of a group 1434 */ 1435 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1436 struct task_struct *p, enum pid_type type) 1437 { 1438 int ret; 1439 1440 rcu_read_lock(); 1441 ret = check_kill_permission(sig, info, p); 1442 rcu_read_unlock(); 1443 1444 if (!ret && sig) 1445 ret = do_send_sig_info(sig, info, p, type); 1446 1447 return ret; 1448 } 1449 1450 /* 1451 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1452 * control characters do (^C, ^Z etc) 1453 * - the caller must hold at least a readlock on tasklist_lock 1454 */ 1455 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1456 { 1457 struct task_struct *p = NULL; 1458 int retval, success; 1459 1460 success = 0; 1461 retval = -ESRCH; 1462 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1463 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1464 success |= !err; 1465 retval = err; 1466 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1467 return success ? 0 : retval; 1468 } 1469 1470 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1471 { 1472 int error = -ESRCH; 1473 struct task_struct *p; 1474 1475 for (;;) { 1476 rcu_read_lock(); 1477 p = pid_task(pid, PIDTYPE_PID); 1478 if (p) 1479 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1480 rcu_read_unlock(); 1481 if (likely(!p || error != -ESRCH)) 1482 return error; 1483 1484 /* 1485 * The task was unhashed in between, try again. If it 1486 * is dead, pid_task() will return NULL, if we race with 1487 * de_thread() it will find the new leader. 1488 */ 1489 } 1490 } 1491 1492 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1493 { 1494 int error; 1495 rcu_read_lock(); 1496 error = kill_pid_info(sig, info, find_vpid(pid)); 1497 rcu_read_unlock(); 1498 return error; 1499 } 1500 1501 static inline bool kill_as_cred_perm(const struct cred *cred, 1502 struct task_struct *target) 1503 { 1504 const struct cred *pcred = __task_cred(target); 1505 1506 return uid_eq(cred->euid, pcred->suid) || 1507 uid_eq(cred->euid, pcred->uid) || 1508 uid_eq(cred->uid, pcred->suid) || 1509 uid_eq(cred->uid, pcred->uid); 1510 } 1511 1512 /* 1513 * The usb asyncio usage of siginfo is wrong. The glibc support 1514 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1515 * AKA after the generic fields: 1516 * kernel_pid_t si_pid; 1517 * kernel_uid32_t si_uid; 1518 * sigval_t si_value; 1519 * 1520 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1521 * after the generic fields is: 1522 * void __user *si_addr; 1523 * 1524 * This is a practical problem when there is a 64bit big endian kernel 1525 * and a 32bit userspace. As the 32bit address will encoded in the low 1526 * 32bits of the pointer. Those low 32bits will be stored at higher 1527 * address than appear in a 32 bit pointer. So userspace will not 1528 * see the address it was expecting for it's completions. 1529 * 1530 * There is nothing in the encoding that can allow 1531 * copy_siginfo_to_user32 to detect this confusion of formats, so 1532 * handle this by requiring the caller of kill_pid_usb_asyncio to 1533 * notice when this situration takes place and to store the 32bit 1534 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1535 * parameter. 1536 */ 1537 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1538 struct pid *pid, const struct cred *cred) 1539 { 1540 struct kernel_siginfo info; 1541 struct task_struct *p; 1542 unsigned long flags; 1543 int ret = -EINVAL; 1544 1545 if (!valid_signal(sig)) 1546 return ret; 1547 1548 clear_siginfo(&info); 1549 info.si_signo = sig; 1550 info.si_errno = errno; 1551 info.si_code = SI_ASYNCIO; 1552 *((sigval_t *)&info.si_pid) = addr; 1553 1554 rcu_read_lock(); 1555 p = pid_task(pid, PIDTYPE_PID); 1556 if (!p) { 1557 ret = -ESRCH; 1558 goto out_unlock; 1559 } 1560 if (!kill_as_cred_perm(cred, p)) { 1561 ret = -EPERM; 1562 goto out_unlock; 1563 } 1564 ret = security_task_kill(p, &info, sig, cred); 1565 if (ret) 1566 goto out_unlock; 1567 1568 if (sig) { 1569 if (lock_task_sighand(p, &flags)) { 1570 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false); 1571 unlock_task_sighand(p, &flags); 1572 } else 1573 ret = -ESRCH; 1574 } 1575 out_unlock: 1576 rcu_read_unlock(); 1577 return ret; 1578 } 1579 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1580 1581 /* 1582 * kill_something_info() interprets pid in interesting ways just like kill(2). 1583 * 1584 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1585 * is probably wrong. Should make it like BSD or SYSV. 1586 */ 1587 1588 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1589 { 1590 int ret; 1591 1592 if (pid > 0) 1593 return kill_proc_info(sig, info, pid); 1594 1595 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1596 if (pid == INT_MIN) 1597 return -ESRCH; 1598 1599 read_lock(&tasklist_lock); 1600 if (pid != -1) { 1601 ret = __kill_pgrp_info(sig, info, 1602 pid ? find_vpid(-pid) : task_pgrp(current)); 1603 } else { 1604 int retval = 0, count = 0; 1605 struct task_struct * p; 1606 1607 for_each_process(p) { 1608 if (task_pid_vnr(p) > 1 && 1609 !same_thread_group(p, current)) { 1610 int err = group_send_sig_info(sig, info, p, 1611 PIDTYPE_MAX); 1612 ++count; 1613 if (err != -EPERM) 1614 retval = err; 1615 } 1616 } 1617 ret = count ? retval : -ESRCH; 1618 } 1619 read_unlock(&tasklist_lock); 1620 1621 return ret; 1622 } 1623 1624 /* 1625 * These are for backward compatibility with the rest of the kernel source. 1626 */ 1627 1628 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1629 { 1630 /* 1631 * Make sure legacy kernel users don't send in bad values 1632 * (normal paths check this in check_kill_permission). 1633 */ 1634 if (!valid_signal(sig)) 1635 return -EINVAL; 1636 1637 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1638 } 1639 EXPORT_SYMBOL(send_sig_info); 1640 1641 #define __si_special(priv) \ 1642 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1643 1644 int 1645 send_sig(int sig, struct task_struct *p, int priv) 1646 { 1647 return send_sig_info(sig, __si_special(priv), p); 1648 } 1649 EXPORT_SYMBOL(send_sig); 1650 1651 void force_sig(int sig) 1652 { 1653 struct kernel_siginfo info; 1654 1655 clear_siginfo(&info); 1656 info.si_signo = sig; 1657 info.si_errno = 0; 1658 info.si_code = SI_KERNEL; 1659 info.si_pid = 0; 1660 info.si_uid = 0; 1661 force_sig_info(&info); 1662 } 1663 EXPORT_SYMBOL(force_sig); 1664 1665 void force_fatal_sig(int sig) 1666 { 1667 struct kernel_siginfo info; 1668 1669 clear_siginfo(&info); 1670 info.si_signo = sig; 1671 info.si_errno = 0; 1672 info.si_code = SI_KERNEL; 1673 info.si_pid = 0; 1674 info.si_uid = 0; 1675 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1676 } 1677 1678 void force_exit_sig(int sig) 1679 { 1680 struct kernel_siginfo info; 1681 1682 clear_siginfo(&info); 1683 info.si_signo = sig; 1684 info.si_errno = 0; 1685 info.si_code = SI_KERNEL; 1686 info.si_pid = 0; 1687 info.si_uid = 0; 1688 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1689 } 1690 1691 /* 1692 * When things go south during signal handling, we 1693 * will force a SIGSEGV. And if the signal that caused 1694 * the problem was already a SIGSEGV, we'll want to 1695 * make sure we don't even try to deliver the signal.. 1696 */ 1697 void force_sigsegv(int sig) 1698 { 1699 if (sig == SIGSEGV) 1700 force_fatal_sig(SIGSEGV); 1701 else 1702 force_sig(SIGSEGV); 1703 } 1704 1705 int force_sig_fault_to_task(int sig, int code, void __user *addr 1706 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1707 , struct task_struct *t) 1708 { 1709 struct kernel_siginfo info; 1710 1711 clear_siginfo(&info); 1712 info.si_signo = sig; 1713 info.si_errno = 0; 1714 info.si_code = code; 1715 info.si_addr = addr; 1716 #ifdef __ia64__ 1717 info.si_imm = imm; 1718 info.si_flags = flags; 1719 info.si_isr = isr; 1720 #endif 1721 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1722 } 1723 1724 int force_sig_fault(int sig, int code, void __user *addr 1725 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1726 { 1727 return force_sig_fault_to_task(sig, code, addr 1728 ___ARCH_SI_IA64(imm, flags, isr), current); 1729 } 1730 1731 int send_sig_fault(int sig, int code, void __user *addr 1732 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1733 , struct task_struct *t) 1734 { 1735 struct kernel_siginfo info; 1736 1737 clear_siginfo(&info); 1738 info.si_signo = sig; 1739 info.si_errno = 0; 1740 info.si_code = code; 1741 info.si_addr = addr; 1742 #ifdef __ia64__ 1743 info.si_imm = imm; 1744 info.si_flags = flags; 1745 info.si_isr = isr; 1746 #endif 1747 return send_sig_info(info.si_signo, &info, t); 1748 } 1749 1750 int force_sig_mceerr(int code, void __user *addr, short lsb) 1751 { 1752 struct kernel_siginfo info; 1753 1754 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1755 clear_siginfo(&info); 1756 info.si_signo = SIGBUS; 1757 info.si_errno = 0; 1758 info.si_code = code; 1759 info.si_addr = addr; 1760 info.si_addr_lsb = lsb; 1761 return force_sig_info(&info); 1762 } 1763 1764 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1765 { 1766 struct kernel_siginfo info; 1767 1768 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1769 clear_siginfo(&info); 1770 info.si_signo = SIGBUS; 1771 info.si_errno = 0; 1772 info.si_code = code; 1773 info.si_addr = addr; 1774 info.si_addr_lsb = lsb; 1775 return send_sig_info(info.si_signo, &info, t); 1776 } 1777 EXPORT_SYMBOL(send_sig_mceerr); 1778 1779 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1780 { 1781 struct kernel_siginfo info; 1782 1783 clear_siginfo(&info); 1784 info.si_signo = SIGSEGV; 1785 info.si_errno = 0; 1786 info.si_code = SEGV_BNDERR; 1787 info.si_addr = addr; 1788 info.si_lower = lower; 1789 info.si_upper = upper; 1790 return force_sig_info(&info); 1791 } 1792 1793 #ifdef SEGV_PKUERR 1794 int force_sig_pkuerr(void __user *addr, u32 pkey) 1795 { 1796 struct kernel_siginfo info; 1797 1798 clear_siginfo(&info); 1799 info.si_signo = SIGSEGV; 1800 info.si_errno = 0; 1801 info.si_code = SEGV_PKUERR; 1802 info.si_addr = addr; 1803 info.si_pkey = pkey; 1804 return force_sig_info(&info); 1805 } 1806 #endif 1807 1808 int send_sig_perf(void __user *addr, u32 type, u64 sig_data) 1809 { 1810 struct kernel_siginfo info; 1811 1812 clear_siginfo(&info); 1813 info.si_signo = SIGTRAP; 1814 info.si_errno = 0; 1815 info.si_code = TRAP_PERF; 1816 info.si_addr = addr; 1817 info.si_perf_data = sig_data; 1818 info.si_perf_type = type; 1819 1820 /* 1821 * Signals generated by perf events should not terminate the whole 1822 * process if SIGTRAP is blocked, however, delivering the signal 1823 * asynchronously is better than not delivering at all. But tell user 1824 * space if the signal was asynchronous, so it can clearly be 1825 * distinguished from normal synchronous ones. 1826 */ 1827 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ? 1828 TRAP_PERF_FLAG_ASYNC : 1829 0; 1830 1831 return send_sig_info(info.si_signo, &info, current); 1832 } 1833 1834 /** 1835 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1836 * @syscall: syscall number to send to userland 1837 * @reason: filter-supplied reason code to send to userland (via si_errno) 1838 * @force_coredump: true to trigger a coredump 1839 * 1840 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1841 */ 1842 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1843 { 1844 struct kernel_siginfo info; 1845 1846 clear_siginfo(&info); 1847 info.si_signo = SIGSYS; 1848 info.si_code = SYS_SECCOMP; 1849 info.si_call_addr = (void __user *)KSTK_EIP(current); 1850 info.si_errno = reason; 1851 info.si_arch = syscall_get_arch(current); 1852 info.si_syscall = syscall; 1853 return force_sig_info_to_task(&info, current, 1854 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1855 } 1856 1857 /* For the crazy architectures that include trap information in 1858 * the errno field, instead of an actual errno value. 1859 */ 1860 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1861 { 1862 struct kernel_siginfo info; 1863 1864 clear_siginfo(&info); 1865 info.si_signo = SIGTRAP; 1866 info.si_errno = errno; 1867 info.si_code = TRAP_HWBKPT; 1868 info.si_addr = addr; 1869 return force_sig_info(&info); 1870 } 1871 1872 /* For the rare architectures that include trap information using 1873 * si_trapno. 1874 */ 1875 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1876 { 1877 struct kernel_siginfo info; 1878 1879 clear_siginfo(&info); 1880 info.si_signo = sig; 1881 info.si_errno = 0; 1882 info.si_code = code; 1883 info.si_addr = addr; 1884 info.si_trapno = trapno; 1885 return force_sig_info(&info); 1886 } 1887 1888 /* For the rare architectures that include trap information using 1889 * si_trapno. 1890 */ 1891 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1892 struct task_struct *t) 1893 { 1894 struct kernel_siginfo info; 1895 1896 clear_siginfo(&info); 1897 info.si_signo = sig; 1898 info.si_errno = 0; 1899 info.si_code = code; 1900 info.si_addr = addr; 1901 info.si_trapno = trapno; 1902 return send_sig_info(info.si_signo, &info, t); 1903 } 1904 1905 int kill_pgrp(struct pid *pid, int sig, int priv) 1906 { 1907 int ret; 1908 1909 read_lock(&tasklist_lock); 1910 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1911 read_unlock(&tasklist_lock); 1912 1913 return ret; 1914 } 1915 EXPORT_SYMBOL(kill_pgrp); 1916 1917 int kill_pid(struct pid *pid, int sig, int priv) 1918 { 1919 return kill_pid_info(sig, __si_special(priv), pid); 1920 } 1921 EXPORT_SYMBOL(kill_pid); 1922 1923 /* 1924 * These functions support sending signals using preallocated sigqueue 1925 * structures. This is needed "because realtime applications cannot 1926 * afford to lose notifications of asynchronous events, like timer 1927 * expirations or I/O completions". In the case of POSIX Timers 1928 * we allocate the sigqueue structure from the timer_create. If this 1929 * allocation fails we are able to report the failure to the application 1930 * with an EAGAIN error. 1931 */ 1932 struct sigqueue *sigqueue_alloc(void) 1933 { 1934 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1935 } 1936 1937 void sigqueue_free(struct sigqueue *q) 1938 { 1939 unsigned long flags; 1940 spinlock_t *lock = ¤t->sighand->siglock; 1941 1942 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1943 /* 1944 * We must hold ->siglock while testing q->list 1945 * to serialize with collect_signal() or with 1946 * __exit_signal()->flush_sigqueue(). 1947 */ 1948 spin_lock_irqsave(lock, flags); 1949 q->flags &= ~SIGQUEUE_PREALLOC; 1950 /* 1951 * If it is queued it will be freed when dequeued, 1952 * like the "regular" sigqueue. 1953 */ 1954 if (!list_empty(&q->list)) 1955 q = NULL; 1956 spin_unlock_irqrestore(lock, flags); 1957 1958 if (q) 1959 __sigqueue_free(q); 1960 } 1961 1962 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1963 { 1964 int sig = q->info.si_signo; 1965 struct sigpending *pending; 1966 struct task_struct *t; 1967 unsigned long flags; 1968 int ret, result; 1969 1970 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1971 1972 ret = -1; 1973 rcu_read_lock(); 1974 1975 /* 1976 * This function is used by POSIX timers to deliver a timer signal. 1977 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID 1978 * set), the signal must be delivered to the specific thread (queues 1979 * into t->pending). 1980 * 1981 * Where type is not PIDTYPE_PID, signals must be delivered to the 1982 * process. In this case, prefer to deliver to current if it is in 1983 * the same thread group as the target process, which avoids 1984 * unnecessarily waking up a potentially idle task. 1985 */ 1986 t = pid_task(pid, type); 1987 if (!t) 1988 goto ret; 1989 if (type != PIDTYPE_PID && same_thread_group(t, current)) 1990 t = current; 1991 if (!likely(lock_task_sighand(t, &flags))) 1992 goto ret; 1993 1994 ret = 1; /* the signal is ignored */ 1995 result = TRACE_SIGNAL_IGNORED; 1996 if (!prepare_signal(sig, t, false)) 1997 goto out; 1998 1999 ret = 0; 2000 if (unlikely(!list_empty(&q->list))) { 2001 /* 2002 * If an SI_TIMER entry is already queue just increment 2003 * the overrun count. 2004 */ 2005 BUG_ON(q->info.si_code != SI_TIMER); 2006 q->info.si_overrun++; 2007 result = TRACE_SIGNAL_ALREADY_PENDING; 2008 goto out; 2009 } 2010 q->info.si_overrun = 0; 2011 2012 signalfd_notify(t, sig); 2013 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 2014 list_add_tail(&q->list, &pending->list); 2015 sigaddset(&pending->signal, sig); 2016 complete_signal(sig, t, type); 2017 result = TRACE_SIGNAL_DELIVERED; 2018 out: 2019 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 2020 unlock_task_sighand(t, &flags); 2021 ret: 2022 rcu_read_unlock(); 2023 return ret; 2024 } 2025 2026 static void do_notify_pidfd(struct task_struct *task) 2027 { 2028 struct pid *pid; 2029 2030 WARN_ON(task->exit_state == 0); 2031 pid = task_pid(task); 2032 wake_up_all(&pid->wait_pidfd); 2033 } 2034 2035 /* 2036 * Let a parent know about the death of a child. 2037 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2038 * 2039 * Returns true if our parent ignored us and so we've switched to 2040 * self-reaping. 2041 */ 2042 bool do_notify_parent(struct task_struct *tsk, int sig) 2043 { 2044 struct kernel_siginfo info; 2045 unsigned long flags; 2046 struct sighand_struct *psig; 2047 bool autoreap = false; 2048 u64 utime, stime; 2049 2050 WARN_ON_ONCE(sig == -1); 2051 2052 /* do_notify_parent_cldstop should have been called instead. */ 2053 WARN_ON_ONCE(task_is_stopped_or_traced(tsk)); 2054 2055 WARN_ON_ONCE(!tsk->ptrace && 2056 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2057 2058 /* Wake up all pidfd waiters */ 2059 do_notify_pidfd(tsk); 2060 2061 if (sig != SIGCHLD) { 2062 /* 2063 * This is only possible if parent == real_parent. 2064 * Check if it has changed security domain. 2065 */ 2066 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2067 sig = SIGCHLD; 2068 } 2069 2070 clear_siginfo(&info); 2071 info.si_signo = sig; 2072 info.si_errno = 0; 2073 /* 2074 * We are under tasklist_lock here so our parent is tied to 2075 * us and cannot change. 2076 * 2077 * task_active_pid_ns will always return the same pid namespace 2078 * until a task passes through release_task. 2079 * 2080 * write_lock() currently calls preempt_disable() which is the 2081 * same as rcu_read_lock(), but according to Oleg, this is not 2082 * correct to rely on this 2083 */ 2084 rcu_read_lock(); 2085 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2086 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2087 task_uid(tsk)); 2088 rcu_read_unlock(); 2089 2090 task_cputime(tsk, &utime, &stime); 2091 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2092 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2093 2094 info.si_status = tsk->exit_code & 0x7f; 2095 if (tsk->exit_code & 0x80) 2096 info.si_code = CLD_DUMPED; 2097 else if (tsk->exit_code & 0x7f) 2098 info.si_code = CLD_KILLED; 2099 else { 2100 info.si_code = CLD_EXITED; 2101 info.si_status = tsk->exit_code >> 8; 2102 } 2103 2104 psig = tsk->parent->sighand; 2105 spin_lock_irqsave(&psig->siglock, flags); 2106 if (!tsk->ptrace && sig == SIGCHLD && 2107 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2108 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2109 /* 2110 * We are exiting and our parent doesn't care. POSIX.1 2111 * defines special semantics for setting SIGCHLD to SIG_IGN 2112 * or setting the SA_NOCLDWAIT flag: we should be reaped 2113 * automatically and not left for our parent's wait4 call. 2114 * Rather than having the parent do it as a magic kind of 2115 * signal handler, we just set this to tell do_exit that we 2116 * can be cleaned up without becoming a zombie. Note that 2117 * we still call __wake_up_parent in this case, because a 2118 * blocked sys_wait4 might now return -ECHILD. 2119 * 2120 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2121 * is implementation-defined: we do (if you don't want 2122 * it, just use SIG_IGN instead). 2123 */ 2124 autoreap = true; 2125 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2126 sig = 0; 2127 } 2128 /* 2129 * Send with __send_signal as si_pid and si_uid are in the 2130 * parent's namespaces. 2131 */ 2132 if (valid_signal(sig) && sig) 2133 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2134 __wake_up_parent(tsk, tsk->parent); 2135 spin_unlock_irqrestore(&psig->siglock, flags); 2136 2137 return autoreap; 2138 } 2139 2140 /** 2141 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2142 * @tsk: task reporting the state change 2143 * @for_ptracer: the notification is for ptracer 2144 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2145 * 2146 * Notify @tsk's parent that the stopped/continued state has changed. If 2147 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2148 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2149 * 2150 * CONTEXT: 2151 * Must be called with tasklist_lock at least read locked. 2152 */ 2153 static void do_notify_parent_cldstop(struct task_struct *tsk, 2154 bool for_ptracer, int why) 2155 { 2156 struct kernel_siginfo info; 2157 unsigned long flags; 2158 struct task_struct *parent; 2159 struct sighand_struct *sighand; 2160 u64 utime, stime; 2161 2162 if (for_ptracer) { 2163 parent = tsk->parent; 2164 } else { 2165 tsk = tsk->group_leader; 2166 parent = tsk->real_parent; 2167 } 2168 2169 clear_siginfo(&info); 2170 info.si_signo = SIGCHLD; 2171 info.si_errno = 0; 2172 /* 2173 * see comment in do_notify_parent() about the following 4 lines 2174 */ 2175 rcu_read_lock(); 2176 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2177 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2178 rcu_read_unlock(); 2179 2180 task_cputime(tsk, &utime, &stime); 2181 info.si_utime = nsec_to_clock_t(utime); 2182 info.si_stime = nsec_to_clock_t(stime); 2183 2184 info.si_code = why; 2185 switch (why) { 2186 case CLD_CONTINUED: 2187 info.si_status = SIGCONT; 2188 break; 2189 case CLD_STOPPED: 2190 info.si_status = tsk->signal->group_exit_code & 0x7f; 2191 break; 2192 case CLD_TRAPPED: 2193 info.si_status = tsk->exit_code & 0x7f; 2194 break; 2195 default: 2196 BUG(); 2197 } 2198 2199 sighand = parent->sighand; 2200 spin_lock_irqsave(&sighand->siglock, flags); 2201 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2202 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2203 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID); 2204 /* 2205 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2206 */ 2207 __wake_up_parent(tsk, parent); 2208 spin_unlock_irqrestore(&sighand->siglock, flags); 2209 } 2210 2211 /* 2212 * This must be called with current->sighand->siglock held. 2213 * 2214 * This should be the path for all ptrace stops. 2215 * We always set current->last_siginfo while stopped here. 2216 * That makes it a way to test a stopped process for 2217 * being ptrace-stopped vs being job-control-stopped. 2218 * 2219 * Returns the signal the ptracer requested the code resume 2220 * with. If the code did not stop because the tracer is gone, 2221 * the stop signal remains unchanged unless clear_code. 2222 */ 2223 static int ptrace_stop(int exit_code, int why, unsigned long message, 2224 kernel_siginfo_t *info) 2225 __releases(¤t->sighand->siglock) 2226 __acquires(¤t->sighand->siglock) 2227 { 2228 bool gstop_done = false; 2229 2230 if (arch_ptrace_stop_needed()) { 2231 /* 2232 * The arch code has something special to do before a 2233 * ptrace stop. This is allowed to block, e.g. for faults 2234 * on user stack pages. We can't keep the siglock while 2235 * calling arch_ptrace_stop, so we must release it now. 2236 * To preserve proper semantics, we must do this before 2237 * any signal bookkeeping like checking group_stop_count. 2238 */ 2239 spin_unlock_irq(¤t->sighand->siglock); 2240 arch_ptrace_stop(); 2241 spin_lock_irq(¤t->sighand->siglock); 2242 } 2243 2244 /* 2245 * After this point ptrace_signal_wake_up or signal_wake_up 2246 * will clear TASK_TRACED if ptrace_unlink happens or a fatal 2247 * signal comes in. Handle previous ptrace_unlinks and fatal 2248 * signals here to prevent ptrace_stop sleeping in schedule. 2249 */ 2250 if (!current->ptrace || __fatal_signal_pending(current)) 2251 return exit_code; 2252 2253 set_special_state(TASK_TRACED); 2254 current->jobctl |= JOBCTL_TRACED; 2255 2256 /* 2257 * We're committing to trapping. TRACED should be visible before 2258 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2259 * Also, transition to TRACED and updates to ->jobctl should be 2260 * atomic with respect to siglock and should be done after the arch 2261 * hook as siglock is released and regrabbed across it. 2262 * 2263 * TRACER TRACEE 2264 * 2265 * ptrace_attach() 2266 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2267 * do_wait() 2268 * set_current_state() smp_wmb(); 2269 * ptrace_do_wait() 2270 * wait_task_stopped() 2271 * task_stopped_code() 2272 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2273 */ 2274 smp_wmb(); 2275 2276 current->ptrace_message = message; 2277 current->last_siginfo = info; 2278 current->exit_code = exit_code; 2279 2280 /* 2281 * If @why is CLD_STOPPED, we're trapping to participate in a group 2282 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2283 * across siglock relocks since INTERRUPT was scheduled, PENDING 2284 * could be clear now. We act as if SIGCONT is received after 2285 * TASK_TRACED is entered - ignore it. 2286 */ 2287 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2288 gstop_done = task_participate_group_stop(current); 2289 2290 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2291 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2292 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2293 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2294 2295 /* entering a trap, clear TRAPPING */ 2296 task_clear_jobctl_trapping(current); 2297 2298 spin_unlock_irq(¤t->sighand->siglock); 2299 read_lock(&tasklist_lock); 2300 /* 2301 * Notify parents of the stop. 2302 * 2303 * While ptraced, there are two parents - the ptracer and 2304 * the real_parent of the group_leader. The ptracer should 2305 * know about every stop while the real parent is only 2306 * interested in the completion of group stop. The states 2307 * for the two don't interact with each other. Notify 2308 * separately unless they're gonna be duplicates. 2309 */ 2310 if (current->ptrace) 2311 do_notify_parent_cldstop(current, true, why); 2312 if (gstop_done && (!current->ptrace || ptrace_reparented(current))) 2313 do_notify_parent_cldstop(current, false, why); 2314 2315 /* 2316 * Don't want to allow preemption here, because 2317 * sys_ptrace() needs this task to be inactive. 2318 * 2319 * XXX: implement read_unlock_no_resched(). 2320 */ 2321 preempt_disable(); 2322 read_unlock(&tasklist_lock); 2323 cgroup_enter_frozen(); 2324 preempt_enable_no_resched(); 2325 schedule(); 2326 cgroup_leave_frozen(true); 2327 2328 /* 2329 * We are back. Now reacquire the siglock before touching 2330 * last_siginfo, so that we are sure to have synchronized with 2331 * any signal-sending on another CPU that wants to examine it. 2332 */ 2333 spin_lock_irq(¤t->sighand->siglock); 2334 exit_code = current->exit_code; 2335 current->last_siginfo = NULL; 2336 current->ptrace_message = 0; 2337 current->exit_code = 0; 2338 2339 /* LISTENING can be set only during STOP traps, clear it */ 2340 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN); 2341 2342 /* 2343 * Queued signals ignored us while we were stopped for tracing. 2344 * So check for any that we should take before resuming user mode. 2345 * This sets TIF_SIGPENDING, but never clears it. 2346 */ 2347 recalc_sigpending_tsk(current); 2348 return exit_code; 2349 } 2350 2351 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) 2352 { 2353 kernel_siginfo_t info; 2354 2355 clear_siginfo(&info); 2356 info.si_signo = signr; 2357 info.si_code = exit_code; 2358 info.si_pid = task_pid_vnr(current); 2359 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2360 2361 /* Let the debugger run. */ 2362 return ptrace_stop(exit_code, why, message, &info); 2363 } 2364 2365 int ptrace_notify(int exit_code, unsigned long message) 2366 { 2367 int signr; 2368 2369 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2370 if (unlikely(task_work_pending(current))) 2371 task_work_run(); 2372 2373 spin_lock_irq(¤t->sighand->siglock); 2374 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); 2375 spin_unlock_irq(¤t->sighand->siglock); 2376 return signr; 2377 } 2378 2379 /** 2380 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2381 * @signr: signr causing group stop if initiating 2382 * 2383 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2384 * and participate in it. If already set, participate in the existing 2385 * group stop. If participated in a group stop (and thus slept), %true is 2386 * returned with siglock released. 2387 * 2388 * If ptraced, this function doesn't handle stop itself. Instead, 2389 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2390 * untouched. The caller must ensure that INTERRUPT trap handling takes 2391 * places afterwards. 2392 * 2393 * CONTEXT: 2394 * Must be called with @current->sighand->siglock held, which is released 2395 * on %true return. 2396 * 2397 * RETURNS: 2398 * %false if group stop is already cancelled or ptrace trap is scheduled. 2399 * %true if participated in group stop. 2400 */ 2401 static bool do_signal_stop(int signr) 2402 __releases(¤t->sighand->siglock) 2403 { 2404 struct signal_struct *sig = current->signal; 2405 2406 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2407 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2408 struct task_struct *t; 2409 2410 /* signr will be recorded in task->jobctl for retries */ 2411 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2412 2413 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2414 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2415 unlikely(sig->group_exec_task)) 2416 return false; 2417 /* 2418 * There is no group stop already in progress. We must 2419 * initiate one now. 2420 * 2421 * While ptraced, a task may be resumed while group stop is 2422 * still in effect and then receive a stop signal and 2423 * initiate another group stop. This deviates from the 2424 * usual behavior as two consecutive stop signals can't 2425 * cause two group stops when !ptraced. That is why we 2426 * also check !task_is_stopped(t) below. 2427 * 2428 * The condition can be distinguished by testing whether 2429 * SIGNAL_STOP_STOPPED is already set. Don't generate 2430 * group_exit_code in such case. 2431 * 2432 * This is not necessary for SIGNAL_STOP_CONTINUED because 2433 * an intervening stop signal is required to cause two 2434 * continued events regardless of ptrace. 2435 */ 2436 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2437 sig->group_exit_code = signr; 2438 2439 sig->group_stop_count = 0; 2440 2441 if (task_set_jobctl_pending(current, signr | gstop)) 2442 sig->group_stop_count++; 2443 2444 t = current; 2445 while_each_thread(current, t) { 2446 /* 2447 * Setting state to TASK_STOPPED for a group 2448 * stop is always done with the siglock held, 2449 * so this check has no races. 2450 */ 2451 if (!task_is_stopped(t) && 2452 task_set_jobctl_pending(t, signr | gstop)) { 2453 sig->group_stop_count++; 2454 if (likely(!(t->ptrace & PT_SEIZED))) 2455 signal_wake_up(t, 0); 2456 else 2457 ptrace_trap_notify(t); 2458 } 2459 } 2460 } 2461 2462 if (likely(!current->ptrace)) { 2463 int notify = 0; 2464 2465 /* 2466 * If there are no other threads in the group, or if there 2467 * is a group stop in progress and we are the last to stop, 2468 * report to the parent. 2469 */ 2470 if (task_participate_group_stop(current)) 2471 notify = CLD_STOPPED; 2472 2473 current->jobctl |= JOBCTL_STOPPED; 2474 set_special_state(TASK_STOPPED); 2475 spin_unlock_irq(¤t->sighand->siglock); 2476 2477 /* 2478 * Notify the parent of the group stop completion. Because 2479 * we're not holding either the siglock or tasklist_lock 2480 * here, ptracer may attach inbetween; however, this is for 2481 * group stop and should always be delivered to the real 2482 * parent of the group leader. The new ptracer will get 2483 * its notification when this task transitions into 2484 * TASK_TRACED. 2485 */ 2486 if (notify) { 2487 read_lock(&tasklist_lock); 2488 do_notify_parent_cldstop(current, false, notify); 2489 read_unlock(&tasklist_lock); 2490 } 2491 2492 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2493 cgroup_enter_frozen(); 2494 schedule(); 2495 return true; 2496 } else { 2497 /* 2498 * While ptraced, group stop is handled by STOP trap. 2499 * Schedule it and let the caller deal with it. 2500 */ 2501 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2502 return false; 2503 } 2504 } 2505 2506 /** 2507 * do_jobctl_trap - take care of ptrace jobctl traps 2508 * 2509 * When PT_SEIZED, it's used for both group stop and explicit 2510 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2511 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2512 * the stop signal; otherwise, %SIGTRAP. 2513 * 2514 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2515 * number as exit_code and no siginfo. 2516 * 2517 * CONTEXT: 2518 * Must be called with @current->sighand->siglock held, which may be 2519 * released and re-acquired before returning with intervening sleep. 2520 */ 2521 static void do_jobctl_trap(void) 2522 { 2523 struct signal_struct *signal = current->signal; 2524 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2525 2526 if (current->ptrace & PT_SEIZED) { 2527 if (!signal->group_stop_count && 2528 !(signal->flags & SIGNAL_STOP_STOPPED)) 2529 signr = SIGTRAP; 2530 WARN_ON_ONCE(!signr); 2531 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2532 CLD_STOPPED, 0); 2533 } else { 2534 WARN_ON_ONCE(!signr); 2535 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2536 } 2537 } 2538 2539 /** 2540 * do_freezer_trap - handle the freezer jobctl trap 2541 * 2542 * Puts the task into frozen state, if only the task is not about to quit. 2543 * In this case it drops JOBCTL_TRAP_FREEZE. 2544 * 2545 * CONTEXT: 2546 * Must be called with @current->sighand->siglock held, 2547 * which is always released before returning. 2548 */ 2549 static void do_freezer_trap(void) 2550 __releases(¤t->sighand->siglock) 2551 { 2552 /* 2553 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2554 * let's make another loop to give it a chance to be handled. 2555 * In any case, we'll return back. 2556 */ 2557 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2558 JOBCTL_TRAP_FREEZE) { 2559 spin_unlock_irq(¤t->sighand->siglock); 2560 return; 2561 } 2562 2563 /* 2564 * Now we're sure that there is no pending fatal signal and no 2565 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2566 * immediately (if there is a non-fatal signal pending), and 2567 * put the task into sleep. 2568 */ 2569 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2570 clear_thread_flag(TIF_SIGPENDING); 2571 spin_unlock_irq(¤t->sighand->siglock); 2572 cgroup_enter_frozen(); 2573 schedule(); 2574 } 2575 2576 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2577 { 2578 /* 2579 * We do not check sig_kernel_stop(signr) but set this marker 2580 * unconditionally because we do not know whether debugger will 2581 * change signr. This flag has no meaning unless we are going 2582 * to stop after return from ptrace_stop(). In this case it will 2583 * be checked in do_signal_stop(), we should only stop if it was 2584 * not cleared by SIGCONT while we were sleeping. See also the 2585 * comment in dequeue_signal(). 2586 */ 2587 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2588 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info); 2589 2590 /* We're back. Did the debugger cancel the sig? */ 2591 if (signr == 0) 2592 return signr; 2593 2594 /* 2595 * Update the siginfo structure if the signal has 2596 * changed. If the debugger wanted something 2597 * specific in the siginfo structure then it should 2598 * have updated *info via PTRACE_SETSIGINFO. 2599 */ 2600 if (signr != info->si_signo) { 2601 clear_siginfo(info); 2602 info->si_signo = signr; 2603 info->si_errno = 0; 2604 info->si_code = SI_USER; 2605 rcu_read_lock(); 2606 info->si_pid = task_pid_vnr(current->parent); 2607 info->si_uid = from_kuid_munged(current_user_ns(), 2608 task_uid(current->parent)); 2609 rcu_read_unlock(); 2610 } 2611 2612 /* If the (new) signal is now blocked, requeue it. */ 2613 if (sigismember(¤t->blocked, signr) || 2614 fatal_signal_pending(current)) { 2615 send_signal_locked(signr, info, current, type); 2616 signr = 0; 2617 } 2618 2619 return signr; 2620 } 2621 2622 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2623 { 2624 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2625 case SIL_FAULT: 2626 case SIL_FAULT_TRAPNO: 2627 case SIL_FAULT_MCEERR: 2628 case SIL_FAULT_BNDERR: 2629 case SIL_FAULT_PKUERR: 2630 case SIL_FAULT_PERF_EVENT: 2631 ksig->info.si_addr = arch_untagged_si_addr( 2632 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2633 break; 2634 case SIL_KILL: 2635 case SIL_TIMER: 2636 case SIL_POLL: 2637 case SIL_CHLD: 2638 case SIL_RT: 2639 case SIL_SYS: 2640 break; 2641 } 2642 } 2643 2644 bool get_signal(struct ksignal *ksig) 2645 { 2646 struct sighand_struct *sighand = current->sighand; 2647 struct signal_struct *signal = current->signal; 2648 int signr; 2649 2650 clear_notify_signal(); 2651 if (unlikely(task_work_pending(current))) 2652 task_work_run(); 2653 2654 if (!task_sigpending(current)) 2655 return false; 2656 2657 if (unlikely(uprobe_deny_signal())) 2658 return false; 2659 2660 /* 2661 * Do this once, we can't return to user-mode if freezing() == T. 2662 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2663 * thus do not need another check after return. 2664 */ 2665 try_to_freeze(); 2666 2667 relock: 2668 spin_lock_irq(&sighand->siglock); 2669 2670 /* 2671 * Every stopped thread goes here after wakeup. Check to see if 2672 * we should notify the parent, prepare_signal(SIGCONT) encodes 2673 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2674 */ 2675 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2676 int why; 2677 2678 if (signal->flags & SIGNAL_CLD_CONTINUED) 2679 why = CLD_CONTINUED; 2680 else 2681 why = CLD_STOPPED; 2682 2683 signal->flags &= ~SIGNAL_CLD_MASK; 2684 2685 spin_unlock_irq(&sighand->siglock); 2686 2687 /* 2688 * Notify the parent that we're continuing. This event is 2689 * always per-process and doesn't make whole lot of sense 2690 * for ptracers, who shouldn't consume the state via 2691 * wait(2) either, but, for backward compatibility, notify 2692 * the ptracer of the group leader too unless it's gonna be 2693 * a duplicate. 2694 */ 2695 read_lock(&tasklist_lock); 2696 do_notify_parent_cldstop(current, false, why); 2697 2698 if (ptrace_reparented(current->group_leader)) 2699 do_notify_parent_cldstop(current->group_leader, 2700 true, why); 2701 read_unlock(&tasklist_lock); 2702 2703 goto relock; 2704 } 2705 2706 for (;;) { 2707 struct k_sigaction *ka; 2708 enum pid_type type; 2709 2710 /* Has this task already been marked for death? */ 2711 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2712 signal->group_exec_task) { 2713 clear_siginfo(&ksig->info); 2714 ksig->info.si_signo = signr = SIGKILL; 2715 sigdelset(¤t->pending.signal, SIGKILL); 2716 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2717 &sighand->action[SIGKILL - 1]); 2718 recalc_sigpending(); 2719 goto fatal; 2720 } 2721 2722 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2723 do_signal_stop(0)) 2724 goto relock; 2725 2726 if (unlikely(current->jobctl & 2727 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2728 if (current->jobctl & JOBCTL_TRAP_MASK) { 2729 do_jobctl_trap(); 2730 spin_unlock_irq(&sighand->siglock); 2731 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2732 do_freezer_trap(); 2733 2734 goto relock; 2735 } 2736 2737 /* 2738 * If the task is leaving the frozen state, let's update 2739 * cgroup counters and reset the frozen bit. 2740 */ 2741 if (unlikely(cgroup_task_frozen(current))) { 2742 spin_unlock_irq(&sighand->siglock); 2743 cgroup_leave_frozen(false); 2744 goto relock; 2745 } 2746 2747 /* 2748 * Signals generated by the execution of an instruction 2749 * need to be delivered before any other pending signals 2750 * so that the instruction pointer in the signal stack 2751 * frame points to the faulting instruction. 2752 */ 2753 type = PIDTYPE_PID; 2754 signr = dequeue_synchronous_signal(&ksig->info); 2755 if (!signr) 2756 signr = dequeue_signal(current, ¤t->blocked, 2757 &ksig->info, &type); 2758 2759 if (!signr) 2760 break; /* will return 0 */ 2761 2762 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2763 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2764 signr = ptrace_signal(signr, &ksig->info, type); 2765 if (!signr) 2766 continue; 2767 } 2768 2769 ka = &sighand->action[signr-1]; 2770 2771 /* Trace actually delivered signals. */ 2772 trace_signal_deliver(signr, &ksig->info, ka); 2773 2774 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2775 continue; 2776 if (ka->sa.sa_handler != SIG_DFL) { 2777 /* Run the handler. */ 2778 ksig->ka = *ka; 2779 2780 if (ka->sa.sa_flags & SA_ONESHOT) 2781 ka->sa.sa_handler = SIG_DFL; 2782 2783 break; /* will return non-zero "signr" value */ 2784 } 2785 2786 /* 2787 * Now we are doing the default action for this signal. 2788 */ 2789 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2790 continue; 2791 2792 /* 2793 * Global init gets no signals it doesn't want. 2794 * Container-init gets no signals it doesn't want from same 2795 * container. 2796 * 2797 * Note that if global/container-init sees a sig_kernel_only() 2798 * signal here, the signal must have been generated internally 2799 * or must have come from an ancestor namespace. In either 2800 * case, the signal cannot be dropped. 2801 */ 2802 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2803 !sig_kernel_only(signr)) 2804 continue; 2805 2806 if (sig_kernel_stop(signr)) { 2807 /* 2808 * The default action is to stop all threads in 2809 * the thread group. The job control signals 2810 * do nothing in an orphaned pgrp, but SIGSTOP 2811 * always works. Note that siglock needs to be 2812 * dropped during the call to is_orphaned_pgrp() 2813 * because of lock ordering with tasklist_lock. 2814 * This allows an intervening SIGCONT to be posted. 2815 * We need to check for that and bail out if necessary. 2816 */ 2817 if (signr != SIGSTOP) { 2818 spin_unlock_irq(&sighand->siglock); 2819 2820 /* signals can be posted during this window */ 2821 2822 if (is_current_pgrp_orphaned()) 2823 goto relock; 2824 2825 spin_lock_irq(&sighand->siglock); 2826 } 2827 2828 if (likely(do_signal_stop(ksig->info.si_signo))) { 2829 /* It released the siglock. */ 2830 goto relock; 2831 } 2832 2833 /* 2834 * We didn't actually stop, due to a race 2835 * with SIGCONT or something like that. 2836 */ 2837 continue; 2838 } 2839 2840 fatal: 2841 spin_unlock_irq(&sighand->siglock); 2842 if (unlikely(cgroup_task_frozen(current))) 2843 cgroup_leave_frozen(true); 2844 2845 /* 2846 * Anything else is fatal, maybe with a core dump. 2847 */ 2848 current->flags |= PF_SIGNALED; 2849 2850 if (sig_kernel_coredump(signr)) { 2851 if (print_fatal_signals) 2852 print_fatal_signal(ksig->info.si_signo); 2853 proc_coredump_connector(current); 2854 /* 2855 * If it was able to dump core, this kills all 2856 * other threads in the group and synchronizes with 2857 * their demise. If we lost the race with another 2858 * thread getting here, it set group_exit_code 2859 * first and our do_group_exit call below will use 2860 * that value and ignore the one we pass it. 2861 */ 2862 do_coredump(&ksig->info); 2863 } 2864 2865 /* 2866 * PF_USER_WORKER threads will catch and exit on fatal signals 2867 * themselves. They have cleanup that must be performed, so 2868 * we cannot call do_exit() on their behalf. 2869 */ 2870 if (current->flags & PF_USER_WORKER) 2871 goto out; 2872 2873 /* 2874 * Death signals, no core dump. 2875 */ 2876 do_group_exit(ksig->info.si_signo); 2877 /* NOTREACHED */ 2878 } 2879 spin_unlock_irq(&sighand->siglock); 2880 out: 2881 ksig->sig = signr; 2882 2883 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2884 hide_si_addr_tag_bits(ksig); 2885 2886 return ksig->sig > 0; 2887 } 2888 2889 /** 2890 * signal_delivered - called after signal delivery to update blocked signals 2891 * @ksig: kernel signal struct 2892 * @stepping: nonzero if debugger single-step or block-step in use 2893 * 2894 * This function should be called when a signal has successfully been 2895 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2896 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 2897 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2898 */ 2899 static void signal_delivered(struct ksignal *ksig, int stepping) 2900 { 2901 sigset_t blocked; 2902 2903 /* A signal was successfully delivered, and the 2904 saved sigmask was stored on the signal frame, 2905 and will be restored by sigreturn. So we can 2906 simply clear the restore sigmask flag. */ 2907 clear_restore_sigmask(); 2908 2909 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2910 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2911 sigaddset(&blocked, ksig->sig); 2912 set_current_blocked(&blocked); 2913 if (current->sas_ss_flags & SS_AUTODISARM) 2914 sas_ss_reset(current); 2915 if (stepping) 2916 ptrace_notify(SIGTRAP, 0); 2917 } 2918 2919 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2920 { 2921 if (failed) 2922 force_sigsegv(ksig->sig); 2923 else 2924 signal_delivered(ksig, stepping); 2925 } 2926 2927 /* 2928 * It could be that complete_signal() picked us to notify about the 2929 * group-wide signal. Other threads should be notified now to take 2930 * the shared signals in @which since we will not. 2931 */ 2932 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2933 { 2934 sigset_t retarget; 2935 struct task_struct *t; 2936 2937 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2938 if (sigisemptyset(&retarget)) 2939 return; 2940 2941 t = tsk; 2942 while_each_thread(tsk, t) { 2943 if (t->flags & PF_EXITING) 2944 continue; 2945 2946 if (!has_pending_signals(&retarget, &t->blocked)) 2947 continue; 2948 /* Remove the signals this thread can handle. */ 2949 sigandsets(&retarget, &retarget, &t->blocked); 2950 2951 if (!task_sigpending(t)) 2952 signal_wake_up(t, 0); 2953 2954 if (sigisemptyset(&retarget)) 2955 break; 2956 } 2957 } 2958 2959 void exit_signals(struct task_struct *tsk) 2960 { 2961 int group_stop = 0; 2962 sigset_t unblocked; 2963 2964 /* 2965 * @tsk is about to have PF_EXITING set - lock out users which 2966 * expect stable threadgroup. 2967 */ 2968 cgroup_threadgroup_change_begin(tsk); 2969 2970 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 2971 sched_mm_cid_exit_signals(tsk); 2972 tsk->flags |= PF_EXITING; 2973 cgroup_threadgroup_change_end(tsk); 2974 return; 2975 } 2976 2977 spin_lock_irq(&tsk->sighand->siglock); 2978 /* 2979 * From now this task is not visible for group-wide signals, 2980 * see wants_signal(), do_signal_stop(). 2981 */ 2982 sched_mm_cid_exit_signals(tsk); 2983 tsk->flags |= PF_EXITING; 2984 2985 cgroup_threadgroup_change_end(tsk); 2986 2987 if (!task_sigpending(tsk)) 2988 goto out; 2989 2990 unblocked = tsk->blocked; 2991 signotset(&unblocked); 2992 retarget_shared_pending(tsk, &unblocked); 2993 2994 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2995 task_participate_group_stop(tsk)) 2996 group_stop = CLD_STOPPED; 2997 out: 2998 spin_unlock_irq(&tsk->sighand->siglock); 2999 3000 /* 3001 * If group stop has completed, deliver the notification. This 3002 * should always go to the real parent of the group leader. 3003 */ 3004 if (unlikely(group_stop)) { 3005 read_lock(&tasklist_lock); 3006 do_notify_parent_cldstop(tsk, false, group_stop); 3007 read_unlock(&tasklist_lock); 3008 } 3009 } 3010 3011 /* 3012 * System call entry points. 3013 */ 3014 3015 /** 3016 * sys_restart_syscall - restart a system call 3017 */ 3018 SYSCALL_DEFINE0(restart_syscall) 3019 { 3020 struct restart_block *restart = ¤t->restart_block; 3021 return restart->fn(restart); 3022 } 3023 3024 long do_no_restart_syscall(struct restart_block *param) 3025 { 3026 return -EINTR; 3027 } 3028 3029 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3030 { 3031 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3032 sigset_t newblocked; 3033 /* A set of now blocked but previously unblocked signals. */ 3034 sigandnsets(&newblocked, newset, ¤t->blocked); 3035 retarget_shared_pending(tsk, &newblocked); 3036 } 3037 tsk->blocked = *newset; 3038 recalc_sigpending(); 3039 } 3040 3041 /** 3042 * set_current_blocked - change current->blocked mask 3043 * @newset: new mask 3044 * 3045 * It is wrong to change ->blocked directly, this helper should be used 3046 * to ensure the process can't miss a shared signal we are going to block. 3047 */ 3048 void set_current_blocked(sigset_t *newset) 3049 { 3050 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3051 __set_current_blocked(newset); 3052 } 3053 3054 void __set_current_blocked(const sigset_t *newset) 3055 { 3056 struct task_struct *tsk = current; 3057 3058 /* 3059 * In case the signal mask hasn't changed, there is nothing we need 3060 * to do. The current->blocked shouldn't be modified by other task. 3061 */ 3062 if (sigequalsets(&tsk->blocked, newset)) 3063 return; 3064 3065 spin_lock_irq(&tsk->sighand->siglock); 3066 __set_task_blocked(tsk, newset); 3067 spin_unlock_irq(&tsk->sighand->siglock); 3068 } 3069 3070 /* 3071 * This is also useful for kernel threads that want to temporarily 3072 * (or permanently) block certain signals. 3073 * 3074 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3075 * interface happily blocks "unblockable" signals like SIGKILL 3076 * and friends. 3077 */ 3078 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3079 { 3080 struct task_struct *tsk = current; 3081 sigset_t newset; 3082 3083 /* Lockless, only current can change ->blocked, never from irq */ 3084 if (oldset) 3085 *oldset = tsk->blocked; 3086 3087 switch (how) { 3088 case SIG_BLOCK: 3089 sigorsets(&newset, &tsk->blocked, set); 3090 break; 3091 case SIG_UNBLOCK: 3092 sigandnsets(&newset, &tsk->blocked, set); 3093 break; 3094 case SIG_SETMASK: 3095 newset = *set; 3096 break; 3097 default: 3098 return -EINVAL; 3099 } 3100 3101 __set_current_blocked(&newset); 3102 return 0; 3103 } 3104 EXPORT_SYMBOL(sigprocmask); 3105 3106 /* 3107 * The api helps set app-provided sigmasks. 3108 * 3109 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3110 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3111 * 3112 * Note that it does set_restore_sigmask() in advance, so it must be always 3113 * paired with restore_saved_sigmask_unless() before return from syscall. 3114 */ 3115 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3116 { 3117 sigset_t kmask; 3118 3119 if (!umask) 3120 return 0; 3121 if (sigsetsize != sizeof(sigset_t)) 3122 return -EINVAL; 3123 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3124 return -EFAULT; 3125 3126 set_restore_sigmask(); 3127 current->saved_sigmask = current->blocked; 3128 set_current_blocked(&kmask); 3129 3130 return 0; 3131 } 3132 3133 #ifdef CONFIG_COMPAT 3134 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3135 size_t sigsetsize) 3136 { 3137 sigset_t kmask; 3138 3139 if (!umask) 3140 return 0; 3141 if (sigsetsize != sizeof(compat_sigset_t)) 3142 return -EINVAL; 3143 if (get_compat_sigset(&kmask, umask)) 3144 return -EFAULT; 3145 3146 set_restore_sigmask(); 3147 current->saved_sigmask = current->blocked; 3148 set_current_blocked(&kmask); 3149 3150 return 0; 3151 } 3152 #endif 3153 3154 /** 3155 * sys_rt_sigprocmask - change the list of currently blocked signals 3156 * @how: whether to add, remove, or set signals 3157 * @nset: stores pending signals 3158 * @oset: previous value of signal mask if non-null 3159 * @sigsetsize: size of sigset_t type 3160 */ 3161 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3162 sigset_t __user *, oset, size_t, sigsetsize) 3163 { 3164 sigset_t old_set, new_set; 3165 int error; 3166 3167 /* XXX: Don't preclude handling different sized sigset_t's. */ 3168 if (sigsetsize != sizeof(sigset_t)) 3169 return -EINVAL; 3170 3171 old_set = current->blocked; 3172 3173 if (nset) { 3174 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3175 return -EFAULT; 3176 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3177 3178 error = sigprocmask(how, &new_set, NULL); 3179 if (error) 3180 return error; 3181 } 3182 3183 if (oset) { 3184 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3185 return -EFAULT; 3186 } 3187 3188 return 0; 3189 } 3190 3191 #ifdef CONFIG_COMPAT 3192 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3193 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3194 { 3195 sigset_t old_set = current->blocked; 3196 3197 /* XXX: Don't preclude handling different sized sigset_t's. */ 3198 if (sigsetsize != sizeof(sigset_t)) 3199 return -EINVAL; 3200 3201 if (nset) { 3202 sigset_t new_set; 3203 int error; 3204 if (get_compat_sigset(&new_set, nset)) 3205 return -EFAULT; 3206 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3207 3208 error = sigprocmask(how, &new_set, NULL); 3209 if (error) 3210 return error; 3211 } 3212 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3213 } 3214 #endif 3215 3216 static void do_sigpending(sigset_t *set) 3217 { 3218 spin_lock_irq(¤t->sighand->siglock); 3219 sigorsets(set, ¤t->pending.signal, 3220 ¤t->signal->shared_pending.signal); 3221 spin_unlock_irq(¤t->sighand->siglock); 3222 3223 /* Outside the lock because only this thread touches it. */ 3224 sigandsets(set, ¤t->blocked, set); 3225 } 3226 3227 /** 3228 * sys_rt_sigpending - examine a pending signal that has been raised 3229 * while blocked 3230 * @uset: stores pending signals 3231 * @sigsetsize: size of sigset_t type or larger 3232 */ 3233 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3234 { 3235 sigset_t set; 3236 3237 if (sigsetsize > sizeof(*uset)) 3238 return -EINVAL; 3239 3240 do_sigpending(&set); 3241 3242 if (copy_to_user(uset, &set, sigsetsize)) 3243 return -EFAULT; 3244 3245 return 0; 3246 } 3247 3248 #ifdef CONFIG_COMPAT 3249 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3250 compat_size_t, sigsetsize) 3251 { 3252 sigset_t set; 3253 3254 if (sigsetsize > sizeof(*uset)) 3255 return -EINVAL; 3256 3257 do_sigpending(&set); 3258 3259 return put_compat_sigset(uset, &set, sigsetsize); 3260 } 3261 #endif 3262 3263 static const struct { 3264 unsigned char limit, layout; 3265 } sig_sicodes[] = { 3266 [SIGILL] = { NSIGILL, SIL_FAULT }, 3267 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3268 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3269 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3270 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3271 #if defined(SIGEMT) 3272 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3273 #endif 3274 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3275 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3276 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3277 }; 3278 3279 static bool known_siginfo_layout(unsigned sig, int si_code) 3280 { 3281 if (si_code == SI_KERNEL) 3282 return true; 3283 else if ((si_code > SI_USER)) { 3284 if (sig_specific_sicodes(sig)) { 3285 if (si_code <= sig_sicodes[sig].limit) 3286 return true; 3287 } 3288 else if (si_code <= NSIGPOLL) 3289 return true; 3290 } 3291 else if (si_code >= SI_DETHREAD) 3292 return true; 3293 else if (si_code == SI_ASYNCNL) 3294 return true; 3295 return false; 3296 } 3297 3298 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3299 { 3300 enum siginfo_layout layout = SIL_KILL; 3301 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3302 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3303 (si_code <= sig_sicodes[sig].limit)) { 3304 layout = sig_sicodes[sig].layout; 3305 /* Handle the exceptions */ 3306 if ((sig == SIGBUS) && 3307 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3308 layout = SIL_FAULT_MCEERR; 3309 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3310 layout = SIL_FAULT_BNDERR; 3311 #ifdef SEGV_PKUERR 3312 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3313 layout = SIL_FAULT_PKUERR; 3314 #endif 3315 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3316 layout = SIL_FAULT_PERF_EVENT; 3317 else if (IS_ENABLED(CONFIG_SPARC) && 3318 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3319 layout = SIL_FAULT_TRAPNO; 3320 else if (IS_ENABLED(CONFIG_ALPHA) && 3321 ((sig == SIGFPE) || 3322 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3323 layout = SIL_FAULT_TRAPNO; 3324 } 3325 else if (si_code <= NSIGPOLL) 3326 layout = SIL_POLL; 3327 } else { 3328 if (si_code == SI_TIMER) 3329 layout = SIL_TIMER; 3330 else if (si_code == SI_SIGIO) 3331 layout = SIL_POLL; 3332 else if (si_code < 0) 3333 layout = SIL_RT; 3334 } 3335 return layout; 3336 } 3337 3338 static inline char __user *si_expansion(const siginfo_t __user *info) 3339 { 3340 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3341 } 3342 3343 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3344 { 3345 char __user *expansion = si_expansion(to); 3346 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3347 return -EFAULT; 3348 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3349 return -EFAULT; 3350 return 0; 3351 } 3352 3353 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3354 const siginfo_t __user *from) 3355 { 3356 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3357 char __user *expansion = si_expansion(from); 3358 char buf[SI_EXPANSION_SIZE]; 3359 int i; 3360 /* 3361 * An unknown si_code might need more than 3362 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3363 * extra bytes are 0. This guarantees copy_siginfo_to_user 3364 * will return this data to userspace exactly. 3365 */ 3366 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3367 return -EFAULT; 3368 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3369 if (buf[i] != 0) 3370 return -E2BIG; 3371 } 3372 } 3373 return 0; 3374 } 3375 3376 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3377 const siginfo_t __user *from) 3378 { 3379 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3380 return -EFAULT; 3381 to->si_signo = signo; 3382 return post_copy_siginfo_from_user(to, from); 3383 } 3384 3385 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3386 { 3387 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3388 return -EFAULT; 3389 return post_copy_siginfo_from_user(to, from); 3390 } 3391 3392 #ifdef CONFIG_COMPAT 3393 /** 3394 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3395 * @to: compat siginfo destination 3396 * @from: kernel siginfo source 3397 * 3398 * Note: This function does not work properly for the SIGCHLD on x32, but 3399 * fortunately it doesn't have to. The only valid callers for this function are 3400 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3401 * The latter does not care because SIGCHLD will never cause a coredump. 3402 */ 3403 void copy_siginfo_to_external32(struct compat_siginfo *to, 3404 const struct kernel_siginfo *from) 3405 { 3406 memset(to, 0, sizeof(*to)); 3407 3408 to->si_signo = from->si_signo; 3409 to->si_errno = from->si_errno; 3410 to->si_code = from->si_code; 3411 switch(siginfo_layout(from->si_signo, from->si_code)) { 3412 case SIL_KILL: 3413 to->si_pid = from->si_pid; 3414 to->si_uid = from->si_uid; 3415 break; 3416 case SIL_TIMER: 3417 to->si_tid = from->si_tid; 3418 to->si_overrun = from->si_overrun; 3419 to->si_int = from->si_int; 3420 break; 3421 case SIL_POLL: 3422 to->si_band = from->si_band; 3423 to->si_fd = from->si_fd; 3424 break; 3425 case SIL_FAULT: 3426 to->si_addr = ptr_to_compat(from->si_addr); 3427 break; 3428 case SIL_FAULT_TRAPNO: 3429 to->si_addr = ptr_to_compat(from->si_addr); 3430 to->si_trapno = from->si_trapno; 3431 break; 3432 case SIL_FAULT_MCEERR: 3433 to->si_addr = ptr_to_compat(from->si_addr); 3434 to->si_addr_lsb = from->si_addr_lsb; 3435 break; 3436 case SIL_FAULT_BNDERR: 3437 to->si_addr = ptr_to_compat(from->si_addr); 3438 to->si_lower = ptr_to_compat(from->si_lower); 3439 to->si_upper = ptr_to_compat(from->si_upper); 3440 break; 3441 case SIL_FAULT_PKUERR: 3442 to->si_addr = ptr_to_compat(from->si_addr); 3443 to->si_pkey = from->si_pkey; 3444 break; 3445 case SIL_FAULT_PERF_EVENT: 3446 to->si_addr = ptr_to_compat(from->si_addr); 3447 to->si_perf_data = from->si_perf_data; 3448 to->si_perf_type = from->si_perf_type; 3449 to->si_perf_flags = from->si_perf_flags; 3450 break; 3451 case SIL_CHLD: 3452 to->si_pid = from->si_pid; 3453 to->si_uid = from->si_uid; 3454 to->si_status = from->si_status; 3455 to->si_utime = from->si_utime; 3456 to->si_stime = from->si_stime; 3457 break; 3458 case SIL_RT: 3459 to->si_pid = from->si_pid; 3460 to->si_uid = from->si_uid; 3461 to->si_int = from->si_int; 3462 break; 3463 case SIL_SYS: 3464 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3465 to->si_syscall = from->si_syscall; 3466 to->si_arch = from->si_arch; 3467 break; 3468 } 3469 } 3470 3471 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3472 const struct kernel_siginfo *from) 3473 { 3474 struct compat_siginfo new; 3475 3476 copy_siginfo_to_external32(&new, from); 3477 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3478 return -EFAULT; 3479 return 0; 3480 } 3481 3482 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3483 const struct compat_siginfo *from) 3484 { 3485 clear_siginfo(to); 3486 to->si_signo = from->si_signo; 3487 to->si_errno = from->si_errno; 3488 to->si_code = from->si_code; 3489 switch(siginfo_layout(from->si_signo, from->si_code)) { 3490 case SIL_KILL: 3491 to->si_pid = from->si_pid; 3492 to->si_uid = from->si_uid; 3493 break; 3494 case SIL_TIMER: 3495 to->si_tid = from->si_tid; 3496 to->si_overrun = from->si_overrun; 3497 to->si_int = from->si_int; 3498 break; 3499 case SIL_POLL: 3500 to->si_band = from->si_band; 3501 to->si_fd = from->si_fd; 3502 break; 3503 case SIL_FAULT: 3504 to->si_addr = compat_ptr(from->si_addr); 3505 break; 3506 case SIL_FAULT_TRAPNO: 3507 to->si_addr = compat_ptr(from->si_addr); 3508 to->si_trapno = from->si_trapno; 3509 break; 3510 case SIL_FAULT_MCEERR: 3511 to->si_addr = compat_ptr(from->si_addr); 3512 to->si_addr_lsb = from->si_addr_lsb; 3513 break; 3514 case SIL_FAULT_BNDERR: 3515 to->si_addr = compat_ptr(from->si_addr); 3516 to->si_lower = compat_ptr(from->si_lower); 3517 to->si_upper = compat_ptr(from->si_upper); 3518 break; 3519 case SIL_FAULT_PKUERR: 3520 to->si_addr = compat_ptr(from->si_addr); 3521 to->si_pkey = from->si_pkey; 3522 break; 3523 case SIL_FAULT_PERF_EVENT: 3524 to->si_addr = compat_ptr(from->si_addr); 3525 to->si_perf_data = from->si_perf_data; 3526 to->si_perf_type = from->si_perf_type; 3527 to->si_perf_flags = from->si_perf_flags; 3528 break; 3529 case SIL_CHLD: 3530 to->si_pid = from->si_pid; 3531 to->si_uid = from->si_uid; 3532 to->si_status = from->si_status; 3533 #ifdef CONFIG_X86_X32_ABI 3534 if (in_x32_syscall()) { 3535 to->si_utime = from->_sifields._sigchld_x32._utime; 3536 to->si_stime = from->_sifields._sigchld_x32._stime; 3537 } else 3538 #endif 3539 { 3540 to->si_utime = from->si_utime; 3541 to->si_stime = from->si_stime; 3542 } 3543 break; 3544 case SIL_RT: 3545 to->si_pid = from->si_pid; 3546 to->si_uid = from->si_uid; 3547 to->si_int = from->si_int; 3548 break; 3549 case SIL_SYS: 3550 to->si_call_addr = compat_ptr(from->si_call_addr); 3551 to->si_syscall = from->si_syscall; 3552 to->si_arch = from->si_arch; 3553 break; 3554 } 3555 return 0; 3556 } 3557 3558 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3559 const struct compat_siginfo __user *ufrom) 3560 { 3561 struct compat_siginfo from; 3562 3563 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3564 return -EFAULT; 3565 3566 from.si_signo = signo; 3567 return post_copy_siginfo_from_user32(to, &from); 3568 } 3569 3570 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3571 const struct compat_siginfo __user *ufrom) 3572 { 3573 struct compat_siginfo from; 3574 3575 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3576 return -EFAULT; 3577 3578 return post_copy_siginfo_from_user32(to, &from); 3579 } 3580 #endif /* CONFIG_COMPAT */ 3581 3582 /** 3583 * do_sigtimedwait - wait for queued signals specified in @which 3584 * @which: queued signals to wait for 3585 * @info: if non-null, the signal's siginfo is returned here 3586 * @ts: upper bound on process time suspension 3587 */ 3588 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3589 const struct timespec64 *ts) 3590 { 3591 ktime_t *to = NULL, timeout = KTIME_MAX; 3592 struct task_struct *tsk = current; 3593 sigset_t mask = *which; 3594 enum pid_type type; 3595 int sig, ret = 0; 3596 3597 if (ts) { 3598 if (!timespec64_valid(ts)) 3599 return -EINVAL; 3600 timeout = timespec64_to_ktime(*ts); 3601 to = &timeout; 3602 } 3603 3604 /* 3605 * Invert the set of allowed signals to get those we want to block. 3606 */ 3607 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3608 signotset(&mask); 3609 3610 spin_lock_irq(&tsk->sighand->siglock); 3611 sig = dequeue_signal(tsk, &mask, info, &type); 3612 if (!sig && timeout) { 3613 /* 3614 * None ready, temporarily unblock those we're interested 3615 * while we are sleeping in so that we'll be awakened when 3616 * they arrive. Unblocking is always fine, we can avoid 3617 * set_current_blocked(). 3618 */ 3619 tsk->real_blocked = tsk->blocked; 3620 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3621 recalc_sigpending(); 3622 spin_unlock_irq(&tsk->sighand->siglock); 3623 3624 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 3625 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3626 HRTIMER_MODE_REL); 3627 spin_lock_irq(&tsk->sighand->siglock); 3628 __set_task_blocked(tsk, &tsk->real_blocked); 3629 sigemptyset(&tsk->real_blocked); 3630 sig = dequeue_signal(tsk, &mask, info, &type); 3631 } 3632 spin_unlock_irq(&tsk->sighand->siglock); 3633 3634 if (sig) 3635 return sig; 3636 return ret ? -EINTR : -EAGAIN; 3637 } 3638 3639 /** 3640 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3641 * in @uthese 3642 * @uthese: queued signals to wait for 3643 * @uinfo: if non-null, the signal's siginfo is returned here 3644 * @uts: upper bound on process time suspension 3645 * @sigsetsize: size of sigset_t type 3646 */ 3647 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3648 siginfo_t __user *, uinfo, 3649 const struct __kernel_timespec __user *, uts, 3650 size_t, sigsetsize) 3651 { 3652 sigset_t these; 3653 struct timespec64 ts; 3654 kernel_siginfo_t info; 3655 int ret; 3656 3657 /* XXX: Don't preclude handling different sized sigset_t's. */ 3658 if (sigsetsize != sizeof(sigset_t)) 3659 return -EINVAL; 3660 3661 if (copy_from_user(&these, uthese, sizeof(these))) 3662 return -EFAULT; 3663 3664 if (uts) { 3665 if (get_timespec64(&ts, uts)) 3666 return -EFAULT; 3667 } 3668 3669 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3670 3671 if (ret > 0 && uinfo) { 3672 if (copy_siginfo_to_user(uinfo, &info)) 3673 ret = -EFAULT; 3674 } 3675 3676 return ret; 3677 } 3678 3679 #ifdef CONFIG_COMPAT_32BIT_TIME 3680 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3681 siginfo_t __user *, uinfo, 3682 const struct old_timespec32 __user *, uts, 3683 size_t, sigsetsize) 3684 { 3685 sigset_t these; 3686 struct timespec64 ts; 3687 kernel_siginfo_t info; 3688 int ret; 3689 3690 if (sigsetsize != sizeof(sigset_t)) 3691 return -EINVAL; 3692 3693 if (copy_from_user(&these, uthese, sizeof(these))) 3694 return -EFAULT; 3695 3696 if (uts) { 3697 if (get_old_timespec32(&ts, uts)) 3698 return -EFAULT; 3699 } 3700 3701 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3702 3703 if (ret > 0 && uinfo) { 3704 if (copy_siginfo_to_user(uinfo, &info)) 3705 ret = -EFAULT; 3706 } 3707 3708 return ret; 3709 } 3710 #endif 3711 3712 #ifdef CONFIG_COMPAT 3713 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3714 struct compat_siginfo __user *, uinfo, 3715 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3716 { 3717 sigset_t s; 3718 struct timespec64 t; 3719 kernel_siginfo_t info; 3720 long ret; 3721 3722 if (sigsetsize != sizeof(sigset_t)) 3723 return -EINVAL; 3724 3725 if (get_compat_sigset(&s, uthese)) 3726 return -EFAULT; 3727 3728 if (uts) { 3729 if (get_timespec64(&t, uts)) 3730 return -EFAULT; 3731 } 3732 3733 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3734 3735 if (ret > 0 && uinfo) { 3736 if (copy_siginfo_to_user32(uinfo, &info)) 3737 ret = -EFAULT; 3738 } 3739 3740 return ret; 3741 } 3742 3743 #ifdef CONFIG_COMPAT_32BIT_TIME 3744 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3745 struct compat_siginfo __user *, uinfo, 3746 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3747 { 3748 sigset_t s; 3749 struct timespec64 t; 3750 kernel_siginfo_t info; 3751 long ret; 3752 3753 if (sigsetsize != sizeof(sigset_t)) 3754 return -EINVAL; 3755 3756 if (get_compat_sigset(&s, uthese)) 3757 return -EFAULT; 3758 3759 if (uts) { 3760 if (get_old_timespec32(&t, uts)) 3761 return -EFAULT; 3762 } 3763 3764 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3765 3766 if (ret > 0 && uinfo) { 3767 if (copy_siginfo_to_user32(uinfo, &info)) 3768 ret = -EFAULT; 3769 } 3770 3771 return ret; 3772 } 3773 #endif 3774 #endif 3775 3776 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3777 { 3778 clear_siginfo(info); 3779 info->si_signo = sig; 3780 info->si_errno = 0; 3781 info->si_code = SI_USER; 3782 info->si_pid = task_tgid_vnr(current); 3783 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3784 } 3785 3786 /** 3787 * sys_kill - send a signal to a process 3788 * @pid: the PID of the process 3789 * @sig: signal to be sent 3790 */ 3791 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3792 { 3793 struct kernel_siginfo info; 3794 3795 prepare_kill_siginfo(sig, &info); 3796 3797 return kill_something_info(sig, &info, pid); 3798 } 3799 3800 /* 3801 * Verify that the signaler and signalee either are in the same pid namespace 3802 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3803 * namespace. 3804 */ 3805 static bool access_pidfd_pidns(struct pid *pid) 3806 { 3807 struct pid_namespace *active = task_active_pid_ns(current); 3808 struct pid_namespace *p = ns_of_pid(pid); 3809 3810 for (;;) { 3811 if (!p) 3812 return false; 3813 if (p == active) 3814 break; 3815 p = p->parent; 3816 } 3817 3818 return true; 3819 } 3820 3821 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3822 siginfo_t __user *info) 3823 { 3824 #ifdef CONFIG_COMPAT 3825 /* 3826 * Avoid hooking up compat syscalls and instead handle necessary 3827 * conversions here. Note, this is a stop-gap measure and should not be 3828 * considered a generic solution. 3829 */ 3830 if (in_compat_syscall()) 3831 return copy_siginfo_from_user32( 3832 kinfo, (struct compat_siginfo __user *)info); 3833 #endif 3834 return copy_siginfo_from_user(kinfo, info); 3835 } 3836 3837 static struct pid *pidfd_to_pid(const struct file *file) 3838 { 3839 struct pid *pid; 3840 3841 pid = pidfd_pid(file); 3842 if (!IS_ERR(pid)) 3843 return pid; 3844 3845 return tgid_pidfd_to_pid(file); 3846 } 3847 3848 /** 3849 * sys_pidfd_send_signal - Signal a process through a pidfd 3850 * @pidfd: file descriptor of the process 3851 * @sig: signal to send 3852 * @info: signal info 3853 * @flags: future flags 3854 * 3855 * The syscall currently only signals via PIDTYPE_PID which covers 3856 * kill(<positive-pid>, <signal>. It does not signal threads or process 3857 * groups. 3858 * In order to extend the syscall to threads and process groups the @flags 3859 * argument should be used. In essence, the @flags argument will determine 3860 * what is signaled and not the file descriptor itself. Put in other words, 3861 * grouping is a property of the flags argument not a property of the file 3862 * descriptor. 3863 * 3864 * Return: 0 on success, negative errno on failure 3865 */ 3866 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3867 siginfo_t __user *, info, unsigned int, flags) 3868 { 3869 int ret; 3870 struct fd f; 3871 struct pid *pid; 3872 kernel_siginfo_t kinfo; 3873 3874 /* Enforce flags be set to 0 until we add an extension. */ 3875 if (flags) 3876 return -EINVAL; 3877 3878 f = fdget(pidfd); 3879 if (!f.file) 3880 return -EBADF; 3881 3882 /* Is this a pidfd? */ 3883 pid = pidfd_to_pid(f.file); 3884 if (IS_ERR(pid)) { 3885 ret = PTR_ERR(pid); 3886 goto err; 3887 } 3888 3889 ret = -EINVAL; 3890 if (!access_pidfd_pidns(pid)) 3891 goto err; 3892 3893 if (info) { 3894 ret = copy_siginfo_from_user_any(&kinfo, info); 3895 if (unlikely(ret)) 3896 goto err; 3897 3898 ret = -EINVAL; 3899 if (unlikely(sig != kinfo.si_signo)) 3900 goto err; 3901 3902 /* Only allow sending arbitrary signals to yourself. */ 3903 ret = -EPERM; 3904 if ((task_pid(current) != pid) && 3905 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3906 goto err; 3907 } else { 3908 prepare_kill_siginfo(sig, &kinfo); 3909 } 3910 3911 ret = kill_pid_info(sig, &kinfo, pid); 3912 3913 err: 3914 fdput(f); 3915 return ret; 3916 } 3917 3918 static int 3919 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3920 { 3921 struct task_struct *p; 3922 int error = -ESRCH; 3923 3924 rcu_read_lock(); 3925 p = find_task_by_vpid(pid); 3926 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3927 error = check_kill_permission(sig, info, p); 3928 /* 3929 * The null signal is a permissions and process existence 3930 * probe. No signal is actually delivered. 3931 */ 3932 if (!error && sig) { 3933 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3934 /* 3935 * If lock_task_sighand() failed we pretend the task 3936 * dies after receiving the signal. The window is tiny, 3937 * and the signal is private anyway. 3938 */ 3939 if (unlikely(error == -ESRCH)) 3940 error = 0; 3941 } 3942 } 3943 rcu_read_unlock(); 3944 3945 return error; 3946 } 3947 3948 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3949 { 3950 struct kernel_siginfo info; 3951 3952 clear_siginfo(&info); 3953 info.si_signo = sig; 3954 info.si_errno = 0; 3955 info.si_code = SI_TKILL; 3956 info.si_pid = task_tgid_vnr(current); 3957 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3958 3959 return do_send_specific(tgid, pid, sig, &info); 3960 } 3961 3962 /** 3963 * sys_tgkill - send signal to one specific thread 3964 * @tgid: the thread group ID of the thread 3965 * @pid: the PID of the thread 3966 * @sig: signal to be sent 3967 * 3968 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3969 * exists but it's not belonging to the target process anymore. This 3970 * method solves the problem of threads exiting and PIDs getting reused. 3971 */ 3972 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3973 { 3974 /* This is only valid for single tasks */ 3975 if (pid <= 0 || tgid <= 0) 3976 return -EINVAL; 3977 3978 return do_tkill(tgid, pid, sig); 3979 } 3980 3981 /** 3982 * sys_tkill - send signal to one specific task 3983 * @pid: the PID of the task 3984 * @sig: signal to be sent 3985 * 3986 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3987 */ 3988 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3989 { 3990 /* This is only valid for single tasks */ 3991 if (pid <= 0) 3992 return -EINVAL; 3993 3994 return do_tkill(0, pid, sig); 3995 } 3996 3997 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 3998 { 3999 /* Not even root can pretend to send signals from the kernel. 4000 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4001 */ 4002 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4003 (task_pid_vnr(current) != pid)) 4004 return -EPERM; 4005 4006 /* POSIX.1b doesn't mention process groups. */ 4007 return kill_proc_info(sig, info, pid); 4008 } 4009 4010 /** 4011 * sys_rt_sigqueueinfo - send signal information to a signal 4012 * @pid: the PID of the thread 4013 * @sig: signal to be sent 4014 * @uinfo: signal info to be sent 4015 */ 4016 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 4017 siginfo_t __user *, uinfo) 4018 { 4019 kernel_siginfo_t info; 4020 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4021 if (unlikely(ret)) 4022 return ret; 4023 return do_rt_sigqueueinfo(pid, sig, &info); 4024 } 4025 4026 #ifdef CONFIG_COMPAT 4027 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4028 compat_pid_t, pid, 4029 int, sig, 4030 struct compat_siginfo __user *, uinfo) 4031 { 4032 kernel_siginfo_t info; 4033 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4034 if (unlikely(ret)) 4035 return ret; 4036 return do_rt_sigqueueinfo(pid, sig, &info); 4037 } 4038 #endif 4039 4040 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4041 { 4042 /* This is only valid for single tasks */ 4043 if (pid <= 0 || tgid <= 0) 4044 return -EINVAL; 4045 4046 /* Not even root can pretend to send signals from the kernel. 4047 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4048 */ 4049 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4050 (task_pid_vnr(current) != pid)) 4051 return -EPERM; 4052 4053 return do_send_specific(tgid, pid, sig, info); 4054 } 4055 4056 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4057 siginfo_t __user *, uinfo) 4058 { 4059 kernel_siginfo_t info; 4060 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4061 if (unlikely(ret)) 4062 return ret; 4063 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4064 } 4065 4066 #ifdef CONFIG_COMPAT 4067 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4068 compat_pid_t, tgid, 4069 compat_pid_t, pid, 4070 int, sig, 4071 struct compat_siginfo __user *, uinfo) 4072 { 4073 kernel_siginfo_t info; 4074 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4075 if (unlikely(ret)) 4076 return ret; 4077 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4078 } 4079 #endif 4080 4081 /* 4082 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4083 */ 4084 void kernel_sigaction(int sig, __sighandler_t action) 4085 { 4086 spin_lock_irq(¤t->sighand->siglock); 4087 current->sighand->action[sig - 1].sa.sa_handler = action; 4088 if (action == SIG_IGN) { 4089 sigset_t mask; 4090 4091 sigemptyset(&mask); 4092 sigaddset(&mask, sig); 4093 4094 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4095 flush_sigqueue_mask(&mask, ¤t->pending); 4096 recalc_sigpending(); 4097 } 4098 spin_unlock_irq(¤t->sighand->siglock); 4099 } 4100 EXPORT_SYMBOL(kernel_sigaction); 4101 4102 void __weak sigaction_compat_abi(struct k_sigaction *act, 4103 struct k_sigaction *oact) 4104 { 4105 } 4106 4107 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4108 { 4109 struct task_struct *p = current, *t; 4110 struct k_sigaction *k; 4111 sigset_t mask; 4112 4113 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4114 return -EINVAL; 4115 4116 k = &p->sighand->action[sig-1]; 4117 4118 spin_lock_irq(&p->sighand->siglock); 4119 if (k->sa.sa_flags & SA_IMMUTABLE) { 4120 spin_unlock_irq(&p->sighand->siglock); 4121 return -EINVAL; 4122 } 4123 if (oact) 4124 *oact = *k; 4125 4126 /* 4127 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4128 * e.g. by having an architecture use the bit in their uapi. 4129 */ 4130 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4131 4132 /* 4133 * Clear unknown flag bits in order to allow userspace to detect missing 4134 * support for flag bits and to allow the kernel to use non-uapi bits 4135 * internally. 4136 */ 4137 if (act) 4138 act->sa.sa_flags &= UAPI_SA_FLAGS; 4139 if (oact) 4140 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4141 4142 sigaction_compat_abi(act, oact); 4143 4144 if (act) { 4145 sigdelsetmask(&act->sa.sa_mask, 4146 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4147 *k = *act; 4148 /* 4149 * POSIX 3.3.1.3: 4150 * "Setting a signal action to SIG_IGN for a signal that is 4151 * pending shall cause the pending signal to be discarded, 4152 * whether or not it is blocked." 4153 * 4154 * "Setting a signal action to SIG_DFL for a signal that is 4155 * pending and whose default action is to ignore the signal 4156 * (for example, SIGCHLD), shall cause the pending signal to 4157 * be discarded, whether or not it is blocked" 4158 */ 4159 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4160 sigemptyset(&mask); 4161 sigaddset(&mask, sig); 4162 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4163 for_each_thread(p, t) 4164 flush_sigqueue_mask(&mask, &t->pending); 4165 } 4166 } 4167 4168 spin_unlock_irq(&p->sighand->siglock); 4169 return 0; 4170 } 4171 4172 #ifdef CONFIG_DYNAMIC_SIGFRAME 4173 static inline void sigaltstack_lock(void) 4174 __acquires(¤t->sighand->siglock) 4175 { 4176 spin_lock_irq(¤t->sighand->siglock); 4177 } 4178 4179 static inline void sigaltstack_unlock(void) 4180 __releases(¤t->sighand->siglock) 4181 { 4182 spin_unlock_irq(¤t->sighand->siglock); 4183 } 4184 #else 4185 static inline void sigaltstack_lock(void) { } 4186 static inline void sigaltstack_unlock(void) { } 4187 #endif 4188 4189 static int 4190 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4191 size_t min_ss_size) 4192 { 4193 struct task_struct *t = current; 4194 int ret = 0; 4195 4196 if (oss) { 4197 memset(oss, 0, sizeof(stack_t)); 4198 oss->ss_sp = (void __user *) t->sas_ss_sp; 4199 oss->ss_size = t->sas_ss_size; 4200 oss->ss_flags = sas_ss_flags(sp) | 4201 (current->sas_ss_flags & SS_FLAG_BITS); 4202 } 4203 4204 if (ss) { 4205 void __user *ss_sp = ss->ss_sp; 4206 size_t ss_size = ss->ss_size; 4207 unsigned ss_flags = ss->ss_flags; 4208 int ss_mode; 4209 4210 if (unlikely(on_sig_stack(sp))) 4211 return -EPERM; 4212 4213 ss_mode = ss_flags & ~SS_FLAG_BITS; 4214 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4215 ss_mode != 0)) 4216 return -EINVAL; 4217 4218 /* 4219 * Return before taking any locks if no actual 4220 * sigaltstack changes were requested. 4221 */ 4222 if (t->sas_ss_sp == (unsigned long)ss_sp && 4223 t->sas_ss_size == ss_size && 4224 t->sas_ss_flags == ss_flags) 4225 return 0; 4226 4227 sigaltstack_lock(); 4228 if (ss_mode == SS_DISABLE) { 4229 ss_size = 0; 4230 ss_sp = NULL; 4231 } else { 4232 if (unlikely(ss_size < min_ss_size)) 4233 ret = -ENOMEM; 4234 if (!sigaltstack_size_valid(ss_size)) 4235 ret = -ENOMEM; 4236 } 4237 if (!ret) { 4238 t->sas_ss_sp = (unsigned long) ss_sp; 4239 t->sas_ss_size = ss_size; 4240 t->sas_ss_flags = ss_flags; 4241 } 4242 sigaltstack_unlock(); 4243 } 4244 return ret; 4245 } 4246 4247 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4248 { 4249 stack_t new, old; 4250 int err; 4251 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4252 return -EFAULT; 4253 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4254 current_user_stack_pointer(), 4255 MINSIGSTKSZ); 4256 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4257 err = -EFAULT; 4258 return err; 4259 } 4260 4261 int restore_altstack(const stack_t __user *uss) 4262 { 4263 stack_t new; 4264 if (copy_from_user(&new, uss, sizeof(stack_t))) 4265 return -EFAULT; 4266 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4267 MINSIGSTKSZ); 4268 /* squash all but EFAULT for now */ 4269 return 0; 4270 } 4271 4272 int __save_altstack(stack_t __user *uss, unsigned long sp) 4273 { 4274 struct task_struct *t = current; 4275 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4276 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4277 __put_user(t->sas_ss_size, &uss->ss_size); 4278 return err; 4279 } 4280 4281 #ifdef CONFIG_COMPAT 4282 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4283 compat_stack_t __user *uoss_ptr) 4284 { 4285 stack_t uss, uoss; 4286 int ret; 4287 4288 if (uss_ptr) { 4289 compat_stack_t uss32; 4290 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4291 return -EFAULT; 4292 uss.ss_sp = compat_ptr(uss32.ss_sp); 4293 uss.ss_flags = uss32.ss_flags; 4294 uss.ss_size = uss32.ss_size; 4295 } 4296 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4297 compat_user_stack_pointer(), 4298 COMPAT_MINSIGSTKSZ); 4299 if (ret >= 0 && uoss_ptr) { 4300 compat_stack_t old; 4301 memset(&old, 0, sizeof(old)); 4302 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4303 old.ss_flags = uoss.ss_flags; 4304 old.ss_size = uoss.ss_size; 4305 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4306 ret = -EFAULT; 4307 } 4308 return ret; 4309 } 4310 4311 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4312 const compat_stack_t __user *, uss_ptr, 4313 compat_stack_t __user *, uoss_ptr) 4314 { 4315 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4316 } 4317 4318 int compat_restore_altstack(const compat_stack_t __user *uss) 4319 { 4320 int err = do_compat_sigaltstack(uss, NULL); 4321 /* squash all but -EFAULT for now */ 4322 return err == -EFAULT ? err : 0; 4323 } 4324 4325 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4326 { 4327 int err; 4328 struct task_struct *t = current; 4329 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4330 &uss->ss_sp) | 4331 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4332 __put_user(t->sas_ss_size, &uss->ss_size); 4333 return err; 4334 } 4335 #endif 4336 4337 #ifdef __ARCH_WANT_SYS_SIGPENDING 4338 4339 /** 4340 * sys_sigpending - examine pending signals 4341 * @uset: where mask of pending signal is returned 4342 */ 4343 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4344 { 4345 sigset_t set; 4346 4347 if (sizeof(old_sigset_t) > sizeof(*uset)) 4348 return -EINVAL; 4349 4350 do_sigpending(&set); 4351 4352 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4353 return -EFAULT; 4354 4355 return 0; 4356 } 4357 4358 #ifdef CONFIG_COMPAT 4359 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4360 { 4361 sigset_t set; 4362 4363 do_sigpending(&set); 4364 4365 return put_user(set.sig[0], set32); 4366 } 4367 #endif 4368 4369 #endif 4370 4371 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4372 /** 4373 * sys_sigprocmask - examine and change blocked signals 4374 * @how: whether to add, remove, or set signals 4375 * @nset: signals to add or remove (if non-null) 4376 * @oset: previous value of signal mask if non-null 4377 * 4378 * Some platforms have their own version with special arguments; 4379 * others support only sys_rt_sigprocmask. 4380 */ 4381 4382 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4383 old_sigset_t __user *, oset) 4384 { 4385 old_sigset_t old_set, new_set; 4386 sigset_t new_blocked; 4387 4388 old_set = current->blocked.sig[0]; 4389 4390 if (nset) { 4391 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4392 return -EFAULT; 4393 4394 new_blocked = current->blocked; 4395 4396 switch (how) { 4397 case SIG_BLOCK: 4398 sigaddsetmask(&new_blocked, new_set); 4399 break; 4400 case SIG_UNBLOCK: 4401 sigdelsetmask(&new_blocked, new_set); 4402 break; 4403 case SIG_SETMASK: 4404 new_blocked.sig[0] = new_set; 4405 break; 4406 default: 4407 return -EINVAL; 4408 } 4409 4410 set_current_blocked(&new_blocked); 4411 } 4412 4413 if (oset) { 4414 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4415 return -EFAULT; 4416 } 4417 4418 return 0; 4419 } 4420 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4421 4422 #ifndef CONFIG_ODD_RT_SIGACTION 4423 /** 4424 * sys_rt_sigaction - alter an action taken by a process 4425 * @sig: signal to be sent 4426 * @act: new sigaction 4427 * @oact: used to save the previous sigaction 4428 * @sigsetsize: size of sigset_t type 4429 */ 4430 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4431 const struct sigaction __user *, act, 4432 struct sigaction __user *, oact, 4433 size_t, sigsetsize) 4434 { 4435 struct k_sigaction new_sa, old_sa; 4436 int ret; 4437 4438 /* XXX: Don't preclude handling different sized sigset_t's. */ 4439 if (sigsetsize != sizeof(sigset_t)) 4440 return -EINVAL; 4441 4442 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4443 return -EFAULT; 4444 4445 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4446 if (ret) 4447 return ret; 4448 4449 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4450 return -EFAULT; 4451 4452 return 0; 4453 } 4454 #ifdef CONFIG_COMPAT 4455 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4456 const struct compat_sigaction __user *, act, 4457 struct compat_sigaction __user *, oact, 4458 compat_size_t, sigsetsize) 4459 { 4460 struct k_sigaction new_ka, old_ka; 4461 #ifdef __ARCH_HAS_SA_RESTORER 4462 compat_uptr_t restorer; 4463 #endif 4464 int ret; 4465 4466 /* XXX: Don't preclude handling different sized sigset_t's. */ 4467 if (sigsetsize != sizeof(compat_sigset_t)) 4468 return -EINVAL; 4469 4470 if (act) { 4471 compat_uptr_t handler; 4472 ret = get_user(handler, &act->sa_handler); 4473 new_ka.sa.sa_handler = compat_ptr(handler); 4474 #ifdef __ARCH_HAS_SA_RESTORER 4475 ret |= get_user(restorer, &act->sa_restorer); 4476 new_ka.sa.sa_restorer = compat_ptr(restorer); 4477 #endif 4478 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4479 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4480 if (ret) 4481 return -EFAULT; 4482 } 4483 4484 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4485 if (!ret && oact) { 4486 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4487 &oact->sa_handler); 4488 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4489 sizeof(oact->sa_mask)); 4490 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4491 #ifdef __ARCH_HAS_SA_RESTORER 4492 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4493 &oact->sa_restorer); 4494 #endif 4495 } 4496 return ret; 4497 } 4498 #endif 4499 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4500 4501 #ifdef CONFIG_OLD_SIGACTION 4502 SYSCALL_DEFINE3(sigaction, int, sig, 4503 const struct old_sigaction __user *, act, 4504 struct old_sigaction __user *, oact) 4505 { 4506 struct k_sigaction new_ka, old_ka; 4507 int ret; 4508 4509 if (act) { 4510 old_sigset_t mask; 4511 if (!access_ok(act, sizeof(*act)) || 4512 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4513 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4514 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4515 __get_user(mask, &act->sa_mask)) 4516 return -EFAULT; 4517 #ifdef __ARCH_HAS_KA_RESTORER 4518 new_ka.ka_restorer = NULL; 4519 #endif 4520 siginitset(&new_ka.sa.sa_mask, mask); 4521 } 4522 4523 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4524 4525 if (!ret && oact) { 4526 if (!access_ok(oact, sizeof(*oact)) || 4527 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4528 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4529 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4530 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4531 return -EFAULT; 4532 } 4533 4534 return ret; 4535 } 4536 #endif 4537 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4538 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4539 const struct compat_old_sigaction __user *, act, 4540 struct compat_old_sigaction __user *, oact) 4541 { 4542 struct k_sigaction new_ka, old_ka; 4543 int ret; 4544 compat_old_sigset_t mask; 4545 compat_uptr_t handler, restorer; 4546 4547 if (act) { 4548 if (!access_ok(act, sizeof(*act)) || 4549 __get_user(handler, &act->sa_handler) || 4550 __get_user(restorer, &act->sa_restorer) || 4551 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4552 __get_user(mask, &act->sa_mask)) 4553 return -EFAULT; 4554 4555 #ifdef __ARCH_HAS_KA_RESTORER 4556 new_ka.ka_restorer = NULL; 4557 #endif 4558 new_ka.sa.sa_handler = compat_ptr(handler); 4559 new_ka.sa.sa_restorer = compat_ptr(restorer); 4560 siginitset(&new_ka.sa.sa_mask, mask); 4561 } 4562 4563 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4564 4565 if (!ret && oact) { 4566 if (!access_ok(oact, sizeof(*oact)) || 4567 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4568 &oact->sa_handler) || 4569 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4570 &oact->sa_restorer) || 4571 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4572 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4573 return -EFAULT; 4574 } 4575 return ret; 4576 } 4577 #endif 4578 4579 #ifdef CONFIG_SGETMASK_SYSCALL 4580 4581 /* 4582 * For backwards compatibility. Functionality superseded by sigprocmask. 4583 */ 4584 SYSCALL_DEFINE0(sgetmask) 4585 { 4586 /* SMP safe */ 4587 return current->blocked.sig[0]; 4588 } 4589 4590 SYSCALL_DEFINE1(ssetmask, int, newmask) 4591 { 4592 int old = current->blocked.sig[0]; 4593 sigset_t newset; 4594 4595 siginitset(&newset, newmask); 4596 set_current_blocked(&newset); 4597 4598 return old; 4599 } 4600 #endif /* CONFIG_SGETMASK_SYSCALL */ 4601 4602 #ifdef __ARCH_WANT_SYS_SIGNAL 4603 /* 4604 * For backwards compatibility. Functionality superseded by sigaction. 4605 */ 4606 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4607 { 4608 struct k_sigaction new_sa, old_sa; 4609 int ret; 4610 4611 new_sa.sa.sa_handler = handler; 4612 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4613 sigemptyset(&new_sa.sa.sa_mask); 4614 4615 ret = do_sigaction(sig, &new_sa, &old_sa); 4616 4617 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4618 } 4619 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4620 4621 #ifdef __ARCH_WANT_SYS_PAUSE 4622 4623 SYSCALL_DEFINE0(pause) 4624 { 4625 while (!signal_pending(current)) { 4626 __set_current_state(TASK_INTERRUPTIBLE); 4627 schedule(); 4628 } 4629 return -ERESTARTNOHAND; 4630 } 4631 4632 #endif 4633 4634 static int sigsuspend(sigset_t *set) 4635 { 4636 current->saved_sigmask = current->blocked; 4637 set_current_blocked(set); 4638 4639 while (!signal_pending(current)) { 4640 __set_current_state(TASK_INTERRUPTIBLE); 4641 schedule(); 4642 } 4643 set_restore_sigmask(); 4644 return -ERESTARTNOHAND; 4645 } 4646 4647 /** 4648 * sys_rt_sigsuspend - replace the signal mask for a value with the 4649 * @unewset value until a signal is received 4650 * @unewset: new signal mask value 4651 * @sigsetsize: size of sigset_t type 4652 */ 4653 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4654 { 4655 sigset_t newset; 4656 4657 /* XXX: Don't preclude handling different sized sigset_t's. */ 4658 if (sigsetsize != sizeof(sigset_t)) 4659 return -EINVAL; 4660 4661 if (copy_from_user(&newset, unewset, sizeof(newset))) 4662 return -EFAULT; 4663 return sigsuspend(&newset); 4664 } 4665 4666 #ifdef CONFIG_COMPAT 4667 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4668 { 4669 sigset_t newset; 4670 4671 /* XXX: Don't preclude handling different sized sigset_t's. */ 4672 if (sigsetsize != sizeof(sigset_t)) 4673 return -EINVAL; 4674 4675 if (get_compat_sigset(&newset, unewset)) 4676 return -EFAULT; 4677 return sigsuspend(&newset); 4678 } 4679 #endif 4680 4681 #ifdef CONFIG_OLD_SIGSUSPEND 4682 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4683 { 4684 sigset_t blocked; 4685 siginitset(&blocked, mask); 4686 return sigsuspend(&blocked); 4687 } 4688 #endif 4689 #ifdef CONFIG_OLD_SIGSUSPEND3 4690 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4691 { 4692 sigset_t blocked; 4693 siginitset(&blocked, mask); 4694 return sigsuspend(&blocked); 4695 } 4696 #endif 4697 4698 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4699 { 4700 return NULL; 4701 } 4702 4703 static inline void siginfo_buildtime_checks(void) 4704 { 4705 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4706 4707 /* Verify the offsets in the two siginfos match */ 4708 #define CHECK_OFFSET(field) \ 4709 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4710 4711 /* kill */ 4712 CHECK_OFFSET(si_pid); 4713 CHECK_OFFSET(si_uid); 4714 4715 /* timer */ 4716 CHECK_OFFSET(si_tid); 4717 CHECK_OFFSET(si_overrun); 4718 CHECK_OFFSET(si_value); 4719 4720 /* rt */ 4721 CHECK_OFFSET(si_pid); 4722 CHECK_OFFSET(si_uid); 4723 CHECK_OFFSET(si_value); 4724 4725 /* sigchld */ 4726 CHECK_OFFSET(si_pid); 4727 CHECK_OFFSET(si_uid); 4728 CHECK_OFFSET(si_status); 4729 CHECK_OFFSET(si_utime); 4730 CHECK_OFFSET(si_stime); 4731 4732 /* sigfault */ 4733 CHECK_OFFSET(si_addr); 4734 CHECK_OFFSET(si_trapno); 4735 CHECK_OFFSET(si_addr_lsb); 4736 CHECK_OFFSET(si_lower); 4737 CHECK_OFFSET(si_upper); 4738 CHECK_OFFSET(si_pkey); 4739 CHECK_OFFSET(si_perf_data); 4740 CHECK_OFFSET(si_perf_type); 4741 CHECK_OFFSET(si_perf_flags); 4742 4743 /* sigpoll */ 4744 CHECK_OFFSET(si_band); 4745 CHECK_OFFSET(si_fd); 4746 4747 /* sigsys */ 4748 CHECK_OFFSET(si_call_addr); 4749 CHECK_OFFSET(si_syscall); 4750 CHECK_OFFSET(si_arch); 4751 #undef CHECK_OFFSET 4752 4753 /* usb asyncio */ 4754 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4755 offsetof(struct siginfo, si_addr)); 4756 if (sizeof(int) == sizeof(void __user *)) { 4757 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4758 sizeof(void __user *)); 4759 } else { 4760 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4761 sizeof_field(struct siginfo, si_uid)) != 4762 sizeof(void __user *)); 4763 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4764 offsetof(struct siginfo, si_uid)); 4765 } 4766 #ifdef CONFIG_COMPAT 4767 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4768 offsetof(struct compat_siginfo, si_addr)); 4769 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4770 sizeof(compat_uptr_t)); 4771 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4772 sizeof_field(struct siginfo, si_pid)); 4773 #endif 4774 } 4775 4776 void __init signals_init(void) 4777 { 4778 siginfo_buildtime_checks(); 4779 4780 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4781 } 4782 4783 #ifdef CONFIG_KGDB_KDB 4784 #include <linux/kdb.h> 4785 /* 4786 * kdb_send_sig - Allows kdb to send signals without exposing 4787 * signal internals. This function checks if the required locks are 4788 * available before calling the main signal code, to avoid kdb 4789 * deadlocks. 4790 */ 4791 void kdb_send_sig(struct task_struct *t, int sig) 4792 { 4793 static struct task_struct *kdb_prev_t; 4794 int new_t, ret; 4795 if (!spin_trylock(&t->sighand->siglock)) { 4796 kdb_printf("Can't do kill command now.\n" 4797 "The sigmask lock is held somewhere else in " 4798 "kernel, try again later\n"); 4799 return; 4800 } 4801 new_t = kdb_prev_t != t; 4802 kdb_prev_t = t; 4803 if (!task_is_running(t) && new_t) { 4804 spin_unlock(&t->sighand->siglock); 4805 kdb_printf("Process is not RUNNING, sending a signal from " 4806 "kdb risks deadlock\n" 4807 "on the run queue locks. " 4808 "The signal has _not_ been sent.\n" 4809 "Reissue the kill command if you want to risk " 4810 "the deadlock.\n"); 4811 return; 4812 } 4813 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4814 spin_unlock(&t->sighand->siglock); 4815 if (ret) 4816 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4817 sig, t->pid); 4818 else 4819 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4820 } 4821 #endif /* CONFIG_KGDB_KDB */ 4822