xref: /openbmc/linux/kernel/signal.c (revision d23015c1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/livepatch.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/signal.h>
52 
53 #include <asm/param.h>
54 #include <linux/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/siginfo.h>
57 #include <asm/cacheflush.h>
58 
59 /*
60  * SLAB caches for signal bits.
61  */
62 
63 static struct kmem_cache *sigqueue_cachep;
64 
65 int print_fatal_signals __read_mostly;
66 
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 	return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71 
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 	/* Is it explicitly or implicitly ignored? */
75 	return handler == SIG_IGN ||
76 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78 
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 	void __user *handler;
82 
83 	handler = sig_handler(t, sig);
84 
85 	/* SIGKILL and SIGSTOP may not be sent to the global init */
86 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 		return true;
88 
89 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 		return true;
92 
93 	/* Only allow kernel generated signals to this kthread */
94 	if (unlikely((t->flags & PF_KTHREAD) &&
95 		     (handler == SIG_KTHREAD_KERNEL) && !force))
96 		return true;
97 
98 	return sig_handler_ignored(handler, sig);
99 }
100 
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103 	/*
104 	 * Blocked signals are never ignored, since the
105 	 * signal handler may change by the time it is
106 	 * unblocked.
107 	 */
108 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 		return false;
110 
111 	/*
112 	 * Tracers may want to know about even ignored signal unless it
113 	 * is SIGKILL which can't be reported anyway but can be ignored
114 	 * by SIGNAL_UNKILLABLE task.
115 	 */
116 	if (t->ptrace && sig != SIGKILL)
117 		return false;
118 
119 	return sig_task_ignored(t, sig, force);
120 }
121 
122 /*
123  * Re-calculate pending state from the set of locally pending
124  * signals, globally pending signals, and blocked signals.
125  */
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128 	unsigned long ready;
129 	long i;
130 
131 	switch (_NSIG_WORDS) {
132 	default:
133 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 			ready |= signal->sig[i] &~ blocked->sig[i];
135 		break;
136 
137 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
138 		ready |= signal->sig[2] &~ blocked->sig[2];
139 		ready |= signal->sig[1] &~ blocked->sig[1];
140 		ready |= signal->sig[0] &~ blocked->sig[0];
141 		break;
142 
143 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
144 		ready |= signal->sig[0] &~ blocked->sig[0];
145 		break;
146 
147 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
148 	}
149 	return ready !=	0;
150 }
151 
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153 
154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 	    PENDING(&t->pending, &t->blocked) ||
158 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
159 	    cgroup_task_frozen(t)) {
160 		set_tsk_thread_flag(t, TIF_SIGPENDING);
161 		return true;
162 	}
163 
164 	/*
165 	 * We must never clear the flag in another thread, or in current
166 	 * when it's possible the current syscall is returning -ERESTART*.
167 	 * So we don't clear it here, and only callers who know they should do.
168 	 */
169 	return false;
170 }
171 
172 /*
173  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174  * This is superfluous when called on current, the wakeup is a harmless no-op.
175  */
176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178 	if (recalc_sigpending_tsk(t))
179 		signal_wake_up(t, 0);
180 }
181 
182 void recalc_sigpending(void)
183 {
184 	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
185 	    !klp_patch_pending(current))
186 		clear_thread_flag(TIF_SIGPENDING);
187 
188 }
189 EXPORT_SYMBOL(recalc_sigpending);
190 
191 void calculate_sigpending(void)
192 {
193 	/* Have any signals or users of TIF_SIGPENDING been delayed
194 	 * until after fork?
195 	 */
196 	spin_lock_irq(&current->sighand->siglock);
197 	set_tsk_thread_flag(current, TIF_SIGPENDING);
198 	recalc_sigpending();
199 	spin_unlock_irq(&current->sighand->siglock);
200 }
201 
202 /* Given the mask, find the first available signal that should be serviced. */
203 
204 #define SYNCHRONOUS_MASK \
205 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
206 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
207 
208 int next_signal(struct sigpending *pending, sigset_t *mask)
209 {
210 	unsigned long i, *s, *m, x;
211 	int sig = 0;
212 
213 	s = pending->signal.sig;
214 	m = mask->sig;
215 
216 	/*
217 	 * Handle the first word specially: it contains the
218 	 * synchronous signals that need to be dequeued first.
219 	 */
220 	x = *s &~ *m;
221 	if (x) {
222 		if (x & SYNCHRONOUS_MASK)
223 			x &= SYNCHRONOUS_MASK;
224 		sig = ffz(~x) + 1;
225 		return sig;
226 	}
227 
228 	switch (_NSIG_WORDS) {
229 	default:
230 		for (i = 1; i < _NSIG_WORDS; ++i) {
231 			x = *++s &~ *++m;
232 			if (!x)
233 				continue;
234 			sig = ffz(~x) + i*_NSIG_BPW + 1;
235 			break;
236 		}
237 		break;
238 
239 	case 2:
240 		x = s[1] &~ m[1];
241 		if (!x)
242 			break;
243 		sig = ffz(~x) + _NSIG_BPW + 1;
244 		break;
245 
246 	case 1:
247 		/* Nothing to do */
248 		break;
249 	}
250 
251 	return sig;
252 }
253 
254 static inline void print_dropped_signal(int sig)
255 {
256 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
257 
258 	if (!print_fatal_signals)
259 		return;
260 
261 	if (!__ratelimit(&ratelimit_state))
262 		return;
263 
264 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
265 				current->comm, current->pid, sig);
266 }
267 
268 /**
269  * task_set_jobctl_pending - set jobctl pending bits
270  * @task: target task
271  * @mask: pending bits to set
272  *
273  * Clear @mask from @task->jobctl.  @mask must be subset of
274  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
275  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
276  * cleared.  If @task is already being killed or exiting, this function
277  * becomes noop.
278  *
279  * CONTEXT:
280  * Must be called with @task->sighand->siglock held.
281  *
282  * RETURNS:
283  * %true if @mask is set, %false if made noop because @task was dying.
284  */
285 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
286 {
287 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
288 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
289 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
290 
291 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
292 		return false;
293 
294 	if (mask & JOBCTL_STOP_SIGMASK)
295 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
296 
297 	task->jobctl |= mask;
298 	return true;
299 }
300 
301 /**
302  * task_clear_jobctl_trapping - clear jobctl trapping bit
303  * @task: target task
304  *
305  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
306  * Clear it and wake up the ptracer.  Note that we don't need any further
307  * locking.  @task->siglock guarantees that @task->parent points to the
308  * ptracer.
309  *
310  * CONTEXT:
311  * Must be called with @task->sighand->siglock held.
312  */
313 void task_clear_jobctl_trapping(struct task_struct *task)
314 {
315 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
316 		task->jobctl &= ~JOBCTL_TRAPPING;
317 		smp_mb();	/* advised by wake_up_bit() */
318 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
319 	}
320 }
321 
322 /**
323  * task_clear_jobctl_pending - clear jobctl pending bits
324  * @task: target task
325  * @mask: pending bits to clear
326  *
327  * Clear @mask from @task->jobctl.  @mask must be subset of
328  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
329  * STOP bits are cleared together.
330  *
331  * If clearing of @mask leaves no stop or trap pending, this function calls
332  * task_clear_jobctl_trapping().
333  *
334  * CONTEXT:
335  * Must be called with @task->sighand->siglock held.
336  */
337 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
338 {
339 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
340 
341 	if (mask & JOBCTL_STOP_PENDING)
342 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
343 
344 	task->jobctl &= ~mask;
345 
346 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
347 		task_clear_jobctl_trapping(task);
348 }
349 
350 /**
351  * task_participate_group_stop - participate in a group stop
352  * @task: task participating in a group stop
353  *
354  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
355  * Group stop states are cleared and the group stop count is consumed if
356  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
357  * stop, the appropriate `SIGNAL_*` flags are set.
358  *
359  * CONTEXT:
360  * Must be called with @task->sighand->siglock held.
361  *
362  * RETURNS:
363  * %true if group stop completion should be notified to the parent, %false
364  * otherwise.
365  */
366 static bool task_participate_group_stop(struct task_struct *task)
367 {
368 	struct signal_struct *sig = task->signal;
369 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
370 
371 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
372 
373 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
374 
375 	if (!consume)
376 		return false;
377 
378 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
379 		sig->group_stop_count--;
380 
381 	/*
382 	 * Tell the caller to notify completion iff we are entering into a
383 	 * fresh group stop.  Read comment in do_signal_stop() for details.
384 	 */
385 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
386 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
387 		return true;
388 	}
389 	return false;
390 }
391 
392 void task_join_group_stop(struct task_struct *task)
393 {
394 	/* Have the new thread join an on-going signal group stop */
395 	unsigned long jobctl = current->jobctl;
396 	if (jobctl & JOBCTL_STOP_PENDING) {
397 		struct signal_struct *sig = current->signal;
398 		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
399 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
400 		if (task_set_jobctl_pending(task, signr | gstop)) {
401 			sig->group_stop_count++;
402 		}
403 	}
404 }
405 
406 /*
407  * allocate a new signal queue record
408  * - this may be called without locks if and only if t == current, otherwise an
409  *   appropriate lock must be held to stop the target task from exiting
410  */
411 static struct sigqueue *
412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
413 {
414 	struct sigqueue *q = NULL;
415 	struct user_struct *user;
416 
417 	/*
418 	 * Protect access to @t credentials. This can go away when all
419 	 * callers hold rcu read lock.
420 	 */
421 	rcu_read_lock();
422 	user = get_uid(__task_cred(t)->user);
423 	atomic_inc(&user->sigpending);
424 	rcu_read_unlock();
425 
426 	if (override_rlimit ||
427 	    atomic_read(&user->sigpending) <=
428 			task_rlimit(t, RLIMIT_SIGPENDING)) {
429 		q = kmem_cache_alloc(sigqueue_cachep, flags);
430 	} else {
431 		print_dropped_signal(sig);
432 	}
433 
434 	if (unlikely(q == NULL)) {
435 		atomic_dec(&user->sigpending);
436 		free_uid(user);
437 	} else {
438 		INIT_LIST_HEAD(&q->list);
439 		q->flags = 0;
440 		q->user = user;
441 	}
442 
443 	return q;
444 }
445 
446 static void __sigqueue_free(struct sigqueue *q)
447 {
448 	if (q->flags & SIGQUEUE_PREALLOC)
449 		return;
450 	atomic_dec(&q->user->sigpending);
451 	free_uid(q->user);
452 	kmem_cache_free(sigqueue_cachep, q);
453 }
454 
455 void flush_sigqueue(struct sigpending *queue)
456 {
457 	struct sigqueue *q;
458 
459 	sigemptyset(&queue->signal);
460 	while (!list_empty(&queue->list)) {
461 		q = list_entry(queue->list.next, struct sigqueue , list);
462 		list_del_init(&q->list);
463 		__sigqueue_free(q);
464 	}
465 }
466 
467 /*
468  * Flush all pending signals for this kthread.
469  */
470 void flush_signals(struct task_struct *t)
471 {
472 	unsigned long flags;
473 
474 	spin_lock_irqsave(&t->sighand->siglock, flags);
475 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
476 	flush_sigqueue(&t->pending);
477 	flush_sigqueue(&t->signal->shared_pending);
478 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
479 }
480 EXPORT_SYMBOL(flush_signals);
481 
482 #ifdef CONFIG_POSIX_TIMERS
483 static void __flush_itimer_signals(struct sigpending *pending)
484 {
485 	sigset_t signal, retain;
486 	struct sigqueue *q, *n;
487 
488 	signal = pending->signal;
489 	sigemptyset(&retain);
490 
491 	list_for_each_entry_safe(q, n, &pending->list, list) {
492 		int sig = q->info.si_signo;
493 
494 		if (likely(q->info.si_code != SI_TIMER)) {
495 			sigaddset(&retain, sig);
496 		} else {
497 			sigdelset(&signal, sig);
498 			list_del_init(&q->list);
499 			__sigqueue_free(q);
500 		}
501 	}
502 
503 	sigorsets(&pending->signal, &signal, &retain);
504 }
505 
506 void flush_itimer_signals(void)
507 {
508 	struct task_struct *tsk = current;
509 	unsigned long flags;
510 
511 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
512 	__flush_itimer_signals(&tsk->pending);
513 	__flush_itimer_signals(&tsk->signal->shared_pending);
514 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
515 }
516 #endif
517 
518 void ignore_signals(struct task_struct *t)
519 {
520 	int i;
521 
522 	for (i = 0; i < _NSIG; ++i)
523 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
524 
525 	flush_signals(t);
526 }
527 
528 /*
529  * Flush all handlers for a task.
530  */
531 
532 void
533 flush_signal_handlers(struct task_struct *t, int force_default)
534 {
535 	int i;
536 	struct k_sigaction *ka = &t->sighand->action[0];
537 	for (i = _NSIG ; i != 0 ; i--) {
538 		if (force_default || ka->sa.sa_handler != SIG_IGN)
539 			ka->sa.sa_handler = SIG_DFL;
540 		ka->sa.sa_flags = 0;
541 #ifdef __ARCH_HAS_SA_RESTORER
542 		ka->sa.sa_restorer = NULL;
543 #endif
544 		sigemptyset(&ka->sa.sa_mask);
545 		ka++;
546 	}
547 }
548 
549 bool unhandled_signal(struct task_struct *tsk, int sig)
550 {
551 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
552 	if (is_global_init(tsk))
553 		return true;
554 
555 	if (handler != SIG_IGN && handler != SIG_DFL)
556 		return false;
557 
558 	/* if ptraced, let the tracer determine */
559 	return !tsk->ptrace;
560 }
561 
562 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
563 			   bool *resched_timer)
564 {
565 	struct sigqueue *q, *first = NULL;
566 
567 	/*
568 	 * Collect the siginfo appropriate to this signal.  Check if
569 	 * there is another siginfo for the same signal.
570 	*/
571 	list_for_each_entry(q, &list->list, list) {
572 		if (q->info.si_signo == sig) {
573 			if (first)
574 				goto still_pending;
575 			first = q;
576 		}
577 	}
578 
579 	sigdelset(&list->signal, sig);
580 
581 	if (first) {
582 still_pending:
583 		list_del_init(&first->list);
584 		copy_siginfo(info, &first->info);
585 
586 		*resched_timer =
587 			(first->flags & SIGQUEUE_PREALLOC) &&
588 			(info->si_code == SI_TIMER) &&
589 			(info->si_sys_private);
590 
591 		__sigqueue_free(first);
592 	} else {
593 		/*
594 		 * Ok, it wasn't in the queue.  This must be
595 		 * a fast-pathed signal or we must have been
596 		 * out of queue space.  So zero out the info.
597 		 */
598 		clear_siginfo(info);
599 		info->si_signo = sig;
600 		info->si_errno = 0;
601 		info->si_code = SI_USER;
602 		info->si_pid = 0;
603 		info->si_uid = 0;
604 	}
605 }
606 
607 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
608 			kernel_siginfo_t *info, bool *resched_timer)
609 {
610 	int sig = next_signal(pending, mask);
611 
612 	if (sig)
613 		collect_signal(sig, pending, info, resched_timer);
614 	return sig;
615 }
616 
617 /*
618  * Dequeue a signal and return the element to the caller, which is
619  * expected to free it.
620  *
621  * All callers have to hold the siglock.
622  */
623 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
624 {
625 	bool resched_timer = false;
626 	int signr;
627 
628 	/* We only dequeue private signals from ourselves, we don't let
629 	 * signalfd steal them
630 	 */
631 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
632 	if (!signr) {
633 		signr = __dequeue_signal(&tsk->signal->shared_pending,
634 					 mask, info, &resched_timer);
635 #ifdef CONFIG_POSIX_TIMERS
636 		/*
637 		 * itimer signal ?
638 		 *
639 		 * itimers are process shared and we restart periodic
640 		 * itimers in the signal delivery path to prevent DoS
641 		 * attacks in the high resolution timer case. This is
642 		 * compliant with the old way of self-restarting
643 		 * itimers, as the SIGALRM is a legacy signal and only
644 		 * queued once. Changing the restart behaviour to
645 		 * restart the timer in the signal dequeue path is
646 		 * reducing the timer noise on heavy loaded !highres
647 		 * systems too.
648 		 */
649 		if (unlikely(signr == SIGALRM)) {
650 			struct hrtimer *tmr = &tsk->signal->real_timer;
651 
652 			if (!hrtimer_is_queued(tmr) &&
653 			    tsk->signal->it_real_incr != 0) {
654 				hrtimer_forward(tmr, tmr->base->get_time(),
655 						tsk->signal->it_real_incr);
656 				hrtimer_restart(tmr);
657 			}
658 		}
659 #endif
660 	}
661 
662 	recalc_sigpending();
663 	if (!signr)
664 		return 0;
665 
666 	if (unlikely(sig_kernel_stop(signr))) {
667 		/*
668 		 * Set a marker that we have dequeued a stop signal.  Our
669 		 * caller might release the siglock and then the pending
670 		 * stop signal it is about to process is no longer in the
671 		 * pending bitmasks, but must still be cleared by a SIGCONT
672 		 * (and overruled by a SIGKILL).  So those cases clear this
673 		 * shared flag after we've set it.  Note that this flag may
674 		 * remain set after the signal we return is ignored or
675 		 * handled.  That doesn't matter because its only purpose
676 		 * is to alert stop-signal processing code when another
677 		 * processor has come along and cleared the flag.
678 		 */
679 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
680 	}
681 #ifdef CONFIG_POSIX_TIMERS
682 	if (resched_timer) {
683 		/*
684 		 * Release the siglock to ensure proper locking order
685 		 * of timer locks outside of siglocks.  Note, we leave
686 		 * irqs disabled here, since the posix-timers code is
687 		 * about to disable them again anyway.
688 		 */
689 		spin_unlock(&tsk->sighand->siglock);
690 		posixtimer_rearm(info);
691 		spin_lock(&tsk->sighand->siglock);
692 
693 		/* Don't expose the si_sys_private value to userspace */
694 		info->si_sys_private = 0;
695 	}
696 #endif
697 	return signr;
698 }
699 EXPORT_SYMBOL_GPL(dequeue_signal);
700 
701 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
702 {
703 	struct task_struct *tsk = current;
704 	struct sigpending *pending = &tsk->pending;
705 	struct sigqueue *q, *sync = NULL;
706 
707 	/*
708 	 * Might a synchronous signal be in the queue?
709 	 */
710 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
711 		return 0;
712 
713 	/*
714 	 * Return the first synchronous signal in the queue.
715 	 */
716 	list_for_each_entry(q, &pending->list, list) {
717 		/* Synchronous signals have a postive si_code */
718 		if ((q->info.si_code > SI_USER) &&
719 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
720 			sync = q;
721 			goto next;
722 		}
723 	}
724 	return 0;
725 next:
726 	/*
727 	 * Check if there is another siginfo for the same signal.
728 	 */
729 	list_for_each_entry_continue(q, &pending->list, list) {
730 		if (q->info.si_signo == sync->info.si_signo)
731 			goto still_pending;
732 	}
733 
734 	sigdelset(&pending->signal, sync->info.si_signo);
735 	recalc_sigpending();
736 still_pending:
737 	list_del_init(&sync->list);
738 	copy_siginfo(info, &sync->info);
739 	__sigqueue_free(sync);
740 	return info->si_signo;
741 }
742 
743 /*
744  * Tell a process that it has a new active signal..
745  *
746  * NOTE! we rely on the previous spin_lock to
747  * lock interrupts for us! We can only be called with
748  * "siglock" held, and the local interrupt must
749  * have been disabled when that got acquired!
750  *
751  * No need to set need_resched since signal event passing
752  * goes through ->blocked
753  */
754 void signal_wake_up_state(struct task_struct *t, unsigned int state)
755 {
756 	set_tsk_thread_flag(t, TIF_SIGPENDING);
757 	/*
758 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
759 	 * case. We don't check t->state here because there is a race with it
760 	 * executing another processor and just now entering stopped state.
761 	 * By using wake_up_state, we ensure the process will wake up and
762 	 * handle its death signal.
763 	 */
764 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
765 		kick_process(t);
766 }
767 
768 /*
769  * Remove signals in mask from the pending set and queue.
770  * Returns 1 if any signals were found.
771  *
772  * All callers must be holding the siglock.
773  */
774 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
775 {
776 	struct sigqueue *q, *n;
777 	sigset_t m;
778 
779 	sigandsets(&m, mask, &s->signal);
780 	if (sigisemptyset(&m))
781 		return;
782 
783 	sigandnsets(&s->signal, &s->signal, mask);
784 	list_for_each_entry_safe(q, n, &s->list, list) {
785 		if (sigismember(mask, q->info.si_signo)) {
786 			list_del_init(&q->list);
787 			__sigqueue_free(q);
788 		}
789 	}
790 }
791 
792 static inline int is_si_special(const struct kernel_siginfo *info)
793 {
794 	return info <= SEND_SIG_PRIV;
795 }
796 
797 static inline bool si_fromuser(const struct kernel_siginfo *info)
798 {
799 	return info == SEND_SIG_NOINFO ||
800 		(!is_si_special(info) && SI_FROMUSER(info));
801 }
802 
803 /*
804  * called with RCU read lock from check_kill_permission()
805  */
806 static bool kill_ok_by_cred(struct task_struct *t)
807 {
808 	const struct cred *cred = current_cred();
809 	const struct cred *tcred = __task_cred(t);
810 
811 	return uid_eq(cred->euid, tcred->suid) ||
812 	       uid_eq(cred->euid, tcred->uid) ||
813 	       uid_eq(cred->uid, tcred->suid) ||
814 	       uid_eq(cred->uid, tcred->uid) ||
815 	       ns_capable(tcred->user_ns, CAP_KILL);
816 }
817 
818 /*
819  * Bad permissions for sending the signal
820  * - the caller must hold the RCU read lock
821  */
822 static int check_kill_permission(int sig, struct kernel_siginfo *info,
823 				 struct task_struct *t)
824 {
825 	struct pid *sid;
826 	int error;
827 
828 	if (!valid_signal(sig))
829 		return -EINVAL;
830 
831 	if (!si_fromuser(info))
832 		return 0;
833 
834 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
835 	if (error)
836 		return error;
837 
838 	if (!same_thread_group(current, t) &&
839 	    !kill_ok_by_cred(t)) {
840 		switch (sig) {
841 		case SIGCONT:
842 			sid = task_session(t);
843 			/*
844 			 * We don't return the error if sid == NULL. The
845 			 * task was unhashed, the caller must notice this.
846 			 */
847 			if (!sid || sid == task_session(current))
848 				break;
849 			/* fall through */
850 		default:
851 			return -EPERM;
852 		}
853 	}
854 
855 	return security_task_kill(t, info, sig, NULL);
856 }
857 
858 /**
859  * ptrace_trap_notify - schedule trap to notify ptracer
860  * @t: tracee wanting to notify tracer
861  *
862  * This function schedules sticky ptrace trap which is cleared on the next
863  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
864  * ptracer.
865  *
866  * If @t is running, STOP trap will be taken.  If trapped for STOP and
867  * ptracer is listening for events, tracee is woken up so that it can
868  * re-trap for the new event.  If trapped otherwise, STOP trap will be
869  * eventually taken without returning to userland after the existing traps
870  * are finished by PTRACE_CONT.
871  *
872  * CONTEXT:
873  * Must be called with @task->sighand->siglock held.
874  */
875 static void ptrace_trap_notify(struct task_struct *t)
876 {
877 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
878 	assert_spin_locked(&t->sighand->siglock);
879 
880 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
881 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
882 }
883 
884 /*
885  * Handle magic process-wide effects of stop/continue signals. Unlike
886  * the signal actions, these happen immediately at signal-generation
887  * time regardless of blocking, ignoring, or handling.  This does the
888  * actual continuing for SIGCONT, but not the actual stopping for stop
889  * signals. The process stop is done as a signal action for SIG_DFL.
890  *
891  * Returns true if the signal should be actually delivered, otherwise
892  * it should be dropped.
893  */
894 static bool prepare_signal(int sig, struct task_struct *p, bool force)
895 {
896 	struct signal_struct *signal = p->signal;
897 	struct task_struct *t;
898 	sigset_t flush;
899 
900 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
901 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
902 			return sig == SIGKILL;
903 		/*
904 		 * The process is in the middle of dying, nothing to do.
905 		 */
906 	} else if (sig_kernel_stop(sig)) {
907 		/*
908 		 * This is a stop signal.  Remove SIGCONT from all queues.
909 		 */
910 		siginitset(&flush, sigmask(SIGCONT));
911 		flush_sigqueue_mask(&flush, &signal->shared_pending);
912 		for_each_thread(p, t)
913 			flush_sigqueue_mask(&flush, &t->pending);
914 	} else if (sig == SIGCONT) {
915 		unsigned int why;
916 		/*
917 		 * Remove all stop signals from all queues, wake all threads.
918 		 */
919 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
920 		flush_sigqueue_mask(&flush, &signal->shared_pending);
921 		for_each_thread(p, t) {
922 			flush_sigqueue_mask(&flush, &t->pending);
923 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
924 			if (likely(!(t->ptrace & PT_SEIZED)))
925 				wake_up_state(t, __TASK_STOPPED);
926 			else
927 				ptrace_trap_notify(t);
928 		}
929 
930 		/*
931 		 * Notify the parent with CLD_CONTINUED if we were stopped.
932 		 *
933 		 * If we were in the middle of a group stop, we pretend it
934 		 * was already finished, and then continued. Since SIGCHLD
935 		 * doesn't queue we report only CLD_STOPPED, as if the next
936 		 * CLD_CONTINUED was dropped.
937 		 */
938 		why = 0;
939 		if (signal->flags & SIGNAL_STOP_STOPPED)
940 			why |= SIGNAL_CLD_CONTINUED;
941 		else if (signal->group_stop_count)
942 			why |= SIGNAL_CLD_STOPPED;
943 
944 		if (why) {
945 			/*
946 			 * The first thread which returns from do_signal_stop()
947 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
948 			 * notify its parent. See get_signal().
949 			 */
950 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
951 			signal->group_stop_count = 0;
952 			signal->group_exit_code = 0;
953 		}
954 	}
955 
956 	return !sig_ignored(p, sig, force);
957 }
958 
959 /*
960  * Test if P wants to take SIG.  After we've checked all threads with this,
961  * it's equivalent to finding no threads not blocking SIG.  Any threads not
962  * blocking SIG were ruled out because they are not running and already
963  * have pending signals.  Such threads will dequeue from the shared queue
964  * as soon as they're available, so putting the signal on the shared queue
965  * will be equivalent to sending it to one such thread.
966  */
967 static inline bool wants_signal(int sig, struct task_struct *p)
968 {
969 	if (sigismember(&p->blocked, sig))
970 		return false;
971 
972 	if (p->flags & PF_EXITING)
973 		return false;
974 
975 	if (sig == SIGKILL)
976 		return true;
977 
978 	if (task_is_stopped_or_traced(p))
979 		return false;
980 
981 	return task_curr(p) || !signal_pending(p);
982 }
983 
984 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
985 {
986 	struct signal_struct *signal = p->signal;
987 	struct task_struct *t;
988 
989 	/*
990 	 * Now find a thread we can wake up to take the signal off the queue.
991 	 *
992 	 * If the main thread wants the signal, it gets first crack.
993 	 * Probably the least surprising to the average bear.
994 	 */
995 	if (wants_signal(sig, p))
996 		t = p;
997 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
998 		/*
999 		 * There is just one thread and it does not need to be woken.
1000 		 * It will dequeue unblocked signals before it runs again.
1001 		 */
1002 		return;
1003 	else {
1004 		/*
1005 		 * Otherwise try to find a suitable thread.
1006 		 */
1007 		t = signal->curr_target;
1008 		while (!wants_signal(sig, t)) {
1009 			t = next_thread(t);
1010 			if (t == signal->curr_target)
1011 				/*
1012 				 * No thread needs to be woken.
1013 				 * Any eligible threads will see
1014 				 * the signal in the queue soon.
1015 				 */
1016 				return;
1017 		}
1018 		signal->curr_target = t;
1019 	}
1020 
1021 	/*
1022 	 * Found a killable thread.  If the signal will be fatal,
1023 	 * then start taking the whole group down immediately.
1024 	 */
1025 	if (sig_fatal(p, sig) &&
1026 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1027 	    !sigismember(&t->real_blocked, sig) &&
1028 	    (sig == SIGKILL || !p->ptrace)) {
1029 		/*
1030 		 * This signal will be fatal to the whole group.
1031 		 */
1032 		if (!sig_kernel_coredump(sig)) {
1033 			/*
1034 			 * Start a group exit and wake everybody up.
1035 			 * This way we don't have other threads
1036 			 * running and doing things after a slower
1037 			 * thread has the fatal signal pending.
1038 			 */
1039 			signal->flags = SIGNAL_GROUP_EXIT;
1040 			signal->group_exit_code = sig;
1041 			signal->group_stop_count = 0;
1042 			t = p;
1043 			do {
1044 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1045 				sigaddset(&t->pending.signal, SIGKILL);
1046 				signal_wake_up(t, 1);
1047 			} while_each_thread(p, t);
1048 			return;
1049 		}
1050 	}
1051 
1052 	/*
1053 	 * The signal is already in the shared-pending queue.
1054 	 * Tell the chosen thread to wake up and dequeue it.
1055 	 */
1056 	signal_wake_up(t, sig == SIGKILL);
1057 	return;
1058 }
1059 
1060 static inline bool legacy_queue(struct sigpending *signals, int sig)
1061 {
1062 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1063 }
1064 
1065 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1066 			enum pid_type type, bool force)
1067 {
1068 	struct sigpending *pending;
1069 	struct sigqueue *q;
1070 	int override_rlimit;
1071 	int ret = 0, result;
1072 
1073 	assert_spin_locked(&t->sighand->siglock);
1074 
1075 	result = TRACE_SIGNAL_IGNORED;
1076 	if (!prepare_signal(sig, t, force))
1077 		goto ret;
1078 
1079 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1080 	/*
1081 	 * Short-circuit ignored signals and support queuing
1082 	 * exactly one non-rt signal, so that we can get more
1083 	 * detailed information about the cause of the signal.
1084 	 */
1085 	result = TRACE_SIGNAL_ALREADY_PENDING;
1086 	if (legacy_queue(pending, sig))
1087 		goto ret;
1088 
1089 	result = TRACE_SIGNAL_DELIVERED;
1090 	/*
1091 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1092 	 */
1093 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1094 		goto out_set;
1095 
1096 	/*
1097 	 * Real-time signals must be queued if sent by sigqueue, or
1098 	 * some other real-time mechanism.  It is implementation
1099 	 * defined whether kill() does so.  We attempt to do so, on
1100 	 * the principle of least surprise, but since kill is not
1101 	 * allowed to fail with EAGAIN when low on memory we just
1102 	 * make sure at least one signal gets delivered and don't
1103 	 * pass on the info struct.
1104 	 */
1105 	if (sig < SIGRTMIN)
1106 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1107 	else
1108 		override_rlimit = 0;
1109 
1110 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1111 	if (q) {
1112 		list_add_tail(&q->list, &pending->list);
1113 		switch ((unsigned long) info) {
1114 		case (unsigned long) SEND_SIG_NOINFO:
1115 			clear_siginfo(&q->info);
1116 			q->info.si_signo = sig;
1117 			q->info.si_errno = 0;
1118 			q->info.si_code = SI_USER;
1119 			q->info.si_pid = task_tgid_nr_ns(current,
1120 							task_active_pid_ns(t));
1121 			rcu_read_lock();
1122 			q->info.si_uid =
1123 				from_kuid_munged(task_cred_xxx(t, user_ns),
1124 						 current_uid());
1125 			rcu_read_unlock();
1126 			break;
1127 		case (unsigned long) SEND_SIG_PRIV:
1128 			clear_siginfo(&q->info);
1129 			q->info.si_signo = sig;
1130 			q->info.si_errno = 0;
1131 			q->info.si_code = SI_KERNEL;
1132 			q->info.si_pid = 0;
1133 			q->info.si_uid = 0;
1134 			break;
1135 		default:
1136 			copy_siginfo(&q->info, info);
1137 			break;
1138 		}
1139 	} else if (!is_si_special(info) &&
1140 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1141 		/*
1142 		 * Queue overflow, abort.  We may abort if the
1143 		 * signal was rt and sent by user using something
1144 		 * other than kill().
1145 		 */
1146 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1147 		ret = -EAGAIN;
1148 		goto ret;
1149 	} else {
1150 		/*
1151 		 * This is a silent loss of information.  We still
1152 		 * send the signal, but the *info bits are lost.
1153 		 */
1154 		result = TRACE_SIGNAL_LOSE_INFO;
1155 	}
1156 
1157 out_set:
1158 	signalfd_notify(t, sig);
1159 	sigaddset(&pending->signal, sig);
1160 
1161 	/* Let multiprocess signals appear after on-going forks */
1162 	if (type > PIDTYPE_TGID) {
1163 		struct multiprocess_signals *delayed;
1164 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1165 			sigset_t *signal = &delayed->signal;
1166 			/* Can't queue both a stop and a continue signal */
1167 			if (sig == SIGCONT)
1168 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1169 			else if (sig_kernel_stop(sig))
1170 				sigdelset(signal, SIGCONT);
1171 			sigaddset(signal, sig);
1172 		}
1173 	}
1174 
1175 	complete_signal(sig, t, type);
1176 ret:
1177 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1178 	return ret;
1179 }
1180 
1181 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1182 {
1183 	bool ret = false;
1184 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1185 	case SIL_KILL:
1186 	case SIL_CHLD:
1187 	case SIL_RT:
1188 		ret = true;
1189 		break;
1190 	case SIL_TIMER:
1191 	case SIL_POLL:
1192 	case SIL_FAULT:
1193 	case SIL_FAULT_MCEERR:
1194 	case SIL_FAULT_BNDERR:
1195 	case SIL_FAULT_PKUERR:
1196 	case SIL_SYS:
1197 		ret = false;
1198 		break;
1199 	}
1200 	return ret;
1201 }
1202 
1203 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1204 			enum pid_type type)
1205 {
1206 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1207 	bool force = false;
1208 
1209 	if (info == SEND_SIG_NOINFO) {
1210 		/* Force if sent from an ancestor pid namespace */
1211 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1212 	} else if (info == SEND_SIG_PRIV) {
1213 		/* Don't ignore kernel generated signals */
1214 		force = true;
1215 	} else if (has_si_pid_and_uid(info)) {
1216 		/* SIGKILL and SIGSTOP is special or has ids */
1217 		struct user_namespace *t_user_ns;
1218 
1219 		rcu_read_lock();
1220 		t_user_ns = task_cred_xxx(t, user_ns);
1221 		if (current_user_ns() != t_user_ns) {
1222 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1223 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1224 		}
1225 		rcu_read_unlock();
1226 
1227 		/* A kernel generated signal? */
1228 		force = (info->si_code == SI_KERNEL);
1229 
1230 		/* From an ancestor pid namespace? */
1231 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1232 			info->si_pid = 0;
1233 			force = true;
1234 		}
1235 	}
1236 	return __send_signal(sig, info, t, type, force);
1237 }
1238 
1239 static void print_fatal_signal(int signr)
1240 {
1241 	struct pt_regs *regs = signal_pt_regs();
1242 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1243 
1244 #if defined(__i386__) && !defined(__arch_um__)
1245 	pr_info("code at %08lx: ", regs->ip);
1246 	{
1247 		int i;
1248 		for (i = 0; i < 16; i++) {
1249 			unsigned char insn;
1250 
1251 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1252 				break;
1253 			pr_cont("%02x ", insn);
1254 		}
1255 	}
1256 	pr_cont("\n");
1257 #endif
1258 	preempt_disable();
1259 	show_regs(regs);
1260 	preempt_enable();
1261 }
1262 
1263 static int __init setup_print_fatal_signals(char *str)
1264 {
1265 	get_option (&str, &print_fatal_signals);
1266 
1267 	return 1;
1268 }
1269 
1270 __setup("print-fatal-signals=", setup_print_fatal_signals);
1271 
1272 int
1273 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1274 {
1275 	return send_signal(sig, info, p, PIDTYPE_TGID);
1276 }
1277 
1278 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1279 			enum pid_type type)
1280 {
1281 	unsigned long flags;
1282 	int ret = -ESRCH;
1283 
1284 	if (lock_task_sighand(p, &flags)) {
1285 		ret = send_signal(sig, info, p, type);
1286 		unlock_task_sighand(p, &flags);
1287 	}
1288 
1289 	return ret;
1290 }
1291 
1292 /*
1293  * Force a signal that the process can't ignore: if necessary
1294  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1295  *
1296  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1297  * since we do not want to have a signal handler that was blocked
1298  * be invoked when user space had explicitly blocked it.
1299  *
1300  * We don't want to have recursive SIGSEGV's etc, for example,
1301  * that is why we also clear SIGNAL_UNKILLABLE.
1302  */
1303 static int
1304 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1305 {
1306 	unsigned long int flags;
1307 	int ret, blocked, ignored;
1308 	struct k_sigaction *action;
1309 	int sig = info->si_signo;
1310 
1311 	spin_lock_irqsave(&t->sighand->siglock, flags);
1312 	action = &t->sighand->action[sig-1];
1313 	ignored = action->sa.sa_handler == SIG_IGN;
1314 	blocked = sigismember(&t->blocked, sig);
1315 	if (blocked || ignored) {
1316 		action->sa.sa_handler = SIG_DFL;
1317 		if (blocked) {
1318 			sigdelset(&t->blocked, sig);
1319 			recalc_sigpending_and_wake(t);
1320 		}
1321 	}
1322 	/*
1323 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1324 	 * debugging to leave init killable.
1325 	 */
1326 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1327 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1328 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1329 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1330 
1331 	return ret;
1332 }
1333 
1334 int force_sig_info(struct kernel_siginfo *info)
1335 {
1336 	return force_sig_info_to_task(info, current);
1337 }
1338 
1339 /*
1340  * Nuke all other threads in the group.
1341  */
1342 int zap_other_threads(struct task_struct *p)
1343 {
1344 	struct task_struct *t = p;
1345 	int count = 0;
1346 
1347 	p->signal->group_stop_count = 0;
1348 
1349 	while_each_thread(p, t) {
1350 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1351 		count++;
1352 
1353 		/* Don't bother with already dead threads */
1354 		if (t->exit_state)
1355 			continue;
1356 		sigaddset(&t->pending.signal, SIGKILL);
1357 		signal_wake_up(t, 1);
1358 	}
1359 
1360 	return count;
1361 }
1362 
1363 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1364 					   unsigned long *flags)
1365 {
1366 	struct sighand_struct *sighand;
1367 
1368 	rcu_read_lock();
1369 	for (;;) {
1370 		sighand = rcu_dereference(tsk->sighand);
1371 		if (unlikely(sighand == NULL))
1372 			break;
1373 
1374 		/*
1375 		 * This sighand can be already freed and even reused, but
1376 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1377 		 * initializes ->siglock: this slab can't go away, it has
1378 		 * the same object type, ->siglock can't be reinitialized.
1379 		 *
1380 		 * We need to ensure that tsk->sighand is still the same
1381 		 * after we take the lock, we can race with de_thread() or
1382 		 * __exit_signal(). In the latter case the next iteration
1383 		 * must see ->sighand == NULL.
1384 		 */
1385 		spin_lock_irqsave(&sighand->siglock, *flags);
1386 		if (likely(sighand == tsk->sighand))
1387 			break;
1388 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1389 	}
1390 	rcu_read_unlock();
1391 
1392 	return sighand;
1393 }
1394 
1395 /*
1396  * send signal info to all the members of a group
1397  */
1398 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1399 			struct task_struct *p, enum pid_type type)
1400 {
1401 	int ret;
1402 
1403 	rcu_read_lock();
1404 	ret = check_kill_permission(sig, info, p);
1405 	rcu_read_unlock();
1406 
1407 	if (!ret && sig)
1408 		ret = do_send_sig_info(sig, info, p, type);
1409 
1410 	return ret;
1411 }
1412 
1413 /*
1414  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1415  * control characters do (^C, ^Z etc)
1416  * - the caller must hold at least a readlock on tasklist_lock
1417  */
1418 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1419 {
1420 	struct task_struct *p = NULL;
1421 	int retval, success;
1422 
1423 	success = 0;
1424 	retval = -ESRCH;
1425 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1426 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1427 		success |= !err;
1428 		retval = err;
1429 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1430 	return success ? 0 : retval;
1431 }
1432 
1433 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1434 {
1435 	int error = -ESRCH;
1436 	struct task_struct *p;
1437 
1438 	for (;;) {
1439 		rcu_read_lock();
1440 		p = pid_task(pid, PIDTYPE_PID);
1441 		if (p)
1442 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1443 		rcu_read_unlock();
1444 		if (likely(!p || error != -ESRCH))
1445 			return error;
1446 
1447 		/*
1448 		 * The task was unhashed in between, try again.  If it
1449 		 * is dead, pid_task() will return NULL, if we race with
1450 		 * de_thread() it will find the new leader.
1451 		 */
1452 	}
1453 }
1454 
1455 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1456 {
1457 	int error;
1458 	rcu_read_lock();
1459 	error = kill_pid_info(sig, info, find_vpid(pid));
1460 	rcu_read_unlock();
1461 	return error;
1462 }
1463 
1464 static inline bool kill_as_cred_perm(const struct cred *cred,
1465 				     struct task_struct *target)
1466 {
1467 	const struct cred *pcred = __task_cred(target);
1468 
1469 	return uid_eq(cred->euid, pcred->suid) ||
1470 	       uid_eq(cred->euid, pcred->uid) ||
1471 	       uid_eq(cred->uid, pcred->suid) ||
1472 	       uid_eq(cred->uid, pcred->uid);
1473 }
1474 
1475 /*
1476  * The usb asyncio usage of siginfo is wrong.  The glibc support
1477  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1478  * AKA after the generic fields:
1479  *	kernel_pid_t	si_pid;
1480  *	kernel_uid32_t	si_uid;
1481  *	sigval_t	si_value;
1482  *
1483  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1484  * after the generic fields is:
1485  *	void __user 	*si_addr;
1486  *
1487  * This is a practical problem when there is a 64bit big endian kernel
1488  * and a 32bit userspace.  As the 32bit address will encoded in the low
1489  * 32bits of the pointer.  Those low 32bits will be stored at higher
1490  * address than appear in a 32 bit pointer.  So userspace will not
1491  * see the address it was expecting for it's completions.
1492  *
1493  * There is nothing in the encoding that can allow
1494  * copy_siginfo_to_user32 to detect this confusion of formats, so
1495  * handle this by requiring the caller of kill_pid_usb_asyncio to
1496  * notice when this situration takes place and to store the 32bit
1497  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1498  * parameter.
1499  */
1500 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1501 			 struct pid *pid, const struct cred *cred)
1502 {
1503 	struct kernel_siginfo info;
1504 	struct task_struct *p;
1505 	unsigned long flags;
1506 	int ret = -EINVAL;
1507 
1508 	clear_siginfo(&info);
1509 	info.si_signo = sig;
1510 	info.si_errno = errno;
1511 	info.si_code = SI_ASYNCIO;
1512 	*((sigval_t *)&info.si_pid) = addr;
1513 
1514 	if (!valid_signal(sig))
1515 		return ret;
1516 
1517 	rcu_read_lock();
1518 	p = pid_task(pid, PIDTYPE_PID);
1519 	if (!p) {
1520 		ret = -ESRCH;
1521 		goto out_unlock;
1522 	}
1523 	if (!kill_as_cred_perm(cred, p)) {
1524 		ret = -EPERM;
1525 		goto out_unlock;
1526 	}
1527 	ret = security_task_kill(p, &info, sig, cred);
1528 	if (ret)
1529 		goto out_unlock;
1530 
1531 	if (sig) {
1532 		if (lock_task_sighand(p, &flags)) {
1533 			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1534 			unlock_task_sighand(p, &flags);
1535 		} else
1536 			ret = -ESRCH;
1537 	}
1538 out_unlock:
1539 	rcu_read_unlock();
1540 	return ret;
1541 }
1542 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1543 
1544 /*
1545  * kill_something_info() interprets pid in interesting ways just like kill(2).
1546  *
1547  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1548  * is probably wrong.  Should make it like BSD or SYSV.
1549  */
1550 
1551 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1552 {
1553 	int ret;
1554 
1555 	if (pid > 0) {
1556 		rcu_read_lock();
1557 		ret = kill_pid_info(sig, info, find_vpid(pid));
1558 		rcu_read_unlock();
1559 		return ret;
1560 	}
1561 
1562 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1563 	if (pid == INT_MIN)
1564 		return -ESRCH;
1565 
1566 	read_lock(&tasklist_lock);
1567 	if (pid != -1) {
1568 		ret = __kill_pgrp_info(sig, info,
1569 				pid ? find_vpid(-pid) : task_pgrp(current));
1570 	} else {
1571 		int retval = 0, count = 0;
1572 		struct task_struct * p;
1573 
1574 		for_each_process(p) {
1575 			if (task_pid_vnr(p) > 1 &&
1576 					!same_thread_group(p, current)) {
1577 				int err = group_send_sig_info(sig, info, p,
1578 							      PIDTYPE_MAX);
1579 				++count;
1580 				if (err != -EPERM)
1581 					retval = err;
1582 			}
1583 		}
1584 		ret = count ? retval : -ESRCH;
1585 	}
1586 	read_unlock(&tasklist_lock);
1587 
1588 	return ret;
1589 }
1590 
1591 /*
1592  * These are for backward compatibility with the rest of the kernel source.
1593  */
1594 
1595 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1596 {
1597 	/*
1598 	 * Make sure legacy kernel users don't send in bad values
1599 	 * (normal paths check this in check_kill_permission).
1600 	 */
1601 	if (!valid_signal(sig))
1602 		return -EINVAL;
1603 
1604 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1605 }
1606 EXPORT_SYMBOL(send_sig_info);
1607 
1608 #define __si_special(priv) \
1609 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1610 
1611 int
1612 send_sig(int sig, struct task_struct *p, int priv)
1613 {
1614 	return send_sig_info(sig, __si_special(priv), p);
1615 }
1616 EXPORT_SYMBOL(send_sig);
1617 
1618 void force_sig(int sig)
1619 {
1620 	struct kernel_siginfo info;
1621 
1622 	clear_siginfo(&info);
1623 	info.si_signo = sig;
1624 	info.si_errno = 0;
1625 	info.si_code = SI_KERNEL;
1626 	info.si_pid = 0;
1627 	info.si_uid = 0;
1628 	force_sig_info(&info);
1629 }
1630 EXPORT_SYMBOL(force_sig);
1631 
1632 /*
1633  * When things go south during signal handling, we
1634  * will force a SIGSEGV. And if the signal that caused
1635  * the problem was already a SIGSEGV, we'll want to
1636  * make sure we don't even try to deliver the signal..
1637  */
1638 void force_sigsegv(int sig)
1639 {
1640 	struct task_struct *p = current;
1641 
1642 	if (sig == SIGSEGV) {
1643 		unsigned long flags;
1644 		spin_lock_irqsave(&p->sighand->siglock, flags);
1645 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1646 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1647 	}
1648 	force_sig(SIGSEGV);
1649 }
1650 
1651 int force_sig_fault_to_task(int sig, int code, void __user *addr
1652 	___ARCH_SI_TRAPNO(int trapno)
1653 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1654 	, struct task_struct *t)
1655 {
1656 	struct kernel_siginfo info;
1657 
1658 	clear_siginfo(&info);
1659 	info.si_signo = sig;
1660 	info.si_errno = 0;
1661 	info.si_code  = code;
1662 	info.si_addr  = addr;
1663 #ifdef __ARCH_SI_TRAPNO
1664 	info.si_trapno = trapno;
1665 #endif
1666 #ifdef __ia64__
1667 	info.si_imm = imm;
1668 	info.si_flags = flags;
1669 	info.si_isr = isr;
1670 #endif
1671 	return force_sig_info_to_task(&info, t);
1672 }
1673 
1674 int force_sig_fault(int sig, int code, void __user *addr
1675 	___ARCH_SI_TRAPNO(int trapno)
1676 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1677 {
1678 	return force_sig_fault_to_task(sig, code, addr
1679 				       ___ARCH_SI_TRAPNO(trapno)
1680 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1681 }
1682 
1683 int send_sig_fault(int sig, int code, void __user *addr
1684 	___ARCH_SI_TRAPNO(int trapno)
1685 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1686 	, struct task_struct *t)
1687 {
1688 	struct kernel_siginfo info;
1689 
1690 	clear_siginfo(&info);
1691 	info.si_signo = sig;
1692 	info.si_errno = 0;
1693 	info.si_code  = code;
1694 	info.si_addr  = addr;
1695 #ifdef __ARCH_SI_TRAPNO
1696 	info.si_trapno = trapno;
1697 #endif
1698 #ifdef __ia64__
1699 	info.si_imm = imm;
1700 	info.si_flags = flags;
1701 	info.si_isr = isr;
1702 #endif
1703 	return send_sig_info(info.si_signo, &info, t);
1704 }
1705 
1706 int force_sig_mceerr(int code, void __user *addr, short lsb)
1707 {
1708 	struct kernel_siginfo info;
1709 
1710 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1711 	clear_siginfo(&info);
1712 	info.si_signo = SIGBUS;
1713 	info.si_errno = 0;
1714 	info.si_code = code;
1715 	info.si_addr = addr;
1716 	info.si_addr_lsb = lsb;
1717 	return force_sig_info(&info);
1718 }
1719 
1720 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1721 {
1722 	struct kernel_siginfo info;
1723 
1724 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1725 	clear_siginfo(&info);
1726 	info.si_signo = SIGBUS;
1727 	info.si_errno = 0;
1728 	info.si_code = code;
1729 	info.si_addr = addr;
1730 	info.si_addr_lsb = lsb;
1731 	return send_sig_info(info.si_signo, &info, t);
1732 }
1733 EXPORT_SYMBOL(send_sig_mceerr);
1734 
1735 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1736 {
1737 	struct kernel_siginfo info;
1738 
1739 	clear_siginfo(&info);
1740 	info.si_signo = SIGSEGV;
1741 	info.si_errno = 0;
1742 	info.si_code  = SEGV_BNDERR;
1743 	info.si_addr  = addr;
1744 	info.si_lower = lower;
1745 	info.si_upper = upper;
1746 	return force_sig_info(&info);
1747 }
1748 
1749 #ifdef SEGV_PKUERR
1750 int force_sig_pkuerr(void __user *addr, u32 pkey)
1751 {
1752 	struct kernel_siginfo info;
1753 
1754 	clear_siginfo(&info);
1755 	info.si_signo = SIGSEGV;
1756 	info.si_errno = 0;
1757 	info.si_code  = SEGV_PKUERR;
1758 	info.si_addr  = addr;
1759 	info.si_pkey  = pkey;
1760 	return force_sig_info(&info);
1761 }
1762 #endif
1763 
1764 /* For the crazy architectures that include trap information in
1765  * the errno field, instead of an actual errno value.
1766  */
1767 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1768 {
1769 	struct kernel_siginfo info;
1770 
1771 	clear_siginfo(&info);
1772 	info.si_signo = SIGTRAP;
1773 	info.si_errno = errno;
1774 	info.si_code  = TRAP_HWBKPT;
1775 	info.si_addr  = addr;
1776 	return force_sig_info(&info);
1777 }
1778 
1779 int kill_pgrp(struct pid *pid, int sig, int priv)
1780 {
1781 	int ret;
1782 
1783 	read_lock(&tasklist_lock);
1784 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1785 	read_unlock(&tasklist_lock);
1786 
1787 	return ret;
1788 }
1789 EXPORT_SYMBOL(kill_pgrp);
1790 
1791 int kill_pid(struct pid *pid, int sig, int priv)
1792 {
1793 	return kill_pid_info(sig, __si_special(priv), pid);
1794 }
1795 EXPORT_SYMBOL(kill_pid);
1796 
1797 /*
1798  * These functions support sending signals using preallocated sigqueue
1799  * structures.  This is needed "because realtime applications cannot
1800  * afford to lose notifications of asynchronous events, like timer
1801  * expirations or I/O completions".  In the case of POSIX Timers
1802  * we allocate the sigqueue structure from the timer_create.  If this
1803  * allocation fails we are able to report the failure to the application
1804  * with an EAGAIN error.
1805  */
1806 struct sigqueue *sigqueue_alloc(void)
1807 {
1808 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1809 
1810 	if (q)
1811 		q->flags |= SIGQUEUE_PREALLOC;
1812 
1813 	return q;
1814 }
1815 
1816 void sigqueue_free(struct sigqueue *q)
1817 {
1818 	unsigned long flags;
1819 	spinlock_t *lock = &current->sighand->siglock;
1820 
1821 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1822 	/*
1823 	 * We must hold ->siglock while testing q->list
1824 	 * to serialize with collect_signal() or with
1825 	 * __exit_signal()->flush_sigqueue().
1826 	 */
1827 	spin_lock_irqsave(lock, flags);
1828 	q->flags &= ~SIGQUEUE_PREALLOC;
1829 	/*
1830 	 * If it is queued it will be freed when dequeued,
1831 	 * like the "regular" sigqueue.
1832 	 */
1833 	if (!list_empty(&q->list))
1834 		q = NULL;
1835 	spin_unlock_irqrestore(lock, flags);
1836 
1837 	if (q)
1838 		__sigqueue_free(q);
1839 }
1840 
1841 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1842 {
1843 	int sig = q->info.si_signo;
1844 	struct sigpending *pending;
1845 	struct task_struct *t;
1846 	unsigned long flags;
1847 	int ret, result;
1848 
1849 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1850 
1851 	ret = -1;
1852 	rcu_read_lock();
1853 	t = pid_task(pid, type);
1854 	if (!t || !likely(lock_task_sighand(t, &flags)))
1855 		goto ret;
1856 
1857 	ret = 1; /* the signal is ignored */
1858 	result = TRACE_SIGNAL_IGNORED;
1859 	if (!prepare_signal(sig, t, false))
1860 		goto out;
1861 
1862 	ret = 0;
1863 	if (unlikely(!list_empty(&q->list))) {
1864 		/*
1865 		 * If an SI_TIMER entry is already queue just increment
1866 		 * the overrun count.
1867 		 */
1868 		BUG_ON(q->info.si_code != SI_TIMER);
1869 		q->info.si_overrun++;
1870 		result = TRACE_SIGNAL_ALREADY_PENDING;
1871 		goto out;
1872 	}
1873 	q->info.si_overrun = 0;
1874 
1875 	signalfd_notify(t, sig);
1876 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1877 	list_add_tail(&q->list, &pending->list);
1878 	sigaddset(&pending->signal, sig);
1879 	complete_signal(sig, t, type);
1880 	result = TRACE_SIGNAL_DELIVERED;
1881 out:
1882 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1883 	unlock_task_sighand(t, &flags);
1884 ret:
1885 	rcu_read_unlock();
1886 	return ret;
1887 }
1888 
1889 static void do_notify_pidfd(struct task_struct *task)
1890 {
1891 	struct pid *pid;
1892 
1893 	WARN_ON(task->exit_state == 0);
1894 	pid = task_pid(task);
1895 	wake_up_all(&pid->wait_pidfd);
1896 }
1897 
1898 /*
1899  * Let a parent know about the death of a child.
1900  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1901  *
1902  * Returns true if our parent ignored us and so we've switched to
1903  * self-reaping.
1904  */
1905 bool do_notify_parent(struct task_struct *tsk, int sig)
1906 {
1907 	struct kernel_siginfo info;
1908 	unsigned long flags;
1909 	struct sighand_struct *psig;
1910 	bool autoreap = false;
1911 	u64 utime, stime;
1912 
1913 	BUG_ON(sig == -1);
1914 
1915  	/* do_notify_parent_cldstop should have been called instead.  */
1916  	BUG_ON(task_is_stopped_or_traced(tsk));
1917 
1918 	BUG_ON(!tsk->ptrace &&
1919 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1920 
1921 	/* Wake up all pidfd waiters */
1922 	do_notify_pidfd(tsk);
1923 
1924 	if (sig != SIGCHLD) {
1925 		/*
1926 		 * This is only possible if parent == real_parent.
1927 		 * Check if it has changed security domain.
1928 		 */
1929 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1930 			sig = SIGCHLD;
1931 	}
1932 
1933 	clear_siginfo(&info);
1934 	info.si_signo = sig;
1935 	info.si_errno = 0;
1936 	/*
1937 	 * We are under tasklist_lock here so our parent is tied to
1938 	 * us and cannot change.
1939 	 *
1940 	 * task_active_pid_ns will always return the same pid namespace
1941 	 * until a task passes through release_task.
1942 	 *
1943 	 * write_lock() currently calls preempt_disable() which is the
1944 	 * same as rcu_read_lock(), but according to Oleg, this is not
1945 	 * correct to rely on this
1946 	 */
1947 	rcu_read_lock();
1948 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1949 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1950 				       task_uid(tsk));
1951 	rcu_read_unlock();
1952 
1953 	task_cputime(tsk, &utime, &stime);
1954 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1955 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1956 
1957 	info.si_status = tsk->exit_code & 0x7f;
1958 	if (tsk->exit_code & 0x80)
1959 		info.si_code = CLD_DUMPED;
1960 	else if (tsk->exit_code & 0x7f)
1961 		info.si_code = CLD_KILLED;
1962 	else {
1963 		info.si_code = CLD_EXITED;
1964 		info.si_status = tsk->exit_code >> 8;
1965 	}
1966 
1967 	psig = tsk->parent->sighand;
1968 	spin_lock_irqsave(&psig->siglock, flags);
1969 	if (!tsk->ptrace && sig == SIGCHLD &&
1970 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1971 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1972 		/*
1973 		 * We are exiting and our parent doesn't care.  POSIX.1
1974 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1975 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1976 		 * automatically and not left for our parent's wait4 call.
1977 		 * Rather than having the parent do it as a magic kind of
1978 		 * signal handler, we just set this to tell do_exit that we
1979 		 * can be cleaned up without becoming a zombie.  Note that
1980 		 * we still call __wake_up_parent in this case, because a
1981 		 * blocked sys_wait4 might now return -ECHILD.
1982 		 *
1983 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1984 		 * is implementation-defined: we do (if you don't want
1985 		 * it, just use SIG_IGN instead).
1986 		 */
1987 		autoreap = true;
1988 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1989 			sig = 0;
1990 	}
1991 	if (valid_signal(sig) && sig)
1992 		__group_send_sig_info(sig, &info, tsk->parent);
1993 	__wake_up_parent(tsk, tsk->parent);
1994 	spin_unlock_irqrestore(&psig->siglock, flags);
1995 
1996 	return autoreap;
1997 }
1998 
1999 /**
2000  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2001  * @tsk: task reporting the state change
2002  * @for_ptracer: the notification is for ptracer
2003  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2004  *
2005  * Notify @tsk's parent that the stopped/continued state has changed.  If
2006  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2007  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2008  *
2009  * CONTEXT:
2010  * Must be called with tasklist_lock at least read locked.
2011  */
2012 static void do_notify_parent_cldstop(struct task_struct *tsk,
2013 				     bool for_ptracer, int why)
2014 {
2015 	struct kernel_siginfo info;
2016 	unsigned long flags;
2017 	struct task_struct *parent;
2018 	struct sighand_struct *sighand;
2019 	u64 utime, stime;
2020 
2021 	if (for_ptracer) {
2022 		parent = tsk->parent;
2023 	} else {
2024 		tsk = tsk->group_leader;
2025 		parent = tsk->real_parent;
2026 	}
2027 
2028 	clear_siginfo(&info);
2029 	info.si_signo = SIGCHLD;
2030 	info.si_errno = 0;
2031 	/*
2032 	 * see comment in do_notify_parent() about the following 4 lines
2033 	 */
2034 	rcu_read_lock();
2035 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2036 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2037 	rcu_read_unlock();
2038 
2039 	task_cputime(tsk, &utime, &stime);
2040 	info.si_utime = nsec_to_clock_t(utime);
2041 	info.si_stime = nsec_to_clock_t(stime);
2042 
2043  	info.si_code = why;
2044  	switch (why) {
2045  	case CLD_CONTINUED:
2046  		info.si_status = SIGCONT;
2047  		break;
2048  	case CLD_STOPPED:
2049  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2050  		break;
2051  	case CLD_TRAPPED:
2052  		info.si_status = tsk->exit_code & 0x7f;
2053  		break;
2054  	default:
2055  		BUG();
2056  	}
2057 
2058 	sighand = parent->sighand;
2059 	spin_lock_irqsave(&sighand->siglock, flags);
2060 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2061 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2062 		__group_send_sig_info(SIGCHLD, &info, parent);
2063 	/*
2064 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2065 	 */
2066 	__wake_up_parent(tsk, parent);
2067 	spin_unlock_irqrestore(&sighand->siglock, flags);
2068 }
2069 
2070 static inline bool may_ptrace_stop(void)
2071 {
2072 	if (!likely(current->ptrace))
2073 		return false;
2074 	/*
2075 	 * Are we in the middle of do_coredump?
2076 	 * If so and our tracer is also part of the coredump stopping
2077 	 * is a deadlock situation, and pointless because our tracer
2078 	 * is dead so don't allow us to stop.
2079 	 * If SIGKILL was already sent before the caller unlocked
2080 	 * ->siglock we must see ->core_state != NULL. Otherwise it
2081 	 * is safe to enter schedule().
2082 	 *
2083 	 * This is almost outdated, a task with the pending SIGKILL can't
2084 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2085 	 * after SIGKILL was already dequeued.
2086 	 */
2087 	if (unlikely(current->mm->core_state) &&
2088 	    unlikely(current->mm == current->parent->mm))
2089 		return false;
2090 
2091 	return true;
2092 }
2093 
2094 /*
2095  * Return non-zero if there is a SIGKILL that should be waking us up.
2096  * Called with the siglock held.
2097  */
2098 static bool sigkill_pending(struct task_struct *tsk)
2099 {
2100 	return sigismember(&tsk->pending.signal, SIGKILL) ||
2101 	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2102 }
2103 
2104 /*
2105  * This must be called with current->sighand->siglock held.
2106  *
2107  * This should be the path for all ptrace stops.
2108  * We always set current->last_siginfo while stopped here.
2109  * That makes it a way to test a stopped process for
2110  * being ptrace-stopped vs being job-control-stopped.
2111  *
2112  * If we actually decide not to stop at all because the tracer
2113  * is gone, we keep current->exit_code unless clear_code.
2114  */
2115 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2116 	__releases(&current->sighand->siglock)
2117 	__acquires(&current->sighand->siglock)
2118 {
2119 	bool gstop_done = false;
2120 
2121 	if (arch_ptrace_stop_needed(exit_code, info)) {
2122 		/*
2123 		 * The arch code has something special to do before a
2124 		 * ptrace stop.  This is allowed to block, e.g. for faults
2125 		 * on user stack pages.  We can't keep the siglock while
2126 		 * calling arch_ptrace_stop, so we must release it now.
2127 		 * To preserve proper semantics, we must do this before
2128 		 * any signal bookkeeping like checking group_stop_count.
2129 		 * Meanwhile, a SIGKILL could come in before we retake the
2130 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2131 		 * So after regaining the lock, we must check for SIGKILL.
2132 		 */
2133 		spin_unlock_irq(&current->sighand->siglock);
2134 		arch_ptrace_stop(exit_code, info);
2135 		spin_lock_irq(&current->sighand->siglock);
2136 		if (sigkill_pending(current))
2137 			return;
2138 	}
2139 
2140 	set_special_state(TASK_TRACED);
2141 
2142 	/*
2143 	 * We're committing to trapping.  TRACED should be visible before
2144 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2145 	 * Also, transition to TRACED and updates to ->jobctl should be
2146 	 * atomic with respect to siglock and should be done after the arch
2147 	 * hook as siglock is released and regrabbed across it.
2148 	 *
2149 	 *     TRACER				    TRACEE
2150 	 *
2151 	 *     ptrace_attach()
2152 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2153 	 *     do_wait()
2154 	 *       set_current_state()                smp_wmb();
2155 	 *       ptrace_do_wait()
2156 	 *         wait_task_stopped()
2157 	 *           task_stopped_code()
2158 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2159 	 */
2160 	smp_wmb();
2161 
2162 	current->last_siginfo = info;
2163 	current->exit_code = exit_code;
2164 
2165 	/*
2166 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2167 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2168 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2169 	 * could be clear now.  We act as if SIGCONT is received after
2170 	 * TASK_TRACED is entered - ignore it.
2171 	 */
2172 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2173 		gstop_done = task_participate_group_stop(current);
2174 
2175 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2176 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2177 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2178 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2179 
2180 	/* entering a trap, clear TRAPPING */
2181 	task_clear_jobctl_trapping(current);
2182 
2183 	spin_unlock_irq(&current->sighand->siglock);
2184 	read_lock(&tasklist_lock);
2185 	if (may_ptrace_stop()) {
2186 		/*
2187 		 * Notify parents of the stop.
2188 		 *
2189 		 * While ptraced, there are two parents - the ptracer and
2190 		 * the real_parent of the group_leader.  The ptracer should
2191 		 * know about every stop while the real parent is only
2192 		 * interested in the completion of group stop.  The states
2193 		 * for the two don't interact with each other.  Notify
2194 		 * separately unless they're gonna be duplicates.
2195 		 */
2196 		do_notify_parent_cldstop(current, true, why);
2197 		if (gstop_done && ptrace_reparented(current))
2198 			do_notify_parent_cldstop(current, false, why);
2199 
2200 		/*
2201 		 * Don't want to allow preemption here, because
2202 		 * sys_ptrace() needs this task to be inactive.
2203 		 *
2204 		 * XXX: implement read_unlock_no_resched().
2205 		 */
2206 		preempt_disable();
2207 		read_unlock(&tasklist_lock);
2208 		cgroup_enter_frozen();
2209 		preempt_enable_no_resched();
2210 		freezable_schedule();
2211 		cgroup_leave_frozen(true);
2212 	} else {
2213 		/*
2214 		 * By the time we got the lock, our tracer went away.
2215 		 * Don't drop the lock yet, another tracer may come.
2216 		 *
2217 		 * If @gstop_done, the ptracer went away between group stop
2218 		 * completion and here.  During detach, it would have set
2219 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2220 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2221 		 * the real parent of the group stop completion is enough.
2222 		 */
2223 		if (gstop_done)
2224 			do_notify_parent_cldstop(current, false, why);
2225 
2226 		/* tasklist protects us from ptrace_freeze_traced() */
2227 		__set_current_state(TASK_RUNNING);
2228 		if (clear_code)
2229 			current->exit_code = 0;
2230 		read_unlock(&tasklist_lock);
2231 	}
2232 
2233 	/*
2234 	 * We are back.  Now reacquire the siglock before touching
2235 	 * last_siginfo, so that we are sure to have synchronized with
2236 	 * any signal-sending on another CPU that wants to examine it.
2237 	 */
2238 	spin_lock_irq(&current->sighand->siglock);
2239 	current->last_siginfo = NULL;
2240 
2241 	/* LISTENING can be set only during STOP traps, clear it */
2242 	current->jobctl &= ~JOBCTL_LISTENING;
2243 
2244 	/*
2245 	 * Queued signals ignored us while we were stopped for tracing.
2246 	 * So check for any that we should take before resuming user mode.
2247 	 * This sets TIF_SIGPENDING, but never clears it.
2248 	 */
2249 	recalc_sigpending_tsk(current);
2250 }
2251 
2252 static void ptrace_do_notify(int signr, int exit_code, int why)
2253 {
2254 	kernel_siginfo_t info;
2255 
2256 	clear_siginfo(&info);
2257 	info.si_signo = signr;
2258 	info.si_code = exit_code;
2259 	info.si_pid = task_pid_vnr(current);
2260 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2261 
2262 	/* Let the debugger run.  */
2263 	ptrace_stop(exit_code, why, 1, &info);
2264 }
2265 
2266 void ptrace_notify(int exit_code)
2267 {
2268 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2269 	if (unlikely(current->task_works))
2270 		task_work_run();
2271 
2272 	spin_lock_irq(&current->sighand->siglock);
2273 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2274 	spin_unlock_irq(&current->sighand->siglock);
2275 }
2276 
2277 /**
2278  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2279  * @signr: signr causing group stop if initiating
2280  *
2281  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2282  * and participate in it.  If already set, participate in the existing
2283  * group stop.  If participated in a group stop (and thus slept), %true is
2284  * returned with siglock released.
2285  *
2286  * If ptraced, this function doesn't handle stop itself.  Instead,
2287  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2288  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2289  * places afterwards.
2290  *
2291  * CONTEXT:
2292  * Must be called with @current->sighand->siglock held, which is released
2293  * on %true return.
2294  *
2295  * RETURNS:
2296  * %false if group stop is already cancelled or ptrace trap is scheduled.
2297  * %true if participated in group stop.
2298  */
2299 static bool do_signal_stop(int signr)
2300 	__releases(&current->sighand->siglock)
2301 {
2302 	struct signal_struct *sig = current->signal;
2303 
2304 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2305 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2306 		struct task_struct *t;
2307 
2308 		/* signr will be recorded in task->jobctl for retries */
2309 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2310 
2311 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2312 		    unlikely(signal_group_exit(sig)))
2313 			return false;
2314 		/*
2315 		 * There is no group stop already in progress.  We must
2316 		 * initiate one now.
2317 		 *
2318 		 * While ptraced, a task may be resumed while group stop is
2319 		 * still in effect and then receive a stop signal and
2320 		 * initiate another group stop.  This deviates from the
2321 		 * usual behavior as two consecutive stop signals can't
2322 		 * cause two group stops when !ptraced.  That is why we
2323 		 * also check !task_is_stopped(t) below.
2324 		 *
2325 		 * The condition can be distinguished by testing whether
2326 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2327 		 * group_exit_code in such case.
2328 		 *
2329 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2330 		 * an intervening stop signal is required to cause two
2331 		 * continued events regardless of ptrace.
2332 		 */
2333 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2334 			sig->group_exit_code = signr;
2335 
2336 		sig->group_stop_count = 0;
2337 
2338 		if (task_set_jobctl_pending(current, signr | gstop))
2339 			sig->group_stop_count++;
2340 
2341 		t = current;
2342 		while_each_thread(current, t) {
2343 			/*
2344 			 * Setting state to TASK_STOPPED for a group
2345 			 * stop is always done with the siglock held,
2346 			 * so this check has no races.
2347 			 */
2348 			if (!task_is_stopped(t) &&
2349 			    task_set_jobctl_pending(t, signr | gstop)) {
2350 				sig->group_stop_count++;
2351 				if (likely(!(t->ptrace & PT_SEIZED)))
2352 					signal_wake_up(t, 0);
2353 				else
2354 					ptrace_trap_notify(t);
2355 			}
2356 		}
2357 	}
2358 
2359 	if (likely(!current->ptrace)) {
2360 		int notify = 0;
2361 
2362 		/*
2363 		 * If there are no other threads in the group, or if there
2364 		 * is a group stop in progress and we are the last to stop,
2365 		 * report to the parent.
2366 		 */
2367 		if (task_participate_group_stop(current))
2368 			notify = CLD_STOPPED;
2369 
2370 		set_special_state(TASK_STOPPED);
2371 		spin_unlock_irq(&current->sighand->siglock);
2372 
2373 		/*
2374 		 * Notify the parent of the group stop completion.  Because
2375 		 * we're not holding either the siglock or tasklist_lock
2376 		 * here, ptracer may attach inbetween; however, this is for
2377 		 * group stop and should always be delivered to the real
2378 		 * parent of the group leader.  The new ptracer will get
2379 		 * its notification when this task transitions into
2380 		 * TASK_TRACED.
2381 		 */
2382 		if (notify) {
2383 			read_lock(&tasklist_lock);
2384 			do_notify_parent_cldstop(current, false, notify);
2385 			read_unlock(&tasklist_lock);
2386 		}
2387 
2388 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2389 		cgroup_enter_frozen();
2390 		freezable_schedule();
2391 		return true;
2392 	} else {
2393 		/*
2394 		 * While ptraced, group stop is handled by STOP trap.
2395 		 * Schedule it and let the caller deal with it.
2396 		 */
2397 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2398 		return false;
2399 	}
2400 }
2401 
2402 /**
2403  * do_jobctl_trap - take care of ptrace jobctl traps
2404  *
2405  * When PT_SEIZED, it's used for both group stop and explicit
2406  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2407  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2408  * the stop signal; otherwise, %SIGTRAP.
2409  *
2410  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2411  * number as exit_code and no siginfo.
2412  *
2413  * CONTEXT:
2414  * Must be called with @current->sighand->siglock held, which may be
2415  * released and re-acquired before returning with intervening sleep.
2416  */
2417 static void do_jobctl_trap(void)
2418 {
2419 	struct signal_struct *signal = current->signal;
2420 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2421 
2422 	if (current->ptrace & PT_SEIZED) {
2423 		if (!signal->group_stop_count &&
2424 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2425 			signr = SIGTRAP;
2426 		WARN_ON_ONCE(!signr);
2427 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2428 				 CLD_STOPPED);
2429 	} else {
2430 		WARN_ON_ONCE(!signr);
2431 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2432 		current->exit_code = 0;
2433 	}
2434 }
2435 
2436 /**
2437  * do_freezer_trap - handle the freezer jobctl trap
2438  *
2439  * Puts the task into frozen state, if only the task is not about to quit.
2440  * In this case it drops JOBCTL_TRAP_FREEZE.
2441  *
2442  * CONTEXT:
2443  * Must be called with @current->sighand->siglock held,
2444  * which is always released before returning.
2445  */
2446 static void do_freezer_trap(void)
2447 	__releases(&current->sighand->siglock)
2448 {
2449 	/*
2450 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2451 	 * let's make another loop to give it a chance to be handled.
2452 	 * In any case, we'll return back.
2453 	 */
2454 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2455 	     JOBCTL_TRAP_FREEZE) {
2456 		spin_unlock_irq(&current->sighand->siglock);
2457 		return;
2458 	}
2459 
2460 	/*
2461 	 * Now we're sure that there is no pending fatal signal and no
2462 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2463 	 * immediately (if there is a non-fatal signal pending), and
2464 	 * put the task into sleep.
2465 	 */
2466 	__set_current_state(TASK_INTERRUPTIBLE);
2467 	clear_thread_flag(TIF_SIGPENDING);
2468 	spin_unlock_irq(&current->sighand->siglock);
2469 	cgroup_enter_frozen();
2470 	freezable_schedule();
2471 }
2472 
2473 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2474 {
2475 	/*
2476 	 * We do not check sig_kernel_stop(signr) but set this marker
2477 	 * unconditionally because we do not know whether debugger will
2478 	 * change signr. This flag has no meaning unless we are going
2479 	 * to stop after return from ptrace_stop(). In this case it will
2480 	 * be checked in do_signal_stop(), we should only stop if it was
2481 	 * not cleared by SIGCONT while we were sleeping. See also the
2482 	 * comment in dequeue_signal().
2483 	 */
2484 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2485 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2486 
2487 	/* We're back.  Did the debugger cancel the sig?  */
2488 	signr = current->exit_code;
2489 	if (signr == 0)
2490 		return signr;
2491 
2492 	current->exit_code = 0;
2493 
2494 	/*
2495 	 * Update the siginfo structure if the signal has
2496 	 * changed.  If the debugger wanted something
2497 	 * specific in the siginfo structure then it should
2498 	 * have updated *info via PTRACE_SETSIGINFO.
2499 	 */
2500 	if (signr != info->si_signo) {
2501 		clear_siginfo(info);
2502 		info->si_signo = signr;
2503 		info->si_errno = 0;
2504 		info->si_code = SI_USER;
2505 		rcu_read_lock();
2506 		info->si_pid = task_pid_vnr(current->parent);
2507 		info->si_uid = from_kuid_munged(current_user_ns(),
2508 						task_uid(current->parent));
2509 		rcu_read_unlock();
2510 	}
2511 
2512 	/* If the (new) signal is now blocked, requeue it.  */
2513 	if (sigismember(&current->blocked, signr)) {
2514 		send_signal(signr, info, current, PIDTYPE_PID);
2515 		signr = 0;
2516 	}
2517 
2518 	return signr;
2519 }
2520 
2521 bool get_signal(struct ksignal *ksig)
2522 {
2523 	struct sighand_struct *sighand = current->sighand;
2524 	struct signal_struct *signal = current->signal;
2525 	int signr;
2526 
2527 	if (unlikely(current->task_works))
2528 		task_work_run();
2529 
2530 	if (unlikely(uprobe_deny_signal()))
2531 		return false;
2532 
2533 	/*
2534 	 * Do this once, we can't return to user-mode if freezing() == T.
2535 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2536 	 * thus do not need another check after return.
2537 	 */
2538 	try_to_freeze();
2539 
2540 relock:
2541 	spin_lock_irq(&sighand->siglock);
2542 	/*
2543 	 * Every stopped thread goes here after wakeup. Check to see if
2544 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2545 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2546 	 */
2547 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2548 		int why;
2549 
2550 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2551 			why = CLD_CONTINUED;
2552 		else
2553 			why = CLD_STOPPED;
2554 
2555 		signal->flags &= ~SIGNAL_CLD_MASK;
2556 
2557 		spin_unlock_irq(&sighand->siglock);
2558 
2559 		/*
2560 		 * Notify the parent that we're continuing.  This event is
2561 		 * always per-process and doesn't make whole lot of sense
2562 		 * for ptracers, who shouldn't consume the state via
2563 		 * wait(2) either, but, for backward compatibility, notify
2564 		 * the ptracer of the group leader too unless it's gonna be
2565 		 * a duplicate.
2566 		 */
2567 		read_lock(&tasklist_lock);
2568 		do_notify_parent_cldstop(current, false, why);
2569 
2570 		if (ptrace_reparented(current->group_leader))
2571 			do_notify_parent_cldstop(current->group_leader,
2572 						true, why);
2573 		read_unlock(&tasklist_lock);
2574 
2575 		goto relock;
2576 	}
2577 
2578 	/* Has this task already been marked for death? */
2579 	if (signal_group_exit(signal)) {
2580 		ksig->info.si_signo = signr = SIGKILL;
2581 		sigdelset(&current->pending.signal, SIGKILL);
2582 		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2583 				&sighand->action[SIGKILL - 1]);
2584 		recalc_sigpending();
2585 		goto fatal;
2586 	}
2587 
2588 	for (;;) {
2589 		struct k_sigaction *ka;
2590 
2591 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2592 		    do_signal_stop(0))
2593 			goto relock;
2594 
2595 		if (unlikely(current->jobctl &
2596 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2597 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2598 				do_jobctl_trap();
2599 				spin_unlock_irq(&sighand->siglock);
2600 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2601 				do_freezer_trap();
2602 
2603 			goto relock;
2604 		}
2605 
2606 		/*
2607 		 * If the task is leaving the frozen state, let's update
2608 		 * cgroup counters and reset the frozen bit.
2609 		 */
2610 		if (unlikely(cgroup_task_frozen(current))) {
2611 			spin_unlock_irq(&sighand->siglock);
2612 			cgroup_leave_frozen(false);
2613 			goto relock;
2614 		}
2615 
2616 		/*
2617 		 * Signals generated by the execution of an instruction
2618 		 * need to be delivered before any other pending signals
2619 		 * so that the instruction pointer in the signal stack
2620 		 * frame points to the faulting instruction.
2621 		 */
2622 		signr = dequeue_synchronous_signal(&ksig->info);
2623 		if (!signr)
2624 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2625 
2626 		if (!signr)
2627 			break; /* will return 0 */
2628 
2629 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2630 			signr = ptrace_signal(signr, &ksig->info);
2631 			if (!signr)
2632 				continue;
2633 		}
2634 
2635 		ka = &sighand->action[signr-1];
2636 
2637 		/* Trace actually delivered signals. */
2638 		trace_signal_deliver(signr, &ksig->info, ka);
2639 
2640 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2641 			continue;
2642 		if (ka->sa.sa_handler != SIG_DFL) {
2643 			/* Run the handler.  */
2644 			ksig->ka = *ka;
2645 
2646 			if (ka->sa.sa_flags & SA_ONESHOT)
2647 				ka->sa.sa_handler = SIG_DFL;
2648 
2649 			break; /* will return non-zero "signr" value */
2650 		}
2651 
2652 		/*
2653 		 * Now we are doing the default action for this signal.
2654 		 */
2655 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2656 			continue;
2657 
2658 		/*
2659 		 * Global init gets no signals it doesn't want.
2660 		 * Container-init gets no signals it doesn't want from same
2661 		 * container.
2662 		 *
2663 		 * Note that if global/container-init sees a sig_kernel_only()
2664 		 * signal here, the signal must have been generated internally
2665 		 * or must have come from an ancestor namespace. In either
2666 		 * case, the signal cannot be dropped.
2667 		 */
2668 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2669 				!sig_kernel_only(signr))
2670 			continue;
2671 
2672 		if (sig_kernel_stop(signr)) {
2673 			/*
2674 			 * The default action is to stop all threads in
2675 			 * the thread group.  The job control signals
2676 			 * do nothing in an orphaned pgrp, but SIGSTOP
2677 			 * always works.  Note that siglock needs to be
2678 			 * dropped during the call to is_orphaned_pgrp()
2679 			 * because of lock ordering with tasklist_lock.
2680 			 * This allows an intervening SIGCONT to be posted.
2681 			 * We need to check for that and bail out if necessary.
2682 			 */
2683 			if (signr != SIGSTOP) {
2684 				spin_unlock_irq(&sighand->siglock);
2685 
2686 				/* signals can be posted during this window */
2687 
2688 				if (is_current_pgrp_orphaned())
2689 					goto relock;
2690 
2691 				spin_lock_irq(&sighand->siglock);
2692 			}
2693 
2694 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2695 				/* It released the siglock.  */
2696 				goto relock;
2697 			}
2698 
2699 			/*
2700 			 * We didn't actually stop, due to a race
2701 			 * with SIGCONT or something like that.
2702 			 */
2703 			continue;
2704 		}
2705 
2706 	fatal:
2707 		spin_unlock_irq(&sighand->siglock);
2708 		if (unlikely(cgroup_task_frozen(current)))
2709 			cgroup_leave_frozen(true);
2710 
2711 		/*
2712 		 * Anything else is fatal, maybe with a core dump.
2713 		 */
2714 		current->flags |= PF_SIGNALED;
2715 
2716 		if (sig_kernel_coredump(signr)) {
2717 			if (print_fatal_signals)
2718 				print_fatal_signal(ksig->info.si_signo);
2719 			proc_coredump_connector(current);
2720 			/*
2721 			 * If it was able to dump core, this kills all
2722 			 * other threads in the group and synchronizes with
2723 			 * their demise.  If we lost the race with another
2724 			 * thread getting here, it set group_exit_code
2725 			 * first and our do_group_exit call below will use
2726 			 * that value and ignore the one we pass it.
2727 			 */
2728 			do_coredump(&ksig->info);
2729 		}
2730 
2731 		/*
2732 		 * Death signals, no core dump.
2733 		 */
2734 		do_group_exit(ksig->info.si_signo);
2735 		/* NOTREACHED */
2736 	}
2737 	spin_unlock_irq(&sighand->siglock);
2738 
2739 	ksig->sig = signr;
2740 	return ksig->sig > 0;
2741 }
2742 
2743 /**
2744  * signal_delivered -
2745  * @ksig:		kernel signal struct
2746  * @stepping:		nonzero if debugger single-step or block-step in use
2747  *
2748  * This function should be called when a signal has successfully been
2749  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2750  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2751  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2752  */
2753 static void signal_delivered(struct ksignal *ksig, int stepping)
2754 {
2755 	sigset_t blocked;
2756 
2757 	/* A signal was successfully delivered, and the
2758 	   saved sigmask was stored on the signal frame,
2759 	   and will be restored by sigreturn.  So we can
2760 	   simply clear the restore sigmask flag.  */
2761 	clear_restore_sigmask();
2762 
2763 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2764 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2765 		sigaddset(&blocked, ksig->sig);
2766 	set_current_blocked(&blocked);
2767 	tracehook_signal_handler(stepping);
2768 }
2769 
2770 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2771 {
2772 	if (failed)
2773 		force_sigsegv(ksig->sig);
2774 	else
2775 		signal_delivered(ksig, stepping);
2776 }
2777 
2778 /*
2779  * It could be that complete_signal() picked us to notify about the
2780  * group-wide signal. Other threads should be notified now to take
2781  * the shared signals in @which since we will not.
2782  */
2783 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2784 {
2785 	sigset_t retarget;
2786 	struct task_struct *t;
2787 
2788 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2789 	if (sigisemptyset(&retarget))
2790 		return;
2791 
2792 	t = tsk;
2793 	while_each_thread(tsk, t) {
2794 		if (t->flags & PF_EXITING)
2795 			continue;
2796 
2797 		if (!has_pending_signals(&retarget, &t->blocked))
2798 			continue;
2799 		/* Remove the signals this thread can handle. */
2800 		sigandsets(&retarget, &retarget, &t->blocked);
2801 
2802 		if (!signal_pending(t))
2803 			signal_wake_up(t, 0);
2804 
2805 		if (sigisemptyset(&retarget))
2806 			break;
2807 	}
2808 }
2809 
2810 void exit_signals(struct task_struct *tsk)
2811 {
2812 	int group_stop = 0;
2813 	sigset_t unblocked;
2814 
2815 	/*
2816 	 * @tsk is about to have PF_EXITING set - lock out users which
2817 	 * expect stable threadgroup.
2818 	 */
2819 	cgroup_threadgroup_change_begin(tsk);
2820 
2821 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2822 		tsk->flags |= PF_EXITING;
2823 		cgroup_threadgroup_change_end(tsk);
2824 		return;
2825 	}
2826 
2827 	spin_lock_irq(&tsk->sighand->siglock);
2828 	/*
2829 	 * From now this task is not visible for group-wide signals,
2830 	 * see wants_signal(), do_signal_stop().
2831 	 */
2832 	tsk->flags |= PF_EXITING;
2833 
2834 	cgroup_threadgroup_change_end(tsk);
2835 
2836 	if (!signal_pending(tsk))
2837 		goto out;
2838 
2839 	unblocked = tsk->blocked;
2840 	signotset(&unblocked);
2841 	retarget_shared_pending(tsk, &unblocked);
2842 
2843 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2844 	    task_participate_group_stop(tsk))
2845 		group_stop = CLD_STOPPED;
2846 out:
2847 	spin_unlock_irq(&tsk->sighand->siglock);
2848 
2849 	/*
2850 	 * If group stop has completed, deliver the notification.  This
2851 	 * should always go to the real parent of the group leader.
2852 	 */
2853 	if (unlikely(group_stop)) {
2854 		read_lock(&tasklist_lock);
2855 		do_notify_parent_cldstop(tsk, false, group_stop);
2856 		read_unlock(&tasklist_lock);
2857 	}
2858 }
2859 
2860 /*
2861  * System call entry points.
2862  */
2863 
2864 /**
2865  *  sys_restart_syscall - restart a system call
2866  */
2867 SYSCALL_DEFINE0(restart_syscall)
2868 {
2869 	struct restart_block *restart = &current->restart_block;
2870 	return restart->fn(restart);
2871 }
2872 
2873 long do_no_restart_syscall(struct restart_block *param)
2874 {
2875 	return -EINTR;
2876 }
2877 
2878 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2879 {
2880 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2881 		sigset_t newblocked;
2882 		/* A set of now blocked but previously unblocked signals. */
2883 		sigandnsets(&newblocked, newset, &current->blocked);
2884 		retarget_shared_pending(tsk, &newblocked);
2885 	}
2886 	tsk->blocked = *newset;
2887 	recalc_sigpending();
2888 }
2889 
2890 /**
2891  * set_current_blocked - change current->blocked mask
2892  * @newset: new mask
2893  *
2894  * It is wrong to change ->blocked directly, this helper should be used
2895  * to ensure the process can't miss a shared signal we are going to block.
2896  */
2897 void set_current_blocked(sigset_t *newset)
2898 {
2899 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2900 	__set_current_blocked(newset);
2901 }
2902 
2903 void __set_current_blocked(const sigset_t *newset)
2904 {
2905 	struct task_struct *tsk = current;
2906 
2907 	/*
2908 	 * In case the signal mask hasn't changed, there is nothing we need
2909 	 * to do. The current->blocked shouldn't be modified by other task.
2910 	 */
2911 	if (sigequalsets(&tsk->blocked, newset))
2912 		return;
2913 
2914 	spin_lock_irq(&tsk->sighand->siglock);
2915 	__set_task_blocked(tsk, newset);
2916 	spin_unlock_irq(&tsk->sighand->siglock);
2917 }
2918 
2919 /*
2920  * This is also useful for kernel threads that want to temporarily
2921  * (or permanently) block certain signals.
2922  *
2923  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2924  * interface happily blocks "unblockable" signals like SIGKILL
2925  * and friends.
2926  */
2927 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2928 {
2929 	struct task_struct *tsk = current;
2930 	sigset_t newset;
2931 
2932 	/* Lockless, only current can change ->blocked, never from irq */
2933 	if (oldset)
2934 		*oldset = tsk->blocked;
2935 
2936 	switch (how) {
2937 	case SIG_BLOCK:
2938 		sigorsets(&newset, &tsk->blocked, set);
2939 		break;
2940 	case SIG_UNBLOCK:
2941 		sigandnsets(&newset, &tsk->blocked, set);
2942 		break;
2943 	case SIG_SETMASK:
2944 		newset = *set;
2945 		break;
2946 	default:
2947 		return -EINVAL;
2948 	}
2949 
2950 	__set_current_blocked(&newset);
2951 	return 0;
2952 }
2953 EXPORT_SYMBOL(sigprocmask);
2954 
2955 /*
2956  * The api helps set app-provided sigmasks.
2957  *
2958  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2959  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2960  *
2961  * Note that it does set_restore_sigmask() in advance, so it must be always
2962  * paired with restore_saved_sigmask_unless() before return from syscall.
2963  */
2964 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2965 {
2966 	sigset_t kmask;
2967 
2968 	if (!umask)
2969 		return 0;
2970 	if (sigsetsize != sizeof(sigset_t))
2971 		return -EINVAL;
2972 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2973 		return -EFAULT;
2974 
2975 	set_restore_sigmask();
2976 	current->saved_sigmask = current->blocked;
2977 	set_current_blocked(&kmask);
2978 
2979 	return 0;
2980 }
2981 
2982 #ifdef CONFIG_COMPAT
2983 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
2984 			    size_t sigsetsize)
2985 {
2986 	sigset_t kmask;
2987 
2988 	if (!umask)
2989 		return 0;
2990 	if (sigsetsize != sizeof(compat_sigset_t))
2991 		return -EINVAL;
2992 	if (get_compat_sigset(&kmask, umask))
2993 		return -EFAULT;
2994 
2995 	set_restore_sigmask();
2996 	current->saved_sigmask = current->blocked;
2997 	set_current_blocked(&kmask);
2998 
2999 	return 0;
3000 }
3001 #endif
3002 
3003 /**
3004  *  sys_rt_sigprocmask - change the list of currently blocked signals
3005  *  @how: whether to add, remove, or set signals
3006  *  @nset: stores pending signals
3007  *  @oset: previous value of signal mask if non-null
3008  *  @sigsetsize: size of sigset_t type
3009  */
3010 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3011 		sigset_t __user *, oset, size_t, sigsetsize)
3012 {
3013 	sigset_t old_set, new_set;
3014 	int error;
3015 
3016 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3017 	if (sigsetsize != sizeof(sigset_t))
3018 		return -EINVAL;
3019 
3020 	old_set = current->blocked;
3021 
3022 	if (nset) {
3023 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3024 			return -EFAULT;
3025 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3026 
3027 		error = sigprocmask(how, &new_set, NULL);
3028 		if (error)
3029 			return error;
3030 	}
3031 
3032 	if (oset) {
3033 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3034 			return -EFAULT;
3035 	}
3036 
3037 	return 0;
3038 }
3039 
3040 #ifdef CONFIG_COMPAT
3041 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3042 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3043 {
3044 	sigset_t old_set = current->blocked;
3045 
3046 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3047 	if (sigsetsize != sizeof(sigset_t))
3048 		return -EINVAL;
3049 
3050 	if (nset) {
3051 		sigset_t new_set;
3052 		int error;
3053 		if (get_compat_sigset(&new_set, nset))
3054 			return -EFAULT;
3055 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3056 
3057 		error = sigprocmask(how, &new_set, NULL);
3058 		if (error)
3059 			return error;
3060 	}
3061 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3062 }
3063 #endif
3064 
3065 static void do_sigpending(sigset_t *set)
3066 {
3067 	spin_lock_irq(&current->sighand->siglock);
3068 	sigorsets(set, &current->pending.signal,
3069 		  &current->signal->shared_pending.signal);
3070 	spin_unlock_irq(&current->sighand->siglock);
3071 
3072 	/* Outside the lock because only this thread touches it.  */
3073 	sigandsets(set, &current->blocked, set);
3074 }
3075 
3076 /**
3077  *  sys_rt_sigpending - examine a pending signal that has been raised
3078  *			while blocked
3079  *  @uset: stores pending signals
3080  *  @sigsetsize: size of sigset_t type or larger
3081  */
3082 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3083 {
3084 	sigset_t set;
3085 
3086 	if (sigsetsize > sizeof(*uset))
3087 		return -EINVAL;
3088 
3089 	do_sigpending(&set);
3090 
3091 	if (copy_to_user(uset, &set, sigsetsize))
3092 		return -EFAULT;
3093 
3094 	return 0;
3095 }
3096 
3097 #ifdef CONFIG_COMPAT
3098 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3099 		compat_size_t, sigsetsize)
3100 {
3101 	sigset_t set;
3102 
3103 	if (sigsetsize > sizeof(*uset))
3104 		return -EINVAL;
3105 
3106 	do_sigpending(&set);
3107 
3108 	return put_compat_sigset(uset, &set, sigsetsize);
3109 }
3110 #endif
3111 
3112 static const struct {
3113 	unsigned char limit, layout;
3114 } sig_sicodes[] = {
3115 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3116 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3117 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3118 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3119 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3120 #if defined(SIGEMT)
3121 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3122 #endif
3123 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3124 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3125 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3126 };
3127 
3128 static bool known_siginfo_layout(unsigned sig, int si_code)
3129 {
3130 	if (si_code == SI_KERNEL)
3131 		return true;
3132 	else if ((si_code > SI_USER)) {
3133 		if (sig_specific_sicodes(sig)) {
3134 			if (si_code <= sig_sicodes[sig].limit)
3135 				return true;
3136 		}
3137 		else if (si_code <= NSIGPOLL)
3138 			return true;
3139 	}
3140 	else if (si_code >= SI_DETHREAD)
3141 		return true;
3142 	else if (si_code == SI_ASYNCNL)
3143 		return true;
3144 	return false;
3145 }
3146 
3147 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3148 {
3149 	enum siginfo_layout layout = SIL_KILL;
3150 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3151 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3152 		    (si_code <= sig_sicodes[sig].limit)) {
3153 			layout = sig_sicodes[sig].layout;
3154 			/* Handle the exceptions */
3155 			if ((sig == SIGBUS) &&
3156 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3157 				layout = SIL_FAULT_MCEERR;
3158 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3159 				layout = SIL_FAULT_BNDERR;
3160 #ifdef SEGV_PKUERR
3161 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3162 				layout = SIL_FAULT_PKUERR;
3163 #endif
3164 		}
3165 		else if (si_code <= NSIGPOLL)
3166 			layout = SIL_POLL;
3167 	} else {
3168 		if (si_code == SI_TIMER)
3169 			layout = SIL_TIMER;
3170 		else if (si_code == SI_SIGIO)
3171 			layout = SIL_POLL;
3172 		else if (si_code < 0)
3173 			layout = SIL_RT;
3174 	}
3175 	return layout;
3176 }
3177 
3178 static inline char __user *si_expansion(const siginfo_t __user *info)
3179 {
3180 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3181 }
3182 
3183 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3184 {
3185 	char __user *expansion = si_expansion(to);
3186 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3187 		return -EFAULT;
3188 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3189 		return -EFAULT;
3190 	return 0;
3191 }
3192 
3193 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3194 				       const siginfo_t __user *from)
3195 {
3196 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3197 		char __user *expansion = si_expansion(from);
3198 		char buf[SI_EXPANSION_SIZE];
3199 		int i;
3200 		/*
3201 		 * An unknown si_code might need more than
3202 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3203 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3204 		 * will return this data to userspace exactly.
3205 		 */
3206 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3207 			return -EFAULT;
3208 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3209 			if (buf[i] != 0)
3210 				return -E2BIG;
3211 		}
3212 	}
3213 	return 0;
3214 }
3215 
3216 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3217 				    const siginfo_t __user *from)
3218 {
3219 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3220 		return -EFAULT;
3221 	to->si_signo = signo;
3222 	return post_copy_siginfo_from_user(to, from);
3223 }
3224 
3225 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3226 {
3227 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3228 		return -EFAULT;
3229 	return post_copy_siginfo_from_user(to, from);
3230 }
3231 
3232 #ifdef CONFIG_COMPAT
3233 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3234 			   const struct kernel_siginfo *from)
3235 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3236 {
3237 	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3238 }
3239 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3240 			     const struct kernel_siginfo *from, bool x32_ABI)
3241 #endif
3242 {
3243 	struct compat_siginfo new;
3244 	memset(&new, 0, sizeof(new));
3245 
3246 	new.si_signo = from->si_signo;
3247 	new.si_errno = from->si_errno;
3248 	new.si_code  = from->si_code;
3249 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3250 	case SIL_KILL:
3251 		new.si_pid = from->si_pid;
3252 		new.si_uid = from->si_uid;
3253 		break;
3254 	case SIL_TIMER:
3255 		new.si_tid     = from->si_tid;
3256 		new.si_overrun = from->si_overrun;
3257 		new.si_int     = from->si_int;
3258 		break;
3259 	case SIL_POLL:
3260 		new.si_band = from->si_band;
3261 		new.si_fd   = from->si_fd;
3262 		break;
3263 	case SIL_FAULT:
3264 		new.si_addr = ptr_to_compat(from->si_addr);
3265 #ifdef __ARCH_SI_TRAPNO
3266 		new.si_trapno = from->si_trapno;
3267 #endif
3268 		break;
3269 	case SIL_FAULT_MCEERR:
3270 		new.si_addr = ptr_to_compat(from->si_addr);
3271 #ifdef __ARCH_SI_TRAPNO
3272 		new.si_trapno = from->si_trapno;
3273 #endif
3274 		new.si_addr_lsb = from->si_addr_lsb;
3275 		break;
3276 	case SIL_FAULT_BNDERR:
3277 		new.si_addr = ptr_to_compat(from->si_addr);
3278 #ifdef __ARCH_SI_TRAPNO
3279 		new.si_trapno = from->si_trapno;
3280 #endif
3281 		new.si_lower = ptr_to_compat(from->si_lower);
3282 		new.si_upper = ptr_to_compat(from->si_upper);
3283 		break;
3284 	case SIL_FAULT_PKUERR:
3285 		new.si_addr = ptr_to_compat(from->si_addr);
3286 #ifdef __ARCH_SI_TRAPNO
3287 		new.si_trapno = from->si_trapno;
3288 #endif
3289 		new.si_pkey = from->si_pkey;
3290 		break;
3291 	case SIL_CHLD:
3292 		new.si_pid    = from->si_pid;
3293 		new.si_uid    = from->si_uid;
3294 		new.si_status = from->si_status;
3295 #ifdef CONFIG_X86_X32_ABI
3296 		if (x32_ABI) {
3297 			new._sifields._sigchld_x32._utime = from->si_utime;
3298 			new._sifields._sigchld_x32._stime = from->si_stime;
3299 		} else
3300 #endif
3301 		{
3302 			new.si_utime = from->si_utime;
3303 			new.si_stime = from->si_stime;
3304 		}
3305 		break;
3306 	case SIL_RT:
3307 		new.si_pid = from->si_pid;
3308 		new.si_uid = from->si_uid;
3309 		new.si_int = from->si_int;
3310 		break;
3311 	case SIL_SYS:
3312 		new.si_call_addr = ptr_to_compat(from->si_call_addr);
3313 		new.si_syscall   = from->si_syscall;
3314 		new.si_arch      = from->si_arch;
3315 		break;
3316 	}
3317 
3318 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3319 		return -EFAULT;
3320 
3321 	return 0;
3322 }
3323 
3324 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3325 					 const struct compat_siginfo *from)
3326 {
3327 	clear_siginfo(to);
3328 	to->si_signo = from->si_signo;
3329 	to->si_errno = from->si_errno;
3330 	to->si_code  = from->si_code;
3331 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3332 	case SIL_KILL:
3333 		to->si_pid = from->si_pid;
3334 		to->si_uid = from->si_uid;
3335 		break;
3336 	case SIL_TIMER:
3337 		to->si_tid     = from->si_tid;
3338 		to->si_overrun = from->si_overrun;
3339 		to->si_int     = from->si_int;
3340 		break;
3341 	case SIL_POLL:
3342 		to->si_band = from->si_band;
3343 		to->si_fd   = from->si_fd;
3344 		break;
3345 	case SIL_FAULT:
3346 		to->si_addr = compat_ptr(from->si_addr);
3347 #ifdef __ARCH_SI_TRAPNO
3348 		to->si_trapno = from->si_trapno;
3349 #endif
3350 		break;
3351 	case SIL_FAULT_MCEERR:
3352 		to->si_addr = compat_ptr(from->si_addr);
3353 #ifdef __ARCH_SI_TRAPNO
3354 		to->si_trapno = from->si_trapno;
3355 #endif
3356 		to->si_addr_lsb = from->si_addr_lsb;
3357 		break;
3358 	case SIL_FAULT_BNDERR:
3359 		to->si_addr = compat_ptr(from->si_addr);
3360 #ifdef __ARCH_SI_TRAPNO
3361 		to->si_trapno = from->si_trapno;
3362 #endif
3363 		to->si_lower = compat_ptr(from->si_lower);
3364 		to->si_upper = compat_ptr(from->si_upper);
3365 		break;
3366 	case SIL_FAULT_PKUERR:
3367 		to->si_addr = compat_ptr(from->si_addr);
3368 #ifdef __ARCH_SI_TRAPNO
3369 		to->si_trapno = from->si_trapno;
3370 #endif
3371 		to->si_pkey = from->si_pkey;
3372 		break;
3373 	case SIL_CHLD:
3374 		to->si_pid    = from->si_pid;
3375 		to->si_uid    = from->si_uid;
3376 		to->si_status = from->si_status;
3377 #ifdef CONFIG_X86_X32_ABI
3378 		if (in_x32_syscall()) {
3379 			to->si_utime = from->_sifields._sigchld_x32._utime;
3380 			to->si_stime = from->_sifields._sigchld_x32._stime;
3381 		} else
3382 #endif
3383 		{
3384 			to->si_utime = from->si_utime;
3385 			to->si_stime = from->si_stime;
3386 		}
3387 		break;
3388 	case SIL_RT:
3389 		to->si_pid = from->si_pid;
3390 		to->si_uid = from->si_uid;
3391 		to->si_int = from->si_int;
3392 		break;
3393 	case SIL_SYS:
3394 		to->si_call_addr = compat_ptr(from->si_call_addr);
3395 		to->si_syscall   = from->si_syscall;
3396 		to->si_arch      = from->si_arch;
3397 		break;
3398 	}
3399 	return 0;
3400 }
3401 
3402 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3403 				      const struct compat_siginfo __user *ufrom)
3404 {
3405 	struct compat_siginfo from;
3406 
3407 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3408 		return -EFAULT;
3409 
3410 	from.si_signo = signo;
3411 	return post_copy_siginfo_from_user32(to, &from);
3412 }
3413 
3414 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3415 			     const struct compat_siginfo __user *ufrom)
3416 {
3417 	struct compat_siginfo from;
3418 
3419 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3420 		return -EFAULT;
3421 
3422 	return post_copy_siginfo_from_user32(to, &from);
3423 }
3424 #endif /* CONFIG_COMPAT */
3425 
3426 /**
3427  *  do_sigtimedwait - wait for queued signals specified in @which
3428  *  @which: queued signals to wait for
3429  *  @info: if non-null, the signal's siginfo is returned here
3430  *  @ts: upper bound on process time suspension
3431  */
3432 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3433 		    const struct timespec64 *ts)
3434 {
3435 	ktime_t *to = NULL, timeout = KTIME_MAX;
3436 	struct task_struct *tsk = current;
3437 	sigset_t mask = *which;
3438 	int sig, ret = 0;
3439 
3440 	if (ts) {
3441 		if (!timespec64_valid(ts))
3442 			return -EINVAL;
3443 		timeout = timespec64_to_ktime(*ts);
3444 		to = &timeout;
3445 	}
3446 
3447 	/*
3448 	 * Invert the set of allowed signals to get those we want to block.
3449 	 */
3450 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3451 	signotset(&mask);
3452 
3453 	spin_lock_irq(&tsk->sighand->siglock);
3454 	sig = dequeue_signal(tsk, &mask, info);
3455 	if (!sig && timeout) {
3456 		/*
3457 		 * None ready, temporarily unblock those we're interested
3458 		 * while we are sleeping in so that we'll be awakened when
3459 		 * they arrive. Unblocking is always fine, we can avoid
3460 		 * set_current_blocked().
3461 		 */
3462 		tsk->real_blocked = tsk->blocked;
3463 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3464 		recalc_sigpending();
3465 		spin_unlock_irq(&tsk->sighand->siglock);
3466 
3467 		__set_current_state(TASK_INTERRUPTIBLE);
3468 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3469 							 HRTIMER_MODE_REL);
3470 		spin_lock_irq(&tsk->sighand->siglock);
3471 		__set_task_blocked(tsk, &tsk->real_blocked);
3472 		sigemptyset(&tsk->real_blocked);
3473 		sig = dequeue_signal(tsk, &mask, info);
3474 	}
3475 	spin_unlock_irq(&tsk->sighand->siglock);
3476 
3477 	if (sig)
3478 		return sig;
3479 	return ret ? -EINTR : -EAGAIN;
3480 }
3481 
3482 /**
3483  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3484  *			in @uthese
3485  *  @uthese: queued signals to wait for
3486  *  @uinfo: if non-null, the signal's siginfo is returned here
3487  *  @uts: upper bound on process time suspension
3488  *  @sigsetsize: size of sigset_t type
3489  */
3490 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3491 		siginfo_t __user *, uinfo,
3492 		const struct __kernel_timespec __user *, uts,
3493 		size_t, sigsetsize)
3494 {
3495 	sigset_t these;
3496 	struct timespec64 ts;
3497 	kernel_siginfo_t info;
3498 	int ret;
3499 
3500 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3501 	if (sigsetsize != sizeof(sigset_t))
3502 		return -EINVAL;
3503 
3504 	if (copy_from_user(&these, uthese, sizeof(these)))
3505 		return -EFAULT;
3506 
3507 	if (uts) {
3508 		if (get_timespec64(&ts, uts))
3509 			return -EFAULT;
3510 	}
3511 
3512 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3513 
3514 	if (ret > 0 && uinfo) {
3515 		if (copy_siginfo_to_user(uinfo, &info))
3516 			ret = -EFAULT;
3517 	}
3518 
3519 	return ret;
3520 }
3521 
3522 #ifdef CONFIG_COMPAT_32BIT_TIME
3523 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3524 		siginfo_t __user *, uinfo,
3525 		const struct old_timespec32 __user *, uts,
3526 		size_t, sigsetsize)
3527 {
3528 	sigset_t these;
3529 	struct timespec64 ts;
3530 	kernel_siginfo_t info;
3531 	int ret;
3532 
3533 	if (sigsetsize != sizeof(sigset_t))
3534 		return -EINVAL;
3535 
3536 	if (copy_from_user(&these, uthese, sizeof(these)))
3537 		return -EFAULT;
3538 
3539 	if (uts) {
3540 		if (get_old_timespec32(&ts, uts))
3541 			return -EFAULT;
3542 	}
3543 
3544 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3545 
3546 	if (ret > 0 && uinfo) {
3547 		if (copy_siginfo_to_user(uinfo, &info))
3548 			ret = -EFAULT;
3549 	}
3550 
3551 	return ret;
3552 }
3553 #endif
3554 
3555 #ifdef CONFIG_COMPAT
3556 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3557 		struct compat_siginfo __user *, uinfo,
3558 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3559 {
3560 	sigset_t s;
3561 	struct timespec64 t;
3562 	kernel_siginfo_t info;
3563 	long ret;
3564 
3565 	if (sigsetsize != sizeof(sigset_t))
3566 		return -EINVAL;
3567 
3568 	if (get_compat_sigset(&s, uthese))
3569 		return -EFAULT;
3570 
3571 	if (uts) {
3572 		if (get_timespec64(&t, uts))
3573 			return -EFAULT;
3574 	}
3575 
3576 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3577 
3578 	if (ret > 0 && uinfo) {
3579 		if (copy_siginfo_to_user32(uinfo, &info))
3580 			ret = -EFAULT;
3581 	}
3582 
3583 	return ret;
3584 }
3585 
3586 #ifdef CONFIG_COMPAT_32BIT_TIME
3587 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3588 		struct compat_siginfo __user *, uinfo,
3589 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3590 {
3591 	sigset_t s;
3592 	struct timespec64 t;
3593 	kernel_siginfo_t info;
3594 	long ret;
3595 
3596 	if (sigsetsize != sizeof(sigset_t))
3597 		return -EINVAL;
3598 
3599 	if (get_compat_sigset(&s, uthese))
3600 		return -EFAULT;
3601 
3602 	if (uts) {
3603 		if (get_old_timespec32(&t, uts))
3604 			return -EFAULT;
3605 	}
3606 
3607 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3608 
3609 	if (ret > 0 && uinfo) {
3610 		if (copy_siginfo_to_user32(uinfo, &info))
3611 			ret = -EFAULT;
3612 	}
3613 
3614 	return ret;
3615 }
3616 #endif
3617 #endif
3618 
3619 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3620 {
3621 	clear_siginfo(info);
3622 	info->si_signo = sig;
3623 	info->si_errno = 0;
3624 	info->si_code = SI_USER;
3625 	info->si_pid = task_tgid_vnr(current);
3626 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3627 }
3628 
3629 /**
3630  *  sys_kill - send a signal to a process
3631  *  @pid: the PID of the process
3632  *  @sig: signal to be sent
3633  */
3634 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3635 {
3636 	struct kernel_siginfo info;
3637 
3638 	prepare_kill_siginfo(sig, &info);
3639 
3640 	return kill_something_info(sig, &info, pid);
3641 }
3642 
3643 /*
3644  * Verify that the signaler and signalee either are in the same pid namespace
3645  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3646  * namespace.
3647  */
3648 static bool access_pidfd_pidns(struct pid *pid)
3649 {
3650 	struct pid_namespace *active = task_active_pid_ns(current);
3651 	struct pid_namespace *p = ns_of_pid(pid);
3652 
3653 	for (;;) {
3654 		if (!p)
3655 			return false;
3656 		if (p == active)
3657 			break;
3658 		p = p->parent;
3659 	}
3660 
3661 	return true;
3662 }
3663 
3664 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3665 {
3666 #ifdef CONFIG_COMPAT
3667 	/*
3668 	 * Avoid hooking up compat syscalls and instead handle necessary
3669 	 * conversions here. Note, this is a stop-gap measure and should not be
3670 	 * considered a generic solution.
3671 	 */
3672 	if (in_compat_syscall())
3673 		return copy_siginfo_from_user32(
3674 			kinfo, (struct compat_siginfo __user *)info);
3675 #endif
3676 	return copy_siginfo_from_user(kinfo, info);
3677 }
3678 
3679 static struct pid *pidfd_to_pid(const struct file *file)
3680 {
3681 	struct pid *pid;
3682 
3683 	pid = pidfd_pid(file);
3684 	if (!IS_ERR(pid))
3685 		return pid;
3686 
3687 	return tgid_pidfd_to_pid(file);
3688 }
3689 
3690 /**
3691  * sys_pidfd_send_signal - Signal a process through a pidfd
3692  * @pidfd:  file descriptor of the process
3693  * @sig:    signal to send
3694  * @info:   signal info
3695  * @flags:  future flags
3696  *
3697  * The syscall currently only signals via PIDTYPE_PID which covers
3698  * kill(<positive-pid>, <signal>. It does not signal threads or process
3699  * groups.
3700  * In order to extend the syscall to threads and process groups the @flags
3701  * argument should be used. In essence, the @flags argument will determine
3702  * what is signaled and not the file descriptor itself. Put in other words,
3703  * grouping is a property of the flags argument not a property of the file
3704  * descriptor.
3705  *
3706  * Return: 0 on success, negative errno on failure
3707  */
3708 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3709 		siginfo_t __user *, info, unsigned int, flags)
3710 {
3711 	int ret;
3712 	struct fd f;
3713 	struct pid *pid;
3714 	kernel_siginfo_t kinfo;
3715 
3716 	/* Enforce flags be set to 0 until we add an extension. */
3717 	if (flags)
3718 		return -EINVAL;
3719 
3720 	f = fdget(pidfd);
3721 	if (!f.file)
3722 		return -EBADF;
3723 
3724 	/* Is this a pidfd? */
3725 	pid = pidfd_to_pid(f.file);
3726 	if (IS_ERR(pid)) {
3727 		ret = PTR_ERR(pid);
3728 		goto err;
3729 	}
3730 
3731 	ret = -EINVAL;
3732 	if (!access_pidfd_pidns(pid))
3733 		goto err;
3734 
3735 	if (info) {
3736 		ret = copy_siginfo_from_user_any(&kinfo, info);
3737 		if (unlikely(ret))
3738 			goto err;
3739 
3740 		ret = -EINVAL;
3741 		if (unlikely(sig != kinfo.si_signo))
3742 			goto err;
3743 
3744 		/* Only allow sending arbitrary signals to yourself. */
3745 		ret = -EPERM;
3746 		if ((task_pid(current) != pid) &&
3747 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3748 			goto err;
3749 	} else {
3750 		prepare_kill_siginfo(sig, &kinfo);
3751 	}
3752 
3753 	ret = kill_pid_info(sig, &kinfo, pid);
3754 
3755 err:
3756 	fdput(f);
3757 	return ret;
3758 }
3759 
3760 static int
3761 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3762 {
3763 	struct task_struct *p;
3764 	int error = -ESRCH;
3765 
3766 	rcu_read_lock();
3767 	p = find_task_by_vpid(pid);
3768 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3769 		error = check_kill_permission(sig, info, p);
3770 		/*
3771 		 * The null signal is a permissions and process existence
3772 		 * probe.  No signal is actually delivered.
3773 		 */
3774 		if (!error && sig) {
3775 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3776 			/*
3777 			 * If lock_task_sighand() failed we pretend the task
3778 			 * dies after receiving the signal. The window is tiny,
3779 			 * and the signal is private anyway.
3780 			 */
3781 			if (unlikely(error == -ESRCH))
3782 				error = 0;
3783 		}
3784 	}
3785 	rcu_read_unlock();
3786 
3787 	return error;
3788 }
3789 
3790 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3791 {
3792 	struct kernel_siginfo info;
3793 
3794 	clear_siginfo(&info);
3795 	info.si_signo = sig;
3796 	info.si_errno = 0;
3797 	info.si_code = SI_TKILL;
3798 	info.si_pid = task_tgid_vnr(current);
3799 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3800 
3801 	return do_send_specific(tgid, pid, sig, &info);
3802 }
3803 
3804 /**
3805  *  sys_tgkill - send signal to one specific thread
3806  *  @tgid: the thread group ID of the thread
3807  *  @pid: the PID of the thread
3808  *  @sig: signal to be sent
3809  *
3810  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3811  *  exists but it's not belonging to the target process anymore. This
3812  *  method solves the problem of threads exiting and PIDs getting reused.
3813  */
3814 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3815 {
3816 	/* This is only valid for single tasks */
3817 	if (pid <= 0 || tgid <= 0)
3818 		return -EINVAL;
3819 
3820 	return do_tkill(tgid, pid, sig);
3821 }
3822 
3823 /**
3824  *  sys_tkill - send signal to one specific task
3825  *  @pid: the PID of the task
3826  *  @sig: signal to be sent
3827  *
3828  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3829  */
3830 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3831 {
3832 	/* This is only valid for single tasks */
3833 	if (pid <= 0)
3834 		return -EINVAL;
3835 
3836 	return do_tkill(0, pid, sig);
3837 }
3838 
3839 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3840 {
3841 	/* Not even root can pretend to send signals from the kernel.
3842 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3843 	 */
3844 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3845 	    (task_pid_vnr(current) != pid))
3846 		return -EPERM;
3847 
3848 	/* POSIX.1b doesn't mention process groups.  */
3849 	return kill_proc_info(sig, info, pid);
3850 }
3851 
3852 /**
3853  *  sys_rt_sigqueueinfo - send signal information to a signal
3854  *  @pid: the PID of the thread
3855  *  @sig: signal to be sent
3856  *  @uinfo: signal info to be sent
3857  */
3858 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3859 		siginfo_t __user *, uinfo)
3860 {
3861 	kernel_siginfo_t info;
3862 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3863 	if (unlikely(ret))
3864 		return ret;
3865 	return do_rt_sigqueueinfo(pid, sig, &info);
3866 }
3867 
3868 #ifdef CONFIG_COMPAT
3869 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3870 			compat_pid_t, pid,
3871 			int, sig,
3872 			struct compat_siginfo __user *, uinfo)
3873 {
3874 	kernel_siginfo_t info;
3875 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3876 	if (unlikely(ret))
3877 		return ret;
3878 	return do_rt_sigqueueinfo(pid, sig, &info);
3879 }
3880 #endif
3881 
3882 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3883 {
3884 	/* This is only valid for single tasks */
3885 	if (pid <= 0 || tgid <= 0)
3886 		return -EINVAL;
3887 
3888 	/* Not even root can pretend to send signals from the kernel.
3889 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3890 	 */
3891 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3892 	    (task_pid_vnr(current) != pid))
3893 		return -EPERM;
3894 
3895 	return do_send_specific(tgid, pid, sig, info);
3896 }
3897 
3898 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3899 		siginfo_t __user *, uinfo)
3900 {
3901 	kernel_siginfo_t info;
3902 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3903 	if (unlikely(ret))
3904 		return ret;
3905 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3906 }
3907 
3908 #ifdef CONFIG_COMPAT
3909 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3910 			compat_pid_t, tgid,
3911 			compat_pid_t, pid,
3912 			int, sig,
3913 			struct compat_siginfo __user *, uinfo)
3914 {
3915 	kernel_siginfo_t info;
3916 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3917 	if (unlikely(ret))
3918 		return ret;
3919 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3920 }
3921 #endif
3922 
3923 /*
3924  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3925  */
3926 void kernel_sigaction(int sig, __sighandler_t action)
3927 {
3928 	spin_lock_irq(&current->sighand->siglock);
3929 	current->sighand->action[sig - 1].sa.sa_handler = action;
3930 	if (action == SIG_IGN) {
3931 		sigset_t mask;
3932 
3933 		sigemptyset(&mask);
3934 		sigaddset(&mask, sig);
3935 
3936 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3937 		flush_sigqueue_mask(&mask, &current->pending);
3938 		recalc_sigpending();
3939 	}
3940 	spin_unlock_irq(&current->sighand->siglock);
3941 }
3942 EXPORT_SYMBOL(kernel_sigaction);
3943 
3944 void __weak sigaction_compat_abi(struct k_sigaction *act,
3945 		struct k_sigaction *oact)
3946 {
3947 }
3948 
3949 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3950 {
3951 	struct task_struct *p = current, *t;
3952 	struct k_sigaction *k;
3953 	sigset_t mask;
3954 
3955 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3956 		return -EINVAL;
3957 
3958 	k = &p->sighand->action[sig-1];
3959 
3960 	spin_lock_irq(&p->sighand->siglock);
3961 	if (oact)
3962 		*oact = *k;
3963 
3964 	sigaction_compat_abi(act, oact);
3965 
3966 	if (act) {
3967 		sigdelsetmask(&act->sa.sa_mask,
3968 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3969 		*k = *act;
3970 		/*
3971 		 * POSIX 3.3.1.3:
3972 		 *  "Setting a signal action to SIG_IGN for a signal that is
3973 		 *   pending shall cause the pending signal to be discarded,
3974 		 *   whether or not it is blocked."
3975 		 *
3976 		 *  "Setting a signal action to SIG_DFL for a signal that is
3977 		 *   pending and whose default action is to ignore the signal
3978 		 *   (for example, SIGCHLD), shall cause the pending signal to
3979 		 *   be discarded, whether or not it is blocked"
3980 		 */
3981 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3982 			sigemptyset(&mask);
3983 			sigaddset(&mask, sig);
3984 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3985 			for_each_thread(p, t)
3986 				flush_sigqueue_mask(&mask, &t->pending);
3987 		}
3988 	}
3989 
3990 	spin_unlock_irq(&p->sighand->siglock);
3991 	return 0;
3992 }
3993 
3994 static int
3995 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3996 		size_t min_ss_size)
3997 {
3998 	struct task_struct *t = current;
3999 
4000 	if (oss) {
4001 		memset(oss, 0, sizeof(stack_t));
4002 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4003 		oss->ss_size = t->sas_ss_size;
4004 		oss->ss_flags = sas_ss_flags(sp) |
4005 			(current->sas_ss_flags & SS_FLAG_BITS);
4006 	}
4007 
4008 	if (ss) {
4009 		void __user *ss_sp = ss->ss_sp;
4010 		size_t ss_size = ss->ss_size;
4011 		unsigned ss_flags = ss->ss_flags;
4012 		int ss_mode;
4013 
4014 		if (unlikely(on_sig_stack(sp)))
4015 			return -EPERM;
4016 
4017 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4018 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4019 				ss_mode != 0))
4020 			return -EINVAL;
4021 
4022 		if (ss_mode == SS_DISABLE) {
4023 			ss_size = 0;
4024 			ss_sp = NULL;
4025 		} else {
4026 			if (unlikely(ss_size < min_ss_size))
4027 				return -ENOMEM;
4028 		}
4029 
4030 		t->sas_ss_sp = (unsigned long) ss_sp;
4031 		t->sas_ss_size = ss_size;
4032 		t->sas_ss_flags = ss_flags;
4033 	}
4034 	return 0;
4035 }
4036 
4037 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4038 {
4039 	stack_t new, old;
4040 	int err;
4041 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4042 		return -EFAULT;
4043 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4044 			      current_user_stack_pointer(),
4045 			      MINSIGSTKSZ);
4046 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4047 		err = -EFAULT;
4048 	return err;
4049 }
4050 
4051 int restore_altstack(const stack_t __user *uss)
4052 {
4053 	stack_t new;
4054 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4055 		return -EFAULT;
4056 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4057 			     MINSIGSTKSZ);
4058 	/* squash all but EFAULT for now */
4059 	return 0;
4060 }
4061 
4062 int __save_altstack(stack_t __user *uss, unsigned long sp)
4063 {
4064 	struct task_struct *t = current;
4065 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4066 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4067 		__put_user(t->sas_ss_size, &uss->ss_size);
4068 	if (err)
4069 		return err;
4070 	if (t->sas_ss_flags & SS_AUTODISARM)
4071 		sas_ss_reset(t);
4072 	return 0;
4073 }
4074 
4075 #ifdef CONFIG_COMPAT
4076 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4077 				 compat_stack_t __user *uoss_ptr)
4078 {
4079 	stack_t uss, uoss;
4080 	int ret;
4081 
4082 	if (uss_ptr) {
4083 		compat_stack_t uss32;
4084 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4085 			return -EFAULT;
4086 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4087 		uss.ss_flags = uss32.ss_flags;
4088 		uss.ss_size = uss32.ss_size;
4089 	}
4090 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4091 			     compat_user_stack_pointer(),
4092 			     COMPAT_MINSIGSTKSZ);
4093 	if (ret >= 0 && uoss_ptr)  {
4094 		compat_stack_t old;
4095 		memset(&old, 0, sizeof(old));
4096 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4097 		old.ss_flags = uoss.ss_flags;
4098 		old.ss_size = uoss.ss_size;
4099 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4100 			ret = -EFAULT;
4101 	}
4102 	return ret;
4103 }
4104 
4105 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4106 			const compat_stack_t __user *, uss_ptr,
4107 			compat_stack_t __user *, uoss_ptr)
4108 {
4109 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4110 }
4111 
4112 int compat_restore_altstack(const compat_stack_t __user *uss)
4113 {
4114 	int err = do_compat_sigaltstack(uss, NULL);
4115 	/* squash all but -EFAULT for now */
4116 	return err == -EFAULT ? err : 0;
4117 }
4118 
4119 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4120 {
4121 	int err;
4122 	struct task_struct *t = current;
4123 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4124 			 &uss->ss_sp) |
4125 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4126 		__put_user(t->sas_ss_size, &uss->ss_size);
4127 	if (err)
4128 		return err;
4129 	if (t->sas_ss_flags & SS_AUTODISARM)
4130 		sas_ss_reset(t);
4131 	return 0;
4132 }
4133 #endif
4134 
4135 #ifdef __ARCH_WANT_SYS_SIGPENDING
4136 
4137 /**
4138  *  sys_sigpending - examine pending signals
4139  *  @uset: where mask of pending signal is returned
4140  */
4141 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4142 {
4143 	sigset_t set;
4144 
4145 	if (sizeof(old_sigset_t) > sizeof(*uset))
4146 		return -EINVAL;
4147 
4148 	do_sigpending(&set);
4149 
4150 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4151 		return -EFAULT;
4152 
4153 	return 0;
4154 }
4155 
4156 #ifdef CONFIG_COMPAT
4157 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4158 {
4159 	sigset_t set;
4160 
4161 	do_sigpending(&set);
4162 
4163 	return put_user(set.sig[0], set32);
4164 }
4165 #endif
4166 
4167 #endif
4168 
4169 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4170 /**
4171  *  sys_sigprocmask - examine and change blocked signals
4172  *  @how: whether to add, remove, or set signals
4173  *  @nset: signals to add or remove (if non-null)
4174  *  @oset: previous value of signal mask if non-null
4175  *
4176  * Some platforms have their own version with special arguments;
4177  * others support only sys_rt_sigprocmask.
4178  */
4179 
4180 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4181 		old_sigset_t __user *, oset)
4182 {
4183 	old_sigset_t old_set, new_set;
4184 	sigset_t new_blocked;
4185 
4186 	old_set = current->blocked.sig[0];
4187 
4188 	if (nset) {
4189 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4190 			return -EFAULT;
4191 
4192 		new_blocked = current->blocked;
4193 
4194 		switch (how) {
4195 		case SIG_BLOCK:
4196 			sigaddsetmask(&new_blocked, new_set);
4197 			break;
4198 		case SIG_UNBLOCK:
4199 			sigdelsetmask(&new_blocked, new_set);
4200 			break;
4201 		case SIG_SETMASK:
4202 			new_blocked.sig[0] = new_set;
4203 			break;
4204 		default:
4205 			return -EINVAL;
4206 		}
4207 
4208 		set_current_blocked(&new_blocked);
4209 	}
4210 
4211 	if (oset) {
4212 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4213 			return -EFAULT;
4214 	}
4215 
4216 	return 0;
4217 }
4218 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4219 
4220 #ifndef CONFIG_ODD_RT_SIGACTION
4221 /**
4222  *  sys_rt_sigaction - alter an action taken by a process
4223  *  @sig: signal to be sent
4224  *  @act: new sigaction
4225  *  @oact: used to save the previous sigaction
4226  *  @sigsetsize: size of sigset_t type
4227  */
4228 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4229 		const struct sigaction __user *, act,
4230 		struct sigaction __user *, oact,
4231 		size_t, sigsetsize)
4232 {
4233 	struct k_sigaction new_sa, old_sa;
4234 	int ret;
4235 
4236 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4237 	if (sigsetsize != sizeof(sigset_t))
4238 		return -EINVAL;
4239 
4240 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4241 		return -EFAULT;
4242 
4243 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4244 	if (ret)
4245 		return ret;
4246 
4247 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4248 		return -EFAULT;
4249 
4250 	return 0;
4251 }
4252 #ifdef CONFIG_COMPAT
4253 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4254 		const struct compat_sigaction __user *, act,
4255 		struct compat_sigaction __user *, oact,
4256 		compat_size_t, sigsetsize)
4257 {
4258 	struct k_sigaction new_ka, old_ka;
4259 #ifdef __ARCH_HAS_SA_RESTORER
4260 	compat_uptr_t restorer;
4261 #endif
4262 	int ret;
4263 
4264 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4265 	if (sigsetsize != sizeof(compat_sigset_t))
4266 		return -EINVAL;
4267 
4268 	if (act) {
4269 		compat_uptr_t handler;
4270 		ret = get_user(handler, &act->sa_handler);
4271 		new_ka.sa.sa_handler = compat_ptr(handler);
4272 #ifdef __ARCH_HAS_SA_RESTORER
4273 		ret |= get_user(restorer, &act->sa_restorer);
4274 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4275 #endif
4276 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4277 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4278 		if (ret)
4279 			return -EFAULT;
4280 	}
4281 
4282 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4283 	if (!ret && oact) {
4284 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4285 			       &oact->sa_handler);
4286 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4287 					 sizeof(oact->sa_mask));
4288 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4289 #ifdef __ARCH_HAS_SA_RESTORER
4290 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4291 				&oact->sa_restorer);
4292 #endif
4293 	}
4294 	return ret;
4295 }
4296 #endif
4297 #endif /* !CONFIG_ODD_RT_SIGACTION */
4298 
4299 #ifdef CONFIG_OLD_SIGACTION
4300 SYSCALL_DEFINE3(sigaction, int, sig,
4301 		const struct old_sigaction __user *, act,
4302 	        struct old_sigaction __user *, oact)
4303 {
4304 	struct k_sigaction new_ka, old_ka;
4305 	int ret;
4306 
4307 	if (act) {
4308 		old_sigset_t mask;
4309 		if (!access_ok(act, sizeof(*act)) ||
4310 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4311 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4312 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4313 		    __get_user(mask, &act->sa_mask))
4314 			return -EFAULT;
4315 #ifdef __ARCH_HAS_KA_RESTORER
4316 		new_ka.ka_restorer = NULL;
4317 #endif
4318 		siginitset(&new_ka.sa.sa_mask, mask);
4319 	}
4320 
4321 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4322 
4323 	if (!ret && oact) {
4324 		if (!access_ok(oact, sizeof(*oact)) ||
4325 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4326 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4327 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4328 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4329 			return -EFAULT;
4330 	}
4331 
4332 	return ret;
4333 }
4334 #endif
4335 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4336 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4337 		const struct compat_old_sigaction __user *, act,
4338 	        struct compat_old_sigaction __user *, oact)
4339 {
4340 	struct k_sigaction new_ka, old_ka;
4341 	int ret;
4342 	compat_old_sigset_t mask;
4343 	compat_uptr_t handler, restorer;
4344 
4345 	if (act) {
4346 		if (!access_ok(act, sizeof(*act)) ||
4347 		    __get_user(handler, &act->sa_handler) ||
4348 		    __get_user(restorer, &act->sa_restorer) ||
4349 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4350 		    __get_user(mask, &act->sa_mask))
4351 			return -EFAULT;
4352 
4353 #ifdef __ARCH_HAS_KA_RESTORER
4354 		new_ka.ka_restorer = NULL;
4355 #endif
4356 		new_ka.sa.sa_handler = compat_ptr(handler);
4357 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4358 		siginitset(&new_ka.sa.sa_mask, mask);
4359 	}
4360 
4361 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4362 
4363 	if (!ret && oact) {
4364 		if (!access_ok(oact, sizeof(*oact)) ||
4365 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4366 			       &oact->sa_handler) ||
4367 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4368 			       &oact->sa_restorer) ||
4369 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4370 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4371 			return -EFAULT;
4372 	}
4373 	return ret;
4374 }
4375 #endif
4376 
4377 #ifdef CONFIG_SGETMASK_SYSCALL
4378 
4379 /*
4380  * For backwards compatibility.  Functionality superseded by sigprocmask.
4381  */
4382 SYSCALL_DEFINE0(sgetmask)
4383 {
4384 	/* SMP safe */
4385 	return current->blocked.sig[0];
4386 }
4387 
4388 SYSCALL_DEFINE1(ssetmask, int, newmask)
4389 {
4390 	int old = current->blocked.sig[0];
4391 	sigset_t newset;
4392 
4393 	siginitset(&newset, newmask);
4394 	set_current_blocked(&newset);
4395 
4396 	return old;
4397 }
4398 #endif /* CONFIG_SGETMASK_SYSCALL */
4399 
4400 #ifdef __ARCH_WANT_SYS_SIGNAL
4401 /*
4402  * For backwards compatibility.  Functionality superseded by sigaction.
4403  */
4404 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4405 {
4406 	struct k_sigaction new_sa, old_sa;
4407 	int ret;
4408 
4409 	new_sa.sa.sa_handler = handler;
4410 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4411 	sigemptyset(&new_sa.sa.sa_mask);
4412 
4413 	ret = do_sigaction(sig, &new_sa, &old_sa);
4414 
4415 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4416 }
4417 #endif /* __ARCH_WANT_SYS_SIGNAL */
4418 
4419 #ifdef __ARCH_WANT_SYS_PAUSE
4420 
4421 SYSCALL_DEFINE0(pause)
4422 {
4423 	while (!signal_pending(current)) {
4424 		__set_current_state(TASK_INTERRUPTIBLE);
4425 		schedule();
4426 	}
4427 	return -ERESTARTNOHAND;
4428 }
4429 
4430 #endif
4431 
4432 static int sigsuspend(sigset_t *set)
4433 {
4434 	current->saved_sigmask = current->blocked;
4435 	set_current_blocked(set);
4436 
4437 	while (!signal_pending(current)) {
4438 		__set_current_state(TASK_INTERRUPTIBLE);
4439 		schedule();
4440 	}
4441 	set_restore_sigmask();
4442 	return -ERESTARTNOHAND;
4443 }
4444 
4445 /**
4446  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4447  *	@unewset value until a signal is received
4448  *  @unewset: new signal mask value
4449  *  @sigsetsize: size of sigset_t type
4450  */
4451 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4452 {
4453 	sigset_t newset;
4454 
4455 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4456 	if (sigsetsize != sizeof(sigset_t))
4457 		return -EINVAL;
4458 
4459 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4460 		return -EFAULT;
4461 	return sigsuspend(&newset);
4462 }
4463 
4464 #ifdef CONFIG_COMPAT
4465 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4466 {
4467 	sigset_t newset;
4468 
4469 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4470 	if (sigsetsize != sizeof(sigset_t))
4471 		return -EINVAL;
4472 
4473 	if (get_compat_sigset(&newset, unewset))
4474 		return -EFAULT;
4475 	return sigsuspend(&newset);
4476 }
4477 #endif
4478 
4479 #ifdef CONFIG_OLD_SIGSUSPEND
4480 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4481 {
4482 	sigset_t blocked;
4483 	siginitset(&blocked, mask);
4484 	return sigsuspend(&blocked);
4485 }
4486 #endif
4487 #ifdef CONFIG_OLD_SIGSUSPEND3
4488 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4489 {
4490 	sigset_t blocked;
4491 	siginitset(&blocked, mask);
4492 	return sigsuspend(&blocked);
4493 }
4494 #endif
4495 
4496 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4497 {
4498 	return NULL;
4499 }
4500 
4501 static inline void siginfo_buildtime_checks(void)
4502 {
4503 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4504 
4505 	/* Verify the offsets in the two siginfos match */
4506 #define CHECK_OFFSET(field) \
4507 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4508 
4509 	/* kill */
4510 	CHECK_OFFSET(si_pid);
4511 	CHECK_OFFSET(si_uid);
4512 
4513 	/* timer */
4514 	CHECK_OFFSET(si_tid);
4515 	CHECK_OFFSET(si_overrun);
4516 	CHECK_OFFSET(si_value);
4517 
4518 	/* rt */
4519 	CHECK_OFFSET(si_pid);
4520 	CHECK_OFFSET(si_uid);
4521 	CHECK_OFFSET(si_value);
4522 
4523 	/* sigchld */
4524 	CHECK_OFFSET(si_pid);
4525 	CHECK_OFFSET(si_uid);
4526 	CHECK_OFFSET(si_status);
4527 	CHECK_OFFSET(si_utime);
4528 	CHECK_OFFSET(si_stime);
4529 
4530 	/* sigfault */
4531 	CHECK_OFFSET(si_addr);
4532 	CHECK_OFFSET(si_addr_lsb);
4533 	CHECK_OFFSET(si_lower);
4534 	CHECK_OFFSET(si_upper);
4535 	CHECK_OFFSET(si_pkey);
4536 
4537 	/* sigpoll */
4538 	CHECK_OFFSET(si_band);
4539 	CHECK_OFFSET(si_fd);
4540 
4541 	/* sigsys */
4542 	CHECK_OFFSET(si_call_addr);
4543 	CHECK_OFFSET(si_syscall);
4544 	CHECK_OFFSET(si_arch);
4545 #undef CHECK_OFFSET
4546 
4547 	/* usb asyncio */
4548 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4549 		     offsetof(struct siginfo, si_addr));
4550 	if (sizeof(int) == sizeof(void __user *)) {
4551 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4552 			     sizeof(void __user *));
4553 	} else {
4554 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4555 			      sizeof_field(struct siginfo, si_uid)) !=
4556 			     sizeof(void __user *));
4557 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4558 			     offsetof(struct siginfo, si_uid));
4559 	}
4560 #ifdef CONFIG_COMPAT
4561 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4562 		     offsetof(struct compat_siginfo, si_addr));
4563 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4564 		     sizeof(compat_uptr_t));
4565 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4566 		     sizeof_field(struct siginfo, si_pid));
4567 #endif
4568 }
4569 
4570 void __init signals_init(void)
4571 {
4572 	siginfo_buildtime_checks();
4573 
4574 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4575 }
4576 
4577 #ifdef CONFIG_KGDB_KDB
4578 #include <linux/kdb.h>
4579 /*
4580  * kdb_send_sig - Allows kdb to send signals without exposing
4581  * signal internals.  This function checks if the required locks are
4582  * available before calling the main signal code, to avoid kdb
4583  * deadlocks.
4584  */
4585 void kdb_send_sig(struct task_struct *t, int sig)
4586 {
4587 	static struct task_struct *kdb_prev_t;
4588 	int new_t, ret;
4589 	if (!spin_trylock(&t->sighand->siglock)) {
4590 		kdb_printf("Can't do kill command now.\n"
4591 			   "The sigmask lock is held somewhere else in "
4592 			   "kernel, try again later\n");
4593 		return;
4594 	}
4595 	new_t = kdb_prev_t != t;
4596 	kdb_prev_t = t;
4597 	if (t->state != TASK_RUNNING && new_t) {
4598 		spin_unlock(&t->sighand->siglock);
4599 		kdb_printf("Process is not RUNNING, sending a signal from "
4600 			   "kdb risks deadlock\n"
4601 			   "on the run queue locks. "
4602 			   "The signal has _not_ been sent.\n"
4603 			   "Reissue the kill command if you want to risk "
4604 			   "the deadlock.\n");
4605 		return;
4606 	}
4607 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4608 	spin_unlock(&t->sighand->siglock);
4609 	if (ret)
4610 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4611 			   sig, t->pid);
4612 	else
4613 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4614 }
4615 #endif	/* CONFIG_KGDB_KDB */
4616