1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/proc_fs.h> 26 #include <linux/tty.h> 27 #include <linux/binfmts.h> 28 #include <linux/coredump.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/ptrace.h> 32 #include <linux/signal.h> 33 #include <linux/signalfd.h> 34 #include <linux/ratelimit.h> 35 #include <linux/tracehook.h> 36 #include <linux/capability.h> 37 #include <linux/freezer.h> 38 #include <linux/pid_namespace.h> 39 #include <linux/nsproxy.h> 40 #include <linux/user_namespace.h> 41 #include <linux/uprobes.h> 42 #include <linux/compat.h> 43 #include <linux/cn_proc.h> 44 #include <linux/compiler.h> 45 #include <linux/posix-timers.h> 46 #include <linux/cgroup.h> 47 #include <linux/audit.h> 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/signal.h> 51 52 #include <asm/param.h> 53 #include <linux/uaccess.h> 54 #include <asm/unistd.h> 55 #include <asm/siginfo.h> 56 #include <asm/cacheflush.h> 57 #include <asm/syscall.h> /* for syscall_get_* */ 58 59 /* 60 * SLAB caches for signal bits. 61 */ 62 63 static struct kmem_cache *sigqueue_cachep; 64 65 int print_fatal_signals __read_mostly; 66 67 static void __user *sig_handler(struct task_struct *t, int sig) 68 { 69 return t->sighand->action[sig - 1].sa.sa_handler; 70 } 71 72 static inline bool sig_handler_ignored(void __user *handler, int sig) 73 { 74 /* Is it explicitly or implicitly ignored? */ 75 return handler == SIG_IGN || 76 (handler == SIG_DFL && sig_kernel_ignore(sig)); 77 } 78 79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 80 { 81 void __user *handler; 82 83 handler = sig_handler(t, sig); 84 85 /* SIGKILL and SIGSTOP may not be sent to the global init */ 86 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 87 return true; 88 89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 90 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 91 return true; 92 93 /* Only allow kernel generated signals to this kthread */ 94 if (unlikely((t->flags & PF_KTHREAD) && 95 (handler == SIG_KTHREAD_KERNEL) && !force)) 96 return true; 97 98 return sig_handler_ignored(handler, sig); 99 } 100 101 static bool sig_ignored(struct task_struct *t, int sig, bool force) 102 { 103 /* 104 * Blocked signals are never ignored, since the 105 * signal handler may change by the time it is 106 * unblocked. 107 */ 108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 109 return false; 110 111 /* 112 * Tracers may want to know about even ignored signal unless it 113 * is SIGKILL which can't be reported anyway but can be ignored 114 * by SIGNAL_UNKILLABLE task. 115 */ 116 if (t->ptrace && sig != SIGKILL) 117 return false; 118 119 return sig_task_ignored(t, sig, force); 120 } 121 122 /* 123 * Re-calculate pending state from the set of locally pending 124 * signals, globally pending signals, and blocked signals. 125 */ 126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 127 { 128 unsigned long ready; 129 long i; 130 131 switch (_NSIG_WORDS) { 132 default: 133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 134 ready |= signal->sig[i] &~ blocked->sig[i]; 135 break; 136 137 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 138 ready |= signal->sig[2] &~ blocked->sig[2]; 139 ready |= signal->sig[1] &~ blocked->sig[1]; 140 ready |= signal->sig[0] &~ blocked->sig[0]; 141 break; 142 143 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 144 ready |= signal->sig[0] &~ blocked->sig[0]; 145 break; 146 147 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 148 } 149 return ready != 0; 150 } 151 152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 153 154 static bool recalc_sigpending_tsk(struct task_struct *t) 155 { 156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 157 PENDING(&t->pending, &t->blocked) || 158 PENDING(&t->signal->shared_pending, &t->blocked) || 159 cgroup_task_frozen(t)) { 160 set_tsk_thread_flag(t, TIF_SIGPENDING); 161 return true; 162 } 163 164 /* 165 * We must never clear the flag in another thread, or in current 166 * when it's possible the current syscall is returning -ERESTART*. 167 * So we don't clear it here, and only callers who know they should do. 168 */ 169 return false; 170 } 171 172 /* 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 174 * This is superfluous when called on current, the wakeup is a harmless no-op. 175 */ 176 void recalc_sigpending_and_wake(struct task_struct *t) 177 { 178 if (recalc_sigpending_tsk(t)) 179 signal_wake_up(t, 0); 180 } 181 182 void recalc_sigpending(void) 183 { 184 if (!recalc_sigpending_tsk(current) && !freezing(current)) 185 clear_thread_flag(TIF_SIGPENDING); 186 187 } 188 EXPORT_SYMBOL(recalc_sigpending); 189 190 void calculate_sigpending(void) 191 { 192 /* Have any signals or users of TIF_SIGPENDING been delayed 193 * until after fork? 194 */ 195 spin_lock_irq(¤t->sighand->siglock); 196 set_tsk_thread_flag(current, TIF_SIGPENDING); 197 recalc_sigpending(); 198 spin_unlock_irq(¤t->sighand->siglock); 199 } 200 201 /* Given the mask, find the first available signal that should be serviced. */ 202 203 #define SYNCHRONOUS_MASK \ 204 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 205 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 206 207 int next_signal(struct sigpending *pending, sigset_t *mask) 208 { 209 unsigned long i, *s, *m, x; 210 int sig = 0; 211 212 s = pending->signal.sig; 213 m = mask->sig; 214 215 /* 216 * Handle the first word specially: it contains the 217 * synchronous signals that need to be dequeued first. 218 */ 219 x = *s &~ *m; 220 if (x) { 221 if (x & SYNCHRONOUS_MASK) 222 x &= SYNCHRONOUS_MASK; 223 sig = ffz(~x) + 1; 224 return sig; 225 } 226 227 switch (_NSIG_WORDS) { 228 default: 229 for (i = 1; i < _NSIG_WORDS; ++i) { 230 x = *++s &~ *++m; 231 if (!x) 232 continue; 233 sig = ffz(~x) + i*_NSIG_BPW + 1; 234 break; 235 } 236 break; 237 238 case 2: 239 x = s[1] &~ m[1]; 240 if (!x) 241 break; 242 sig = ffz(~x) + _NSIG_BPW + 1; 243 break; 244 245 case 1: 246 /* Nothing to do */ 247 break; 248 } 249 250 return sig; 251 } 252 253 static inline void print_dropped_signal(int sig) 254 { 255 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 256 257 if (!print_fatal_signals) 258 return; 259 260 if (!__ratelimit(&ratelimit_state)) 261 return; 262 263 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 264 current->comm, current->pid, sig); 265 } 266 267 /** 268 * task_set_jobctl_pending - set jobctl pending bits 269 * @task: target task 270 * @mask: pending bits to set 271 * 272 * Clear @mask from @task->jobctl. @mask must be subset of 273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 274 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 275 * cleared. If @task is already being killed or exiting, this function 276 * becomes noop. 277 * 278 * CONTEXT: 279 * Must be called with @task->sighand->siglock held. 280 * 281 * RETURNS: 282 * %true if @mask is set, %false if made noop because @task was dying. 283 */ 284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 285 { 286 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 287 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 288 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 289 290 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 291 return false; 292 293 if (mask & JOBCTL_STOP_SIGMASK) 294 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 295 296 task->jobctl |= mask; 297 return true; 298 } 299 300 /** 301 * task_clear_jobctl_trapping - clear jobctl trapping bit 302 * @task: target task 303 * 304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 305 * Clear it and wake up the ptracer. Note that we don't need any further 306 * locking. @task->siglock guarantees that @task->parent points to the 307 * ptracer. 308 * 309 * CONTEXT: 310 * Must be called with @task->sighand->siglock held. 311 */ 312 void task_clear_jobctl_trapping(struct task_struct *task) 313 { 314 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 315 task->jobctl &= ~JOBCTL_TRAPPING; 316 smp_mb(); /* advised by wake_up_bit() */ 317 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 318 } 319 } 320 321 /** 322 * task_clear_jobctl_pending - clear jobctl pending bits 323 * @task: target task 324 * @mask: pending bits to clear 325 * 326 * Clear @mask from @task->jobctl. @mask must be subset of 327 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 328 * STOP bits are cleared together. 329 * 330 * If clearing of @mask leaves no stop or trap pending, this function calls 331 * task_clear_jobctl_trapping(). 332 * 333 * CONTEXT: 334 * Must be called with @task->sighand->siglock held. 335 */ 336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 337 { 338 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 339 340 if (mask & JOBCTL_STOP_PENDING) 341 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 342 343 task->jobctl &= ~mask; 344 345 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 346 task_clear_jobctl_trapping(task); 347 } 348 349 /** 350 * task_participate_group_stop - participate in a group stop 351 * @task: task participating in a group stop 352 * 353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 354 * Group stop states are cleared and the group stop count is consumed if 355 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 356 * stop, the appropriate `SIGNAL_*` flags are set. 357 * 358 * CONTEXT: 359 * Must be called with @task->sighand->siglock held. 360 * 361 * RETURNS: 362 * %true if group stop completion should be notified to the parent, %false 363 * otherwise. 364 */ 365 static bool task_participate_group_stop(struct task_struct *task) 366 { 367 struct signal_struct *sig = task->signal; 368 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 369 370 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 371 372 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 373 374 if (!consume) 375 return false; 376 377 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 378 sig->group_stop_count--; 379 380 /* 381 * Tell the caller to notify completion iff we are entering into a 382 * fresh group stop. Read comment in do_signal_stop() for details. 383 */ 384 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 385 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 386 return true; 387 } 388 return false; 389 } 390 391 void task_join_group_stop(struct task_struct *task) 392 { 393 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 394 struct signal_struct *sig = current->signal; 395 396 if (sig->group_stop_count) { 397 sig->group_stop_count++; 398 mask |= JOBCTL_STOP_CONSUME; 399 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 400 return; 401 402 /* Have the new thread join an on-going signal group stop */ 403 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 404 } 405 406 /* 407 * allocate a new signal queue record 408 * - this may be called without locks if and only if t == current, otherwise an 409 * appropriate lock must be held to stop the target task from exiting 410 */ 411 static struct sigqueue * 412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 413 int override_rlimit, const unsigned int sigqueue_flags) 414 { 415 struct sigqueue *q = NULL; 416 struct ucounts *ucounts = NULL; 417 long sigpending; 418 419 /* 420 * Protect access to @t credentials. This can go away when all 421 * callers hold rcu read lock. 422 * 423 * NOTE! A pending signal will hold on to the user refcount, 424 * and we get/put the refcount only when the sigpending count 425 * changes from/to zero. 426 */ 427 rcu_read_lock(); 428 ucounts = task_ucounts(t); 429 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 430 rcu_read_unlock(); 431 if (!sigpending) 432 return NULL; 433 434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 435 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 436 } else { 437 print_dropped_signal(sig); 438 } 439 440 if (unlikely(q == NULL)) { 441 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 442 } else { 443 INIT_LIST_HEAD(&q->list); 444 q->flags = sigqueue_flags; 445 q->ucounts = ucounts; 446 } 447 return q; 448 } 449 450 static void __sigqueue_free(struct sigqueue *q) 451 { 452 if (q->flags & SIGQUEUE_PREALLOC) 453 return; 454 if (q->ucounts) { 455 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 456 q->ucounts = NULL; 457 } 458 kmem_cache_free(sigqueue_cachep, q); 459 } 460 461 void flush_sigqueue(struct sigpending *queue) 462 { 463 struct sigqueue *q; 464 465 sigemptyset(&queue->signal); 466 while (!list_empty(&queue->list)) { 467 q = list_entry(queue->list.next, struct sigqueue , list); 468 list_del_init(&q->list); 469 __sigqueue_free(q); 470 } 471 } 472 473 /* 474 * Flush all pending signals for this kthread. 475 */ 476 void flush_signals(struct task_struct *t) 477 { 478 unsigned long flags; 479 480 spin_lock_irqsave(&t->sighand->siglock, flags); 481 clear_tsk_thread_flag(t, TIF_SIGPENDING); 482 flush_sigqueue(&t->pending); 483 flush_sigqueue(&t->signal->shared_pending); 484 spin_unlock_irqrestore(&t->sighand->siglock, flags); 485 } 486 EXPORT_SYMBOL(flush_signals); 487 488 #ifdef CONFIG_POSIX_TIMERS 489 static void __flush_itimer_signals(struct sigpending *pending) 490 { 491 sigset_t signal, retain; 492 struct sigqueue *q, *n; 493 494 signal = pending->signal; 495 sigemptyset(&retain); 496 497 list_for_each_entry_safe(q, n, &pending->list, list) { 498 int sig = q->info.si_signo; 499 500 if (likely(q->info.si_code != SI_TIMER)) { 501 sigaddset(&retain, sig); 502 } else { 503 sigdelset(&signal, sig); 504 list_del_init(&q->list); 505 __sigqueue_free(q); 506 } 507 } 508 509 sigorsets(&pending->signal, &signal, &retain); 510 } 511 512 void flush_itimer_signals(void) 513 { 514 struct task_struct *tsk = current; 515 unsigned long flags; 516 517 spin_lock_irqsave(&tsk->sighand->siglock, flags); 518 __flush_itimer_signals(&tsk->pending); 519 __flush_itimer_signals(&tsk->signal->shared_pending); 520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 521 } 522 #endif 523 524 void ignore_signals(struct task_struct *t) 525 { 526 int i; 527 528 for (i = 0; i < _NSIG; ++i) 529 t->sighand->action[i].sa.sa_handler = SIG_IGN; 530 531 flush_signals(t); 532 } 533 534 /* 535 * Flush all handlers for a task. 536 */ 537 538 void 539 flush_signal_handlers(struct task_struct *t, int force_default) 540 { 541 int i; 542 struct k_sigaction *ka = &t->sighand->action[0]; 543 for (i = _NSIG ; i != 0 ; i--) { 544 if (force_default || ka->sa.sa_handler != SIG_IGN) 545 ka->sa.sa_handler = SIG_DFL; 546 ka->sa.sa_flags = 0; 547 #ifdef __ARCH_HAS_SA_RESTORER 548 ka->sa.sa_restorer = NULL; 549 #endif 550 sigemptyset(&ka->sa.sa_mask); 551 ka++; 552 } 553 } 554 555 bool unhandled_signal(struct task_struct *tsk, int sig) 556 { 557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 558 if (is_global_init(tsk)) 559 return true; 560 561 if (handler != SIG_IGN && handler != SIG_DFL) 562 return false; 563 564 /* if ptraced, let the tracer determine */ 565 return !tsk->ptrace; 566 } 567 568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 569 bool *resched_timer) 570 { 571 struct sigqueue *q, *first = NULL; 572 573 /* 574 * Collect the siginfo appropriate to this signal. Check if 575 * there is another siginfo for the same signal. 576 */ 577 list_for_each_entry(q, &list->list, list) { 578 if (q->info.si_signo == sig) { 579 if (first) 580 goto still_pending; 581 first = q; 582 } 583 } 584 585 sigdelset(&list->signal, sig); 586 587 if (first) { 588 still_pending: 589 list_del_init(&first->list); 590 copy_siginfo(info, &first->info); 591 592 *resched_timer = 593 (first->flags & SIGQUEUE_PREALLOC) && 594 (info->si_code == SI_TIMER) && 595 (info->si_sys_private); 596 597 __sigqueue_free(first); 598 } else { 599 /* 600 * Ok, it wasn't in the queue. This must be 601 * a fast-pathed signal or we must have been 602 * out of queue space. So zero out the info. 603 */ 604 clear_siginfo(info); 605 info->si_signo = sig; 606 info->si_errno = 0; 607 info->si_code = SI_USER; 608 info->si_pid = 0; 609 info->si_uid = 0; 610 } 611 } 612 613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 614 kernel_siginfo_t *info, bool *resched_timer) 615 { 616 int sig = next_signal(pending, mask); 617 618 if (sig) 619 collect_signal(sig, pending, info, resched_timer); 620 return sig; 621 } 622 623 /* 624 * Dequeue a signal and return the element to the caller, which is 625 * expected to free it. 626 * 627 * All callers have to hold the siglock. 628 */ 629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, 630 kernel_siginfo_t *info, enum pid_type *type) 631 { 632 bool resched_timer = false; 633 int signr; 634 635 /* We only dequeue private signals from ourselves, we don't let 636 * signalfd steal them 637 */ 638 *type = PIDTYPE_PID; 639 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 640 if (!signr) { 641 *type = PIDTYPE_TGID; 642 signr = __dequeue_signal(&tsk->signal->shared_pending, 643 mask, info, &resched_timer); 644 #ifdef CONFIG_POSIX_TIMERS 645 /* 646 * itimer signal ? 647 * 648 * itimers are process shared and we restart periodic 649 * itimers in the signal delivery path to prevent DoS 650 * attacks in the high resolution timer case. This is 651 * compliant with the old way of self-restarting 652 * itimers, as the SIGALRM is a legacy signal and only 653 * queued once. Changing the restart behaviour to 654 * restart the timer in the signal dequeue path is 655 * reducing the timer noise on heavy loaded !highres 656 * systems too. 657 */ 658 if (unlikely(signr == SIGALRM)) { 659 struct hrtimer *tmr = &tsk->signal->real_timer; 660 661 if (!hrtimer_is_queued(tmr) && 662 tsk->signal->it_real_incr != 0) { 663 hrtimer_forward(tmr, tmr->base->get_time(), 664 tsk->signal->it_real_incr); 665 hrtimer_restart(tmr); 666 } 667 } 668 #endif 669 } 670 671 recalc_sigpending(); 672 if (!signr) 673 return 0; 674 675 if (unlikely(sig_kernel_stop(signr))) { 676 /* 677 * Set a marker that we have dequeued a stop signal. Our 678 * caller might release the siglock and then the pending 679 * stop signal it is about to process is no longer in the 680 * pending bitmasks, but must still be cleared by a SIGCONT 681 * (and overruled by a SIGKILL). So those cases clear this 682 * shared flag after we've set it. Note that this flag may 683 * remain set after the signal we return is ignored or 684 * handled. That doesn't matter because its only purpose 685 * is to alert stop-signal processing code when another 686 * processor has come along and cleared the flag. 687 */ 688 current->jobctl |= JOBCTL_STOP_DEQUEUED; 689 } 690 #ifdef CONFIG_POSIX_TIMERS 691 if (resched_timer) { 692 /* 693 * Release the siglock to ensure proper locking order 694 * of timer locks outside of siglocks. Note, we leave 695 * irqs disabled here, since the posix-timers code is 696 * about to disable them again anyway. 697 */ 698 spin_unlock(&tsk->sighand->siglock); 699 posixtimer_rearm(info); 700 spin_lock(&tsk->sighand->siglock); 701 702 /* Don't expose the si_sys_private value to userspace */ 703 info->si_sys_private = 0; 704 } 705 #endif 706 return signr; 707 } 708 EXPORT_SYMBOL_GPL(dequeue_signal); 709 710 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 711 { 712 struct task_struct *tsk = current; 713 struct sigpending *pending = &tsk->pending; 714 struct sigqueue *q, *sync = NULL; 715 716 /* 717 * Might a synchronous signal be in the queue? 718 */ 719 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 720 return 0; 721 722 /* 723 * Return the first synchronous signal in the queue. 724 */ 725 list_for_each_entry(q, &pending->list, list) { 726 /* Synchronous signals have a positive si_code */ 727 if ((q->info.si_code > SI_USER) && 728 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 729 sync = q; 730 goto next; 731 } 732 } 733 return 0; 734 next: 735 /* 736 * Check if there is another siginfo for the same signal. 737 */ 738 list_for_each_entry_continue(q, &pending->list, list) { 739 if (q->info.si_signo == sync->info.si_signo) 740 goto still_pending; 741 } 742 743 sigdelset(&pending->signal, sync->info.si_signo); 744 recalc_sigpending(); 745 still_pending: 746 list_del_init(&sync->list); 747 copy_siginfo(info, &sync->info); 748 __sigqueue_free(sync); 749 return info->si_signo; 750 } 751 752 /* 753 * Tell a process that it has a new active signal.. 754 * 755 * NOTE! we rely on the previous spin_lock to 756 * lock interrupts for us! We can only be called with 757 * "siglock" held, and the local interrupt must 758 * have been disabled when that got acquired! 759 * 760 * No need to set need_resched since signal event passing 761 * goes through ->blocked 762 */ 763 void signal_wake_up_state(struct task_struct *t, unsigned int state) 764 { 765 set_tsk_thread_flag(t, TIF_SIGPENDING); 766 /* 767 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 768 * case. We don't check t->state here because there is a race with it 769 * executing another processor and just now entering stopped state. 770 * By using wake_up_state, we ensure the process will wake up and 771 * handle its death signal. 772 */ 773 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 774 kick_process(t); 775 } 776 777 /* 778 * Remove signals in mask from the pending set and queue. 779 * Returns 1 if any signals were found. 780 * 781 * All callers must be holding the siglock. 782 */ 783 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 784 { 785 struct sigqueue *q, *n; 786 sigset_t m; 787 788 sigandsets(&m, mask, &s->signal); 789 if (sigisemptyset(&m)) 790 return; 791 792 sigandnsets(&s->signal, &s->signal, mask); 793 list_for_each_entry_safe(q, n, &s->list, list) { 794 if (sigismember(mask, q->info.si_signo)) { 795 list_del_init(&q->list); 796 __sigqueue_free(q); 797 } 798 } 799 } 800 801 static inline int is_si_special(const struct kernel_siginfo *info) 802 { 803 return info <= SEND_SIG_PRIV; 804 } 805 806 static inline bool si_fromuser(const struct kernel_siginfo *info) 807 { 808 return info == SEND_SIG_NOINFO || 809 (!is_si_special(info) && SI_FROMUSER(info)); 810 } 811 812 /* 813 * called with RCU read lock from check_kill_permission() 814 */ 815 static bool kill_ok_by_cred(struct task_struct *t) 816 { 817 const struct cred *cred = current_cred(); 818 const struct cred *tcred = __task_cred(t); 819 820 return uid_eq(cred->euid, tcred->suid) || 821 uid_eq(cred->euid, tcred->uid) || 822 uid_eq(cred->uid, tcred->suid) || 823 uid_eq(cred->uid, tcred->uid) || 824 ns_capable(tcred->user_ns, CAP_KILL); 825 } 826 827 /* 828 * Bad permissions for sending the signal 829 * - the caller must hold the RCU read lock 830 */ 831 static int check_kill_permission(int sig, struct kernel_siginfo *info, 832 struct task_struct *t) 833 { 834 struct pid *sid; 835 int error; 836 837 if (!valid_signal(sig)) 838 return -EINVAL; 839 840 if (!si_fromuser(info)) 841 return 0; 842 843 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 844 if (error) 845 return error; 846 847 if (!same_thread_group(current, t) && 848 !kill_ok_by_cred(t)) { 849 switch (sig) { 850 case SIGCONT: 851 sid = task_session(t); 852 /* 853 * We don't return the error if sid == NULL. The 854 * task was unhashed, the caller must notice this. 855 */ 856 if (!sid || sid == task_session(current)) 857 break; 858 fallthrough; 859 default: 860 return -EPERM; 861 } 862 } 863 864 return security_task_kill(t, info, sig, NULL); 865 } 866 867 /** 868 * ptrace_trap_notify - schedule trap to notify ptracer 869 * @t: tracee wanting to notify tracer 870 * 871 * This function schedules sticky ptrace trap which is cleared on the next 872 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 873 * ptracer. 874 * 875 * If @t is running, STOP trap will be taken. If trapped for STOP and 876 * ptracer is listening for events, tracee is woken up so that it can 877 * re-trap for the new event. If trapped otherwise, STOP trap will be 878 * eventually taken without returning to userland after the existing traps 879 * are finished by PTRACE_CONT. 880 * 881 * CONTEXT: 882 * Must be called with @task->sighand->siglock held. 883 */ 884 static void ptrace_trap_notify(struct task_struct *t) 885 { 886 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 887 assert_spin_locked(&t->sighand->siglock); 888 889 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 890 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 891 } 892 893 /* 894 * Handle magic process-wide effects of stop/continue signals. Unlike 895 * the signal actions, these happen immediately at signal-generation 896 * time regardless of blocking, ignoring, or handling. This does the 897 * actual continuing for SIGCONT, but not the actual stopping for stop 898 * signals. The process stop is done as a signal action for SIG_DFL. 899 * 900 * Returns true if the signal should be actually delivered, otherwise 901 * it should be dropped. 902 */ 903 static bool prepare_signal(int sig, struct task_struct *p, bool force) 904 { 905 struct signal_struct *signal = p->signal; 906 struct task_struct *t; 907 sigset_t flush; 908 909 if (signal->flags & SIGNAL_GROUP_EXIT) { 910 if (signal->core_state) 911 return sig == SIGKILL; 912 /* 913 * The process is in the middle of dying, nothing to do. 914 */ 915 } else if (sig_kernel_stop(sig)) { 916 /* 917 * This is a stop signal. Remove SIGCONT from all queues. 918 */ 919 siginitset(&flush, sigmask(SIGCONT)); 920 flush_sigqueue_mask(&flush, &signal->shared_pending); 921 for_each_thread(p, t) 922 flush_sigqueue_mask(&flush, &t->pending); 923 } else if (sig == SIGCONT) { 924 unsigned int why; 925 /* 926 * Remove all stop signals from all queues, wake all threads. 927 */ 928 siginitset(&flush, SIG_KERNEL_STOP_MASK); 929 flush_sigqueue_mask(&flush, &signal->shared_pending); 930 for_each_thread(p, t) { 931 flush_sigqueue_mask(&flush, &t->pending); 932 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 933 if (likely(!(t->ptrace & PT_SEIZED))) 934 wake_up_state(t, __TASK_STOPPED); 935 else 936 ptrace_trap_notify(t); 937 } 938 939 /* 940 * Notify the parent with CLD_CONTINUED if we were stopped. 941 * 942 * If we were in the middle of a group stop, we pretend it 943 * was already finished, and then continued. Since SIGCHLD 944 * doesn't queue we report only CLD_STOPPED, as if the next 945 * CLD_CONTINUED was dropped. 946 */ 947 why = 0; 948 if (signal->flags & SIGNAL_STOP_STOPPED) 949 why |= SIGNAL_CLD_CONTINUED; 950 else if (signal->group_stop_count) 951 why |= SIGNAL_CLD_STOPPED; 952 953 if (why) { 954 /* 955 * The first thread which returns from do_signal_stop() 956 * will take ->siglock, notice SIGNAL_CLD_MASK, and 957 * notify its parent. See get_signal(). 958 */ 959 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 960 signal->group_stop_count = 0; 961 signal->group_exit_code = 0; 962 } 963 } 964 965 return !sig_ignored(p, sig, force); 966 } 967 968 /* 969 * Test if P wants to take SIG. After we've checked all threads with this, 970 * it's equivalent to finding no threads not blocking SIG. Any threads not 971 * blocking SIG were ruled out because they are not running and already 972 * have pending signals. Such threads will dequeue from the shared queue 973 * as soon as they're available, so putting the signal on the shared queue 974 * will be equivalent to sending it to one such thread. 975 */ 976 static inline bool wants_signal(int sig, struct task_struct *p) 977 { 978 if (sigismember(&p->blocked, sig)) 979 return false; 980 981 if (p->flags & PF_EXITING) 982 return false; 983 984 if (sig == SIGKILL) 985 return true; 986 987 if (task_is_stopped_or_traced(p)) 988 return false; 989 990 return task_curr(p) || !task_sigpending(p); 991 } 992 993 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 994 { 995 struct signal_struct *signal = p->signal; 996 struct task_struct *t; 997 998 /* 999 * Now find a thread we can wake up to take the signal off the queue. 1000 * 1001 * If the main thread wants the signal, it gets first crack. 1002 * Probably the least surprising to the average bear. 1003 */ 1004 if (wants_signal(sig, p)) 1005 t = p; 1006 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1007 /* 1008 * There is just one thread and it does not need to be woken. 1009 * It will dequeue unblocked signals before it runs again. 1010 */ 1011 return; 1012 else { 1013 /* 1014 * Otherwise try to find a suitable thread. 1015 */ 1016 t = signal->curr_target; 1017 while (!wants_signal(sig, t)) { 1018 t = next_thread(t); 1019 if (t == signal->curr_target) 1020 /* 1021 * No thread needs to be woken. 1022 * Any eligible threads will see 1023 * the signal in the queue soon. 1024 */ 1025 return; 1026 } 1027 signal->curr_target = t; 1028 } 1029 1030 /* 1031 * Found a killable thread. If the signal will be fatal, 1032 * then start taking the whole group down immediately. 1033 */ 1034 if (sig_fatal(p, sig) && 1035 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1036 !sigismember(&t->real_blocked, sig) && 1037 (sig == SIGKILL || !p->ptrace)) { 1038 /* 1039 * This signal will be fatal to the whole group. 1040 */ 1041 if (!sig_kernel_coredump(sig)) { 1042 /* 1043 * Start a group exit and wake everybody up. 1044 * This way we don't have other threads 1045 * running and doing things after a slower 1046 * thread has the fatal signal pending. 1047 */ 1048 signal->flags = SIGNAL_GROUP_EXIT; 1049 signal->group_exit_code = sig; 1050 signal->group_stop_count = 0; 1051 t = p; 1052 do { 1053 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1054 sigaddset(&t->pending.signal, SIGKILL); 1055 signal_wake_up(t, 1); 1056 } while_each_thread(p, t); 1057 return; 1058 } 1059 } 1060 1061 /* 1062 * The signal is already in the shared-pending queue. 1063 * Tell the chosen thread to wake up and dequeue it. 1064 */ 1065 signal_wake_up(t, sig == SIGKILL); 1066 return; 1067 } 1068 1069 static inline bool legacy_queue(struct sigpending *signals, int sig) 1070 { 1071 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1072 } 1073 1074 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1075 enum pid_type type, bool force) 1076 { 1077 struct sigpending *pending; 1078 struct sigqueue *q; 1079 int override_rlimit; 1080 int ret = 0, result; 1081 1082 assert_spin_locked(&t->sighand->siglock); 1083 1084 result = TRACE_SIGNAL_IGNORED; 1085 if (!prepare_signal(sig, t, force)) 1086 goto ret; 1087 1088 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1089 /* 1090 * Short-circuit ignored signals and support queuing 1091 * exactly one non-rt signal, so that we can get more 1092 * detailed information about the cause of the signal. 1093 */ 1094 result = TRACE_SIGNAL_ALREADY_PENDING; 1095 if (legacy_queue(pending, sig)) 1096 goto ret; 1097 1098 result = TRACE_SIGNAL_DELIVERED; 1099 /* 1100 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1101 */ 1102 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1103 goto out_set; 1104 1105 /* 1106 * Real-time signals must be queued if sent by sigqueue, or 1107 * some other real-time mechanism. It is implementation 1108 * defined whether kill() does so. We attempt to do so, on 1109 * the principle of least surprise, but since kill is not 1110 * allowed to fail with EAGAIN when low on memory we just 1111 * make sure at least one signal gets delivered and don't 1112 * pass on the info struct. 1113 */ 1114 if (sig < SIGRTMIN) 1115 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1116 else 1117 override_rlimit = 0; 1118 1119 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1120 1121 if (q) { 1122 list_add_tail(&q->list, &pending->list); 1123 switch ((unsigned long) info) { 1124 case (unsigned long) SEND_SIG_NOINFO: 1125 clear_siginfo(&q->info); 1126 q->info.si_signo = sig; 1127 q->info.si_errno = 0; 1128 q->info.si_code = SI_USER; 1129 q->info.si_pid = task_tgid_nr_ns(current, 1130 task_active_pid_ns(t)); 1131 rcu_read_lock(); 1132 q->info.si_uid = 1133 from_kuid_munged(task_cred_xxx(t, user_ns), 1134 current_uid()); 1135 rcu_read_unlock(); 1136 break; 1137 case (unsigned long) SEND_SIG_PRIV: 1138 clear_siginfo(&q->info); 1139 q->info.si_signo = sig; 1140 q->info.si_errno = 0; 1141 q->info.si_code = SI_KERNEL; 1142 q->info.si_pid = 0; 1143 q->info.si_uid = 0; 1144 break; 1145 default: 1146 copy_siginfo(&q->info, info); 1147 break; 1148 } 1149 } else if (!is_si_special(info) && 1150 sig >= SIGRTMIN && info->si_code != SI_USER) { 1151 /* 1152 * Queue overflow, abort. We may abort if the 1153 * signal was rt and sent by user using something 1154 * other than kill(). 1155 */ 1156 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1157 ret = -EAGAIN; 1158 goto ret; 1159 } else { 1160 /* 1161 * This is a silent loss of information. We still 1162 * send the signal, but the *info bits are lost. 1163 */ 1164 result = TRACE_SIGNAL_LOSE_INFO; 1165 } 1166 1167 out_set: 1168 signalfd_notify(t, sig); 1169 sigaddset(&pending->signal, sig); 1170 1171 /* Let multiprocess signals appear after on-going forks */ 1172 if (type > PIDTYPE_TGID) { 1173 struct multiprocess_signals *delayed; 1174 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1175 sigset_t *signal = &delayed->signal; 1176 /* Can't queue both a stop and a continue signal */ 1177 if (sig == SIGCONT) 1178 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1179 else if (sig_kernel_stop(sig)) 1180 sigdelset(signal, SIGCONT); 1181 sigaddset(signal, sig); 1182 } 1183 } 1184 1185 complete_signal(sig, t, type); 1186 ret: 1187 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1188 return ret; 1189 } 1190 1191 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1192 { 1193 bool ret = false; 1194 switch (siginfo_layout(info->si_signo, info->si_code)) { 1195 case SIL_KILL: 1196 case SIL_CHLD: 1197 case SIL_RT: 1198 ret = true; 1199 break; 1200 case SIL_TIMER: 1201 case SIL_POLL: 1202 case SIL_FAULT: 1203 case SIL_FAULT_TRAPNO: 1204 case SIL_FAULT_MCEERR: 1205 case SIL_FAULT_BNDERR: 1206 case SIL_FAULT_PKUERR: 1207 case SIL_FAULT_PERF_EVENT: 1208 case SIL_SYS: 1209 ret = false; 1210 break; 1211 } 1212 return ret; 1213 } 1214 1215 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1216 enum pid_type type) 1217 { 1218 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1219 bool force = false; 1220 1221 if (info == SEND_SIG_NOINFO) { 1222 /* Force if sent from an ancestor pid namespace */ 1223 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1224 } else if (info == SEND_SIG_PRIV) { 1225 /* Don't ignore kernel generated signals */ 1226 force = true; 1227 } else if (has_si_pid_and_uid(info)) { 1228 /* SIGKILL and SIGSTOP is special or has ids */ 1229 struct user_namespace *t_user_ns; 1230 1231 rcu_read_lock(); 1232 t_user_ns = task_cred_xxx(t, user_ns); 1233 if (current_user_ns() != t_user_ns) { 1234 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1235 info->si_uid = from_kuid_munged(t_user_ns, uid); 1236 } 1237 rcu_read_unlock(); 1238 1239 /* A kernel generated signal? */ 1240 force = (info->si_code == SI_KERNEL); 1241 1242 /* From an ancestor pid namespace? */ 1243 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1244 info->si_pid = 0; 1245 force = true; 1246 } 1247 } 1248 return __send_signal(sig, info, t, type, force); 1249 } 1250 1251 static void print_fatal_signal(int signr) 1252 { 1253 struct pt_regs *regs = signal_pt_regs(); 1254 pr_info("potentially unexpected fatal signal %d.\n", signr); 1255 1256 #if defined(__i386__) && !defined(__arch_um__) 1257 pr_info("code at %08lx: ", regs->ip); 1258 { 1259 int i; 1260 for (i = 0; i < 16; i++) { 1261 unsigned char insn; 1262 1263 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1264 break; 1265 pr_cont("%02x ", insn); 1266 } 1267 } 1268 pr_cont("\n"); 1269 #endif 1270 preempt_disable(); 1271 show_regs(regs); 1272 preempt_enable(); 1273 } 1274 1275 static int __init setup_print_fatal_signals(char *str) 1276 { 1277 get_option (&str, &print_fatal_signals); 1278 1279 return 1; 1280 } 1281 1282 __setup("print-fatal-signals=", setup_print_fatal_signals); 1283 1284 int 1285 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1286 { 1287 return send_signal(sig, info, p, PIDTYPE_TGID); 1288 } 1289 1290 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1291 enum pid_type type) 1292 { 1293 unsigned long flags; 1294 int ret = -ESRCH; 1295 1296 if (lock_task_sighand(p, &flags)) { 1297 ret = send_signal(sig, info, p, type); 1298 unlock_task_sighand(p, &flags); 1299 } 1300 1301 return ret; 1302 } 1303 1304 enum sig_handler { 1305 HANDLER_CURRENT, /* If reachable use the current handler */ 1306 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1307 HANDLER_EXIT, /* Only visible as the process exit code */ 1308 }; 1309 1310 /* 1311 * Force a signal that the process can't ignore: if necessary 1312 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1313 * 1314 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1315 * since we do not want to have a signal handler that was blocked 1316 * be invoked when user space had explicitly blocked it. 1317 * 1318 * We don't want to have recursive SIGSEGV's etc, for example, 1319 * that is why we also clear SIGNAL_UNKILLABLE. 1320 */ 1321 static int 1322 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1323 enum sig_handler handler) 1324 { 1325 unsigned long int flags; 1326 int ret, blocked, ignored; 1327 struct k_sigaction *action; 1328 int sig = info->si_signo; 1329 1330 spin_lock_irqsave(&t->sighand->siglock, flags); 1331 action = &t->sighand->action[sig-1]; 1332 ignored = action->sa.sa_handler == SIG_IGN; 1333 blocked = sigismember(&t->blocked, sig); 1334 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1335 action->sa.sa_handler = SIG_DFL; 1336 if (handler == HANDLER_EXIT) 1337 action->sa.sa_flags |= SA_IMMUTABLE; 1338 if (blocked) { 1339 sigdelset(&t->blocked, sig); 1340 recalc_sigpending_and_wake(t); 1341 } 1342 } 1343 /* 1344 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1345 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1346 */ 1347 if (action->sa.sa_handler == SIG_DFL && 1348 (!t->ptrace || (handler == HANDLER_EXIT))) 1349 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1350 ret = send_signal(sig, info, t, PIDTYPE_PID); 1351 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1352 1353 return ret; 1354 } 1355 1356 int force_sig_info(struct kernel_siginfo *info) 1357 { 1358 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1359 } 1360 1361 /* 1362 * Nuke all other threads in the group. 1363 */ 1364 int zap_other_threads(struct task_struct *p) 1365 { 1366 struct task_struct *t = p; 1367 int count = 0; 1368 1369 p->signal->group_stop_count = 0; 1370 1371 while_each_thread(p, t) { 1372 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1373 count++; 1374 1375 /* Don't bother with already dead threads */ 1376 if (t->exit_state) 1377 continue; 1378 sigaddset(&t->pending.signal, SIGKILL); 1379 signal_wake_up(t, 1); 1380 } 1381 1382 return count; 1383 } 1384 1385 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1386 unsigned long *flags) 1387 { 1388 struct sighand_struct *sighand; 1389 1390 rcu_read_lock(); 1391 for (;;) { 1392 sighand = rcu_dereference(tsk->sighand); 1393 if (unlikely(sighand == NULL)) 1394 break; 1395 1396 /* 1397 * This sighand can be already freed and even reused, but 1398 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1399 * initializes ->siglock: this slab can't go away, it has 1400 * the same object type, ->siglock can't be reinitialized. 1401 * 1402 * We need to ensure that tsk->sighand is still the same 1403 * after we take the lock, we can race with de_thread() or 1404 * __exit_signal(). In the latter case the next iteration 1405 * must see ->sighand == NULL. 1406 */ 1407 spin_lock_irqsave(&sighand->siglock, *flags); 1408 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1409 break; 1410 spin_unlock_irqrestore(&sighand->siglock, *flags); 1411 } 1412 rcu_read_unlock(); 1413 1414 return sighand; 1415 } 1416 1417 #ifdef CONFIG_LOCKDEP 1418 void lockdep_assert_task_sighand_held(struct task_struct *task) 1419 { 1420 struct sighand_struct *sighand; 1421 1422 rcu_read_lock(); 1423 sighand = rcu_dereference(task->sighand); 1424 if (sighand) 1425 lockdep_assert_held(&sighand->siglock); 1426 else 1427 WARN_ON_ONCE(1); 1428 rcu_read_unlock(); 1429 } 1430 #endif 1431 1432 /* 1433 * send signal info to all the members of a group 1434 */ 1435 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1436 struct task_struct *p, enum pid_type type) 1437 { 1438 int ret; 1439 1440 rcu_read_lock(); 1441 ret = check_kill_permission(sig, info, p); 1442 rcu_read_unlock(); 1443 1444 if (!ret && sig) 1445 ret = do_send_sig_info(sig, info, p, type); 1446 1447 return ret; 1448 } 1449 1450 /* 1451 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1452 * control characters do (^C, ^Z etc) 1453 * - the caller must hold at least a readlock on tasklist_lock 1454 */ 1455 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1456 { 1457 struct task_struct *p = NULL; 1458 int retval, success; 1459 1460 success = 0; 1461 retval = -ESRCH; 1462 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1463 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1464 success |= !err; 1465 retval = err; 1466 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1467 return success ? 0 : retval; 1468 } 1469 1470 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1471 { 1472 int error = -ESRCH; 1473 struct task_struct *p; 1474 1475 for (;;) { 1476 rcu_read_lock(); 1477 p = pid_task(pid, PIDTYPE_PID); 1478 if (p) 1479 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1480 rcu_read_unlock(); 1481 if (likely(!p || error != -ESRCH)) 1482 return error; 1483 1484 /* 1485 * The task was unhashed in between, try again. If it 1486 * is dead, pid_task() will return NULL, if we race with 1487 * de_thread() it will find the new leader. 1488 */ 1489 } 1490 } 1491 1492 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1493 { 1494 int error; 1495 rcu_read_lock(); 1496 error = kill_pid_info(sig, info, find_vpid(pid)); 1497 rcu_read_unlock(); 1498 return error; 1499 } 1500 1501 static inline bool kill_as_cred_perm(const struct cred *cred, 1502 struct task_struct *target) 1503 { 1504 const struct cred *pcred = __task_cred(target); 1505 1506 return uid_eq(cred->euid, pcred->suid) || 1507 uid_eq(cred->euid, pcred->uid) || 1508 uid_eq(cred->uid, pcred->suid) || 1509 uid_eq(cred->uid, pcred->uid); 1510 } 1511 1512 /* 1513 * The usb asyncio usage of siginfo is wrong. The glibc support 1514 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1515 * AKA after the generic fields: 1516 * kernel_pid_t si_pid; 1517 * kernel_uid32_t si_uid; 1518 * sigval_t si_value; 1519 * 1520 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1521 * after the generic fields is: 1522 * void __user *si_addr; 1523 * 1524 * This is a practical problem when there is a 64bit big endian kernel 1525 * and a 32bit userspace. As the 32bit address will encoded in the low 1526 * 32bits of the pointer. Those low 32bits will be stored at higher 1527 * address than appear in a 32 bit pointer. So userspace will not 1528 * see the address it was expecting for it's completions. 1529 * 1530 * There is nothing in the encoding that can allow 1531 * copy_siginfo_to_user32 to detect this confusion of formats, so 1532 * handle this by requiring the caller of kill_pid_usb_asyncio to 1533 * notice when this situration takes place and to store the 32bit 1534 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1535 * parameter. 1536 */ 1537 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1538 struct pid *pid, const struct cred *cred) 1539 { 1540 struct kernel_siginfo info; 1541 struct task_struct *p; 1542 unsigned long flags; 1543 int ret = -EINVAL; 1544 1545 if (!valid_signal(sig)) 1546 return ret; 1547 1548 clear_siginfo(&info); 1549 info.si_signo = sig; 1550 info.si_errno = errno; 1551 info.si_code = SI_ASYNCIO; 1552 *((sigval_t *)&info.si_pid) = addr; 1553 1554 rcu_read_lock(); 1555 p = pid_task(pid, PIDTYPE_PID); 1556 if (!p) { 1557 ret = -ESRCH; 1558 goto out_unlock; 1559 } 1560 if (!kill_as_cred_perm(cred, p)) { 1561 ret = -EPERM; 1562 goto out_unlock; 1563 } 1564 ret = security_task_kill(p, &info, sig, cred); 1565 if (ret) 1566 goto out_unlock; 1567 1568 if (sig) { 1569 if (lock_task_sighand(p, &flags)) { 1570 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false); 1571 unlock_task_sighand(p, &flags); 1572 } else 1573 ret = -ESRCH; 1574 } 1575 out_unlock: 1576 rcu_read_unlock(); 1577 return ret; 1578 } 1579 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1580 1581 /* 1582 * kill_something_info() interprets pid in interesting ways just like kill(2). 1583 * 1584 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1585 * is probably wrong. Should make it like BSD or SYSV. 1586 */ 1587 1588 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1589 { 1590 int ret; 1591 1592 if (pid > 0) 1593 return kill_proc_info(sig, info, pid); 1594 1595 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1596 if (pid == INT_MIN) 1597 return -ESRCH; 1598 1599 read_lock(&tasklist_lock); 1600 if (pid != -1) { 1601 ret = __kill_pgrp_info(sig, info, 1602 pid ? find_vpid(-pid) : task_pgrp(current)); 1603 } else { 1604 int retval = 0, count = 0; 1605 struct task_struct * p; 1606 1607 for_each_process(p) { 1608 if (task_pid_vnr(p) > 1 && 1609 !same_thread_group(p, current)) { 1610 int err = group_send_sig_info(sig, info, p, 1611 PIDTYPE_MAX); 1612 ++count; 1613 if (err != -EPERM) 1614 retval = err; 1615 } 1616 } 1617 ret = count ? retval : -ESRCH; 1618 } 1619 read_unlock(&tasklist_lock); 1620 1621 return ret; 1622 } 1623 1624 /* 1625 * These are for backward compatibility with the rest of the kernel source. 1626 */ 1627 1628 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1629 { 1630 /* 1631 * Make sure legacy kernel users don't send in bad values 1632 * (normal paths check this in check_kill_permission). 1633 */ 1634 if (!valid_signal(sig)) 1635 return -EINVAL; 1636 1637 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1638 } 1639 EXPORT_SYMBOL(send_sig_info); 1640 1641 #define __si_special(priv) \ 1642 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1643 1644 int 1645 send_sig(int sig, struct task_struct *p, int priv) 1646 { 1647 return send_sig_info(sig, __si_special(priv), p); 1648 } 1649 EXPORT_SYMBOL(send_sig); 1650 1651 void force_sig(int sig) 1652 { 1653 struct kernel_siginfo info; 1654 1655 clear_siginfo(&info); 1656 info.si_signo = sig; 1657 info.si_errno = 0; 1658 info.si_code = SI_KERNEL; 1659 info.si_pid = 0; 1660 info.si_uid = 0; 1661 force_sig_info(&info); 1662 } 1663 EXPORT_SYMBOL(force_sig); 1664 1665 void force_fatal_sig(int sig) 1666 { 1667 struct kernel_siginfo info; 1668 1669 clear_siginfo(&info); 1670 info.si_signo = sig; 1671 info.si_errno = 0; 1672 info.si_code = SI_KERNEL; 1673 info.si_pid = 0; 1674 info.si_uid = 0; 1675 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1676 } 1677 1678 void force_exit_sig(int sig) 1679 { 1680 struct kernel_siginfo info; 1681 1682 clear_siginfo(&info); 1683 info.si_signo = sig; 1684 info.si_errno = 0; 1685 info.si_code = SI_KERNEL; 1686 info.si_pid = 0; 1687 info.si_uid = 0; 1688 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1689 } 1690 1691 /* 1692 * When things go south during signal handling, we 1693 * will force a SIGSEGV. And if the signal that caused 1694 * the problem was already a SIGSEGV, we'll want to 1695 * make sure we don't even try to deliver the signal.. 1696 */ 1697 void force_sigsegv(int sig) 1698 { 1699 if (sig == SIGSEGV) 1700 force_fatal_sig(SIGSEGV); 1701 else 1702 force_sig(SIGSEGV); 1703 } 1704 1705 int force_sig_fault_to_task(int sig, int code, void __user *addr 1706 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1707 , struct task_struct *t) 1708 { 1709 struct kernel_siginfo info; 1710 1711 clear_siginfo(&info); 1712 info.si_signo = sig; 1713 info.si_errno = 0; 1714 info.si_code = code; 1715 info.si_addr = addr; 1716 #ifdef __ia64__ 1717 info.si_imm = imm; 1718 info.si_flags = flags; 1719 info.si_isr = isr; 1720 #endif 1721 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1722 } 1723 1724 int force_sig_fault(int sig, int code, void __user *addr 1725 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1726 { 1727 return force_sig_fault_to_task(sig, code, addr 1728 ___ARCH_SI_IA64(imm, flags, isr), current); 1729 } 1730 1731 int send_sig_fault(int sig, int code, void __user *addr 1732 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1733 , struct task_struct *t) 1734 { 1735 struct kernel_siginfo info; 1736 1737 clear_siginfo(&info); 1738 info.si_signo = sig; 1739 info.si_errno = 0; 1740 info.si_code = code; 1741 info.si_addr = addr; 1742 #ifdef __ia64__ 1743 info.si_imm = imm; 1744 info.si_flags = flags; 1745 info.si_isr = isr; 1746 #endif 1747 return send_sig_info(info.si_signo, &info, t); 1748 } 1749 1750 int force_sig_mceerr(int code, void __user *addr, short lsb) 1751 { 1752 struct kernel_siginfo info; 1753 1754 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1755 clear_siginfo(&info); 1756 info.si_signo = SIGBUS; 1757 info.si_errno = 0; 1758 info.si_code = code; 1759 info.si_addr = addr; 1760 info.si_addr_lsb = lsb; 1761 return force_sig_info(&info); 1762 } 1763 1764 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1765 { 1766 struct kernel_siginfo info; 1767 1768 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1769 clear_siginfo(&info); 1770 info.si_signo = SIGBUS; 1771 info.si_errno = 0; 1772 info.si_code = code; 1773 info.si_addr = addr; 1774 info.si_addr_lsb = lsb; 1775 return send_sig_info(info.si_signo, &info, t); 1776 } 1777 EXPORT_SYMBOL(send_sig_mceerr); 1778 1779 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1780 { 1781 struct kernel_siginfo info; 1782 1783 clear_siginfo(&info); 1784 info.si_signo = SIGSEGV; 1785 info.si_errno = 0; 1786 info.si_code = SEGV_BNDERR; 1787 info.si_addr = addr; 1788 info.si_lower = lower; 1789 info.si_upper = upper; 1790 return force_sig_info(&info); 1791 } 1792 1793 #ifdef SEGV_PKUERR 1794 int force_sig_pkuerr(void __user *addr, u32 pkey) 1795 { 1796 struct kernel_siginfo info; 1797 1798 clear_siginfo(&info); 1799 info.si_signo = SIGSEGV; 1800 info.si_errno = 0; 1801 info.si_code = SEGV_PKUERR; 1802 info.si_addr = addr; 1803 info.si_pkey = pkey; 1804 return force_sig_info(&info); 1805 } 1806 #endif 1807 1808 int force_sig_perf(void __user *addr, u32 type, u64 sig_data) 1809 { 1810 struct kernel_siginfo info; 1811 1812 clear_siginfo(&info); 1813 info.si_signo = SIGTRAP; 1814 info.si_errno = 0; 1815 info.si_code = TRAP_PERF; 1816 info.si_addr = addr; 1817 info.si_perf_data = sig_data; 1818 info.si_perf_type = type; 1819 1820 return force_sig_info(&info); 1821 } 1822 1823 /** 1824 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1825 * @syscall: syscall number to send to userland 1826 * @reason: filter-supplied reason code to send to userland (via si_errno) 1827 * @force_coredump: true to trigger a coredump 1828 * 1829 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1830 */ 1831 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1832 { 1833 struct kernel_siginfo info; 1834 1835 clear_siginfo(&info); 1836 info.si_signo = SIGSYS; 1837 info.si_code = SYS_SECCOMP; 1838 info.si_call_addr = (void __user *)KSTK_EIP(current); 1839 info.si_errno = reason; 1840 info.si_arch = syscall_get_arch(current); 1841 info.si_syscall = syscall; 1842 return force_sig_info_to_task(&info, current, 1843 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1844 } 1845 1846 /* For the crazy architectures that include trap information in 1847 * the errno field, instead of an actual errno value. 1848 */ 1849 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1850 { 1851 struct kernel_siginfo info; 1852 1853 clear_siginfo(&info); 1854 info.si_signo = SIGTRAP; 1855 info.si_errno = errno; 1856 info.si_code = TRAP_HWBKPT; 1857 info.si_addr = addr; 1858 return force_sig_info(&info); 1859 } 1860 1861 /* For the rare architectures that include trap information using 1862 * si_trapno. 1863 */ 1864 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1865 { 1866 struct kernel_siginfo info; 1867 1868 clear_siginfo(&info); 1869 info.si_signo = sig; 1870 info.si_errno = 0; 1871 info.si_code = code; 1872 info.si_addr = addr; 1873 info.si_trapno = trapno; 1874 return force_sig_info(&info); 1875 } 1876 1877 /* For the rare architectures that include trap information using 1878 * si_trapno. 1879 */ 1880 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1881 struct task_struct *t) 1882 { 1883 struct kernel_siginfo info; 1884 1885 clear_siginfo(&info); 1886 info.si_signo = sig; 1887 info.si_errno = 0; 1888 info.si_code = code; 1889 info.si_addr = addr; 1890 info.si_trapno = trapno; 1891 return send_sig_info(info.si_signo, &info, t); 1892 } 1893 1894 int kill_pgrp(struct pid *pid, int sig, int priv) 1895 { 1896 int ret; 1897 1898 read_lock(&tasklist_lock); 1899 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1900 read_unlock(&tasklist_lock); 1901 1902 return ret; 1903 } 1904 EXPORT_SYMBOL(kill_pgrp); 1905 1906 int kill_pid(struct pid *pid, int sig, int priv) 1907 { 1908 return kill_pid_info(sig, __si_special(priv), pid); 1909 } 1910 EXPORT_SYMBOL(kill_pid); 1911 1912 /* 1913 * These functions support sending signals using preallocated sigqueue 1914 * structures. This is needed "because realtime applications cannot 1915 * afford to lose notifications of asynchronous events, like timer 1916 * expirations or I/O completions". In the case of POSIX Timers 1917 * we allocate the sigqueue structure from the timer_create. If this 1918 * allocation fails we are able to report the failure to the application 1919 * with an EAGAIN error. 1920 */ 1921 struct sigqueue *sigqueue_alloc(void) 1922 { 1923 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1924 } 1925 1926 void sigqueue_free(struct sigqueue *q) 1927 { 1928 unsigned long flags; 1929 spinlock_t *lock = ¤t->sighand->siglock; 1930 1931 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1932 /* 1933 * We must hold ->siglock while testing q->list 1934 * to serialize with collect_signal() or with 1935 * __exit_signal()->flush_sigqueue(). 1936 */ 1937 spin_lock_irqsave(lock, flags); 1938 q->flags &= ~SIGQUEUE_PREALLOC; 1939 /* 1940 * If it is queued it will be freed when dequeued, 1941 * like the "regular" sigqueue. 1942 */ 1943 if (!list_empty(&q->list)) 1944 q = NULL; 1945 spin_unlock_irqrestore(lock, flags); 1946 1947 if (q) 1948 __sigqueue_free(q); 1949 } 1950 1951 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1952 { 1953 int sig = q->info.si_signo; 1954 struct sigpending *pending; 1955 struct task_struct *t; 1956 unsigned long flags; 1957 int ret, result; 1958 1959 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1960 1961 ret = -1; 1962 rcu_read_lock(); 1963 t = pid_task(pid, type); 1964 if (!t || !likely(lock_task_sighand(t, &flags))) 1965 goto ret; 1966 1967 ret = 1; /* the signal is ignored */ 1968 result = TRACE_SIGNAL_IGNORED; 1969 if (!prepare_signal(sig, t, false)) 1970 goto out; 1971 1972 ret = 0; 1973 if (unlikely(!list_empty(&q->list))) { 1974 /* 1975 * If an SI_TIMER entry is already queue just increment 1976 * the overrun count. 1977 */ 1978 BUG_ON(q->info.si_code != SI_TIMER); 1979 q->info.si_overrun++; 1980 result = TRACE_SIGNAL_ALREADY_PENDING; 1981 goto out; 1982 } 1983 q->info.si_overrun = 0; 1984 1985 signalfd_notify(t, sig); 1986 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1987 list_add_tail(&q->list, &pending->list); 1988 sigaddset(&pending->signal, sig); 1989 complete_signal(sig, t, type); 1990 result = TRACE_SIGNAL_DELIVERED; 1991 out: 1992 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 1993 unlock_task_sighand(t, &flags); 1994 ret: 1995 rcu_read_unlock(); 1996 return ret; 1997 } 1998 1999 static void do_notify_pidfd(struct task_struct *task) 2000 { 2001 struct pid *pid; 2002 2003 WARN_ON(task->exit_state == 0); 2004 pid = task_pid(task); 2005 wake_up_all(&pid->wait_pidfd); 2006 } 2007 2008 /* 2009 * Let a parent know about the death of a child. 2010 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2011 * 2012 * Returns true if our parent ignored us and so we've switched to 2013 * self-reaping. 2014 */ 2015 bool do_notify_parent(struct task_struct *tsk, int sig) 2016 { 2017 struct kernel_siginfo info; 2018 unsigned long flags; 2019 struct sighand_struct *psig; 2020 bool autoreap = false; 2021 u64 utime, stime; 2022 2023 BUG_ON(sig == -1); 2024 2025 /* do_notify_parent_cldstop should have been called instead. */ 2026 BUG_ON(task_is_stopped_or_traced(tsk)); 2027 2028 BUG_ON(!tsk->ptrace && 2029 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2030 2031 /* Wake up all pidfd waiters */ 2032 do_notify_pidfd(tsk); 2033 2034 if (sig != SIGCHLD) { 2035 /* 2036 * This is only possible if parent == real_parent. 2037 * Check if it has changed security domain. 2038 */ 2039 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2040 sig = SIGCHLD; 2041 } 2042 2043 clear_siginfo(&info); 2044 info.si_signo = sig; 2045 info.si_errno = 0; 2046 /* 2047 * We are under tasklist_lock here so our parent is tied to 2048 * us and cannot change. 2049 * 2050 * task_active_pid_ns will always return the same pid namespace 2051 * until a task passes through release_task. 2052 * 2053 * write_lock() currently calls preempt_disable() which is the 2054 * same as rcu_read_lock(), but according to Oleg, this is not 2055 * correct to rely on this 2056 */ 2057 rcu_read_lock(); 2058 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2059 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2060 task_uid(tsk)); 2061 rcu_read_unlock(); 2062 2063 task_cputime(tsk, &utime, &stime); 2064 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2065 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2066 2067 info.si_status = tsk->exit_code & 0x7f; 2068 if (tsk->exit_code & 0x80) 2069 info.si_code = CLD_DUMPED; 2070 else if (tsk->exit_code & 0x7f) 2071 info.si_code = CLD_KILLED; 2072 else { 2073 info.si_code = CLD_EXITED; 2074 info.si_status = tsk->exit_code >> 8; 2075 } 2076 2077 psig = tsk->parent->sighand; 2078 spin_lock_irqsave(&psig->siglock, flags); 2079 if (!tsk->ptrace && sig == SIGCHLD && 2080 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2081 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2082 /* 2083 * We are exiting and our parent doesn't care. POSIX.1 2084 * defines special semantics for setting SIGCHLD to SIG_IGN 2085 * or setting the SA_NOCLDWAIT flag: we should be reaped 2086 * automatically and not left for our parent's wait4 call. 2087 * Rather than having the parent do it as a magic kind of 2088 * signal handler, we just set this to tell do_exit that we 2089 * can be cleaned up without becoming a zombie. Note that 2090 * we still call __wake_up_parent in this case, because a 2091 * blocked sys_wait4 might now return -ECHILD. 2092 * 2093 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2094 * is implementation-defined: we do (if you don't want 2095 * it, just use SIG_IGN instead). 2096 */ 2097 autoreap = true; 2098 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2099 sig = 0; 2100 } 2101 /* 2102 * Send with __send_signal as si_pid and si_uid are in the 2103 * parent's namespaces. 2104 */ 2105 if (valid_signal(sig) && sig) 2106 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2107 __wake_up_parent(tsk, tsk->parent); 2108 spin_unlock_irqrestore(&psig->siglock, flags); 2109 2110 return autoreap; 2111 } 2112 2113 /** 2114 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2115 * @tsk: task reporting the state change 2116 * @for_ptracer: the notification is for ptracer 2117 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2118 * 2119 * Notify @tsk's parent that the stopped/continued state has changed. If 2120 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2121 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2122 * 2123 * CONTEXT: 2124 * Must be called with tasklist_lock at least read locked. 2125 */ 2126 static void do_notify_parent_cldstop(struct task_struct *tsk, 2127 bool for_ptracer, int why) 2128 { 2129 struct kernel_siginfo info; 2130 unsigned long flags; 2131 struct task_struct *parent; 2132 struct sighand_struct *sighand; 2133 u64 utime, stime; 2134 2135 if (for_ptracer) { 2136 parent = tsk->parent; 2137 } else { 2138 tsk = tsk->group_leader; 2139 parent = tsk->real_parent; 2140 } 2141 2142 clear_siginfo(&info); 2143 info.si_signo = SIGCHLD; 2144 info.si_errno = 0; 2145 /* 2146 * see comment in do_notify_parent() about the following 4 lines 2147 */ 2148 rcu_read_lock(); 2149 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2150 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2151 rcu_read_unlock(); 2152 2153 task_cputime(tsk, &utime, &stime); 2154 info.si_utime = nsec_to_clock_t(utime); 2155 info.si_stime = nsec_to_clock_t(stime); 2156 2157 info.si_code = why; 2158 switch (why) { 2159 case CLD_CONTINUED: 2160 info.si_status = SIGCONT; 2161 break; 2162 case CLD_STOPPED: 2163 info.si_status = tsk->signal->group_exit_code & 0x7f; 2164 break; 2165 case CLD_TRAPPED: 2166 info.si_status = tsk->exit_code & 0x7f; 2167 break; 2168 default: 2169 BUG(); 2170 } 2171 2172 sighand = parent->sighand; 2173 spin_lock_irqsave(&sighand->siglock, flags); 2174 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2175 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2176 __group_send_sig_info(SIGCHLD, &info, parent); 2177 /* 2178 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2179 */ 2180 __wake_up_parent(tsk, parent); 2181 spin_unlock_irqrestore(&sighand->siglock, flags); 2182 } 2183 2184 /* 2185 * This must be called with current->sighand->siglock held. 2186 * 2187 * This should be the path for all ptrace stops. 2188 * We always set current->last_siginfo while stopped here. 2189 * That makes it a way to test a stopped process for 2190 * being ptrace-stopped vs being job-control-stopped. 2191 * 2192 * If we actually decide not to stop at all because the tracer 2193 * is gone, we keep current->exit_code unless clear_code. 2194 */ 2195 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info) 2196 __releases(¤t->sighand->siglock) 2197 __acquires(¤t->sighand->siglock) 2198 { 2199 bool gstop_done = false; 2200 2201 if (arch_ptrace_stop_needed()) { 2202 /* 2203 * The arch code has something special to do before a 2204 * ptrace stop. This is allowed to block, e.g. for faults 2205 * on user stack pages. We can't keep the siglock while 2206 * calling arch_ptrace_stop, so we must release it now. 2207 * To preserve proper semantics, we must do this before 2208 * any signal bookkeeping like checking group_stop_count. 2209 */ 2210 spin_unlock_irq(¤t->sighand->siglock); 2211 arch_ptrace_stop(); 2212 spin_lock_irq(¤t->sighand->siglock); 2213 } 2214 2215 /* 2216 * schedule() will not sleep if there is a pending signal that 2217 * can awaken the task. 2218 */ 2219 set_special_state(TASK_TRACED); 2220 2221 /* 2222 * We're committing to trapping. TRACED should be visible before 2223 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2224 * Also, transition to TRACED and updates to ->jobctl should be 2225 * atomic with respect to siglock and should be done after the arch 2226 * hook as siglock is released and regrabbed across it. 2227 * 2228 * TRACER TRACEE 2229 * 2230 * ptrace_attach() 2231 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2232 * do_wait() 2233 * set_current_state() smp_wmb(); 2234 * ptrace_do_wait() 2235 * wait_task_stopped() 2236 * task_stopped_code() 2237 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2238 */ 2239 smp_wmb(); 2240 2241 current->last_siginfo = info; 2242 current->exit_code = exit_code; 2243 2244 /* 2245 * If @why is CLD_STOPPED, we're trapping to participate in a group 2246 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2247 * across siglock relocks since INTERRUPT was scheduled, PENDING 2248 * could be clear now. We act as if SIGCONT is received after 2249 * TASK_TRACED is entered - ignore it. 2250 */ 2251 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2252 gstop_done = task_participate_group_stop(current); 2253 2254 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2255 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2256 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2257 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2258 2259 /* entering a trap, clear TRAPPING */ 2260 task_clear_jobctl_trapping(current); 2261 2262 spin_unlock_irq(¤t->sighand->siglock); 2263 read_lock(&tasklist_lock); 2264 if (likely(current->ptrace)) { 2265 /* 2266 * Notify parents of the stop. 2267 * 2268 * While ptraced, there are two parents - the ptracer and 2269 * the real_parent of the group_leader. The ptracer should 2270 * know about every stop while the real parent is only 2271 * interested in the completion of group stop. The states 2272 * for the two don't interact with each other. Notify 2273 * separately unless they're gonna be duplicates. 2274 */ 2275 do_notify_parent_cldstop(current, true, why); 2276 if (gstop_done && ptrace_reparented(current)) 2277 do_notify_parent_cldstop(current, false, why); 2278 2279 /* 2280 * Don't want to allow preemption here, because 2281 * sys_ptrace() needs this task to be inactive. 2282 * 2283 * XXX: implement read_unlock_no_resched(). 2284 */ 2285 preempt_disable(); 2286 read_unlock(&tasklist_lock); 2287 cgroup_enter_frozen(); 2288 preempt_enable_no_resched(); 2289 freezable_schedule(); 2290 cgroup_leave_frozen(true); 2291 } else { 2292 /* 2293 * By the time we got the lock, our tracer went away. 2294 * Don't drop the lock yet, another tracer may come. 2295 * 2296 * If @gstop_done, the ptracer went away between group stop 2297 * completion and here. During detach, it would have set 2298 * JOBCTL_STOP_PENDING on us and we'll re-enter 2299 * TASK_STOPPED in do_signal_stop() on return, so notifying 2300 * the real parent of the group stop completion is enough. 2301 */ 2302 if (gstop_done) 2303 do_notify_parent_cldstop(current, false, why); 2304 2305 /* tasklist protects us from ptrace_freeze_traced() */ 2306 __set_current_state(TASK_RUNNING); 2307 if (clear_code) 2308 current->exit_code = 0; 2309 read_unlock(&tasklist_lock); 2310 } 2311 2312 /* 2313 * We are back. Now reacquire the siglock before touching 2314 * last_siginfo, so that we are sure to have synchronized with 2315 * any signal-sending on another CPU that wants to examine it. 2316 */ 2317 spin_lock_irq(¤t->sighand->siglock); 2318 current->last_siginfo = NULL; 2319 2320 /* LISTENING can be set only during STOP traps, clear it */ 2321 current->jobctl &= ~JOBCTL_LISTENING; 2322 2323 /* 2324 * Queued signals ignored us while we were stopped for tracing. 2325 * So check for any that we should take before resuming user mode. 2326 * This sets TIF_SIGPENDING, but never clears it. 2327 */ 2328 recalc_sigpending_tsk(current); 2329 } 2330 2331 static void ptrace_do_notify(int signr, int exit_code, int why) 2332 { 2333 kernel_siginfo_t info; 2334 2335 clear_siginfo(&info); 2336 info.si_signo = signr; 2337 info.si_code = exit_code; 2338 info.si_pid = task_pid_vnr(current); 2339 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2340 2341 /* Let the debugger run. */ 2342 ptrace_stop(exit_code, why, 1, &info); 2343 } 2344 2345 void ptrace_notify(int exit_code) 2346 { 2347 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2348 if (unlikely(current->task_works)) 2349 task_work_run(); 2350 2351 spin_lock_irq(¤t->sighand->siglock); 2352 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 2353 spin_unlock_irq(¤t->sighand->siglock); 2354 } 2355 2356 /** 2357 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2358 * @signr: signr causing group stop if initiating 2359 * 2360 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2361 * and participate in it. If already set, participate in the existing 2362 * group stop. If participated in a group stop (and thus slept), %true is 2363 * returned with siglock released. 2364 * 2365 * If ptraced, this function doesn't handle stop itself. Instead, 2366 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2367 * untouched. The caller must ensure that INTERRUPT trap handling takes 2368 * places afterwards. 2369 * 2370 * CONTEXT: 2371 * Must be called with @current->sighand->siglock held, which is released 2372 * on %true return. 2373 * 2374 * RETURNS: 2375 * %false if group stop is already cancelled or ptrace trap is scheduled. 2376 * %true if participated in group stop. 2377 */ 2378 static bool do_signal_stop(int signr) 2379 __releases(¤t->sighand->siglock) 2380 { 2381 struct signal_struct *sig = current->signal; 2382 2383 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2384 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2385 struct task_struct *t; 2386 2387 /* signr will be recorded in task->jobctl for retries */ 2388 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2389 2390 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2391 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2392 unlikely(sig->group_exec_task)) 2393 return false; 2394 /* 2395 * There is no group stop already in progress. We must 2396 * initiate one now. 2397 * 2398 * While ptraced, a task may be resumed while group stop is 2399 * still in effect and then receive a stop signal and 2400 * initiate another group stop. This deviates from the 2401 * usual behavior as two consecutive stop signals can't 2402 * cause two group stops when !ptraced. That is why we 2403 * also check !task_is_stopped(t) below. 2404 * 2405 * The condition can be distinguished by testing whether 2406 * SIGNAL_STOP_STOPPED is already set. Don't generate 2407 * group_exit_code in such case. 2408 * 2409 * This is not necessary for SIGNAL_STOP_CONTINUED because 2410 * an intervening stop signal is required to cause two 2411 * continued events regardless of ptrace. 2412 */ 2413 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2414 sig->group_exit_code = signr; 2415 2416 sig->group_stop_count = 0; 2417 2418 if (task_set_jobctl_pending(current, signr | gstop)) 2419 sig->group_stop_count++; 2420 2421 t = current; 2422 while_each_thread(current, t) { 2423 /* 2424 * Setting state to TASK_STOPPED for a group 2425 * stop is always done with the siglock held, 2426 * so this check has no races. 2427 */ 2428 if (!task_is_stopped(t) && 2429 task_set_jobctl_pending(t, signr | gstop)) { 2430 sig->group_stop_count++; 2431 if (likely(!(t->ptrace & PT_SEIZED))) 2432 signal_wake_up(t, 0); 2433 else 2434 ptrace_trap_notify(t); 2435 } 2436 } 2437 } 2438 2439 if (likely(!current->ptrace)) { 2440 int notify = 0; 2441 2442 /* 2443 * If there are no other threads in the group, or if there 2444 * is a group stop in progress and we are the last to stop, 2445 * report to the parent. 2446 */ 2447 if (task_participate_group_stop(current)) 2448 notify = CLD_STOPPED; 2449 2450 set_special_state(TASK_STOPPED); 2451 spin_unlock_irq(¤t->sighand->siglock); 2452 2453 /* 2454 * Notify the parent of the group stop completion. Because 2455 * we're not holding either the siglock or tasklist_lock 2456 * here, ptracer may attach inbetween; however, this is for 2457 * group stop and should always be delivered to the real 2458 * parent of the group leader. The new ptracer will get 2459 * its notification when this task transitions into 2460 * TASK_TRACED. 2461 */ 2462 if (notify) { 2463 read_lock(&tasklist_lock); 2464 do_notify_parent_cldstop(current, false, notify); 2465 read_unlock(&tasklist_lock); 2466 } 2467 2468 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2469 cgroup_enter_frozen(); 2470 freezable_schedule(); 2471 return true; 2472 } else { 2473 /* 2474 * While ptraced, group stop is handled by STOP trap. 2475 * Schedule it and let the caller deal with it. 2476 */ 2477 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2478 return false; 2479 } 2480 } 2481 2482 /** 2483 * do_jobctl_trap - take care of ptrace jobctl traps 2484 * 2485 * When PT_SEIZED, it's used for both group stop and explicit 2486 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2487 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2488 * the stop signal; otherwise, %SIGTRAP. 2489 * 2490 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2491 * number as exit_code and no siginfo. 2492 * 2493 * CONTEXT: 2494 * Must be called with @current->sighand->siglock held, which may be 2495 * released and re-acquired before returning with intervening sleep. 2496 */ 2497 static void do_jobctl_trap(void) 2498 { 2499 struct signal_struct *signal = current->signal; 2500 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2501 2502 if (current->ptrace & PT_SEIZED) { 2503 if (!signal->group_stop_count && 2504 !(signal->flags & SIGNAL_STOP_STOPPED)) 2505 signr = SIGTRAP; 2506 WARN_ON_ONCE(!signr); 2507 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2508 CLD_STOPPED); 2509 } else { 2510 WARN_ON_ONCE(!signr); 2511 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2512 current->exit_code = 0; 2513 } 2514 } 2515 2516 /** 2517 * do_freezer_trap - handle the freezer jobctl trap 2518 * 2519 * Puts the task into frozen state, if only the task is not about to quit. 2520 * In this case it drops JOBCTL_TRAP_FREEZE. 2521 * 2522 * CONTEXT: 2523 * Must be called with @current->sighand->siglock held, 2524 * which is always released before returning. 2525 */ 2526 static void do_freezer_trap(void) 2527 __releases(¤t->sighand->siglock) 2528 { 2529 /* 2530 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2531 * let's make another loop to give it a chance to be handled. 2532 * In any case, we'll return back. 2533 */ 2534 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2535 JOBCTL_TRAP_FREEZE) { 2536 spin_unlock_irq(¤t->sighand->siglock); 2537 return; 2538 } 2539 2540 /* 2541 * Now we're sure that there is no pending fatal signal and no 2542 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2543 * immediately (if there is a non-fatal signal pending), and 2544 * put the task into sleep. 2545 */ 2546 __set_current_state(TASK_INTERRUPTIBLE); 2547 clear_thread_flag(TIF_SIGPENDING); 2548 spin_unlock_irq(¤t->sighand->siglock); 2549 cgroup_enter_frozen(); 2550 freezable_schedule(); 2551 } 2552 2553 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2554 { 2555 /* 2556 * We do not check sig_kernel_stop(signr) but set this marker 2557 * unconditionally because we do not know whether debugger will 2558 * change signr. This flag has no meaning unless we are going 2559 * to stop after return from ptrace_stop(). In this case it will 2560 * be checked in do_signal_stop(), we should only stop if it was 2561 * not cleared by SIGCONT while we were sleeping. See also the 2562 * comment in dequeue_signal(). 2563 */ 2564 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2565 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2566 2567 /* We're back. Did the debugger cancel the sig? */ 2568 signr = current->exit_code; 2569 if (signr == 0) 2570 return signr; 2571 2572 current->exit_code = 0; 2573 2574 /* 2575 * Update the siginfo structure if the signal has 2576 * changed. If the debugger wanted something 2577 * specific in the siginfo structure then it should 2578 * have updated *info via PTRACE_SETSIGINFO. 2579 */ 2580 if (signr != info->si_signo) { 2581 clear_siginfo(info); 2582 info->si_signo = signr; 2583 info->si_errno = 0; 2584 info->si_code = SI_USER; 2585 rcu_read_lock(); 2586 info->si_pid = task_pid_vnr(current->parent); 2587 info->si_uid = from_kuid_munged(current_user_ns(), 2588 task_uid(current->parent)); 2589 rcu_read_unlock(); 2590 } 2591 2592 /* If the (new) signal is now blocked, requeue it. */ 2593 if (sigismember(¤t->blocked, signr) || 2594 fatal_signal_pending(current)) { 2595 send_signal(signr, info, current, type); 2596 signr = 0; 2597 } 2598 2599 return signr; 2600 } 2601 2602 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2603 { 2604 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2605 case SIL_FAULT: 2606 case SIL_FAULT_TRAPNO: 2607 case SIL_FAULT_MCEERR: 2608 case SIL_FAULT_BNDERR: 2609 case SIL_FAULT_PKUERR: 2610 case SIL_FAULT_PERF_EVENT: 2611 ksig->info.si_addr = arch_untagged_si_addr( 2612 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2613 break; 2614 case SIL_KILL: 2615 case SIL_TIMER: 2616 case SIL_POLL: 2617 case SIL_CHLD: 2618 case SIL_RT: 2619 case SIL_SYS: 2620 break; 2621 } 2622 } 2623 2624 bool get_signal(struct ksignal *ksig) 2625 { 2626 struct sighand_struct *sighand = current->sighand; 2627 struct signal_struct *signal = current->signal; 2628 int signr; 2629 2630 if (unlikely(current->task_works)) 2631 task_work_run(); 2632 2633 /* 2634 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so 2635 * that the arch handlers don't all have to do it. If we get here 2636 * without TIF_SIGPENDING, just exit after running signal work. 2637 */ 2638 if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) { 2639 if (test_thread_flag(TIF_NOTIFY_SIGNAL)) 2640 tracehook_notify_signal(); 2641 if (!task_sigpending(current)) 2642 return false; 2643 } 2644 2645 if (unlikely(uprobe_deny_signal())) 2646 return false; 2647 2648 /* 2649 * Do this once, we can't return to user-mode if freezing() == T. 2650 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2651 * thus do not need another check after return. 2652 */ 2653 try_to_freeze(); 2654 2655 relock: 2656 spin_lock_irq(&sighand->siglock); 2657 2658 /* 2659 * Every stopped thread goes here after wakeup. Check to see if 2660 * we should notify the parent, prepare_signal(SIGCONT) encodes 2661 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2662 */ 2663 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2664 int why; 2665 2666 if (signal->flags & SIGNAL_CLD_CONTINUED) 2667 why = CLD_CONTINUED; 2668 else 2669 why = CLD_STOPPED; 2670 2671 signal->flags &= ~SIGNAL_CLD_MASK; 2672 2673 spin_unlock_irq(&sighand->siglock); 2674 2675 /* 2676 * Notify the parent that we're continuing. This event is 2677 * always per-process and doesn't make whole lot of sense 2678 * for ptracers, who shouldn't consume the state via 2679 * wait(2) either, but, for backward compatibility, notify 2680 * the ptracer of the group leader too unless it's gonna be 2681 * a duplicate. 2682 */ 2683 read_lock(&tasklist_lock); 2684 do_notify_parent_cldstop(current, false, why); 2685 2686 if (ptrace_reparented(current->group_leader)) 2687 do_notify_parent_cldstop(current->group_leader, 2688 true, why); 2689 read_unlock(&tasklist_lock); 2690 2691 goto relock; 2692 } 2693 2694 for (;;) { 2695 struct k_sigaction *ka; 2696 enum pid_type type; 2697 2698 /* Has this task already been marked for death? */ 2699 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2700 signal->group_exec_task) { 2701 ksig->info.si_signo = signr = SIGKILL; 2702 sigdelset(¤t->pending.signal, SIGKILL); 2703 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2704 &sighand->action[SIGKILL - 1]); 2705 recalc_sigpending(); 2706 goto fatal; 2707 } 2708 2709 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2710 do_signal_stop(0)) 2711 goto relock; 2712 2713 if (unlikely(current->jobctl & 2714 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2715 if (current->jobctl & JOBCTL_TRAP_MASK) { 2716 do_jobctl_trap(); 2717 spin_unlock_irq(&sighand->siglock); 2718 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2719 do_freezer_trap(); 2720 2721 goto relock; 2722 } 2723 2724 /* 2725 * If the task is leaving the frozen state, let's update 2726 * cgroup counters and reset the frozen bit. 2727 */ 2728 if (unlikely(cgroup_task_frozen(current))) { 2729 spin_unlock_irq(&sighand->siglock); 2730 cgroup_leave_frozen(false); 2731 goto relock; 2732 } 2733 2734 /* 2735 * Signals generated by the execution of an instruction 2736 * need to be delivered before any other pending signals 2737 * so that the instruction pointer in the signal stack 2738 * frame points to the faulting instruction. 2739 */ 2740 type = PIDTYPE_PID; 2741 signr = dequeue_synchronous_signal(&ksig->info); 2742 if (!signr) 2743 signr = dequeue_signal(current, ¤t->blocked, 2744 &ksig->info, &type); 2745 2746 if (!signr) 2747 break; /* will return 0 */ 2748 2749 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2750 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2751 signr = ptrace_signal(signr, &ksig->info, type); 2752 if (!signr) 2753 continue; 2754 } 2755 2756 ka = &sighand->action[signr-1]; 2757 2758 /* Trace actually delivered signals. */ 2759 trace_signal_deliver(signr, &ksig->info, ka); 2760 2761 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2762 continue; 2763 if (ka->sa.sa_handler != SIG_DFL) { 2764 /* Run the handler. */ 2765 ksig->ka = *ka; 2766 2767 if (ka->sa.sa_flags & SA_ONESHOT) 2768 ka->sa.sa_handler = SIG_DFL; 2769 2770 break; /* will return non-zero "signr" value */ 2771 } 2772 2773 /* 2774 * Now we are doing the default action for this signal. 2775 */ 2776 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2777 continue; 2778 2779 /* 2780 * Global init gets no signals it doesn't want. 2781 * Container-init gets no signals it doesn't want from same 2782 * container. 2783 * 2784 * Note that if global/container-init sees a sig_kernel_only() 2785 * signal here, the signal must have been generated internally 2786 * or must have come from an ancestor namespace. In either 2787 * case, the signal cannot be dropped. 2788 */ 2789 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2790 !sig_kernel_only(signr)) 2791 continue; 2792 2793 if (sig_kernel_stop(signr)) { 2794 /* 2795 * The default action is to stop all threads in 2796 * the thread group. The job control signals 2797 * do nothing in an orphaned pgrp, but SIGSTOP 2798 * always works. Note that siglock needs to be 2799 * dropped during the call to is_orphaned_pgrp() 2800 * because of lock ordering with tasklist_lock. 2801 * This allows an intervening SIGCONT to be posted. 2802 * We need to check for that and bail out if necessary. 2803 */ 2804 if (signr != SIGSTOP) { 2805 spin_unlock_irq(&sighand->siglock); 2806 2807 /* signals can be posted during this window */ 2808 2809 if (is_current_pgrp_orphaned()) 2810 goto relock; 2811 2812 spin_lock_irq(&sighand->siglock); 2813 } 2814 2815 if (likely(do_signal_stop(ksig->info.si_signo))) { 2816 /* It released the siglock. */ 2817 goto relock; 2818 } 2819 2820 /* 2821 * We didn't actually stop, due to a race 2822 * with SIGCONT or something like that. 2823 */ 2824 continue; 2825 } 2826 2827 fatal: 2828 spin_unlock_irq(&sighand->siglock); 2829 if (unlikely(cgroup_task_frozen(current))) 2830 cgroup_leave_frozen(true); 2831 2832 /* 2833 * Anything else is fatal, maybe with a core dump. 2834 */ 2835 current->flags |= PF_SIGNALED; 2836 2837 if (sig_kernel_coredump(signr)) { 2838 if (print_fatal_signals) 2839 print_fatal_signal(ksig->info.si_signo); 2840 proc_coredump_connector(current); 2841 /* 2842 * If it was able to dump core, this kills all 2843 * other threads in the group and synchronizes with 2844 * their demise. If we lost the race with another 2845 * thread getting here, it set group_exit_code 2846 * first and our do_group_exit call below will use 2847 * that value and ignore the one we pass it. 2848 */ 2849 do_coredump(&ksig->info); 2850 } 2851 2852 /* 2853 * PF_IO_WORKER threads will catch and exit on fatal signals 2854 * themselves. They have cleanup that must be performed, so 2855 * we cannot call do_exit() on their behalf. 2856 */ 2857 if (current->flags & PF_IO_WORKER) 2858 goto out; 2859 2860 /* 2861 * Death signals, no core dump. 2862 */ 2863 do_group_exit(ksig->info.si_signo); 2864 /* NOTREACHED */ 2865 } 2866 spin_unlock_irq(&sighand->siglock); 2867 out: 2868 ksig->sig = signr; 2869 2870 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2871 hide_si_addr_tag_bits(ksig); 2872 2873 return ksig->sig > 0; 2874 } 2875 2876 /** 2877 * signal_delivered - called after signal delivery to update blocked signals 2878 * @ksig: kernel signal struct 2879 * @stepping: nonzero if debugger single-step or block-step in use 2880 * 2881 * This function should be called when a signal has successfully been 2882 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2883 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 2884 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2885 */ 2886 static void signal_delivered(struct ksignal *ksig, int stepping) 2887 { 2888 sigset_t blocked; 2889 2890 /* A signal was successfully delivered, and the 2891 saved sigmask was stored on the signal frame, 2892 and will be restored by sigreturn. So we can 2893 simply clear the restore sigmask flag. */ 2894 clear_restore_sigmask(); 2895 2896 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2897 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2898 sigaddset(&blocked, ksig->sig); 2899 set_current_blocked(&blocked); 2900 if (current->sas_ss_flags & SS_AUTODISARM) 2901 sas_ss_reset(current); 2902 tracehook_signal_handler(stepping); 2903 } 2904 2905 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2906 { 2907 if (failed) 2908 force_sigsegv(ksig->sig); 2909 else 2910 signal_delivered(ksig, stepping); 2911 } 2912 2913 /* 2914 * It could be that complete_signal() picked us to notify about the 2915 * group-wide signal. Other threads should be notified now to take 2916 * the shared signals in @which since we will not. 2917 */ 2918 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2919 { 2920 sigset_t retarget; 2921 struct task_struct *t; 2922 2923 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2924 if (sigisemptyset(&retarget)) 2925 return; 2926 2927 t = tsk; 2928 while_each_thread(tsk, t) { 2929 if (t->flags & PF_EXITING) 2930 continue; 2931 2932 if (!has_pending_signals(&retarget, &t->blocked)) 2933 continue; 2934 /* Remove the signals this thread can handle. */ 2935 sigandsets(&retarget, &retarget, &t->blocked); 2936 2937 if (!task_sigpending(t)) 2938 signal_wake_up(t, 0); 2939 2940 if (sigisemptyset(&retarget)) 2941 break; 2942 } 2943 } 2944 2945 void exit_signals(struct task_struct *tsk) 2946 { 2947 int group_stop = 0; 2948 sigset_t unblocked; 2949 2950 /* 2951 * @tsk is about to have PF_EXITING set - lock out users which 2952 * expect stable threadgroup. 2953 */ 2954 cgroup_threadgroup_change_begin(tsk); 2955 2956 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 2957 tsk->flags |= PF_EXITING; 2958 cgroup_threadgroup_change_end(tsk); 2959 return; 2960 } 2961 2962 spin_lock_irq(&tsk->sighand->siglock); 2963 /* 2964 * From now this task is not visible for group-wide signals, 2965 * see wants_signal(), do_signal_stop(). 2966 */ 2967 tsk->flags |= PF_EXITING; 2968 2969 cgroup_threadgroup_change_end(tsk); 2970 2971 if (!task_sigpending(tsk)) 2972 goto out; 2973 2974 unblocked = tsk->blocked; 2975 signotset(&unblocked); 2976 retarget_shared_pending(tsk, &unblocked); 2977 2978 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2979 task_participate_group_stop(tsk)) 2980 group_stop = CLD_STOPPED; 2981 out: 2982 spin_unlock_irq(&tsk->sighand->siglock); 2983 2984 /* 2985 * If group stop has completed, deliver the notification. This 2986 * should always go to the real parent of the group leader. 2987 */ 2988 if (unlikely(group_stop)) { 2989 read_lock(&tasklist_lock); 2990 do_notify_parent_cldstop(tsk, false, group_stop); 2991 read_unlock(&tasklist_lock); 2992 } 2993 } 2994 2995 /* 2996 * System call entry points. 2997 */ 2998 2999 /** 3000 * sys_restart_syscall - restart a system call 3001 */ 3002 SYSCALL_DEFINE0(restart_syscall) 3003 { 3004 struct restart_block *restart = ¤t->restart_block; 3005 return restart->fn(restart); 3006 } 3007 3008 long do_no_restart_syscall(struct restart_block *param) 3009 { 3010 return -EINTR; 3011 } 3012 3013 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3014 { 3015 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3016 sigset_t newblocked; 3017 /* A set of now blocked but previously unblocked signals. */ 3018 sigandnsets(&newblocked, newset, ¤t->blocked); 3019 retarget_shared_pending(tsk, &newblocked); 3020 } 3021 tsk->blocked = *newset; 3022 recalc_sigpending(); 3023 } 3024 3025 /** 3026 * set_current_blocked - change current->blocked mask 3027 * @newset: new mask 3028 * 3029 * It is wrong to change ->blocked directly, this helper should be used 3030 * to ensure the process can't miss a shared signal we are going to block. 3031 */ 3032 void set_current_blocked(sigset_t *newset) 3033 { 3034 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3035 __set_current_blocked(newset); 3036 } 3037 3038 void __set_current_blocked(const sigset_t *newset) 3039 { 3040 struct task_struct *tsk = current; 3041 3042 /* 3043 * In case the signal mask hasn't changed, there is nothing we need 3044 * to do. The current->blocked shouldn't be modified by other task. 3045 */ 3046 if (sigequalsets(&tsk->blocked, newset)) 3047 return; 3048 3049 spin_lock_irq(&tsk->sighand->siglock); 3050 __set_task_blocked(tsk, newset); 3051 spin_unlock_irq(&tsk->sighand->siglock); 3052 } 3053 3054 /* 3055 * This is also useful for kernel threads that want to temporarily 3056 * (or permanently) block certain signals. 3057 * 3058 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3059 * interface happily blocks "unblockable" signals like SIGKILL 3060 * and friends. 3061 */ 3062 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3063 { 3064 struct task_struct *tsk = current; 3065 sigset_t newset; 3066 3067 /* Lockless, only current can change ->blocked, never from irq */ 3068 if (oldset) 3069 *oldset = tsk->blocked; 3070 3071 switch (how) { 3072 case SIG_BLOCK: 3073 sigorsets(&newset, &tsk->blocked, set); 3074 break; 3075 case SIG_UNBLOCK: 3076 sigandnsets(&newset, &tsk->blocked, set); 3077 break; 3078 case SIG_SETMASK: 3079 newset = *set; 3080 break; 3081 default: 3082 return -EINVAL; 3083 } 3084 3085 __set_current_blocked(&newset); 3086 return 0; 3087 } 3088 EXPORT_SYMBOL(sigprocmask); 3089 3090 /* 3091 * The api helps set app-provided sigmasks. 3092 * 3093 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3094 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3095 * 3096 * Note that it does set_restore_sigmask() in advance, so it must be always 3097 * paired with restore_saved_sigmask_unless() before return from syscall. 3098 */ 3099 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3100 { 3101 sigset_t kmask; 3102 3103 if (!umask) 3104 return 0; 3105 if (sigsetsize != sizeof(sigset_t)) 3106 return -EINVAL; 3107 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3108 return -EFAULT; 3109 3110 set_restore_sigmask(); 3111 current->saved_sigmask = current->blocked; 3112 set_current_blocked(&kmask); 3113 3114 return 0; 3115 } 3116 3117 #ifdef CONFIG_COMPAT 3118 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3119 size_t sigsetsize) 3120 { 3121 sigset_t kmask; 3122 3123 if (!umask) 3124 return 0; 3125 if (sigsetsize != sizeof(compat_sigset_t)) 3126 return -EINVAL; 3127 if (get_compat_sigset(&kmask, umask)) 3128 return -EFAULT; 3129 3130 set_restore_sigmask(); 3131 current->saved_sigmask = current->blocked; 3132 set_current_blocked(&kmask); 3133 3134 return 0; 3135 } 3136 #endif 3137 3138 /** 3139 * sys_rt_sigprocmask - change the list of currently blocked signals 3140 * @how: whether to add, remove, or set signals 3141 * @nset: stores pending signals 3142 * @oset: previous value of signal mask if non-null 3143 * @sigsetsize: size of sigset_t type 3144 */ 3145 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3146 sigset_t __user *, oset, size_t, sigsetsize) 3147 { 3148 sigset_t old_set, new_set; 3149 int error; 3150 3151 /* XXX: Don't preclude handling different sized sigset_t's. */ 3152 if (sigsetsize != sizeof(sigset_t)) 3153 return -EINVAL; 3154 3155 old_set = current->blocked; 3156 3157 if (nset) { 3158 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3159 return -EFAULT; 3160 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3161 3162 error = sigprocmask(how, &new_set, NULL); 3163 if (error) 3164 return error; 3165 } 3166 3167 if (oset) { 3168 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3169 return -EFAULT; 3170 } 3171 3172 return 0; 3173 } 3174 3175 #ifdef CONFIG_COMPAT 3176 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3177 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3178 { 3179 sigset_t old_set = current->blocked; 3180 3181 /* XXX: Don't preclude handling different sized sigset_t's. */ 3182 if (sigsetsize != sizeof(sigset_t)) 3183 return -EINVAL; 3184 3185 if (nset) { 3186 sigset_t new_set; 3187 int error; 3188 if (get_compat_sigset(&new_set, nset)) 3189 return -EFAULT; 3190 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3191 3192 error = sigprocmask(how, &new_set, NULL); 3193 if (error) 3194 return error; 3195 } 3196 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3197 } 3198 #endif 3199 3200 static void do_sigpending(sigset_t *set) 3201 { 3202 spin_lock_irq(¤t->sighand->siglock); 3203 sigorsets(set, ¤t->pending.signal, 3204 ¤t->signal->shared_pending.signal); 3205 spin_unlock_irq(¤t->sighand->siglock); 3206 3207 /* Outside the lock because only this thread touches it. */ 3208 sigandsets(set, ¤t->blocked, set); 3209 } 3210 3211 /** 3212 * sys_rt_sigpending - examine a pending signal that has been raised 3213 * while blocked 3214 * @uset: stores pending signals 3215 * @sigsetsize: size of sigset_t type or larger 3216 */ 3217 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3218 { 3219 sigset_t set; 3220 3221 if (sigsetsize > sizeof(*uset)) 3222 return -EINVAL; 3223 3224 do_sigpending(&set); 3225 3226 if (copy_to_user(uset, &set, sigsetsize)) 3227 return -EFAULT; 3228 3229 return 0; 3230 } 3231 3232 #ifdef CONFIG_COMPAT 3233 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3234 compat_size_t, sigsetsize) 3235 { 3236 sigset_t set; 3237 3238 if (sigsetsize > sizeof(*uset)) 3239 return -EINVAL; 3240 3241 do_sigpending(&set); 3242 3243 return put_compat_sigset(uset, &set, sigsetsize); 3244 } 3245 #endif 3246 3247 static const struct { 3248 unsigned char limit, layout; 3249 } sig_sicodes[] = { 3250 [SIGILL] = { NSIGILL, SIL_FAULT }, 3251 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3252 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3253 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3254 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3255 #if defined(SIGEMT) 3256 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3257 #endif 3258 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3259 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3260 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3261 }; 3262 3263 static bool known_siginfo_layout(unsigned sig, int si_code) 3264 { 3265 if (si_code == SI_KERNEL) 3266 return true; 3267 else if ((si_code > SI_USER)) { 3268 if (sig_specific_sicodes(sig)) { 3269 if (si_code <= sig_sicodes[sig].limit) 3270 return true; 3271 } 3272 else if (si_code <= NSIGPOLL) 3273 return true; 3274 } 3275 else if (si_code >= SI_DETHREAD) 3276 return true; 3277 else if (si_code == SI_ASYNCNL) 3278 return true; 3279 return false; 3280 } 3281 3282 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3283 { 3284 enum siginfo_layout layout = SIL_KILL; 3285 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3286 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3287 (si_code <= sig_sicodes[sig].limit)) { 3288 layout = sig_sicodes[sig].layout; 3289 /* Handle the exceptions */ 3290 if ((sig == SIGBUS) && 3291 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3292 layout = SIL_FAULT_MCEERR; 3293 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3294 layout = SIL_FAULT_BNDERR; 3295 #ifdef SEGV_PKUERR 3296 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3297 layout = SIL_FAULT_PKUERR; 3298 #endif 3299 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3300 layout = SIL_FAULT_PERF_EVENT; 3301 else if (IS_ENABLED(CONFIG_SPARC) && 3302 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3303 layout = SIL_FAULT_TRAPNO; 3304 else if (IS_ENABLED(CONFIG_ALPHA) && 3305 ((sig == SIGFPE) || 3306 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3307 layout = SIL_FAULT_TRAPNO; 3308 } 3309 else if (si_code <= NSIGPOLL) 3310 layout = SIL_POLL; 3311 } else { 3312 if (si_code == SI_TIMER) 3313 layout = SIL_TIMER; 3314 else if (si_code == SI_SIGIO) 3315 layout = SIL_POLL; 3316 else if (si_code < 0) 3317 layout = SIL_RT; 3318 } 3319 return layout; 3320 } 3321 3322 static inline char __user *si_expansion(const siginfo_t __user *info) 3323 { 3324 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3325 } 3326 3327 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3328 { 3329 char __user *expansion = si_expansion(to); 3330 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3331 return -EFAULT; 3332 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3333 return -EFAULT; 3334 return 0; 3335 } 3336 3337 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3338 const siginfo_t __user *from) 3339 { 3340 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3341 char __user *expansion = si_expansion(from); 3342 char buf[SI_EXPANSION_SIZE]; 3343 int i; 3344 /* 3345 * An unknown si_code might need more than 3346 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3347 * extra bytes are 0. This guarantees copy_siginfo_to_user 3348 * will return this data to userspace exactly. 3349 */ 3350 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3351 return -EFAULT; 3352 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3353 if (buf[i] != 0) 3354 return -E2BIG; 3355 } 3356 } 3357 return 0; 3358 } 3359 3360 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3361 const siginfo_t __user *from) 3362 { 3363 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3364 return -EFAULT; 3365 to->si_signo = signo; 3366 return post_copy_siginfo_from_user(to, from); 3367 } 3368 3369 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3370 { 3371 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3372 return -EFAULT; 3373 return post_copy_siginfo_from_user(to, from); 3374 } 3375 3376 #ifdef CONFIG_COMPAT 3377 /** 3378 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3379 * @to: compat siginfo destination 3380 * @from: kernel siginfo source 3381 * 3382 * Note: This function does not work properly for the SIGCHLD on x32, but 3383 * fortunately it doesn't have to. The only valid callers for this function are 3384 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3385 * The latter does not care because SIGCHLD will never cause a coredump. 3386 */ 3387 void copy_siginfo_to_external32(struct compat_siginfo *to, 3388 const struct kernel_siginfo *from) 3389 { 3390 memset(to, 0, sizeof(*to)); 3391 3392 to->si_signo = from->si_signo; 3393 to->si_errno = from->si_errno; 3394 to->si_code = from->si_code; 3395 switch(siginfo_layout(from->si_signo, from->si_code)) { 3396 case SIL_KILL: 3397 to->si_pid = from->si_pid; 3398 to->si_uid = from->si_uid; 3399 break; 3400 case SIL_TIMER: 3401 to->si_tid = from->si_tid; 3402 to->si_overrun = from->si_overrun; 3403 to->si_int = from->si_int; 3404 break; 3405 case SIL_POLL: 3406 to->si_band = from->si_band; 3407 to->si_fd = from->si_fd; 3408 break; 3409 case SIL_FAULT: 3410 to->si_addr = ptr_to_compat(from->si_addr); 3411 break; 3412 case SIL_FAULT_TRAPNO: 3413 to->si_addr = ptr_to_compat(from->si_addr); 3414 to->si_trapno = from->si_trapno; 3415 break; 3416 case SIL_FAULT_MCEERR: 3417 to->si_addr = ptr_to_compat(from->si_addr); 3418 to->si_addr_lsb = from->si_addr_lsb; 3419 break; 3420 case SIL_FAULT_BNDERR: 3421 to->si_addr = ptr_to_compat(from->si_addr); 3422 to->si_lower = ptr_to_compat(from->si_lower); 3423 to->si_upper = ptr_to_compat(from->si_upper); 3424 break; 3425 case SIL_FAULT_PKUERR: 3426 to->si_addr = ptr_to_compat(from->si_addr); 3427 to->si_pkey = from->si_pkey; 3428 break; 3429 case SIL_FAULT_PERF_EVENT: 3430 to->si_addr = ptr_to_compat(from->si_addr); 3431 to->si_perf_data = from->si_perf_data; 3432 to->si_perf_type = from->si_perf_type; 3433 break; 3434 case SIL_CHLD: 3435 to->si_pid = from->si_pid; 3436 to->si_uid = from->si_uid; 3437 to->si_status = from->si_status; 3438 to->si_utime = from->si_utime; 3439 to->si_stime = from->si_stime; 3440 break; 3441 case SIL_RT: 3442 to->si_pid = from->si_pid; 3443 to->si_uid = from->si_uid; 3444 to->si_int = from->si_int; 3445 break; 3446 case SIL_SYS: 3447 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3448 to->si_syscall = from->si_syscall; 3449 to->si_arch = from->si_arch; 3450 break; 3451 } 3452 } 3453 3454 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3455 const struct kernel_siginfo *from) 3456 { 3457 struct compat_siginfo new; 3458 3459 copy_siginfo_to_external32(&new, from); 3460 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3461 return -EFAULT; 3462 return 0; 3463 } 3464 3465 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3466 const struct compat_siginfo *from) 3467 { 3468 clear_siginfo(to); 3469 to->si_signo = from->si_signo; 3470 to->si_errno = from->si_errno; 3471 to->si_code = from->si_code; 3472 switch(siginfo_layout(from->si_signo, from->si_code)) { 3473 case SIL_KILL: 3474 to->si_pid = from->si_pid; 3475 to->si_uid = from->si_uid; 3476 break; 3477 case SIL_TIMER: 3478 to->si_tid = from->si_tid; 3479 to->si_overrun = from->si_overrun; 3480 to->si_int = from->si_int; 3481 break; 3482 case SIL_POLL: 3483 to->si_band = from->si_band; 3484 to->si_fd = from->si_fd; 3485 break; 3486 case SIL_FAULT: 3487 to->si_addr = compat_ptr(from->si_addr); 3488 break; 3489 case SIL_FAULT_TRAPNO: 3490 to->si_addr = compat_ptr(from->si_addr); 3491 to->si_trapno = from->si_trapno; 3492 break; 3493 case SIL_FAULT_MCEERR: 3494 to->si_addr = compat_ptr(from->si_addr); 3495 to->si_addr_lsb = from->si_addr_lsb; 3496 break; 3497 case SIL_FAULT_BNDERR: 3498 to->si_addr = compat_ptr(from->si_addr); 3499 to->si_lower = compat_ptr(from->si_lower); 3500 to->si_upper = compat_ptr(from->si_upper); 3501 break; 3502 case SIL_FAULT_PKUERR: 3503 to->si_addr = compat_ptr(from->si_addr); 3504 to->si_pkey = from->si_pkey; 3505 break; 3506 case SIL_FAULT_PERF_EVENT: 3507 to->si_addr = compat_ptr(from->si_addr); 3508 to->si_perf_data = from->si_perf_data; 3509 to->si_perf_type = from->si_perf_type; 3510 break; 3511 case SIL_CHLD: 3512 to->si_pid = from->si_pid; 3513 to->si_uid = from->si_uid; 3514 to->si_status = from->si_status; 3515 #ifdef CONFIG_X86_X32_ABI 3516 if (in_x32_syscall()) { 3517 to->si_utime = from->_sifields._sigchld_x32._utime; 3518 to->si_stime = from->_sifields._sigchld_x32._stime; 3519 } else 3520 #endif 3521 { 3522 to->si_utime = from->si_utime; 3523 to->si_stime = from->si_stime; 3524 } 3525 break; 3526 case SIL_RT: 3527 to->si_pid = from->si_pid; 3528 to->si_uid = from->si_uid; 3529 to->si_int = from->si_int; 3530 break; 3531 case SIL_SYS: 3532 to->si_call_addr = compat_ptr(from->si_call_addr); 3533 to->si_syscall = from->si_syscall; 3534 to->si_arch = from->si_arch; 3535 break; 3536 } 3537 return 0; 3538 } 3539 3540 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3541 const struct compat_siginfo __user *ufrom) 3542 { 3543 struct compat_siginfo from; 3544 3545 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3546 return -EFAULT; 3547 3548 from.si_signo = signo; 3549 return post_copy_siginfo_from_user32(to, &from); 3550 } 3551 3552 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3553 const struct compat_siginfo __user *ufrom) 3554 { 3555 struct compat_siginfo from; 3556 3557 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3558 return -EFAULT; 3559 3560 return post_copy_siginfo_from_user32(to, &from); 3561 } 3562 #endif /* CONFIG_COMPAT */ 3563 3564 /** 3565 * do_sigtimedwait - wait for queued signals specified in @which 3566 * @which: queued signals to wait for 3567 * @info: if non-null, the signal's siginfo is returned here 3568 * @ts: upper bound on process time suspension 3569 */ 3570 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3571 const struct timespec64 *ts) 3572 { 3573 ktime_t *to = NULL, timeout = KTIME_MAX; 3574 struct task_struct *tsk = current; 3575 sigset_t mask = *which; 3576 enum pid_type type; 3577 int sig, ret = 0; 3578 3579 if (ts) { 3580 if (!timespec64_valid(ts)) 3581 return -EINVAL; 3582 timeout = timespec64_to_ktime(*ts); 3583 to = &timeout; 3584 } 3585 3586 /* 3587 * Invert the set of allowed signals to get those we want to block. 3588 */ 3589 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3590 signotset(&mask); 3591 3592 spin_lock_irq(&tsk->sighand->siglock); 3593 sig = dequeue_signal(tsk, &mask, info, &type); 3594 if (!sig && timeout) { 3595 /* 3596 * None ready, temporarily unblock those we're interested 3597 * while we are sleeping in so that we'll be awakened when 3598 * they arrive. Unblocking is always fine, we can avoid 3599 * set_current_blocked(). 3600 */ 3601 tsk->real_blocked = tsk->blocked; 3602 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3603 recalc_sigpending(); 3604 spin_unlock_irq(&tsk->sighand->siglock); 3605 3606 __set_current_state(TASK_INTERRUPTIBLE); 3607 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3608 HRTIMER_MODE_REL); 3609 spin_lock_irq(&tsk->sighand->siglock); 3610 __set_task_blocked(tsk, &tsk->real_blocked); 3611 sigemptyset(&tsk->real_blocked); 3612 sig = dequeue_signal(tsk, &mask, info, &type); 3613 } 3614 spin_unlock_irq(&tsk->sighand->siglock); 3615 3616 if (sig) 3617 return sig; 3618 return ret ? -EINTR : -EAGAIN; 3619 } 3620 3621 /** 3622 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3623 * in @uthese 3624 * @uthese: queued signals to wait for 3625 * @uinfo: if non-null, the signal's siginfo is returned here 3626 * @uts: upper bound on process time suspension 3627 * @sigsetsize: size of sigset_t type 3628 */ 3629 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3630 siginfo_t __user *, uinfo, 3631 const struct __kernel_timespec __user *, uts, 3632 size_t, sigsetsize) 3633 { 3634 sigset_t these; 3635 struct timespec64 ts; 3636 kernel_siginfo_t info; 3637 int ret; 3638 3639 /* XXX: Don't preclude handling different sized sigset_t's. */ 3640 if (sigsetsize != sizeof(sigset_t)) 3641 return -EINVAL; 3642 3643 if (copy_from_user(&these, uthese, sizeof(these))) 3644 return -EFAULT; 3645 3646 if (uts) { 3647 if (get_timespec64(&ts, uts)) 3648 return -EFAULT; 3649 } 3650 3651 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3652 3653 if (ret > 0 && uinfo) { 3654 if (copy_siginfo_to_user(uinfo, &info)) 3655 ret = -EFAULT; 3656 } 3657 3658 return ret; 3659 } 3660 3661 #ifdef CONFIG_COMPAT_32BIT_TIME 3662 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3663 siginfo_t __user *, uinfo, 3664 const struct old_timespec32 __user *, uts, 3665 size_t, sigsetsize) 3666 { 3667 sigset_t these; 3668 struct timespec64 ts; 3669 kernel_siginfo_t info; 3670 int ret; 3671 3672 if (sigsetsize != sizeof(sigset_t)) 3673 return -EINVAL; 3674 3675 if (copy_from_user(&these, uthese, sizeof(these))) 3676 return -EFAULT; 3677 3678 if (uts) { 3679 if (get_old_timespec32(&ts, uts)) 3680 return -EFAULT; 3681 } 3682 3683 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3684 3685 if (ret > 0 && uinfo) { 3686 if (copy_siginfo_to_user(uinfo, &info)) 3687 ret = -EFAULT; 3688 } 3689 3690 return ret; 3691 } 3692 #endif 3693 3694 #ifdef CONFIG_COMPAT 3695 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3696 struct compat_siginfo __user *, uinfo, 3697 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3698 { 3699 sigset_t s; 3700 struct timespec64 t; 3701 kernel_siginfo_t info; 3702 long ret; 3703 3704 if (sigsetsize != sizeof(sigset_t)) 3705 return -EINVAL; 3706 3707 if (get_compat_sigset(&s, uthese)) 3708 return -EFAULT; 3709 3710 if (uts) { 3711 if (get_timespec64(&t, uts)) 3712 return -EFAULT; 3713 } 3714 3715 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3716 3717 if (ret > 0 && uinfo) { 3718 if (copy_siginfo_to_user32(uinfo, &info)) 3719 ret = -EFAULT; 3720 } 3721 3722 return ret; 3723 } 3724 3725 #ifdef CONFIG_COMPAT_32BIT_TIME 3726 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3727 struct compat_siginfo __user *, uinfo, 3728 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3729 { 3730 sigset_t s; 3731 struct timespec64 t; 3732 kernel_siginfo_t info; 3733 long ret; 3734 3735 if (sigsetsize != sizeof(sigset_t)) 3736 return -EINVAL; 3737 3738 if (get_compat_sigset(&s, uthese)) 3739 return -EFAULT; 3740 3741 if (uts) { 3742 if (get_old_timespec32(&t, uts)) 3743 return -EFAULT; 3744 } 3745 3746 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3747 3748 if (ret > 0 && uinfo) { 3749 if (copy_siginfo_to_user32(uinfo, &info)) 3750 ret = -EFAULT; 3751 } 3752 3753 return ret; 3754 } 3755 #endif 3756 #endif 3757 3758 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3759 { 3760 clear_siginfo(info); 3761 info->si_signo = sig; 3762 info->si_errno = 0; 3763 info->si_code = SI_USER; 3764 info->si_pid = task_tgid_vnr(current); 3765 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3766 } 3767 3768 /** 3769 * sys_kill - send a signal to a process 3770 * @pid: the PID of the process 3771 * @sig: signal to be sent 3772 */ 3773 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3774 { 3775 struct kernel_siginfo info; 3776 3777 prepare_kill_siginfo(sig, &info); 3778 3779 return kill_something_info(sig, &info, pid); 3780 } 3781 3782 /* 3783 * Verify that the signaler and signalee either are in the same pid namespace 3784 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3785 * namespace. 3786 */ 3787 static bool access_pidfd_pidns(struct pid *pid) 3788 { 3789 struct pid_namespace *active = task_active_pid_ns(current); 3790 struct pid_namespace *p = ns_of_pid(pid); 3791 3792 for (;;) { 3793 if (!p) 3794 return false; 3795 if (p == active) 3796 break; 3797 p = p->parent; 3798 } 3799 3800 return true; 3801 } 3802 3803 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3804 siginfo_t __user *info) 3805 { 3806 #ifdef CONFIG_COMPAT 3807 /* 3808 * Avoid hooking up compat syscalls and instead handle necessary 3809 * conversions here. Note, this is a stop-gap measure and should not be 3810 * considered a generic solution. 3811 */ 3812 if (in_compat_syscall()) 3813 return copy_siginfo_from_user32( 3814 kinfo, (struct compat_siginfo __user *)info); 3815 #endif 3816 return copy_siginfo_from_user(kinfo, info); 3817 } 3818 3819 static struct pid *pidfd_to_pid(const struct file *file) 3820 { 3821 struct pid *pid; 3822 3823 pid = pidfd_pid(file); 3824 if (!IS_ERR(pid)) 3825 return pid; 3826 3827 return tgid_pidfd_to_pid(file); 3828 } 3829 3830 /** 3831 * sys_pidfd_send_signal - Signal a process through a pidfd 3832 * @pidfd: file descriptor of the process 3833 * @sig: signal to send 3834 * @info: signal info 3835 * @flags: future flags 3836 * 3837 * The syscall currently only signals via PIDTYPE_PID which covers 3838 * kill(<positive-pid>, <signal>. It does not signal threads or process 3839 * groups. 3840 * In order to extend the syscall to threads and process groups the @flags 3841 * argument should be used. In essence, the @flags argument will determine 3842 * what is signaled and not the file descriptor itself. Put in other words, 3843 * grouping is a property of the flags argument not a property of the file 3844 * descriptor. 3845 * 3846 * Return: 0 on success, negative errno on failure 3847 */ 3848 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3849 siginfo_t __user *, info, unsigned int, flags) 3850 { 3851 int ret; 3852 struct fd f; 3853 struct pid *pid; 3854 kernel_siginfo_t kinfo; 3855 3856 /* Enforce flags be set to 0 until we add an extension. */ 3857 if (flags) 3858 return -EINVAL; 3859 3860 f = fdget(pidfd); 3861 if (!f.file) 3862 return -EBADF; 3863 3864 /* Is this a pidfd? */ 3865 pid = pidfd_to_pid(f.file); 3866 if (IS_ERR(pid)) { 3867 ret = PTR_ERR(pid); 3868 goto err; 3869 } 3870 3871 ret = -EINVAL; 3872 if (!access_pidfd_pidns(pid)) 3873 goto err; 3874 3875 if (info) { 3876 ret = copy_siginfo_from_user_any(&kinfo, info); 3877 if (unlikely(ret)) 3878 goto err; 3879 3880 ret = -EINVAL; 3881 if (unlikely(sig != kinfo.si_signo)) 3882 goto err; 3883 3884 /* Only allow sending arbitrary signals to yourself. */ 3885 ret = -EPERM; 3886 if ((task_pid(current) != pid) && 3887 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3888 goto err; 3889 } else { 3890 prepare_kill_siginfo(sig, &kinfo); 3891 } 3892 3893 ret = kill_pid_info(sig, &kinfo, pid); 3894 3895 err: 3896 fdput(f); 3897 return ret; 3898 } 3899 3900 static int 3901 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3902 { 3903 struct task_struct *p; 3904 int error = -ESRCH; 3905 3906 rcu_read_lock(); 3907 p = find_task_by_vpid(pid); 3908 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3909 error = check_kill_permission(sig, info, p); 3910 /* 3911 * The null signal is a permissions and process existence 3912 * probe. No signal is actually delivered. 3913 */ 3914 if (!error && sig) { 3915 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3916 /* 3917 * If lock_task_sighand() failed we pretend the task 3918 * dies after receiving the signal. The window is tiny, 3919 * and the signal is private anyway. 3920 */ 3921 if (unlikely(error == -ESRCH)) 3922 error = 0; 3923 } 3924 } 3925 rcu_read_unlock(); 3926 3927 return error; 3928 } 3929 3930 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3931 { 3932 struct kernel_siginfo info; 3933 3934 clear_siginfo(&info); 3935 info.si_signo = sig; 3936 info.si_errno = 0; 3937 info.si_code = SI_TKILL; 3938 info.si_pid = task_tgid_vnr(current); 3939 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3940 3941 return do_send_specific(tgid, pid, sig, &info); 3942 } 3943 3944 /** 3945 * sys_tgkill - send signal to one specific thread 3946 * @tgid: the thread group ID of the thread 3947 * @pid: the PID of the thread 3948 * @sig: signal to be sent 3949 * 3950 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3951 * exists but it's not belonging to the target process anymore. This 3952 * method solves the problem of threads exiting and PIDs getting reused. 3953 */ 3954 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3955 { 3956 /* This is only valid for single tasks */ 3957 if (pid <= 0 || tgid <= 0) 3958 return -EINVAL; 3959 3960 return do_tkill(tgid, pid, sig); 3961 } 3962 3963 /** 3964 * sys_tkill - send signal to one specific task 3965 * @pid: the PID of the task 3966 * @sig: signal to be sent 3967 * 3968 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3969 */ 3970 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3971 { 3972 /* This is only valid for single tasks */ 3973 if (pid <= 0) 3974 return -EINVAL; 3975 3976 return do_tkill(0, pid, sig); 3977 } 3978 3979 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 3980 { 3981 /* Not even root can pretend to send signals from the kernel. 3982 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3983 */ 3984 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3985 (task_pid_vnr(current) != pid)) 3986 return -EPERM; 3987 3988 /* POSIX.1b doesn't mention process groups. */ 3989 return kill_proc_info(sig, info, pid); 3990 } 3991 3992 /** 3993 * sys_rt_sigqueueinfo - send signal information to a signal 3994 * @pid: the PID of the thread 3995 * @sig: signal to be sent 3996 * @uinfo: signal info to be sent 3997 */ 3998 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3999 siginfo_t __user *, uinfo) 4000 { 4001 kernel_siginfo_t info; 4002 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4003 if (unlikely(ret)) 4004 return ret; 4005 return do_rt_sigqueueinfo(pid, sig, &info); 4006 } 4007 4008 #ifdef CONFIG_COMPAT 4009 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4010 compat_pid_t, pid, 4011 int, sig, 4012 struct compat_siginfo __user *, uinfo) 4013 { 4014 kernel_siginfo_t info; 4015 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4016 if (unlikely(ret)) 4017 return ret; 4018 return do_rt_sigqueueinfo(pid, sig, &info); 4019 } 4020 #endif 4021 4022 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4023 { 4024 /* This is only valid for single tasks */ 4025 if (pid <= 0 || tgid <= 0) 4026 return -EINVAL; 4027 4028 /* Not even root can pretend to send signals from the kernel. 4029 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4030 */ 4031 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4032 (task_pid_vnr(current) != pid)) 4033 return -EPERM; 4034 4035 return do_send_specific(tgid, pid, sig, info); 4036 } 4037 4038 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4039 siginfo_t __user *, uinfo) 4040 { 4041 kernel_siginfo_t info; 4042 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4043 if (unlikely(ret)) 4044 return ret; 4045 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4046 } 4047 4048 #ifdef CONFIG_COMPAT 4049 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4050 compat_pid_t, tgid, 4051 compat_pid_t, pid, 4052 int, sig, 4053 struct compat_siginfo __user *, uinfo) 4054 { 4055 kernel_siginfo_t info; 4056 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4057 if (unlikely(ret)) 4058 return ret; 4059 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4060 } 4061 #endif 4062 4063 /* 4064 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4065 */ 4066 void kernel_sigaction(int sig, __sighandler_t action) 4067 { 4068 spin_lock_irq(¤t->sighand->siglock); 4069 current->sighand->action[sig - 1].sa.sa_handler = action; 4070 if (action == SIG_IGN) { 4071 sigset_t mask; 4072 4073 sigemptyset(&mask); 4074 sigaddset(&mask, sig); 4075 4076 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4077 flush_sigqueue_mask(&mask, ¤t->pending); 4078 recalc_sigpending(); 4079 } 4080 spin_unlock_irq(¤t->sighand->siglock); 4081 } 4082 EXPORT_SYMBOL(kernel_sigaction); 4083 4084 void __weak sigaction_compat_abi(struct k_sigaction *act, 4085 struct k_sigaction *oact) 4086 { 4087 } 4088 4089 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4090 { 4091 struct task_struct *p = current, *t; 4092 struct k_sigaction *k; 4093 sigset_t mask; 4094 4095 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4096 return -EINVAL; 4097 4098 k = &p->sighand->action[sig-1]; 4099 4100 spin_lock_irq(&p->sighand->siglock); 4101 if (k->sa.sa_flags & SA_IMMUTABLE) { 4102 spin_unlock_irq(&p->sighand->siglock); 4103 return -EINVAL; 4104 } 4105 if (oact) 4106 *oact = *k; 4107 4108 /* 4109 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4110 * e.g. by having an architecture use the bit in their uapi. 4111 */ 4112 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4113 4114 /* 4115 * Clear unknown flag bits in order to allow userspace to detect missing 4116 * support for flag bits and to allow the kernel to use non-uapi bits 4117 * internally. 4118 */ 4119 if (act) 4120 act->sa.sa_flags &= UAPI_SA_FLAGS; 4121 if (oact) 4122 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4123 4124 sigaction_compat_abi(act, oact); 4125 4126 if (act) { 4127 sigdelsetmask(&act->sa.sa_mask, 4128 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4129 *k = *act; 4130 /* 4131 * POSIX 3.3.1.3: 4132 * "Setting a signal action to SIG_IGN for a signal that is 4133 * pending shall cause the pending signal to be discarded, 4134 * whether or not it is blocked." 4135 * 4136 * "Setting a signal action to SIG_DFL for a signal that is 4137 * pending and whose default action is to ignore the signal 4138 * (for example, SIGCHLD), shall cause the pending signal to 4139 * be discarded, whether or not it is blocked" 4140 */ 4141 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4142 sigemptyset(&mask); 4143 sigaddset(&mask, sig); 4144 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4145 for_each_thread(p, t) 4146 flush_sigqueue_mask(&mask, &t->pending); 4147 } 4148 } 4149 4150 spin_unlock_irq(&p->sighand->siglock); 4151 return 0; 4152 } 4153 4154 #ifdef CONFIG_DYNAMIC_SIGFRAME 4155 static inline void sigaltstack_lock(void) 4156 __acquires(¤t->sighand->siglock) 4157 { 4158 spin_lock_irq(¤t->sighand->siglock); 4159 } 4160 4161 static inline void sigaltstack_unlock(void) 4162 __releases(¤t->sighand->siglock) 4163 { 4164 spin_unlock_irq(¤t->sighand->siglock); 4165 } 4166 #else 4167 static inline void sigaltstack_lock(void) { } 4168 static inline void sigaltstack_unlock(void) { } 4169 #endif 4170 4171 static int 4172 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4173 size_t min_ss_size) 4174 { 4175 struct task_struct *t = current; 4176 int ret = 0; 4177 4178 if (oss) { 4179 memset(oss, 0, sizeof(stack_t)); 4180 oss->ss_sp = (void __user *) t->sas_ss_sp; 4181 oss->ss_size = t->sas_ss_size; 4182 oss->ss_flags = sas_ss_flags(sp) | 4183 (current->sas_ss_flags & SS_FLAG_BITS); 4184 } 4185 4186 if (ss) { 4187 void __user *ss_sp = ss->ss_sp; 4188 size_t ss_size = ss->ss_size; 4189 unsigned ss_flags = ss->ss_flags; 4190 int ss_mode; 4191 4192 if (unlikely(on_sig_stack(sp))) 4193 return -EPERM; 4194 4195 ss_mode = ss_flags & ~SS_FLAG_BITS; 4196 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4197 ss_mode != 0)) 4198 return -EINVAL; 4199 4200 /* 4201 * Return before taking any locks if no actual 4202 * sigaltstack changes were requested. 4203 */ 4204 if (t->sas_ss_sp == (unsigned long)ss_sp && 4205 t->sas_ss_size == ss_size && 4206 t->sas_ss_flags == ss_flags) 4207 return 0; 4208 4209 sigaltstack_lock(); 4210 if (ss_mode == SS_DISABLE) { 4211 ss_size = 0; 4212 ss_sp = NULL; 4213 } else { 4214 if (unlikely(ss_size < min_ss_size)) 4215 ret = -ENOMEM; 4216 if (!sigaltstack_size_valid(ss_size)) 4217 ret = -ENOMEM; 4218 } 4219 if (!ret) { 4220 t->sas_ss_sp = (unsigned long) ss_sp; 4221 t->sas_ss_size = ss_size; 4222 t->sas_ss_flags = ss_flags; 4223 } 4224 sigaltstack_unlock(); 4225 } 4226 return ret; 4227 } 4228 4229 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4230 { 4231 stack_t new, old; 4232 int err; 4233 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4234 return -EFAULT; 4235 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4236 current_user_stack_pointer(), 4237 MINSIGSTKSZ); 4238 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4239 err = -EFAULT; 4240 return err; 4241 } 4242 4243 int restore_altstack(const stack_t __user *uss) 4244 { 4245 stack_t new; 4246 if (copy_from_user(&new, uss, sizeof(stack_t))) 4247 return -EFAULT; 4248 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4249 MINSIGSTKSZ); 4250 /* squash all but EFAULT for now */ 4251 return 0; 4252 } 4253 4254 int __save_altstack(stack_t __user *uss, unsigned long sp) 4255 { 4256 struct task_struct *t = current; 4257 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4258 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4259 __put_user(t->sas_ss_size, &uss->ss_size); 4260 return err; 4261 } 4262 4263 #ifdef CONFIG_COMPAT 4264 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4265 compat_stack_t __user *uoss_ptr) 4266 { 4267 stack_t uss, uoss; 4268 int ret; 4269 4270 if (uss_ptr) { 4271 compat_stack_t uss32; 4272 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4273 return -EFAULT; 4274 uss.ss_sp = compat_ptr(uss32.ss_sp); 4275 uss.ss_flags = uss32.ss_flags; 4276 uss.ss_size = uss32.ss_size; 4277 } 4278 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4279 compat_user_stack_pointer(), 4280 COMPAT_MINSIGSTKSZ); 4281 if (ret >= 0 && uoss_ptr) { 4282 compat_stack_t old; 4283 memset(&old, 0, sizeof(old)); 4284 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4285 old.ss_flags = uoss.ss_flags; 4286 old.ss_size = uoss.ss_size; 4287 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4288 ret = -EFAULT; 4289 } 4290 return ret; 4291 } 4292 4293 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4294 const compat_stack_t __user *, uss_ptr, 4295 compat_stack_t __user *, uoss_ptr) 4296 { 4297 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4298 } 4299 4300 int compat_restore_altstack(const compat_stack_t __user *uss) 4301 { 4302 int err = do_compat_sigaltstack(uss, NULL); 4303 /* squash all but -EFAULT for now */ 4304 return err == -EFAULT ? err : 0; 4305 } 4306 4307 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4308 { 4309 int err; 4310 struct task_struct *t = current; 4311 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4312 &uss->ss_sp) | 4313 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4314 __put_user(t->sas_ss_size, &uss->ss_size); 4315 return err; 4316 } 4317 #endif 4318 4319 #ifdef __ARCH_WANT_SYS_SIGPENDING 4320 4321 /** 4322 * sys_sigpending - examine pending signals 4323 * @uset: where mask of pending signal is returned 4324 */ 4325 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4326 { 4327 sigset_t set; 4328 4329 if (sizeof(old_sigset_t) > sizeof(*uset)) 4330 return -EINVAL; 4331 4332 do_sigpending(&set); 4333 4334 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4335 return -EFAULT; 4336 4337 return 0; 4338 } 4339 4340 #ifdef CONFIG_COMPAT 4341 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4342 { 4343 sigset_t set; 4344 4345 do_sigpending(&set); 4346 4347 return put_user(set.sig[0], set32); 4348 } 4349 #endif 4350 4351 #endif 4352 4353 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4354 /** 4355 * sys_sigprocmask - examine and change blocked signals 4356 * @how: whether to add, remove, or set signals 4357 * @nset: signals to add or remove (if non-null) 4358 * @oset: previous value of signal mask if non-null 4359 * 4360 * Some platforms have their own version with special arguments; 4361 * others support only sys_rt_sigprocmask. 4362 */ 4363 4364 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4365 old_sigset_t __user *, oset) 4366 { 4367 old_sigset_t old_set, new_set; 4368 sigset_t new_blocked; 4369 4370 old_set = current->blocked.sig[0]; 4371 4372 if (nset) { 4373 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4374 return -EFAULT; 4375 4376 new_blocked = current->blocked; 4377 4378 switch (how) { 4379 case SIG_BLOCK: 4380 sigaddsetmask(&new_blocked, new_set); 4381 break; 4382 case SIG_UNBLOCK: 4383 sigdelsetmask(&new_blocked, new_set); 4384 break; 4385 case SIG_SETMASK: 4386 new_blocked.sig[0] = new_set; 4387 break; 4388 default: 4389 return -EINVAL; 4390 } 4391 4392 set_current_blocked(&new_blocked); 4393 } 4394 4395 if (oset) { 4396 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4397 return -EFAULT; 4398 } 4399 4400 return 0; 4401 } 4402 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4403 4404 #ifndef CONFIG_ODD_RT_SIGACTION 4405 /** 4406 * sys_rt_sigaction - alter an action taken by a process 4407 * @sig: signal to be sent 4408 * @act: new sigaction 4409 * @oact: used to save the previous sigaction 4410 * @sigsetsize: size of sigset_t type 4411 */ 4412 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4413 const struct sigaction __user *, act, 4414 struct sigaction __user *, oact, 4415 size_t, sigsetsize) 4416 { 4417 struct k_sigaction new_sa, old_sa; 4418 int ret; 4419 4420 /* XXX: Don't preclude handling different sized sigset_t's. */ 4421 if (sigsetsize != sizeof(sigset_t)) 4422 return -EINVAL; 4423 4424 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4425 return -EFAULT; 4426 4427 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4428 if (ret) 4429 return ret; 4430 4431 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4432 return -EFAULT; 4433 4434 return 0; 4435 } 4436 #ifdef CONFIG_COMPAT 4437 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4438 const struct compat_sigaction __user *, act, 4439 struct compat_sigaction __user *, oact, 4440 compat_size_t, sigsetsize) 4441 { 4442 struct k_sigaction new_ka, old_ka; 4443 #ifdef __ARCH_HAS_SA_RESTORER 4444 compat_uptr_t restorer; 4445 #endif 4446 int ret; 4447 4448 /* XXX: Don't preclude handling different sized sigset_t's. */ 4449 if (sigsetsize != sizeof(compat_sigset_t)) 4450 return -EINVAL; 4451 4452 if (act) { 4453 compat_uptr_t handler; 4454 ret = get_user(handler, &act->sa_handler); 4455 new_ka.sa.sa_handler = compat_ptr(handler); 4456 #ifdef __ARCH_HAS_SA_RESTORER 4457 ret |= get_user(restorer, &act->sa_restorer); 4458 new_ka.sa.sa_restorer = compat_ptr(restorer); 4459 #endif 4460 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4461 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4462 if (ret) 4463 return -EFAULT; 4464 } 4465 4466 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4467 if (!ret && oact) { 4468 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4469 &oact->sa_handler); 4470 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4471 sizeof(oact->sa_mask)); 4472 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4473 #ifdef __ARCH_HAS_SA_RESTORER 4474 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4475 &oact->sa_restorer); 4476 #endif 4477 } 4478 return ret; 4479 } 4480 #endif 4481 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4482 4483 #ifdef CONFIG_OLD_SIGACTION 4484 SYSCALL_DEFINE3(sigaction, int, sig, 4485 const struct old_sigaction __user *, act, 4486 struct old_sigaction __user *, oact) 4487 { 4488 struct k_sigaction new_ka, old_ka; 4489 int ret; 4490 4491 if (act) { 4492 old_sigset_t mask; 4493 if (!access_ok(act, sizeof(*act)) || 4494 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4495 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4496 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4497 __get_user(mask, &act->sa_mask)) 4498 return -EFAULT; 4499 #ifdef __ARCH_HAS_KA_RESTORER 4500 new_ka.ka_restorer = NULL; 4501 #endif 4502 siginitset(&new_ka.sa.sa_mask, mask); 4503 } 4504 4505 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4506 4507 if (!ret && oact) { 4508 if (!access_ok(oact, sizeof(*oact)) || 4509 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4510 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4511 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4512 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4513 return -EFAULT; 4514 } 4515 4516 return ret; 4517 } 4518 #endif 4519 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4520 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4521 const struct compat_old_sigaction __user *, act, 4522 struct compat_old_sigaction __user *, oact) 4523 { 4524 struct k_sigaction new_ka, old_ka; 4525 int ret; 4526 compat_old_sigset_t mask; 4527 compat_uptr_t handler, restorer; 4528 4529 if (act) { 4530 if (!access_ok(act, sizeof(*act)) || 4531 __get_user(handler, &act->sa_handler) || 4532 __get_user(restorer, &act->sa_restorer) || 4533 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4534 __get_user(mask, &act->sa_mask)) 4535 return -EFAULT; 4536 4537 #ifdef __ARCH_HAS_KA_RESTORER 4538 new_ka.ka_restorer = NULL; 4539 #endif 4540 new_ka.sa.sa_handler = compat_ptr(handler); 4541 new_ka.sa.sa_restorer = compat_ptr(restorer); 4542 siginitset(&new_ka.sa.sa_mask, mask); 4543 } 4544 4545 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4546 4547 if (!ret && oact) { 4548 if (!access_ok(oact, sizeof(*oact)) || 4549 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4550 &oact->sa_handler) || 4551 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4552 &oact->sa_restorer) || 4553 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4554 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4555 return -EFAULT; 4556 } 4557 return ret; 4558 } 4559 #endif 4560 4561 #ifdef CONFIG_SGETMASK_SYSCALL 4562 4563 /* 4564 * For backwards compatibility. Functionality superseded by sigprocmask. 4565 */ 4566 SYSCALL_DEFINE0(sgetmask) 4567 { 4568 /* SMP safe */ 4569 return current->blocked.sig[0]; 4570 } 4571 4572 SYSCALL_DEFINE1(ssetmask, int, newmask) 4573 { 4574 int old = current->blocked.sig[0]; 4575 sigset_t newset; 4576 4577 siginitset(&newset, newmask); 4578 set_current_blocked(&newset); 4579 4580 return old; 4581 } 4582 #endif /* CONFIG_SGETMASK_SYSCALL */ 4583 4584 #ifdef __ARCH_WANT_SYS_SIGNAL 4585 /* 4586 * For backwards compatibility. Functionality superseded by sigaction. 4587 */ 4588 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4589 { 4590 struct k_sigaction new_sa, old_sa; 4591 int ret; 4592 4593 new_sa.sa.sa_handler = handler; 4594 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4595 sigemptyset(&new_sa.sa.sa_mask); 4596 4597 ret = do_sigaction(sig, &new_sa, &old_sa); 4598 4599 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4600 } 4601 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4602 4603 #ifdef __ARCH_WANT_SYS_PAUSE 4604 4605 SYSCALL_DEFINE0(pause) 4606 { 4607 while (!signal_pending(current)) { 4608 __set_current_state(TASK_INTERRUPTIBLE); 4609 schedule(); 4610 } 4611 return -ERESTARTNOHAND; 4612 } 4613 4614 #endif 4615 4616 static int sigsuspend(sigset_t *set) 4617 { 4618 current->saved_sigmask = current->blocked; 4619 set_current_blocked(set); 4620 4621 while (!signal_pending(current)) { 4622 __set_current_state(TASK_INTERRUPTIBLE); 4623 schedule(); 4624 } 4625 set_restore_sigmask(); 4626 return -ERESTARTNOHAND; 4627 } 4628 4629 /** 4630 * sys_rt_sigsuspend - replace the signal mask for a value with the 4631 * @unewset value until a signal is received 4632 * @unewset: new signal mask value 4633 * @sigsetsize: size of sigset_t type 4634 */ 4635 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4636 { 4637 sigset_t newset; 4638 4639 /* XXX: Don't preclude handling different sized sigset_t's. */ 4640 if (sigsetsize != sizeof(sigset_t)) 4641 return -EINVAL; 4642 4643 if (copy_from_user(&newset, unewset, sizeof(newset))) 4644 return -EFAULT; 4645 return sigsuspend(&newset); 4646 } 4647 4648 #ifdef CONFIG_COMPAT 4649 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4650 { 4651 sigset_t newset; 4652 4653 /* XXX: Don't preclude handling different sized sigset_t's. */ 4654 if (sigsetsize != sizeof(sigset_t)) 4655 return -EINVAL; 4656 4657 if (get_compat_sigset(&newset, unewset)) 4658 return -EFAULT; 4659 return sigsuspend(&newset); 4660 } 4661 #endif 4662 4663 #ifdef CONFIG_OLD_SIGSUSPEND 4664 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4665 { 4666 sigset_t blocked; 4667 siginitset(&blocked, mask); 4668 return sigsuspend(&blocked); 4669 } 4670 #endif 4671 #ifdef CONFIG_OLD_SIGSUSPEND3 4672 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4673 { 4674 sigset_t blocked; 4675 siginitset(&blocked, mask); 4676 return sigsuspend(&blocked); 4677 } 4678 #endif 4679 4680 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4681 { 4682 return NULL; 4683 } 4684 4685 static inline void siginfo_buildtime_checks(void) 4686 { 4687 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4688 4689 /* Verify the offsets in the two siginfos match */ 4690 #define CHECK_OFFSET(field) \ 4691 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4692 4693 /* kill */ 4694 CHECK_OFFSET(si_pid); 4695 CHECK_OFFSET(si_uid); 4696 4697 /* timer */ 4698 CHECK_OFFSET(si_tid); 4699 CHECK_OFFSET(si_overrun); 4700 CHECK_OFFSET(si_value); 4701 4702 /* rt */ 4703 CHECK_OFFSET(si_pid); 4704 CHECK_OFFSET(si_uid); 4705 CHECK_OFFSET(si_value); 4706 4707 /* sigchld */ 4708 CHECK_OFFSET(si_pid); 4709 CHECK_OFFSET(si_uid); 4710 CHECK_OFFSET(si_status); 4711 CHECK_OFFSET(si_utime); 4712 CHECK_OFFSET(si_stime); 4713 4714 /* sigfault */ 4715 CHECK_OFFSET(si_addr); 4716 CHECK_OFFSET(si_trapno); 4717 CHECK_OFFSET(si_addr_lsb); 4718 CHECK_OFFSET(si_lower); 4719 CHECK_OFFSET(si_upper); 4720 CHECK_OFFSET(si_pkey); 4721 CHECK_OFFSET(si_perf_data); 4722 CHECK_OFFSET(si_perf_type); 4723 4724 /* sigpoll */ 4725 CHECK_OFFSET(si_band); 4726 CHECK_OFFSET(si_fd); 4727 4728 /* sigsys */ 4729 CHECK_OFFSET(si_call_addr); 4730 CHECK_OFFSET(si_syscall); 4731 CHECK_OFFSET(si_arch); 4732 #undef CHECK_OFFSET 4733 4734 /* usb asyncio */ 4735 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4736 offsetof(struct siginfo, si_addr)); 4737 if (sizeof(int) == sizeof(void __user *)) { 4738 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4739 sizeof(void __user *)); 4740 } else { 4741 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4742 sizeof_field(struct siginfo, si_uid)) != 4743 sizeof(void __user *)); 4744 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4745 offsetof(struct siginfo, si_uid)); 4746 } 4747 #ifdef CONFIG_COMPAT 4748 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4749 offsetof(struct compat_siginfo, si_addr)); 4750 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4751 sizeof(compat_uptr_t)); 4752 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4753 sizeof_field(struct siginfo, si_pid)); 4754 #endif 4755 } 4756 4757 void __init signals_init(void) 4758 { 4759 siginfo_buildtime_checks(); 4760 4761 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4762 } 4763 4764 #ifdef CONFIG_KGDB_KDB 4765 #include <linux/kdb.h> 4766 /* 4767 * kdb_send_sig - Allows kdb to send signals without exposing 4768 * signal internals. This function checks if the required locks are 4769 * available before calling the main signal code, to avoid kdb 4770 * deadlocks. 4771 */ 4772 void kdb_send_sig(struct task_struct *t, int sig) 4773 { 4774 static struct task_struct *kdb_prev_t; 4775 int new_t, ret; 4776 if (!spin_trylock(&t->sighand->siglock)) { 4777 kdb_printf("Can't do kill command now.\n" 4778 "The sigmask lock is held somewhere else in " 4779 "kernel, try again later\n"); 4780 return; 4781 } 4782 new_t = kdb_prev_t != t; 4783 kdb_prev_t = t; 4784 if (!task_is_running(t) && new_t) { 4785 spin_unlock(&t->sighand->siglock); 4786 kdb_printf("Process is not RUNNING, sending a signal from " 4787 "kdb risks deadlock\n" 4788 "on the run queue locks. " 4789 "The signal has _not_ been sent.\n" 4790 "Reissue the kill command if you want to risk " 4791 "the deadlock.\n"); 4792 return; 4793 } 4794 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4795 spin_unlock(&t->sighand->siglock); 4796 if (ret) 4797 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4798 sig, t->pid); 4799 else 4800 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4801 } 4802 #endif /* CONFIG_KGDB_KDB */ 4803