xref: /openbmc/linux/kernel/signal.c (revision d0b73b48)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/signal.h>
37 
38 #include <asm/param.h>
39 #include <asm/uaccess.h>
40 #include <asm/unistd.h>
41 #include <asm/siginfo.h>
42 #include <asm/cacheflush.h>
43 #include "audit.h"	/* audit_signal_info() */
44 
45 /*
46  * SLAB caches for signal bits.
47  */
48 
49 static struct kmem_cache *sigqueue_cachep;
50 
51 int print_fatal_signals __read_mostly;
52 
53 static void __user *sig_handler(struct task_struct *t, int sig)
54 {
55 	return t->sighand->action[sig - 1].sa.sa_handler;
56 }
57 
58 static int sig_handler_ignored(void __user *handler, int sig)
59 {
60 	/* Is it explicitly or implicitly ignored? */
61 	return handler == SIG_IGN ||
62 		(handler == SIG_DFL && sig_kernel_ignore(sig));
63 }
64 
65 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
66 {
67 	void __user *handler;
68 
69 	handler = sig_handler(t, sig);
70 
71 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
72 			handler == SIG_DFL && !force)
73 		return 1;
74 
75 	return sig_handler_ignored(handler, sig);
76 }
77 
78 static int sig_ignored(struct task_struct *t, int sig, bool force)
79 {
80 	/*
81 	 * Blocked signals are never ignored, since the
82 	 * signal handler may change by the time it is
83 	 * unblocked.
84 	 */
85 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
86 		return 0;
87 
88 	if (!sig_task_ignored(t, sig, force))
89 		return 0;
90 
91 	/*
92 	 * Tracers may want to know about even ignored signals.
93 	 */
94 	return !t->ptrace;
95 }
96 
97 /*
98  * Re-calculate pending state from the set of locally pending
99  * signals, globally pending signals, and blocked signals.
100  */
101 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
102 {
103 	unsigned long ready;
104 	long i;
105 
106 	switch (_NSIG_WORDS) {
107 	default:
108 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
109 			ready |= signal->sig[i] &~ blocked->sig[i];
110 		break;
111 
112 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
113 		ready |= signal->sig[2] &~ blocked->sig[2];
114 		ready |= signal->sig[1] &~ blocked->sig[1];
115 		ready |= signal->sig[0] &~ blocked->sig[0];
116 		break;
117 
118 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
119 		ready |= signal->sig[0] &~ blocked->sig[0];
120 		break;
121 
122 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
123 	}
124 	return ready !=	0;
125 }
126 
127 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
128 
129 static int recalc_sigpending_tsk(struct task_struct *t)
130 {
131 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
132 	    PENDING(&t->pending, &t->blocked) ||
133 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
134 		set_tsk_thread_flag(t, TIF_SIGPENDING);
135 		return 1;
136 	}
137 	/*
138 	 * We must never clear the flag in another thread, or in current
139 	 * when it's possible the current syscall is returning -ERESTART*.
140 	 * So we don't clear it here, and only callers who know they should do.
141 	 */
142 	return 0;
143 }
144 
145 /*
146  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
147  * This is superfluous when called on current, the wakeup is a harmless no-op.
148  */
149 void recalc_sigpending_and_wake(struct task_struct *t)
150 {
151 	if (recalc_sigpending_tsk(t))
152 		signal_wake_up(t, 0);
153 }
154 
155 void recalc_sigpending(void)
156 {
157 	if (!recalc_sigpending_tsk(current) && !freezing(current))
158 		clear_thread_flag(TIF_SIGPENDING);
159 
160 }
161 
162 /* Given the mask, find the first available signal that should be serviced. */
163 
164 #define SYNCHRONOUS_MASK \
165 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
166 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
167 
168 int next_signal(struct sigpending *pending, sigset_t *mask)
169 {
170 	unsigned long i, *s, *m, x;
171 	int sig = 0;
172 
173 	s = pending->signal.sig;
174 	m = mask->sig;
175 
176 	/*
177 	 * Handle the first word specially: it contains the
178 	 * synchronous signals that need to be dequeued first.
179 	 */
180 	x = *s &~ *m;
181 	if (x) {
182 		if (x & SYNCHRONOUS_MASK)
183 			x &= SYNCHRONOUS_MASK;
184 		sig = ffz(~x) + 1;
185 		return sig;
186 	}
187 
188 	switch (_NSIG_WORDS) {
189 	default:
190 		for (i = 1; i < _NSIG_WORDS; ++i) {
191 			x = *++s &~ *++m;
192 			if (!x)
193 				continue;
194 			sig = ffz(~x) + i*_NSIG_BPW + 1;
195 			break;
196 		}
197 		break;
198 
199 	case 2:
200 		x = s[1] &~ m[1];
201 		if (!x)
202 			break;
203 		sig = ffz(~x) + _NSIG_BPW + 1;
204 		break;
205 
206 	case 1:
207 		/* Nothing to do */
208 		break;
209 	}
210 
211 	return sig;
212 }
213 
214 static inline void print_dropped_signal(int sig)
215 {
216 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
217 
218 	if (!print_fatal_signals)
219 		return;
220 
221 	if (!__ratelimit(&ratelimit_state))
222 		return;
223 
224 	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
225 				current->comm, current->pid, sig);
226 }
227 
228 /**
229  * task_set_jobctl_pending - set jobctl pending bits
230  * @task: target task
231  * @mask: pending bits to set
232  *
233  * Clear @mask from @task->jobctl.  @mask must be subset of
234  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
235  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
236  * cleared.  If @task is already being killed or exiting, this function
237  * becomes noop.
238  *
239  * CONTEXT:
240  * Must be called with @task->sighand->siglock held.
241  *
242  * RETURNS:
243  * %true if @mask is set, %false if made noop because @task was dying.
244  */
245 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
246 {
247 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
248 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
249 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
250 
251 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
252 		return false;
253 
254 	if (mask & JOBCTL_STOP_SIGMASK)
255 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
256 
257 	task->jobctl |= mask;
258 	return true;
259 }
260 
261 /**
262  * task_clear_jobctl_trapping - clear jobctl trapping bit
263  * @task: target task
264  *
265  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
266  * Clear it and wake up the ptracer.  Note that we don't need any further
267  * locking.  @task->siglock guarantees that @task->parent points to the
268  * ptracer.
269  *
270  * CONTEXT:
271  * Must be called with @task->sighand->siglock held.
272  */
273 void task_clear_jobctl_trapping(struct task_struct *task)
274 {
275 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
276 		task->jobctl &= ~JOBCTL_TRAPPING;
277 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
278 	}
279 }
280 
281 /**
282  * task_clear_jobctl_pending - clear jobctl pending bits
283  * @task: target task
284  * @mask: pending bits to clear
285  *
286  * Clear @mask from @task->jobctl.  @mask must be subset of
287  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
288  * STOP bits are cleared together.
289  *
290  * If clearing of @mask leaves no stop or trap pending, this function calls
291  * task_clear_jobctl_trapping().
292  *
293  * CONTEXT:
294  * Must be called with @task->sighand->siglock held.
295  */
296 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
297 {
298 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
299 
300 	if (mask & JOBCTL_STOP_PENDING)
301 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
302 
303 	task->jobctl &= ~mask;
304 
305 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
306 		task_clear_jobctl_trapping(task);
307 }
308 
309 /**
310  * task_participate_group_stop - participate in a group stop
311  * @task: task participating in a group stop
312  *
313  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
314  * Group stop states are cleared and the group stop count is consumed if
315  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
316  * stop, the appropriate %SIGNAL_* flags are set.
317  *
318  * CONTEXT:
319  * Must be called with @task->sighand->siglock held.
320  *
321  * RETURNS:
322  * %true if group stop completion should be notified to the parent, %false
323  * otherwise.
324  */
325 static bool task_participate_group_stop(struct task_struct *task)
326 {
327 	struct signal_struct *sig = task->signal;
328 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
329 
330 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
331 
332 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
333 
334 	if (!consume)
335 		return false;
336 
337 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
338 		sig->group_stop_count--;
339 
340 	/*
341 	 * Tell the caller to notify completion iff we are entering into a
342 	 * fresh group stop.  Read comment in do_signal_stop() for details.
343 	 */
344 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
345 		sig->flags = SIGNAL_STOP_STOPPED;
346 		return true;
347 	}
348 	return false;
349 }
350 
351 /*
352  * allocate a new signal queue record
353  * - this may be called without locks if and only if t == current, otherwise an
354  *   appropriate lock must be held to stop the target task from exiting
355  */
356 static struct sigqueue *
357 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
358 {
359 	struct sigqueue *q = NULL;
360 	struct user_struct *user;
361 
362 	/*
363 	 * Protect access to @t credentials. This can go away when all
364 	 * callers hold rcu read lock.
365 	 */
366 	rcu_read_lock();
367 	user = get_uid(__task_cred(t)->user);
368 	atomic_inc(&user->sigpending);
369 	rcu_read_unlock();
370 
371 	if (override_rlimit ||
372 	    atomic_read(&user->sigpending) <=
373 			task_rlimit(t, RLIMIT_SIGPENDING)) {
374 		q = kmem_cache_alloc(sigqueue_cachep, flags);
375 	} else {
376 		print_dropped_signal(sig);
377 	}
378 
379 	if (unlikely(q == NULL)) {
380 		atomic_dec(&user->sigpending);
381 		free_uid(user);
382 	} else {
383 		INIT_LIST_HEAD(&q->list);
384 		q->flags = 0;
385 		q->user = user;
386 	}
387 
388 	return q;
389 }
390 
391 static void __sigqueue_free(struct sigqueue *q)
392 {
393 	if (q->flags & SIGQUEUE_PREALLOC)
394 		return;
395 	atomic_dec(&q->user->sigpending);
396 	free_uid(q->user);
397 	kmem_cache_free(sigqueue_cachep, q);
398 }
399 
400 void flush_sigqueue(struct sigpending *queue)
401 {
402 	struct sigqueue *q;
403 
404 	sigemptyset(&queue->signal);
405 	while (!list_empty(&queue->list)) {
406 		q = list_entry(queue->list.next, struct sigqueue , list);
407 		list_del_init(&q->list);
408 		__sigqueue_free(q);
409 	}
410 }
411 
412 /*
413  * Flush all pending signals for a task.
414  */
415 void __flush_signals(struct task_struct *t)
416 {
417 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
418 	flush_sigqueue(&t->pending);
419 	flush_sigqueue(&t->signal->shared_pending);
420 }
421 
422 void flush_signals(struct task_struct *t)
423 {
424 	unsigned long flags;
425 
426 	spin_lock_irqsave(&t->sighand->siglock, flags);
427 	__flush_signals(t);
428 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
429 }
430 
431 static void __flush_itimer_signals(struct sigpending *pending)
432 {
433 	sigset_t signal, retain;
434 	struct sigqueue *q, *n;
435 
436 	signal = pending->signal;
437 	sigemptyset(&retain);
438 
439 	list_for_each_entry_safe(q, n, &pending->list, list) {
440 		int sig = q->info.si_signo;
441 
442 		if (likely(q->info.si_code != SI_TIMER)) {
443 			sigaddset(&retain, sig);
444 		} else {
445 			sigdelset(&signal, sig);
446 			list_del_init(&q->list);
447 			__sigqueue_free(q);
448 		}
449 	}
450 
451 	sigorsets(&pending->signal, &signal, &retain);
452 }
453 
454 void flush_itimer_signals(void)
455 {
456 	struct task_struct *tsk = current;
457 	unsigned long flags;
458 
459 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
460 	__flush_itimer_signals(&tsk->pending);
461 	__flush_itimer_signals(&tsk->signal->shared_pending);
462 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
463 }
464 
465 void ignore_signals(struct task_struct *t)
466 {
467 	int i;
468 
469 	for (i = 0; i < _NSIG; ++i)
470 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
471 
472 	flush_signals(t);
473 }
474 
475 /*
476  * Flush all handlers for a task.
477  */
478 
479 void
480 flush_signal_handlers(struct task_struct *t, int force_default)
481 {
482 	int i;
483 	struct k_sigaction *ka = &t->sighand->action[0];
484 	for (i = _NSIG ; i != 0 ; i--) {
485 		if (force_default || ka->sa.sa_handler != SIG_IGN)
486 			ka->sa.sa_handler = SIG_DFL;
487 		ka->sa.sa_flags = 0;
488 		sigemptyset(&ka->sa.sa_mask);
489 		ka++;
490 	}
491 }
492 
493 int unhandled_signal(struct task_struct *tsk, int sig)
494 {
495 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
496 	if (is_global_init(tsk))
497 		return 1;
498 	if (handler != SIG_IGN && handler != SIG_DFL)
499 		return 0;
500 	/* if ptraced, let the tracer determine */
501 	return !tsk->ptrace;
502 }
503 
504 /*
505  * Notify the system that a driver wants to block all signals for this
506  * process, and wants to be notified if any signals at all were to be
507  * sent/acted upon.  If the notifier routine returns non-zero, then the
508  * signal will be acted upon after all.  If the notifier routine returns 0,
509  * then then signal will be blocked.  Only one block per process is
510  * allowed.  priv is a pointer to private data that the notifier routine
511  * can use to determine if the signal should be blocked or not.
512  */
513 void
514 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
515 {
516 	unsigned long flags;
517 
518 	spin_lock_irqsave(&current->sighand->siglock, flags);
519 	current->notifier_mask = mask;
520 	current->notifier_data = priv;
521 	current->notifier = notifier;
522 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
523 }
524 
525 /* Notify the system that blocking has ended. */
526 
527 void
528 unblock_all_signals(void)
529 {
530 	unsigned long flags;
531 
532 	spin_lock_irqsave(&current->sighand->siglock, flags);
533 	current->notifier = NULL;
534 	current->notifier_data = NULL;
535 	recalc_sigpending();
536 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
537 }
538 
539 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
540 {
541 	struct sigqueue *q, *first = NULL;
542 
543 	/*
544 	 * Collect the siginfo appropriate to this signal.  Check if
545 	 * there is another siginfo for the same signal.
546 	*/
547 	list_for_each_entry(q, &list->list, list) {
548 		if (q->info.si_signo == sig) {
549 			if (first)
550 				goto still_pending;
551 			first = q;
552 		}
553 	}
554 
555 	sigdelset(&list->signal, sig);
556 
557 	if (first) {
558 still_pending:
559 		list_del_init(&first->list);
560 		copy_siginfo(info, &first->info);
561 		__sigqueue_free(first);
562 	} else {
563 		/*
564 		 * Ok, it wasn't in the queue.  This must be
565 		 * a fast-pathed signal or we must have been
566 		 * out of queue space.  So zero out the info.
567 		 */
568 		info->si_signo = sig;
569 		info->si_errno = 0;
570 		info->si_code = SI_USER;
571 		info->si_pid = 0;
572 		info->si_uid = 0;
573 	}
574 }
575 
576 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
577 			siginfo_t *info)
578 {
579 	int sig = next_signal(pending, mask);
580 
581 	if (sig) {
582 		if (current->notifier) {
583 			if (sigismember(current->notifier_mask, sig)) {
584 				if (!(current->notifier)(current->notifier_data)) {
585 					clear_thread_flag(TIF_SIGPENDING);
586 					return 0;
587 				}
588 			}
589 		}
590 
591 		collect_signal(sig, pending, info);
592 	}
593 
594 	return sig;
595 }
596 
597 /*
598  * Dequeue a signal and return the element to the caller, which is
599  * expected to free it.
600  *
601  * All callers have to hold the siglock.
602  */
603 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
604 {
605 	int signr;
606 
607 	/* We only dequeue private signals from ourselves, we don't let
608 	 * signalfd steal them
609 	 */
610 	signr = __dequeue_signal(&tsk->pending, mask, info);
611 	if (!signr) {
612 		signr = __dequeue_signal(&tsk->signal->shared_pending,
613 					 mask, info);
614 		/*
615 		 * itimer signal ?
616 		 *
617 		 * itimers are process shared and we restart periodic
618 		 * itimers in the signal delivery path to prevent DoS
619 		 * attacks in the high resolution timer case. This is
620 		 * compliant with the old way of self-restarting
621 		 * itimers, as the SIGALRM is a legacy signal and only
622 		 * queued once. Changing the restart behaviour to
623 		 * restart the timer in the signal dequeue path is
624 		 * reducing the timer noise on heavy loaded !highres
625 		 * systems too.
626 		 */
627 		if (unlikely(signr == SIGALRM)) {
628 			struct hrtimer *tmr = &tsk->signal->real_timer;
629 
630 			if (!hrtimer_is_queued(tmr) &&
631 			    tsk->signal->it_real_incr.tv64 != 0) {
632 				hrtimer_forward(tmr, tmr->base->get_time(),
633 						tsk->signal->it_real_incr);
634 				hrtimer_restart(tmr);
635 			}
636 		}
637 	}
638 
639 	recalc_sigpending();
640 	if (!signr)
641 		return 0;
642 
643 	if (unlikely(sig_kernel_stop(signr))) {
644 		/*
645 		 * Set a marker that we have dequeued a stop signal.  Our
646 		 * caller might release the siglock and then the pending
647 		 * stop signal it is about to process is no longer in the
648 		 * pending bitmasks, but must still be cleared by a SIGCONT
649 		 * (and overruled by a SIGKILL).  So those cases clear this
650 		 * shared flag after we've set it.  Note that this flag may
651 		 * remain set after the signal we return is ignored or
652 		 * handled.  That doesn't matter because its only purpose
653 		 * is to alert stop-signal processing code when another
654 		 * processor has come along and cleared the flag.
655 		 */
656 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
657 	}
658 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
659 		/*
660 		 * Release the siglock to ensure proper locking order
661 		 * of timer locks outside of siglocks.  Note, we leave
662 		 * irqs disabled here, since the posix-timers code is
663 		 * about to disable them again anyway.
664 		 */
665 		spin_unlock(&tsk->sighand->siglock);
666 		do_schedule_next_timer(info);
667 		spin_lock(&tsk->sighand->siglock);
668 	}
669 	return signr;
670 }
671 
672 /*
673  * Tell a process that it has a new active signal..
674  *
675  * NOTE! we rely on the previous spin_lock to
676  * lock interrupts for us! We can only be called with
677  * "siglock" held, and the local interrupt must
678  * have been disabled when that got acquired!
679  *
680  * No need to set need_resched since signal event passing
681  * goes through ->blocked
682  */
683 void signal_wake_up_state(struct task_struct *t, unsigned int state)
684 {
685 	set_tsk_thread_flag(t, TIF_SIGPENDING);
686 	/*
687 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
688 	 * case. We don't check t->state here because there is a race with it
689 	 * executing another processor and just now entering stopped state.
690 	 * By using wake_up_state, we ensure the process will wake up and
691 	 * handle its death signal.
692 	 */
693 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
694 		kick_process(t);
695 }
696 
697 /*
698  * Remove signals in mask from the pending set and queue.
699  * Returns 1 if any signals were found.
700  *
701  * All callers must be holding the siglock.
702  *
703  * This version takes a sigset mask and looks at all signals,
704  * not just those in the first mask word.
705  */
706 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
707 {
708 	struct sigqueue *q, *n;
709 	sigset_t m;
710 
711 	sigandsets(&m, mask, &s->signal);
712 	if (sigisemptyset(&m))
713 		return 0;
714 
715 	sigandnsets(&s->signal, &s->signal, mask);
716 	list_for_each_entry_safe(q, n, &s->list, list) {
717 		if (sigismember(mask, q->info.si_signo)) {
718 			list_del_init(&q->list);
719 			__sigqueue_free(q);
720 		}
721 	}
722 	return 1;
723 }
724 /*
725  * Remove signals in mask from the pending set and queue.
726  * Returns 1 if any signals were found.
727  *
728  * All callers must be holding the siglock.
729  */
730 static int rm_from_queue(unsigned long mask, struct sigpending *s)
731 {
732 	struct sigqueue *q, *n;
733 
734 	if (!sigtestsetmask(&s->signal, mask))
735 		return 0;
736 
737 	sigdelsetmask(&s->signal, mask);
738 	list_for_each_entry_safe(q, n, &s->list, list) {
739 		if (q->info.si_signo < SIGRTMIN &&
740 		    (mask & sigmask(q->info.si_signo))) {
741 			list_del_init(&q->list);
742 			__sigqueue_free(q);
743 		}
744 	}
745 	return 1;
746 }
747 
748 static inline int is_si_special(const struct siginfo *info)
749 {
750 	return info <= SEND_SIG_FORCED;
751 }
752 
753 static inline bool si_fromuser(const struct siginfo *info)
754 {
755 	return info == SEND_SIG_NOINFO ||
756 		(!is_si_special(info) && SI_FROMUSER(info));
757 }
758 
759 /*
760  * called with RCU read lock from check_kill_permission()
761  */
762 static int kill_ok_by_cred(struct task_struct *t)
763 {
764 	const struct cred *cred = current_cred();
765 	const struct cred *tcred = __task_cred(t);
766 
767 	if (uid_eq(cred->euid, tcred->suid) ||
768 	    uid_eq(cred->euid, tcred->uid)  ||
769 	    uid_eq(cred->uid,  tcred->suid) ||
770 	    uid_eq(cred->uid,  tcred->uid))
771 		return 1;
772 
773 	if (ns_capable(tcred->user_ns, CAP_KILL))
774 		return 1;
775 
776 	return 0;
777 }
778 
779 /*
780  * Bad permissions for sending the signal
781  * - the caller must hold the RCU read lock
782  */
783 static int check_kill_permission(int sig, struct siginfo *info,
784 				 struct task_struct *t)
785 {
786 	struct pid *sid;
787 	int error;
788 
789 	if (!valid_signal(sig))
790 		return -EINVAL;
791 
792 	if (!si_fromuser(info))
793 		return 0;
794 
795 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
796 	if (error)
797 		return error;
798 
799 	if (!same_thread_group(current, t) &&
800 	    !kill_ok_by_cred(t)) {
801 		switch (sig) {
802 		case SIGCONT:
803 			sid = task_session(t);
804 			/*
805 			 * We don't return the error if sid == NULL. The
806 			 * task was unhashed, the caller must notice this.
807 			 */
808 			if (!sid || sid == task_session(current))
809 				break;
810 		default:
811 			return -EPERM;
812 		}
813 	}
814 
815 	return security_task_kill(t, info, sig, 0);
816 }
817 
818 /**
819  * ptrace_trap_notify - schedule trap to notify ptracer
820  * @t: tracee wanting to notify tracer
821  *
822  * This function schedules sticky ptrace trap which is cleared on the next
823  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
824  * ptracer.
825  *
826  * If @t is running, STOP trap will be taken.  If trapped for STOP and
827  * ptracer is listening for events, tracee is woken up so that it can
828  * re-trap for the new event.  If trapped otherwise, STOP trap will be
829  * eventually taken without returning to userland after the existing traps
830  * are finished by PTRACE_CONT.
831  *
832  * CONTEXT:
833  * Must be called with @task->sighand->siglock held.
834  */
835 static void ptrace_trap_notify(struct task_struct *t)
836 {
837 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
838 	assert_spin_locked(&t->sighand->siglock);
839 
840 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
841 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
842 }
843 
844 /*
845  * Handle magic process-wide effects of stop/continue signals. Unlike
846  * the signal actions, these happen immediately at signal-generation
847  * time regardless of blocking, ignoring, or handling.  This does the
848  * actual continuing for SIGCONT, but not the actual stopping for stop
849  * signals. The process stop is done as a signal action for SIG_DFL.
850  *
851  * Returns true if the signal should be actually delivered, otherwise
852  * it should be dropped.
853  */
854 static int prepare_signal(int sig, struct task_struct *p, bool force)
855 {
856 	struct signal_struct *signal = p->signal;
857 	struct task_struct *t;
858 
859 	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
860 		/*
861 		 * The process is in the middle of dying, nothing to do.
862 		 */
863 	} else if (sig_kernel_stop(sig)) {
864 		/*
865 		 * This is a stop signal.  Remove SIGCONT from all queues.
866 		 */
867 		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
868 		t = p;
869 		do {
870 			rm_from_queue(sigmask(SIGCONT), &t->pending);
871 		} while_each_thread(p, t);
872 	} else if (sig == SIGCONT) {
873 		unsigned int why;
874 		/*
875 		 * Remove all stop signals from all queues, wake all threads.
876 		 */
877 		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
878 		t = p;
879 		do {
880 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
881 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
882 			if (likely(!(t->ptrace & PT_SEIZED)))
883 				wake_up_state(t, __TASK_STOPPED);
884 			else
885 				ptrace_trap_notify(t);
886 		} while_each_thread(p, t);
887 
888 		/*
889 		 * Notify the parent with CLD_CONTINUED if we were stopped.
890 		 *
891 		 * If we were in the middle of a group stop, we pretend it
892 		 * was already finished, and then continued. Since SIGCHLD
893 		 * doesn't queue we report only CLD_STOPPED, as if the next
894 		 * CLD_CONTINUED was dropped.
895 		 */
896 		why = 0;
897 		if (signal->flags & SIGNAL_STOP_STOPPED)
898 			why |= SIGNAL_CLD_CONTINUED;
899 		else if (signal->group_stop_count)
900 			why |= SIGNAL_CLD_STOPPED;
901 
902 		if (why) {
903 			/*
904 			 * The first thread which returns from do_signal_stop()
905 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
906 			 * notify its parent. See get_signal_to_deliver().
907 			 */
908 			signal->flags = why | SIGNAL_STOP_CONTINUED;
909 			signal->group_stop_count = 0;
910 			signal->group_exit_code = 0;
911 		}
912 	}
913 
914 	return !sig_ignored(p, sig, force);
915 }
916 
917 /*
918  * Test if P wants to take SIG.  After we've checked all threads with this,
919  * it's equivalent to finding no threads not blocking SIG.  Any threads not
920  * blocking SIG were ruled out because they are not running and already
921  * have pending signals.  Such threads will dequeue from the shared queue
922  * as soon as they're available, so putting the signal on the shared queue
923  * will be equivalent to sending it to one such thread.
924  */
925 static inline int wants_signal(int sig, struct task_struct *p)
926 {
927 	if (sigismember(&p->blocked, sig))
928 		return 0;
929 	if (p->flags & PF_EXITING)
930 		return 0;
931 	if (sig == SIGKILL)
932 		return 1;
933 	if (task_is_stopped_or_traced(p))
934 		return 0;
935 	return task_curr(p) || !signal_pending(p);
936 }
937 
938 static void complete_signal(int sig, struct task_struct *p, int group)
939 {
940 	struct signal_struct *signal = p->signal;
941 	struct task_struct *t;
942 
943 	/*
944 	 * Now find a thread we can wake up to take the signal off the queue.
945 	 *
946 	 * If the main thread wants the signal, it gets first crack.
947 	 * Probably the least surprising to the average bear.
948 	 */
949 	if (wants_signal(sig, p))
950 		t = p;
951 	else if (!group || thread_group_empty(p))
952 		/*
953 		 * There is just one thread and it does not need to be woken.
954 		 * It will dequeue unblocked signals before it runs again.
955 		 */
956 		return;
957 	else {
958 		/*
959 		 * Otherwise try to find a suitable thread.
960 		 */
961 		t = signal->curr_target;
962 		while (!wants_signal(sig, t)) {
963 			t = next_thread(t);
964 			if (t == signal->curr_target)
965 				/*
966 				 * No thread needs to be woken.
967 				 * Any eligible threads will see
968 				 * the signal in the queue soon.
969 				 */
970 				return;
971 		}
972 		signal->curr_target = t;
973 	}
974 
975 	/*
976 	 * Found a killable thread.  If the signal will be fatal,
977 	 * then start taking the whole group down immediately.
978 	 */
979 	if (sig_fatal(p, sig) &&
980 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
981 	    !sigismember(&t->real_blocked, sig) &&
982 	    (sig == SIGKILL || !t->ptrace)) {
983 		/*
984 		 * This signal will be fatal to the whole group.
985 		 */
986 		if (!sig_kernel_coredump(sig)) {
987 			/*
988 			 * Start a group exit and wake everybody up.
989 			 * This way we don't have other threads
990 			 * running and doing things after a slower
991 			 * thread has the fatal signal pending.
992 			 */
993 			signal->flags = SIGNAL_GROUP_EXIT;
994 			signal->group_exit_code = sig;
995 			signal->group_stop_count = 0;
996 			t = p;
997 			do {
998 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
999 				sigaddset(&t->pending.signal, SIGKILL);
1000 				signal_wake_up(t, 1);
1001 			} while_each_thread(p, t);
1002 			return;
1003 		}
1004 	}
1005 
1006 	/*
1007 	 * The signal is already in the shared-pending queue.
1008 	 * Tell the chosen thread to wake up and dequeue it.
1009 	 */
1010 	signal_wake_up(t, sig == SIGKILL);
1011 	return;
1012 }
1013 
1014 static inline int legacy_queue(struct sigpending *signals, int sig)
1015 {
1016 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1017 }
1018 
1019 #ifdef CONFIG_USER_NS
1020 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1021 {
1022 	if (current_user_ns() == task_cred_xxx(t, user_ns))
1023 		return;
1024 
1025 	if (SI_FROMKERNEL(info))
1026 		return;
1027 
1028 	rcu_read_lock();
1029 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1030 					make_kuid(current_user_ns(), info->si_uid));
1031 	rcu_read_unlock();
1032 }
1033 #else
1034 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1035 {
1036 	return;
1037 }
1038 #endif
1039 
1040 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1041 			int group, int from_ancestor_ns)
1042 {
1043 	struct sigpending *pending;
1044 	struct sigqueue *q;
1045 	int override_rlimit;
1046 	int ret = 0, result;
1047 
1048 	assert_spin_locked(&t->sighand->siglock);
1049 
1050 	result = TRACE_SIGNAL_IGNORED;
1051 	if (!prepare_signal(sig, t,
1052 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1053 		goto ret;
1054 
1055 	pending = group ? &t->signal->shared_pending : &t->pending;
1056 	/*
1057 	 * Short-circuit ignored signals and support queuing
1058 	 * exactly one non-rt signal, so that we can get more
1059 	 * detailed information about the cause of the signal.
1060 	 */
1061 	result = TRACE_SIGNAL_ALREADY_PENDING;
1062 	if (legacy_queue(pending, sig))
1063 		goto ret;
1064 
1065 	result = TRACE_SIGNAL_DELIVERED;
1066 	/*
1067 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1068 	 * or SIGKILL.
1069 	 */
1070 	if (info == SEND_SIG_FORCED)
1071 		goto out_set;
1072 
1073 	/*
1074 	 * Real-time signals must be queued if sent by sigqueue, or
1075 	 * some other real-time mechanism.  It is implementation
1076 	 * defined whether kill() does so.  We attempt to do so, on
1077 	 * the principle of least surprise, but since kill is not
1078 	 * allowed to fail with EAGAIN when low on memory we just
1079 	 * make sure at least one signal gets delivered and don't
1080 	 * pass on the info struct.
1081 	 */
1082 	if (sig < SIGRTMIN)
1083 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1084 	else
1085 		override_rlimit = 0;
1086 
1087 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1088 		override_rlimit);
1089 	if (q) {
1090 		list_add_tail(&q->list, &pending->list);
1091 		switch ((unsigned long) info) {
1092 		case (unsigned long) SEND_SIG_NOINFO:
1093 			q->info.si_signo = sig;
1094 			q->info.si_errno = 0;
1095 			q->info.si_code = SI_USER;
1096 			q->info.si_pid = task_tgid_nr_ns(current,
1097 							task_active_pid_ns(t));
1098 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1099 			break;
1100 		case (unsigned long) SEND_SIG_PRIV:
1101 			q->info.si_signo = sig;
1102 			q->info.si_errno = 0;
1103 			q->info.si_code = SI_KERNEL;
1104 			q->info.si_pid = 0;
1105 			q->info.si_uid = 0;
1106 			break;
1107 		default:
1108 			copy_siginfo(&q->info, info);
1109 			if (from_ancestor_ns)
1110 				q->info.si_pid = 0;
1111 			break;
1112 		}
1113 
1114 		userns_fixup_signal_uid(&q->info, t);
1115 
1116 	} else if (!is_si_special(info)) {
1117 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1118 			/*
1119 			 * Queue overflow, abort.  We may abort if the
1120 			 * signal was rt and sent by user using something
1121 			 * other than kill().
1122 			 */
1123 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1124 			ret = -EAGAIN;
1125 			goto ret;
1126 		} else {
1127 			/*
1128 			 * This is a silent loss of information.  We still
1129 			 * send the signal, but the *info bits are lost.
1130 			 */
1131 			result = TRACE_SIGNAL_LOSE_INFO;
1132 		}
1133 	}
1134 
1135 out_set:
1136 	signalfd_notify(t, sig);
1137 	sigaddset(&pending->signal, sig);
1138 	complete_signal(sig, t, group);
1139 ret:
1140 	trace_signal_generate(sig, info, t, group, result);
1141 	return ret;
1142 }
1143 
1144 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1145 			int group)
1146 {
1147 	int from_ancestor_ns = 0;
1148 
1149 #ifdef CONFIG_PID_NS
1150 	from_ancestor_ns = si_fromuser(info) &&
1151 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1152 #endif
1153 
1154 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1155 }
1156 
1157 static void print_fatal_signal(int signr)
1158 {
1159 	struct pt_regs *regs = signal_pt_regs();
1160 	printk("%s/%d: potentially unexpected fatal signal %d.\n",
1161 		current->comm, task_pid_nr(current), signr);
1162 
1163 #if defined(__i386__) && !defined(__arch_um__)
1164 	printk("code at %08lx: ", regs->ip);
1165 	{
1166 		int i;
1167 		for (i = 0; i < 16; i++) {
1168 			unsigned char insn;
1169 
1170 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1171 				break;
1172 			printk("%02x ", insn);
1173 		}
1174 	}
1175 #endif
1176 	printk("\n");
1177 	preempt_disable();
1178 	show_regs(regs);
1179 	preempt_enable();
1180 }
1181 
1182 static int __init setup_print_fatal_signals(char *str)
1183 {
1184 	get_option (&str, &print_fatal_signals);
1185 
1186 	return 1;
1187 }
1188 
1189 __setup("print-fatal-signals=", setup_print_fatal_signals);
1190 
1191 int
1192 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1193 {
1194 	return send_signal(sig, info, p, 1);
1195 }
1196 
1197 static int
1198 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1199 {
1200 	return send_signal(sig, info, t, 0);
1201 }
1202 
1203 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1204 			bool group)
1205 {
1206 	unsigned long flags;
1207 	int ret = -ESRCH;
1208 
1209 	if (lock_task_sighand(p, &flags)) {
1210 		ret = send_signal(sig, info, p, group);
1211 		unlock_task_sighand(p, &flags);
1212 	}
1213 
1214 	return ret;
1215 }
1216 
1217 /*
1218  * Force a signal that the process can't ignore: if necessary
1219  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1220  *
1221  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1222  * since we do not want to have a signal handler that was blocked
1223  * be invoked when user space had explicitly blocked it.
1224  *
1225  * We don't want to have recursive SIGSEGV's etc, for example,
1226  * that is why we also clear SIGNAL_UNKILLABLE.
1227  */
1228 int
1229 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1230 {
1231 	unsigned long int flags;
1232 	int ret, blocked, ignored;
1233 	struct k_sigaction *action;
1234 
1235 	spin_lock_irqsave(&t->sighand->siglock, flags);
1236 	action = &t->sighand->action[sig-1];
1237 	ignored = action->sa.sa_handler == SIG_IGN;
1238 	blocked = sigismember(&t->blocked, sig);
1239 	if (blocked || ignored) {
1240 		action->sa.sa_handler = SIG_DFL;
1241 		if (blocked) {
1242 			sigdelset(&t->blocked, sig);
1243 			recalc_sigpending_and_wake(t);
1244 		}
1245 	}
1246 	if (action->sa.sa_handler == SIG_DFL)
1247 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1248 	ret = specific_send_sig_info(sig, info, t);
1249 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1250 
1251 	return ret;
1252 }
1253 
1254 /*
1255  * Nuke all other threads in the group.
1256  */
1257 int zap_other_threads(struct task_struct *p)
1258 {
1259 	struct task_struct *t = p;
1260 	int count = 0;
1261 
1262 	p->signal->group_stop_count = 0;
1263 
1264 	while_each_thread(p, t) {
1265 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1266 		count++;
1267 
1268 		/* Don't bother with already dead threads */
1269 		if (t->exit_state)
1270 			continue;
1271 		sigaddset(&t->pending.signal, SIGKILL);
1272 		signal_wake_up(t, 1);
1273 	}
1274 
1275 	return count;
1276 }
1277 
1278 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1279 					   unsigned long *flags)
1280 {
1281 	struct sighand_struct *sighand;
1282 
1283 	for (;;) {
1284 		local_irq_save(*flags);
1285 		rcu_read_lock();
1286 		sighand = rcu_dereference(tsk->sighand);
1287 		if (unlikely(sighand == NULL)) {
1288 			rcu_read_unlock();
1289 			local_irq_restore(*flags);
1290 			break;
1291 		}
1292 
1293 		spin_lock(&sighand->siglock);
1294 		if (likely(sighand == tsk->sighand)) {
1295 			rcu_read_unlock();
1296 			break;
1297 		}
1298 		spin_unlock(&sighand->siglock);
1299 		rcu_read_unlock();
1300 		local_irq_restore(*flags);
1301 	}
1302 
1303 	return sighand;
1304 }
1305 
1306 /*
1307  * send signal info to all the members of a group
1308  */
1309 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1310 {
1311 	int ret;
1312 
1313 	rcu_read_lock();
1314 	ret = check_kill_permission(sig, info, p);
1315 	rcu_read_unlock();
1316 
1317 	if (!ret && sig)
1318 		ret = do_send_sig_info(sig, info, p, true);
1319 
1320 	return ret;
1321 }
1322 
1323 /*
1324  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1325  * control characters do (^C, ^Z etc)
1326  * - the caller must hold at least a readlock on tasklist_lock
1327  */
1328 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1329 {
1330 	struct task_struct *p = NULL;
1331 	int retval, success;
1332 
1333 	success = 0;
1334 	retval = -ESRCH;
1335 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1336 		int err = group_send_sig_info(sig, info, p);
1337 		success |= !err;
1338 		retval = err;
1339 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1340 	return success ? 0 : retval;
1341 }
1342 
1343 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1344 {
1345 	int error = -ESRCH;
1346 	struct task_struct *p;
1347 
1348 	rcu_read_lock();
1349 retry:
1350 	p = pid_task(pid, PIDTYPE_PID);
1351 	if (p) {
1352 		error = group_send_sig_info(sig, info, p);
1353 		if (unlikely(error == -ESRCH))
1354 			/*
1355 			 * The task was unhashed in between, try again.
1356 			 * If it is dead, pid_task() will return NULL,
1357 			 * if we race with de_thread() it will find the
1358 			 * new leader.
1359 			 */
1360 			goto retry;
1361 	}
1362 	rcu_read_unlock();
1363 
1364 	return error;
1365 }
1366 
1367 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1368 {
1369 	int error;
1370 	rcu_read_lock();
1371 	error = kill_pid_info(sig, info, find_vpid(pid));
1372 	rcu_read_unlock();
1373 	return error;
1374 }
1375 
1376 static int kill_as_cred_perm(const struct cred *cred,
1377 			     struct task_struct *target)
1378 {
1379 	const struct cred *pcred = __task_cred(target);
1380 	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1381 	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1382 		return 0;
1383 	return 1;
1384 }
1385 
1386 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1387 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1388 			 const struct cred *cred, u32 secid)
1389 {
1390 	int ret = -EINVAL;
1391 	struct task_struct *p;
1392 	unsigned long flags;
1393 
1394 	if (!valid_signal(sig))
1395 		return ret;
1396 
1397 	rcu_read_lock();
1398 	p = pid_task(pid, PIDTYPE_PID);
1399 	if (!p) {
1400 		ret = -ESRCH;
1401 		goto out_unlock;
1402 	}
1403 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1404 		ret = -EPERM;
1405 		goto out_unlock;
1406 	}
1407 	ret = security_task_kill(p, info, sig, secid);
1408 	if (ret)
1409 		goto out_unlock;
1410 
1411 	if (sig) {
1412 		if (lock_task_sighand(p, &flags)) {
1413 			ret = __send_signal(sig, info, p, 1, 0);
1414 			unlock_task_sighand(p, &flags);
1415 		} else
1416 			ret = -ESRCH;
1417 	}
1418 out_unlock:
1419 	rcu_read_unlock();
1420 	return ret;
1421 }
1422 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1423 
1424 /*
1425  * kill_something_info() interprets pid in interesting ways just like kill(2).
1426  *
1427  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1428  * is probably wrong.  Should make it like BSD or SYSV.
1429  */
1430 
1431 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1432 {
1433 	int ret;
1434 
1435 	if (pid > 0) {
1436 		rcu_read_lock();
1437 		ret = kill_pid_info(sig, info, find_vpid(pid));
1438 		rcu_read_unlock();
1439 		return ret;
1440 	}
1441 
1442 	read_lock(&tasklist_lock);
1443 	if (pid != -1) {
1444 		ret = __kill_pgrp_info(sig, info,
1445 				pid ? find_vpid(-pid) : task_pgrp(current));
1446 	} else {
1447 		int retval = 0, count = 0;
1448 		struct task_struct * p;
1449 
1450 		for_each_process(p) {
1451 			if (task_pid_vnr(p) > 1 &&
1452 					!same_thread_group(p, current)) {
1453 				int err = group_send_sig_info(sig, info, p);
1454 				++count;
1455 				if (err != -EPERM)
1456 					retval = err;
1457 			}
1458 		}
1459 		ret = count ? retval : -ESRCH;
1460 	}
1461 	read_unlock(&tasklist_lock);
1462 
1463 	return ret;
1464 }
1465 
1466 /*
1467  * These are for backward compatibility with the rest of the kernel source.
1468  */
1469 
1470 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1471 {
1472 	/*
1473 	 * Make sure legacy kernel users don't send in bad values
1474 	 * (normal paths check this in check_kill_permission).
1475 	 */
1476 	if (!valid_signal(sig))
1477 		return -EINVAL;
1478 
1479 	return do_send_sig_info(sig, info, p, false);
1480 }
1481 
1482 #define __si_special(priv) \
1483 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1484 
1485 int
1486 send_sig(int sig, struct task_struct *p, int priv)
1487 {
1488 	return send_sig_info(sig, __si_special(priv), p);
1489 }
1490 
1491 void
1492 force_sig(int sig, struct task_struct *p)
1493 {
1494 	force_sig_info(sig, SEND_SIG_PRIV, p);
1495 }
1496 
1497 /*
1498  * When things go south during signal handling, we
1499  * will force a SIGSEGV. And if the signal that caused
1500  * the problem was already a SIGSEGV, we'll want to
1501  * make sure we don't even try to deliver the signal..
1502  */
1503 int
1504 force_sigsegv(int sig, struct task_struct *p)
1505 {
1506 	if (sig == SIGSEGV) {
1507 		unsigned long flags;
1508 		spin_lock_irqsave(&p->sighand->siglock, flags);
1509 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1510 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1511 	}
1512 	force_sig(SIGSEGV, p);
1513 	return 0;
1514 }
1515 
1516 int kill_pgrp(struct pid *pid, int sig, int priv)
1517 {
1518 	int ret;
1519 
1520 	read_lock(&tasklist_lock);
1521 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1522 	read_unlock(&tasklist_lock);
1523 
1524 	return ret;
1525 }
1526 EXPORT_SYMBOL(kill_pgrp);
1527 
1528 int kill_pid(struct pid *pid, int sig, int priv)
1529 {
1530 	return kill_pid_info(sig, __si_special(priv), pid);
1531 }
1532 EXPORT_SYMBOL(kill_pid);
1533 
1534 /*
1535  * These functions support sending signals using preallocated sigqueue
1536  * structures.  This is needed "because realtime applications cannot
1537  * afford to lose notifications of asynchronous events, like timer
1538  * expirations or I/O completions".  In the case of POSIX Timers
1539  * we allocate the sigqueue structure from the timer_create.  If this
1540  * allocation fails we are able to report the failure to the application
1541  * with an EAGAIN error.
1542  */
1543 struct sigqueue *sigqueue_alloc(void)
1544 {
1545 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1546 
1547 	if (q)
1548 		q->flags |= SIGQUEUE_PREALLOC;
1549 
1550 	return q;
1551 }
1552 
1553 void sigqueue_free(struct sigqueue *q)
1554 {
1555 	unsigned long flags;
1556 	spinlock_t *lock = &current->sighand->siglock;
1557 
1558 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1559 	/*
1560 	 * We must hold ->siglock while testing q->list
1561 	 * to serialize with collect_signal() or with
1562 	 * __exit_signal()->flush_sigqueue().
1563 	 */
1564 	spin_lock_irqsave(lock, flags);
1565 	q->flags &= ~SIGQUEUE_PREALLOC;
1566 	/*
1567 	 * If it is queued it will be freed when dequeued,
1568 	 * like the "regular" sigqueue.
1569 	 */
1570 	if (!list_empty(&q->list))
1571 		q = NULL;
1572 	spin_unlock_irqrestore(lock, flags);
1573 
1574 	if (q)
1575 		__sigqueue_free(q);
1576 }
1577 
1578 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1579 {
1580 	int sig = q->info.si_signo;
1581 	struct sigpending *pending;
1582 	unsigned long flags;
1583 	int ret, result;
1584 
1585 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1586 
1587 	ret = -1;
1588 	if (!likely(lock_task_sighand(t, &flags)))
1589 		goto ret;
1590 
1591 	ret = 1; /* the signal is ignored */
1592 	result = TRACE_SIGNAL_IGNORED;
1593 	if (!prepare_signal(sig, t, false))
1594 		goto out;
1595 
1596 	ret = 0;
1597 	if (unlikely(!list_empty(&q->list))) {
1598 		/*
1599 		 * If an SI_TIMER entry is already queue just increment
1600 		 * the overrun count.
1601 		 */
1602 		BUG_ON(q->info.si_code != SI_TIMER);
1603 		q->info.si_overrun++;
1604 		result = TRACE_SIGNAL_ALREADY_PENDING;
1605 		goto out;
1606 	}
1607 	q->info.si_overrun = 0;
1608 
1609 	signalfd_notify(t, sig);
1610 	pending = group ? &t->signal->shared_pending : &t->pending;
1611 	list_add_tail(&q->list, &pending->list);
1612 	sigaddset(&pending->signal, sig);
1613 	complete_signal(sig, t, group);
1614 	result = TRACE_SIGNAL_DELIVERED;
1615 out:
1616 	trace_signal_generate(sig, &q->info, t, group, result);
1617 	unlock_task_sighand(t, &flags);
1618 ret:
1619 	return ret;
1620 }
1621 
1622 /*
1623  * Let a parent know about the death of a child.
1624  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1625  *
1626  * Returns true if our parent ignored us and so we've switched to
1627  * self-reaping.
1628  */
1629 bool do_notify_parent(struct task_struct *tsk, int sig)
1630 {
1631 	struct siginfo info;
1632 	unsigned long flags;
1633 	struct sighand_struct *psig;
1634 	bool autoreap = false;
1635 
1636 	BUG_ON(sig == -1);
1637 
1638  	/* do_notify_parent_cldstop should have been called instead.  */
1639  	BUG_ON(task_is_stopped_or_traced(tsk));
1640 
1641 	BUG_ON(!tsk->ptrace &&
1642 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1643 
1644 	if (sig != SIGCHLD) {
1645 		/*
1646 		 * This is only possible if parent == real_parent.
1647 		 * Check if it has changed security domain.
1648 		 */
1649 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1650 			sig = SIGCHLD;
1651 	}
1652 
1653 	info.si_signo = sig;
1654 	info.si_errno = 0;
1655 	/*
1656 	 * We are under tasklist_lock here so our parent is tied to
1657 	 * us and cannot change.
1658 	 *
1659 	 * task_active_pid_ns will always return the same pid namespace
1660 	 * until a task passes through release_task.
1661 	 *
1662 	 * write_lock() currently calls preempt_disable() which is the
1663 	 * same as rcu_read_lock(), but according to Oleg, this is not
1664 	 * correct to rely on this
1665 	 */
1666 	rcu_read_lock();
1667 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1668 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1669 				       task_uid(tsk));
1670 	rcu_read_unlock();
1671 
1672 	info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
1673 	info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
1674 
1675 	info.si_status = tsk->exit_code & 0x7f;
1676 	if (tsk->exit_code & 0x80)
1677 		info.si_code = CLD_DUMPED;
1678 	else if (tsk->exit_code & 0x7f)
1679 		info.si_code = CLD_KILLED;
1680 	else {
1681 		info.si_code = CLD_EXITED;
1682 		info.si_status = tsk->exit_code >> 8;
1683 	}
1684 
1685 	psig = tsk->parent->sighand;
1686 	spin_lock_irqsave(&psig->siglock, flags);
1687 	if (!tsk->ptrace && sig == SIGCHLD &&
1688 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1689 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1690 		/*
1691 		 * We are exiting and our parent doesn't care.  POSIX.1
1692 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1693 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1694 		 * automatically and not left for our parent's wait4 call.
1695 		 * Rather than having the parent do it as a magic kind of
1696 		 * signal handler, we just set this to tell do_exit that we
1697 		 * can be cleaned up without becoming a zombie.  Note that
1698 		 * we still call __wake_up_parent in this case, because a
1699 		 * blocked sys_wait4 might now return -ECHILD.
1700 		 *
1701 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1702 		 * is implementation-defined: we do (if you don't want
1703 		 * it, just use SIG_IGN instead).
1704 		 */
1705 		autoreap = true;
1706 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1707 			sig = 0;
1708 	}
1709 	if (valid_signal(sig) && sig)
1710 		__group_send_sig_info(sig, &info, tsk->parent);
1711 	__wake_up_parent(tsk, tsk->parent);
1712 	spin_unlock_irqrestore(&psig->siglock, flags);
1713 
1714 	return autoreap;
1715 }
1716 
1717 /**
1718  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1719  * @tsk: task reporting the state change
1720  * @for_ptracer: the notification is for ptracer
1721  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1722  *
1723  * Notify @tsk's parent that the stopped/continued state has changed.  If
1724  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1725  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1726  *
1727  * CONTEXT:
1728  * Must be called with tasklist_lock at least read locked.
1729  */
1730 static void do_notify_parent_cldstop(struct task_struct *tsk,
1731 				     bool for_ptracer, int why)
1732 {
1733 	struct siginfo info;
1734 	unsigned long flags;
1735 	struct task_struct *parent;
1736 	struct sighand_struct *sighand;
1737 
1738 	if (for_ptracer) {
1739 		parent = tsk->parent;
1740 	} else {
1741 		tsk = tsk->group_leader;
1742 		parent = tsk->real_parent;
1743 	}
1744 
1745 	info.si_signo = SIGCHLD;
1746 	info.si_errno = 0;
1747 	/*
1748 	 * see comment in do_notify_parent() about the following 4 lines
1749 	 */
1750 	rcu_read_lock();
1751 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1752 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1753 	rcu_read_unlock();
1754 
1755 	info.si_utime = cputime_to_clock_t(tsk->utime);
1756 	info.si_stime = cputime_to_clock_t(tsk->stime);
1757 
1758  	info.si_code = why;
1759  	switch (why) {
1760  	case CLD_CONTINUED:
1761  		info.si_status = SIGCONT;
1762  		break;
1763  	case CLD_STOPPED:
1764  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1765  		break;
1766  	case CLD_TRAPPED:
1767  		info.si_status = tsk->exit_code & 0x7f;
1768  		break;
1769  	default:
1770  		BUG();
1771  	}
1772 
1773 	sighand = parent->sighand;
1774 	spin_lock_irqsave(&sighand->siglock, flags);
1775 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1776 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1777 		__group_send_sig_info(SIGCHLD, &info, parent);
1778 	/*
1779 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1780 	 */
1781 	__wake_up_parent(tsk, parent);
1782 	spin_unlock_irqrestore(&sighand->siglock, flags);
1783 }
1784 
1785 static inline int may_ptrace_stop(void)
1786 {
1787 	if (!likely(current->ptrace))
1788 		return 0;
1789 	/*
1790 	 * Are we in the middle of do_coredump?
1791 	 * If so and our tracer is also part of the coredump stopping
1792 	 * is a deadlock situation, and pointless because our tracer
1793 	 * is dead so don't allow us to stop.
1794 	 * If SIGKILL was already sent before the caller unlocked
1795 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1796 	 * is safe to enter schedule().
1797 	 *
1798 	 * This is almost outdated, a task with the pending SIGKILL can't
1799 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1800 	 * after SIGKILL was already dequeued.
1801 	 */
1802 	if (unlikely(current->mm->core_state) &&
1803 	    unlikely(current->mm == current->parent->mm))
1804 		return 0;
1805 
1806 	return 1;
1807 }
1808 
1809 /*
1810  * Return non-zero if there is a SIGKILL that should be waking us up.
1811  * Called with the siglock held.
1812  */
1813 static int sigkill_pending(struct task_struct *tsk)
1814 {
1815 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1816 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1817 }
1818 
1819 /*
1820  * This must be called with current->sighand->siglock held.
1821  *
1822  * This should be the path for all ptrace stops.
1823  * We always set current->last_siginfo while stopped here.
1824  * That makes it a way to test a stopped process for
1825  * being ptrace-stopped vs being job-control-stopped.
1826  *
1827  * If we actually decide not to stop at all because the tracer
1828  * is gone, we keep current->exit_code unless clear_code.
1829  */
1830 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1831 	__releases(&current->sighand->siglock)
1832 	__acquires(&current->sighand->siglock)
1833 {
1834 	bool gstop_done = false;
1835 
1836 	if (arch_ptrace_stop_needed(exit_code, info)) {
1837 		/*
1838 		 * The arch code has something special to do before a
1839 		 * ptrace stop.  This is allowed to block, e.g. for faults
1840 		 * on user stack pages.  We can't keep the siglock while
1841 		 * calling arch_ptrace_stop, so we must release it now.
1842 		 * To preserve proper semantics, we must do this before
1843 		 * any signal bookkeeping like checking group_stop_count.
1844 		 * Meanwhile, a SIGKILL could come in before we retake the
1845 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1846 		 * So after regaining the lock, we must check for SIGKILL.
1847 		 */
1848 		spin_unlock_irq(&current->sighand->siglock);
1849 		arch_ptrace_stop(exit_code, info);
1850 		spin_lock_irq(&current->sighand->siglock);
1851 		if (sigkill_pending(current))
1852 			return;
1853 	}
1854 
1855 	/*
1856 	 * We're committing to trapping.  TRACED should be visible before
1857 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1858 	 * Also, transition to TRACED and updates to ->jobctl should be
1859 	 * atomic with respect to siglock and should be done after the arch
1860 	 * hook as siglock is released and regrabbed across it.
1861 	 */
1862 	set_current_state(TASK_TRACED);
1863 
1864 	current->last_siginfo = info;
1865 	current->exit_code = exit_code;
1866 
1867 	/*
1868 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1869 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1870 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1871 	 * could be clear now.  We act as if SIGCONT is received after
1872 	 * TASK_TRACED is entered - ignore it.
1873 	 */
1874 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1875 		gstop_done = task_participate_group_stop(current);
1876 
1877 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1878 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1879 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1880 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1881 
1882 	/* entering a trap, clear TRAPPING */
1883 	task_clear_jobctl_trapping(current);
1884 
1885 	spin_unlock_irq(&current->sighand->siglock);
1886 	read_lock(&tasklist_lock);
1887 	if (may_ptrace_stop()) {
1888 		/*
1889 		 * Notify parents of the stop.
1890 		 *
1891 		 * While ptraced, there are two parents - the ptracer and
1892 		 * the real_parent of the group_leader.  The ptracer should
1893 		 * know about every stop while the real parent is only
1894 		 * interested in the completion of group stop.  The states
1895 		 * for the two don't interact with each other.  Notify
1896 		 * separately unless they're gonna be duplicates.
1897 		 */
1898 		do_notify_parent_cldstop(current, true, why);
1899 		if (gstop_done && ptrace_reparented(current))
1900 			do_notify_parent_cldstop(current, false, why);
1901 
1902 		/*
1903 		 * Don't want to allow preemption here, because
1904 		 * sys_ptrace() needs this task to be inactive.
1905 		 *
1906 		 * XXX: implement read_unlock_no_resched().
1907 		 */
1908 		preempt_disable();
1909 		read_unlock(&tasklist_lock);
1910 		preempt_enable_no_resched();
1911 		freezable_schedule();
1912 	} else {
1913 		/*
1914 		 * By the time we got the lock, our tracer went away.
1915 		 * Don't drop the lock yet, another tracer may come.
1916 		 *
1917 		 * If @gstop_done, the ptracer went away between group stop
1918 		 * completion and here.  During detach, it would have set
1919 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1920 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1921 		 * the real parent of the group stop completion is enough.
1922 		 */
1923 		if (gstop_done)
1924 			do_notify_parent_cldstop(current, false, why);
1925 
1926 		/* tasklist protects us from ptrace_freeze_traced() */
1927 		__set_current_state(TASK_RUNNING);
1928 		if (clear_code)
1929 			current->exit_code = 0;
1930 		read_unlock(&tasklist_lock);
1931 	}
1932 
1933 	/*
1934 	 * We are back.  Now reacquire the siglock before touching
1935 	 * last_siginfo, so that we are sure to have synchronized with
1936 	 * any signal-sending on another CPU that wants to examine it.
1937 	 */
1938 	spin_lock_irq(&current->sighand->siglock);
1939 	current->last_siginfo = NULL;
1940 
1941 	/* LISTENING can be set only during STOP traps, clear it */
1942 	current->jobctl &= ~JOBCTL_LISTENING;
1943 
1944 	/*
1945 	 * Queued signals ignored us while we were stopped for tracing.
1946 	 * So check for any that we should take before resuming user mode.
1947 	 * This sets TIF_SIGPENDING, but never clears it.
1948 	 */
1949 	recalc_sigpending_tsk(current);
1950 }
1951 
1952 static void ptrace_do_notify(int signr, int exit_code, int why)
1953 {
1954 	siginfo_t info;
1955 
1956 	memset(&info, 0, sizeof info);
1957 	info.si_signo = signr;
1958 	info.si_code = exit_code;
1959 	info.si_pid = task_pid_vnr(current);
1960 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1961 
1962 	/* Let the debugger run.  */
1963 	ptrace_stop(exit_code, why, 1, &info);
1964 }
1965 
1966 void ptrace_notify(int exit_code)
1967 {
1968 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1969 	if (unlikely(current->task_works))
1970 		task_work_run();
1971 
1972 	spin_lock_irq(&current->sighand->siglock);
1973 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1974 	spin_unlock_irq(&current->sighand->siglock);
1975 }
1976 
1977 /**
1978  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1979  * @signr: signr causing group stop if initiating
1980  *
1981  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1982  * and participate in it.  If already set, participate in the existing
1983  * group stop.  If participated in a group stop (and thus slept), %true is
1984  * returned with siglock released.
1985  *
1986  * If ptraced, this function doesn't handle stop itself.  Instead,
1987  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1988  * untouched.  The caller must ensure that INTERRUPT trap handling takes
1989  * places afterwards.
1990  *
1991  * CONTEXT:
1992  * Must be called with @current->sighand->siglock held, which is released
1993  * on %true return.
1994  *
1995  * RETURNS:
1996  * %false if group stop is already cancelled or ptrace trap is scheduled.
1997  * %true if participated in group stop.
1998  */
1999 static bool do_signal_stop(int signr)
2000 	__releases(&current->sighand->siglock)
2001 {
2002 	struct signal_struct *sig = current->signal;
2003 
2004 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2005 		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2006 		struct task_struct *t;
2007 
2008 		/* signr will be recorded in task->jobctl for retries */
2009 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2010 
2011 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2012 		    unlikely(signal_group_exit(sig)))
2013 			return false;
2014 		/*
2015 		 * There is no group stop already in progress.  We must
2016 		 * initiate one now.
2017 		 *
2018 		 * While ptraced, a task may be resumed while group stop is
2019 		 * still in effect and then receive a stop signal and
2020 		 * initiate another group stop.  This deviates from the
2021 		 * usual behavior as two consecutive stop signals can't
2022 		 * cause two group stops when !ptraced.  That is why we
2023 		 * also check !task_is_stopped(t) below.
2024 		 *
2025 		 * The condition can be distinguished by testing whether
2026 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2027 		 * group_exit_code in such case.
2028 		 *
2029 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2030 		 * an intervening stop signal is required to cause two
2031 		 * continued events regardless of ptrace.
2032 		 */
2033 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2034 			sig->group_exit_code = signr;
2035 
2036 		sig->group_stop_count = 0;
2037 
2038 		if (task_set_jobctl_pending(current, signr | gstop))
2039 			sig->group_stop_count++;
2040 
2041 		for (t = next_thread(current); t != current;
2042 		     t = next_thread(t)) {
2043 			/*
2044 			 * Setting state to TASK_STOPPED for a group
2045 			 * stop is always done with the siglock held,
2046 			 * so this check has no races.
2047 			 */
2048 			if (!task_is_stopped(t) &&
2049 			    task_set_jobctl_pending(t, signr | gstop)) {
2050 				sig->group_stop_count++;
2051 				if (likely(!(t->ptrace & PT_SEIZED)))
2052 					signal_wake_up(t, 0);
2053 				else
2054 					ptrace_trap_notify(t);
2055 			}
2056 		}
2057 	}
2058 
2059 	if (likely(!current->ptrace)) {
2060 		int notify = 0;
2061 
2062 		/*
2063 		 * If there are no other threads in the group, or if there
2064 		 * is a group stop in progress and we are the last to stop,
2065 		 * report to the parent.
2066 		 */
2067 		if (task_participate_group_stop(current))
2068 			notify = CLD_STOPPED;
2069 
2070 		__set_current_state(TASK_STOPPED);
2071 		spin_unlock_irq(&current->sighand->siglock);
2072 
2073 		/*
2074 		 * Notify the parent of the group stop completion.  Because
2075 		 * we're not holding either the siglock or tasklist_lock
2076 		 * here, ptracer may attach inbetween; however, this is for
2077 		 * group stop and should always be delivered to the real
2078 		 * parent of the group leader.  The new ptracer will get
2079 		 * its notification when this task transitions into
2080 		 * TASK_TRACED.
2081 		 */
2082 		if (notify) {
2083 			read_lock(&tasklist_lock);
2084 			do_notify_parent_cldstop(current, false, notify);
2085 			read_unlock(&tasklist_lock);
2086 		}
2087 
2088 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2089 		freezable_schedule();
2090 		return true;
2091 	} else {
2092 		/*
2093 		 * While ptraced, group stop is handled by STOP trap.
2094 		 * Schedule it and let the caller deal with it.
2095 		 */
2096 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2097 		return false;
2098 	}
2099 }
2100 
2101 /**
2102  * do_jobctl_trap - take care of ptrace jobctl traps
2103  *
2104  * When PT_SEIZED, it's used for both group stop and explicit
2105  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2106  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2107  * the stop signal; otherwise, %SIGTRAP.
2108  *
2109  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2110  * number as exit_code and no siginfo.
2111  *
2112  * CONTEXT:
2113  * Must be called with @current->sighand->siglock held, which may be
2114  * released and re-acquired before returning with intervening sleep.
2115  */
2116 static void do_jobctl_trap(void)
2117 {
2118 	struct signal_struct *signal = current->signal;
2119 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2120 
2121 	if (current->ptrace & PT_SEIZED) {
2122 		if (!signal->group_stop_count &&
2123 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2124 			signr = SIGTRAP;
2125 		WARN_ON_ONCE(!signr);
2126 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2127 				 CLD_STOPPED);
2128 	} else {
2129 		WARN_ON_ONCE(!signr);
2130 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2131 		current->exit_code = 0;
2132 	}
2133 }
2134 
2135 static int ptrace_signal(int signr, siginfo_t *info)
2136 {
2137 	ptrace_signal_deliver();
2138 	/*
2139 	 * We do not check sig_kernel_stop(signr) but set this marker
2140 	 * unconditionally because we do not know whether debugger will
2141 	 * change signr. This flag has no meaning unless we are going
2142 	 * to stop after return from ptrace_stop(). In this case it will
2143 	 * be checked in do_signal_stop(), we should only stop if it was
2144 	 * not cleared by SIGCONT while we were sleeping. See also the
2145 	 * comment in dequeue_signal().
2146 	 */
2147 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2148 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2149 
2150 	/* We're back.  Did the debugger cancel the sig?  */
2151 	signr = current->exit_code;
2152 	if (signr == 0)
2153 		return signr;
2154 
2155 	current->exit_code = 0;
2156 
2157 	/*
2158 	 * Update the siginfo structure if the signal has
2159 	 * changed.  If the debugger wanted something
2160 	 * specific in the siginfo structure then it should
2161 	 * have updated *info via PTRACE_SETSIGINFO.
2162 	 */
2163 	if (signr != info->si_signo) {
2164 		info->si_signo = signr;
2165 		info->si_errno = 0;
2166 		info->si_code = SI_USER;
2167 		rcu_read_lock();
2168 		info->si_pid = task_pid_vnr(current->parent);
2169 		info->si_uid = from_kuid_munged(current_user_ns(),
2170 						task_uid(current->parent));
2171 		rcu_read_unlock();
2172 	}
2173 
2174 	/* If the (new) signal is now blocked, requeue it.  */
2175 	if (sigismember(&current->blocked, signr)) {
2176 		specific_send_sig_info(signr, info, current);
2177 		signr = 0;
2178 	}
2179 
2180 	return signr;
2181 }
2182 
2183 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2184 			  struct pt_regs *regs, void *cookie)
2185 {
2186 	struct sighand_struct *sighand = current->sighand;
2187 	struct signal_struct *signal = current->signal;
2188 	int signr;
2189 
2190 	if (unlikely(current->task_works))
2191 		task_work_run();
2192 
2193 	if (unlikely(uprobe_deny_signal()))
2194 		return 0;
2195 
2196 	/*
2197 	 * Do this once, we can't return to user-mode if freezing() == T.
2198 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2199 	 * thus do not need another check after return.
2200 	 */
2201 	try_to_freeze();
2202 
2203 relock:
2204 	spin_lock_irq(&sighand->siglock);
2205 	/*
2206 	 * Every stopped thread goes here after wakeup. Check to see if
2207 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2208 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2209 	 */
2210 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2211 		int why;
2212 
2213 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2214 			why = CLD_CONTINUED;
2215 		else
2216 			why = CLD_STOPPED;
2217 
2218 		signal->flags &= ~SIGNAL_CLD_MASK;
2219 
2220 		spin_unlock_irq(&sighand->siglock);
2221 
2222 		/*
2223 		 * Notify the parent that we're continuing.  This event is
2224 		 * always per-process and doesn't make whole lot of sense
2225 		 * for ptracers, who shouldn't consume the state via
2226 		 * wait(2) either, but, for backward compatibility, notify
2227 		 * the ptracer of the group leader too unless it's gonna be
2228 		 * a duplicate.
2229 		 */
2230 		read_lock(&tasklist_lock);
2231 		do_notify_parent_cldstop(current, false, why);
2232 
2233 		if (ptrace_reparented(current->group_leader))
2234 			do_notify_parent_cldstop(current->group_leader,
2235 						true, why);
2236 		read_unlock(&tasklist_lock);
2237 
2238 		goto relock;
2239 	}
2240 
2241 	for (;;) {
2242 		struct k_sigaction *ka;
2243 
2244 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2245 		    do_signal_stop(0))
2246 			goto relock;
2247 
2248 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2249 			do_jobctl_trap();
2250 			spin_unlock_irq(&sighand->siglock);
2251 			goto relock;
2252 		}
2253 
2254 		signr = dequeue_signal(current, &current->blocked, info);
2255 
2256 		if (!signr)
2257 			break; /* will return 0 */
2258 
2259 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2260 			signr = ptrace_signal(signr, info);
2261 			if (!signr)
2262 				continue;
2263 		}
2264 
2265 		ka = &sighand->action[signr-1];
2266 
2267 		/* Trace actually delivered signals. */
2268 		trace_signal_deliver(signr, info, ka);
2269 
2270 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2271 			continue;
2272 		if (ka->sa.sa_handler != SIG_DFL) {
2273 			/* Run the handler.  */
2274 			*return_ka = *ka;
2275 
2276 			if (ka->sa.sa_flags & SA_ONESHOT)
2277 				ka->sa.sa_handler = SIG_DFL;
2278 
2279 			break; /* will return non-zero "signr" value */
2280 		}
2281 
2282 		/*
2283 		 * Now we are doing the default action for this signal.
2284 		 */
2285 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2286 			continue;
2287 
2288 		/*
2289 		 * Global init gets no signals it doesn't want.
2290 		 * Container-init gets no signals it doesn't want from same
2291 		 * container.
2292 		 *
2293 		 * Note that if global/container-init sees a sig_kernel_only()
2294 		 * signal here, the signal must have been generated internally
2295 		 * or must have come from an ancestor namespace. In either
2296 		 * case, the signal cannot be dropped.
2297 		 */
2298 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2299 				!sig_kernel_only(signr))
2300 			continue;
2301 
2302 		if (sig_kernel_stop(signr)) {
2303 			/*
2304 			 * The default action is to stop all threads in
2305 			 * the thread group.  The job control signals
2306 			 * do nothing in an orphaned pgrp, but SIGSTOP
2307 			 * always works.  Note that siglock needs to be
2308 			 * dropped during the call to is_orphaned_pgrp()
2309 			 * because of lock ordering with tasklist_lock.
2310 			 * This allows an intervening SIGCONT to be posted.
2311 			 * We need to check for that and bail out if necessary.
2312 			 */
2313 			if (signr != SIGSTOP) {
2314 				spin_unlock_irq(&sighand->siglock);
2315 
2316 				/* signals can be posted during this window */
2317 
2318 				if (is_current_pgrp_orphaned())
2319 					goto relock;
2320 
2321 				spin_lock_irq(&sighand->siglock);
2322 			}
2323 
2324 			if (likely(do_signal_stop(info->si_signo))) {
2325 				/* It released the siglock.  */
2326 				goto relock;
2327 			}
2328 
2329 			/*
2330 			 * We didn't actually stop, due to a race
2331 			 * with SIGCONT or something like that.
2332 			 */
2333 			continue;
2334 		}
2335 
2336 		spin_unlock_irq(&sighand->siglock);
2337 
2338 		/*
2339 		 * Anything else is fatal, maybe with a core dump.
2340 		 */
2341 		current->flags |= PF_SIGNALED;
2342 
2343 		if (sig_kernel_coredump(signr)) {
2344 			if (print_fatal_signals)
2345 				print_fatal_signal(info->si_signo);
2346 			/*
2347 			 * If it was able to dump core, this kills all
2348 			 * other threads in the group and synchronizes with
2349 			 * their demise.  If we lost the race with another
2350 			 * thread getting here, it set group_exit_code
2351 			 * first and our do_group_exit call below will use
2352 			 * that value and ignore the one we pass it.
2353 			 */
2354 			do_coredump(info);
2355 		}
2356 
2357 		/*
2358 		 * Death signals, no core dump.
2359 		 */
2360 		do_group_exit(info->si_signo);
2361 		/* NOTREACHED */
2362 	}
2363 	spin_unlock_irq(&sighand->siglock);
2364 	return signr;
2365 }
2366 
2367 /**
2368  * signal_delivered -
2369  * @sig:		number of signal being delivered
2370  * @info:		siginfo_t of signal being delivered
2371  * @ka:			sigaction setting that chose the handler
2372  * @regs:		user register state
2373  * @stepping:		nonzero if debugger single-step or block-step in use
2374  *
2375  * This function should be called when a signal has succesfully been
2376  * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2377  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2378  * is set in @ka->sa.sa_flags.  Tracing is notified.
2379  */
2380 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2381 			struct pt_regs *regs, int stepping)
2382 {
2383 	sigset_t blocked;
2384 
2385 	/* A signal was successfully delivered, and the
2386 	   saved sigmask was stored on the signal frame,
2387 	   and will be restored by sigreturn.  So we can
2388 	   simply clear the restore sigmask flag.  */
2389 	clear_restore_sigmask();
2390 
2391 	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2392 	if (!(ka->sa.sa_flags & SA_NODEFER))
2393 		sigaddset(&blocked, sig);
2394 	set_current_blocked(&blocked);
2395 	tracehook_signal_handler(sig, info, ka, regs, stepping);
2396 }
2397 
2398 /*
2399  * It could be that complete_signal() picked us to notify about the
2400  * group-wide signal. Other threads should be notified now to take
2401  * the shared signals in @which since we will not.
2402  */
2403 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2404 {
2405 	sigset_t retarget;
2406 	struct task_struct *t;
2407 
2408 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2409 	if (sigisemptyset(&retarget))
2410 		return;
2411 
2412 	t = tsk;
2413 	while_each_thread(tsk, t) {
2414 		if (t->flags & PF_EXITING)
2415 			continue;
2416 
2417 		if (!has_pending_signals(&retarget, &t->blocked))
2418 			continue;
2419 		/* Remove the signals this thread can handle. */
2420 		sigandsets(&retarget, &retarget, &t->blocked);
2421 
2422 		if (!signal_pending(t))
2423 			signal_wake_up(t, 0);
2424 
2425 		if (sigisemptyset(&retarget))
2426 			break;
2427 	}
2428 }
2429 
2430 void exit_signals(struct task_struct *tsk)
2431 {
2432 	int group_stop = 0;
2433 	sigset_t unblocked;
2434 
2435 	/*
2436 	 * @tsk is about to have PF_EXITING set - lock out users which
2437 	 * expect stable threadgroup.
2438 	 */
2439 	threadgroup_change_begin(tsk);
2440 
2441 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2442 		tsk->flags |= PF_EXITING;
2443 		threadgroup_change_end(tsk);
2444 		return;
2445 	}
2446 
2447 	spin_lock_irq(&tsk->sighand->siglock);
2448 	/*
2449 	 * From now this task is not visible for group-wide signals,
2450 	 * see wants_signal(), do_signal_stop().
2451 	 */
2452 	tsk->flags |= PF_EXITING;
2453 
2454 	threadgroup_change_end(tsk);
2455 
2456 	if (!signal_pending(tsk))
2457 		goto out;
2458 
2459 	unblocked = tsk->blocked;
2460 	signotset(&unblocked);
2461 	retarget_shared_pending(tsk, &unblocked);
2462 
2463 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2464 	    task_participate_group_stop(tsk))
2465 		group_stop = CLD_STOPPED;
2466 out:
2467 	spin_unlock_irq(&tsk->sighand->siglock);
2468 
2469 	/*
2470 	 * If group stop has completed, deliver the notification.  This
2471 	 * should always go to the real parent of the group leader.
2472 	 */
2473 	if (unlikely(group_stop)) {
2474 		read_lock(&tasklist_lock);
2475 		do_notify_parent_cldstop(tsk, false, group_stop);
2476 		read_unlock(&tasklist_lock);
2477 	}
2478 }
2479 
2480 EXPORT_SYMBOL(recalc_sigpending);
2481 EXPORT_SYMBOL_GPL(dequeue_signal);
2482 EXPORT_SYMBOL(flush_signals);
2483 EXPORT_SYMBOL(force_sig);
2484 EXPORT_SYMBOL(send_sig);
2485 EXPORT_SYMBOL(send_sig_info);
2486 EXPORT_SYMBOL(sigprocmask);
2487 EXPORT_SYMBOL(block_all_signals);
2488 EXPORT_SYMBOL(unblock_all_signals);
2489 
2490 
2491 /*
2492  * System call entry points.
2493  */
2494 
2495 /**
2496  *  sys_restart_syscall - restart a system call
2497  */
2498 SYSCALL_DEFINE0(restart_syscall)
2499 {
2500 	struct restart_block *restart = &current_thread_info()->restart_block;
2501 	return restart->fn(restart);
2502 }
2503 
2504 long do_no_restart_syscall(struct restart_block *param)
2505 {
2506 	return -EINTR;
2507 }
2508 
2509 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2510 {
2511 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2512 		sigset_t newblocked;
2513 		/* A set of now blocked but previously unblocked signals. */
2514 		sigandnsets(&newblocked, newset, &current->blocked);
2515 		retarget_shared_pending(tsk, &newblocked);
2516 	}
2517 	tsk->blocked = *newset;
2518 	recalc_sigpending();
2519 }
2520 
2521 /**
2522  * set_current_blocked - change current->blocked mask
2523  * @newset: new mask
2524  *
2525  * It is wrong to change ->blocked directly, this helper should be used
2526  * to ensure the process can't miss a shared signal we are going to block.
2527  */
2528 void set_current_blocked(sigset_t *newset)
2529 {
2530 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2531 	__set_current_blocked(newset);
2532 }
2533 
2534 void __set_current_blocked(const sigset_t *newset)
2535 {
2536 	struct task_struct *tsk = current;
2537 
2538 	spin_lock_irq(&tsk->sighand->siglock);
2539 	__set_task_blocked(tsk, newset);
2540 	spin_unlock_irq(&tsk->sighand->siglock);
2541 }
2542 
2543 /*
2544  * This is also useful for kernel threads that want to temporarily
2545  * (or permanently) block certain signals.
2546  *
2547  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2548  * interface happily blocks "unblockable" signals like SIGKILL
2549  * and friends.
2550  */
2551 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2552 {
2553 	struct task_struct *tsk = current;
2554 	sigset_t newset;
2555 
2556 	/* Lockless, only current can change ->blocked, never from irq */
2557 	if (oldset)
2558 		*oldset = tsk->blocked;
2559 
2560 	switch (how) {
2561 	case SIG_BLOCK:
2562 		sigorsets(&newset, &tsk->blocked, set);
2563 		break;
2564 	case SIG_UNBLOCK:
2565 		sigandnsets(&newset, &tsk->blocked, set);
2566 		break;
2567 	case SIG_SETMASK:
2568 		newset = *set;
2569 		break;
2570 	default:
2571 		return -EINVAL;
2572 	}
2573 
2574 	__set_current_blocked(&newset);
2575 	return 0;
2576 }
2577 
2578 /**
2579  *  sys_rt_sigprocmask - change the list of currently blocked signals
2580  *  @how: whether to add, remove, or set signals
2581  *  @nset: stores pending signals
2582  *  @oset: previous value of signal mask if non-null
2583  *  @sigsetsize: size of sigset_t type
2584  */
2585 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2586 		sigset_t __user *, oset, size_t, sigsetsize)
2587 {
2588 	sigset_t old_set, new_set;
2589 	int error;
2590 
2591 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2592 	if (sigsetsize != sizeof(sigset_t))
2593 		return -EINVAL;
2594 
2595 	old_set = current->blocked;
2596 
2597 	if (nset) {
2598 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2599 			return -EFAULT;
2600 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2601 
2602 		error = sigprocmask(how, &new_set, NULL);
2603 		if (error)
2604 			return error;
2605 	}
2606 
2607 	if (oset) {
2608 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2609 			return -EFAULT;
2610 	}
2611 
2612 	return 0;
2613 }
2614 
2615 long do_sigpending(void __user *set, unsigned long sigsetsize)
2616 {
2617 	long error = -EINVAL;
2618 	sigset_t pending;
2619 
2620 	if (sigsetsize > sizeof(sigset_t))
2621 		goto out;
2622 
2623 	spin_lock_irq(&current->sighand->siglock);
2624 	sigorsets(&pending, &current->pending.signal,
2625 		  &current->signal->shared_pending.signal);
2626 	spin_unlock_irq(&current->sighand->siglock);
2627 
2628 	/* Outside the lock because only this thread touches it.  */
2629 	sigandsets(&pending, &current->blocked, &pending);
2630 
2631 	error = -EFAULT;
2632 	if (!copy_to_user(set, &pending, sigsetsize))
2633 		error = 0;
2634 
2635 out:
2636 	return error;
2637 }
2638 
2639 /**
2640  *  sys_rt_sigpending - examine a pending signal that has been raised
2641  *			while blocked
2642  *  @set: stores pending signals
2643  *  @sigsetsize: size of sigset_t type or larger
2644  */
2645 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2646 {
2647 	return do_sigpending(set, sigsetsize);
2648 }
2649 
2650 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2651 
2652 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2653 {
2654 	int err;
2655 
2656 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2657 		return -EFAULT;
2658 	if (from->si_code < 0)
2659 		return __copy_to_user(to, from, sizeof(siginfo_t))
2660 			? -EFAULT : 0;
2661 	/*
2662 	 * If you change siginfo_t structure, please be sure
2663 	 * this code is fixed accordingly.
2664 	 * Please remember to update the signalfd_copyinfo() function
2665 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2666 	 * It should never copy any pad contained in the structure
2667 	 * to avoid security leaks, but must copy the generic
2668 	 * 3 ints plus the relevant union member.
2669 	 */
2670 	err = __put_user(from->si_signo, &to->si_signo);
2671 	err |= __put_user(from->si_errno, &to->si_errno);
2672 	err |= __put_user((short)from->si_code, &to->si_code);
2673 	switch (from->si_code & __SI_MASK) {
2674 	case __SI_KILL:
2675 		err |= __put_user(from->si_pid, &to->si_pid);
2676 		err |= __put_user(from->si_uid, &to->si_uid);
2677 		break;
2678 	case __SI_TIMER:
2679 		 err |= __put_user(from->si_tid, &to->si_tid);
2680 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2681 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2682 		break;
2683 	case __SI_POLL:
2684 		err |= __put_user(from->si_band, &to->si_band);
2685 		err |= __put_user(from->si_fd, &to->si_fd);
2686 		break;
2687 	case __SI_FAULT:
2688 		err |= __put_user(from->si_addr, &to->si_addr);
2689 #ifdef __ARCH_SI_TRAPNO
2690 		err |= __put_user(from->si_trapno, &to->si_trapno);
2691 #endif
2692 #ifdef BUS_MCEERR_AO
2693 		/*
2694 		 * Other callers might not initialize the si_lsb field,
2695 		 * so check explicitly for the right codes here.
2696 		 */
2697 		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2698 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2699 #endif
2700 		break;
2701 	case __SI_CHLD:
2702 		err |= __put_user(from->si_pid, &to->si_pid);
2703 		err |= __put_user(from->si_uid, &to->si_uid);
2704 		err |= __put_user(from->si_status, &to->si_status);
2705 		err |= __put_user(from->si_utime, &to->si_utime);
2706 		err |= __put_user(from->si_stime, &to->si_stime);
2707 		break;
2708 	case __SI_RT: /* This is not generated by the kernel as of now. */
2709 	case __SI_MESGQ: /* But this is */
2710 		err |= __put_user(from->si_pid, &to->si_pid);
2711 		err |= __put_user(from->si_uid, &to->si_uid);
2712 		err |= __put_user(from->si_ptr, &to->si_ptr);
2713 		break;
2714 #ifdef __ARCH_SIGSYS
2715 	case __SI_SYS:
2716 		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2717 		err |= __put_user(from->si_syscall, &to->si_syscall);
2718 		err |= __put_user(from->si_arch, &to->si_arch);
2719 		break;
2720 #endif
2721 	default: /* this is just in case for now ... */
2722 		err |= __put_user(from->si_pid, &to->si_pid);
2723 		err |= __put_user(from->si_uid, &to->si_uid);
2724 		break;
2725 	}
2726 	return err;
2727 }
2728 
2729 #endif
2730 
2731 /**
2732  *  do_sigtimedwait - wait for queued signals specified in @which
2733  *  @which: queued signals to wait for
2734  *  @info: if non-null, the signal's siginfo is returned here
2735  *  @ts: upper bound on process time suspension
2736  */
2737 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2738 			const struct timespec *ts)
2739 {
2740 	struct task_struct *tsk = current;
2741 	long timeout = MAX_SCHEDULE_TIMEOUT;
2742 	sigset_t mask = *which;
2743 	int sig;
2744 
2745 	if (ts) {
2746 		if (!timespec_valid(ts))
2747 			return -EINVAL;
2748 		timeout = timespec_to_jiffies(ts);
2749 		/*
2750 		 * We can be close to the next tick, add another one
2751 		 * to ensure we will wait at least the time asked for.
2752 		 */
2753 		if (ts->tv_sec || ts->tv_nsec)
2754 			timeout++;
2755 	}
2756 
2757 	/*
2758 	 * Invert the set of allowed signals to get those we want to block.
2759 	 */
2760 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2761 	signotset(&mask);
2762 
2763 	spin_lock_irq(&tsk->sighand->siglock);
2764 	sig = dequeue_signal(tsk, &mask, info);
2765 	if (!sig && timeout) {
2766 		/*
2767 		 * None ready, temporarily unblock those we're interested
2768 		 * while we are sleeping in so that we'll be awakened when
2769 		 * they arrive. Unblocking is always fine, we can avoid
2770 		 * set_current_blocked().
2771 		 */
2772 		tsk->real_blocked = tsk->blocked;
2773 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2774 		recalc_sigpending();
2775 		spin_unlock_irq(&tsk->sighand->siglock);
2776 
2777 		timeout = schedule_timeout_interruptible(timeout);
2778 
2779 		spin_lock_irq(&tsk->sighand->siglock);
2780 		__set_task_blocked(tsk, &tsk->real_blocked);
2781 		siginitset(&tsk->real_blocked, 0);
2782 		sig = dequeue_signal(tsk, &mask, info);
2783 	}
2784 	spin_unlock_irq(&tsk->sighand->siglock);
2785 
2786 	if (sig)
2787 		return sig;
2788 	return timeout ? -EINTR : -EAGAIN;
2789 }
2790 
2791 /**
2792  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2793  *			in @uthese
2794  *  @uthese: queued signals to wait for
2795  *  @uinfo: if non-null, the signal's siginfo is returned here
2796  *  @uts: upper bound on process time suspension
2797  *  @sigsetsize: size of sigset_t type
2798  */
2799 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2800 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2801 		size_t, sigsetsize)
2802 {
2803 	sigset_t these;
2804 	struct timespec ts;
2805 	siginfo_t info;
2806 	int ret;
2807 
2808 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2809 	if (sigsetsize != sizeof(sigset_t))
2810 		return -EINVAL;
2811 
2812 	if (copy_from_user(&these, uthese, sizeof(these)))
2813 		return -EFAULT;
2814 
2815 	if (uts) {
2816 		if (copy_from_user(&ts, uts, sizeof(ts)))
2817 			return -EFAULT;
2818 	}
2819 
2820 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2821 
2822 	if (ret > 0 && uinfo) {
2823 		if (copy_siginfo_to_user(uinfo, &info))
2824 			ret = -EFAULT;
2825 	}
2826 
2827 	return ret;
2828 }
2829 
2830 /**
2831  *  sys_kill - send a signal to a process
2832  *  @pid: the PID of the process
2833  *  @sig: signal to be sent
2834  */
2835 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2836 {
2837 	struct siginfo info;
2838 
2839 	info.si_signo = sig;
2840 	info.si_errno = 0;
2841 	info.si_code = SI_USER;
2842 	info.si_pid = task_tgid_vnr(current);
2843 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2844 
2845 	return kill_something_info(sig, &info, pid);
2846 }
2847 
2848 static int
2849 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2850 {
2851 	struct task_struct *p;
2852 	int error = -ESRCH;
2853 
2854 	rcu_read_lock();
2855 	p = find_task_by_vpid(pid);
2856 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2857 		error = check_kill_permission(sig, info, p);
2858 		/*
2859 		 * The null signal is a permissions and process existence
2860 		 * probe.  No signal is actually delivered.
2861 		 */
2862 		if (!error && sig) {
2863 			error = do_send_sig_info(sig, info, p, false);
2864 			/*
2865 			 * If lock_task_sighand() failed we pretend the task
2866 			 * dies after receiving the signal. The window is tiny,
2867 			 * and the signal is private anyway.
2868 			 */
2869 			if (unlikely(error == -ESRCH))
2870 				error = 0;
2871 		}
2872 	}
2873 	rcu_read_unlock();
2874 
2875 	return error;
2876 }
2877 
2878 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2879 {
2880 	struct siginfo info;
2881 
2882 	info.si_signo = sig;
2883 	info.si_errno = 0;
2884 	info.si_code = SI_TKILL;
2885 	info.si_pid = task_tgid_vnr(current);
2886 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2887 
2888 	return do_send_specific(tgid, pid, sig, &info);
2889 }
2890 
2891 /**
2892  *  sys_tgkill - send signal to one specific thread
2893  *  @tgid: the thread group ID of the thread
2894  *  @pid: the PID of the thread
2895  *  @sig: signal to be sent
2896  *
2897  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2898  *  exists but it's not belonging to the target process anymore. This
2899  *  method solves the problem of threads exiting and PIDs getting reused.
2900  */
2901 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2902 {
2903 	/* This is only valid for single tasks */
2904 	if (pid <= 0 || tgid <= 0)
2905 		return -EINVAL;
2906 
2907 	return do_tkill(tgid, pid, sig);
2908 }
2909 
2910 /**
2911  *  sys_tkill - send signal to one specific task
2912  *  @pid: the PID of the task
2913  *  @sig: signal to be sent
2914  *
2915  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2916  */
2917 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2918 {
2919 	/* This is only valid for single tasks */
2920 	if (pid <= 0)
2921 		return -EINVAL;
2922 
2923 	return do_tkill(0, pid, sig);
2924 }
2925 
2926 /**
2927  *  sys_rt_sigqueueinfo - send signal information to a signal
2928  *  @pid: the PID of the thread
2929  *  @sig: signal to be sent
2930  *  @uinfo: signal info to be sent
2931  */
2932 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2933 		siginfo_t __user *, uinfo)
2934 {
2935 	siginfo_t info;
2936 
2937 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2938 		return -EFAULT;
2939 
2940 	/* Not even root can pretend to send signals from the kernel.
2941 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2942 	 */
2943 	if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2944 		/* We used to allow any < 0 si_code */
2945 		WARN_ON_ONCE(info.si_code < 0);
2946 		return -EPERM;
2947 	}
2948 	info.si_signo = sig;
2949 
2950 	/* POSIX.1b doesn't mention process groups.  */
2951 	return kill_proc_info(sig, &info, pid);
2952 }
2953 
2954 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2955 {
2956 	/* This is only valid for single tasks */
2957 	if (pid <= 0 || tgid <= 0)
2958 		return -EINVAL;
2959 
2960 	/* Not even root can pretend to send signals from the kernel.
2961 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2962 	 */
2963 	if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2964 		/* We used to allow any < 0 si_code */
2965 		WARN_ON_ONCE(info->si_code < 0);
2966 		return -EPERM;
2967 	}
2968 	info->si_signo = sig;
2969 
2970 	return do_send_specific(tgid, pid, sig, info);
2971 }
2972 
2973 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2974 		siginfo_t __user *, uinfo)
2975 {
2976 	siginfo_t info;
2977 
2978 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2979 		return -EFAULT;
2980 
2981 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2982 }
2983 
2984 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2985 {
2986 	struct task_struct *t = current;
2987 	struct k_sigaction *k;
2988 	sigset_t mask;
2989 
2990 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2991 		return -EINVAL;
2992 
2993 	k = &t->sighand->action[sig-1];
2994 
2995 	spin_lock_irq(&current->sighand->siglock);
2996 	if (oact)
2997 		*oact = *k;
2998 
2999 	if (act) {
3000 		sigdelsetmask(&act->sa.sa_mask,
3001 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3002 		*k = *act;
3003 		/*
3004 		 * POSIX 3.3.1.3:
3005 		 *  "Setting a signal action to SIG_IGN for a signal that is
3006 		 *   pending shall cause the pending signal to be discarded,
3007 		 *   whether or not it is blocked."
3008 		 *
3009 		 *  "Setting a signal action to SIG_DFL for a signal that is
3010 		 *   pending and whose default action is to ignore the signal
3011 		 *   (for example, SIGCHLD), shall cause the pending signal to
3012 		 *   be discarded, whether or not it is blocked"
3013 		 */
3014 		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3015 			sigemptyset(&mask);
3016 			sigaddset(&mask, sig);
3017 			rm_from_queue_full(&mask, &t->signal->shared_pending);
3018 			do {
3019 				rm_from_queue_full(&mask, &t->pending);
3020 				t = next_thread(t);
3021 			} while (t != current);
3022 		}
3023 	}
3024 
3025 	spin_unlock_irq(&current->sighand->siglock);
3026 	return 0;
3027 }
3028 
3029 int
3030 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3031 {
3032 	stack_t oss;
3033 	int error;
3034 
3035 	oss.ss_sp = (void __user *) current->sas_ss_sp;
3036 	oss.ss_size = current->sas_ss_size;
3037 	oss.ss_flags = sas_ss_flags(sp);
3038 
3039 	if (uss) {
3040 		void __user *ss_sp;
3041 		size_t ss_size;
3042 		int ss_flags;
3043 
3044 		error = -EFAULT;
3045 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3046 			goto out;
3047 		error = __get_user(ss_sp, &uss->ss_sp) |
3048 			__get_user(ss_flags, &uss->ss_flags) |
3049 			__get_user(ss_size, &uss->ss_size);
3050 		if (error)
3051 			goto out;
3052 
3053 		error = -EPERM;
3054 		if (on_sig_stack(sp))
3055 			goto out;
3056 
3057 		error = -EINVAL;
3058 		/*
3059 		 * Note - this code used to test ss_flags incorrectly:
3060 		 *  	  old code may have been written using ss_flags==0
3061 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3062 		 *	  way that worked) - this fix preserves that older
3063 		 *	  mechanism.
3064 		 */
3065 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3066 			goto out;
3067 
3068 		if (ss_flags == SS_DISABLE) {
3069 			ss_size = 0;
3070 			ss_sp = NULL;
3071 		} else {
3072 			error = -ENOMEM;
3073 			if (ss_size < MINSIGSTKSZ)
3074 				goto out;
3075 		}
3076 
3077 		current->sas_ss_sp = (unsigned long) ss_sp;
3078 		current->sas_ss_size = ss_size;
3079 	}
3080 
3081 	error = 0;
3082 	if (uoss) {
3083 		error = -EFAULT;
3084 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3085 			goto out;
3086 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3087 			__put_user(oss.ss_size, &uoss->ss_size) |
3088 			__put_user(oss.ss_flags, &uoss->ss_flags);
3089 	}
3090 
3091 out:
3092 	return error;
3093 }
3094 #ifdef CONFIG_GENERIC_SIGALTSTACK
3095 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3096 {
3097 	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3098 }
3099 #endif
3100 
3101 int restore_altstack(const stack_t __user *uss)
3102 {
3103 	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3104 	/* squash all but EFAULT for now */
3105 	return err == -EFAULT ? err : 0;
3106 }
3107 
3108 int __save_altstack(stack_t __user *uss, unsigned long sp)
3109 {
3110 	struct task_struct *t = current;
3111 	return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3112 		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3113 		__put_user(t->sas_ss_size, &uss->ss_size);
3114 }
3115 
3116 #ifdef CONFIG_COMPAT
3117 #ifdef CONFIG_GENERIC_SIGALTSTACK
3118 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3119 			const compat_stack_t __user *, uss_ptr,
3120 			compat_stack_t __user *, uoss_ptr)
3121 {
3122 	stack_t uss, uoss;
3123 	int ret;
3124 	mm_segment_t seg;
3125 
3126 	if (uss_ptr) {
3127 		compat_stack_t uss32;
3128 
3129 		memset(&uss, 0, sizeof(stack_t));
3130 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3131 			return -EFAULT;
3132 		uss.ss_sp = compat_ptr(uss32.ss_sp);
3133 		uss.ss_flags = uss32.ss_flags;
3134 		uss.ss_size = uss32.ss_size;
3135 	}
3136 	seg = get_fs();
3137 	set_fs(KERNEL_DS);
3138 	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3139 			     (stack_t __force __user *) &uoss,
3140 			     compat_user_stack_pointer());
3141 	set_fs(seg);
3142 	if (ret >= 0 && uoss_ptr)  {
3143 		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3144 		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3145 		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3146 		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3147 			ret = -EFAULT;
3148 	}
3149 	return ret;
3150 }
3151 
3152 int compat_restore_altstack(const compat_stack_t __user *uss)
3153 {
3154 	int err = compat_sys_sigaltstack(uss, NULL);
3155 	/* squash all but -EFAULT for now */
3156 	return err == -EFAULT ? err : 0;
3157 }
3158 
3159 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3160 {
3161 	struct task_struct *t = current;
3162 	return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3163 		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3164 		__put_user(t->sas_ss_size, &uss->ss_size);
3165 }
3166 #endif
3167 #endif
3168 
3169 #ifdef __ARCH_WANT_SYS_SIGPENDING
3170 
3171 /**
3172  *  sys_sigpending - examine pending signals
3173  *  @set: where mask of pending signal is returned
3174  */
3175 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3176 {
3177 	return do_sigpending(set, sizeof(*set));
3178 }
3179 
3180 #endif
3181 
3182 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3183 /**
3184  *  sys_sigprocmask - examine and change blocked signals
3185  *  @how: whether to add, remove, or set signals
3186  *  @nset: signals to add or remove (if non-null)
3187  *  @oset: previous value of signal mask if non-null
3188  *
3189  * Some platforms have their own version with special arguments;
3190  * others support only sys_rt_sigprocmask.
3191  */
3192 
3193 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3194 		old_sigset_t __user *, oset)
3195 {
3196 	old_sigset_t old_set, new_set;
3197 	sigset_t new_blocked;
3198 
3199 	old_set = current->blocked.sig[0];
3200 
3201 	if (nset) {
3202 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3203 			return -EFAULT;
3204 
3205 		new_blocked = current->blocked;
3206 
3207 		switch (how) {
3208 		case SIG_BLOCK:
3209 			sigaddsetmask(&new_blocked, new_set);
3210 			break;
3211 		case SIG_UNBLOCK:
3212 			sigdelsetmask(&new_blocked, new_set);
3213 			break;
3214 		case SIG_SETMASK:
3215 			new_blocked.sig[0] = new_set;
3216 			break;
3217 		default:
3218 			return -EINVAL;
3219 		}
3220 
3221 		set_current_blocked(&new_blocked);
3222 	}
3223 
3224 	if (oset) {
3225 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3226 			return -EFAULT;
3227 	}
3228 
3229 	return 0;
3230 }
3231 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3232 
3233 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3234 /**
3235  *  sys_rt_sigaction - alter an action taken by a process
3236  *  @sig: signal to be sent
3237  *  @act: new sigaction
3238  *  @oact: used to save the previous sigaction
3239  *  @sigsetsize: size of sigset_t type
3240  */
3241 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3242 		const struct sigaction __user *, act,
3243 		struct sigaction __user *, oact,
3244 		size_t, sigsetsize)
3245 {
3246 	struct k_sigaction new_sa, old_sa;
3247 	int ret = -EINVAL;
3248 
3249 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3250 	if (sigsetsize != sizeof(sigset_t))
3251 		goto out;
3252 
3253 	if (act) {
3254 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3255 			return -EFAULT;
3256 	}
3257 
3258 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3259 
3260 	if (!ret && oact) {
3261 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3262 			return -EFAULT;
3263 	}
3264 out:
3265 	return ret;
3266 }
3267 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3268 
3269 #ifdef __ARCH_WANT_SYS_SGETMASK
3270 
3271 /*
3272  * For backwards compatibility.  Functionality superseded by sigprocmask.
3273  */
3274 SYSCALL_DEFINE0(sgetmask)
3275 {
3276 	/* SMP safe */
3277 	return current->blocked.sig[0];
3278 }
3279 
3280 SYSCALL_DEFINE1(ssetmask, int, newmask)
3281 {
3282 	int old = current->blocked.sig[0];
3283 	sigset_t newset;
3284 
3285 	siginitset(&newset, newmask);
3286 	set_current_blocked(&newset);
3287 
3288 	return old;
3289 }
3290 #endif /* __ARCH_WANT_SGETMASK */
3291 
3292 #ifdef __ARCH_WANT_SYS_SIGNAL
3293 /*
3294  * For backwards compatibility.  Functionality superseded by sigaction.
3295  */
3296 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3297 {
3298 	struct k_sigaction new_sa, old_sa;
3299 	int ret;
3300 
3301 	new_sa.sa.sa_handler = handler;
3302 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3303 	sigemptyset(&new_sa.sa.sa_mask);
3304 
3305 	ret = do_sigaction(sig, &new_sa, &old_sa);
3306 
3307 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3308 }
3309 #endif /* __ARCH_WANT_SYS_SIGNAL */
3310 
3311 #ifdef __ARCH_WANT_SYS_PAUSE
3312 
3313 SYSCALL_DEFINE0(pause)
3314 {
3315 	while (!signal_pending(current)) {
3316 		current->state = TASK_INTERRUPTIBLE;
3317 		schedule();
3318 	}
3319 	return -ERESTARTNOHAND;
3320 }
3321 
3322 #endif
3323 
3324 int sigsuspend(sigset_t *set)
3325 {
3326 	current->saved_sigmask = current->blocked;
3327 	set_current_blocked(set);
3328 
3329 	current->state = TASK_INTERRUPTIBLE;
3330 	schedule();
3331 	set_restore_sigmask();
3332 	return -ERESTARTNOHAND;
3333 }
3334 
3335 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3336 /**
3337  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3338  *	@unewset value until a signal is received
3339  *  @unewset: new signal mask value
3340  *  @sigsetsize: size of sigset_t type
3341  */
3342 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3343 {
3344 	sigset_t newset;
3345 
3346 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3347 	if (sigsetsize != sizeof(sigset_t))
3348 		return -EINVAL;
3349 
3350 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3351 		return -EFAULT;
3352 	return sigsuspend(&newset);
3353 }
3354 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3355 
3356 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3357 {
3358 	return NULL;
3359 }
3360 
3361 void __init signals_init(void)
3362 {
3363 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3364 }
3365 
3366 #ifdef CONFIG_KGDB_KDB
3367 #include <linux/kdb.h>
3368 /*
3369  * kdb_send_sig_info - Allows kdb to send signals without exposing
3370  * signal internals.  This function checks if the required locks are
3371  * available before calling the main signal code, to avoid kdb
3372  * deadlocks.
3373  */
3374 void
3375 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3376 {
3377 	static struct task_struct *kdb_prev_t;
3378 	int sig, new_t;
3379 	if (!spin_trylock(&t->sighand->siglock)) {
3380 		kdb_printf("Can't do kill command now.\n"
3381 			   "The sigmask lock is held somewhere else in "
3382 			   "kernel, try again later\n");
3383 		return;
3384 	}
3385 	spin_unlock(&t->sighand->siglock);
3386 	new_t = kdb_prev_t != t;
3387 	kdb_prev_t = t;
3388 	if (t->state != TASK_RUNNING && new_t) {
3389 		kdb_printf("Process is not RUNNING, sending a signal from "
3390 			   "kdb risks deadlock\n"
3391 			   "on the run queue locks. "
3392 			   "The signal has _not_ been sent.\n"
3393 			   "Reissue the kill command if you want to risk "
3394 			   "the deadlock.\n");
3395 		return;
3396 	}
3397 	sig = info->si_signo;
3398 	if (send_sig_info(sig, info, t))
3399 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3400 			   sig, t->pid);
3401 	else
3402 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3403 }
3404 #endif	/* CONFIG_KGDB_KDB */
3405