xref: /openbmc/linux/kernel/signal.c (revision cce8ccca)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/livepatch.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/signal.h>
52 
53 #include <asm/param.h>
54 #include <linux/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/siginfo.h>
57 #include <asm/cacheflush.h>
58 
59 /*
60  * SLAB caches for signal bits.
61  */
62 
63 static struct kmem_cache *sigqueue_cachep;
64 
65 int print_fatal_signals __read_mostly;
66 
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 	return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71 
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 	/* Is it explicitly or implicitly ignored? */
75 	return handler == SIG_IGN ||
76 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78 
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 	void __user *handler;
82 
83 	handler = sig_handler(t, sig);
84 
85 	/* SIGKILL and SIGSTOP may not be sent to the global init */
86 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 		return true;
88 
89 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 		return true;
92 
93 	return sig_handler_ignored(handler, sig);
94 }
95 
96 static bool sig_ignored(struct task_struct *t, int sig, bool force)
97 {
98 	/*
99 	 * Blocked signals are never ignored, since the
100 	 * signal handler may change by the time it is
101 	 * unblocked.
102 	 */
103 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
104 		return false;
105 
106 	/*
107 	 * Tracers may want to know about even ignored signal unless it
108 	 * is SIGKILL which can't be reported anyway but can be ignored
109 	 * by SIGNAL_UNKILLABLE task.
110 	 */
111 	if (t->ptrace && sig != SIGKILL)
112 		return false;
113 
114 	return sig_task_ignored(t, sig, force);
115 }
116 
117 /*
118  * Re-calculate pending state from the set of locally pending
119  * signals, globally pending signals, and blocked signals.
120  */
121 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
122 {
123 	unsigned long ready;
124 	long i;
125 
126 	switch (_NSIG_WORDS) {
127 	default:
128 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
129 			ready |= signal->sig[i] &~ blocked->sig[i];
130 		break;
131 
132 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
133 		ready |= signal->sig[2] &~ blocked->sig[2];
134 		ready |= signal->sig[1] &~ blocked->sig[1];
135 		ready |= signal->sig[0] &~ blocked->sig[0];
136 		break;
137 
138 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
139 		ready |= signal->sig[0] &~ blocked->sig[0];
140 		break;
141 
142 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
143 	}
144 	return ready !=	0;
145 }
146 
147 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
148 
149 static bool recalc_sigpending_tsk(struct task_struct *t)
150 {
151 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
152 	    PENDING(&t->pending, &t->blocked) ||
153 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
154 	    cgroup_task_frozen(t)) {
155 		set_tsk_thread_flag(t, TIF_SIGPENDING);
156 		return true;
157 	}
158 
159 	/*
160 	 * We must never clear the flag in another thread, or in current
161 	 * when it's possible the current syscall is returning -ERESTART*.
162 	 * So we don't clear it here, and only callers who know they should do.
163 	 */
164 	return false;
165 }
166 
167 /*
168  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
169  * This is superfluous when called on current, the wakeup is a harmless no-op.
170  */
171 void recalc_sigpending_and_wake(struct task_struct *t)
172 {
173 	if (recalc_sigpending_tsk(t))
174 		signal_wake_up(t, 0);
175 }
176 
177 void recalc_sigpending(void)
178 {
179 	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
180 	    !klp_patch_pending(current))
181 		clear_thread_flag(TIF_SIGPENDING);
182 
183 }
184 EXPORT_SYMBOL(recalc_sigpending);
185 
186 void calculate_sigpending(void)
187 {
188 	/* Have any signals or users of TIF_SIGPENDING been delayed
189 	 * until after fork?
190 	 */
191 	spin_lock_irq(&current->sighand->siglock);
192 	set_tsk_thread_flag(current, TIF_SIGPENDING);
193 	recalc_sigpending();
194 	spin_unlock_irq(&current->sighand->siglock);
195 }
196 
197 /* Given the mask, find the first available signal that should be serviced. */
198 
199 #define SYNCHRONOUS_MASK \
200 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
201 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
202 
203 int next_signal(struct sigpending *pending, sigset_t *mask)
204 {
205 	unsigned long i, *s, *m, x;
206 	int sig = 0;
207 
208 	s = pending->signal.sig;
209 	m = mask->sig;
210 
211 	/*
212 	 * Handle the first word specially: it contains the
213 	 * synchronous signals that need to be dequeued first.
214 	 */
215 	x = *s &~ *m;
216 	if (x) {
217 		if (x & SYNCHRONOUS_MASK)
218 			x &= SYNCHRONOUS_MASK;
219 		sig = ffz(~x) + 1;
220 		return sig;
221 	}
222 
223 	switch (_NSIG_WORDS) {
224 	default:
225 		for (i = 1; i < _NSIG_WORDS; ++i) {
226 			x = *++s &~ *++m;
227 			if (!x)
228 				continue;
229 			sig = ffz(~x) + i*_NSIG_BPW + 1;
230 			break;
231 		}
232 		break;
233 
234 	case 2:
235 		x = s[1] &~ m[1];
236 		if (!x)
237 			break;
238 		sig = ffz(~x) + _NSIG_BPW + 1;
239 		break;
240 
241 	case 1:
242 		/* Nothing to do */
243 		break;
244 	}
245 
246 	return sig;
247 }
248 
249 static inline void print_dropped_signal(int sig)
250 {
251 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
252 
253 	if (!print_fatal_signals)
254 		return;
255 
256 	if (!__ratelimit(&ratelimit_state))
257 		return;
258 
259 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
260 				current->comm, current->pid, sig);
261 }
262 
263 /**
264  * task_set_jobctl_pending - set jobctl pending bits
265  * @task: target task
266  * @mask: pending bits to set
267  *
268  * Clear @mask from @task->jobctl.  @mask must be subset of
269  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
270  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
271  * cleared.  If @task is already being killed or exiting, this function
272  * becomes noop.
273  *
274  * CONTEXT:
275  * Must be called with @task->sighand->siglock held.
276  *
277  * RETURNS:
278  * %true if @mask is set, %false if made noop because @task was dying.
279  */
280 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
281 {
282 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
283 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
284 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
285 
286 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
287 		return false;
288 
289 	if (mask & JOBCTL_STOP_SIGMASK)
290 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
291 
292 	task->jobctl |= mask;
293 	return true;
294 }
295 
296 /**
297  * task_clear_jobctl_trapping - clear jobctl trapping bit
298  * @task: target task
299  *
300  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
301  * Clear it and wake up the ptracer.  Note that we don't need any further
302  * locking.  @task->siglock guarantees that @task->parent points to the
303  * ptracer.
304  *
305  * CONTEXT:
306  * Must be called with @task->sighand->siglock held.
307  */
308 void task_clear_jobctl_trapping(struct task_struct *task)
309 {
310 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
311 		task->jobctl &= ~JOBCTL_TRAPPING;
312 		smp_mb();	/* advised by wake_up_bit() */
313 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
314 	}
315 }
316 
317 /**
318  * task_clear_jobctl_pending - clear jobctl pending bits
319  * @task: target task
320  * @mask: pending bits to clear
321  *
322  * Clear @mask from @task->jobctl.  @mask must be subset of
323  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
324  * STOP bits are cleared together.
325  *
326  * If clearing of @mask leaves no stop or trap pending, this function calls
327  * task_clear_jobctl_trapping().
328  *
329  * CONTEXT:
330  * Must be called with @task->sighand->siglock held.
331  */
332 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
333 {
334 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
335 
336 	if (mask & JOBCTL_STOP_PENDING)
337 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
338 
339 	task->jobctl &= ~mask;
340 
341 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
342 		task_clear_jobctl_trapping(task);
343 }
344 
345 /**
346  * task_participate_group_stop - participate in a group stop
347  * @task: task participating in a group stop
348  *
349  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
350  * Group stop states are cleared and the group stop count is consumed if
351  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
352  * stop, the appropriate `SIGNAL_*` flags are set.
353  *
354  * CONTEXT:
355  * Must be called with @task->sighand->siglock held.
356  *
357  * RETURNS:
358  * %true if group stop completion should be notified to the parent, %false
359  * otherwise.
360  */
361 static bool task_participate_group_stop(struct task_struct *task)
362 {
363 	struct signal_struct *sig = task->signal;
364 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
365 
366 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
367 
368 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
369 
370 	if (!consume)
371 		return false;
372 
373 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
374 		sig->group_stop_count--;
375 
376 	/*
377 	 * Tell the caller to notify completion iff we are entering into a
378 	 * fresh group stop.  Read comment in do_signal_stop() for details.
379 	 */
380 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
381 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
382 		return true;
383 	}
384 	return false;
385 }
386 
387 void task_join_group_stop(struct task_struct *task)
388 {
389 	/* Have the new thread join an on-going signal group stop */
390 	unsigned long jobctl = current->jobctl;
391 	if (jobctl & JOBCTL_STOP_PENDING) {
392 		struct signal_struct *sig = current->signal;
393 		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
394 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
395 		if (task_set_jobctl_pending(task, signr | gstop)) {
396 			sig->group_stop_count++;
397 		}
398 	}
399 }
400 
401 /*
402  * allocate a new signal queue record
403  * - this may be called without locks if and only if t == current, otherwise an
404  *   appropriate lock must be held to stop the target task from exiting
405  */
406 static struct sigqueue *
407 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
408 {
409 	struct sigqueue *q = NULL;
410 	struct user_struct *user;
411 
412 	/*
413 	 * Protect access to @t credentials. This can go away when all
414 	 * callers hold rcu read lock.
415 	 */
416 	rcu_read_lock();
417 	user = get_uid(__task_cred(t)->user);
418 	atomic_inc(&user->sigpending);
419 	rcu_read_unlock();
420 
421 	if (override_rlimit ||
422 	    atomic_read(&user->sigpending) <=
423 			task_rlimit(t, RLIMIT_SIGPENDING)) {
424 		q = kmem_cache_alloc(sigqueue_cachep, flags);
425 	} else {
426 		print_dropped_signal(sig);
427 	}
428 
429 	if (unlikely(q == NULL)) {
430 		atomic_dec(&user->sigpending);
431 		free_uid(user);
432 	} else {
433 		INIT_LIST_HEAD(&q->list);
434 		q->flags = 0;
435 		q->user = user;
436 	}
437 
438 	return q;
439 }
440 
441 static void __sigqueue_free(struct sigqueue *q)
442 {
443 	if (q->flags & SIGQUEUE_PREALLOC)
444 		return;
445 	atomic_dec(&q->user->sigpending);
446 	free_uid(q->user);
447 	kmem_cache_free(sigqueue_cachep, q);
448 }
449 
450 void flush_sigqueue(struct sigpending *queue)
451 {
452 	struct sigqueue *q;
453 
454 	sigemptyset(&queue->signal);
455 	while (!list_empty(&queue->list)) {
456 		q = list_entry(queue->list.next, struct sigqueue , list);
457 		list_del_init(&q->list);
458 		__sigqueue_free(q);
459 	}
460 }
461 
462 /*
463  * Flush all pending signals for this kthread.
464  */
465 void flush_signals(struct task_struct *t)
466 {
467 	unsigned long flags;
468 
469 	spin_lock_irqsave(&t->sighand->siglock, flags);
470 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
471 	flush_sigqueue(&t->pending);
472 	flush_sigqueue(&t->signal->shared_pending);
473 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
474 }
475 EXPORT_SYMBOL(flush_signals);
476 
477 #ifdef CONFIG_POSIX_TIMERS
478 static void __flush_itimer_signals(struct sigpending *pending)
479 {
480 	sigset_t signal, retain;
481 	struct sigqueue *q, *n;
482 
483 	signal = pending->signal;
484 	sigemptyset(&retain);
485 
486 	list_for_each_entry_safe(q, n, &pending->list, list) {
487 		int sig = q->info.si_signo;
488 
489 		if (likely(q->info.si_code != SI_TIMER)) {
490 			sigaddset(&retain, sig);
491 		} else {
492 			sigdelset(&signal, sig);
493 			list_del_init(&q->list);
494 			__sigqueue_free(q);
495 		}
496 	}
497 
498 	sigorsets(&pending->signal, &signal, &retain);
499 }
500 
501 void flush_itimer_signals(void)
502 {
503 	struct task_struct *tsk = current;
504 	unsigned long flags;
505 
506 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
507 	__flush_itimer_signals(&tsk->pending);
508 	__flush_itimer_signals(&tsk->signal->shared_pending);
509 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
510 }
511 #endif
512 
513 void ignore_signals(struct task_struct *t)
514 {
515 	int i;
516 
517 	for (i = 0; i < _NSIG; ++i)
518 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
519 
520 	flush_signals(t);
521 }
522 
523 /*
524  * Flush all handlers for a task.
525  */
526 
527 void
528 flush_signal_handlers(struct task_struct *t, int force_default)
529 {
530 	int i;
531 	struct k_sigaction *ka = &t->sighand->action[0];
532 	for (i = _NSIG ; i != 0 ; i--) {
533 		if (force_default || ka->sa.sa_handler != SIG_IGN)
534 			ka->sa.sa_handler = SIG_DFL;
535 		ka->sa.sa_flags = 0;
536 #ifdef __ARCH_HAS_SA_RESTORER
537 		ka->sa.sa_restorer = NULL;
538 #endif
539 		sigemptyset(&ka->sa.sa_mask);
540 		ka++;
541 	}
542 }
543 
544 bool unhandled_signal(struct task_struct *tsk, int sig)
545 {
546 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
547 	if (is_global_init(tsk))
548 		return true;
549 
550 	if (handler != SIG_IGN && handler != SIG_DFL)
551 		return false;
552 
553 	/* if ptraced, let the tracer determine */
554 	return !tsk->ptrace;
555 }
556 
557 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
558 			   bool *resched_timer)
559 {
560 	struct sigqueue *q, *first = NULL;
561 
562 	/*
563 	 * Collect the siginfo appropriate to this signal.  Check if
564 	 * there is another siginfo for the same signal.
565 	*/
566 	list_for_each_entry(q, &list->list, list) {
567 		if (q->info.si_signo == sig) {
568 			if (first)
569 				goto still_pending;
570 			first = q;
571 		}
572 	}
573 
574 	sigdelset(&list->signal, sig);
575 
576 	if (first) {
577 still_pending:
578 		list_del_init(&first->list);
579 		copy_siginfo(info, &first->info);
580 
581 		*resched_timer =
582 			(first->flags & SIGQUEUE_PREALLOC) &&
583 			(info->si_code == SI_TIMER) &&
584 			(info->si_sys_private);
585 
586 		__sigqueue_free(first);
587 	} else {
588 		/*
589 		 * Ok, it wasn't in the queue.  This must be
590 		 * a fast-pathed signal or we must have been
591 		 * out of queue space.  So zero out the info.
592 		 */
593 		clear_siginfo(info);
594 		info->si_signo = sig;
595 		info->si_errno = 0;
596 		info->si_code = SI_USER;
597 		info->si_pid = 0;
598 		info->si_uid = 0;
599 	}
600 }
601 
602 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
603 			kernel_siginfo_t *info, bool *resched_timer)
604 {
605 	int sig = next_signal(pending, mask);
606 
607 	if (sig)
608 		collect_signal(sig, pending, info, resched_timer);
609 	return sig;
610 }
611 
612 /*
613  * Dequeue a signal and return the element to the caller, which is
614  * expected to free it.
615  *
616  * All callers have to hold the siglock.
617  */
618 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
619 {
620 	bool resched_timer = false;
621 	int signr;
622 
623 	/* We only dequeue private signals from ourselves, we don't let
624 	 * signalfd steal them
625 	 */
626 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
627 	if (!signr) {
628 		signr = __dequeue_signal(&tsk->signal->shared_pending,
629 					 mask, info, &resched_timer);
630 #ifdef CONFIG_POSIX_TIMERS
631 		/*
632 		 * itimer signal ?
633 		 *
634 		 * itimers are process shared and we restart periodic
635 		 * itimers in the signal delivery path to prevent DoS
636 		 * attacks in the high resolution timer case. This is
637 		 * compliant with the old way of self-restarting
638 		 * itimers, as the SIGALRM is a legacy signal and only
639 		 * queued once. Changing the restart behaviour to
640 		 * restart the timer in the signal dequeue path is
641 		 * reducing the timer noise on heavy loaded !highres
642 		 * systems too.
643 		 */
644 		if (unlikely(signr == SIGALRM)) {
645 			struct hrtimer *tmr = &tsk->signal->real_timer;
646 
647 			if (!hrtimer_is_queued(tmr) &&
648 			    tsk->signal->it_real_incr != 0) {
649 				hrtimer_forward(tmr, tmr->base->get_time(),
650 						tsk->signal->it_real_incr);
651 				hrtimer_restart(tmr);
652 			}
653 		}
654 #endif
655 	}
656 
657 	recalc_sigpending();
658 	if (!signr)
659 		return 0;
660 
661 	if (unlikely(sig_kernel_stop(signr))) {
662 		/*
663 		 * Set a marker that we have dequeued a stop signal.  Our
664 		 * caller might release the siglock and then the pending
665 		 * stop signal it is about to process is no longer in the
666 		 * pending bitmasks, but must still be cleared by a SIGCONT
667 		 * (and overruled by a SIGKILL).  So those cases clear this
668 		 * shared flag after we've set it.  Note that this flag may
669 		 * remain set after the signal we return is ignored or
670 		 * handled.  That doesn't matter because its only purpose
671 		 * is to alert stop-signal processing code when another
672 		 * processor has come along and cleared the flag.
673 		 */
674 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
675 	}
676 #ifdef CONFIG_POSIX_TIMERS
677 	if (resched_timer) {
678 		/*
679 		 * Release the siglock to ensure proper locking order
680 		 * of timer locks outside of siglocks.  Note, we leave
681 		 * irqs disabled here, since the posix-timers code is
682 		 * about to disable them again anyway.
683 		 */
684 		spin_unlock(&tsk->sighand->siglock);
685 		posixtimer_rearm(info);
686 		spin_lock(&tsk->sighand->siglock);
687 
688 		/* Don't expose the si_sys_private value to userspace */
689 		info->si_sys_private = 0;
690 	}
691 #endif
692 	return signr;
693 }
694 EXPORT_SYMBOL_GPL(dequeue_signal);
695 
696 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
697 {
698 	struct task_struct *tsk = current;
699 	struct sigpending *pending = &tsk->pending;
700 	struct sigqueue *q, *sync = NULL;
701 
702 	/*
703 	 * Might a synchronous signal be in the queue?
704 	 */
705 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
706 		return 0;
707 
708 	/*
709 	 * Return the first synchronous signal in the queue.
710 	 */
711 	list_for_each_entry(q, &pending->list, list) {
712 		/* Synchronous signals have a postive si_code */
713 		if ((q->info.si_code > SI_USER) &&
714 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
715 			sync = q;
716 			goto next;
717 		}
718 	}
719 	return 0;
720 next:
721 	/*
722 	 * Check if there is another siginfo for the same signal.
723 	 */
724 	list_for_each_entry_continue(q, &pending->list, list) {
725 		if (q->info.si_signo == sync->info.si_signo)
726 			goto still_pending;
727 	}
728 
729 	sigdelset(&pending->signal, sync->info.si_signo);
730 	recalc_sigpending();
731 still_pending:
732 	list_del_init(&sync->list);
733 	copy_siginfo(info, &sync->info);
734 	__sigqueue_free(sync);
735 	return info->si_signo;
736 }
737 
738 /*
739  * Tell a process that it has a new active signal..
740  *
741  * NOTE! we rely on the previous spin_lock to
742  * lock interrupts for us! We can only be called with
743  * "siglock" held, and the local interrupt must
744  * have been disabled when that got acquired!
745  *
746  * No need to set need_resched since signal event passing
747  * goes through ->blocked
748  */
749 void signal_wake_up_state(struct task_struct *t, unsigned int state)
750 {
751 	set_tsk_thread_flag(t, TIF_SIGPENDING);
752 	/*
753 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
754 	 * case. We don't check t->state here because there is a race with it
755 	 * executing another processor and just now entering stopped state.
756 	 * By using wake_up_state, we ensure the process will wake up and
757 	 * handle its death signal.
758 	 */
759 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
760 		kick_process(t);
761 }
762 
763 /*
764  * Remove signals in mask from the pending set and queue.
765  * Returns 1 if any signals were found.
766  *
767  * All callers must be holding the siglock.
768  */
769 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
770 {
771 	struct sigqueue *q, *n;
772 	sigset_t m;
773 
774 	sigandsets(&m, mask, &s->signal);
775 	if (sigisemptyset(&m))
776 		return;
777 
778 	sigandnsets(&s->signal, &s->signal, mask);
779 	list_for_each_entry_safe(q, n, &s->list, list) {
780 		if (sigismember(mask, q->info.si_signo)) {
781 			list_del_init(&q->list);
782 			__sigqueue_free(q);
783 		}
784 	}
785 }
786 
787 static inline int is_si_special(const struct kernel_siginfo *info)
788 {
789 	return info <= SEND_SIG_PRIV;
790 }
791 
792 static inline bool si_fromuser(const struct kernel_siginfo *info)
793 {
794 	return info == SEND_SIG_NOINFO ||
795 		(!is_si_special(info) && SI_FROMUSER(info));
796 }
797 
798 /*
799  * called with RCU read lock from check_kill_permission()
800  */
801 static bool kill_ok_by_cred(struct task_struct *t)
802 {
803 	const struct cred *cred = current_cred();
804 	const struct cred *tcred = __task_cred(t);
805 
806 	return uid_eq(cred->euid, tcred->suid) ||
807 	       uid_eq(cred->euid, tcred->uid) ||
808 	       uid_eq(cred->uid, tcred->suid) ||
809 	       uid_eq(cred->uid, tcred->uid) ||
810 	       ns_capable(tcred->user_ns, CAP_KILL);
811 }
812 
813 /*
814  * Bad permissions for sending the signal
815  * - the caller must hold the RCU read lock
816  */
817 static int check_kill_permission(int sig, struct kernel_siginfo *info,
818 				 struct task_struct *t)
819 {
820 	struct pid *sid;
821 	int error;
822 
823 	if (!valid_signal(sig))
824 		return -EINVAL;
825 
826 	if (!si_fromuser(info))
827 		return 0;
828 
829 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
830 	if (error)
831 		return error;
832 
833 	if (!same_thread_group(current, t) &&
834 	    !kill_ok_by_cred(t)) {
835 		switch (sig) {
836 		case SIGCONT:
837 			sid = task_session(t);
838 			/*
839 			 * We don't return the error if sid == NULL. The
840 			 * task was unhashed, the caller must notice this.
841 			 */
842 			if (!sid || sid == task_session(current))
843 				break;
844 			/* fall through */
845 		default:
846 			return -EPERM;
847 		}
848 	}
849 
850 	return security_task_kill(t, info, sig, NULL);
851 }
852 
853 /**
854  * ptrace_trap_notify - schedule trap to notify ptracer
855  * @t: tracee wanting to notify tracer
856  *
857  * This function schedules sticky ptrace trap which is cleared on the next
858  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
859  * ptracer.
860  *
861  * If @t is running, STOP trap will be taken.  If trapped for STOP and
862  * ptracer is listening for events, tracee is woken up so that it can
863  * re-trap for the new event.  If trapped otherwise, STOP trap will be
864  * eventually taken without returning to userland after the existing traps
865  * are finished by PTRACE_CONT.
866  *
867  * CONTEXT:
868  * Must be called with @task->sighand->siglock held.
869  */
870 static void ptrace_trap_notify(struct task_struct *t)
871 {
872 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
873 	assert_spin_locked(&t->sighand->siglock);
874 
875 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
876 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
877 }
878 
879 /*
880  * Handle magic process-wide effects of stop/continue signals. Unlike
881  * the signal actions, these happen immediately at signal-generation
882  * time regardless of blocking, ignoring, or handling.  This does the
883  * actual continuing for SIGCONT, but not the actual stopping for stop
884  * signals. The process stop is done as a signal action for SIG_DFL.
885  *
886  * Returns true if the signal should be actually delivered, otherwise
887  * it should be dropped.
888  */
889 static bool prepare_signal(int sig, struct task_struct *p, bool force)
890 {
891 	struct signal_struct *signal = p->signal;
892 	struct task_struct *t;
893 	sigset_t flush;
894 
895 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
896 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
897 			return sig == SIGKILL;
898 		/*
899 		 * The process is in the middle of dying, nothing to do.
900 		 */
901 	} else if (sig_kernel_stop(sig)) {
902 		/*
903 		 * This is a stop signal.  Remove SIGCONT from all queues.
904 		 */
905 		siginitset(&flush, sigmask(SIGCONT));
906 		flush_sigqueue_mask(&flush, &signal->shared_pending);
907 		for_each_thread(p, t)
908 			flush_sigqueue_mask(&flush, &t->pending);
909 	} else if (sig == SIGCONT) {
910 		unsigned int why;
911 		/*
912 		 * Remove all stop signals from all queues, wake all threads.
913 		 */
914 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
915 		flush_sigqueue_mask(&flush, &signal->shared_pending);
916 		for_each_thread(p, t) {
917 			flush_sigqueue_mask(&flush, &t->pending);
918 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
919 			if (likely(!(t->ptrace & PT_SEIZED)))
920 				wake_up_state(t, __TASK_STOPPED);
921 			else
922 				ptrace_trap_notify(t);
923 		}
924 
925 		/*
926 		 * Notify the parent with CLD_CONTINUED if we were stopped.
927 		 *
928 		 * If we were in the middle of a group stop, we pretend it
929 		 * was already finished, and then continued. Since SIGCHLD
930 		 * doesn't queue we report only CLD_STOPPED, as if the next
931 		 * CLD_CONTINUED was dropped.
932 		 */
933 		why = 0;
934 		if (signal->flags & SIGNAL_STOP_STOPPED)
935 			why |= SIGNAL_CLD_CONTINUED;
936 		else if (signal->group_stop_count)
937 			why |= SIGNAL_CLD_STOPPED;
938 
939 		if (why) {
940 			/*
941 			 * The first thread which returns from do_signal_stop()
942 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
943 			 * notify its parent. See get_signal().
944 			 */
945 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
946 			signal->group_stop_count = 0;
947 			signal->group_exit_code = 0;
948 		}
949 	}
950 
951 	return !sig_ignored(p, sig, force);
952 }
953 
954 /*
955  * Test if P wants to take SIG.  After we've checked all threads with this,
956  * it's equivalent to finding no threads not blocking SIG.  Any threads not
957  * blocking SIG were ruled out because they are not running and already
958  * have pending signals.  Such threads will dequeue from the shared queue
959  * as soon as they're available, so putting the signal on the shared queue
960  * will be equivalent to sending it to one such thread.
961  */
962 static inline bool wants_signal(int sig, struct task_struct *p)
963 {
964 	if (sigismember(&p->blocked, sig))
965 		return false;
966 
967 	if (p->flags & PF_EXITING)
968 		return false;
969 
970 	if (sig == SIGKILL)
971 		return true;
972 
973 	if (task_is_stopped_or_traced(p))
974 		return false;
975 
976 	return task_curr(p) || !signal_pending(p);
977 }
978 
979 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
980 {
981 	struct signal_struct *signal = p->signal;
982 	struct task_struct *t;
983 
984 	/*
985 	 * Now find a thread we can wake up to take the signal off the queue.
986 	 *
987 	 * If the main thread wants the signal, it gets first crack.
988 	 * Probably the least surprising to the average bear.
989 	 */
990 	if (wants_signal(sig, p))
991 		t = p;
992 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
993 		/*
994 		 * There is just one thread and it does not need to be woken.
995 		 * It will dequeue unblocked signals before it runs again.
996 		 */
997 		return;
998 	else {
999 		/*
1000 		 * Otherwise try to find a suitable thread.
1001 		 */
1002 		t = signal->curr_target;
1003 		while (!wants_signal(sig, t)) {
1004 			t = next_thread(t);
1005 			if (t == signal->curr_target)
1006 				/*
1007 				 * No thread needs to be woken.
1008 				 * Any eligible threads will see
1009 				 * the signal in the queue soon.
1010 				 */
1011 				return;
1012 		}
1013 		signal->curr_target = t;
1014 	}
1015 
1016 	/*
1017 	 * Found a killable thread.  If the signal will be fatal,
1018 	 * then start taking the whole group down immediately.
1019 	 */
1020 	if (sig_fatal(p, sig) &&
1021 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1022 	    !sigismember(&t->real_blocked, sig) &&
1023 	    (sig == SIGKILL || !p->ptrace)) {
1024 		/*
1025 		 * This signal will be fatal to the whole group.
1026 		 */
1027 		if (!sig_kernel_coredump(sig)) {
1028 			/*
1029 			 * Start a group exit and wake everybody up.
1030 			 * This way we don't have other threads
1031 			 * running and doing things after a slower
1032 			 * thread has the fatal signal pending.
1033 			 */
1034 			signal->flags = SIGNAL_GROUP_EXIT;
1035 			signal->group_exit_code = sig;
1036 			signal->group_stop_count = 0;
1037 			t = p;
1038 			do {
1039 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1040 				sigaddset(&t->pending.signal, SIGKILL);
1041 				signal_wake_up(t, 1);
1042 			} while_each_thread(p, t);
1043 			return;
1044 		}
1045 	}
1046 
1047 	/*
1048 	 * The signal is already in the shared-pending queue.
1049 	 * Tell the chosen thread to wake up and dequeue it.
1050 	 */
1051 	signal_wake_up(t, sig == SIGKILL);
1052 	return;
1053 }
1054 
1055 static inline bool legacy_queue(struct sigpending *signals, int sig)
1056 {
1057 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1058 }
1059 
1060 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1061 			enum pid_type type, bool force)
1062 {
1063 	struct sigpending *pending;
1064 	struct sigqueue *q;
1065 	int override_rlimit;
1066 	int ret = 0, result;
1067 
1068 	assert_spin_locked(&t->sighand->siglock);
1069 
1070 	result = TRACE_SIGNAL_IGNORED;
1071 	if (!prepare_signal(sig, t, force))
1072 		goto ret;
1073 
1074 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1075 	/*
1076 	 * Short-circuit ignored signals and support queuing
1077 	 * exactly one non-rt signal, so that we can get more
1078 	 * detailed information about the cause of the signal.
1079 	 */
1080 	result = TRACE_SIGNAL_ALREADY_PENDING;
1081 	if (legacy_queue(pending, sig))
1082 		goto ret;
1083 
1084 	result = TRACE_SIGNAL_DELIVERED;
1085 	/*
1086 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1087 	 */
1088 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1089 		goto out_set;
1090 
1091 	/*
1092 	 * Real-time signals must be queued if sent by sigqueue, or
1093 	 * some other real-time mechanism.  It is implementation
1094 	 * defined whether kill() does so.  We attempt to do so, on
1095 	 * the principle of least surprise, but since kill is not
1096 	 * allowed to fail with EAGAIN when low on memory we just
1097 	 * make sure at least one signal gets delivered and don't
1098 	 * pass on the info struct.
1099 	 */
1100 	if (sig < SIGRTMIN)
1101 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1102 	else
1103 		override_rlimit = 0;
1104 
1105 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1106 	if (q) {
1107 		list_add_tail(&q->list, &pending->list);
1108 		switch ((unsigned long) info) {
1109 		case (unsigned long) SEND_SIG_NOINFO:
1110 			clear_siginfo(&q->info);
1111 			q->info.si_signo = sig;
1112 			q->info.si_errno = 0;
1113 			q->info.si_code = SI_USER;
1114 			q->info.si_pid = task_tgid_nr_ns(current,
1115 							task_active_pid_ns(t));
1116 			rcu_read_lock();
1117 			q->info.si_uid =
1118 				from_kuid_munged(task_cred_xxx(t, user_ns),
1119 						 current_uid());
1120 			rcu_read_unlock();
1121 			break;
1122 		case (unsigned long) SEND_SIG_PRIV:
1123 			clear_siginfo(&q->info);
1124 			q->info.si_signo = sig;
1125 			q->info.si_errno = 0;
1126 			q->info.si_code = SI_KERNEL;
1127 			q->info.si_pid = 0;
1128 			q->info.si_uid = 0;
1129 			break;
1130 		default:
1131 			copy_siginfo(&q->info, info);
1132 			break;
1133 		}
1134 	} else if (!is_si_special(info) &&
1135 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1136 		/*
1137 		 * Queue overflow, abort.  We may abort if the
1138 		 * signal was rt and sent by user using something
1139 		 * other than kill().
1140 		 */
1141 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1142 		ret = -EAGAIN;
1143 		goto ret;
1144 	} else {
1145 		/*
1146 		 * This is a silent loss of information.  We still
1147 		 * send the signal, but the *info bits are lost.
1148 		 */
1149 		result = TRACE_SIGNAL_LOSE_INFO;
1150 	}
1151 
1152 out_set:
1153 	signalfd_notify(t, sig);
1154 	sigaddset(&pending->signal, sig);
1155 
1156 	/* Let multiprocess signals appear after on-going forks */
1157 	if (type > PIDTYPE_TGID) {
1158 		struct multiprocess_signals *delayed;
1159 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1160 			sigset_t *signal = &delayed->signal;
1161 			/* Can't queue both a stop and a continue signal */
1162 			if (sig == SIGCONT)
1163 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1164 			else if (sig_kernel_stop(sig))
1165 				sigdelset(signal, SIGCONT);
1166 			sigaddset(signal, sig);
1167 		}
1168 	}
1169 
1170 	complete_signal(sig, t, type);
1171 ret:
1172 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1173 	return ret;
1174 }
1175 
1176 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1177 {
1178 	bool ret = false;
1179 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1180 	case SIL_KILL:
1181 	case SIL_CHLD:
1182 	case SIL_RT:
1183 		ret = true;
1184 		break;
1185 	case SIL_TIMER:
1186 	case SIL_POLL:
1187 	case SIL_FAULT:
1188 	case SIL_FAULT_MCEERR:
1189 	case SIL_FAULT_BNDERR:
1190 	case SIL_FAULT_PKUERR:
1191 	case SIL_SYS:
1192 		ret = false;
1193 		break;
1194 	}
1195 	return ret;
1196 }
1197 
1198 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1199 			enum pid_type type)
1200 {
1201 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1202 	bool force = false;
1203 
1204 	if (info == SEND_SIG_NOINFO) {
1205 		/* Force if sent from an ancestor pid namespace */
1206 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1207 	} else if (info == SEND_SIG_PRIV) {
1208 		/* Don't ignore kernel generated signals */
1209 		force = true;
1210 	} else if (has_si_pid_and_uid(info)) {
1211 		/* SIGKILL and SIGSTOP is special or has ids */
1212 		struct user_namespace *t_user_ns;
1213 
1214 		rcu_read_lock();
1215 		t_user_ns = task_cred_xxx(t, user_ns);
1216 		if (current_user_ns() != t_user_ns) {
1217 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1218 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1219 		}
1220 		rcu_read_unlock();
1221 
1222 		/* A kernel generated signal? */
1223 		force = (info->si_code == SI_KERNEL);
1224 
1225 		/* From an ancestor pid namespace? */
1226 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1227 			info->si_pid = 0;
1228 			force = true;
1229 		}
1230 	}
1231 	return __send_signal(sig, info, t, type, force);
1232 }
1233 
1234 static void print_fatal_signal(int signr)
1235 {
1236 	struct pt_regs *regs = signal_pt_regs();
1237 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1238 
1239 #if defined(__i386__) && !defined(__arch_um__)
1240 	pr_info("code at %08lx: ", regs->ip);
1241 	{
1242 		int i;
1243 		for (i = 0; i < 16; i++) {
1244 			unsigned char insn;
1245 
1246 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1247 				break;
1248 			pr_cont("%02x ", insn);
1249 		}
1250 	}
1251 	pr_cont("\n");
1252 #endif
1253 	preempt_disable();
1254 	show_regs(regs);
1255 	preempt_enable();
1256 }
1257 
1258 static int __init setup_print_fatal_signals(char *str)
1259 {
1260 	get_option (&str, &print_fatal_signals);
1261 
1262 	return 1;
1263 }
1264 
1265 __setup("print-fatal-signals=", setup_print_fatal_signals);
1266 
1267 int
1268 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1269 {
1270 	return send_signal(sig, info, p, PIDTYPE_TGID);
1271 }
1272 
1273 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1274 			enum pid_type type)
1275 {
1276 	unsigned long flags;
1277 	int ret = -ESRCH;
1278 
1279 	if (lock_task_sighand(p, &flags)) {
1280 		ret = send_signal(sig, info, p, type);
1281 		unlock_task_sighand(p, &flags);
1282 	}
1283 
1284 	return ret;
1285 }
1286 
1287 /*
1288  * Force a signal that the process can't ignore: if necessary
1289  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1290  *
1291  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1292  * since we do not want to have a signal handler that was blocked
1293  * be invoked when user space had explicitly blocked it.
1294  *
1295  * We don't want to have recursive SIGSEGV's etc, for example,
1296  * that is why we also clear SIGNAL_UNKILLABLE.
1297  */
1298 static int
1299 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1300 {
1301 	unsigned long int flags;
1302 	int ret, blocked, ignored;
1303 	struct k_sigaction *action;
1304 	int sig = info->si_signo;
1305 
1306 	spin_lock_irqsave(&t->sighand->siglock, flags);
1307 	action = &t->sighand->action[sig-1];
1308 	ignored = action->sa.sa_handler == SIG_IGN;
1309 	blocked = sigismember(&t->blocked, sig);
1310 	if (blocked || ignored) {
1311 		action->sa.sa_handler = SIG_DFL;
1312 		if (blocked) {
1313 			sigdelset(&t->blocked, sig);
1314 			recalc_sigpending_and_wake(t);
1315 		}
1316 	}
1317 	/*
1318 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1319 	 * debugging to leave init killable.
1320 	 */
1321 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1322 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1323 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1324 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1325 
1326 	return ret;
1327 }
1328 
1329 int force_sig_info(struct kernel_siginfo *info)
1330 {
1331 	return force_sig_info_to_task(info, current);
1332 }
1333 
1334 /*
1335  * Nuke all other threads in the group.
1336  */
1337 int zap_other_threads(struct task_struct *p)
1338 {
1339 	struct task_struct *t = p;
1340 	int count = 0;
1341 
1342 	p->signal->group_stop_count = 0;
1343 
1344 	while_each_thread(p, t) {
1345 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1346 		count++;
1347 
1348 		/* Don't bother with already dead threads */
1349 		if (t->exit_state)
1350 			continue;
1351 		sigaddset(&t->pending.signal, SIGKILL);
1352 		signal_wake_up(t, 1);
1353 	}
1354 
1355 	return count;
1356 }
1357 
1358 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1359 					   unsigned long *flags)
1360 {
1361 	struct sighand_struct *sighand;
1362 
1363 	rcu_read_lock();
1364 	for (;;) {
1365 		sighand = rcu_dereference(tsk->sighand);
1366 		if (unlikely(sighand == NULL))
1367 			break;
1368 
1369 		/*
1370 		 * This sighand can be already freed and even reused, but
1371 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1372 		 * initializes ->siglock: this slab can't go away, it has
1373 		 * the same object type, ->siglock can't be reinitialized.
1374 		 *
1375 		 * We need to ensure that tsk->sighand is still the same
1376 		 * after we take the lock, we can race with de_thread() or
1377 		 * __exit_signal(). In the latter case the next iteration
1378 		 * must see ->sighand == NULL.
1379 		 */
1380 		spin_lock_irqsave(&sighand->siglock, *flags);
1381 		if (likely(sighand == tsk->sighand))
1382 			break;
1383 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1384 	}
1385 	rcu_read_unlock();
1386 
1387 	return sighand;
1388 }
1389 
1390 /*
1391  * send signal info to all the members of a group
1392  */
1393 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1394 			struct task_struct *p, enum pid_type type)
1395 {
1396 	int ret;
1397 
1398 	rcu_read_lock();
1399 	ret = check_kill_permission(sig, info, p);
1400 	rcu_read_unlock();
1401 
1402 	if (!ret && sig)
1403 		ret = do_send_sig_info(sig, info, p, type);
1404 
1405 	return ret;
1406 }
1407 
1408 /*
1409  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1410  * control characters do (^C, ^Z etc)
1411  * - the caller must hold at least a readlock on tasklist_lock
1412  */
1413 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1414 {
1415 	struct task_struct *p = NULL;
1416 	int retval, success;
1417 
1418 	success = 0;
1419 	retval = -ESRCH;
1420 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1421 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1422 		success |= !err;
1423 		retval = err;
1424 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1425 	return success ? 0 : retval;
1426 }
1427 
1428 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1429 {
1430 	int error = -ESRCH;
1431 	struct task_struct *p;
1432 
1433 	for (;;) {
1434 		rcu_read_lock();
1435 		p = pid_task(pid, PIDTYPE_PID);
1436 		if (p)
1437 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1438 		rcu_read_unlock();
1439 		if (likely(!p || error != -ESRCH))
1440 			return error;
1441 
1442 		/*
1443 		 * The task was unhashed in between, try again.  If it
1444 		 * is dead, pid_task() will return NULL, if we race with
1445 		 * de_thread() it will find the new leader.
1446 		 */
1447 	}
1448 }
1449 
1450 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1451 {
1452 	int error;
1453 	rcu_read_lock();
1454 	error = kill_pid_info(sig, info, find_vpid(pid));
1455 	rcu_read_unlock();
1456 	return error;
1457 }
1458 
1459 static inline bool kill_as_cred_perm(const struct cred *cred,
1460 				     struct task_struct *target)
1461 {
1462 	const struct cred *pcred = __task_cred(target);
1463 
1464 	return uid_eq(cred->euid, pcred->suid) ||
1465 	       uid_eq(cred->euid, pcred->uid) ||
1466 	       uid_eq(cred->uid, pcred->suid) ||
1467 	       uid_eq(cred->uid, pcred->uid);
1468 }
1469 
1470 /*
1471  * The usb asyncio usage of siginfo is wrong.  The glibc support
1472  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1473  * AKA after the generic fields:
1474  *	kernel_pid_t	si_pid;
1475  *	kernel_uid32_t	si_uid;
1476  *	sigval_t	si_value;
1477  *
1478  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1479  * after the generic fields is:
1480  *	void __user 	*si_addr;
1481  *
1482  * This is a practical problem when there is a 64bit big endian kernel
1483  * and a 32bit userspace.  As the 32bit address will encoded in the low
1484  * 32bits of the pointer.  Those low 32bits will be stored at higher
1485  * address than appear in a 32 bit pointer.  So userspace will not
1486  * see the address it was expecting for it's completions.
1487  *
1488  * There is nothing in the encoding that can allow
1489  * copy_siginfo_to_user32 to detect this confusion of formats, so
1490  * handle this by requiring the caller of kill_pid_usb_asyncio to
1491  * notice when this situration takes place and to store the 32bit
1492  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1493  * parameter.
1494  */
1495 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1496 			 struct pid *pid, const struct cred *cred)
1497 {
1498 	struct kernel_siginfo info;
1499 	struct task_struct *p;
1500 	unsigned long flags;
1501 	int ret = -EINVAL;
1502 
1503 	clear_siginfo(&info);
1504 	info.si_signo = sig;
1505 	info.si_errno = errno;
1506 	info.si_code = SI_ASYNCIO;
1507 	*((sigval_t *)&info.si_pid) = addr;
1508 
1509 	if (!valid_signal(sig))
1510 		return ret;
1511 
1512 	rcu_read_lock();
1513 	p = pid_task(pid, PIDTYPE_PID);
1514 	if (!p) {
1515 		ret = -ESRCH;
1516 		goto out_unlock;
1517 	}
1518 	if (!kill_as_cred_perm(cred, p)) {
1519 		ret = -EPERM;
1520 		goto out_unlock;
1521 	}
1522 	ret = security_task_kill(p, &info, sig, cred);
1523 	if (ret)
1524 		goto out_unlock;
1525 
1526 	if (sig) {
1527 		if (lock_task_sighand(p, &flags)) {
1528 			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1529 			unlock_task_sighand(p, &flags);
1530 		} else
1531 			ret = -ESRCH;
1532 	}
1533 out_unlock:
1534 	rcu_read_unlock();
1535 	return ret;
1536 }
1537 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1538 
1539 /*
1540  * kill_something_info() interprets pid in interesting ways just like kill(2).
1541  *
1542  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1543  * is probably wrong.  Should make it like BSD or SYSV.
1544  */
1545 
1546 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1547 {
1548 	int ret;
1549 
1550 	if (pid > 0) {
1551 		rcu_read_lock();
1552 		ret = kill_pid_info(sig, info, find_vpid(pid));
1553 		rcu_read_unlock();
1554 		return ret;
1555 	}
1556 
1557 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1558 	if (pid == INT_MIN)
1559 		return -ESRCH;
1560 
1561 	read_lock(&tasklist_lock);
1562 	if (pid != -1) {
1563 		ret = __kill_pgrp_info(sig, info,
1564 				pid ? find_vpid(-pid) : task_pgrp(current));
1565 	} else {
1566 		int retval = 0, count = 0;
1567 		struct task_struct * p;
1568 
1569 		for_each_process(p) {
1570 			if (task_pid_vnr(p) > 1 &&
1571 					!same_thread_group(p, current)) {
1572 				int err = group_send_sig_info(sig, info, p,
1573 							      PIDTYPE_MAX);
1574 				++count;
1575 				if (err != -EPERM)
1576 					retval = err;
1577 			}
1578 		}
1579 		ret = count ? retval : -ESRCH;
1580 	}
1581 	read_unlock(&tasklist_lock);
1582 
1583 	return ret;
1584 }
1585 
1586 /*
1587  * These are for backward compatibility with the rest of the kernel source.
1588  */
1589 
1590 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1591 {
1592 	/*
1593 	 * Make sure legacy kernel users don't send in bad values
1594 	 * (normal paths check this in check_kill_permission).
1595 	 */
1596 	if (!valid_signal(sig))
1597 		return -EINVAL;
1598 
1599 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1600 }
1601 EXPORT_SYMBOL(send_sig_info);
1602 
1603 #define __si_special(priv) \
1604 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1605 
1606 int
1607 send_sig(int sig, struct task_struct *p, int priv)
1608 {
1609 	return send_sig_info(sig, __si_special(priv), p);
1610 }
1611 EXPORT_SYMBOL(send_sig);
1612 
1613 void force_sig(int sig)
1614 {
1615 	struct kernel_siginfo info;
1616 
1617 	clear_siginfo(&info);
1618 	info.si_signo = sig;
1619 	info.si_errno = 0;
1620 	info.si_code = SI_KERNEL;
1621 	info.si_pid = 0;
1622 	info.si_uid = 0;
1623 	force_sig_info(&info);
1624 }
1625 EXPORT_SYMBOL(force_sig);
1626 
1627 /*
1628  * When things go south during signal handling, we
1629  * will force a SIGSEGV. And if the signal that caused
1630  * the problem was already a SIGSEGV, we'll want to
1631  * make sure we don't even try to deliver the signal..
1632  */
1633 void force_sigsegv(int sig)
1634 {
1635 	struct task_struct *p = current;
1636 
1637 	if (sig == SIGSEGV) {
1638 		unsigned long flags;
1639 		spin_lock_irqsave(&p->sighand->siglock, flags);
1640 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1641 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1642 	}
1643 	force_sig(SIGSEGV);
1644 }
1645 
1646 int force_sig_fault_to_task(int sig, int code, void __user *addr
1647 	___ARCH_SI_TRAPNO(int trapno)
1648 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1649 	, struct task_struct *t)
1650 {
1651 	struct kernel_siginfo info;
1652 
1653 	clear_siginfo(&info);
1654 	info.si_signo = sig;
1655 	info.si_errno = 0;
1656 	info.si_code  = code;
1657 	info.si_addr  = addr;
1658 #ifdef __ARCH_SI_TRAPNO
1659 	info.si_trapno = trapno;
1660 #endif
1661 #ifdef __ia64__
1662 	info.si_imm = imm;
1663 	info.si_flags = flags;
1664 	info.si_isr = isr;
1665 #endif
1666 	return force_sig_info_to_task(&info, t);
1667 }
1668 
1669 int force_sig_fault(int sig, int code, void __user *addr
1670 	___ARCH_SI_TRAPNO(int trapno)
1671 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1672 {
1673 	return force_sig_fault_to_task(sig, code, addr
1674 				       ___ARCH_SI_TRAPNO(trapno)
1675 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1676 }
1677 
1678 int send_sig_fault(int sig, int code, void __user *addr
1679 	___ARCH_SI_TRAPNO(int trapno)
1680 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1681 	, struct task_struct *t)
1682 {
1683 	struct kernel_siginfo info;
1684 
1685 	clear_siginfo(&info);
1686 	info.si_signo = sig;
1687 	info.si_errno = 0;
1688 	info.si_code  = code;
1689 	info.si_addr  = addr;
1690 #ifdef __ARCH_SI_TRAPNO
1691 	info.si_trapno = trapno;
1692 #endif
1693 #ifdef __ia64__
1694 	info.si_imm = imm;
1695 	info.si_flags = flags;
1696 	info.si_isr = isr;
1697 #endif
1698 	return send_sig_info(info.si_signo, &info, t);
1699 }
1700 
1701 int force_sig_mceerr(int code, void __user *addr, short lsb)
1702 {
1703 	struct kernel_siginfo info;
1704 
1705 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1706 	clear_siginfo(&info);
1707 	info.si_signo = SIGBUS;
1708 	info.si_errno = 0;
1709 	info.si_code = code;
1710 	info.si_addr = addr;
1711 	info.si_addr_lsb = lsb;
1712 	return force_sig_info(&info);
1713 }
1714 
1715 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1716 {
1717 	struct kernel_siginfo info;
1718 
1719 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1720 	clear_siginfo(&info);
1721 	info.si_signo = SIGBUS;
1722 	info.si_errno = 0;
1723 	info.si_code = code;
1724 	info.si_addr = addr;
1725 	info.si_addr_lsb = lsb;
1726 	return send_sig_info(info.si_signo, &info, t);
1727 }
1728 EXPORT_SYMBOL(send_sig_mceerr);
1729 
1730 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1731 {
1732 	struct kernel_siginfo info;
1733 
1734 	clear_siginfo(&info);
1735 	info.si_signo = SIGSEGV;
1736 	info.si_errno = 0;
1737 	info.si_code  = SEGV_BNDERR;
1738 	info.si_addr  = addr;
1739 	info.si_lower = lower;
1740 	info.si_upper = upper;
1741 	return force_sig_info(&info);
1742 }
1743 
1744 #ifdef SEGV_PKUERR
1745 int force_sig_pkuerr(void __user *addr, u32 pkey)
1746 {
1747 	struct kernel_siginfo info;
1748 
1749 	clear_siginfo(&info);
1750 	info.si_signo = SIGSEGV;
1751 	info.si_errno = 0;
1752 	info.si_code  = SEGV_PKUERR;
1753 	info.si_addr  = addr;
1754 	info.si_pkey  = pkey;
1755 	return force_sig_info(&info);
1756 }
1757 #endif
1758 
1759 /* For the crazy architectures that include trap information in
1760  * the errno field, instead of an actual errno value.
1761  */
1762 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1763 {
1764 	struct kernel_siginfo info;
1765 
1766 	clear_siginfo(&info);
1767 	info.si_signo = SIGTRAP;
1768 	info.si_errno = errno;
1769 	info.si_code  = TRAP_HWBKPT;
1770 	info.si_addr  = addr;
1771 	return force_sig_info(&info);
1772 }
1773 
1774 int kill_pgrp(struct pid *pid, int sig, int priv)
1775 {
1776 	int ret;
1777 
1778 	read_lock(&tasklist_lock);
1779 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1780 	read_unlock(&tasklist_lock);
1781 
1782 	return ret;
1783 }
1784 EXPORT_SYMBOL(kill_pgrp);
1785 
1786 int kill_pid(struct pid *pid, int sig, int priv)
1787 {
1788 	return kill_pid_info(sig, __si_special(priv), pid);
1789 }
1790 EXPORT_SYMBOL(kill_pid);
1791 
1792 /*
1793  * These functions support sending signals using preallocated sigqueue
1794  * structures.  This is needed "because realtime applications cannot
1795  * afford to lose notifications of asynchronous events, like timer
1796  * expirations or I/O completions".  In the case of POSIX Timers
1797  * we allocate the sigqueue structure from the timer_create.  If this
1798  * allocation fails we are able to report the failure to the application
1799  * with an EAGAIN error.
1800  */
1801 struct sigqueue *sigqueue_alloc(void)
1802 {
1803 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1804 
1805 	if (q)
1806 		q->flags |= SIGQUEUE_PREALLOC;
1807 
1808 	return q;
1809 }
1810 
1811 void sigqueue_free(struct sigqueue *q)
1812 {
1813 	unsigned long flags;
1814 	spinlock_t *lock = &current->sighand->siglock;
1815 
1816 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1817 	/*
1818 	 * We must hold ->siglock while testing q->list
1819 	 * to serialize with collect_signal() or with
1820 	 * __exit_signal()->flush_sigqueue().
1821 	 */
1822 	spin_lock_irqsave(lock, flags);
1823 	q->flags &= ~SIGQUEUE_PREALLOC;
1824 	/*
1825 	 * If it is queued it will be freed when dequeued,
1826 	 * like the "regular" sigqueue.
1827 	 */
1828 	if (!list_empty(&q->list))
1829 		q = NULL;
1830 	spin_unlock_irqrestore(lock, flags);
1831 
1832 	if (q)
1833 		__sigqueue_free(q);
1834 }
1835 
1836 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1837 {
1838 	int sig = q->info.si_signo;
1839 	struct sigpending *pending;
1840 	struct task_struct *t;
1841 	unsigned long flags;
1842 	int ret, result;
1843 
1844 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1845 
1846 	ret = -1;
1847 	rcu_read_lock();
1848 	t = pid_task(pid, type);
1849 	if (!t || !likely(lock_task_sighand(t, &flags)))
1850 		goto ret;
1851 
1852 	ret = 1; /* the signal is ignored */
1853 	result = TRACE_SIGNAL_IGNORED;
1854 	if (!prepare_signal(sig, t, false))
1855 		goto out;
1856 
1857 	ret = 0;
1858 	if (unlikely(!list_empty(&q->list))) {
1859 		/*
1860 		 * If an SI_TIMER entry is already queue just increment
1861 		 * the overrun count.
1862 		 */
1863 		BUG_ON(q->info.si_code != SI_TIMER);
1864 		q->info.si_overrun++;
1865 		result = TRACE_SIGNAL_ALREADY_PENDING;
1866 		goto out;
1867 	}
1868 	q->info.si_overrun = 0;
1869 
1870 	signalfd_notify(t, sig);
1871 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1872 	list_add_tail(&q->list, &pending->list);
1873 	sigaddset(&pending->signal, sig);
1874 	complete_signal(sig, t, type);
1875 	result = TRACE_SIGNAL_DELIVERED;
1876 out:
1877 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1878 	unlock_task_sighand(t, &flags);
1879 ret:
1880 	rcu_read_unlock();
1881 	return ret;
1882 }
1883 
1884 static void do_notify_pidfd(struct task_struct *task)
1885 {
1886 	struct pid *pid;
1887 
1888 	WARN_ON(task->exit_state == 0);
1889 	pid = task_pid(task);
1890 	wake_up_all(&pid->wait_pidfd);
1891 }
1892 
1893 /*
1894  * Let a parent know about the death of a child.
1895  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1896  *
1897  * Returns true if our parent ignored us and so we've switched to
1898  * self-reaping.
1899  */
1900 bool do_notify_parent(struct task_struct *tsk, int sig)
1901 {
1902 	struct kernel_siginfo info;
1903 	unsigned long flags;
1904 	struct sighand_struct *psig;
1905 	bool autoreap = false;
1906 	u64 utime, stime;
1907 
1908 	BUG_ON(sig == -1);
1909 
1910  	/* do_notify_parent_cldstop should have been called instead.  */
1911  	BUG_ON(task_is_stopped_or_traced(tsk));
1912 
1913 	BUG_ON(!tsk->ptrace &&
1914 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1915 
1916 	/* Wake up all pidfd waiters */
1917 	do_notify_pidfd(tsk);
1918 
1919 	if (sig != SIGCHLD) {
1920 		/*
1921 		 * This is only possible if parent == real_parent.
1922 		 * Check if it has changed security domain.
1923 		 */
1924 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1925 			sig = SIGCHLD;
1926 	}
1927 
1928 	clear_siginfo(&info);
1929 	info.si_signo = sig;
1930 	info.si_errno = 0;
1931 	/*
1932 	 * We are under tasklist_lock here so our parent is tied to
1933 	 * us and cannot change.
1934 	 *
1935 	 * task_active_pid_ns will always return the same pid namespace
1936 	 * until a task passes through release_task.
1937 	 *
1938 	 * write_lock() currently calls preempt_disable() which is the
1939 	 * same as rcu_read_lock(), but according to Oleg, this is not
1940 	 * correct to rely on this
1941 	 */
1942 	rcu_read_lock();
1943 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1944 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1945 				       task_uid(tsk));
1946 	rcu_read_unlock();
1947 
1948 	task_cputime(tsk, &utime, &stime);
1949 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1950 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1951 
1952 	info.si_status = tsk->exit_code & 0x7f;
1953 	if (tsk->exit_code & 0x80)
1954 		info.si_code = CLD_DUMPED;
1955 	else if (tsk->exit_code & 0x7f)
1956 		info.si_code = CLD_KILLED;
1957 	else {
1958 		info.si_code = CLD_EXITED;
1959 		info.si_status = tsk->exit_code >> 8;
1960 	}
1961 
1962 	psig = tsk->parent->sighand;
1963 	spin_lock_irqsave(&psig->siglock, flags);
1964 	if (!tsk->ptrace && sig == SIGCHLD &&
1965 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1966 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1967 		/*
1968 		 * We are exiting and our parent doesn't care.  POSIX.1
1969 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1970 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1971 		 * automatically and not left for our parent's wait4 call.
1972 		 * Rather than having the parent do it as a magic kind of
1973 		 * signal handler, we just set this to tell do_exit that we
1974 		 * can be cleaned up without becoming a zombie.  Note that
1975 		 * we still call __wake_up_parent in this case, because a
1976 		 * blocked sys_wait4 might now return -ECHILD.
1977 		 *
1978 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1979 		 * is implementation-defined: we do (if you don't want
1980 		 * it, just use SIG_IGN instead).
1981 		 */
1982 		autoreap = true;
1983 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1984 			sig = 0;
1985 	}
1986 	if (valid_signal(sig) && sig)
1987 		__group_send_sig_info(sig, &info, tsk->parent);
1988 	__wake_up_parent(tsk, tsk->parent);
1989 	spin_unlock_irqrestore(&psig->siglock, flags);
1990 
1991 	return autoreap;
1992 }
1993 
1994 /**
1995  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1996  * @tsk: task reporting the state change
1997  * @for_ptracer: the notification is for ptracer
1998  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1999  *
2000  * Notify @tsk's parent that the stopped/continued state has changed.  If
2001  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2002  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2003  *
2004  * CONTEXT:
2005  * Must be called with tasklist_lock at least read locked.
2006  */
2007 static void do_notify_parent_cldstop(struct task_struct *tsk,
2008 				     bool for_ptracer, int why)
2009 {
2010 	struct kernel_siginfo info;
2011 	unsigned long flags;
2012 	struct task_struct *parent;
2013 	struct sighand_struct *sighand;
2014 	u64 utime, stime;
2015 
2016 	if (for_ptracer) {
2017 		parent = tsk->parent;
2018 	} else {
2019 		tsk = tsk->group_leader;
2020 		parent = tsk->real_parent;
2021 	}
2022 
2023 	clear_siginfo(&info);
2024 	info.si_signo = SIGCHLD;
2025 	info.si_errno = 0;
2026 	/*
2027 	 * see comment in do_notify_parent() about the following 4 lines
2028 	 */
2029 	rcu_read_lock();
2030 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2031 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2032 	rcu_read_unlock();
2033 
2034 	task_cputime(tsk, &utime, &stime);
2035 	info.si_utime = nsec_to_clock_t(utime);
2036 	info.si_stime = nsec_to_clock_t(stime);
2037 
2038  	info.si_code = why;
2039  	switch (why) {
2040  	case CLD_CONTINUED:
2041  		info.si_status = SIGCONT;
2042  		break;
2043  	case CLD_STOPPED:
2044  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2045  		break;
2046  	case CLD_TRAPPED:
2047  		info.si_status = tsk->exit_code & 0x7f;
2048  		break;
2049  	default:
2050  		BUG();
2051  	}
2052 
2053 	sighand = parent->sighand;
2054 	spin_lock_irqsave(&sighand->siglock, flags);
2055 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2056 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2057 		__group_send_sig_info(SIGCHLD, &info, parent);
2058 	/*
2059 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2060 	 */
2061 	__wake_up_parent(tsk, parent);
2062 	spin_unlock_irqrestore(&sighand->siglock, flags);
2063 }
2064 
2065 static inline bool may_ptrace_stop(void)
2066 {
2067 	if (!likely(current->ptrace))
2068 		return false;
2069 	/*
2070 	 * Are we in the middle of do_coredump?
2071 	 * If so and our tracer is also part of the coredump stopping
2072 	 * is a deadlock situation, and pointless because our tracer
2073 	 * is dead so don't allow us to stop.
2074 	 * If SIGKILL was already sent before the caller unlocked
2075 	 * ->siglock we must see ->core_state != NULL. Otherwise it
2076 	 * is safe to enter schedule().
2077 	 *
2078 	 * This is almost outdated, a task with the pending SIGKILL can't
2079 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2080 	 * after SIGKILL was already dequeued.
2081 	 */
2082 	if (unlikely(current->mm->core_state) &&
2083 	    unlikely(current->mm == current->parent->mm))
2084 		return false;
2085 
2086 	return true;
2087 }
2088 
2089 /*
2090  * Return non-zero if there is a SIGKILL that should be waking us up.
2091  * Called with the siglock held.
2092  */
2093 static bool sigkill_pending(struct task_struct *tsk)
2094 {
2095 	return sigismember(&tsk->pending.signal, SIGKILL) ||
2096 	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2097 }
2098 
2099 /*
2100  * This must be called with current->sighand->siglock held.
2101  *
2102  * This should be the path for all ptrace stops.
2103  * We always set current->last_siginfo while stopped here.
2104  * That makes it a way to test a stopped process for
2105  * being ptrace-stopped vs being job-control-stopped.
2106  *
2107  * If we actually decide not to stop at all because the tracer
2108  * is gone, we keep current->exit_code unless clear_code.
2109  */
2110 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2111 	__releases(&current->sighand->siglock)
2112 	__acquires(&current->sighand->siglock)
2113 {
2114 	bool gstop_done = false;
2115 
2116 	if (arch_ptrace_stop_needed(exit_code, info)) {
2117 		/*
2118 		 * The arch code has something special to do before a
2119 		 * ptrace stop.  This is allowed to block, e.g. for faults
2120 		 * on user stack pages.  We can't keep the siglock while
2121 		 * calling arch_ptrace_stop, so we must release it now.
2122 		 * To preserve proper semantics, we must do this before
2123 		 * any signal bookkeeping like checking group_stop_count.
2124 		 * Meanwhile, a SIGKILL could come in before we retake the
2125 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2126 		 * So after regaining the lock, we must check for SIGKILL.
2127 		 */
2128 		spin_unlock_irq(&current->sighand->siglock);
2129 		arch_ptrace_stop(exit_code, info);
2130 		spin_lock_irq(&current->sighand->siglock);
2131 		if (sigkill_pending(current))
2132 			return;
2133 	}
2134 
2135 	set_special_state(TASK_TRACED);
2136 
2137 	/*
2138 	 * We're committing to trapping.  TRACED should be visible before
2139 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2140 	 * Also, transition to TRACED and updates to ->jobctl should be
2141 	 * atomic with respect to siglock and should be done after the arch
2142 	 * hook as siglock is released and regrabbed across it.
2143 	 *
2144 	 *     TRACER				    TRACEE
2145 	 *
2146 	 *     ptrace_attach()
2147 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2148 	 *     do_wait()
2149 	 *       set_current_state()                smp_wmb();
2150 	 *       ptrace_do_wait()
2151 	 *         wait_task_stopped()
2152 	 *           task_stopped_code()
2153 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2154 	 */
2155 	smp_wmb();
2156 
2157 	current->last_siginfo = info;
2158 	current->exit_code = exit_code;
2159 
2160 	/*
2161 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2162 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2163 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2164 	 * could be clear now.  We act as if SIGCONT is received after
2165 	 * TASK_TRACED is entered - ignore it.
2166 	 */
2167 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2168 		gstop_done = task_participate_group_stop(current);
2169 
2170 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2171 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2172 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2173 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2174 
2175 	/* entering a trap, clear TRAPPING */
2176 	task_clear_jobctl_trapping(current);
2177 
2178 	spin_unlock_irq(&current->sighand->siglock);
2179 	read_lock(&tasklist_lock);
2180 	if (may_ptrace_stop()) {
2181 		/*
2182 		 * Notify parents of the stop.
2183 		 *
2184 		 * While ptraced, there are two parents - the ptracer and
2185 		 * the real_parent of the group_leader.  The ptracer should
2186 		 * know about every stop while the real parent is only
2187 		 * interested in the completion of group stop.  The states
2188 		 * for the two don't interact with each other.  Notify
2189 		 * separately unless they're gonna be duplicates.
2190 		 */
2191 		do_notify_parent_cldstop(current, true, why);
2192 		if (gstop_done && ptrace_reparented(current))
2193 			do_notify_parent_cldstop(current, false, why);
2194 
2195 		/*
2196 		 * Don't want to allow preemption here, because
2197 		 * sys_ptrace() needs this task to be inactive.
2198 		 *
2199 		 * XXX: implement read_unlock_no_resched().
2200 		 */
2201 		preempt_disable();
2202 		read_unlock(&tasklist_lock);
2203 		preempt_enable_no_resched();
2204 		cgroup_enter_frozen();
2205 		freezable_schedule();
2206 		cgroup_leave_frozen(true);
2207 	} else {
2208 		/*
2209 		 * By the time we got the lock, our tracer went away.
2210 		 * Don't drop the lock yet, another tracer may come.
2211 		 *
2212 		 * If @gstop_done, the ptracer went away between group stop
2213 		 * completion and here.  During detach, it would have set
2214 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2215 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2216 		 * the real parent of the group stop completion is enough.
2217 		 */
2218 		if (gstop_done)
2219 			do_notify_parent_cldstop(current, false, why);
2220 
2221 		/* tasklist protects us from ptrace_freeze_traced() */
2222 		__set_current_state(TASK_RUNNING);
2223 		if (clear_code)
2224 			current->exit_code = 0;
2225 		read_unlock(&tasklist_lock);
2226 	}
2227 
2228 	/*
2229 	 * We are back.  Now reacquire the siglock before touching
2230 	 * last_siginfo, so that we are sure to have synchronized with
2231 	 * any signal-sending on another CPU that wants to examine it.
2232 	 */
2233 	spin_lock_irq(&current->sighand->siglock);
2234 	current->last_siginfo = NULL;
2235 
2236 	/* LISTENING can be set only during STOP traps, clear it */
2237 	current->jobctl &= ~JOBCTL_LISTENING;
2238 
2239 	/*
2240 	 * Queued signals ignored us while we were stopped for tracing.
2241 	 * So check for any that we should take before resuming user mode.
2242 	 * This sets TIF_SIGPENDING, but never clears it.
2243 	 */
2244 	recalc_sigpending_tsk(current);
2245 }
2246 
2247 static void ptrace_do_notify(int signr, int exit_code, int why)
2248 {
2249 	kernel_siginfo_t info;
2250 
2251 	clear_siginfo(&info);
2252 	info.si_signo = signr;
2253 	info.si_code = exit_code;
2254 	info.si_pid = task_pid_vnr(current);
2255 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2256 
2257 	/* Let the debugger run.  */
2258 	ptrace_stop(exit_code, why, 1, &info);
2259 }
2260 
2261 void ptrace_notify(int exit_code)
2262 {
2263 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2264 	if (unlikely(current->task_works))
2265 		task_work_run();
2266 
2267 	spin_lock_irq(&current->sighand->siglock);
2268 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2269 	spin_unlock_irq(&current->sighand->siglock);
2270 }
2271 
2272 /**
2273  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2274  * @signr: signr causing group stop if initiating
2275  *
2276  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2277  * and participate in it.  If already set, participate in the existing
2278  * group stop.  If participated in a group stop (and thus slept), %true is
2279  * returned with siglock released.
2280  *
2281  * If ptraced, this function doesn't handle stop itself.  Instead,
2282  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2283  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2284  * places afterwards.
2285  *
2286  * CONTEXT:
2287  * Must be called with @current->sighand->siglock held, which is released
2288  * on %true return.
2289  *
2290  * RETURNS:
2291  * %false if group stop is already cancelled or ptrace trap is scheduled.
2292  * %true if participated in group stop.
2293  */
2294 static bool do_signal_stop(int signr)
2295 	__releases(&current->sighand->siglock)
2296 {
2297 	struct signal_struct *sig = current->signal;
2298 
2299 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2300 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2301 		struct task_struct *t;
2302 
2303 		/* signr will be recorded in task->jobctl for retries */
2304 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2305 
2306 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2307 		    unlikely(signal_group_exit(sig)))
2308 			return false;
2309 		/*
2310 		 * There is no group stop already in progress.  We must
2311 		 * initiate one now.
2312 		 *
2313 		 * While ptraced, a task may be resumed while group stop is
2314 		 * still in effect and then receive a stop signal and
2315 		 * initiate another group stop.  This deviates from the
2316 		 * usual behavior as two consecutive stop signals can't
2317 		 * cause two group stops when !ptraced.  That is why we
2318 		 * also check !task_is_stopped(t) below.
2319 		 *
2320 		 * The condition can be distinguished by testing whether
2321 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2322 		 * group_exit_code in such case.
2323 		 *
2324 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2325 		 * an intervening stop signal is required to cause two
2326 		 * continued events regardless of ptrace.
2327 		 */
2328 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2329 			sig->group_exit_code = signr;
2330 
2331 		sig->group_stop_count = 0;
2332 
2333 		if (task_set_jobctl_pending(current, signr | gstop))
2334 			sig->group_stop_count++;
2335 
2336 		t = current;
2337 		while_each_thread(current, t) {
2338 			/*
2339 			 * Setting state to TASK_STOPPED for a group
2340 			 * stop is always done with the siglock held,
2341 			 * so this check has no races.
2342 			 */
2343 			if (!task_is_stopped(t) &&
2344 			    task_set_jobctl_pending(t, signr | gstop)) {
2345 				sig->group_stop_count++;
2346 				if (likely(!(t->ptrace & PT_SEIZED)))
2347 					signal_wake_up(t, 0);
2348 				else
2349 					ptrace_trap_notify(t);
2350 			}
2351 		}
2352 	}
2353 
2354 	if (likely(!current->ptrace)) {
2355 		int notify = 0;
2356 
2357 		/*
2358 		 * If there are no other threads in the group, or if there
2359 		 * is a group stop in progress and we are the last to stop,
2360 		 * report to the parent.
2361 		 */
2362 		if (task_participate_group_stop(current))
2363 			notify = CLD_STOPPED;
2364 
2365 		set_special_state(TASK_STOPPED);
2366 		spin_unlock_irq(&current->sighand->siglock);
2367 
2368 		/*
2369 		 * Notify the parent of the group stop completion.  Because
2370 		 * we're not holding either the siglock or tasklist_lock
2371 		 * here, ptracer may attach inbetween; however, this is for
2372 		 * group stop and should always be delivered to the real
2373 		 * parent of the group leader.  The new ptracer will get
2374 		 * its notification when this task transitions into
2375 		 * TASK_TRACED.
2376 		 */
2377 		if (notify) {
2378 			read_lock(&tasklist_lock);
2379 			do_notify_parent_cldstop(current, false, notify);
2380 			read_unlock(&tasklist_lock);
2381 		}
2382 
2383 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2384 		cgroup_enter_frozen();
2385 		freezable_schedule();
2386 		return true;
2387 	} else {
2388 		/*
2389 		 * While ptraced, group stop is handled by STOP trap.
2390 		 * Schedule it and let the caller deal with it.
2391 		 */
2392 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2393 		return false;
2394 	}
2395 }
2396 
2397 /**
2398  * do_jobctl_trap - take care of ptrace jobctl traps
2399  *
2400  * When PT_SEIZED, it's used for both group stop and explicit
2401  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2402  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2403  * the stop signal; otherwise, %SIGTRAP.
2404  *
2405  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2406  * number as exit_code and no siginfo.
2407  *
2408  * CONTEXT:
2409  * Must be called with @current->sighand->siglock held, which may be
2410  * released and re-acquired before returning with intervening sleep.
2411  */
2412 static void do_jobctl_trap(void)
2413 {
2414 	struct signal_struct *signal = current->signal;
2415 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2416 
2417 	if (current->ptrace & PT_SEIZED) {
2418 		if (!signal->group_stop_count &&
2419 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2420 			signr = SIGTRAP;
2421 		WARN_ON_ONCE(!signr);
2422 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2423 				 CLD_STOPPED);
2424 	} else {
2425 		WARN_ON_ONCE(!signr);
2426 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2427 		current->exit_code = 0;
2428 	}
2429 }
2430 
2431 /**
2432  * do_freezer_trap - handle the freezer jobctl trap
2433  *
2434  * Puts the task into frozen state, if only the task is not about to quit.
2435  * In this case it drops JOBCTL_TRAP_FREEZE.
2436  *
2437  * CONTEXT:
2438  * Must be called with @current->sighand->siglock held,
2439  * which is always released before returning.
2440  */
2441 static void do_freezer_trap(void)
2442 	__releases(&current->sighand->siglock)
2443 {
2444 	/*
2445 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2446 	 * let's make another loop to give it a chance to be handled.
2447 	 * In any case, we'll return back.
2448 	 */
2449 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2450 	     JOBCTL_TRAP_FREEZE) {
2451 		spin_unlock_irq(&current->sighand->siglock);
2452 		return;
2453 	}
2454 
2455 	/*
2456 	 * Now we're sure that there is no pending fatal signal and no
2457 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2458 	 * immediately (if there is a non-fatal signal pending), and
2459 	 * put the task into sleep.
2460 	 */
2461 	__set_current_state(TASK_INTERRUPTIBLE);
2462 	clear_thread_flag(TIF_SIGPENDING);
2463 	spin_unlock_irq(&current->sighand->siglock);
2464 	cgroup_enter_frozen();
2465 	freezable_schedule();
2466 }
2467 
2468 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2469 {
2470 	/*
2471 	 * We do not check sig_kernel_stop(signr) but set this marker
2472 	 * unconditionally because we do not know whether debugger will
2473 	 * change signr. This flag has no meaning unless we are going
2474 	 * to stop after return from ptrace_stop(). In this case it will
2475 	 * be checked in do_signal_stop(), we should only stop if it was
2476 	 * not cleared by SIGCONT while we were sleeping. See also the
2477 	 * comment in dequeue_signal().
2478 	 */
2479 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2480 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2481 
2482 	/* We're back.  Did the debugger cancel the sig?  */
2483 	signr = current->exit_code;
2484 	if (signr == 0)
2485 		return signr;
2486 
2487 	current->exit_code = 0;
2488 
2489 	/*
2490 	 * Update the siginfo structure if the signal has
2491 	 * changed.  If the debugger wanted something
2492 	 * specific in the siginfo structure then it should
2493 	 * have updated *info via PTRACE_SETSIGINFO.
2494 	 */
2495 	if (signr != info->si_signo) {
2496 		clear_siginfo(info);
2497 		info->si_signo = signr;
2498 		info->si_errno = 0;
2499 		info->si_code = SI_USER;
2500 		rcu_read_lock();
2501 		info->si_pid = task_pid_vnr(current->parent);
2502 		info->si_uid = from_kuid_munged(current_user_ns(),
2503 						task_uid(current->parent));
2504 		rcu_read_unlock();
2505 	}
2506 
2507 	/* If the (new) signal is now blocked, requeue it.  */
2508 	if (sigismember(&current->blocked, signr)) {
2509 		send_signal(signr, info, current, PIDTYPE_PID);
2510 		signr = 0;
2511 	}
2512 
2513 	return signr;
2514 }
2515 
2516 bool get_signal(struct ksignal *ksig)
2517 {
2518 	struct sighand_struct *sighand = current->sighand;
2519 	struct signal_struct *signal = current->signal;
2520 	int signr;
2521 
2522 	if (unlikely(current->task_works))
2523 		task_work_run();
2524 
2525 	if (unlikely(uprobe_deny_signal()))
2526 		return false;
2527 
2528 	/*
2529 	 * Do this once, we can't return to user-mode if freezing() == T.
2530 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2531 	 * thus do not need another check after return.
2532 	 */
2533 	try_to_freeze();
2534 
2535 relock:
2536 	spin_lock_irq(&sighand->siglock);
2537 	/*
2538 	 * Every stopped thread goes here after wakeup. Check to see if
2539 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2540 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2541 	 */
2542 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2543 		int why;
2544 
2545 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2546 			why = CLD_CONTINUED;
2547 		else
2548 			why = CLD_STOPPED;
2549 
2550 		signal->flags &= ~SIGNAL_CLD_MASK;
2551 
2552 		spin_unlock_irq(&sighand->siglock);
2553 
2554 		/*
2555 		 * Notify the parent that we're continuing.  This event is
2556 		 * always per-process and doesn't make whole lot of sense
2557 		 * for ptracers, who shouldn't consume the state via
2558 		 * wait(2) either, but, for backward compatibility, notify
2559 		 * the ptracer of the group leader too unless it's gonna be
2560 		 * a duplicate.
2561 		 */
2562 		read_lock(&tasklist_lock);
2563 		do_notify_parent_cldstop(current, false, why);
2564 
2565 		if (ptrace_reparented(current->group_leader))
2566 			do_notify_parent_cldstop(current->group_leader,
2567 						true, why);
2568 		read_unlock(&tasklist_lock);
2569 
2570 		goto relock;
2571 	}
2572 
2573 	/* Has this task already been marked for death? */
2574 	if (signal_group_exit(signal)) {
2575 		ksig->info.si_signo = signr = SIGKILL;
2576 		sigdelset(&current->pending.signal, SIGKILL);
2577 		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2578 				&sighand->action[SIGKILL - 1]);
2579 		recalc_sigpending();
2580 		goto fatal;
2581 	}
2582 
2583 	for (;;) {
2584 		struct k_sigaction *ka;
2585 
2586 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2587 		    do_signal_stop(0))
2588 			goto relock;
2589 
2590 		if (unlikely(current->jobctl &
2591 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2592 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2593 				do_jobctl_trap();
2594 				spin_unlock_irq(&sighand->siglock);
2595 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2596 				do_freezer_trap();
2597 
2598 			goto relock;
2599 		}
2600 
2601 		/*
2602 		 * If the task is leaving the frozen state, let's update
2603 		 * cgroup counters and reset the frozen bit.
2604 		 */
2605 		if (unlikely(cgroup_task_frozen(current))) {
2606 			spin_unlock_irq(&sighand->siglock);
2607 			cgroup_leave_frozen(false);
2608 			goto relock;
2609 		}
2610 
2611 		/*
2612 		 * Signals generated by the execution of an instruction
2613 		 * need to be delivered before any other pending signals
2614 		 * so that the instruction pointer in the signal stack
2615 		 * frame points to the faulting instruction.
2616 		 */
2617 		signr = dequeue_synchronous_signal(&ksig->info);
2618 		if (!signr)
2619 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2620 
2621 		if (!signr)
2622 			break; /* will return 0 */
2623 
2624 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2625 			signr = ptrace_signal(signr, &ksig->info);
2626 			if (!signr)
2627 				continue;
2628 		}
2629 
2630 		ka = &sighand->action[signr-1];
2631 
2632 		/* Trace actually delivered signals. */
2633 		trace_signal_deliver(signr, &ksig->info, ka);
2634 
2635 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2636 			continue;
2637 		if (ka->sa.sa_handler != SIG_DFL) {
2638 			/* Run the handler.  */
2639 			ksig->ka = *ka;
2640 
2641 			if (ka->sa.sa_flags & SA_ONESHOT)
2642 				ka->sa.sa_handler = SIG_DFL;
2643 
2644 			break; /* will return non-zero "signr" value */
2645 		}
2646 
2647 		/*
2648 		 * Now we are doing the default action for this signal.
2649 		 */
2650 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2651 			continue;
2652 
2653 		/*
2654 		 * Global init gets no signals it doesn't want.
2655 		 * Container-init gets no signals it doesn't want from same
2656 		 * container.
2657 		 *
2658 		 * Note that if global/container-init sees a sig_kernel_only()
2659 		 * signal here, the signal must have been generated internally
2660 		 * or must have come from an ancestor namespace. In either
2661 		 * case, the signal cannot be dropped.
2662 		 */
2663 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2664 				!sig_kernel_only(signr))
2665 			continue;
2666 
2667 		if (sig_kernel_stop(signr)) {
2668 			/*
2669 			 * The default action is to stop all threads in
2670 			 * the thread group.  The job control signals
2671 			 * do nothing in an orphaned pgrp, but SIGSTOP
2672 			 * always works.  Note that siglock needs to be
2673 			 * dropped during the call to is_orphaned_pgrp()
2674 			 * because of lock ordering with tasklist_lock.
2675 			 * This allows an intervening SIGCONT to be posted.
2676 			 * We need to check for that and bail out if necessary.
2677 			 */
2678 			if (signr != SIGSTOP) {
2679 				spin_unlock_irq(&sighand->siglock);
2680 
2681 				/* signals can be posted during this window */
2682 
2683 				if (is_current_pgrp_orphaned())
2684 					goto relock;
2685 
2686 				spin_lock_irq(&sighand->siglock);
2687 			}
2688 
2689 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2690 				/* It released the siglock.  */
2691 				goto relock;
2692 			}
2693 
2694 			/*
2695 			 * We didn't actually stop, due to a race
2696 			 * with SIGCONT or something like that.
2697 			 */
2698 			continue;
2699 		}
2700 
2701 	fatal:
2702 		spin_unlock_irq(&sighand->siglock);
2703 		if (unlikely(cgroup_task_frozen(current)))
2704 			cgroup_leave_frozen(true);
2705 
2706 		/*
2707 		 * Anything else is fatal, maybe with a core dump.
2708 		 */
2709 		current->flags |= PF_SIGNALED;
2710 
2711 		if (sig_kernel_coredump(signr)) {
2712 			if (print_fatal_signals)
2713 				print_fatal_signal(ksig->info.si_signo);
2714 			proc_coredump_connector(current);
2715 			/*
2716 			 * If it was able to dump core, this kills all
2717 			 * other threads in the group and synchronizes with
2718 			 * their demise.  If we lost the race with another
2719 			 * thread getting here, it set group_exit_code
2720 			 * first and our do_group_exit call below will use
2721 			 * that value and ignore the one we pass it.
2722 			 */
2723 			do_coredump(&ksig->info);
2724 		}
2725 
2726 		/*
2727 		 * Death signals, no core dump.
2728 		 */
2729 		do_group_exit(ksig->info.si_signo);
2730 		/* NOTREACHED */
2731 	}
2732 	spin_unlock_irq(&sighand->siglock);
2733 
2734 	ksig->sig = signr;
2735 	return ksig->sig > 0;
2736 }
2737 
2738 /**
2739  * signal_delivered -
2740  * @ksig:		kernel signal struct
2741  * @stepping:		nonzero if debugger single-step or block-step in use
2742  *
2743  * This function should be called when a signal has successfully been
2744  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2745  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2746  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2747  */
2748 static void signal_delivered(struct ksignal *ksig, int stepping)
2749 {
2750 	sigset_t blocked;
2751 
2752 	/* A signal was successfully delivered, and the
2753 	   saved sigmask was stored on the signal frame,
2754 	   and will be restored by sigreturn.  So we can
2755 	   simply clear the restore sigmask flag.  */
2756 	clear_restore_sigmask();
2757 
2758 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2759 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2760 		sigaddset(&blocked, ksig->sig);
2761 	set_current_blocked(&blocked);
2762 	tracehook_signal_handler(stepping);
2763 }
2764 
2765 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2766 {
2767 	if (failed)
2768 		force_sigsegv(ksig->sig);
2769 	else
2770 		signal_delivered(ksig, stepping);
2771 }
2772 
2773 /*
2774  * It could be that complete_signal() picked us to notify about the
2775  * group-wide signal. Other threads should be notified now to take
2776  * the shared signals in @which since we will not.
2777  */
2778 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2779 {
2780 	sigset_t retarget;
2781 	struct task_struct *t;
2782 
2783 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2784 	if (sigisemptyset(&retarget))
2785 		return;
2786 
2787 	t = tsk;
2788 	while_each_thread(tsk, t) {
2789 		if (t->flags & PF_EXITING)
2790 			continue;
2791 
2792 		if (!has_pending_signals(&retarget, &t->blocked))
2793 			continue;
2794 		/* Remove the signals this thread can handle. */
2795 		sigandsets(&retarget, &retarget, &t->blocked);
2796 
2797 		if (!signal_pending(t))
2798 			signal_wake_up(t, 0);
2799 
2800 		if (sigisemptyset(&retarget))
2801 			break;
2802 	}
2803 }
2804 
2805 void exit_signals(struct task_struct *tsk)
2806 {
2807 	int group_stop = 0;
2808 	sigset_t unblocked;
2809 
2810 	/*
2811 	 * @tsk is about to have PF_EXITING set - lock out users which
2812 	 * expect stable threadgroup.
2813 	 */
2814 	cgroup_threadgroup_change_begin(tsk);
2815 
2816 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2817 		tsk->flags |= PF_EXITING;
2818 		cgroup_threadgroup_change_end(tsk);
2819 		return;
2820 	}
2821 
2822 	spin_lock_irq(&tsk->sighand->siglock);
2823 	/*
2824 	 * From now this task is not visible for group-wide signals,
2825 	 * see wants_signal(), do_signal_stop().
2826 	 */
2827 	tsk->flags |= PF_EXITING;
2828 
2829 	cgroup_threadgroup_change_end(tsk);
2830 
2831 	if (!signal_pending(tsk))
2832 		goto out;
2833 
2834 	unblocked = tsk->blocked;
2835 	signotset(&unblocked);
2836 	retarget_shared_pending(tsk, &unblocked);
2837 
2838 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2839 	    task_participate_group_stop(tsk))
2840 		group_stop = CLD_STOPPED;
2841 out:
2842 	spin_unlock_irq(&tsk->sighand->siglock);
2843 
2844 	/*
2845 	 * If group stop has completed, deliver the notification.  This
2846 	 * should always go to the real parent of the group leader.
2847 	 */
2848 	if (unlikely(group_stop)) {
2849 		read_lock(&tasklist_lock);
2850 		do_notify_parent_cldstop(tsk, false, group_stop);
2851 		read_unlock(&tasklist_lock);
2852 	}
2853 }
2854 
2855 /*
2856  * System call entry points.
2857  */
2858 
2859 /**
2860  *  sys_restart_syscall - restart a system call
2861  */
2862 SYSCALL_DEFINE0(restart_syscall)
2863 {
2864 	struct restart_block *restart = &current->restart_block;
2865 	return restart->fn(restart);
2866 }
2867 
2868 long do_no_restart_syscall(struct restart_block *param)
2869 {
2870 	return -EINTR;
2871 }
2872 
2873 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2874 {
2875 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2876 		sigset_t newblocked;
2877 		/* A set of now blocked but previously unblocked signals. */
2878 		sigandnsets(&newblocked, newset, &current->blocked);
2879 		retarget_shared_pending(tsk, &newblocked);
2880 	}
2881 	tsk->blocked = *newset;
2882 	recalc_sigpending();
2883 }
2884 
2885 /**
2886  * set_current_blocked - change current->blocked mask
2887  * @newset: new mask
2888  *
2889  * It is wrong to change ->blocked directly, this helper should be used
2890  * to ensure the process can't miss a shared signal we are going to block.
2891  */
2892 void set_current_blocked(sigset_t *newset)
2893 {
2894 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2895 	__set_current_blocked(newset);
2896 }
2897 
2898 void __set_current_blocked(const sigset_t *newset)
2899 {
2900 	struct task_struct *tsk = current;
2901 
2902 	/*
2903 	 * In case the signal mask hasn't changed, there is nothing we need
2904 	 * to do. The current->blocked shouldn't be modified by other task.
2905 	 */
2906 	if (sigequalsets(&tsk->blocked, newset))
2907 		return;
2908 
2909 	spin_lock_irq(&tsk->sighand->siglock);
2910 	__set_task_blocked(tsk, newset);
2911 	spin_unlock_irq(&tsk->sighand->siglock);
2912 }
2913 
2914 /*
2915  * This is also useful for kernel threads that want to temporarily
2916  * (or permanently) block certain signals.
2917  *
2918  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2919  * interface happily blocks "unblockable" signals like SIGKILL
2920  * and friends.
2921  */
2922 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2923 {
2924 	struct task_struct *tsk = current;
2925 	sigset_t newset;
2926 
2927 	/* Lockless, only current can change ->blocked, never from irq */
2928 	if (oldset)
2929 		*oldset = tsk->blocked;
2930 
2931 	switch (how) {
2932 	case SIG_BLOCK:
2933 		sigorsets(&newset, &tsk->blocked, set);
2934 		break;
2935 	case SIG_UNBLOCK:
2936 		sigandnsets(&newset, &tsk->blocked, set);
2937 		break;
2938 	case SIG_SETMASK:
2939 		newset = *set;
2940 		break;
2941 	default:
2942 		return -EINVAL;
2943 	}
2944 
2945 	__set_current_blocked(&newset);
2946 	return 0;
2947 }
2948 EXPORT_SYMBOL(sigprocmask);
2949 
2950 /*
2951  * The api helps set app-provided sigmasks.
2952  *
2953  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2954  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2955  *
2956  * Note that it does set_restore_sigmask() in advance, so it must be always
2957  * paired with restore_saved_sigmask_unless() before return from syscall.
2958  */
2959 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2960 {
2961 	sigset_t kmask;
2962 
2963 	if (!umask)
2964 		return 0;
2965 	if (sigsetsize != sizeof(sigset_t))
2966 		return -EINVAL;
2967 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2968 		return -EFAULT;
2969 
2970 	set_restore_sigmask();
2971 	current->saved_sigmask = current->blocked;
2972 	set_current_blocked(&kmask);
2973 
2974 	return 0;
2975 }
2976 
2977 #ifdef CONFIG_COMPAT
2978 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
2979 			    size_t sigsetsize)
2980 {
2981 	sigset_t kmask;
2982 
2983 	if (!umask)
2984 		return 0;
2985 	if (sigsetsize != sizeof(compat_sigset_t))
2986 		return -EINVAL;
2987 	if (get_compat_sigset(&kmask, umask))
2988 		return -EFAULT;
2989 
2990 	set_restore_sigmask();
2991 	current->saved_sigmask = current->blocked;
2992 	set_current_blocked(&kmask);
2993 
2994 	return 0;
2995 }
2996 #endif
2997 
2998 /**
2999  *  sys_rt_sigprocmask - change the list of currently blocked signals
3000  *  @how: whether to add, remove, or set signals
3001  *  @nset: stores pending signals
3002  *  @oset: previous value of signal mask if non-null
3003  *  @sigsetsize: size of sigset_t type
3004  */
3005 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3006 		sigset_t __user *, oset, size_t, sigsetsize)
3007 {
3008 	sigset_t old_set, new_set;
3009 	int error;
3010 
3011 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3012 	if (sigsetsize != sizeof(sigset_t))
3013 		return -EINVAL;
3014 
3015 	old_set = current->blocked;
3016 
3017 	if (nset) {
3018 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3019 			return -EFAULT;
3020 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3021 
3022 		error = sigprocmask(how, &new_set, NULL);
3023 		if (error)
3024 			return error;
3025 	}
3026 
3027 	if (oset) {
3028 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3029 			return -EFAULT;
3030 	}
3031 
3032 	return 0;
3033 }
3034 
3035 #ifdef CONFIG_COMPAT
3036 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3037 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3038 {
3039 	sigset_t old_set = current->blocked;
3040 
3041 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3042 	if (sigsetsize != sizeof(sigset_t))
3043 		return -EINVAL;
3044 
3045 	if (nset) {
3046 		sigset_t new_set;
3047 		int error;
3048 		if (get_compat_sigset(&new_set, nset))
3049 			return -EFAULT;
3050 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3051 
3052 		error = sigprocmask(how, &new_set, NULL);
3053 		if (error)
3054 			return error;
3055 	}
3056 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3057 }
3058 #endif
3059 
3060 static void do_sigpending(sigset_t *set)
3061 {
3062 	spin_lock_irq(&current->sighand->siglock);
3063 	sigorsets(set, &current->pending.signal,
3064 		  &current->signal->shared_pending.signal);
3065 	spin_unlock_irq(&current->sighand->siglock);
3066 
3067 	/* Outside the lock because only this thread touches it.  */
3068 	sigandsets(set, &current->blocked, set);
3069 }
3070 
3071 /**
3072  *  sys_rt_sigpending - examine a pending signal that has been raised
3073  *			while blocked
3074  *  @uset: stores pending signals
3075  *  @sigsetsize: size of sigset_t type or larger
3076  */
3077 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3078 {
3079 	sigset_t set;
3080 
3081 	if (sigsetsize > sizeof(*uset))
3082 		return -EINVAL;
3083 
3084 	do_sigpending(&set);
3085 
3086 	if (copy_to_user(uset, &set, sigsetsize))
3087 		return -EFAULT;
3088 
3089 	return 0;
3090 }
3091 
3092 #ifdef CONFIG_COMPAT
3093 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3094 		compat_size_t, sigsetsize)
3095 {
3096 	sigset_t set;
3097 
3098 	if (sigsetsize > sizeof(*uset))
3099 		return -EINVAL;
3100 
3101 	do_sigpending(&set);
3102 
3103 	return put_compat_sigset(uset, &set, sigsetsize);
3104 }
3105 #endif
3106 
3107 static const struct {
3108 	unsigned char limit, layout;
3109 } sig_sicodes[] = {
3110 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3111 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3112 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3113 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3114 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3115 #if defined(SIGEMT)
3116 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3117 #endif
3118 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3119 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3120 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3121 };
3122 
3123 static bool known_siginfo_layout(unsigned sig, int si_code)
3124 {
3125 	if (si_code == SI_KERNEL)
3126 		return true;
3127 	else if ((si_code > SI_USER)) {
3128 		if (sig_specific_sicodes(sig)) {
3129 			if (si_code <= sig_sicodes[sig].limit)
3130 				return true;
3131 		}
3132 		else if (si_code <= NSIGPOLL)
3133 			return true;
3134 	}
3135 	else if (si_code >= SI_DETHREAD)
3136 		return true;
3137 	else if (si_code == SI_ASYNCNL)
3138 		return true;
3139 	return false;
3140 }
3141 
3142 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3143 {
3144 	enum siginfo_layout layout = SIL_KILL;
3145 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3146 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3147 		    (si_code <= sig_sicodes[sig].limit)) {
3148 			layout = sig_sicodes[sig].layout;
3149 			/* Handle the exceptions */
3150 			if ((sig == SIGBUS) &&
3151 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3152 				layout = SIL_FAULT_MCEERR;
3153 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3154 				layout = SIL_FAULT_BNDERR;
3155 #ifdef SEGV_PKUERR
3156 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3157 				layout = SIL_FAULT_PKUERR;
3158 #endif
3159 		}
3160 		else if (si_code <= NSIGPOLL)
3161 			layout = SIL_POLL;
3162 	} else {
3163 		if (si_code == SI_TIMER)
3164 			layout = SIL_TIMER;
3165 		else if (si_code == SI_SIGIO)
3166 			layout = SIL_POLL;
3167 		else if (si_code < 0)
3168 			layout = SIL_RT;
3169 	}
3170 	return layout;
3171 }
3172 
3173 static inline char __user *si_expansion(const siginfo_t __user *info)
3174 {
3175 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3176 }
3177 
3178 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3179 {
3180 	char __user *expansion = si_expansion(to);
3181 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3182 		return -EFAULT;
3183 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3184 		return -EFAULT;
3185 	return 0;
3186 }
3187 
3188 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3189 				       const siginfo_t __user *from)
3190 {
3191 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3192 		char __user *expansion = si_expansion(from);
3193 		char buf[SI_EXPANSION_SIZE];
3194 		int i;
3195 		/*
3196 		 * An unknown si_code might need more than
3197 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3198 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3199 		 * will return this data to userspace exactly.
3200 		 */
3201 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3202 			return -EFAULT;
3203 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3204 			if (buf[i] != 0)
3205 				return -E2BIG;
3206 		}
3207 	}
3208 	return 0;
3209 }
3210 
3211 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3212 				    const siginfo_t __user *from)
3213 {
3214 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3215 		return -EFAULT;
3216 	to->si_signo = signo;
3217 	return post_copy_siginfo_from_user(to, from);
3218 }
3219 
3220 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3221 {
3222 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3223 		return -EFAULT;
3224 	return post_copy_siginfo_from_user(to, from);
3225 }
3226 
3227 #ifdef CONFIG_COMPAT
3228 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3229 			   const struct kernel_siginfo *from)
3230 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3231 {
3232 	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3233 }
3234 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3235 			     const struct kernel_siginfo *from, bool x32_ABI)
3236 #endif
3237 {
3238 	struct compat_siginfo new;
3239 	memset(&new, 0, sizeof(new));
3240 
3241 	new.si_signo = from->si_signo;
3242 	new.si_errno = from->si_errno;
3243 	new.si_code  = from->si_code;
3244 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3245 	case SIL_KILL:
3246 		new.si_pid = from->si_pid;
3247 		new.si_uid = from->si_uid;
3248 		break;
3249 	case SIL_TIMER:
3250 		new.si_tid     = from->si_tid;
3251 		new.si_overrun = from->si_overrun;
3252 		new.si_int     = from->si_int;
3253 		break;
3254 	case SIL_POLL:
3255 		new.si_band = from->si_band;
3256 		new.si_fd   = from->si_fd;
3257 		break;
3258 	case SIL_FAULT:
3259 		new.si_addr = ptr_to_compat(from->si_addr);
3260 #ifdef __ARCH_SI_TRAPNO
3261 		new.si_trapno = from->si_trapno;
3262 #endif
3263 		break;
3264 	case SIL_FAULT_MCEERR:
3265 		new.si_addr = ptr_to_compat(from->si_addr);
3266 #ifdef __ARCH_SI_TRAPNO
3267 		new.si_trapno = from->si_trapno;
3268 #endif
3269 		new.si_addr_lsb = from->si_addr_lsb;
3270 		break;
3271 	case SIL_FAULT_BNDERR:
3272 		new.si_addr = ptr_to_compat(from->si_addr);
3273 #ifdef __ARCH_SI_TRAPNO
3274 		new.si_trapno = from->si_trapno;
3275 #endif
3276 		new.si_lower = ptr_to_compat(from->si_lower);
3277 		new.si_upper = ptr_to_compat(from->si_upper);
3278 		break;
3279 	case SIL_FAULT_PKUERR:
3280 		new.si_addr = ptr_to_compat(from->si_addr);
3281 #ifdef __ARCH_SI_TRAPNO
3282 		new.si_trapno = from->si_trapno;
3283 #endif
3284 		new.si_pkey = from->si_pkey;
3285 		break;
3286 	case SIL_CHLD:
3287 		new.si_pid    = from->si_pid;
3288 		new.si_uid    = from->si_uid;
3289 		new.si_status = from->si_status;
3290 #ifdef CONFIG_X86_X32_ABI
3291 		if (x32_ABI) {
3292 			new._sifields._sigchld_x32._utime = from->si_utime;
3293 			new._sifields._sigchld_x32._stime = from->si_stime;
3294 		} else
3295 #endif
3296 		{
3297 			new.si_utime = from->si_utime;
3298 			new.si_stime = from->si_stime;
3299 		}
3300 		break;
3301 	case SIL_RT:
3302 		new.si_pid = from->si_pid;
3303 		new.si_uid = from->si_uid;
3304 		new.si_int = from->si_int;
3305 		break;
3306 	case SIL_SYS:
3307 		new.si_call_addr = ptr_to_compat(from->si_call_addr);
3308 		new.si_syscall   = from->si_syscall;
3309 		new.si_arch      = from->si_arch;
3310 		break;
3311 	}
3312 
3313 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3314 		return -EFAULT;
3315 
3316 	return 0;
3317 }
3318 
3319 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3320 					 const struct compat_siginfo *from)
3321 {
3322 	clear_siginfo(to);
3323 	to->si_signo = from->si_signo;
3324 	to->si_errno = from->si_errno;
3325 	to->si_code  = from->si_code;
3326 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3327 	case SIL_KILL:
3328 		to->si_pid = from->si_pid;
3329 		to->si_uid = from->si_uid;
3330 		break;
3331 	case SIL_TIMER:
3332 		to->si_tid     = from->si_tid;
3333 		to->si_overrun = from->si_overrun;
3334 		to->si_int     = from->si_int;
3335 		break;
3336 	case SIL_POLL:
3337 		to->si_band = from->si_band;
3338 		to->si_fd   = from->si_fd;
3339 		break;
3340 	case SIL_FAULT:
3341 		to->si_addr = compat_ptr(from->si_addr);
3342 #ifdef __ARCH_SI_TRAPNO
3343 		to->si_trapno = from->si_trapno;
3344 #endif
3345 		break;
3346 	case SIL_FAULT_MCEERR:
3347 		to->si_addr = compat_ptr(from->si_addr);
3348 #ifdef __ARCH_SI_TRAPNO
3349 		to->si_trapno = from->si_trapno;
3350 #endif
3351 		to->si_addr_lsb = from->si_addr_lsb;
3352 		break;
3353 	case SIL_FAULT_BNDERR:
3354 		to->si_addr = compat_ptr(from->si_addr);
3355 #ifdef __ARCH_SI_TRAPNO
3356 		to->si_trapno = from->si_trapno;
3357 #endif
3358 		to->si_lower = compat_ptr(from->si_lower);
3359 		to->si_upper = compat_ptr(from->si_upper);
3360 		break;
3361 	case SIL_FAULT_PKUERR:
3362 		to->si_addr = compat_ptr(from->si_addr);
3363 #ifdef __ARCH_SI_TRAPNO
3364 		to->si_trapno = from->si_trapno;
3365 #endif
3366 		to->si_pkey = from->si_pkey;
3367 		break;
3368 	case SIL_CHLD:
3369 		to->si_pid    = from->si_pid;
3370 		to->si_uid    = from->si_uid;
3371 		to->si_status = from->si_status;
3372 #ifdef CONFIG_X86_X32_ABI
3373 		if (in_x32_syscall()) {
3374 			to->si_utime = from->_sifields._sigchld_x32._utime;
3375 			to->si_stime = from->_sifields._sigchld_x32._stime;
3376 		} else
3377 #endif
3378 		{
3379 			to->si_utime = from->si_utime;
3380 			to->si_stime = from->si_stime;
3381 		}
3382 		break;
3383 	case SIL_RT:
3384 		to->si_pid = from->si_pid;
3385 		to->si_uid = from->si_uid;
3386 		to->si_int = from->si_int;
3387 		break;
3388 	case SIL_SYS:
3389 		to->si_call_addr = compat_ptr(from->si_call_addr);
3390 		to->si_syscall   = from->si_syscall;
3391 		to->si_arch      = from->si_arch;
3392 		break;
3393 	}
3394 	return 0;
3395 }
3396 
3397 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3398 				      const struct compat_siginfo __user *ufrom)
3399 {
3400 	struct compat_siginfo from;
3401 
3402 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3403 		return -EFAULT;
3404 
3405 	from.si_signo = signo;
3406 	return post_copy_siginfo_from_user32(to, &from);
3407 }
3408 
3409 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3410 			     const struct compat_siginfo __user *ufrom)
3411 {
3412 	struct compat_siginfo from;
3413 
3414 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3415 		return -EFAULT;
3416 
3417 	return post_copy_siginfo_from_user32(to, &from);
3418 }
3419 #endif /* CONFIG_COMPAT */
3420 
3421 /**
3422  *  do_sigtimedwait - wait for queued signals specified in @which
3423  *  @which: queued signals to wait for
3424  *  @info: if non-null, the signal's siginfo is returned here
3425  *  @ts: upper bound on process time suspension
3426  */
3427 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3428 		    const struct timespec64 *ts)
3429 {
3430 	ktime_t *to = NULL, timeout = KTIME_MAX;
3431 	struct task_struct *tsk = current;
3432 	sigset_t mask = *which;
3433 	int sig, ret = 0;
3434 
3435 	if (ts) {
3436 		if (!timespec64_valid(ts))
3437 			return -EINVAL;
3438 		timeout = timespec64_to_ktime(*ts);
3439 		to = &timeout;
3440 	}
3441 
3442 	/*
3443 	 * Invert the set of allowed signals to get those we want to block.
3444 	 */
3445 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3446 	signotset(&mask);
3447 
3448 	spin_lock_irq(&tsk->sighand->siglock);
3449 	sig = dequeue_signal(tsk, &mask, info);
3450 	if (!sig && timeout) {
3451 		/*
3452 		 * None ready, temporarily unblock those we're interested
3453 		 * while we are sleeping in so that we'll be awakened when
3454 		 * they arrive. Unblocking is always fine, we can avoid
3455 		 * set_current_blocked().
3456 		 */
3457 		tsk->real_blocked = tsk->blocked;
3458 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3459 		recalc_sigpending();
3460 		spin_unlock_irq(&tsk->sighand->siglock);
3461 
3462 		__set_current_state(TASK_INTERRUPTIBLE);
3463 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3464 							 HRTIMER_MODE_REL);
3465 		spin_lock_irq(&tsk->sighand->siglock);
3466 		__set_task_blocked(tsk, &tsk->real_blocked);
3467 		sigemptyset(&tsk->real_blocked);
3468 		sig = dequeue_signal(tsk, &mask, info);
3469 	}
3470 	spin_unlock_irq(&tsk->sighand->siglock);
3471 
3472 	if (sig)
3473 		return sig;
3474 	return ret ? -EINTR : -EAGAIN;
3475 }
3476 
3477 /**
3478  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3479  *			in @uthese
3480  *  @uthese: queued signals to wait for
3481  *  @uinfo: if non-null, the signal's siginfo is returned here
3482  *  @uts: upper bound on process time suspension
3483  *  @sigsetsize: size of sigset_t type
3484  */
3485 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3486 		siginfo_t __user *, uinfo,
3487 		const struct __kernel_timespec __user *, uts,
3488 		size_t, sigsetsize)
3489 {
3490 	sigset_t these;
3491 	struct timespec64 ts;
3492 	kernel_siginfo_t info;
3493 	int ret;
3494 
3495 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3496 	if (sigsetsize != sizeof(sigset_t))
3497 		return -EINVAL;
3498 
3499 	if (copy_from_user(&these, uthese, sizeof(these)))
3500 		return -EFAULT;
3501 
3502 	if (uts) {
3503 		if (get_timespec64(&ts, uts))
3504 			return -EFAULT;
3505 	}
3506 
3507 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3508 
3509 	if (ret > 0 && uinfo) {
3510 		if (copy_siginfo_to_user(uinfo, &info))
3511 			ret = -EFAULT;
3512 	}
3513 
3514 	return ret;
3515 }
3516 
3517 #ifdef CONFIG_COMPAT_32BIT_TIME
3518 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3519 		siginfo_t __user *, uinfo,
3520 		const struct old_timespec32 __user *, uts,
3521 		size_t, sigsetsize)
3522 {
3523 	sigset_t these;
3524 	struct timespec64 ts;
3525 	kernel_siginfo_t info;
3526 	int ret;
3527 
3528 	if (sigsetsize != sizeof(sigset_t))
3529 		return -EINVAL;
3530 
3531 	if (copy_from_user(&these, uthese, sizeof(these)))
3532 		return -EFAULT;
3533 
3534 	if (uts) {
3535 		if (get_old_timespec32(&ts, uts))
3536 			return -EFAULT;
3537 	}
3538 
3539 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3540 
3541 	if (ret > 0 && uinfo) {
3542 		if (copy_siginfo_to_user(uinfo, &info))
3543 			ret = -EFAULT;
3544 	}
3545 
3546 	return ret;
3547 }
3548 #endif
3549 
3550 #ifdef CONFIG_COMPAT
3551 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3552 		struct compat_siginfo __user *, uinfo,
3553 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3554 {
3555 	sigset_t s;
3556 	struct timespec64 t;
3557 	kernel_siginfo_t info;
3558 	long ret;
3559 
3560 	if (sigsetsize != sizeof(sigset_t))
3561 		return -EINVAL;
3562 
3563 	if (get_compat_sigset(&s, uthese))
3564 		return -EFAULT;
3565 
3566 	if (uts) {
3567 		if (get_timespec64(&t, uts))
3568 			return -EFAULT;
3569 	}
3570 
3571 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3572 
3573 	if (ret > 0 && uinfo) {
3574 		if (copy_siginfo_to_user32(uinfo, &info))
3575 			ret = -EFAULT;
3576 	}
3577 
3578 	return ret;
3579 }
3580 
3581 #ifdef CONFIG_COMPAT_32BIT_TIME
3582 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3583 		struct compat_siginfo __user *, uinfo,
3584 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3585 {
3586 	sigset_t s;
3587 	struct timespec64 t;
3588 	kernel_siginfo_t info;
3589 	long ret;
3590 
3591 	if (sigsetsize != sizeof(sigset_t))
3592 		return -EINVAL;
3593 
3594 	if (get_compat_sigset(&s, uthese))
3595 		return -EFAULT;
3596 
3597 	if (uts) {
3598 		if (get_old_timespec32(&t, uts))
3599 			return -EFAULT;
3600 	}
3601 
3602 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3603 
3604 	if (ret > 0 && uinfo) {
3605 		if (copy_siginfo_to_user32(uinfo, &info))
3606 			ret = -EFAULT;
3607 	}
3608 
3609 	return ret;
3610 }
3611 #endif
3612 #endif
3613 
3614 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3615 {
3616 	clear_siginfo(info);
3617 	info->si_signo = sig;
3618 	info->si_errno = 0;
3619 	info->si_code = SI_USER;
3620 	info->si_pid = task_tgid_vnr(current);
3621 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3622 }
3623 
3624 /**
3625  *  sys_kill - send a signal to a process
3626  *  @pid: the PID of the process
3627  *  @sig: signal to be sent
3628  */
3629 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3630 {
3631 	struct kernel_siginfo info;
3632 
3633 	prepare_kill_siginfo(sig, &info);
3634 
3635 	return kill_something_info(sig, &info, pid);
3636 }
3637 
3638 /*
3639  * Verify that the signaler and signalee either are in the same pid namespace
3640  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3641  * namespace.
3642  */
3643 static bool access_pidfd_pidns(struct pid *pid)
3644 {
3645 	struct pid_namespace *active = task_active_pid_ns(current);
3646 	struct pid_namespace *p = ns_of_pid(pid);
3647 
3648 	for (;;) {
3649 		if (!p)
3650 			return false;
3651 		if (p == active)
3652 			break;
3653 		p = p->parent;
3654 	}
3655 
3656 	return true;
3657 }
3658 
3659 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3660 {
3661 #ifdef CONFIG_COMPAT
3662 	/*
3663 	 * Avoid hooking up compat syscalls and instead handle necessary
3664 	 * conversions here. Note, this is a stop-gap measure and should not be
3665 	 * considered a generic solution.
3666 	 */
3667 	if (in_compat_syscall())
3668 		return copy_siginfo_from_user32(
3669 			kinfo, (struct compat_siginfo __user *)info);
3670 #endif
3671 	return copy_siginfo_from_user(kinfo, info);
3672 }
3673 
3674 static struct pid *pidfd_to_pid(const struct file *file)
3675 {
3676 	if (file->f_op == &pidfd_fops)
3677 		return file->private_data;
3678 
3679 	return tgid_pidfd_to_pid(file);
3680 }
3681 
3682 /**
3683  * sys_pidfd_send_signal - Signal a process through a pidfd
3684  * @pidfd:  file descriptor of the process
3685  * @sig:    signal to send
3686  * @info:   signal info
3687  * @flags:  future flags
3688  *
3689  * The syscall currently only signals via PIDTYPE_PID which covers
3690  * kill(<positive-pid>, <signal>. It does not signal threads or process
3691  * groups.
3692  * In order to extend the syscall to threads and process groups the @flags
3693  * argument should be used. In essence, the @flags argument will determine
3694  * what is signaled and not the file descriptor itself. Put in other words,
3695  * grouping is a property of the flags argument not a property of the file
3696  * descriptor.
3697  *
3698  * Return: 0 on success, negative errno on failure
3699  */
3700 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3701 		siginfo_t __user *, info, unsigned int, flags)
3702 {
3703 	int ret;
3704 	struct fd f;
3705 	struct pid *pid;
3706 	kernel_siginfo_t kinfo;
3707 
3708 	/* Enforce flags be set to 0 until we add an extension. */
3709 	if (flags)
3710 		return -EINVAL;
3711 
3712 	f = fdget(pidfd);
3713 	if (!f.file)
3714 		return -EBADF;
3715 
3716 	/* Is this a pidfd? */
3717 	pid = pidfd_to_pid(f.file);
3718 	if (IS_ERR(pid)) {
3719 		ret = PTR_ERR(pid);
3720 		goto err;
3721 	}
3722 
3723 	ret = -EINVAL;
3724 	if (!access_pidfd_pidns(pid))
3725 		goto err;
3726 
3727 	if (info) {
3728 		ret = copy_siginfo_from_user_any(&kinfo, info);
3729 		if (unlikely(ret))
3730 			goto err;
3731 
3732 		ret = -EINVAL;
3733 		if (unlikely(sig != kinfo.si_signo))
3734 			goto err;
3735 
3736 		/* Only allow sending arbitrary signals to yourself. */
3737 		ret = -EPERM;
3738 		if ((task_pid(current) != pid) &&
3739 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3740 			goto err;
3741 	} else {
3742 		prepare_kill_siginfo(sig, &kinfo);
3743 	}
3744 
3745 	ret = kill_pid_info(sig, &kinfo, pid);
3746 
3747 err:
3748 	fdput(f);
3749 	return ret;
3750 }
3751 
3752 static int
3753 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3754 {
3755 	struct task_struct *p;
3756 	int error = -ESRCH;
3757 
3758 	rcu_read_lock();
3759 	p = find_task_by_vpid(pid);
3760 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3761 		error = check_kill_permission(sig, info, p);
3762 		/*
3763 		 * The null signal is a permissions and process existence
3764 		 * probe.  No signal is actually delivered.
3765 		 */
3766 		if (!error && sig) {
3767 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3768 			/*
3769 			 * If lock_task_sighand() failed we pretend the task
3770 			 * dies after receiving the signal. The window is tiny,
3771 			 * and the signal is private anyway.
3772 			 */
3773 			if (unlikely(error == -ESRCH))
3774 				error = 0;
3775 		}
3776 	}
3777 	rcu_read_unlock();
3778 
3779 	return error;
3780 }
3781 
3782 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3783 {
3784 	struct kernel_siginfo info;
3785 
3786 	clear_siginfo(&info);
3787 	info.si_signo = sig;
3788 	info.si_errno = 0;
3789 	info.si_code = SI_TKILL;
3790 	info.si_pid = task_tgid_vnr(current);
3791 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3792 
3793 	return do_send_specific(tgid, pid, sig, &info);
3794 }
3795 
3796 /**
3797  *  sys_tgkill - send signal to one specific thread
3798  *  @tgid: the thread group ID of the thread
3799  *  @pid: the PID of the thread
3800  *  @sig: signal to be sent
3801  *
3802  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3803  *  exists but it's not belonging to the target process anymore. This
3804  *  method solves the problem of threads exiting and PIDs getting reused.
3805  */
3806 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3807 {
3808 	/* This is only valid for single tasks */
3809 	if (pid <= 0 || tgid <= 0)
3810 		return -EINVAL;
3811 
3812 	return do_tkill(tgid, pid, sig);
3813 }
3814 
3815 /**
3816  *  sys_tkill - send signal to one specific task
3817  *  @pid: the PID of the task
3818  *  @sig: signal to be sent
3819  *
3820  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3821  */
3822 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3823 {
3824 	/* This is only valid for single tasks */
3825 	if (pid <= 0)
3826 		return -EINVAL;
3827 
3828 	return do_tkill(0, pid, sig);
3829 }
3830 
3831 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3832 {
3833 	/* Not even root can pretend to send signals from the kernel.
3834 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3835 	 */
3836 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3837 	    (task_pid_vnr(current) != pid))
3838 		return -EPERM;
3839 
3840 	/* POSIX.1b doesn't mention process groups.  */
3841 	return kill_proc_info(sig, info, pid);
3842 }
3843 
3844 /**
3845  *  sys_rt_sigqueueinfo - send signal information to a signal
3846  *  @pid: the PID of the thread
3847  *  @sig: signal to be sent
3848  *  @uinfo: signal info to be sent
3849  */
3850 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3851 		siginfo_t __user *, uinfo)
3852 {
3853 	kernel_siginfo_t info;
3854 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3855 	if (unlikely(ret))
3856 		return ret;
3857 	return do_rt_sigqueueinfo(pid, sig, &info);
3858 }
3859 
3860 #ifdef CONFIG_COMPAT
3861 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3862 			compat_pid_t, pid,
3863 			int, sig,
3864 			struct compat_siginfo __user *, uinfo)
3865 {
3866 	kernel_siginfo_t info;
3867 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3868 	if (unlikely(ret))
3869 		return ret;
3870 	return do_rt_sigqueueinfo(pid, sig, &info);
3871 }
3872 #endif
3873 
3874 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3875 {
3876 	/* This is only valid for single tasks */
3877 	if (pid <= 0 || tgid <= 0)
3878 		return -EINVAL;
3879 
3880 	/* Not even root can pretend to send signals from the kernel.
3881 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3882 	 */
3883 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3884 	    (task_pid_vnr(current) != pid))
3885 		return -EPERM;
3886 
3887 	return do_send_specific(tgid, pid, sig, info);
3888 }
3889 
3890 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3891 		siginfo_t __user *, uinfo)
3892 {
3893 	kernel_siginfo_t info;
3894 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3895 	if (unlikely(ret))
3896 		return ret;
3897 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3898 }
3899 
3900 #ifdef CONFIG_COMPAT
3901 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3902 			compat_pid_t, tgid,
3903 			compat_pid_t, pid,
3904 			int, sig,
3905 			struct compat_siginfo __user *, uinfo)
3906 {
3907 	kernel_siginfo_t info;
3908 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3909 	if (unlikely(ret))
3910 		return ret;
3911 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3912 }
3913 #endif
3914 
3915 /*
3916  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3917  */
3918 void kernel_sigaction(int sig, __sighandler_t action)
3919 {
3920 	spin_lock_irq(&current->sighand->siglock);
3921 	current->sighand->action[sig - 1].sa.sa_handler = action;
3922 	if (action == SIG_IGN) {
3923 		sigset_t mask;
3924 
3925 		sigemptyset(&mask);
3926 		sigaddset(&mask, sig);
3927 
3928 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3929 		flush_sigqueue_mask(&mask, &current->pending);
3930 		recalc_sigpending();
3931 	}
3932 	spin_unlock_irq(&current->sighand->siglock);
3933 }
3934 EXPORT_SYMBOL(kernel_sigaction);
3935 
3936 void __weak sigaction_compat_abi(struct k_sigaction *act,
3937 		struct k_sigaction *oact)
3938 {
3939 }
3940 
3941 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3942 {
3943 	struct task_struct *p = current, *t;
3944 	struct k_sigaction *k;
3945 	sigset_t mask;
3946 
3947 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3948 		return -EINVAL;
3949 
3950 	k = &p->sighand->action[sig-1];
3951 
3952 	spin_lock_irq(&p->sighand->siglock);
3953 	if (oact)
3954 		*oact = *k;
3955 
3956 	sigaction_compat_abi(act, oact);
3957 
3958 	if (act) {
3959 		sigdelsetmask(&act->sa.sa_mask,
3960 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3961 		*k = *act;
3962 		/*
3963 		 * POSIX 3.3.1.3:
3964 		 *  "Setting a signal action to SIG_IGN for a signal that is
3965 		 *   pending shall cause the pending signal to be discarded,
3966 		 *   whether or not it is blocked."
3967 		 *
3968 		 *  "Setting a signal action to SIG_DFL for a signal that is
3969 		 *   pending and whose default action is to ignore the signal
3970 		 *   (for example, SIGCHLD), shall cause the pending signal to
3971 		 *   be discarded, whether or not it is blocked"
3972 		 */
3973 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3974 			sigemptyset(&mask);
3975 			sigaddset(&mask, sig);
3976 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3977 			for_each_thread(p, t)
3978 				flush_sigqueue_mask(&mask, &t->pending);
3979 		}
3980 	}
3981 
3982 	spin_unlock_irq(&p->sighand->siglock);
3983 	return 0;
3984 }
3985 
3986 static int
3987 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3988 		size_t min_ss_size)
3989 {
3990 	struct task_struct *t = current;
3991 
3992 	if (oss) {
3993 		memset(oss, 0, sizeof(stack_t));
3994 		oss->ss_sp = (void __user *) t->sas_ss_sp;
3995 		oss->ss_size = t->sas_ss_size;
3996 		oss->ss_flags = sas_ss_flags(sp) |
3997 			(current->sas_ss_flags & SS_FLAG_BITS);
3998 	}
3999 
4000 	if (ss) {
4001 		void __user *ss_sp = ss->ss_sp;
4002 		size_t ss_size = ss->ss_size;
4003 		unsigned ss_flags = ss->ss_flags;
4004 		int ss_mode;
4005 
4006 		if (unlikely(on_sig_stack(sp)))
4007 			return -EPERM;
4008 
4009 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4010 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4011 				ss_mode != 0))
4012 			return -EINVAL;
4013 
4014 		if (ss_mode == SS_DISABLE) {
4015 			ss_size = 0;
4016 			ss_sp = NULL;
4017 		} else {
4018 			if (unlikely(ss_size < min_ss_size))
4019 				return -ENOMEM;
4020 		}
4021 
4022 		t->sas_ss_sp = (unsigned long) ss_sp;
4023 		t->sas_ss_size = ss_size;
4024 		t->sas_ss_flags = ss_flags;
4025 	}
4026 	return 0;
4027 }
4028 
4029 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4030 {
4031 	stack_t new, old;
4032 	int err;
4033 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4034 		return -EFAULT;
4035 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4036 			      current_user_stack_pointer(),
4037 			      MINSIGSTKSZ);
4038 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4039 		err = -EFAULT;
4040 	return err;
4041 }
4042 
4043 int restore_altstack(const stack_t __user *uss)
4044 {
4045 	stack_t new;
4046 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4047 		return -EFAULT;
4048 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4049 			     MINSIGSTKSZ);
4050 	/* squash all but EFAULT for now */
4051 	return 0;
4052 }
4053 
4054 int __save_altstack(stack_t __user *uss, unsigned long sp)
4055 {
4056 	struct task_struct *t = current;
4057 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4058 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4059 		__put_user(t->sas_ss_size, &uss->ss_size);
4060 	if (err)
4061 		return err;
4062 	if (t->sas_ss_flags & SS_AUTODISARM)
4063 		sas_ss_reset(t);
4064 	return 0;
4065 }
4066 
4067 #ifdef CONFIG_COMPAT
4068 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4069 				 compat_stack_t __user *uoss_ptr)
4070 {
4071 	stack_t uss, uoss;
4072 	int ret;
4073 
4074 	if (uss_ptr) {
4075 		compat_stack_t uss32;
4076 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4077 			return -EFAULT;
4078 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4079 		uss.ss_flags = uss32.ss_flags;
4080 		uss.ss_size = uss32.ss_size;
4081 	}
4082 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4083 			     compat_user_stack_pointer(),
4084 			     COMPAT_MINSIGSTKSZ);
4085 	if (ret >= 0 && uoss_ptr)  {
4086 		compat_stack_t old;
4087 		memset(&old, 0, sizeof(old));
4088 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4089 		old.ss_flags = uoss.ss_flags;
4090 		old.ss_size = uoss.ss_size;
4091 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4092 			ret = -EFAULT;
4093 	}
4094 	return ret;
4095 }
4096 
4097 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4098 			const compat_stack_t __user *, uss_ptr,
4099 			compat_stack_t __user *, uoss_ptr)
4100 {
4101 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4102 }
4103 
4104 int compat_restore_altstack(const compat_stack_t __user *uss)
4105 {
4106 	int err = do_compat_sigaltstack(uss, NULL);
4107 	/* squash all but -EFAULT for now */
4108 	return err == -EFAULT ? err : 0;
4109 }
4110 
4111 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4112 {
4113 	int err;
4114 	struct task_struct *t = current;
4115 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4116 			 &uss->ss_sp) |
4117 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4118 		__put_user(t->sas_ss_size, &uss->ss_size);
4119 	if (err)
4120 		return err;
4121 	if (t->sas_ss_flags & SS_AUTODISARM)
4122 		sas_ss_reset(t);
4123 	return 0;
4124 }
4125 #endif
4126 
4127 #ifdef __ARCH_WANT_SYS_SIGPENDING
4128 
4129 /**
4130  *  sys_sigpending - examine pending signals
4131  *  @uset: where mask of pending signal is returned
4132  */
4133 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4134 {
4135 	sigset_t set;
4136 
4137 	if (sizeof(old_sigset_t) > sizeof(*uset))
4138 		return -EINVAL;
4139 
4140 	do_sigpending(&set);
4141 
4142 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4143 		return -EFAULT;
4144 
4145 	return 0;
4146 }
4147 
4148 #ifdef CONFIG_COMPAT
4149 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4150 {
4151 	sigset_t set;
4152 
4153 	do_sigpending(&set);
4154 
4155 	return put_user(set.sig[0], set32);
4156 }
4157 #endif
4158 
4159 #endif
4160 
4161 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4162 /**
4163  *  sys_sigprocmask - examine and change blocked signals
4164  *  @how: whether to add, remove, or set signals
4165  *  @nset: signals to add or remove (if non-null)
4166  *  @oset: previous value of signal mask if non-null
4167  *
4168  * Some platforms have their own version with special arguments;
4169  * others support only sys_rt_sigprocmask.
4170  */
4171 
4172 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4173 		old_sigset_t __user *, oset)
4174 {
4175 	old_sigset_t old_set, new_set;
4176 	sigset_t new_blocked;
4177 
4178 	old_set = current->blocked.sig[0];
4179 
4180 	if (nset) {
4181 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4182 			return -EFAULT;
4183 
4184 		new_blocked = current->blocked;
4185 
4186 		switch (how) {
4187 		case SIG_BLOCK:
4188 			sigaddsetmask(&new_blocked, new_set);
4189 			break;
4190 		case SIG_UNBLOCK:
4191 			sigdelsetmask(&new_blocked, new_set);
4192 			break;
4193 		case SIG_SETMASK:
4194 			new_blocked.sig[0] = new_set;
4195 			break;
4196 		default:
4197 			return -EINVAL;
4198 		}
4199 
4200 		set_current_blocked(&new_blocked);
4201 	}
4202 
4203 	if (oset) {
4204 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4205 			return -EFAULT;
4206 	}
4207 
4208 	return 0;
4209 }
4210 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4211 
4212 #ifndef CONFIG_ODD_RT_SIGACTION
4213 /**
4214  *  sys_rt_sigaction - alter an action taken by a process
4215  *  @sig: signal to be sent
4216  *  @act: new sigaction
4217  *  @oact: used to save the previous sigaction
4218  *  @sigsetsize: size of sigset_t type
4219  */
4220 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4221 		const struct sigaction __user *, act,
4222 		struct sigaction __user *, oact,
4223 		size_t, sigsetsize)
4224 {
4225 	struct k_sigaction new_sa, old_sa;
4226 	int ret;
4227 
4228 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4229 	if (sigsetsize != sizeof(sigset_t))
4230 		return -EINVAL;
4231 
4232 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4233 		return -EFAULT;
4234 
4235 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4236 	if (ret)
4237 		return ret;
4238 
4239 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4240 		return -EFAULT;
4241 
4242 	return 0;
4243 }
4244 #ifdef CONFIG_COMPAT
4245 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4246 		const struct compat_sigaction __user *, act,
4247 		struct compat_sigaction __user *, oact,
4248 		compat_size_t, sigsetsize)
4249 {
4250 	struct k_sigaction new_ka, old_ka;
4251 #ifdef __ARCH_HAS_SA_RESTORER
4252 	compat_uptr_t restorer;
4253 #endif
4254 	int ret;
4255 
4256 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4257 	if (sigsetsize != sizeof(compat_sigset_t))
4258 		return -EINVAL;
4259 
4260 	if (act) {
4261 		compat_uptr_t handler;
4262 		ret = get_user(handler, &act->sa_handler);
4263 		new_ka.sa.sa_handler = compat_ptr(handler);
4264 #ifdef __ARCH_HAS_SA_RESTORER
4265 		ret |= get_user(restorer, &act->sa_restorer);
4266 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4267 #endif
4268 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4269 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4270 		if (ret)
4271 			return -EFAULT;
4272 	}
4273 
4274 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4275 	if (!ret && oact) {
4276 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4277 			       &oact->sa_handler);
4278 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4279 					 sizeof(oact->sa_mask));
4280 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4281 #ifdef __ARCH_HAS_SA_RESTORER
4282 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4283 				&oact->sa_restorer);
4284 #endif
4285 	}
4286 	return ret;
4287 }
4288 #endif
4289 #endif /* !CONFIG_ODD_RT_SIGACTION */
4290 
4291 #ifdef CONFIG_OLD_SIGACTION
4292 SYSCALL_DEFINE3(sigaction, int, sig,
4293 		const struct old_sigaction __user *, act,
4294 	        struct old_sigaction __user *, oact)
4295 {
4296 	struct k_sigaction new_ka, old_ka;
4297 	int ret;
4298 
4299 	if (act) {
4300 		old_sigset_t mask;
4301 		if (!access_ok(act, sizeof(*act)) ||
4302 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4303 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4304 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4305 		    __get_user(mask, &act->sa_mask))
4306 			return -EFAULT;
4307 #ifdef __ARCH_HAS_KA_RESTORER
4308 		new_ka.ka_restorer = NULL;
4309 #endif
4310 		siginitset(&new_ka.sa.sa_mask, mask);
4311 	}
4312 
4313 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4314 
4315 	if (!ret && oact) {
4316 		if (!access_ok(oact, sizeof(*oact)) ||
4317 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4318 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4319 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4320 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4321 			return -EFAULT;
4322 	}
4323 
4324 	return ret;
4325 }
4326 #endif
4327 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4328 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4329 		const struct compat_old_sigaction __user *, act,
4330 	        struct compat_old_sigaction __user *, oact)
4331 {
4332 	struct k_sigaction new_ka, old_ka;
4333 	int ret;
4334 	compat_old_sigset_t mask;
4335 	compat_uptr_t handler, restorer;
4336 
4337 	if (act) {
4338 		if (!access_ok(act, sizeof(*act)) ||
4339 		    __get_user(handler, &act->sa_handler) ||
4340 		    __get_user(restorer, &act->sa_restorer) ||
4341 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4342 		    __get_user(mask, &act->sa_mask))
4343 			return -EFAULT;
4344 
4345 #ifdef __ARCH_HAS_KA_RESTORER
4346 		new_ka.ka_restorer = NULL;
4347 #endif
4348 		new_ka.sa.sa_handler = compat_ptr(handler);
4349 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4350 		siginitset(&new_ka.sa.sa_mask, mask);
4351 	}
4352 
4353 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4354 
4355 	if (!ret && oact) {
4356 		if (!access_ok(oact, sizeof(*oact)) ||
4357 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4358 			       &oact->sa_handler) ||
4359 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4360 			       &oact->sa_restorer) ||
4361 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4362 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4363 			return -EFAULT;
4364 	}
4365 	return ret;
4366 }
4367 #endif
4368 
4369 #ifdef CONFIG_SGETMASK_SYSCALL
4370 
4371 /*
4372  * For backwards compatibility.  Functionality superseded by sigprocmask.
4373  */
4374 SYSCALL_DEFINE0(sgetmask)
4375 {
4376 	/* SMP safe */
4377 	return current->blocked.sig[0];
4378 }
4379 
4380 SYSCALL_DEFINE1(ssetmask, int, newmask)
4381 {
4382 	int old = current->blocked.sig[0];
4383 	sigset_t newset;
4384 
4385 	siginitset(&newset, newmask);
4386 	set_current_blocked(&newset);
4387 
4388 	return old;
4389 }
4390 #endif /* CONFIG_SGETMASK_SYSCALL */
4391 
4392 #ifdef __ARCH_WANT_SYS_SIGNAL
4393 /*
4394  * For backwards compatibility.  Functionality superseded by sigaction.
4395  */
4396 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4397 {
4398 	struct k_sigaction new_sa, old_sa;
4399 	int ret;
4400 
4401 	new_sa.sa.sa_handler = handler;
4402 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4403 	sigemptyset(&new_sa.sa.sa_mask);
4404 
4405 	ret = do_sigaction(sig, &new_sa, &old_sa);
4406 
4407 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4408 }
4409 #endif /* __ARCH_WANT_SYS_SIGNAL */
4410 
4411 #ifdef __ARCH_WANT_SYS_PAUSE
4412 
4413 SYSCALL_DEFINE0(pause)
4414 {
4415 	while (!signal_pending(current)) {
4416 		__set_current_state(TASK_INTERRUPTIBLE);
4417 		schedule();
4418 	}
4419 	return -ERESTARTNOHAND;
4420 }
4421 
4422 #endif
4423 
4424 static int sigsuspend(sigset_t *set)
4425 {
4426 	current->saved_sigmask = current->blocked;
4427 	set_current_blocked(set);
4428 
4429 	while (!signal_pending(current)) {
4430 		__set_current_state(TASK_INTERRUPTIBLE);
4431 		schedule();
4432 	}
4433 	set_restore_sigmask();
4434 	return -ERESTARTNOHAND;
4435 }
4436 
4437 /**
4438  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4439  *	@unewset value until a signal is received
4440  *  @unewset: new signal mask value
4441  *  @sigsetsize: size of sigset_t type
4442  */
4443 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4444 {
4445 	sigset_t newset;
4446 
4447 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4448 	if (sigsetsize != sizeof(sigset_t))
4449 		return -EINVAL;
4450 
4451 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4452 		return -EFAULT;
4453 	return sigsuspend(&newset);
4454 }
4455 
4456 #ifdef CONFIG_COMPAT
4457 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4458 {
4459 	sigset_t newset;
4460 
4461 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4462 	if (sigsetsize != sizeof(sigset_t))
4463 		return -EINVAL;
4464 
4465 	if (get_compat_sigset(&newset, unewset))
4466 		return -EFAULT;
4467 	return sigsuspend(&newset);
4468 }
4469 #endif
4470 
4471 #ifdef CONFIG_OLD_SIGSUSPEND
4472 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4473 {
4474 	sigset_t blocked;
4475 	siginitset(&blocked, mask);
4476 	return sigsuspend(&blocked);
4477 }
4478 #endif
4479 #ifdef CONFIG_OLD_SIGSUSPEND3
4480 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4481 {
4482 	sigset_t blocked;
4483 	siginitset(&blocked, mask);
4484 	return sigsuspend(&blocked);
4485 }
4486 #endif
4487 
4488 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4489 {
4490 	return NULL;
4491 }
4492 
4493 static inline void siginfo_buildtime_checks(void)
4494 {
4495 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4496 
4497 	/* Verify the offsets in the two siginfos match */
4498 #define CHECK_OFFSET(field) \
4499 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4500 
4501 	/* kill */
4502 	CHECK_OFFSET(si_pid);
4503 	CHECK_OFFSET(si_uid);
4504 
4505 	/* timer */
4506 	CHECK_OFFSET(si_tid);
4507 	CHECK_OFFSET(si_overrun);
4508 	CHECK_OFFSET(si_value);
4509 
4510 	/* rt */
4511 	CHECK_OFFSET(si_pid);
4512 	CHECK_OFFSET(si_uid);
4513 	CHECK_OFFSET(si_value);
4514 
4515 	/* sigchld */
4516 	CHECK_OFFSET(si_pid);
4517 	CHECK_OFFSET(si_uid);
4518 	CHECK_OFFSET(si_status);
4519 	CHECK_OFFSET(si_utime);
4520 	CHECK_OFFSET(si_stime);
4521 
4522 	/* sigfault */
4523 	CHECK_OFFSET(si_addr);
4524 	CHECK_OFFSET(si_addr_lsb);
4525 	CHECK_OFFSET(si_lower);
4526 	CHECK_OFFSET(si_upper);
4527 	CHECK_OFFSET(si_pkey);
4528 
4529 	/* sigpoll */
4530 	CHECK_OFFSET(si_band);
4531 	CHECK_OFFSET(si_fd);
4532 
4533 	/* sigsys */
4534 	CHECK_OFFSET(si_call_addr);
4535 	CHECK_OFFSET(si_syscall);
4536 	CHECK_OFFSET(si_arch);
4537 #undef CHECK_OFFSET
4538 
4539 	/* usb asyncio */
4540 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4541 		     offsetof(struct siginfo, si_addr));
4542 	if (sizeof(int) == sizeof(void __user *)) {
4543 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4544 			     sizeof(void __user *));
4545 	} else {
4546 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4547 			      sizeof_field(struct siginfo, si_uid)) !=
4548 			     sizeof(void __user *));
4549 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4550 			     offsetof(struct siginfo, si_uid));
4551 	}
4552 #ifdef CONFIG_COMPAT
4553 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4554 		     offsetof(struct compat_siginfo, si_addr));
4555 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4556 		     sizeof(compat_uptr_t));
4557 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4558 		     sizeof_field(struct siginfo, si_pid));
4559 #endif
4560 }
4561 
4562 void __init signals_init(void)
4563 {
4564 	siginfo_buildtime_checks();
4565 
4566 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4567 }
4568 
4569 #ifdef CONFIG_KGDB_KDB
4570 #include <linux/kdb.h>
4571 /*
4572  * kdb_send_sig - Allows kdb to send signals without exposing
4573  * signal internals.  This function checks if the required locks are
4574  * available before calling the main signal code, to avoid kdb
4575  * deadlocks.
4576  */
4577 void kdb_send_sig(struct task_struct *t, int sig)
4578 {
4579 	static struct task_struct *kdb_prev_t;
4580 	int new_t, ret;
4581 	if (!spin_trylock(&t->sighand->siglock)) {
4582 		kdb_printf("Can't do kill command now.\n"
4583 			   "The sigmask lock is held somewhere else in "
4584 			   "kernel, try again later\n");
4585 		return;
4586 	}
4587 	new_t = kdb_prev_t != t;
4588 	kdb_prev_t = t;
4589 	if (t->state != TASK_RUNNING && new_t) {
4590 		spin_unlock(&t->sighand->siglock);
4591 		kdb_printf("Process is not RUNNING, sending a signal from "
4592 			   "kdb risks deadlock\n"
4593 			   "on the run queue locks. "
4594 			   "The signal has _not_ been sent.\n"
4595 			   "Reissue the kill command if you want to risk "
4596 			   "the deadlock.\n");
4597 		return;
4598 	}
4599 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4600 	spin_unlock(&t->sighand->siglock);
4601 	if (ret)
4602 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4603 			   sig, t->pid);
4604 	else
4605 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4606 }
4607 #endif	/* CONFIG_KGDB_KDB */
4608