1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/proc_fs.h> 26 #include <linux/tty.h> 27 #include <linux/binfmts.h> 28 #include <linux/coredump.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/ptrace.h> 32 #include <linux/signal.h> 33 #include <linux/signalfd.h> 34 #include <linux/ratelimit.h> 35 #include <linux/tracehook.h> 36 #include <linux/capability.h> 37 #include <linux/freezer.h> 38 #include <linux/pid_namespace.h> 39 #include <linux/nsproxy.h> 40 #include <linux/user_namespace.h> 41 #include <linux/uprobes.h> 42 #include <linux/compat.h> 43 #include <linux/cn_proc.h> 44 #include <linux/compiler.h> 45 #include <linux/posix-timers.h> 46 #include <linux/livepatch.h> 47 #include <linux/cgroup.h> 48 #include <linux/audit.h> 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/signal.h> 52 53 #include <asm/param.h> 54 #include <linux/uaccess.h> 55 #include <asm/unistd.h> 56 #include <asm/siginfo.h> 57 #include <asm/cacheflush.h> 58 59 /* 60 * SLAB caches for signal bits. 61 */ 62 63 static struct kmem_cache *sigqueue_cachep; 64 65 int print_fatal_signals __read_mostly; 66 67 static void __user *sig_handler(struct task_struct *t, int sig) 68 { 69 return t->sighand->action[sig - 1].sa.sa_handler; 70 } 71 72 static inline bool sig_handler_ignored(void __user *handler, int sig) 73 { 74 /* Is it explicitly or implicitly ignored? */ 75 return handler == SIG_IGN || 76 (handler == SIG_DFL && sig_kernel_ignore(sig)); 77 } 78 79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 80 { 81 void __user *handler; 82 83 handler = sig_handler(t, sig); 84 85 /* SIGKILL and SIGSTOP may not be sent to the global init */ 86 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 87 return true; 88 89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 90 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 91 return true; 92 93 return sig_handler_ignored(handler, sig); 94 } 95 96 static bool sig_ignored(struct task_struct *t, int sig, bool force) 97 { 98 /* 99 * Blocked signals are never ignored, since the 100 * signal handler may change by the time it is 101 * unblocked. 102 */ 103 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 104 return false; 105 106 /* 107 * Tracers may want to know about even ignored signal unless it 108 * is SIGKILL which can't be reported anyway but can be ignored 109 * by SIGNAL_UNKILLABLE task. 110 */ 111 if (t->ptrace && sig != SIGKILL) 112 return false; 113 114 return sig_task_ignored(t, sig, force); 115 } 116 117 /* 118 * Re-calculate pending state from the set of locally pending 119 * signals, globally pending signals, and blocked signals. 120 */ 121 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 122 { 123 unsigned long ready; 124 long i; 125 126 switch (_NSIG_WORDS) { 127 default: 128 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 129 ready |= signal->sig[i] &~ blocked->sig[i]; 130 break; 131 132 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 133 ready |= signal->sig[2] &~ blocked->sig[2]; 134 ready |= signal->sig[1] &~ blocked->sig[1]; 135 ready |= signal->sig[0] &~ blocked->sig[0]; 136 break; 137 138 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 139 ready |= signal->sig[0] &~ blocked->sig[0]; 140 break; 141 142 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 143 } 144 return ready != 0; 145 } 146 147 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 148 149 static bool recalc_sigpending_tsk(struct task_struct *t) 150 { 151 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 152 PENDING(&t->pending, &t->blocked) || 153 PENDING(&t->signal->shared_pending, &t->blocked) || 154 cgroup_task_frozen(t)) { 155 set_tsk_thread_flag(t, TIF_SIGPENDING); 156 return true; 157 } 158 159 /* 160 * We must never clear the flag in another thread, or in current 161 * when it's possible the current syscall is returning -ERESTART*. 162 * So we don't clear it here, and only callers who know they should do. 163 */ 164 return false; 165 } 166 167 /* 168 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 169 * This is superfluous when called on current, the wakeup is a harmless no-op. 170 */ 171 void recalc_sigpending_and_wake(struct task_struct *t) 172 { 173 if (recalc_sigpending_tsk(t)) 174 signal_wake_up(t, 0); 175 } 176 177 void recalc_sigpending(void) 178 { 179 if (!recalc_sigpending_tsk(current) && !freezing(current) && 180 !klp_patch_pending(current)) 181 clear_thread_flag(TIF_SIGPENDING); 182 183 } 184 EXPORT_SYMBOL(recalc_sigpending); 185 186 void calculate_sigpending(void) 187 { 188 /* Have any signals or users of TIF_SIGPENDING been delayed 189 * until after fork? 190 */ 191 spin_lock_irq(¤t->sighand->siglock); 192 set_tsk_thread_flag(current, TIF_SIGPENDING); 193 recalc_sigpending(); 194 spin_unlock_irq(¤t->sighand->siglock); 195 } 196 197 /* Given the mask, find the first available signal that should be serviced. */ 198 199 #define SYNCHRONOUS_MASK \ 200 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 201 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 202 203 int next_signal(struct sigpending *pending, sigset_t *mask) 204 { 205 unsigned long i, *s, *m, x; 206 int sig = 0; 207 208 s = pending->signal.sig; 209 m = mask->sig; 210 211 /* 212 * Handle the first word specially: it contains the 213 * synchronous signals that need to be dequeued first. 214 */ 215 x = *s &~ *m; 216 if (x) { 217 if (x & SYNCHRONOUS_MASK) 218 x &= SYNCHRONOUS_MASK; 219 sig = ffz(~x) + 1; 220 return sig; 221 } 222 223 switch (_NSIG_WORDS) { 224 default: 225 for (i = 1; i < _NSIG_WORDS; ++i) { 226 x = *++s &~ *++m; 227 if (!x) 228 continue; 229 sig = ffz(~x) + i*_NSIG_BPW + 1; 230 break; 231 } 232 break; 233 234 case 2: 235 x = s[1] &~ m[1]; 236 if (!x) 237 break; 238 sig = ffz(~x) + _NSIG_BPW + 1; 239 break; 240 241 case 1: 242 /* Nothing to do */ 243 break; 244 } 245 246 return sig; 247 } 248 249 static inline void print_dropped_signal(int sig) 250 { 251 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 252 253 if (!print_fatal_signals) 254 return; 255 256 if (!__ratelimit(&ratelimit_state)) 257 return; 258 259 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 260 current->comm, current->pid, sig); 261 } 262 263 /** 264 * task_set_jobctl_pending - set jobctl pending bits 265 * @task: target task 266 * @mask: pending bits to set 267 * 268 * Clear @mask from @task->jobctl. @mask must be subset of 269 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 270 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 271 * cleared. If @task is already being killed or exiting, this function 272 * becomes noop. 273 * 274 * CONTEXT: 275 * Must be called with @task->sighand->siglock held. 276 * 277 * RETURNS: 278 * %true if @mask is set, %false if made noop because @task was dying. 279 */ 280 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 281 { 282 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 283 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 284 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 285 286 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 287 return false; 288 289 if (mask & JOBCTL_STOP_SIGMASK) 290 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 291 292 task->jobctl |= mask; 293 return true; 294 } 295 296 /** 297 * task_clear_jobctl_trapping - clear jobctl trapping bit 298 * @task: target task 299 * 300 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 301 * Clear it and wake up the ptracer. Note that we don't need any further 302 * locking. @task->siglock guarantees that @task->parent points to the 303 * ptracer. 304 * 305 * CONTEXT: 306 * Must be called with @task->sighand->siglock held. 307 */ 308 void task_clear_jobctl_trapping(struct task_struct *task) 309 { 310 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 311 task->jobctl &= ~JOBCTL_TRAPPING; 312 smp_mb(); /* advised by wake_up_bit() */ 313 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 314 } 315 } 316 317 /** 318 * task_clear_jobctl_pending - clear jobctl pending bits 319 * @task: target task 320 * @mask: pending bits to clear 321 * 322 * Clear @mask from @task->jobctl. @mask must be subset of 323 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 324 * STOP bits are cleared together. 325 * 326 * If clearing of @mask leaves no stop or trap pending, this function calls 327 * task_clear_jobctl_trapping(). 328 * 329 * CONTEXT: 330 * Must be called with @task->sighand->siglock held. 331 */ 332 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 333 { 334 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 335 336 if (mask & JOBCTL_STOP_PENDING) 337 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 338 339 task->jobctl &= ~mask; 340 341 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 342 task_clear_jobctl_trapping(task); 343 } 344 345 /** 346 * task_participate_group_stop - participate in a group stop 347 * @task: task participating in a group stop 348 * 349 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 350 * Group stop states are cleared and the group stop count is consumed if 351 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 352 * stop, the appropriate `SIGNAL_*` flags are set. 353 * 354 * CONTEXT: 355 * Must be called with @task->sighand->siglock held. 356 * 357 * RETURNS: 358 * %true if group stop completion should be notified to the parent, %false 359 * otherwise. 360 */ 361 static bool task_participate_group_stop(struct task_struct *task) 362 { 363 struct signal_struct *sig = task->signal; 364 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 365 366 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 367 368 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 369 370 if (!consume) 371 return false; 372 373 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 374 sig->group_stop_count--; 375 376 /* 377 * Tell the caller to notify completion iff we are entering into a 378 * fresh group stop. Read comment in do_signal_stop() for details. 379 */ 380 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 381 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 382 return true; 383 } 384 return false; 385 } 386 387 void task_join_group_stop(struct task_struct *task) 388 { 389 /* Have the new thread join an on-going signal group stop */ 390 unsigned long jobctl = current->jobctl; 391 if (jobctl & JOBCTL_STOP_PENDING) { 392 struct signal_struct *sig = current->signal; 393 unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK; 394 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 395 if (task_set_jobctl_pending(task, signr | gstop)) { 396 sig->group_stop_count++; 397 } 398 } 399 } 400 401 /* 402 * allocate a new signal queue record 403 * - this may be called without locks if and only if t == current, otherwise an 404 * appropriate lock must be held to stop the target task from exiting 405 */ 406 static struct sigqueue * 407 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 408 { 409 struct sigqueue *q = NULL; 410 struct user_struct *user; 411 412 /* 413 * Protect access to @t credentials. This can go away when all 414 * callers hold rcu read lock. 415 */ 416 rcu_read_lock(); 417 user = get_uid(__task_cred(t)->user); 418 atomic_inc(&user->sigpending); 419 rcu_read_unlock(); 420 421 if (override_rlimit || 422 atomic_read(&user->sigpending) <= 423 task_rlimit(t, RLIMIT_SIGPENDING)) { 424 q = kmem_cache_alloc(sigqueue_cachep, flags); 425 } else { 426 print_dropped_signal(sig); 427 } 428 429 if (unlikely(q == NULL)) { 430 atomic_dec(&user->sigpending); 431 free_uid(user); 432 } else { 433 INIT_LIST_HEAD(&q->list); 434 q->flags = 0; 435 q->user = user; 436 } 437 438 return q; 439 } 440 441 static void __sigqueue_free(struct sigqueue *q) 442 { 443 if (q->flags & SIGQUEUE_PREALLOC) 444 return; 445 atomic_dec(&q->user->sigpending); 446 free_uid(q->user); 447 kmem_cache_free(sigqueue_cachep, q); 448 } 449 450 void flush_sigqueue(struct sigpending *queue) 451 { 452 struct sigqueue *q; 453 454 sigemptyset(&queue->signal); 455 while (!list_empty(&queue->list)) { 456 q = list_entry(queue->list.next, struct sigqueue , list); 457 list_del_init(&q->list); 458 __sigqueue_free(q); 459 } 460 } 461 462 /* 463 * Flush all pending signals for this kthread. 464 */ 465 void flush_signals(struct task_struct *t) 466 { 467 unsigned long flags; 468 469 spin_lock_irqsave(&t->sighand->siglock, flags); 470 clear_tsk_thread_flag(t, TIF_SIGPENDING); 471 flush_sigqueue(&t->pending); 472 flush_sigqueue(&t->signal->shared_pending); 473 spin_unlock_irqrestore(&t->sighand->siglock, flags); 474 } 475 EXPORT_SYMBOL(flush_signals); 476 477 #ifdef CONFIG_POSIX_TIMERS 478 static void __flush_itimer_signals(struct sigpending *pending) 479 { 480 sigset_t signal, retain; 481 struct sigqueue *q, *n; 482 483 signal = pending->signal; 484 sigemptyset(&retain); 485 486 list_for_each_entry_safe(q, n, &pending->list, list) { 487 int sig = q->info.si_signo; 488 489 if (likely(q->info.si_code != SI_TIMER)) { 490 sigaddset(&retain, sig); 491 } else { 492 sigdelset(&signal, sig); 493 list_del_init(&q->list); 494 __sigqueue_free(q); 495 } 496 } 497 498 sigorsets(&pending->signal, &signal, &retain); 499 } 500 501 void flush_itimer_signals(void) 502 { 503 struct task_struct *tsk = current; 504 unsigned long flags; 505 506 spin_lock_irqsave(&tsk->sighand->siglock, flags); 507 __flush_itimer_signals(&tsk->pending); 508 __flush_itimer_signals(&tsk->signal->shared_pending); 509 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 510 } 511 #endif 512 513 void ignore_signals(struct task_struct *t) 514 { 515 int i; 516 517 for (i = 0; i < _NSIG; ++i) 518 t->sighand->action[i].sa.sa_handler = SIG_IGN; 519 520 flush_signals(t); 521 } 522 523 /* 524 * Flush all handlers for a task. 525 */ 526 527 void 528 flush_signal_handlers(struct task_struct *t, int force_default) 529 { 530 int i; 531 struct k_sigaction *ka = &t->sighand->action[0]; 532 for (i = _NSIG ; i != 0 ; i--) { 533 if (force_default || ka->sa.sa_handler != SIG_IGN) 534 ka->sa.sa_handler = SIG_DFL; 535 ka->sa.sa_flags = 0; 536 #ifdef __ARCH_HAS_SA_RESTORER 537 ka->sa.sa_restorer = NULL; 538 #endif 539 sigemptyset(&ka->sa.sa_mask); 540 ka++; 541 } 542 } 543 544 bool unhandled_signal(struct task_struct *tsk, int sig) 545 { 546 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 547 if (is_global_init(tsk)) 548 return true; 549 550 if (handler != SIG_IGN && handler != SIG_DFL) 551 return false; 552 553 /* if ptraced, let the tracer determine */ 554 return !tsk->ptrace; 555 } 556 557 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 558 bool *resched_timer) 559 { 560 struct sigqueue *q, *first = NULL; 561 562 /* 563 * Collect the siginfo appropriate to this signal. Check if 564 * there is another siginfo for the same signal. 565 */ 566 list_for_each_entry(q, &list->list, list) { 567 if (q->info.si_signo == sig) { 568 if (first) 569 goto still_pending; 570 first = q; 571 } 572 } 573 574 sigdelset(&list->signal, sig); 575 576 if (first) { 577 still_pending: 578 list_del_init(&first->list); 579 copy_siginfo(info, &first->info); 580 581 *resched_timer = 582 (first->flags & SIGQUEUE_PREALLOC) && 583 (info->si_code == SI_TIMER) && 584 (info->si_sys_private); 585 586 __sigqueue_free(first); 587 } else { 588 /* 589 * Ok, it wasn't in the queue. This must be 590 * a fast-pathed signal or we must have been 591 * out of queue space. So zero out the info. 592 */ 593 clear_siginfo(info); 594 info->si_signo = sig; 595 info->si_errno = 0; 596 info->si_code = SI_USER; 597 info->si_pid = 0; 598 info->si_uid = 0; 599 } 600 } 601 602 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 603 kernel_siginfo_t *info, bool *resched_timer) 604 { 605 int sig = next_signal(pending, mask); 606 607 if (sig) 608 collect_signal(sig, pending, info, resched_timer); 609 return sig; 610 } 611 612 /* 613 * Dequeue a signal and return the element to the caller, which is 614 * expected to free it. 615 * 616 * All callers have to hold the siglock. 617 */ 618 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info) 619 { 620 bool resched_timer = false; 621 int signr; 622 623 /* We only dequeue private signals from ourselves, we don't let 624 * signalfd steal them 625 */ 626 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 627 if (!signr) { 628 signr = __dequeue_signal(&tsk->signal->shared_pending, 629 mask, info, &resched_timer); 630 #ifdef CONFIG_POSIX_TIMERS 631 /* 632 * itimer signal ? 633 * 634 * itimers are process shared and we restart periodic 635 * itimers in the signal delivery path to prevent DoS 636 * attacks in the high resolution timer case. This is 637 * compliant with the old way of self-restarting 638 * itimers, as the SIGALRM is a legacy signal and only 639 * queued once. Changing the restart behaviour to 640 * restart the timer in the signal dequeue path is 641 * reducing the timer noise on heavy loaded !highres 642 * systems too. 643 */ 644 if (unlikely(signr == SIGALRM)) { 645 struct hrtimer *tmr = &tsk->signal->real_timer; 646 647 if (!hrtimer_is_queued(tmr) && 648 tsk->signal->it_real_incr != 0) { 649 hrtimer_forward(tmr, tmr->base->get_time(), 650 tsk->signal->it_real_incr); 651 hrtimer_restart(tmr); 652 } 653 } 654 #endif 655 } 656 657 recalc_sigpending(); 658 if (!signr) 659 return 0; 660 661 if (unlikely(sig_kernel_stop(signr))) { 662 /* 663 * Set a marker that we have dequeued a stop signal. Our 664 * caller might release the siglock and then the pending 665 * stop signal it is about to process is no longer in the 666 * pending bitmasks, but must still be cleared by a SIGCONT 667 * (and overruled by a SIGKILL). So those cases clear this 668 * shared flag after we've set it. Note that this flag may 669 * remain set after the signal we return is ignored or 670 * handled. That doesn't matter because its only purpose 671 * is to alert stop-signal processing code when another 672 * processor has come along and cleared the flag. 673 */ 674 current->jobctl |= JOBCTL_STOP_DEQUEUED; 675 } 676 #ifdef CONFIG_POSIX_TIMERS 677 if (resched_timer) { 678 /* 679 * Release the siglock to ensure proper locking order 680 * of timer locks outside of siglocks. Note, we leave 681 * irqs disabled here, since the posix-timers code is 682 * about to disable them again anyway. 683 */ 684 spin_unlock(&tsk->sighand->siglock); 685 posixtimer_rearm(info); 686 spin_lock(&tsk->sighand->siglock); 687 688 /* Don't expose the si_sys_private value to userspace */ 689 info->si_sys_private = 0; 690 } 691 #endif 692 return signr; 693 } 694 EXPORT_SYMBOL_GPL(dequeue_signal); 695 696 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 697 { 698 struct task_struct *tsk = current; 699 struct sigpending *pending = &tsk->pending; 700 struct sigqueue *q, *sync = NULL; 701 702 /* 703 * Might a synchronous signal be in the queue? 704 */ 705 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 706 return 0; 707 708 /* 709 * Return the first synchronous signal in the queue. 710 */ 711 list_for_each_entry(q, &pending->list, list) { 712 /* Synchronous signals have a postive si_code */ 713 if ((q->info.si_code > SI_USER) && 714 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 715 sync = q; 716 goto next; 717 } 718 } 719 return 0; 720 next: 721 /* 722 * Check if there is another siginfo for the same signal. 723 */ 724 list_for_each_entry_continue(q, &pending->list, list) { 725 if (q->info.si_signo == sync->info.si_signo) 726 goto still_pending; 727 } 728 729 sigdelset(&pending->signal, sync->info.si_signo); 730 recalc_sigpending(); 731 still_pending: 732 list_del_init(&sync->list); 733 copy_siginfo(info, &sync->info); 734 __sigqueue_free(sync); 735 return info->si_signo; 736 } 737 738 /* 739 * Tell a process that it has a new active signal.. 740 * 741 * NOTE! we rely on the previous spin_lock to 742 * lock interrupts for us! We can only be called with 743 * "siglock" held, and the local interrupt must 744 * have been disabled when that got acquired! 745 * 746 * No need to set need_resched since signal event passing 747 * goes through ->blocked 748 */ 749 void signal_wake_up_state(struct task_struct *t, unsigned int state) 750 { 751 set_tsk_thread_flag(t, TIF_SIGPENDING); 752 /* 753 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 754 * case. We don't check t->state here because there is a race with it 755 * executing another processor and just now entering stopped state. 756 * By using wake_up_state, we ensure the process will wake up and 757 * handle its death signal. 758 */ 759 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 760 kick_process(t); 761 } 762 763 /* 764 * Remove signals in mask from the pending set and queue. 765 * Returns 1 if any signals were found. 766 * 767 * All callers must be holding the siglock. 768 */ 769 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 770 { 771 struct sigqueue *q, *n; 772 sigset_t m; 773 774 sigandsets(&m, mask, &s->signal); 775 if (sigisemptyset(&m)) 776 return; 777 778 sigandnsets(&s->signal, &s->signal, mask); 779 list_for_each_entry_safe(q, n, &s->list, list) { 780 if (sigismember(mask, q->info.si_signo)) { 781 list_del_init(&q->list); 782 __sigqueue_free(q); 783 } 784 } 785 } 786 787 static inline int is_si_special(const struct kernel_siginfo *info) 788 { 789 return info <= SEND_SIG_PRIV; 790 } 791 792 static inline bool si_fromuser(const struct kernel_siginfo *info) 793 { 794 return info == SEND_SIG_NOINFO || 795 (!is_si_special(info) && SI_FROMUSER(info)); 796 } 797 798 /* 799 * called with RCU read lock from check_kill_permission() 800 */ 801 static bool kill_ok_by_cred(struct task_struct *t) 802 { 803 const struct cred *cred = current_cred(); 804 const struct cred *tcred = __task_cred(t); 805 806 return uid_eq(cred->euid, tcred->suid) || 807 uid_eq(cred->euid, tcred->uid) || 808 uid_eq(cred->uid, tcred->suid) || 809 uid_eq(cred->uid, tcred->uid) || 810 ns_capable(tcred->user_ns, CAP_KILL); 811 } 812 813 /* 814 * Bad permissions for sending the signal 815 * - the caller must hold the RCU read lock 816 */ 817 static int check_kill_permission(int sig, struct kernel_siginfo *info, 818 struct task_struct *t) 819 { 820 struct pid *sid; 821 int error; 822 823 if (!valid_signal(sig)) 824 return -EINVAL; 825 826 if (!si_fromuser(info)) 827 return 0; 828 829 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 830 if (error) 831 return error; 832 833 if (!same_thread_group(current, t) && 834 !kill_ok_by_cred(t)) { 835 switch (sig) { 836 case SIGCONT: 837 sid = task_session(t); 838 /* 839 * We don't return the error if sid == NULL. The 840 * task was unhashed, the caller must notice this. 841 */ 842 if (!sid || sid == task_session(current)) 843 break; 844 /* fall through */ 845 default: 846 return -EPERM; 847 } 848 } 849 850 return security_task_kill(t, info, sig, NULL); 851 } 852 853 /** 854 * ptrace_trap_notify - schedule trap to notify ptracer 855 * @t: tracee wanting to notify tracer 856 * 857 * This function schedules sticky ptrace trap which is cleared on the next 858 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 859 * ptracer. 860 * 861 * If @t is running, STOP trap will be taken. If trapped for STOP and 862 * ptracer is listening for events, tracee is woken up so that it can 863 * re-trap for the new event. If trapped otherwise, STOP trap will be 864 * eventually taken without returning to userland after the existing traps 865 * are finished by PTRACE_CONT. 866 * 867 * CONTEXT: 868 * Must be called with @task->sighand->siglock held. 869 */ 870 static void ptrace_trap_notify(struct task_struct *t) 871 { 872 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 873 assert_spin_locked(&t->sighand->siglock); 874 875 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 876 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 877 } 878 879 /* 880 * Handle magic process-wide effects of stop/continue signals. Unlike 881 * the signal actions, these happen immediately at signal-generation 882 * time regardless of blocking, ignoring, or handling. This does the 883 * actual continuing for SIGCONT, but not the actual stopping for stop 884 * signals. The process stop is done as a signal action for SIG_DFL. 885 * 886 * Returns true if the signal should be actually delivered, otherwise 887 * it should be dropped. 888 */ 889 static bool prepare_signal(int sig, struct task_struct *p, bool force) 890 { 891 struct signal_struct *signal = p->signal; 892 struct task_struct *t; 893 sigset_t flush; 894 895 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 896 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 897 return sig == SIGKILL; 898 /* 899 * The process is in the middle of dying, nothing to do. 900 */ 901 } else if (sig_kernel_stop(sig)) { 902 /* 903 * This is a stop signal. Remove SIGCONT from all queues. 904 */ 905 siginitset(&flush, sigmask(SIGCONT)); 906 flush_sigqueue_mask(&flush, &signal->shared_pending); 907 for_each_thread(p, t) 908 flush_sigqueue_mask(&flush, &t->pending); 909 } else if (sig == SIGCONT) { 910 unsigned int why; 911 /* 912 * Remove all stop signals from all queues, wake all threads. 913 */ 914 siginitset(&flush, SIG_KERNEL_STOP_MASK); 915 flush_sigqueue_mask(&flush, &signal->shared_pending); 916 for_each_thread(p, t) { 917 flush_sigqueue_mask(&flush, &t->pending); 918 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 919 if (likely(!(t->ptrace & PT_SEIZED))) 920 wake_up_state(t, __TASK_STOPPED); 921 else 922 ptrace_trap_notify(t); 923 } 924 925 /* 926 * Notify the parent with CLD_CONTINUED if we were stopped. 927 * 928 * If we were in the middle of a group stop, we pretend it 929 * was already finished, and then continued. Since SIGCHLD 930 * doesn't queue we report only CLD_STOPPED, as if the next 931 * CLD_CONTINUED was dropped. 932 */ 933 why = 0; 934 if (signal->flags & SIGNAL_STOP_STOPPED) 935 why |= SIGNAL_CLD_CONTINUED; 936 else if (signal->group_stop_count) 937 why |= SIGNAL_CLD_STOPPED; 938 939 if (why) { 940 /* 941 * The first thread which returns from do_signal_stop() 942 * will take ->siglock, notice SIGNAL_CLD_MASK, and 943 * notify its parent. See get_signal(). 944 */ 945 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 946 signal->group_stop_count = 0; 947 signal->group_exit_code = 0; 948 } 949 } 950 951 return !sig_ignored(p, sig, force); 952 } 953 954 /* 955 * Test if P wants to take SIG. After we've checked all threads with this, 956 * it's equivalent to finding no threads not blocking SIG. Any threads not 957 * blocking SIG were ruled out because they are not running and already 958 * have pending signals. Such threads will dequeue from the shared queue 959 * as soon as they're available, so putting the signal on the shared queue 960 * will be equivalent to sending it to one such thread. 961 */ 962 static inline bool wants_signal(int sig, struct task_struct *p) 963 { 964 if (sigismember(&p->blocked, sig)) 965 return false; 966 967 if (p->flags & PF_EXITING) 968 return false; 969 970 if (sig == SIGKILL) 971 return true; 972 973 if (task_is_stopped_or_traced(p)) 974 return false; 975 976 return task_curr(p) || !signal_pending(p); 977 } 978 979 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 980 { 981 struct signal_struct *signal = p->signal; 982 struct task_struct *t; 983 984 /* 985 * Now find a thread we can wake up to take the signal off the queue. 986 * 987 * If the main thread wants the signal, it gets first crack. 988 * Probably the least surprising to the average bear. 989 */ 990 if (wants_signal(sig, p)) 991 t = p; 992 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 993 /* 994 * There is just one thread and it does not need to be woken. 995 * It will dequeue unblocked signals before it runs again. 996 */ 997 return; 998 else { 999 /* 1000 * Otherwise try to find a suitable thread. 1001 */ 1002 t = signal->curr_target; 1003 while (!wants_signal(sig, t)) { 1004 t = next_thread(t); 1005 if (t == signal->curr_target) 1006 /* 1007 * No thread needs to be woken. 1008 * Any eligible threads will see 1009 * the signal in the queue soon. 1010 */ 1011 return; 1012 } 1013 signal->curr_target = t; 1014 } 1015 1016 /* 1017 * Found a killable thread. If the signal will be fatal, 1018 * then start taking the whole group down immediately. 1019 */ 1020 if (sig_fatal(p, sig) && 1021 !(signal->flags & SIGNAL_GROUP_EXIT) && 1022 !sigismember(&t->real_blocked, sig) && 1023 (sig == SIGKILL || !p->ptrace)) { 1024 /* 1025 * This signal will be fatal to the whole group. 1026 */ 1027 if (!sig_kernel_coredump(sig)) { 1028 /* 1029 * Start a group exit and wake everybody up. 1030 * This way we don't have other threads 1031 * running and doing things after a slower 1032 * thread has the fatal signal pending. 1033 */ 1034 signal->flags = SIGNAL_GROUP_EXIT; 1035 signal->group_exit_code = sig; 1036 signal->group_stop_count = 0; 1037 t = p; 1038 do { 1039 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1040 sigaddset(&t->pending.signal, SIGKILL); 1041 signal_wake_up(t, 1); 1042 } while_each_thread(p, t); 1043 return; 1044 } 1045 } 1046 1047 /* 1048 * The signal is already in the shared-pending queue. 1049 * Tell the chosen thread to wake up and dequeue it. 1050 */ 1051 signal_wake_up(t, sig == SIGKILL); 1052 return; 1053 } 1054 1055 static inline bool legacy_queue(struct sigpending *signals, int sig) 1056 { 1057 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1058 } 1059 1060 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1061 enum pid_type type, bool force) 1062 { 1063 struct sigpending *pending; 1064 struct sigqueue *q; 1065 int override_rlimit; 1066 int ret = 0, result; 1067 1068 assert_spin_locked(&t->sighand->siglock); 1069 1070 result = TRACE_SIGNAL_IGNORED; 1071 if (!prepare_signal(sig, t, force)) 1072 goto ret; 1073 1074 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1075 /* 1076 * Short-circuit ignored signals and support queuing 1077 * exactly one non-rt signal, so that we can get more 1078 * detailed information about the cause of the signal. 1079 */ 1080 result = TRACE_SIGNAL_ALREADY_PENDING; 1081 if (legacy_queue(pending, sig)) 1082 goto ret; 1083 1084 result = TRACE_SIGNAL_DELIVERED; 1085 /* 1086 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1087 */ 1088 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1089 goto out_set; 1090 1091 /* 1092 * Real-time signals must be queued if sent by sigqueue, or 1093 * some other real-time mechanism. It is implementation 1094 * defined whether kill() does so. We attempt to do so, on 1095 * the principle of least surprise, but since kill is not 1096 * allowed to fail with EAGAIN when low on memory we just 1097 * make sure at least one signal gets delivered and don't 1098 * pass on the info struct. 1099 */ 1100 if (sig < SIGRTMIN) 1101 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1102 else 1103 override_rlimit = 0; 1104 1105 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit); 1106 if (q) { 1107 list_add_tail(&q->list, &pending->list); 1108 switch ((unsigned long) info) { 1109 case (unsigned long) SEND_SIG_NOINFO: 1110 clear_siginfo(&q->info); 1111 q->info.si_signo = sig; 1112 q->info.si_errno = 0; 1113 q->info.si_code = SI_USER; 1114 q->info.si_pid = task_tgid_nr_ns(current, 1115 task_active_pid_ns(t)); 1116 rcu_read_lock(); 1117 q->info.si_uid = 1118 from_kuid_munged(task_cred_xxx(t, user_ns), 1119 current_uid()); 1120 rcu_read_unlock(); 1121 break; 1122 case (unsigned long) SEND_SIG_PRIV: 1123 clear_siginfo(&q->info); 1124 q->info.si_signo = sig; 1125 q->info.si_errno = 0; 1126 q->info.si_code = SI_KERNEL; 1127 q->info.si_pid = 0; 1128 q->info.si_uid = 0; 1129 break; 1130 default: 1131 copy_siginfo(&q->info, info); 1132 break; 1133 } 1134 } else if (!is_si_special(info) && 1135 sig >= SIGRTMIN && info->si_code != SI_USER) { 1136 /* 1137 * Queue overflow, abort. We may abort if the 1138 * signal was rt and sent by user using something 1139 * other than kill(). 1140 */ 1141 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1142 ret = -EAGAIN; 1143 goto ret; 1144 } else { 1145 /* 1146 * This is a silent loss of information. We still 1147 * send the signal, but the *info bits are lost. 1148 */ 1149 result = TRACE_SIGNAL_LOSE_INFO; 1150 } 1151 1152 out_set: 1153 signalfd_notify(t, sig); 1154 sigaddset(&pending->signal, sig); 1155 1156 /* Let multiprocess signals appear after on-going forks */ 1157 if (type > PIDTYPE_TGID) { 1158 struct multiprocess_signals *delayed; 1159 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1160 sigset_t *signal = &delayed->signal; 1161 /* Can't queue both a stop and a continue signal */ 1162 if (sig == SIGCONT) 1163 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1164 else if (sig_kernel_stop(sig)) 1165 sigdelset(signal, SIGCONT); 1166 sigaddset(signal, sig); 1167 } 1168 } 1169 1170 complete_signal(sig, t, type); 1171 ret: 1172 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1173 return ret; 1174 } 1175 1176 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1177 { 1178 bool ret = false; 1179 switch (siginfo_layout(info->si_signo, info->si_code)) { 1180 case SIL_KILL: 1181 case SIL_CHLD: 1182 case SIL_RT: 1183 ret = true; 1184 break; 1185 case SIL_TIMER: 1186 case SIL_POLL: 1187 case SIL_FAULT: 1188 case SIL_FAULT_MCEERR: 1189 case SIL_FAULT_BNDERR: 1190 case SIL_FAULT_PKUERR: 1191 case SIL_SYS: 1192 ret = false; 1193 break; 1194 } 1195 return ret; 1196 } 1197 1198 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1199 enum pid_type type) 1200 { 1201 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1202 bool force = false; 1203 1204 if (info == SEND_SIG_NOINFO) { 1205 /* Force if sent from an ancestor pid namespace */ 1206 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1207 } else if (info == SEND_SIG_PRIV) { 1208 /* Don't ignore kernel generated signals */ 1209 force = true; 1210 } else if (has_si_pid_and_uid(info)) { 1211 /* SIGKILL and SIGSTOP is special or has ids */ 1212 struct user_namespace *t_user_ns; 1213 1214 rcu_read_lock(); 1215 t_user_ns = task_cred_xxx(t, user_ns); 1216 if (current_user_ns() != t_user_ns) { 1217 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1218 info->si_uid = from_kuid_munged(t_user_ns, uid); 1219 } 1220 rcu_read_unlock(); 1221 1222 /* A kernel generated signal? */ 1223 force = (info->si_code == SI_KERNEL); 1224 1225 /* From an ancestor pid namespace? */ 1226 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1227 info->si_pid = 0; 1228 force = true; 1229 } 1230 } 1231 return __send_signal(sig, info, t, type, force); 1232 } 1233 1234 static void print_fatal_signal(int signr) 1235 { 1236 struct pt_regs *regs = signal_pt_regs(); 1237 pr_info("potentially unexpected fatal signal %d.\n", signr); 1238 1239 #if defined(__i386__) && !defined(__arch_um__) 1240 pr_info("code at %08lx: ", regs->ip); 1241 { 1242 int i; 1243 for (i = 0; i < 16; i++) { 1244 unsigned char insn; 1245 1246 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1247 break; 1248 pr_cont("%02x ", insn); 1249 } 1250 } 1251 pr_cont("\n"); 1252 #endif 1253 preempt_disable(); 1254 show_regs(regs); 1255 preempt_enable(); 1256 } 1257 1258 static int __init setup_print_fatal_signals(char *str) 1259 { 1260 get_option (&str, &print_fatal_signals); 1261 1262 return 1; 1263 } 1264 1265 __setup("print-fatal-signals=", setup_print_fatal_signals); 1266 1267 int 1268 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1269 { 1270 return send_signal(sig, info, p, PIDTYPE_TGID); 1271 } 1272 1273 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1274 enum pid_type type) 1275 { 1276 unsigned long flags; 1277 int ret = -ESRCH; 1278 1279 if (lock_task_sighand(p, &flags)) { 1280 ret = send_signal(sig, info, p, type); 1281 unlock_task_sighand(p, &flags); 1282 } 1283 1284 return ret; 1285 } 1286 1287 /* 1288 * Force a signal that the process can't ignore: if necessary 1289 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1290 * 1291 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1292 * since we do not want to have a signal handler that was blocked 1293 * be invoked when user space had explicitly blocked it. 1294 * 1295 * We don't want to have recursive SIGSEGV's etc, for example, 1296 * that is why we also clear SIGNAL_UNKILLABLE. 1297 */ 1298 static int 1299 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t) 1300 { 1301 unsigned long int flags; 1302 int ret, blocked, ignored; 1303 struct k_sigaction *action; 1304 int sig = info->si_signo; 1305 1306 spin_lock_irqsave(&t->sighand->siglock, flags); 1307 action = &t->sighand->action[sig-1]; 1308 ignored = action->sa.sa_handler == SIG_IGN; 1309 blocked = sigismember(&t->blocked, sig); 1310 if (blocked || ignored) { 1311 action->sa.sa_handler = SIG_DFL; 1312 if (blocked) { 1313 sigdelset(&t->blocked, sig); 1314 recalc_sigpending_and_wake(t); 1315 } 1316 } 1317 /* 1318 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1319 * debugging to leave init killable. 1320 */ 1321 if (action->sa.sa_handler == SIG_DFL && !t->ptrace) 1322 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1323 ret = send_signal(sig, info, t, PIDTYPE_PID); 1324 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1325 1326 return ret; 1327 } 1328 1329 int force_sig_info(struct kernel_siginfo *info) 1330 { 1331 return force_sig_info_to_task(info, current); 1332 } 1333 1334 /* 1335 * Nuke all other threads in the group. 1336 */ 1337 int zap_other_threads(struct task_struct *p) 1338 { 1339 struct task_struct *t = p; 1340 int count = 0; 1341 1342 p->signal->group_stop_count = 0; 1343 1344 while_each_thread(p, t) { 1345 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1346 count++; 1347 1348 /* Don't bother with already dead threads */ 1349 if (t->exit_state) 1350 continue; 1351 sigaddset(&t->pending.signal, SIGKILL); 1352 signal_wake_up(t, 1); 1353 } 1354 1355 return count; 1356 } 1357 1358 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1359 unsigned long *flags) 1360 { 1361 struct sighand_struct *sighand; 1362 1363 rcu_read_lock(); 1364 for (;;) { 1365 sighand = rcu_dereference(tsk->sighand); 1366 if (unlikely(sighand == NULL)) 1367 break; 1368 1369 /* 1370 * This sighand can be already freed and even reused, but 1371 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1372 * initializes ->siglock: this slab can't go away, it has 1373 * the same object type, ->siglock can't be reinitialized. 1374 * 1375 * We need to ensure that tsk->sighand is still the same 1376 * after we take the lock, we can race with de_thread() or 1377 * __exit_signal(). In the latter case the next iteration 1378 * must see ->sighand == NULL. 1379 */ 1380 spin_lock_irqsave(&sighand->siglock, *flags); 1381 if (likely(sighand == tsk->sighand)) 1382 break; 1383 spin_unlock_irqrestore(&sighand->siglock, *flags); 1384 } 1385 rcu_read_unlock(); 1386 1387 return sighand; 1388 } 1389 1390 /* 1391 * send signal info to all the members of a group 1392 */ 1393 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1394 struct task_struct *p, enum pid_type type) 1395 { 1396 int ret; 1397 1398 rcu_read_lock(); 1399 ret = check_kill_permission(sig, info, p); 1400 rcu_read_unlock(); 1401 1402 if (!ret && sig) 1403 ret = do_send_sig_info(sig, info, p, type); 1404 1405 return ret; 1406 } 1407 1408 /* 1409 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1410 * control characters do (^C, ^Z etc) 1411 * - the caller must hold at least a readlock on tasklist_lock 1412 */ 1413 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1414 { 1415 struct task_struct *p = NULL; 1416 int retval, success; 1417 1418 success = 0; 1419 retval = -ESRCH; 1420 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1421 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1422 success |= !err; 1423 retval = err; 1424 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1425 return success ? 0 : retval; 1426 } 1427 1428 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1429 { 1430 int error = -ESRCH; 1431 struct task_struct *p; 1432 1433 for (;;) { 1434 rcu_read_lock(); 1435 p = pid_task(pid, PIDTYPE_PID); 1436 if (p) 1437 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1438 rcu_read_unlock(); 1439 if (likely(!p || error != -ESRCH)) 1440 return error; 1441 1442 /* 1443 * The task was unhashed in between, try again. If it 1444 * is dead, pid_task() will return NULL, if we race with 1445 * de_thread() it will find the new leader. 1446 */ 1447 } 1448 } 1449 1450 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1451 { 1452 int error; 1453 rcu_read_lock(); 1454 error = kill_pid_info(sig, info, find_vpid(pid)); 1455 rcu_read_unlock(); 1456 return error; 1457 } 1458 1459 static inline bool kill_as_cred_perm(const struct cred *cred, 1460 struct task_struct *target) 1461 { 1462 const struct cred *pcred = __task_cred(target); 1463 1464 return uid_eq(cred->euid, pcred->suid) || 1465 uid_eq(cred->euid, pcred->uid) || 1466 uid_eq(cred->uid, pcred->suid) || 1467 uid_eq(cred->uid, pcred->uid); 1468 } 1469 1470 /* 1471 * The usb asyncio usage of siginfo is wrong. The glibc support 1472 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1473 * AKA after the generic fields: 1474 * kernel_pid_t si_pid; 1475 * kernel_uid32_t si_uid; 1476 * sigval_t si_value; 1477 * 1478 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1479 * after the generic fields is: 1480 * void __user *si_addr; 1481 * 1482 * This is a practical problem when there is a 64bit big endian kernel 1483 * and a 32bit userspace. As the 32bit address will encoded in the low 1484 * 32bits of the pointer. Those low 32bits will be stored at higher 1485 * address than appear in a 32 bit pointer. So userspace will not 1486 * see the address it was expecting for it's completions. 1487 * 1488 * There is nothing in the encoding that can allow 1489 * copy_siginfo_to_user32 to detect this confusion of formats, so 1490 * handle this by requiring the caller of kill_pid_usb_asyncio to 1491 * notice when this situration takes place and to store the 32bit 1492 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1493 * parameter. 1494 */ 1495 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1496 struct pid *pid, const struct cred *cred) 1497 { 1498 struct kernel_siginfo info; 1499 struct task_struct *p; 1500 unsigned long flags; 1501 int ret = -EINVAL; 1502 1503 clear_siginfo(&info); 1504 info.si_signo = sig; 1505 info.si_errno = errno; 1506 info.si_code = SI_ASYNCIO; 1507 *((sigval_t *)&info.si_pid) = addr; 1508 1509 if (!valid_signal(sig)) 1510 return ret; 1511 1512 rcu_read_lock(); 1513 p = pid_task(pid, PIDTYPE_PID); 1514 if (!p) { 1515 ret = -ESRCH; 1516 goto out_unlock; 1517 } 1518 if (!kill_as_cred_perm(cred, p)) { 1519 ret = -EPERM; 1520 goto out_unlock; 1521 } 1522 ret = security_task_kill(p, &info, sig, cred); 1523 if (ret) 1524 goto out_unlock; 1525 1526 if (sig) { 1527 if (lock_task_sighand(p, &flags)) { 1528 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false); 1529 unlock_task_sighand(p, &flags); 1530 } else 1531 ret = -ESRCH; 1532 } 1533 out_unlock: 1534 rcu_read_unlock(); 1535 return ret; 1536 } 1537 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1538 1539 /* 1540 * kill_something_info() interprets pid in interesting ways just like kill(2). 1541 * 1542 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1543 * is probably wrong. Should make it like BSD or SYSV. 1544 */ 1545 1546 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1547 { 1548 int ret; 1549 1550 if (pid > 0) { 1551 rcu_read_lock(); 1552 ret = kill_pid_info(sig, info, find_vpid(pid)); 1553 rcu_read_unlock(); 1554 return ret; 1555 } 1556 1557 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1558 if (pid == INT_MIN) 1559 return -ESRCH; 1560 1561 read_lock(&tasklist_lock); 1562 if (pid != -1) { 1563 ret = __kill_pgrp_info(sig, info, 1564 pid ? find_vpid(-pid) : task_pgrp(current)); 1565 } else { 1566 int retval = 0, count = 0; 1567 struct task_struct * p; 1568 1569 for_each_process(p) { 1570 if (task_pid_vnr(p) > 1 && 1571 !same_thread_group(p, current)) { 1572 int err = group_send_sig_info(sig, info, p, 1573 PIDTYPE_MAX); 1574 ++count; 1575 if (err != -EPERM) 1576 retval = err; 1577 } 1578 } 1579 ret = count ? retval : -ESRCH; 1580 } 1581 read_unlock(&tasklist_lock); 1582 1583 return ret; 1584 } 1585 1586 /* 1587 * These are for backward compatibility with the rest of the kernel source. 1588 */ 1589 1590 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1591 { 1592 /* 1593 * Make sure legacy kernel users don't send in bad values 1594 * (normal paths check this in check_kill_permission). 1595 */ 1596 if (!valid_signal(sig)) 1597 return -EINVAL; 1598 1599 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1600 } 1601 EXPORT_SYMBOL(send_sig_info); 1602 1603 #define __si_special(priv) \ 1604 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1605 1606 int 1607 send_sig(int sig, struct task_struct *p, int priv) 1608 { 1609 return send_sig_info(sig, __si_special(priv), p); 1610 } 1611 EXPORT_SYMBOL(send_sig); 1612 1613 void force_sig(int sig) 1614 { 1615 struct kernel_siginfo info; 1616 1617 clear_siginfo(&info); 1618 info.si_signo = sig; 1619 info.si_errno = 0; 1620 info.si_code = SI_KERNEL; 1621 info.si_pid = 0; 1622 info.si_uid = 0; 1623 force_sig_info(&info); 1624 } 1625 EXPORT_SYMBOL(force_sig); 1626 1627 /* 1628 * When things go south during signal handling, we 1629 * will force a SIGSEGV. And if the signal that caused 1630 * the problem was already a SIGSEGV, we'll want to 1631 * make sure we don't even try to deliver the signal.. 1632 */ 1633 void force_sigsegv(int sig) 1634 { 1635 struct task_struct *p = current; 1636 1637 if (sig == SIGSEGV) { 1638 unsigned long flags; 1639 spin_lock_irqsave(&p->sighand->siglock, flags); 1640 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1641 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1642 } 1643 force_sig(SIGSEGV); 1644 } 1645 1646 int force_sig_fault_to_task(int sig, int code, void __user *addr 1647 ___ARCH_SI_TRAPNO(int trapno) 1648 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1649 , struct task_struct *t) 1650 { 1651 struct kernel_siginfo info; 1652 1653 clear_siginfo(&info); 1654 info.si_signo = sig; 1655 info.si_errno = 0; 1656 info.si_code = code; 1657 info.si_addr = addr; 1658 #ifdef __ARCH_SI_TRAPNO 1659 info.si_trapno = trapno; 1660 #endif 1661 #ifdef __ia64__ 1662 info.si_imm = imm; 1663 info.si_flags = flags; 1664 info.si_isr = isr; 1665 #endif 1666 return force_sig_info_to_task(&info, t); 1667 } 1668 1669 int force_sig_fault(int sig, int code, void __user *addr 1670 ___ARCH_SI_TRAPNO(int trapno) 1671 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1672 { 1673 return force_sig_fault_to_task(sig, code, addr 1674 ___ARCH_SI_TRAPNO(trapno) 1675 ___ARCH_SI_IA64(imm, flags, isr), current); 1676 } 1677 1678 int send_sig_fault(int sig, int code, void __user *addr 1679 ___ARCH_SI_TRAPNO(int trapno) 1680 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1681 , struct task_struct *t) 1682 { 1683 struct kernel_siginfo info; 1684 1685 clear_siginfo(&info); 1686 info.si_signo = sig; 1687 info.si_errno = 0; 1688 info.si_code = code; 1689 info.si_addr = addr; 1690 #ifdef __ARCH_SI_TRAPNO 1691 info.si_trapno = trapno; 1692 #endif 1693 #ifdef __ia64__ 1694 info.si_imm = imm; 1695 info.si_flags = flags; 1696 info.si_isr = isr; 1697 #endif 1698 return send_sig_info(info.si_signo, &info, t); 1699 } 1700 1701 int force_sig_mceerr(int code, void __user *addr, short lsb) 1702 { 1703 struct kernel_siginfo info; 1704 1705 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1706 clear_siginfo(&info); 1707 info.si_signo = SIGBUS; 1708 info.si_errno = 0; 1709 info.si_code = code; 1710 info.si_addr = addr; 1711 info.si_addr_lsb = lsb; 1712 return force_sig_info(&info); 1713 } 1714 1715 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1716 { 1717 struct kernel_siginfo info; 1718 1719 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1720 clear_siginfo(&info); 1721 info.si_signo = SIGBUS; 1722 info.si_errno = 0; 1723 info.si_code = code; 1724 info.si_addr = addr; 1725 info.si_addr_lsb = lsb; 1726 return send_sig_info(info.si_signo, &info, t); 1727 } 1728 EXPORT_SYMBOL(send_sig_mceerr); 1729 1730 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1731 { 1732 struct kernel_siginfo info; 1733 1734 clear_siginfo(&info); 1735 info.si_signo = SIGSEGV; 1736 info.si_errno = 0; 1737 info.si_code = SEGV_BNDERR; 1738 info.si_addr = addr; 1739 info.si_lower = lower; 1740 info.si_upper = upper; 1741 return force_sig_info(&info); 1742 } 1743 1744 #ifdef SEGV_PKUERR 1745 int force_sig_pkuerr(void __user *addr, u32 pkey) 1746 { 1747 struct kernel_siginfo info; 1748 1749 clear_siginfo(&info); 1750 info.si_signo = SIGSEGV; 1751 info.si_errno = 0; 1752 info.si_code = SEGV_PKUERR; 1753 info.si_addr = addr; 1754 info.si_pkey = pkey; 1755 return force_sig_info(&info); 1756 } 1757 #endif 1758 1759 /* For the crazy architectures that include trap information in 1760 * the errno field, instead of an actual errno value. 1761 */ 1762 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1763 { 1764 struct kernel_siginfo info; 1765 1766 clear_siginfo(&info); 1767 info.si_signo = SIGTRAP; 1768 info.si_errno = errno; 1769 info.si_code = TRAP_HWBKPT; 1770 info.si_addr = addr; 1771 return force_sig_info(&info); 1772 } 1773 1774 int kill_pgrp(struct pid *pid, int sig, int priv) 1775 { 1776 int ret; 1777 1778 read_lock(&tasklist_lock); 1779 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1780 read_unlock(&tasklist_lock); 1781 1782 return ret; 1783 } 1784 EXPORT_SYMBOL(kill_pgrp); 1785 1786 int kill_pid(struct pid *pid, int sig, int priv) 1787 { 1788 return kill_pid_info(sig, __si_special(priv), pid); 1789 } 1790 EXPORT_SYMBOL(kill_pid); 1791 1792 /* 1793 * These functions support sending signals using preallocated sigqueue 1794 * structures. This is needed "because realtime applications cannot 1795 * afford to lose notifications of asynchronous events, like timer 1796 * expirations or I/O completions". In the case of POSIX Timers 1797 * we allocate the sigqueue structure from the timer_create. If this 1798 * allocation fails we are able to report the failure to the application 1799 * with an EAGAIN error. 1800 */ 1801 struct sigqueue *sigqueue_alloc(void) 1802 { 1803 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1804 1805 if (q) 1806 q->flags |= SIGQUEUE_PREALLOC; 1807 1808 return q; 1809 } 1810 1811 void sigqueue_free(struct sigqueue *q) 1812 { 1813 unsigned long flags; 1814 spinlock_t *lock = ¤t->sighand->siglock; 1815 1816 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1817 /* 1818 * We must hold ->siglock while testing q->list 1819 * to serialize with collect_signal() or with 1820 * __exit_signal()->flush_sigqueue(). 1821 */ 1822 spin_lock_irqsave(lock, flags); 1823 q->flags &= ~SIGQUEUE_PREALLOC; 1824 /* 1825 * If it is queued it will be freed when dequeued, 1826 * like the "regular" sigqueue. 1827 */ 1828 if (!list_empty(&q->list)) 1829 q = NULL; 1830 spin_unlock_irqrestore(lock, flags); 1831 1832 if (q) 1833 __sigqueue_free(q); 1834 } 1835 1836 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1837 { 1838 int sig = q->info.si_signo; 1839 struct sigpending *pending; 1840 struct task_struct *t; 1841 unsigned long flags; 1842 int ret, result; 1843 1844 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1845 1846 ret = -1; 1847 rcu_read_lock(); 1848 t = pid_task(pid, type); 1849 if (!t || !likely(lock_task_sighand(t, &flags))) 1850 goto ret; 1851 1852 ret = 1; /* the signal is ignored */ 1853 result = TRACE_SIGNAL_IGNORED; 1854 if (!prepare_signal(sig, t, false)) 1855 goto out; 1856 1857 ret = 0; 1858 if (unlikely(!list_empty(&q->list))) { 1859 /* 1860 * If an SI_TIMER entry is already queue just increment 1861 * the overrun count. 1862 */ 1863 BUG_ON(q->info.si_code != SI_TIMER); 1864 q->info.si_overrun++; 1865 result = TRACE_SIGNAL_ALREADY_PENDING; 1866 goto out; 1867 } 1868 q->info.si_overrun = 0; 1869 1870 signalfd_notify(t, sig); 1871 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1872 list_add_tail(&q->list, &pending->list); 1873 sigaddset(&pending->signal, sig); 1874 complete_signal(sig, t, type); 1875 result = TRACE_SIGNAL_DELIVERED; 1876 out: 1877 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 1878 unlock_task_sighand(t, &flags); 1879 ret: 1880 rcu_read_unlock(); 1881 return ret; 1882 } 1883 1884 static void do_notify_pidfd(struct task_struct *task) 1885 { 1886 struct pid *pid; 1887 1888 WARN_ON(task->exit_state == 0); 1889 pid = task_pid(task); 1890 wake_up_all(&pid->wait_pidfd); 1891 } 1892 1893 /* 1894 * Let a parent know about the death of a child. 1895 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1896 * 1897 * Returns true if our parent ignored us and so we've switched to 1898 * self-reaping. 1899 */ 1900 bool do_notify_parent(struct task_struct *tsk, int sig) 1901 { 1902 struct kernel_siginfo info; 1903 unsigned long flags; 1904 struct sighand_struct *psig; 1905 bool autoreap = false; 1906 u64 utime, stime; 1907 1908 BUG_ON(sig == -1); 1909 1910 /* do_notify_parent_cldstop should have been called instead. */ 1911 BUG_ON(task_is_stopped_or_traced(tsk)); 1912 1913 BUG_ON(!tsk->ptrace && 1914 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1915 1916 /* Wake up all pidfd waiters */ 1917 do_notify_pidfd(tsk); 1918 1919 if (sig != SIGCHLD) { 1920 /* 1921 * This is only possible if parent == real_parent. 1922 * Check if it has changed security domain. 1923 */ 1924 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1925 sig = SIGCHLD; 1926 } 1927 1928 clear_siginfo(&info); 1929 info.si_signo = sig; 1930 info.si_errno = 0; 1931 /* 1932 * We are under tasklist_lock here so our parent is tied to 1933 * us and cannot change. 1934 * 1935 * task_active_pid_ns will always return the same pid namespace 1936 * until a task passes through release_task. 1937 * 1938 * write_lock() currently calls preempt_disable() which is the 1939 * same as rcu_read_lock(), but according to Oleg, this is not 1940 * correct to rely on this 1941 */ 1942 rcu_read_lock(); 1943 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1944 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1945 task_uid(tsk)); 1946 rcu_read_unlock(); 1947 1948 task_cputime(tsk, &utime, &stime); 1949 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 1950 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 1951 1952 info.si_status = tsk->exit_code & 0x7f; 1953 if (tsk->exit_code & 0x80) 1954 info.si_code = CLD_DUMPED; 1955 else if (tsk->exit_code & 0x7f) 1956 info.si_code = CLD_KILLED; 1957 else { 1958 info.si_code = CLD_EXITED; 1959 info.si_status = tsk->exit_code >> 8; 1960 } 1961 1962 psig = tsk->parent->sighand; 1963 spin_lock_irqsave(&psig->siglock, flags); 1964 if (!tsk->ptrace && sig == SIGCHLD && 1965 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1966 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1967 /* 1968 * We are exiting and our parent doesn't care. POSIX.1 1969 * defines special semantics for setting SIGCHLD to SIG_IGN 1970 * or setting the SA_NOCLDWAIT flag: we should be reaped 1971 * automatically and not left for our parent's wait4 call. 1972 * Rather than having the parent do it as a magic kind of 1973 * signal handler, we just set this to tell do_exit that we 1974 * can be cleaned up without becoming a zombie. Note that 1975 * we still call __wake_up_parent in this case, because a 1976 * blocked sys_wait4 might now return -ECHILD. 1977 * 1978 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1979 * is implementation-defined: we do (if you don't want 1980 * it, just use SIG_IGN instead). 1981 */ 1982 autoreap = true; 1983 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1984 sig = 0; 1985 } 1986 if (valid_signal(sig) && sig) 1987 __group_send_sig_info(sig, &info, tsk->parent); 1988 __wake_up_parent(tsk, tsk->parent); 1989 spin_unlock_irqrestore(&psig->siglock, flags); 1990 1991 return autoreap; 1992 } 1993 1994 /** 1995 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1996 * @tsk: task reporting the state change 1997 * @for_ptracer: the notification is for ptracer 1998 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1999 * 2000 * Notify @tsk's parent that the stopped/continued state has changed. If 2001 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2002 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2003 * 2004 * CONTEXT: 2005 * Must be called with tasklist_lock at least read locked. 2006 */ 2007 static void do_notify_parent_cldstop(struct task_struct *tsk, 2008 bool for_ptracer, int why) 2009 { 2010 struct kernel_siginfo info; 2011 unsigned long flags; 2012 struct task_struct *parent; 2013 struct sighand_struct *sighand; 2014 u64 utime, stime; 2015 2016 if (for_ptracer) { 2017 parent = tsk->parent; 2018 } else { 2019 tsk = tsk->group_leader; 2020 parent = tsk->real_parent; 2021 } 2022 2023 clear_siginfo(&info); 2024 info.si_signo = SIGCHLD; 2025 info.si_errno = 0; 2026 /* 2027 * see comment in do_notify_parent() about the following 4 lines 2028 */ 2029 rcu_read_lock(); 2030 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2031 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2032 rcu_read_unlock(); 2033 2034 task_cputime(tsk, &utime, &stime); 2035 info.si_utime = nsec_to_clock_t(utime); 2036 info.si_stime = nsec_to_clock_t(stime); 2037 2038 info.si_code = why; 2039 switch (why) { 2040 case CLD_CONTINUED: 2041 info.si_status = SIGCONT; 2042 break; 2043 case CLD_STOPPED: 2044 info.si_status = tsk->signal->group_exit_code & 0x7f; 2045 break; 2046 case CLD_TRAPPED: 2047 info.si_status = tsk->exit_code & 0x7f; 2048 break; 2049 default: 2050 BUG(); 2051 } 2052 2053 sighand = parent->sighand; 2054 spin_lock_irqsave(&sighand->siglock, flags); 2055 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2056 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2057 __group_send_sig_info(SIGCHLD, &info, parent); 2058 /* 2059 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2060 */ 2061 __wake_up_parent(tsk, parent); 2062 spin_unlock_irqrestore(&sighand->siglock, flags); 2063 } 2064 2065 static inline bool may_ptrace_stop(void) 2066 { 2067 if (!likely(current->ptrace)) 2068 return false; 2069 /* 2070 * Are we in the middle of do_coredump? 2071 * If so and our tracer is also part of the coredump stopping 2072 * is a deadlock situation, and pointless because our tracer 2073 * is dead so don't allow us to stop. 2074 * If SIGKILL was already sent before the caller unlocked 2075 * ->siglock we must see ->core_state != NULL. Otherwise it 2076 * is safe to enter schedule(). 2077 * 2078 * This is almost outdated, a task with the pending SIGKILL can't 2079 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 2080 * after SIGKILL was already dequeued. 2081 */ 2082 if (unlikely(current->mm->core_state) && 2083 unlikely(current->mm == current->parent->mm)) 2084 return false; 2085 2086 return true; 2087 } 2088 2089 /* 2090 * Return non-zero if there is a SIGKILL that should be waking us up. 2091 * Called with the siglock held. 2092 */ 2093 static bool sigkill_pending(struct task_struct *tsk) 2094 { 2095 return sigismember(&tsk->pending.signal, SIGKILL) || 2096 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 2097 } 2098 2099 /* 2100 * This must be called with current->sighand->siglock held. 2101 * 2102 * This should be the path for all ptrace stops. 2103 * We always set current->last_siginfo while stopped here. 2104 * That makes it a way to test a stopped process for 2105 * being ptrace-stopped vs being job-control-stopped. 2106 * 2107 * If we actually decide not to stop at all because the tracer 2108 * is gone, we keep current->exit_code unless clear_code. 2109 */ 2110 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info) 2111 __releases(¤t->sighand->siglock) 2112 __acquires(¤t->sighand->siglock) 2113 { 2114 bool gstop_done = false; 2115 2116 if (arch_ptrace_stop_needed(exit_code, info)) { 2117 /* 2118 * The arch code has something special to do before a 2119 * ptrace stop. This is allowed to block, e.g. for faults 2120 * on user stack pages. We can't keep the siglock while 2121 * calling arch_ptrace_stop, so we must release it now. 2122 * To preserve proper semantics, we must do this before 2123 * any signal bookkeeping like checking group_stop_count. 2124 * Meanwhile, a SIGKILL could come in before we retake the 2125 * siglock. That must prevent us from sleeping in TASK_TRACED. 2126 * So after regaining the lock, we must check for SIGKILL. 2127 */ 2128 spin_unlock_irq(¤t->sighand->siglock); 2129 arch_ptrace_stop(exit_code, info); 2130 spin_lock_irq(¤t->sighand->siglock); 2131 if (sigkill_pending(current)) 2132 return; 2133 } 2134 2135 set_special_state(TASK_TRACED); 2136 2137 /* 2138 * We're committing to trapping. TRACED should be visible before 2139 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2140 * Also, transition to TRACED and updates to ->jobctl should be 2141 * atomic with respect to siglock and should be done after the arch 2142 * hook as siglock is released and regrabbed across it. 2143 * 2144 * TRACER TRACEE 2145 * 2146 * ptrace_attach() 2147 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2148 * do_wait() 2149 * set_current_state() smp_wmb(); 2150 * ptrace_do_wait() 2151 * wait_task_stopped() 2152 * task_stopped_code() 2153 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2154 */ 2155 smp_wmb(); 2156 2157 current->last_siginfo = info; 2158 current->exit_code = exit_code; 2159 2160 /* 2161 * If @why is CLD_STOPPED, we're trapping to participate in a group 2162 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2163 * across siglock relocks since INTERRUPT was scheduled, PENDING 2164 * could be clear now. We act as if SIGCONT is received after 2165 * TASK_TRACED is entered - ignore it. 2166 */ 2167 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2168 gstop_done = task_participate_group_stop(current); 2169 2170 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2171 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2172 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2173 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2174 2175 /* entering a trap, clear TRAPPING */ 2176 task_clear_jobctl_trapping(current); 2177 2178 spin_unlock_irq(¤t->sighand->siglock); 2179 read_lock(&tasklist_lock); 2180 if (may_ptrace_stop()) { 2181 /* 2182 * Notify parents of the stop. 2183 * 2184 * While ptraced, there are two parents - the ptracer and 2185 * the real_parent of the group_leader. The ptracer should 2186 * know about every stop while the real parent is only 2187 * interested in the completion of group stop. The states 2188 * for the two don't interact with each other. Notify 2189 * separately unless they're gonna be duplicates. 2190 */ 2191 do_notify_parent_cldstop(current, true, why); 2192 if (gstop_done && ptrace_reparented(current)) 2193 do_notify_parent_cldstop(current, false, why); 2194 2195 /* 2196 * Don't want to allow preemption here, because 2197 * sys_ptrace() needs this task to be inactive. 2198 * 2199 * XXX: implement read_unlock_no_resched(). 2200 */ 2201 preempt_disable(); 2202 read_unlock(&tasklist_lock); 2203 preempt_enable_no_resched(); 2204 cgroup_enter_frozen(); 2205 freezable_schedule(); 2206 cgroup_leave_frozen(true); 2207 } else { 2208 /* 2209 * By the time we got the lock, our tracer went away. 2210 * Don't drop the lock yet, another tracer may come. 2211 * 2212 * If @gstop_done, the ptracer went away between group stop 2213 * completion and here. During detach, it would have set 2214 * JOBCTL_STOP_PENDING on us and we'll re-enter 2215 * TASK_STOPPED in do_signal_stop() on return, so notifying 2216 * the real parent of the group stop completion is enough. 2217 */ 2218 if (gstop_done) 2219 do_notify_parent_cldstop(current, false, why); 2220 2221 /* tasklist protects us from ptrace_freeze_traced() */ 2222 __set_current_state(TASK_RUNNING); 2223 if (clear_code) 2224 current->exit_code = 0; 2225 read_unlock(&tasklist_lock); 2226 } 2227 2228 /* 2229 * We are back. Now reacquire the siglock before touching 2230 * last_siginfo, so that we are sure to have synchronized with 2231 * any signal-sending on another CPU that wants to examine it. 2232 */ 2233 spin_lock_irq(¤t->sighand->siglock); 2234 current->last_siginfo = NULL; 2235 2236 /* LISTENING can be set only during STOP traps, clear it */ 2237 current->jobctl &= ~JOBCTL_LISTENING; 2238 2239 /* 2240 * Queued signals ignored us while we were stopped for tracing. 2241 * So check for any that we should take before resuming user mode. 2242 * This sets TIF_SIGPENDING, but never clears it. 2243 */ 2244 recalc_sigpending_tsk(current); 2245 } 2246 2247 static void ptrace_do_notify(int signr, int exit_code, int why) 2248 { 2249 kernel_siginfo_t info; 2250 2251 clear_siginfo(&info); 2252 info.si_signo = signr; 2253 info.si_code = exit_code; 2254 info.si_pid = task_pid_vnr(current); 2255 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2256 2257 /* Let the debugger run. */ 2258 ptrace_stop(exit_code, why, 1, &info); 2259 } 2260 2261 void ptrace_notify(int exit_code) 2262 { 2263 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2264 if (unlikely(current->task_works)) 2265 task_work_run(); 2266 2267 spin_lock_irq(¤t->sighand->siglock); 2268 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 2269 spin_unlock_irq(¤t->sighand->siglock); 2270 } 2271 2272 /** 2273 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2274 * @signr: signr causing group stop if initiating 2275 * 2276 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2277 * and participate in it. If already set, participate in the existing 2278 * group stop. If participated in a group stop (and thus slept), %true is 2279 * returned with siglock released. 2280 * 2281 * If ptraced, this function doesn't handle stop itself. Instead, 2282 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2283 * untouched. The caller must ensure that INTERRUPT trap handling takes 2284 * places afterwards. 2285 * 2286 * CONTEXT: 2287 * Must be called with @current->sighand->siglock held, which is released 2288 * on %true return. 2289 * 2290 * RETURNS: 2291 * %false if group stop is already cancelled or ptrace trap is scheduled. 2292 * %true if participated in group stop. 2293 */ 2294 static bool do_signal_stop(int signr) 2295 __releases(¤t->sighand->siglock) 2296 { 2297 struct signal_struct *sig = current->signal; 2298 2299 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2300 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2301 struct task_struct *t; 2302 2303 /* signr will be recorded in task->jobctl for retries */ 2304 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2305 2306 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2307 unlikely(signal_group_exit(sig))) 2308 return false; 2309 /* 2310 * There is no group stop already in progress. We must 2311 * initiate one now. 2312 * 2313 * While ptraced, a task may be resumed while group stop is 2314 * still in effect and then receive a stop signal and 2315 * initiate another group stop. This deviates from the 2316 * usual behavior as two consecutive stop signals can't 2317 * cause two group stops when !ptraced. That is why we 2318 * also check !task_is_stopped(t) below. 2319 * 2320 * The condition can be distinguished by testing whether 2321 * SIGNAL_STOP_STOPPED is already set. Don't generate 2322 * group_exit_code in such case. 2323 * 2324 * This is not necessary for SIGNAL_STOP_CONTINUED because 2325 * an intervening stop signal is required to cause two 2326 * continued events regardless of ptrace. 2327 */ 2328 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2329 sig->group_exit_code = signr; 2330 2331 sig->group_stop_count = 0; 2332 2333 if (task_set_jobctl_pending(current, signr | gstop)) 2334 sig->group_stop_count++; 2335 2336 t = current; 2337 while_each_thread(current, t) { 2338 /* 2339 * Setting state to TASK_STOPPED for a group 2340 * stop is always done with the siglock held, 2341 * so this check has no races. 2342 */ 2343 if (!task_is_stopped(t) && 2344 task_set_jobctl_pending(t, signr | gstop)) { 2345 sig->group_stop_count++; 2346 if (likely(!(t->ptrace & PT_SEIZED))) 2347 signal_wake_up(t, 0); 2348 else 2349 ptrace_trap_notify(t); 2350 } 2351 } 2352 } 2353 2354 if (likely(!current->ptrace)) { 2355 int notify = 0; 2356 2357 /* 2358 * If there are no other threads in the group, or if there 2359 * is a group stop in progress and we are the last to stop, 2360 * report to the parent. 2361 */ 2362 if (task_participate_group_stop(current)) 2363 notify = CLD_STOPPED; 2364 2365 set_special_state(TASK_STOPPED); 2366 spin_unlock_irq(¤t->sighand->siglock); 2367 2368 /* 2369 * Notify the parent of the group stop completion. Because 2370 * we're not holding either the siglock or tasklist_lock 2371 * here, ptracer may attach inbetween; however, this is for 2372 * group stop and should always be delivered to the real 2373 * parent of the group leader. The new ptracer will get 2374 * its notification when this task transitions into 2375 * TASK_TRACED. 2376 */ 2377 if (notify) { 2378 read_lock(&tasklist_lock); 2379 do_notify_parent_cldstop(current, false, notify); 2380 read_unlock(&tasklist_lock); 2381 } 2382 2383 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2384 cgroup_enter_frozen(); 2385 freezable_schedule(); 2386 return true; 2387 } else { 2388 /* 2389 * While ptraced, group stop is handled by STOP trap. 2390 * Schedule it and let the caller deal with it. 2391 */ 2392 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2393 return false; 2394 } 2395 } 2396 2397 /** 2398 * do_jobctl_trap - take care of ptrace jobctl traps 2399 * 2400 * When PT_SEIZED, it's used for both group stop and explicit 2401 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2402 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2403 * the stop signal; otherwise, %SIGTRAP. 2404 * 2405 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2406 * number as exit_code and no siginfo. 2407 * 2408 * CONTEXT: 2409 * Must be called with @current->sighand->siglock held, which may be 2410 * released and re-acquired before returning with intervening sleep. 2411 */ 2412 static void do_jobctl_trap(void) 2413 { 2414 struct signal_struct *signal = current->signal; 2415 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2416 2417 if (current->ptrace & PT_SEIZED) { 2418 if (!signal->group_stop_count && 2419 !(signal->flags & SIGNAL_STOP_STOPPED)) 2420 signr = SIGTRAP; 2421 WARN_ON_ONCE(!signr); 2422 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2423 CLD_STOPPED); 2424 } else { 2425 WARN_ON_ONCE(!signr); 2426 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2427 current->exit_code = 0; 2428 } 2429 } 2430 2431 /** 2432 * do_freezer_trap - handle the freezer jobctl trap 2433 * 2434 * Puts the task into frozen state, if only the task is not about to quit. 2435 * In this case it drops JOBCTL_TRAP_FREEZE. 2436 * 2437 * CONTEXT: 2438 * Must be called with @current->sighand->siglock held, 2439 * which is always released before returning. 2440 */ 2441 static void do_freezer_trap(void) 2442 __releases(¤t->sighand->siglock) 2443 { 2444 /* 2445 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2446 * let's make another loop to give it a chance to be handled. 2447 * In any case, we'll return back. 2448 */ 2449 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2450 JOBCTL_TRAP_FREEZE) { 2451 spin_unlock_irq(¤t->sighand->siglock); 2452 return; 2453 } 2454 2455 /* 2456 * Now we're sure that there is no pending fatal signal and no 2457 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2458 * immediately (if there is a non-fatal signal pending), and 2459 * put the task into sleep. 2460 */ 2461 __set_current_state(TASK_INTERRUPTIBLE); 2462 clear_thread_flag(TIF_SIGPENDING); 2463 spin_unlock_irq(¤t->sighand->siglock); 2464 cgroup_enter_frozen(); 2465 freezable_schedule(); 2466 } 2467 2468 static int ptrace_signal(int signr, kernel_siginfo_t *info) 2469 { 2470 /* 2471 * We do not check sig_kernel_stop(signr) but set this marker 2472 * unconditionally because we do not know whether debugger will 2473 * change signr. This flag has no meaning unless we are going 2474 * to stop after return from ptrace_stop(). In this case it will 2475 * be checked in do_signal_stop(), we should only stop if it was 2476 * not cleared by SIGCONT while we were sleeping. See also the 2477 * comment in dequeue_signal(). 2478 */ 2479 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2480 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2481 2482 /* We're back. Did the debugger cancel the sig? */ 2483 signr = current->exit_code; 2484 if (signr == 0) 2485 return signr; 2486 2487 current->exit_code = 0; 2488 2489 /* 2490 * Update the siginfo structure if the signal has 2491 * changed. If the debugger wanted something 2492 * specific in the siginfo structure then it should 2493 * have updated *info via PTRACE_SETSIGINFO. 2494 */ 2495 if (signr != info->si_signo) { 2496 clear_siginfo(info); 2497 info->si_signo = signr; 2498 info->si_errno = 0; 2499 info->si_code = SI_USER; 2500 rcu_read_lock(); 2501 info->si_pid = task_pid_vnr(current->parent); 2502 info->si_uid = from_kuid_munged(current_user_ns(), 2503 task_uid(current->parent)); 2504 rcu_read_unlock(); 2505 } 2506 2507 /* If the (new) signal is now blocked, requeue it. */ 2508 if (sigismember(¤t->blocked, signr)) { 2509 send_signal(signr, info, current, PIDTYPE_PID); 2510 signr = 0; 2511 } 2512 2513 return signr; 2514 } 2515 2516 bool get_signal(struct ksignal *ksig) 2517 { 2518 struct sighand_struct *sighand = current->sighand; 2519 struct signal_struct *signal = current->signal; 2520 int signr; 2521 2522 if (unlikely(current->task_works)) 2523 task_work_run(); 2524 2525 if (unlikely(uprobe_deny_signal())) 2526 return false; 2527 2528 /* 2529 * Do this once, we can't return to user-mode if freezing() == T. 2530 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2531 * thus do not need another check after return. 2532 */ 2533 try_to_freeze(); 2534 2535 relock: 2536 spin_lock_irq(&sighand->siglock); 2537 /* 2538 * Every stopped thread goes here after wakeup. Check to see if 2539 * we should notify the parent, prepare_signal(SIGCONT) encodes 2540 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2541 */ 2542 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2543 int why; 2544 2545 if (signal->flags & SIGNAL_CLD_CONTINUED) 2546 why = CLD_CONTINUED; 2547 else 2548 why = CLD_STOPPED; 2549 2550 signal->flags &= ~SIGNAL_CLD_MASK; 2551 2552 spin_unlock_irq(&sighand->siglock); 2553 2554 /* 2555 * Notify the parent that we're continuing. This event is 2556 * always per-process and doesn't make whole lot of sense 2557 * for ptracers, who shouldn't consume the state via 2558 * wait(2) either, but, for backward compatibility, notify 2559 * the ptracer of the group leader too unless it's gonna be 2560 * a duplicate. 2561 */ 2562 read_lock(&tasklist_lock); 2563 do_notify_parent_cldstop(current, false, why); 2564 2565 if (ptrace_reparented(current->group_leader)) 2566 do_notify_parent_cldstop(current->group_leader, 2567 true, why); 2568 read_unlock(&tasklist_lock); 2569 2570 goto relock; 2571 } 2572 2573 /* Has this task already been marked for death? */ 2574 if (signal_group_exit(signal)) { 2575 ksig->info.si_signo = signr = SIGKILL; 2576 sigdelset(¤t->pending.signal, SIGKILL); 2577 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2578 &sighand->action[SIGKILL - 1]); 2579 recalc_sigpending(); 2580 goto fatal; 2581 } 2582 2583 for (;;) { 2584 struct k_sigaction *ka; 2585 2586 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2587 do_signal_stop(0)) 2588 goto relock; 2589 2590 if (unlikely(current->jobctl & 2591 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2592 if (current->jobctl & JOBCTL_TRAP_MASK) { 2593 do_jobctl_trap(); 2594 spin_unlock_irq(&sighand->siglock); 2595 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2596 do_freezer_trap(); 2597 2598 goto relock; 2599 } 2600 2601 /* 2602 * If the task is leaving the frozen state, let's update 2603 * cgroup counters and reset the frozen bit. 2604 */ 2605 if (unlikely(cgroup_task_frozen(current))) { 2606 spin_unlock_irq(&sighand->siglock); 2607 cgroup_leave_frozen(false); 2608 goto relock; 2609 } 2610 2611 /* 2612 * Signals generated by the execution of an instruction 2613 * need to be delivered before any other pending signals 2614 * so that the instruction pointer in the signal stack 2615 * frame points to the faulting instruction. 2616 */ 2617 signr = dequeue_synchronous_signal(&ksig->info); 2618 if (!signr) 2619 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2620 2621 if (!signr) 2622 break; /* will return 0 */ 2623 2624 if (unlikely(current->ptrace) && signr != SIGKILL) { 2625 signr = ptrace_signal(signr, &ksig->info); 2626 if (!signr) 2627 continue; 2628 } 2629 2630 ka = &sighand->action[signr-1]; 2631 2632 /* Trace actually delivered signals. */ 2633 trace_signal_deliver(signr, &ksig->info, ka); 2634 2635 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2636 continue; 2637 if (ka->sa.sa_handler != SIG_DFL) { 2638 /* Run the handler. */ 2639 ksig->ka = *ka; 2640 2641 if (ka->sa.sa_flags & SA_ONESHOT) 2642 ka->sa.sa_handler = SIG_DFL; 2643 2644 break; /* will return non-zero "signr" value */ 2645 } 2646 2647 /* 2648 * Now we are doing the default action for this signal. 2649 */ 2650 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2651 continue; 2652 2653 /* 2654 * Global init gets no signals it doesn't want. 2655 * Container-init gets no signals it doesn't want from same 2656 * container. 2657 * 2658 * Note that if global/container-init sees a sig_kernel_only() 2659 * signal here, the signal must have been generated internally 2660 * or must have come from an ancestor namespace. In either 2661 * case, the signal cannot be dropped. 2662 */ 2663 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2664 !sig_kernel_only(signr)) 2665 continue; 2666 2667 if (sig_kernel_stop(signr)) { 2668 /* 2669 * The default action is to stop all threads in 2670 * the thread group. The job control signals 2671 * do nothing in an orphaned pgrp, but SIGSTOP 2672 * always works. Note that siglock needs to be 2673 * dropped during the call to is_orphaned_pgrp() 2674 * because of lock ordering with tasklist_lock. 2675 * This allows an intervening SIGCONT to be posted. 2676 * We need to check for that and bail out if necessary. 2677 */ 2678 if (signr != SIGSTOP) { 2679 spin_unlock_irq(&sighand->siglock); 2680 2681 /* signals can be posted during this window */ 2682 2683 if (is_current_pgrp_orphaned()) 2684 goto relock; 2685 2686 spin_lock_irq(&sighand->siglock); 2687 } 2688 2689 if (likely(do_signal_stop(ksig->info.si_signo))) { 2690 /* It released the siglock. */ 2691 goto relock; 2692 } 2693 2694 /* 2695 * We didn't actually stop, due to a race 2696 * with SIGCONT or something like that. 2697 */ 2698 continue; 2699 } 2700 2701 fatal: 2702 spin_unlock_irq(&sighand->siglock); 2703 if (unlikely(cgroup_task_frozen(current))) 2704 cgroup_leave_frozen(true); 2705 2706 /* 2707 * Anything else is fatal, maybe with a core dump. 2708 */ 2709 current->flags |= PF_SIGNALED; 2710 2711 if (sig_kernel_coredump(signr)) { 2712 if (print_fatal_signals) 2713 print_fatal_signal(ksig->info.si_signo); 2714 proc_coredump_connector(current); 2715 /* 2716 * If it was able to dump core, this kills all 2717 * other threads in the group and synchronizes with 2718 * their demise. If we lost the race with another 2719 * thread getting here, it set group_exit_code 2720 * first and our do_group_exit call below will use 2721 * that value and ignore the one we pass it. 2722 */ 2723 do_coredump(&ksig->info); 2724 } 2725 2726 /* 2727 * Death signals, no core dump. 2728 */ 2729 do_group_exit(ksig->info.si_signo); 2730 /* NOTREACHED */ 2731 } 2732 spin_unlock_irq(&sighand->siglock); 2733 2734 ksig->sig = signr; 2735 return ksig->sig > 0; 2736 } 2737 2738 /** 2739 * signal_delivered - 2740 * @ksig: kernel signal struct 2741 * @stepping: nonzero if debugger single-step or block-step in use 2742 * 2743 * This function should be called when a signal has successfully been 2744 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2745 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2746 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2747 */ 2748 static void signal_delivered(struct ksignal *ksig, int stepping) 2749 { 2750 sigset_t blocked; 2751 2752 /* A signal was successfully delivered, and the 2753 saved sigmask was stored on the signal frame, 2754 and will be restored by sigreturn. So we can 2755 simply clear the restore sigmask flag. */ 2756 clear_restore_sigmask(); 2757 2758 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2759 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2760 sigaddset(&blocked, ksig->sig); 2761 set_current_blocked(&blocked); 2762 tracehook_signal_handler(stepping); 2763 } 2764 2765 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2766 { 2767 if (failed) 2768 force_sigsegv(ksig->sig); 2769 else 2770 signal_delivered(ksig, stepping); 2771 } 2772 2773 /* 2774 * It could be that complete_signal() picked us to notify about the 2775 * group-wide signal. Other threads should be notified now to take 2776 * the shared signals in @which since we will not. 2777 */ 2778 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2779 { 2780 sigset_t retarget; 2781 struct task_struct *t; 2782 2783 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2784 if (sigisemptyset(&retarget)) 2785 return; 2786 2787 t = tsk; 2788 while_each_thread(tsk, t) { 2789 if (t->flags & PF_EXITING) 2790 continue; 2791 2792 if (!has_pending_signals(&retarget, &t->blocked)) 2793 continue; 2794 /* Remove the signals this thread can handle. */ 2795 sigandsets(&retarget, &retarget, &t->blocked); 2796 2797 if (!signal_pending(t)) 2798 signal_wake_up(t, 0); 2799 2800 if (sigisemptyset(&retarget)) 2801 break; 2802 } 2803 } 2804 2805 void exit_signals(struct task_struct *tsk) 2806 { 2807 int group_stop = 0; 2808 sigset_t unblocked; 2809 2810 /* 2811 * @tsk is about to have PF_EXITING set - lock out users which 2812 * expect stable threadgroup. 2813 */ 2814 cgroup_threadgroup_change_begin(tsk); 2815 2816 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2817 tsk->flags |= PF_EXITING; 2818 cgroup_threadgroup_change_end(tsk); 2819 return; 2820 } 2821 2822 spin_lock_irq(&tsk->sighand->siglock); 2823 /* 2824 * From now this task is not visible for group-wide signals, 2825 * see wants_signal(), do_signal_stop(). 2826 */ 2827 tsk->flags |= PF_EXITING; 2828 2829 cgroup_threadgroup_change_end(tsk); 2830 2831 if (!signal_pending(tsk)) 2832 goto out; 2833 2834 unblocked = tsk->blocked; 2835 signotset(&unblocked); 2836 retarget_shared_pending(tsk, &unblocked); 2837 2838 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2839 task_participate_group_stop(tsk)) 2840 group_stop = CLD_STOPPED; 2841 out: 2842 spin_unlock_irq(&tsk->sighand->siglock); 2843 2844 /* 2845 * If group stop has completed, deliver the notification. This 2846 * should always go to the real parent of the group leader. 2847 */ 2848 if (unlikely(group_stop)) { 2849 read_lock(&tasklist_lock); 2850 do_notify_parent_cldstop(tsk, false, group_stop); 2851 read_unlock(&tasklist_lock); 2852 } 2853 } 2854 2855 /* 2856 * System call entry points. 2857 */ 2858 2859 /** 2860 * sys_restart_syscall - restart a system call 2861 */ 2862 SYSCALL_DEFINE0(restart_syscall) 2863 { 2864 struct restart_block *restart = ¤t->restart_block; 2865 return restart->fn(restart); 2866 } 2867 2868 long do_no_restart_syscall(struct restart_block *param) 2869 { 2870 return -EINTR; 2871 } 2872 2873 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2874 { 2875 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2876 sigset_t newblocked; 2877 /* A set of now blocked but previously unblocked signals. */ 2878 sigandnsets(&newblocked, newset, ¤t->blocked); 2879 retarget_shared_pending(tsk, &newblocked); 2880 } 2881 tsk->blocked = *newset; 2882 recalc_sigpending(); 2883 } 2884 2885 /** 2886 * set_current_blocked - change current->blocked mask 2887 * @newset: new mask 2888 * 2889 * It is wrong to change ->blocked directly, this helper should be used 2890 * to ensure the process can't miss a shared signal we are going to block. 2891 */ 2892 void set_current_blocked(sigset_t *newset) 2893 { 2894 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2895 __set_current_blocked(newset); 2896 } 2897 2898 void __set_current_blocked(const sigset_t *newset) 2899 { 2900 struct task_struct *tsk = current; 2901 2902 /* 2903 * In case the signal mask hasn't changed, there is nothing we need 2904 * to do. The current->blocked shouldn't be modified by other task. 2905 */ 2906 if (sigequalsets(&tsk->blocked, newset)) 2907 return; 2908 2909 spin_lock_irq(&tsk->sighand->siglock); 2910 __set_task_blocked(tsk, newset); 2911 spin_unlock_irq(&tsk->sighand->siglock); 2912 } 2913 2914 /* 2915 * This is also useful for kernel threads that want to temporarily 2916 * (or permanently) block certain signals. 2917 * 2918 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2919 * interface happily blocks "unblockable" signals like SIGKILL 2920 * and friends. 2921 */ 2922 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2923 { 2924 struct task_struct *tsk = current; 2925 sigset_t newset; 2926 2927 /* Lockless, only current can change ->blocked, never from irq */ 2928 if (oldset) 2929 *oldset = tsk->blocked; 2930 2931 switch (how) { 2932 case SIG_BLOCK: 2933 sigorsets(&newset, &tsk->blocked, set); 2934 break; 2935 case SIG_UNBLOCK: 2936 sigandnsets(&newset, &tsk->blocked, set); 2937 break; 2938 case SIG_SETMASK: 2939 newset = *set; 2940 break; 2941 default: 2942 return -EINVAL; 2943 } 2944 2945 __set_current_blocked(&newset); 2946 return 0; 2947 } 2948 EXPORT_SYMBOL(sigprocmask); 2949 2950 /* 2951 * The api helps set app-provided sigmasks. 2952 * 2953 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 2954 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 2955 * 2956 * Note that it does set_restore_sigmask() in advance, so it must be always 2957 * paired with restore_saved_sigmask_unless() before return from syscall. 2958 */ 2959 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 2960 { 2961 sigset_t kmask; 2962 2963 if (!umask) 2964 return 0; 2965 if (sigsetsize != sizeof(sigset_t)) 2966 return -EINVAL; 2967 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 2968 return -EFAULT; 2969 2970 set_restore_sigmask(); 2971 current->saved_sigmask = current->blocked; 2972 set_current_blocked(&kmask); 2973 2974 return 0; 2975 } 2976 2977 #ifdef CONFIG_COMPAT 2978 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 2979 size_t sigsetsize) 2980 { 2981 sigset_t kmask; 2982 2983 if (!umask) 2984 return 0; 2985 if (sigsetsize != sizeof(compat_sigset_t)) 2986 return -EINVAL; 2987 if (get_compat_sigset(&kmask, umask)) 2988 return -EFAULT; 2989 2990 set_restore_sigmask(); 2991 current->saved_sigmask = current->blocked; 2992 set_current_blocked(&kmask); 2993 2994 return 0; 2995 } 2996 #endif 2997 2998 /** 2999 * sys_rt_sigprocmask - change the list of currently blocked signals 3000 * @how: whether to add, remove, or set signals 3001 * @nset: stores pending signals 3002 * @oset: previous value of signal mask if non-null 3003 * @sigsetsize: size of sigset_t type 3004 */ 3005 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3006 sigset_t __user *, oset, size_t, sigsetsize) 3007 { 3008 sigset_t old_set, new_set; 3009 int error; 3010 3011 /* XXX: Don't preclude handling different sized sigset_t's. */ 3012 if (sigsetsize != sizeof(sigset_t)) 3013 return -EINVAL; 3014 3015 old_set = current->blocked; 3016 3017 if (nset) { 3018 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3019 return -EFAULT; 3020 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3021 3022 error = sigprocmask(how, &new_set, NULL); 3023 if (error) 3024 return error; 3025 } 3026 3027 if (oset) { 3028 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3029 return -EFAULT; 3030 } 3031 3032 return 0; 3033 } 3034 3035 #ifdef CONFIG_COMPAT 3036 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3037 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3038 { 3039 sigset_t old_set = current->blocked; 3040 3041 /* XXX: Don't preclude handling different sized sigset_t's. */ 3042 if (sigsetsize != sizeof(sigset_t)) 3043 return -EINVAL; 3044 3045 if (nset) { 3046 sigset_t new_set; 3047 int error; 3048 if (get_compat_sigset(&new_set, nset)) 3049 return -EFAULT; 3050 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3051 3052 error = sigprocmask(how, &new_set, NULL); 3053 if (error) 3054 return error; 3055 } 3056 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3057 } 3058 #endif 3059 3060 static void do_sigpending(sigset_t *set) 3061 { 3062 spin_lock_irq(¤t->sighand->siglock); 3063 sigorsets(set, ¤t->pending.signal, 3064 ¤t->signal->shared_pending.signal); 3065 spin_unlock_irq(¤t->sighand->siglock); 3066 3067 /* Outside the lock because only this thread touches it. */ 3068 sigandsets(set, ¤t->blocked, set); 3069 } 3070 3071 /** 3072 * sys_rt_sigpending - examine a pending signal that has been raised 3073 * while blocked 3074 * @uset: stores pending signals 3075 * @sigsetsize: size of sigset_t type or larger 3076 */ 3077 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3078 { 3079 sigset_t set; 3080 3081 if (sigsetsize > sizeof(*uset)) 3082 return -EINVAL; 3083 3084 do_sigpending(&set); 3085 3086 if (copy_to_user(uset, &set, sigsetsize)) 3087 return -EFAULT; 3088 3089 return 0; 3090 } 3091 3092 #ifdef CONFIG_COMPAT 3093 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3094 compat_size_t, sigsetsize) 3095 { 3096 sigset_t set; 3097 3098 if (sigsetsize > sizeof(*uset)) 3099 return -EINVAL; 3100 3101 do_sigpending(&set); 3102 3103 return put_compat_sigset(uset, &set, sigsetsize); 3104 } 3105 #endif 3106 3107 static const struct { 3108 unsigned char limit, layout; 3109 } sig_sicodes[] = { 3110 [SIGILL] = { NSIGILL, SIL_FAULT }, 3111 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3112 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3113 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3114 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3115 #if defined(SIGEMT) 3116 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3117 #endif 3118 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3119 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3120 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3121 }; 3122 3123 static bool known_siginfo_layout(unsigned sig, int si_code) 3124 { 3125 if (si_code == SI_KERNEL) 3126 return true; 3127 else if ((si_code > SI_USER)) { 3128 if (sig_specific_sicodes(sig)) { 3129 if (si_code <= sig_sicodes[sig].limit) 3130 return true; 3131 } 3132 else if (si_code <= NSIGPOLL) 3133 return true; 3134 } 3135 else if (si_code >= SI_DETHREAD) 3136 return true; 3137 else if (si_code == SI_ASYNCNL) 3138 return true; 3139 return false; 3140 } 3141 3142 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3143 { 3144 enum siginfo_layout layout = SIL_KILL; 3145 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3146 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3147 (si_code <= sig_sicodes[sig].limit)) { 3148 layout = sig_sicodes[sig].layout; 3149 /* Handle the exceptions */ 3150 if ((sig == SIGBUS) && 3151 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3152 layout = SIL_FAULT_MCEERR; 3153 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3154 layout = SIL_FAULT_BNDERR; 3155 #ifdef SEGV_PKUERR 3156 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3157 layout = SIL_FAULT_PKUERR; 3158 #endif 3159 } 3160 else if (si_code <= NSIGPOLL) 3161 layout = SIL_POLL; 3162 } else { 3163 if (si_code == SI_TIMER) 3164 layout = SIL_TIMER; 3165 else if (si_code == SI_SIGIO) 3166 layout = SIL_POLL; 3167 else if (si_code < 0) 3168 layout = SIL_RT; 3169 } 3170 return layout; 3171 } 3172 3173 static inline char __user *si_expansion(const siginfo_t __user *info) 3174 { 3175 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3176 } 3177 3178 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3179 { 3180 char __user *expansion = si_expansion(to); 3181 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3182 return -EFAULT; 3183 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3184 return -EFAULT; 3185 return 0; 3186 } 3187 3188 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3189 const siginfo_t __user *from) 3190 { 3191 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3192 char __user *expansion = si_expansion(from); 3193 char buf[SI_EXPANSION_SIZE]; 3194 int i; 3195 /* 3196 * An unknown si_code might need more than 3197 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3198 * extra bytes are 0. This guarantees copy_siginfo_to_user 3199 * will return this data to userspace exactly. 3200 */ 3201 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3202 return -EFAULT; 3203 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3204 if (buf[i] != 0) 3205 return -E2BIG; 3206 } 3207 } 3208 return 0; 3209 } 3210 3211 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3212 const siginfo_t __user *from) 3213 { 3214 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3215 return -EFAULT; 3216 to->si_signo = signo; 3217 return post_copy_siginfo_from_user(to, from); 3218 } 3219 3220 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3221 { 3222 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3223 return -EFAULT; 3224 return post_copy_siginfo_from_user(to, from); 3225 } 3226 3227 #ifdef CONFIG_COMPAT 3228 int copy_siginfo_to_user32(struct compat_siginfo __user *to, 3229 const struct kernel_siginfo *from) 3230 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION) 3231 { 3232 return __copy_siginfo_to_user32(to, from, in_x32_syscall()); 3233 } 3234 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3235 const struct kernel_siginfo *from, bool x32_ABI) 3236 #endif 3237 { 3238 struct compat_siginfo new; 3239 memset(&new, 0, sizeof(new)); 3240 3241 new.si_signo = from->si_signo; 3242 new.si_errno = from->si_errno; 3243 new.si_code = from->si_code; 3244 switch(siginfo_layout(from->si_signo, from->si_code)) { 3245 case SIL_KILL: 3246 new.si_pid = from->si_pid; 3247 new.si_uid = from->si_uid; 3248 break; 3249 case SIL_TIMER: 3250 new.si_tid = from->si_tid; 3251 new.si_overrun = from->si_overrun; 3252 new.si_int = from->si_int; 3253 break; 3254 case SIL_POLL: 3255 new.si_band = from->si_band; 3256 new.si_fd = from->si_fd; 3257 break; 3258 case SIL_FAULT: 3259 new.si_addr = ptr_to_compat(from->si_addr); 3260 #ifdef __ARCH_SI_TRAPNO 3261 new.si_trapno = from->si_trapno; 3262 #endif 3263 break; 3264 case SIL_FAULT_MCEERR: 3265 new.si_addr = ptr_to_compat(from->si_addr); 3266 #ifdef __ARCH_SI_TRAPNO 3267 new.si_trapno = from->si_trapno; 3268 #endif 3269 new.si_addr_lsb = from->si_addr_lsb; 3270 break; 3271 case SIL_FAULT_BNDERR: 3272 new.si_addr = ptr_to_compat(from->si_addr); 3273 #ifdef __ARCH_SI_TRAPNO 3274 new.si_trapno = from->si_trapno; 3275 #endif 3276 new.si_lower = ptr_to_compat(from->si_lower); 3277 new.si_upper = ptr_to_compat(from->si_upper); 3278 break; 3279 case SIL_FAULT_PKUERR: 3280 new.si_addr = ptr_to_compat(from->si_addr); 3281 #ifdef __ARCH_SI_TRAPNO 3282 new.si_trapno = from->si_trapno; 3283 #endif 3284 new.si_pkey = from->si_pkey; 3285 break; 3286 case SIL_CHLD: 3287 new.si_pid = from->si_pid; 3288 new.si_uid = from->si_uid; 3289 new.si_status = from->si_status; 3290 #ifdef CONFIG_X86_X32_ABI 3291 if (x32_ABI) { 3292 new._sifields._sigchld_x32._utime = from->si_utime; 3293 new._sifields._sigchld_x32._stime = from->si_stime; 3294 } else 3295 #endif 3296 { 3297 new.si_utime = from->si_utime; 3298 new.si_stime = from->si_stime; 3299 } 3300 break; 3301 case SIL_RT: 3302 new.si_pid = from->si_pid; 3303 new.si_uid = from->si_uid; 3304 new.si_int = from->si_int; 3305 break; 3306 case SIL_SYS: 3307 new.si_call_addr = ptr_to_compat(from->si_call_addr); 3308 new.si_syscall = from->si_syscall; 3309 new.si_arch = from->si_arch; 3310 break; 3311 } 3312 3313 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3314 return -EFAULT; 3315 3316 return 0; 3317 } 3318 3319 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3320 const struct compat_siginfo *from) 3321 { 3322 clear_siginfo(to); 3323 to->si_signo = from->si_signo; 3324 to->si_errno = from->si_errno; 3325 to->si_code = from->si_code; 3326 switch(siginfo_layout(from->si_signo, from->si_code)) { 3327 case SIL_KILL: 3328 to->si_pid = from->si_pid; 3329 to->si_uid = from->si_uid; 3330 break; 3331 case SIL_TIMER: 3332 to->si_tid = from->si_tid; 3333 to->si_overrun = from->si_overrun; 3334 to->si_int = from->si_int; 3335 break; 3336 case SIL_POLL: 3337 to->si_band = from->si_band; 3338 to->si_fd = from->si_fd; 3339 break; 3340 case SIL_FAULT: 3341 to->si_addr = compat_ptr(from->si_addr); 3342 #ifdef __ARCH_SI_TRAPNO 3343 to->si_trapno = from->si_trapno; 3344 #endif 3345 break; 3346 case SIL_FAULT_MCEERR: 3347 to->si_addr = compat_ptr(from->si_addr); 3348 #ifdef __ARCH_SI_TRAPNO 3349 to->si_trapno = from->si_trapno; 3350 #endif 3351 to->si_addr_lsb = from->si_addr_lsb; 3352 break; 3353 case SIL_FAULT_BNDERR: 3354 to->si_addr = compat_ptr(from->si_addr); 3355 #ifdef __ARCH_SI_TRAPNO 3356 to->si_trapno = from->si_trapno; 3357 #endif 3358 to->si_lower = compat_ptr(from->si_lower); 3359 to->si_upper = compat_ptr(from->si_upper); 3360 break; 3361 case SIL_FAULT_PKUERR: 3362 to->si_addr = compat_ptr(from->si_addr); 3363 #ifdef __ARCH_SI_TRAPNO 3364 to->si_trapno = from->si_trapno; 3365 #endif 3366 to->si_pkey = from->si_pkey; 3367 break; 3368 case SIL_CHLD: 3369 to->si_pid = from->si_pid; 3370 to->si_uid = from->si_uid; 3371 to->si_status = from->si_status; 3372 #ifdef CONFIG_X86_X32_ABI 3373 if (in_x32_syscall()) { 3374 to->si_utime = from->_sifields._sigchld_x32._utime; 3375 to->si_stime = from->_sifields._sigchld_x32._stime; 3376 } else 3377 #endif 3378 { 3379 to->si_utime = from->si_utime; 3380 to->si_stime = from->si_stime; 3381 } 3382 break; 3383 case SIL_RT: 3384 to->si_pid = from->si_pid; 3385 to->si_uid = from->si_uid; 3386 to->si_int = from->si_int; 3387 break; 3388 case SIL_SYS: 3389 to->si_call_addr = compat_ptr(from->si_call_addr); 3390 to->si_syscall = from->si_syscall; 3391 to->si_arch = from->si_arch; 3392 break; 3393 } 3394 return 0; 3395 } 3396 3397 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3398 const struct compat_siginfo __user *ufrom) 3399 { 3400 struct compat_siginfo from; 3401 3402 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3403 return -EFAULT; 3404 3405 from.si_signo = signo; 3406 return post_copy_siginfo_from_user32(to, &from); 3407 } 3408 3409 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3410 const struct compat_siginfo __user *ufrom) 3411 { 3412 struct compat_siginfo from; 3413 3414 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3415 return -EFAULT; 3416 3417 return post_copy_siginfo_from_user32(to, &from); 3418 } 3419 #endif /* CONFIG_COMPAT */ 3420 3421 /** 3422 * do_sigtimedwait - wait for queued signals specified in @which 3423 * @which: queued signals to wait for 3424 * @info: if non-null, the signal's siginfo is returned here 3425 * @ts: upper bound on process time suspension 3426 */ 3427 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3428 const struct timespec64 *ts) 3429 { 3430 ktime_t *to = NULL, timeout = KTIME_MAX; 3431 struct task_struct *tsk = current; 3432 sigset_t mask = *which; 3433 int sig, ret = 0; 3434 3435 if (ts) { 3436 if (!timespec64_valid(ts)) 3437 return -EINVAL; 3438 timeout = timespec64_to_ktime(*ts); 3439 to = &timeout; 3440 } 3441 3442 /* 3443 * Invert the set of allowed signals to get those we want to block. 3444 */ 3445 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3446 signotset(&mask); 3447 3448 spin_lock_irq(&tsk->sighand->siglock); 3449 sig = dequeue_signal(tsk, &mask, info); 3450 if (!sig && timeout) { 3451 /* 3452 * None ready, temporarily unblock those we're interested 3453 * while we are sleeping in so that we'll be awakened when 3454 * they arrive. Unblocking is always fine, we can avoid 3455 * set_current_blocked(). 3456 */ 3457 tsk->real_blocked = tsk->blocked; 3458 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3459 recalc_sigpending(); 3460 spin_unlock_irq(&tsk->sighand->siglock); 3461 3462 __set_current_state(TASK_INTERRUPTIBLE); 3463 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3464 HRTIMER_MODE_REL); 3465 spin_lock_irq(&tsk->sighand->siglock); 3466 __set_task_blocked(tsk, &tsk->real_blocked); 3467 sigemptyset(&tsk->real_blocked); 3468 sig = dequeue_signal(tsk, &mask, info); 3469 } 3470 spin_unlock_irq(&tsk->sighand->siglock); 3471 3472 if (sig) 3473 return sig; 3474 return ret ? -EINTR : -EAGAIN; 3475 } 3476 3477 /** 3478 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3479 * in @uthese 3480 * @uthese: queued signals to wait for 3481 * @uinfo: if non-null, the signal's siginfo is returned here 3482 * @uts: upper bound on process time suspension 3483 * @sigsetsize: size of sigset_t type 3484 */ 3485 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3486 siginfo_t __user *, uinfo, 3487 const struct __kernel_timespec __user *, uts, 3488 size_t, sigsetsize) 3489 { 3490 sigset_t these; 3491 struct timespec64 ts; 3492 kernel_siginfo_t info; 3493 int ret; 3494 3495 /* XXX: Don't preclude handling different sized sigset_t's. */ 3496 if (sigsetsize != sizeof(sigset_t)) 3497 return -EINVAL; 3498 3499 if (copy_from_user(&these, uthese, sizeof(these))) 3500 return -EFAULT; 3501 3502 if (uts) { 3503 if (get_timespec64(&ts, uts)) 3504 return -EFAULT; 3505 } 3506 3507 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3508 3509 if (ret > 0 && uinfo) { 3510 if (copy_siginfo_to_user(uinfo, &info)) 3511 ret = -EFAULT; 3512 } 3513 3514 return ret; 3515 } 3516 3517 #ifdef CONFIG_COMPAT_32BIT_TIME 3518 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3519 siginfo_t __user *, uinfo, 3520 const struct old_timespec32 __user *, uts, 3521 size_t, sigsetsize) 3522 { 3523 sigset_t these; 3524 struct timespec64 ts; 3525 kernel_siginfo_t info; 3526 int ret; 3527 3528 if (sigsetsize != sizeof(sigset_t)) 3529 return -EINVAL; 3530 3531 if (copy_from_user(&these, uthese, sizeof(these))) 3532 return -EFAULT; 3533 3534 if (uts) { 3535 if (get_old_timespec32(&ts, uts)) 3536 return -EFAULT; 3537 } 3538 3539 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3540 3541 if (ret > 0 && uinfo) { 3542 if (copy_siginfo_to_user(uinfo, &info)) 3543 ret = -EFAULT; 3544 } 3545 3546 return ret; 3547 } 3548 #endif 3549 3550 #ifdef CONFIG_COMPAT 3551 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3552 struct compat_siginfo __user *, uinfo, 3553 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3554 { 3555 sigset_t s; 3556 struct timespec64 t; 3557 kernel_siginfo_t info; 3558 long ret; 3559 3560 if (sigsetsize != sizeof(sigset_t)) 3561 return -EINVAL; 3562 3563 if (get_compat_sigset(&s, uthese)) 3564 return -EFAULT; 3565 3566 if (uts) { 3567 if (get_timespec64(&t, uts)) 3568 return -EFAULT; 3569 } 3570 3571 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3572 3573 if (ret > 0 && uinfo) { 3574 if (copy_siginfo_to_user32(uinfo, &info)) 3575 ret = -EFAULT; 3576 } 3577 3578 return ret; 3579 } 3580 3581 #ifdef CONFIG_COMPAT_32BIT_TIME 3582 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3583 struct compat_siginfo __user *, uinfo, 3584 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3585 { 3586 sigset_t s; 3587 struct timespec64 t; 3588 kernel_siginfo_t info; 3589 long ret; 3590 3591 if (sigsetsize != sizeof(sigset_t)) 3592 return -EINVAL; 3593 3594 if (get_compat_sigset(&s, uthese)) 3595 return -EFAULT; 3596 3597 if (uts) { 3598 if (get_old_timespec32(&t, uts)) 3599 return -EFAULT; 3600 } 3601 3602 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3603 3604 if (ret > 0 && uinfo) { 3605 if (copy_siginfo_to_user32(uinfo, &info)) 3606 ret = -EFAULT; 3607 } 3608 3609 return ret; 3610 } 3611 #endif 3612 #endif 3613 3614 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3615 { 3616 clear_siginfo(info); 3617 info->si_signo = sig; 3618 info->si_errno = 0; 3619 info->si_code = SI_USER; 3620 info->si_pid = task_tgid_vnr(current); 3621 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3622 } 3623 3624 /** 3625 * sys_kill - send a signal to a process 3626 * @pid: the PID of the process 3627 * @sig: signal to be sent 3628 */ 3629 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3630 { 3631 struct kernel_siginfo info; 3632 3633 prepare_kill_siginfo(sig, &info); 3634 3635 return kill_something_info(sig, &info, pid); 3636 } 3637 3638 /* 3639 * Verify that the signaler and signalee either are in the same pid namespace 3640 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3641 * namespace. 3642 */ 3643 static bool access_pidfd_pidns(struct pid *pid) 3644 { 3645 struct pid_namespace *active = task_active_pid_ns(current); 3646 struct pid_namespace *p = ns_of_pid(pid); 3647 3648 for (;;) { 3649 if (!p) 3650 return false; 3651 if (p == active) 3652 break; 3653 p = p->parent; 3654 } 3655 3656 return true; 3657 } 3658 3659 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info) 3660 { 3661 #ifdef CONFIG_COMPAT 3662 /* 3663 * Avoid hooking up compat syscalls and instead handle necessary 3664 * conversions here. Note, this is a stop-gap measure and should not be 3665 * considered a generic solution. 3666 */ 3667 if (in_compat_syscall()) 3668 return copy_siginfo_from_user32( 3669 kinfo, (struct compat_siginfo __user *)info); 3670 #endif 3671 return copy_siginfo_from_user(kinfo, info); 3672 } 3673 3674 static struct pid *pidfd_to_pid(const struct file *file) 3675 { 3676 if (file->f_op == &pidfd_fops) 3677 return file->private_data; 3678 3679 return tgid_pidfd_to_pid(file); 3680 } 3681 3682 /** 3683 * sys_pidfd_send_signal - Signal a process through a pidfd 3684 * @pidfd: file descriptor of the process 3685 * @sig: signal to send 3686 * @info: signal info 3687 * @flags: future flags 3688 * 3689 * The syscall currently only signals via PIDTYPE_PID which covers 3690 * kill(<positive-pid>, <signal>. It does not signal threads or process 3691 * groups. 3692 * In order to extend the syscall to threads and process groups the @flags 3693 * argument should be used. In essence, the @flags argument will determine 3694 * what is signaled and not the file descriptor itself. Put in other words, 3695 * grouping is a property of the flags argument not a property of the file 3696 * descriptor. 3697 * 3698 * Return: 0 on success, negative errno on failure 3699 */ 3700 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3701 siginfo_t __user *, info, unsigned int, flags) 3702 { 3703 int ret; 3704 struct fd f; 3705 struct pid *pid; 3706 kernel_siginfo_t kinfo; 3707 3708 /* Enforce flags be set to 0 until we add an extension. */ 3709 if (flags) 3710 return -EINVAL; 3711 3712 f = fdget(pidfd); 3713 if (!f.file) 3714 return -EBADF; 3715 3716 /* Is this a pidfd? */ 3717 pid = pidfd_to_pid(f.file); 3718 if (IS_ERR(pid)) { 3719 ret = PTR_ERR(pid); 3720 goto err; 3721 } 3722 3723 ret = -EINVAL; 3724 if (!access_pidfd_pidns(pid)) 3725 goto err; 3726 3727 if (info) { 3728 ret = copy_siginfo_from_user_any(&kinfo, info); 3729 if (unlikely(ret)) 3730 goto err; 3731 3732 ret = -EINVAL; 3733 if (unlikely(sig != kinfo.si_signo)) 3734 goto err; 3735 3736 /* Only allow sending arbitrary signals to yourself. */ 3737 ret = -EPERM; 3738 if ((task_pid(current) != pid) && 3739 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3740 goto err; 3741 } else { 3742 prepare_kill_siginfo(sig, &kinfo); 3743 } 3744 3745 ret = kill_pid_info(sig, &kinfo, pid); 3746 3747 err: 3748 fdput(f); 3749 return ret; 3750 } 3751 3752 static int 3753 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3754 { 3755 struct task_struct *p; 3756 int error = -ESRCH; 3757 3758 rcu_read_lock(); 3759 p = find_task_by_vpid(pid); 3760 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3761 error = check_kill_permission(sig, info, p); 3762 /* 3763 * The null signal is a permissions and process existence 3764 * probe. No signal is actually delivered. 3765 */ 3766 if (!error && sig) { 3767 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3768 /* 3769 * If lock_task_sighand() failed we pretend the task 3770 * dies after receiving the signal. The window is tiny, 3771 * and the signal is private anyway. 3772 */ 3773 if (unlikely(error == -ESRCH)) 3774 error = 0; 3775 } 3776 } 3777 rcu_read_unlock(); 3778 3779 return error; 3780 } 3781 3782 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3783 { 3784 struct kernel_siginfo info; 3785 3786 clear_siginfo(&info); 3787 info.si_signo = sig; 3788 info.si_errno = 0; 3789 info.si_code = SI_TKILL; 3790 info.si_pid = task_tgid_vnr(current); 3791 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3792 3793 return do_send_specific(tgid, pid, sig, &info); 3794 } 3795 3796 /** 3797 * sys_tgkill - send signal to one specific thread 3798 * @tgid: the thread group ID of the thread 3799 * @pid: the PID of the thread 3800 * @sig: signal to be sent 3801 * 3802 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3803 * exists but it's not belonging to the target process anymore. This 3804 * method solves the problem of threads exiting and PIDs getting reused. 3805 */ 3806 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3807 { 3808 /* This is only valid for single tasks */ 3809 if (pid <= 0 || tgid <= 0) 3810 return -EINVAL; 3811 3812 return do_tkill(tgid, pid, sig); 3813 } 3814 3815 /** 3816 * sys_tkill - send signal to one specific task 3817 * @pid: the PID of the task 3818 * @sig: signal to be sent 3819 * 3820 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3821 */ 3822 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3823 { 3824 /* This is only valid for single tasks */ 3825 if (pid <= 0) 3826 return -EINVAL; 3827 3828 return do_tkill(0, pid, sig); 3829 } 3830 3831 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 3832 { 3833 /* Not even root can pretend to send signals from the kernel. 3834 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3835 */ 3836 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3837 (task_pid_vnr(current) != pid)) 3838 return -EPERM; 3839 3840 /* POSIX.1b doesn't mention process groups. */ 3841 return kill_proc_info(sig, info, pid); 3842 } 3843 3844 /** 3845 * sys_rt_sigqueueinfo - send signal information to a signal 3846 * @pid: the PID of the thread 3847 * @sig: signal to be sent 3848 * @uinfo: signal info to be sent 3849 */ 3850 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3851 siginfo_t __user *, uinfo) 3852 { 3853 kernel_siginfo_t info; 3854 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3855 if (unlikely(ret)) 3856 return ret; 3857 return do_rt_sigqueueinfo(pid, sig, &info); 3858 } 3859 3860 #ifdef CONFIG_COMPAT 3861 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3862 compat_pid_t, pid, 3863 int, sig, 3864 struct compat_siginfo __user *, uinfo) 3865 { 3866 kernel_siginfo_t info; 3867 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 3868 if (unlikely(ret)) 3869 return ret; 3870 return do_rt_sigqueueinfo(pid, sig, &info); 3871 } 3872 #endif 3873 3874 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 3875 { 3876 /* This is only valid for single tasks */ 3877 if (pid <= 0 || tgid <= 0) 3878 return -EINVAL; 3879 3880 /* Not even root can pretend to send signals from the kernel. 3881 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3882 */ 3883 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3884 (task_pid_vnr(current) != pid)) 3885 return -EPERM; 3886 3887 return do_send_specific(tgid, pid, sig, info); 3888 } 3889 3890 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3891 siginfo_t __user *, uinfo) 3892 { 3893 kernel_siginfo_t info; 3894 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3895 if (unlikely(ret)) 3896 return ret; 3897 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3898 } 3899 3900 #ifdef CONFIG_COMPAT 3901 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3902 compat_pid_t, tgid, 3903 compat_pid_t, pid, 3904 int, sig, 3905 struct compat_siginfo __user *, uinfo) 3906 { 3907 kernel_siginfo_t info; 3908 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 3909 if (unlikely(ret)) 3910 return ret; 3911 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3912 } 3913 #endif 3914 3915 /* 3916 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 3917 */ 3918 void kernel_sigaction(int sig, __sighandler_t action) 3919 { 3920 spin_lock_irq(¤t->sighand->siglock); 3921 current->sighand->action[sig - 1].sa.sa_handler = action; 3922 if (action == SIG_IGN) { 3923 sigset_t mask; 3924 3925 sigemptyset(&mask); 3926 sigaddset(&mask, sig); 3927 3928 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 3929 flush_sigqueue_mask(&mask, ¤t->pending); 3930 recalc_sigpending(); 3931 } 3932 spin_unlock_irq(¤t->sighand->siglock); 3933 } 3934 EXPORT_SYMBOL(kernel_sigaction); 3935 3936 void __weak sigaction_compat_abi(struct k_sigaction *act, 3937 struct k_sigaction *oact) 3938 { 3939 } 3940 3941 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 3942 { 3943 struct task_struct *p = current, *t; 3944 struct k_sigaction *k; 3945 sigset_t mask; 3946 3947 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3948 return -EINVAL; 3949 3950 k = &p->sighand->action[sig-1]; 3951 3952 spin_lock_irq(&p->sighand->siglock); 3953 if (oact) 3954 *oact = *k; 3955 3956 sigaction_compat_abi(act, oact); 3957 3958 if (act) { 3959 sigdelsetmask(&act->sa.sa_mask, 3960 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3961 *k = *act; 3962 /* 3963 * POSIX 3.3.1.3: 3964 * "Setting a signal action to SIG_IGN for a signal that is 3965 * pending shall cause the pending signal to be discarded, 3966 * whether or not it is blocked." 3967 * 3968 * "Setting a signal action to SIG_DFL for a signal that is 3969 * pending and whose default action is to ignore the signal 3970 * (for example, SIGCHLD), shall cause the pending signal to 3971 * be discarded, whether or not it is blocked" 3972 */ 3973 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 3974 sigemptyset(&mask); 3975 sigaddset(&mask, sig); 3976 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 3977 for_each_thread(p, t) 3978 flush_sigqueue_mask(&mask, &t->pending); 3979 } 3980 } 3981 3982 spin_unlock_irq(&p->sighand->siglock); 3983 return 0; 3984 } 3985 3986 static int 3987 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 3988 size_t min_ss_size) 3989 { 3990 struct task_struct *t = current; 3991 3992 if (oss) { 3993 memset(oss, 0, sizeof(stack_t)); 3994 oss->ss_sp = (void __user *) t->sas_ss_sp; 3995 oss->ss_size = t->sas_ss_size; 3996 oss->ss_flags = sas_ss_flags(sp) | 3997 (current->sas_ss_flags & SS_FLAG_BITS); 3998 } 3999 4000 if (ss) { 4001 void __user *ss_sp = ss->ss_sp; 4002 size_t ss_size = ss->ss_size; 4003 unsigned ss_flags = ss->ss_flags; 4004 int ss_mode; 4005 4006 if (unlikely(on_sig_stack(sp))) 4007 return -EPERM; 4008 4009 ss_mode = ss_flags & ~SS_FLAG_BITS; 4010 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4011 ss_mode != 0)) 4012 return -EINVAL; 4013 4014 if (ss_mode == SS_DISABLE) { 4015 ss_size = 0; 4016 ss_sp = NULL; 4017 } else { 4018 if (unlikely(ss_size < min_ss_size)) 4019 return -ENOMEM; 4020 } 4021 4022 t->sas_ss_sp = (unsigned long) ss_sp; 4023 t->sas_ss_size = ss_size; 4024 t->sas_ss_flags = ss_flags; 4025 } 4026 return 0; 4027 } 4028 4029 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4030 { 4031 stack_t new, old; 4032 int err; 4033 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4034 return -EFAULT; 4035 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4036 current_user_stack_pointer(), 4037 MINSIGSTKSZ); 4038 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4039 err = -EFAULT; 4040 return err; 4041 } 4042 4043 int restore_altstack(const stack_t __user *uss) 4044 { 4045 stack_t new; 4046 if (copy_from_user(&new, uss, sizeof(stack_t))) 4047 return -EFAULT; 4048 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4049 MINSIGSTKSZ); 4050 /* squash all but EFAULT for now */ 4051 return 0; 4052 } 4053 4054 int __save_altstack(stack_t __user *uss, unsigned long sp) 4055 { 4056 struct task_struct *t = current; 4057 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4058 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4059 __put_user(t->sas_ss_size, &uss->ss_size); 4060 if (err) 4061 return err; 4062 if (t->sas_ss_flags & SS_AUTODISARM) 4063 sas_ss_reset(t); 4064 return 0; 4065 } 4066 4067 #ifdef CONFIG_COMPAT 4068 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4069 compat_stack_t __user *uoss_ptr) 4070 { 4071 stack_t uss, uoss; 4072 int ret; 4073 4074 if (uss_ptr) { 4075 compat_stack_t uss32; 4076 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4077 return -EFAULT; 4078 uss.ss_sp = compat_ptr(uss32.ss_sp); 4079 uss.ss_flags = uss32.ss_flags; 4080 uss.ss_size = uss32.ss_size; 4081 } 4082 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4083 compat_user_stack_pointer(), 4084 COMPAT_MINSIGSTKSZ); 4085 if (ret >= 0 && uoss_ptr) { 4086 compat_stack_t old; 4087 memset(&old, 0, sizeof(old)); 4088 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4089 old.ss_flags = uoss.ss_flags; 4090 old.ss_size = uoss.ss_size; 4091 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4092 ret = -EFAULT; 4093 } 4094 return ret; 4095 } 4096 4097 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4098 const compat_stack_t __user *, uss_ptr, 4099 compat_stack_t __user *, uoss_ptr) 4100 { 4101 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4102 } 4103 4104 int compat_restore_altstack(const compat_stack_t __user *uss) 4105 { 4106 int err = do_compat_sigaltstack(uss, NULL); 4107 /* squash all but -EFAULT for now */ 4108 return err == -EFAULT ? err : 0; 4109 } 4110 4111 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4112 { 4113 int err; 4114 struct task_struct *t = current; 4115 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4116 &uss->ss_sp) | 4117 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4118 __put_user(t->sas_ss_size, &uss->ss_size); 4119 if (err) 4120 return err; 4121 if (t->sas_ss_flags & SS_AUTODISARM) 4122 sas_ss_reset(t); 4123 return 0; 4124 } 4125 #endif 4126 4127 #ifdef __ARCH_WANT_SYS_SIGPENDING 4128 4129 /** 4130 * sys_sigpending - examine pending signals 4131 * @uset: where mask of pending signal is returned 4132 */ 4133 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4134 { 4135 sigset_t set; 4136 4137 if (sizeof(old_sigset_t) > sizeof(*uset)) 4138 return -EINVAL; 4139 4140 do_sigpending(&set); 4141 4142 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4143 return -EFAULT; 4144 4145 return 0; 4146 } 4147 4148 #ifdef CONFIG_COMPAT 4149 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4150 { 4151 sigset_t set; 4152 4153 do_sigpending(&set); 4154 4155 return put_user(set.sig[0], set32); 4156 } 4157 #endif 4158 4159 #endif 4160 4161 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4162 /** 4163 * sys_sigprocmask - examine and change blocked signals 4164 * @how: whether to add, remove, or set signals 4165 * @nset: signals to add or remove (if non-null) 4166 * @oset: previous value of signal mask if non-null 4167 * 4168 * Some platforms have their own version with special arguments; 4169 * others support only sys_rt_sigprocmask. 4170 */ 4171 4172 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4173 old_sigset_t __user *, oset) 4174 { 4175 old_sigset_t old_set, new_set; 4176 sigset_t new_blocked; 4177 4178 old_set = current->blocked.sig[0]; 4179 4180 if (nset) { 4181 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4182 return -EFAULT; 4183 4184 new_blocked = current->blocked; 4185 4186 switch (how) { 4187 case SIG_BLOCK: 4188 sigaddsetmask(&new_blocked, new_set); 4189 break; 4190 case SIG_UNBLOCK: 4191 sigdelsetmask(&new_blocked, new_set); 4192 break; 4193 case SIG_SETMASK: 4194 new_blocked.sig[0] = new_set; 4195 break; 4196 default: 4197 return -EINVAL; 4198 } 4199 4200 set_current_blocked(&new_blocked); 4201 } 4202 4203 if (oset) { 4204 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4205 return -EFAULT; 4206 } 4207 4208 return 0; 4209 } 4210 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4211 4212 #ifndef CONFIG_ODD_RT_SIGACTION 4213 /** 4214 * sys_rt_sigaction - alter an action taken by a process 4215 * @sig: signal to be sent 4216 * @act: new sigaction 4217 * @oact: used to save the previous sigaction 4218 * @sigsetsize: size of sigset_t type 4219 */ 4220 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4221 const struct sigaction __user *, act, 4222 struct sigaction __user *, oact, 4223 size_t, sigsetsize) 4224 { 4225 struct k_sigaction new_sa, old_sa; 4226 int ret; 4227 4228 /* XXX: Don't preclude handling different sized sigset_t's. */ 4229 if (sigsetsize != sizeof(sigset_t)) 4230 return -EINVAL; 4231 4232 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4233 return -EFAULT; 4234 4235 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4236 if (ret) 4237 return ret; 4238 4239 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4240 return -EFAULT; 4241 4242 return 0; 4243 } 4244 #ifdef CONFIG_COMPAT 4245 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4246 const struct compat_sigaction __user *, act, 4247 struct compat_sigaction __user *, oact, 4248 compat_size_t, sigsetsize) 4249 { 4250 struct k_sigaction new_ka, old_ka; 4251 #ifdef __ARCH_HAS_SA_RESTORER 4252 compat_uptr_t restorer; 4253 #endif 4254 int ret; 4255 4256 /* XXX: Don't preclude handling different sized sigset_t's. */ 4257 if (sigsetsize != sizeof(compat_sigset_t)) 4258 return -EINVAL; 4259 4260 if (act) { 4261 compat_uptr_t handler; 4262 ret = get_user(handler, &act->sa_handler); 4263 new_ka.sa.sa_handler = compat_ptr(handler); 4264 #ifdef __ARCH_HAS_SA_RESTORER 4265 ret |= get_user(restorer, &act->sa_restorer); 4266 new_ka.sa.sa_restorer = compat_ptr(restorer); 4267 #endif 4268 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4269 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4270 if (ret) 4271 return -EFAULT; 4272 } 4273 4274 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4275 if (!ret && oact) { 4276 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4277 &oact->sa_handler); 4278 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4279 sizeof(oact->sa_mask)); 4280 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4281 #ifdef __ARCH_HAS_SA_RESTORER 4282 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4283 &oact->sa_restorer); 4284 #endif 4285 } 4286 return ret; 4287 } 4288 #endif 4289 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4290 4291 #ifdef CONFIG_OLD_SIGACTION 4292 SYSCALL_DEFINE3(sigaction, int, sig, 4293 const struct old_sigaction __user *, act, 4294 struct old_sigaction __user *, oact) 4295 { 4296 struct k_sigaction new_ka, old_ka; 4297 int ret; 4298 4299 if (act) { 4300 old_sigset_t mask; 4301 if (!access_ok(act, sizeof(*act)) || 4302 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4303 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4304 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4305 __get_user(mask, &act->sa_mask)) 4306 return -EFAULT; 4307 #ifdef __ARCH_HAS_KA_RESTORER 4308 new_ka.ka_restorer = NULL; 4309 #endif 4310 siginitset(&new_ka.sa.sa_mask, mask); 4311 } 4312 4313 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4314 4315 if (!ret && oact) { 4316 if (!access_ok(oact, sizeof(*oact)) || 4317 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4318 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4319 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4320 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4321 return -EFAULT; 4322 } 4323 4324 return ret; 4325 } 4326 #endif 4327 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4328 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4329 const struct compat_old_sigaction __user *, act, 4330 struct compat_old_sigaction __user *, oact) 4331 { 4332 struct k_sigaction new_ka, old_ka; 4333 int ret; 4334 compat_old_sigset_t mask; 4335 compat_uptr_t handler, restorer; 4336 4337 if (act) { 4338 if (!access_ok(act, sizeof(*act)) || 4339 __get_user(handler, &act->sa_handler) || 4340 __get_user(restorer, &act->sa_restorer) || 4341 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4342 __get_user(mask, &act->sa_mask)) 4343 return -EFAULT; 4344 4345 #ifdef __ARCH_HAS_KA_RESTORER 4346 new_ka.ka_restorer = NULL; 4347 #endif 4348 new_ka.sa.sa_handler = compat_ptr(handler); 4349 new_ka.sa.sa_restorer = compat_ptr(restorer); 4350 siginitset(&new_ka.sa.sa_mask, mask); 4351 } 4352 4353 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4354 4355 if (!ret && oact) { 4356 if (!access_ok(oact, sizeof(*oact)) || 4357 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4358 &oact->sa_handler) || 4359 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4360 &oact->sa_restorer) || 4361 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4362 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4363 return -EFAULT; 4364 } 4365 return ret; 4366 } 4367 #endif 4368 4369 #ifdef CONFIG_SGETMASK_SYSCALL 4370 4371 /* 4372 * For backwards compatibility. Functionality superseded by sigprocmask. 4373 */ 4374 SYSCALL_DEFINE0(sgetmask) 4375 { 4376 /* SMP safe */ 4377 return current->blocked.sig[0]; 4378 } 4379 4380 SYSCALL_DEFINE1(ssetmask, int, newmask) 4381 { 4382 int old = current->blocked.sig[0]; 4383 sigset_t newset; 4384 4385 siginitset(&newset, newmask); 4386 set_current_blocked(&newset); 4387 4388 return old; 4389 } 4390 #endif /* CONFIG_SGETMASK_SYSCALL */ 4391 4392 #ifdef __ARCH_WANT_SYS_SIGNAL 4393 /* 4394 * For backwards compatibility. Functionality superseded by sigaction. 4395 */ 4396 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4397 { 4398 struct k_sigaction new_sa, old_sa; 4399 int ret; 4400 4401 new_sa.sa.sa_handler = handler; 4402 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4403 sigemptyset(&new_sa.sa.sa_mask); 4404 4405 ret = do_sigaction(sig, &new_sa, &old_sa); 4406 4407 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4408 } 4409 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4410 4411 #ifdef __ARCH_WANT_SYS_PAUSE 4412 4413 SYSCALL_DEFINE0(pause) 4414 { 4415 while (!signal_pending(current)) { 4416 __set_current_state(TASK_INTERRUPTIBLE); 4417 schedule(); 4418 } 4419 return -ERESTARTNOHAND; 4420 } 4421 4422 #endif 4423 4424 static int sigsuspend(sigset_t *set) 4425 { 4426 current->saved_sigmask = current->blocked; 4427 set_current_blocked(set); 4428 4429 while (!signal_pending(current)) { 4430 __set_current_state(TASK_INTERRUPTIBLE); 4431 schedule(); 4432 } 4433 set_restore_sigmask(); 4434 return -ERESTARTNOHAND; 4435 } 4436 4437 /** 4438 * sys_rt_sigsuspend - replace the signal mask for a value with the 4439 * @unewset value until a signal is received 4440 * @unewset: new signal mask value 4441 * @sigsetsize: size of sigset_t type 4442 */ 4443 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4444 { 4445 sigset_t newset; 4446 4447 /* XXX: Don't preclude handling different sized sigset_t's. */ 4448 if (sigsetsize != sizeof(sigset_t)) 4449 return -EINVAL; 4450 4451 if (copy_from_user(&newset, unewset, sizeof(newset))) 4452 return -EFAULT; 4453 return sigsuspend(&newset); 4454 } 4455 4456 #ifdef CONFIG_COMPAT 4457 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4458 { 4459 sigset_t newset; 4460 4461 /* XXX: Don't preclude handling different sized sigset_t's. */ 4462 if (sigsetsize != sizeof(sigset_t)) 4463 return -EINVAL; 4464 4465 if (get_compat_sigset(&newset, unewset)) 4466 return -EFAULT; 4467 return sigsuspend(&newset); 4468 } 4469 #endif 4470 4471 #ifdef CONFIG_OLD_SIGSUSPEND 4472 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4473 { 4474 sigset_t blocked; 4475 siginitset(&blocked, mask); 4476 return sigsuspend(&blocked); 4477 } 4478 #endif 4479 #ifdef CONFIG_OLD_SIGSUSPEND3 4480 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4481 { 4482 sigset_t blocked; 4483 siginitset(&blocked, mask); 4484 return sigsuspend(&blocked); 4485 } 4486 #endif 4487 4488 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4489 { 4490 return NULL; 4491 } 4492 4493 static inline void siginfo_buildtime_checks(void) 4494 { 4495 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4496 4497 /* Verify the offsets in the two siginfos match */ 4498 #define CHECK_OFFSET(field) \ 4499 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4500 4501 /* kill */ 4502 CHECK_OFFSET(si_pid); 4503 CHECK_OFFSET(si_uid); 4504 4505 /* timer */ 4506 CHECK_OFFSET(si_tid); 4507 CHECK_OFFSET(si_overrun); 4508 CHECK_OFFSET(si_value); 4509 4510 /* rt */ 4511 CHECK_OFFSET(si_pid); 4512 CHECK_OFFSET(si_uid); 4513 CHECK_OFFSET(si_value); 4514 4515 /* sigchld */ 4516 CHECK_OFFSET(si_pid); 4517 CHECK_OFFSET(si_uid); 4518 CHECK_OFFSET(si_status); 4519 CHECK_OFFSET(si_utime); 4520 CHECK_OFFSET(si_stime); 4521 4522 /* sigfault */ 4523 CHECK_OFFSET(si_addr); 4524 CHECK_OFFSET(si_addr_lsb); 4525 CHECK_OFFSET(si_lower); 4526 CHECK_OFFSET(si_upper); 4527 CHECK_OFFSET(si_pkey); 4528 4529 /* sigpoll */ 4530 CHECK_OFFSET(si_band); 4531 CHECK_OFFSET(si_fd); 4532 4533 /* sigsys */ 4534 CHECK_OFFSET(si_call_addr); 4535 CHECK_OFFSET(si_syscall); 4536 CHECK_OFFSET(si_arch); 4537 #undef CHECK_OFFSET 4538 4539 /* usb asyncio */ 4540 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4541 offsetof(struct siginfo, si_addr)); 4542 if (sizeof(int) == sizeof(void __user *)) { 4543 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4544 sizeof(void __user *)); 4545 } else { 4546 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4547 sizeof_field(struct siginfo, si_uid)) != 4548 sizeof(void __user *)); 4549 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4550 offsetof(struct siginfo, si_uid)); 4551 } 4552 #ifdef CONFIG_COMPAT 4553 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4554 offsetof(struct compat_siginfo, si_addr)); 4555 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4556 sizeof(compat_uptr_t)); 4557 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4558 sizeof_field(struct siginfo, si_pid)); 4559 #endif 4560 } 4561 4562 void __init signals_init(void) 4563 { 4564 siginfo_buildtime_checks(); 4565 4566 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 4567 } 4568 4569 #ifdef CONFIG_KGDB_KDB 4570 #include <linux/kdb.h> 4571 /* 4572 * kdb_send_sig - Allows kdb to send signals without exposing 4573 * signal internals. This function checks if the required locks are 4574 * available before calling the main signal code, to avoid kdb 4575 * deadlocks. 4576 */ 4577 void kdb_send_sig(struct task_struct *t, int sig) 4578 { 4579 static struct task_struct *kdb_prev_t; 4580 int new_t, ret; 4581 if (!spin_trylock(&t->sighand->siglock)) { 4582 kdb_printf("Can't do kill command now.\n" 4583 "The sigmask lock is held somewhere else in " 4584 "kernel, try again later\n"); 4585 return; 4586 } 4587 new_t = kdb_prev_t != t; 4588 kdb_prev_t = t; 4589 if (t->state != TASK_RUNNING && new_t) { 4590 spin_unlock(&t->sighand->siglock); 4591 kdb_printf("Process is not RUNNING, sending a signal from " 4592 "kdb risks deadlock\n" 4593 "on the run queue locks. " 4594 "The signal has _not_ been sent.\n" 4595 "Reissue the kill command if you want to risk " 4596 "the deadlock.\n"); 4597 return; 4598 } 4599 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4600 spin_unlock(&t->sighand->siglock); 4601 if (ret) 4602 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4603 sig, t->pid); 4604 else 4605 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4606 } 4607 #endif /* CONFIG_KGDB_KDB */ 4608