xref: /openbmc/linux/kernel/signal.c (revision cb1aaebe)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/proc_fs.h>
25 #include <linux/tty.h>
26 #include <linux/binfmts.h>
27 #include <linux/coredump.h>
28 #include <linux/security.h>
29 #include <linux/syscalls.h>
30 #include <linux/ptrace.h>
31 #include <linux/signal.h>
32 #include <linux/signalfd.h>
33 #include <linux/ratelimit.h>
34 #include <linux/tracehook.h>
35 #include <linux/capability.h>
36 #include <linux/freezer.h>
37 #include <linux/pid_namespace.h>
38 #include <linux/nsproxy.h>
39 #include <linux/user_namespace.h>
40 #include <linux/uprobes.h>
41 #include <linux/compat.h>
42 #include <linux/cn_proc.h>
43 #include <linux/compiler.h>
44 #include <linux/posix-timers.h>
45 #include <linux/livepatch.h>
46 #include <linux/cgroup.h>
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/signal.h>
50 
51 #include <asm/param.h>
52 #include <linux/uaccess.h>
53 #include <asm/unistd.h>
54 #include <asm/siginfo.h>
55 #include <asm/cacheflush.h>
56 #include "audit.h"	/* audit_signal_info() */
57 
58 /*
59  * SLAB caches for signal bits.
60  */
61 
62 static struct kmem_cache *sigqueue_cachep;
63 
64 int print_fatal_signals __read_mostly;
65 
66 static void __user *sig_handler(struct task_struct *t, int sig)
67 {
68 	return t->sighand->action[sig - 1].sa.sa_handler;
69 }
70 
71 static inline bool sig_handler_ignored(void __user *handler, int sig)
72 {
73 	/* Is it explicitly or implicitly ignored? */
74 	return handler == SIG_IGN ||
75 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
76 }
77 
78 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
79 {
80 	void __user *handler;
81 
82 	handler = sig_handler(t, sig);
83 
84 	/* SIGKILL and SIGSTOP may not be sent to the global init */
85 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
86 		return true;
87 
88 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
89 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
90 		return true;
91 
92 	return sig_handler_ignored(handler, sig);
93 }
94 
95 static bool sig_ignored(struct task_struct *t, int sig, bool force)
96 {
97 	/*
98 	 * Blocked signals are never ignored, since the
99 	 * signal handler may change by the time it is
100 	 * unblocked.
101 	 */
102 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
103 		return false;
104 
105 	/*
106 	 * Tracers may want to know about even ignored signal unless it
107 	 * is SIGKILL which can't be reported anyway but can be ignored
108 	 * by SIGNAL_UNKILLABLE task.
109 	 */
110 	if (t->ptrace && sig != SIGKILL)
111 		return false;
112 
113 	return sig_task_ignored(t, sig, force);
114 }
115 
116 /*
117  * Re-calculate pending state from the set of locally pending
118  * signals, globally pending signals, and blocked signals.
119  */
120 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
121 {
122 	unsigned long ready;
123 	long i;
124 
125 	switch (_NSIG_WORDS) {
126 	default:
127 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
128 			ready |= signal->sig[i] &~ blocked->sig[i];
129 		break;
130 
131 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
132 		ready |= signal->sig[2] &~ blocked->sig[2];
133 		ready |= signal->sig[1] &~ blocked->sig[1];
134 		ready |= signal->sig[0] &~ blocked->sig[0];
135 		break;
136 
137 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
138 		ready |= signal->sig[0] &~ blocked->sig[0];
139 		break;
140 
141 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
142 	}
143 	return ready !=	0;
144 }
145 
146 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
147 
148 static bool recalc_sigpending_tsk(struct task_struct *t)
149 {
150 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
151 	    PENDING(&t->pending, &t->blocked) ||
152 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
153 	    cgroup_task_frozen(t)) {
154 		set_tsk_thread_flag(t, TIF_SIGPENDING);
155 		return true;
156 	}
157 
158 	/*
159 	 * We must never clear the flag in another thread, or in current
160 	 * when it's possible the current syscall is returning -ERESTART*.
161 	 * So we don't clear it here, and only callers who know they should do.
162 	 */
163 	return false;
164 }
165 
166 /*
167  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
168  * This is superfluous when called on current, the wakeup is a harmless no-op.
169  */
170 void recalc_sigpending_and_wake(struct task_struct *t)
171 {
172 	if (recalc_sigpending_tsk(t))
173 		signal_wake_up(t, 0);
174 }
175 
176 void recalc_sigpending(void)
177 {
178 	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
179 	    !klp_patch_pending(current))
180 		clear_thread_flag(TIF_SIGPENDING);
181 
182 }
183 EXPORT_SYMBOL(recalc_sigpending);
184 
185 void calculate_sigpending(void)
186 {
187 	/* Have any signals or users of TIF_SIGPENDING been delayed
188 	 * until after fork?
189 	 */
190 	spin_lock_irq(&current->sighand->siglock);
191 	set_tsk_thread_flag(current, TIF_SIGPENDING);
192 	recalc_sigpending();
193 	spin_unlock_irq(&current->sighand->siglock);
194 }
195 
196 /* Given the mask, find the first available signal that should be serviced. */
197 
198 #define SYNCHRONOUS_MASK \
199 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
200 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
201 
202 int next_signal(struct sigpending *pending, sigset_t *mask)
203 {
204 	unsigned long i, *s, *m, x;
205 	int sig = 0;
206 
207 	s = pending->signal.sig;
208 	m = mask->sig;
209 
210 	/*
211 	 * Handle the first word specially: it contains the
212 	 * synchronous signals that need to be dequeued first.
213 	 */
214 	x = *s &~ *m;
215 	if (x) {
216 		if (x & SYNCHRONOUS_MASK)
217 			x &= SYNCHRONOUS_MASK;
218 		sig = ffz(~x) + 1;
219 		return sig;
220 	}
221 
222 	switch (_NSIG_WORDS) {
223 	default:
224 		for (i = 1; i < _NSIG_WORDS; ++i) {
225 			x = *++s &~ *++m;
226 			if (!x)
227 				continue;
228 			sig = ffz(~x) + i*_NSIG_BPW + 1;
229 			break;
230 		}
231 		break;
232 
233 	case 2:
234 		x = s[1] &~ m[1];
235 		if (!x)
236 			break;
237 		sig = ffz(~x) + _NSIG_BPW + 1;
238 		break;
239 
240 	case 1:
241 		/* Nothing to do */
242 		break;
243 	}
244 
245 	return sig;
246 }
247 
248 static inline void print_dropped_signal(int sig)
249 {
250 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
251 
252 	if (!print_fatal_signals)
253 		return;
254 
255 	if (!__ratelimit(&ratelimit_state))
256 		return;
257 
258 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
259 				current->comm, current->pid, sig);
260 }
261 
262 /**
263  * task_set_jobctl_pending - set jobctl pending bits
264  * @task: target task
265  * @mask: pending bits to set
266  *
267  * Clear @mask from @task->jobctl.  @mask must be subset of
268  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
269  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
270  * cleared.  If @task is already being killed or exiting, this function
271  * becomes noop.
272  *
273  * CONTEXT:
274  * Must be called with @task->sighand->siglock held.
275  *
276  * RETURNS:
277  * %true if @mask is set, %false if made noop because @task was dying.
278  */
279 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
280 {
281 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
282 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
283 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
284 
285 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
286 		return false;
287 
288 	if (mask & JOBCTL_STOP_SIGMASK)
289 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
290 
291 	task->jobctl |= mask;
292 	return true;
293 }
294 
295 /**
296  * task_clear_jobctl_trapping - clear jobctl trapping bit
297  * @task: target task
298  *
299  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
300  * Clear it and wake up the ptracer.  Note that we don't need any further
301  * locking.  @task->siglock guarantees that @task->parent points to the
302  * ptracer.
303  *
304  * CONTEXT:
305  * Must be called with @task->sighand->siglock held.
306  */
307 void task_clear_jobctl_trapping(struct task_struct *task)
308 {
309 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
310 		task->jobctl &= ~JOBCTL_TRAPPING;
311 		smp_mb();	/* advised by wake_up_bit() */
312 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
313 	}
314 }
315 
316 /**
317  * task_clear_jobctl_pending - clear jobctl pending bits
318  * @task: target task
319  * @mask: pending bits to clear
320  *
321  * Clear @mask from @task->jobctl.  @mask must be subset of
322  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
323  * STOP bits are cleared together.
324  *
325  * If clearing of @mask leaves no stop or trap pending, this function calls
326  * task_clear_jobctl_trapping().
327  *
328  * CONTEXT:
329  * Must be called with @task->sighand->siglock held.
330  */
331 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
332 {
333 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
334 
335 	if (mask & JOBCTL_STOP_PENDING)
336 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
337 
338 	task->jobctl &= ~mask;
339 
340 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
341 		task_clear_jobctl_trapping(task);
342 }
343 
344 /**
345  * task_participate_group_stop - participate in a group stop
346  * @task: task participating in a group stop
347  *
348  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
349  * Group stop states are cleared and the group stop count is consumed if
350  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
351  * stop, the appropriate %SIGNAL_* flags are set.
352  *
353  * CONTEXT:
354  * Must be called with @task->sighand->siglock held.
355  *
356  * RETURNS:
357  * %true if group stop completion should be notified to the parent, %false
358  * otherwise.
359  */
360 static bool task_participate_group_stop(struct task_struct *task)
361 {
362 	struct signal_struct *sig = task->signal;
363 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
364 
365 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
366 
367 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
368 
369 	if (!consume)
370 		return false;
371 
372 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
373 		sig->group_stop_count--;
374 
375 	/*
376 	 * Tell the caller to notify completion iff we are entering into a
377 	 * fresh group stop.  Read comment in do_signal_stop() for details.
378 	 */
379 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
380 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
381 		return true;
382 	}
383 	return false;
384 }
385 
386 void task_join_group_stop(struct task_struct *task)
387 {
388 	/* Have the new thread join an on-going signal group stop */
389 	unsigned long jobctl = current->jobctl;
390 	if (jobctl & JOBCTL_STOP_PENDING) {
391 		struct signal_struct *sig = current->signal;
392 		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
393 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
394 		if (task_set_jobctl_pending(task, signr | gstop)) {
395 			sig->group_stop_count++;
396 		}
397 	}
398 }
399 
400 /*
401  * allocate a new signal queue record
402  * - this may be called without locks if and only if t == current, otherwise an
403  *   appropriate lock must be held to stop the target task from exiting
404  */
405 static struct sigqueue *
406 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
407 {
408 	struct sigqueue *q = NULL;
409 	struct user_struct *user;
410 
411 	/*
412 	 * Protect access to @t credentials. This can go away when all
413 	 * callers hold rcu read lock.
414 	 */
415 	rcu_read_lock();
416 	user = get_uid(__task_cred(t)->user);
417 	atomic_inc(&user->sigpending);
418 	rcu_read_unlock();
419 
420 	if (override_rlimit ||
421 	    atomic_read(&user->sigpending) <=
422 			task_rlimit(t, RLIMIT_SIGPENDING)) {
423 		q = kmem_cache_alloc(sigqueue_cachep, flags);
424 	} else {
425 		print_dropped_signal(sig);
426 	}
427 
428 	if (unlikely(q == NULL)) {
429 		atomic_dec(&user->sigpending);
430 		free_uid(user);
431 	} else {
432 		INIT_LIST_HEAD(&q->list);
433 		q->flags = 0;
434 		q->user = user;
435 	}
436 
437 	return q;
438 }
439 
440 static void __sigqueue_free(struct sigqueue *q)
441 {
442 	if (q->flags & SIGQUEUE_PREALLOC)
443 		return;
444 	atomic_dec(&q->user->sigpending);
445 	free_uid(q->user);
446 	kmem_cache_free(sigqueue_cachep, q);
447 }
448 
449 void flush_sigqueue(struct sigpending *queue)
450 {
451 	struct sigqueue *q;
452 
453 	sigemptyset(&queue->signal);
454 	while (!list_empty(&queue->list)) {
455 		q = list_entry(queue->list.next, struct sigqueue , list);
456 		list_del_init(&q->list);
457 		__sigqueue_free(q);
458 	}
459 }
460 
461 /*
462  * Flush all pending signals for this kthread.
463  */
464 void flush_signals(struct task_struct *t)
465 {
466 	unsigned long flags;
467 
468 	spin_lock_irqsave(&t->sighand->siglock, flags);
469 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
470 	flush_sigqueue(&t->pending);
471 	flush_sigqueue(&t->signal->shared_pending);
472 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
473 }
474 EXPORT_SYMBOL(flush_signals);
475 
476 #ifdef CONFIG_POSIX_TIMERS
477 static void __flush_itimer_signals(struct sigpending *pending)
478 {
479 	sigset_t signal, retain;
480 	struct sigqueue *q, *n;
481 
482 	signal = pending->signal;
483 	sigemptyset(&retain);
484 
485 	list_for_each_entry_safe(q, n, &pending->list, list) {
486 		int sig = q->info.si_signo;
487 
488 		if (likely(q->info.si_code != SI_TIMER)) {
489 			sigaddset(&retain, sig);
490 		} else {
491 			sigdelset(&signal, sig);
492 			list_del_init(&q->list);
493 			__sigqueue_free(q);
494 		}
495 	}
496 
497 	sigorsets(&pending->signal, &signal, &retain);
498 }
499 
500 void flush_itimer_signals(void)
501 {
502 	struct task_struct *tsk = current;
503 	unsigned long flags;
504 
505 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
506 	__flush_itimer_signals(&tsk->pending);
507 	__flush_itimer_signals(&tsk->signal->shared_pending);
508 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
509 }
510 #endif
511 
512 void ignore_signals(struct task_struct *t)
513 {
514 	int i;
515 
516 	for (i = 0; i < _NSIG; ++i)
517 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
518 
519 	flush_signals(t);
520 }
521 
522 /*
523  * Flush all handlers for a task.
524  */
525 
526 void
527 flush_signal_handlers(struct task_struct *t, int force_default)
528 {
529 	int i;
530 	struct k_sigaction *ka = &t->sighand->action[0];
531 	for (i = _NSIG ; i != 0 ; i--) {
532 		if (force_default || ka->sa.sa_handler != SIG_IGN)
533 			ka->sa.sa_handler = SIG_DFL;
534 		ka->sa.sa_flags = 0;
535 #ifdef __ARCH_HAS_SA_RESTORER
536 		ka->sa.sa_restorer = NULL;
537 #endif
538 		sigemptyset(&ka->sa.sa_mask);
539 		ka++;
540 	}
541 }
542 
543 bool unhandled_signal(struct task_struct *tsk, int sig)
544 {
545 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
546 	if (is_global_init(tsk))
547 		return true;
548 
549 	if (handler != SIG_IGN && handler != SIG_DFL)
550 		return false;
551 
552 	/* if ptraced, let the tracer determine */
553 	return !tsk->ptrace;
554 }
555 
556 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
557 			   bool *resched_timer)
558 {
559 	struct sigqueue *q, *first = NULL;
560 
561 	/*
562 	 * Collect the siginfo appropriate to this signal.  Check if
563 	 * there is another siginfo for the same signal.
564 	*/
565 	list_for_each_entry(q, &list->list, list) {
566 		if (q->info.si_signo == sig) {
567 			if (first)
568 				goto still_pending;
569 			first = q;
570 		}
571 	}
572 
573 	sigdelset(&list->signal, sig);
574 
575 	if (first) {
576 still_pending:
577 		list_del_init(&first->list);
578 		copy_siginfo(info, &first->info);
579 
580 		*resched_timer =
581 			(first->flags & SIGQUEUE_PREALLOC) &&
582 			(info->si_code == SI_TIMER) &&
583 			(info->si_sys_private);
584 
585 		__sigqueue_free(first);
586 	} else {
587 		/*
588 		 * Ok, it wasn't in the queue.  This must be
589 		 * a fast-pathed signal or we must have been
590 		 * out of queue space.  So zero out the info.
591 		 */
592 		clear_siginfo(info);
593 		info->si_signo = sig;
594 		info->si_errno = 0;
595 		info->si_code = SI_USER;
596 		info->si_pid = 0;
597 		info->si_uid = 0;
598 	}
599 }
600 
601 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
602 			kernel_siginfo_t *info, bool *resched_timer)
603 {
604 	int sig = next_signal(pending, mask);
605 
606 	if (sig)
607 		collect_signal(sig, pending, info, resched_timer);
608 	return sig;
609 }
610 
611 /*
612  * Dequeue a signal and return the element to the caller, which is
613  * expected to free it.
614  *
615  * All callers have to hold the siglock.
616  */
617 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
618 {
619 	bool resched_timer = false;
620 	int signr;
621 
622 	/* We only dequeue private signals from ourselves, we don't let
623 	 * signalfd steal them
624 	 */
625 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
626 	if (!signr) {
627 		signr = __dequeue_signal(&tsk->signal->shared_pending,
628 					 mask, info, &resched_timer);
629 #ifdef CONFIG_POSIX_TIMERS
630 		/*
631 		 * itimer signal ?
632 		 *
633 		 * itimers are process shared and we restart periodic
634 		 * itimers in the signal delivery path to prevent DoS
635 		 * attacks in the high resolution timer case. This is
636 		 * compliant with the old way of self-restarting
637 		 * itimers, as the SIGALRM is a legacy signal and only
638 		 * queued once. Changing the restart behaviour to
639 		 * restart the timer in the signal dequeue path is
640 		 * reducing the timer noise on heavy loaded !highres
641 		 * systems too.
642 		 */
643 		if (unlikely(signr == SIGALRM)) {
644 			struct hrtimer *tmr = &tsk->signal->real_timer;
645 
646 			if (!hrtimer_is_queued(tmr) &&
647 			    tsk->signal->it_real_incr != 0) {
648 				hrtimer_forward(tmr, tmr->base->get_time(),
649 						tsk->signal->it_real_incr);
650 				hrtimer_restart(tmr);
651 			}
652 		}
653 #endif
654 	}
655 
656 	recalc_sigpending();
657 	if (!signr)
658 		return 0;
659 
660 	if (unlikely(sig_kernel_stop(signr))) {
661 		/*
662 		 * Set a marker that we have dequeued a stop signal.  Our
663 		 * caller might release the siglock and then the pending
664 		 * stop signal it is about to process is no longer in the
665 		 * pending bitmasks, but must still be cleared by a SIGCONT
666 		 * (and overruled by a SIGKILL).  So those cases clear this
667 		 * shared flag after we've set it.  Note that this flag may
668 		 * remain set after the signal we return is ignored or
669 		 * handled.  That doesn't matter because its only purpose
670 		 * is to alert stop-signal processing code when another
671 		 * processor has come along and cleared the flag.
672 		 */
673 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
674 	}
675 #ifdef CONFIG_POSIX_TIMERS
676 	if (resched_timer) {
677 		/*
678 		 * Release the siglock to ensure proper locking order
679 		 * of timer locks outside of siglocks.  Note, we leave
680 		 * irqs disabled here, since the posix-timers code is
681 		 * about to disable them again anyway.
682 		 */
683 		spin_unlock(&tsk->sighand->siglock);
684 		posixtimer_rearm(info);
685 		spin_lock(&tsk->sighand->siglock);
686 
687 		/* Don't expose the si_sys_private value to userspace */
688 		info->si_sys_private = 0;
689 	}
690 #endif
691 	return signr;
692 }
693 EXPORT_SYMBOL_GPL(dequeue_signal);
694 
695 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
696 {
697 	struct task_struct *tsk = current;
698 	struct sigpending *pending = &tsk->pending;
699 	struct sigqueue *q, *sync = NULL;
700 
701 	/*
702 	 * Might a synchronous signal be in the queue?
703 	 */
704 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
705 		return 0;
706 
707 	/*
708 	 * Return the first synchronous signal in the queue.
709 	 */
710 	list_for_each_entry(q, &pending->list, list) {
711 		/* Synchronous signals have a postive si_code */
712 		if ((q->info.si_code > SI_USER) &&
713 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
714 			sync = q;
715 			goto next;
716 		}
717 	}
718 	return 0;
719 next:
720 	/*
721 	 * Check if there is another siginfo for the same signal.
722 	 */
723 	list_for_each_entry_continue(q, &pending->list, list) {
724 		if (q->info.si_signo == sync->info.si_signo)
725 			goto still_pending;
726 	}
727 
728 	sigdelset(&pending->signal, sync->info.si_signo);
729 	recalc_sigpending();
730 still_pending:
731 	list_del_init(&sync->list);
732 	copy_siginfo(info, &sync->info);
733 	__sigqueue_free(sync);
734 	return info->si_signo;
735 }
736 
737 /*
738  * Tell a process that it has a new active signal..
739  *
740  * NOTE! we rely on the previous spin_lock to
741  * lock interrupts for us! We can only be called with
742  * "siglock" held, and the local interrupt must
743  * have been disabled when that got acquired!
744  *
745  * No need to set need_resched since signal event passing
746  * goes through ->blocked
747  */
748 void signal_wake_up_state(struct task_struct *t, unsigned int state)
749 {
750 	set_tsk_thread_flag(t, TIF_SIGPENDING);
751 	/*
752 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
753 	 * case. We don't check t->state here because there is a race with it
754 	 * executing another processor and just now entering stopped state.
755 	 * By using wake_up_state, we ensure the process will wake up and
756 	 * handle its death signal.
757 	 */
758 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
759 		kick_process(t);
760 }
761 
762 /*
763  * Remove signals in mask from the pending set and queue.
764  * Returns 1 if any signals were found.
765  *
766  * All callers must be holding the siglock.
767  */
768 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
769 {
770 	struct sigqueue *q, *n;
771 	sigset_t m;
772 
773 	sigandsets(&m, mask, &s->signal);
774 	if (sigisemptyset(&m))
775 		return;
776 
777 	sigandnsets(&s->signal, &s->signal, mask);
778 	list_for_each_entry_safe(q, n, &s->list, list) {
779 		if (sigismember(mask, q->info.si_signo)) {
780 			list_del_init(&q->list);
781 			__sigqueue_free(q);
782 		}
783 	}
784 }
785 
786 static inline int is_si_special(const struct kernel_siginfo *info)
787 {
788 	return info <= SEND_SIG_PRIV;
789 }
790 
791 static inline bool si_fromuser(const struct kernel_siginfo *info)
792 {
793 	return info == SEND_SIG_NOINFO ||
794 		(!is_si_special(info) && SI_FROMUSER(info));
795 }
796 
797 /*
798  * called with RCU read lock from check_kill_permission()
799  */
800 static bool kill_ok_by_cred(struct task_struct *t)
801 {
802 	const struct cred *cred = current_cred();
803 	const struct cred *tcred = __task_cred(t);
804 
805 	return uid_eq(cred->euid, tcred->suid) ||
806 	       uid_eq(cred->euid, tcred->uid) ||
807 	       uid_eq(cred->uid, tcred->suid) ||
808 	       uid_eq(cred->uid, tcred->uid) ||
809 	       ns_capable(tcred->user_ns, CAP_KILL);
810 }
811 
812 /*
813  * Bad permissions for sending the signal
814  * - the caller must hold the RCU read lock
815  */
816 static int check_kill_permission(int sig, struct kernel_siginfo *info,
817 				 struct task_struct *t)
818 {
819 	struct pid *sid;
820 	int error;
821 
822 	if (!valid_signal(sig))
823 		return -EINVAL;
824 
825 	if (!si_fromuser(info))
826 		return 0;
827 
828 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
829 	if (error)
830 		return error;
831 
832 	if (!same_thread_group(current, t) &&
833 	    !kill_ok_by_cred(t)) {
834 		switch (sig) {
835 		case SIGCONT:
836 			sid = task_session(t);
837 			/*
838 			 * We don't return the error if sid == NULL. The
839 			 * task was unhashed, the caller must notice this.
840 			 */
841 			if (!sid || sid == task_session(current))
842 				break;
843 			/* fall through */
844 		default:
845 			return -EPERM;
846 		}
847 	}
848 
849 	return security_task_kill(t, info, sig, NULL);
850 }
851 
852 /**
853  * ptrace_trap_notify - schedule trap to notify ptracer
854  * @t: tracee wanting to notify tracer
855  *
856  * This function schedules sticky ptrace trap which is cleared on the next
857  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
858  * ptracer.
859  *
860  * If @t is running, STOP trap will be taken.  If trapped for STOP and
861  * ptracer is listening for events, tracee is woken up so that it can
862  * re-trap for the new event.  If trapped otherwise, STOP trap will be
863  * eventually taken without returning to userland after the existing traps
864  * are finished by PTRACE_CONT.
865  *
866  * CONTEXT:
867  * Must be called with @task->sighand->siglock held.
868  */
869 static void ptrace_trap_notify(struct task_struct *t)
870 {
871 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
872 	assert_spin_locked(&t->sighand->siglock);
873 
874 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
875 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
876 }
877 
878 /*
879  * Handle magic process-wide effects of stop/continue signals. Unlike
880  * the signal actions, these happen immediately at signal-generation
881  * time regardless of blocking, ignoring, or handling.  This does the
882  * actual continuing for SIGCONT, but not the actual stopping for stop
883  * signals. The process stop is done as a signal action for SIG_DFL.
884  *
885  * Returns true if the signal should be actually delivered, otherwise
886  * it should be dropped.
887  */
888 static bool prepare_signal(int sig, struct task_struct *p, bool force)
889 {
890 	struct signal_struct *signal = p->signal;
891 	struct task_struct *t;
892 	sigset_t flush;
893 
894 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
895 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
896 			return sig == SIGKILL;
897 		/*
898 		 * The process is in the middle of dying, nothing to do.
899 		 */
900 	} else if (sig_kernel_stop(sig)) {
901 		/*
902 		 * This is a stop signal.  Remove SIGCONT from all queues.
903 		 */
904 		siginitset(&flush, sigmask(SIGCONT));
905 		flush_sigqueue_mask(&flush, &signal->shared_pending);
906 		for_each_thread(p, t)
907 			flush_sigqueue_mask(&flush, &t->pending);
908 	} else if (sig == SIGCONT) {
909 		unsigned int why;
910 		/*
911 		 * Remove all stop signals from all queues, wake all threads.
912 		 */
913 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
914 		flush_sigqueue_mask(&flush, &signal->shared_pending);
915 		for_each_thread(p, t) {
916 			flush_sigqueue_mask(&flush, &t->pending);
917 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
918 			if (likely(!(t->ptrace & PT_SEIZED)))
919 				wake_up_state(t, __TASK_STOPPED);
920 			else
921 				ptrace_trap_notify(t);
922 		}
923 
924 		/*
925 		 * Notify the parent with CLD_CONTINUED if we were stopped.
926 		 *
927 		 * If we were in the middle of a group stop, we pretend it
928 		 * was already finished, and then continued. Since SIGCHLD
929 		 * doesn't queue we report only CLD_STOPPED, as if the next
930 		 * CLD_CONTINUED was dropped.
931 		 */
932 		why = 0;
933 		if (signal->flags & SIGNAL_STOP_STOPPED)
934 			why |= SIGNAL_CLD_CONTINUED;
935 		else if (signal->group_stop_count)
936 			why |= SIGNAL_CLD_STOPPED;
937 
938 		if (why) {
939 			/*
940 			 * The first thread which returns from do_signal_stop()
941 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
942 			 * notify its parent. See get_signal().
943 			 */
944 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
945 			signal->group_stop_count = 0;
946 			signal->group_exit_code = 0;
947 		}
948 	}
949 
950 	return !sig_ignored(p, sig, force);
951 }
952 
953 /*
954  * Test if P wants to take SIG.  After we've checked all threads with this,
955  * it's equivalent to finding no threads not blocking SIG.  Any threads not
956  * blocking SIG were ruled out because they are not running and already
957  * have pending signals.  Such threads will dequeue from the shared queue
958  * as soon as they're available, so putting the signal on the shared queue
959  * will be equivalent to sending it to one such thread.
960  */
961 static inline bool wants_signal(int sig, struct task_struct *p)
962 {
963 	if (sigismember(&p->blocked, sig))
964 		return false;
965 
966 	if (p->flags & PF_EXITING)
967 		return false;
968 
969 	if (sig == SIGKILL)
970 		return true;
971 
972 	if (task_is_stopped_or_traced(p))
973 		return false;
974 
975 	return task_curr(p) || !signal_pending(p);
976 }
977 
978 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
979 {
980 	struct signal_struct *signal = p->signal;
981 	struct task_struct *t;
982 
983 	/*
984 	 * Now find a thread we can wake up to take the signal off the queue.
985 	 *
986 	 * If the main thread wants the signal, it gets first crack.
987 	 * Probably the least surprising to the average bear.
988 	 */
989 	if (wants_signal(sig, p))
990 		t = p;
991 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
992 		/*
993 		 * There is just one thread and it does not need to be woken.
994 		 * It will dequeue unblocked signals before it runs again.
995 		 */
996 		return;
997 	else {
998 		/*
999 		 * Otherwise try to find a suitable thread.
1000 		 */
1001 		t = signal->curr_target;
1002 		while (!wants_signal(sig, t)) {
1003 			t = next_thread(t);
1004 			if (t == signal->curr_target)
1005 				/*
1006 				 * No thread needs to be woken.
1007 				 * Any eligible threads will see
1008 				 * the signal in the queue soon.
1009 				 */
1010 				return;
1011 		}
1012 		signal->curr_target = t;
1013 	}
1014 
1015 	/*
1016 	 * Found a killable thread.  If the signal will be fatal,
1017 	 * then start taking the whole group down immediately.
1018 	 */
1019 	if (sig_fatal(p, sig) &&
1020 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1021 	    !sigismember(&t->real_blocked, sig) &&
1022 	    (sig == SIGKILL || !p->ptrace)) {
1023 		/*
1024 		 * This signal will be fatal to the whole group.
1025 		 */
1026 		if (!sig_kernel_coredump(sig)) {
1027 			/*
1028 			 * Start a group exit and wake everybody up.
1029 			 * This way we don't have other threads
1030 			 * running and doing things after a slower
1031 			 * thread has the fatal signal pending.
1032 			 */
1033 			signal->flags = SIGNAL_GROUP_EXIT;
1034 			signal->group_exit_code = sig;
1035 			signal->group_stop_count = 0;
1036 			t = p;
1037 			do {
1038 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1039 				sigaddset(&t->pending.signal, SIGKILL);
1040 				signal_wake_up(t, 1);
1041 			} while_each_thread(p, t);
1042 			return;
1043 		}
1044 	}
1045 
1046 	/*
1047 	 * The signal is already in the shared-pending queue.
1048 	 * Tell the chosen thread to wake up and dequeue it.
1049 	 */
1050 	signal_wake_up(t, sig == SIGKILL);
1051 	return;
1052 }
1053 
1054 static inline bool legacy_queue(struct sigpending *signals, int sig)
1055 {
1056 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1057 }
1058 
1059 #ifdef CONFIG_USER_NS
1060 static inline void userns_fixup_signal_uid(struct kernel_siginfo *info, struct task_struct *t)
1061 {
1062 	if (current_user_ns() == task_cred_xxx(t, user_ns))
1063 		return;
1064 
1065 	if (SI_FROMKERNEL(info))
1066 		return;
1067 
1068 	rcu_read_lock();
1069 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1070 					make_kuid(current_user_ns(), info->si_uid));
1071 	rcu_read_unlock();
1072 }
1073 #else
1074 static inline void userns_fixup_signal_uid(struct kernel_siginfo *info, struct task_struct *t)
1075 {
1076 	return;
1077 }
1078 #endif
1079 
1080 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1081 			enum pid_type type, int from_ancestor_ns)
1082 {
1083 	struct sigpending *pending;
1084 	struct sigqueue *q;
1085 	int override_rlimit;
1086 	int ret = 0, result;
1087 
1088 	assert_spin_locked(&t->sighand->siglock);
1089 
1090 	result = TRACE_SIGNAL_IGNORED;
1091 	if (!prepare_signal(sig, t,
1092 			from_ancestor_ns || (info == SEND_SIG_PRIV)))
1093 		goto ret;
1094 
1095 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1096 	/*
1097 	 * Short-circuit ignored signals and support queuing
1098 	 * exactly one non-rt signal, so that we can get more
1099 	 * detailed information about the cause of the signal.
1100 	 */
1101 	result = TRACE_SIGNAL_ALREADY_PENDING;
1102 	if (legacy_queue(pending, sig))
1103 		goto ret;
1104 
1105 	result = TRACE_SIGNAL_DELIVERED;
1106 	/*
1107 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1108 	 */
1109 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1110 		goto out_set;
1111 
1112 	/*
1113 	 * Real-time signals must be queued if sent by sigqueue, or
1114 	 * some other real-time mechanism.  It is implementation
1115 	 * defined whether kill() does so.  We attempt to do so, on
1116 	 * the principle of least surprise, but since kill is not
1117 	 * allowed to fail with EAGAIN when low on memory we just
1118 	 * make sure at least one signal gets delivered and don't
1119 	 * pass on the info struct.
1120 	 */
1121 	if (sig < SIGRTMIN)
1122 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1123 	else
1124 		override_rlimit = 0;
1125 
1126 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1127 	if (q) {
1128 		list_add_tail(&q->list, &pending->list);
1129 		switch ((unsigned long) info) {
1130 		case (unsigned long) SEND_SIG_NOINFO:
1131 			clear_siginfo(&q->info);
1132 			q->info.si_signo = sig;
1133 			q->info.si_errno = 0;
1134 			q->info.si_code = SI_USER;
1135 			q->info.si_pid = task_tgid_nr_ns(current,
1136 							task_active_pid_ns(t));
1137 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1138 			break;
1139 		case (unsigned long) SEND_SIG_PRIV:
1140 			clear_siginfo(&q->info);
1141 			q->info.si_signo = sig;
1142 			q->info.si_errno = 0;
1143 			q->info.si_code = SI_KERNEL;
1144 			q->info.si_pid = 0;
1145 			q->info.si_uid = 0;
1146 			break;
1147 		default:
1148 			copy_siginfo(&q->info, info);
1149 			if (from_ancestor_ns)
1150 				q->info.si_pid = 0;
1151 			break;
1152 		}
1153 
1154 		userns_fixup_signal_uid(&q->info, t);
1155 
1156 	} else if (!is_si_special(info)) {
1157 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1158 			/*
1159 			 * Queue overflow, abort.  We may abort if the
1160 			 * signal was rt and sent by user using something
1161 			 * other than kill().
1162 			 */
1163 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1164 			ret = -EAGAIN;
1165 			goto ret;
1166 		} else {
1167 			/*
1168 			 * This is a silent loss of information.  We still
1169 			 * send the signal, but the *info bits are lost.
1170 			 */
1171 			result = TRACE_SIGNAL_LOSE_INFO;
1172 		}
1173 	}
1174 
1175 out_set:
1176 	signalfd_notify(t, sig);
1177 	sigaddset(&pending->signal, sig);
1178 
1179 	/* Let multiprocess signals appear after on-going forks */
1180 	if (type > PIDTYPE_TGID) {
1181 		struct multiprocess_signals *delayed;
1182 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1183 			sigset_t *signal = &delayed->signal;
1184 			/* Can't queue both a stop and a continue signal */
1185 			if (sig == SIGCONT)
1186 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1187 			else if (sig_kernel_stop(sig))
1188 				sigdelset(signal, SIGCONT);
1189 			sigaddset(signal, sig);
1190 		}
1191 	}
1192 
1193 	complete_signal(sig, t, type);
1194 ret:
1195 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1196 	return ret;
1197 }
1198 
1199 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1200 			enum pid_type type)
1201 {
1202 	int from_ancestor_ns = 0;
1203 
1204 #ifdef CONFIG_PID_NS
1205 	from_ancestor_ns = si_fromuser(info) &&
1206 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1207 #endif
1208 
1209 	return __send_signal(sig, info, t, type, from_ancestor_ns);
1210 }
1211 
1212 static void print_fatal_signal(int signr)
1213 {
1214 	struct pt_regs *regs = signal_pt_regs();
1215 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1216 
1217 #if defined(__i386__) && !defined(__arch_um__)
1218 	pr_info("code at %08lx: ", regs->ip);
1219 	{
1220 		int i;
1221 		for (i = 0; i < 16; i++) {
1222 			unsigned char insn;
1223 
1224 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1225 				break;
1226 			pr_cont("%02x ", insn);
1227 		}
1228 	}
1229 	pr_cont("\n");
1230 #endif
1231 	preempt_disable();
1232 	show_regs(regs);
1233 	preempt_enable();
1234 }
1235 
1236 static int __init setup_print_fatal_signals(char *str)
1237 {
1238 	get_option (&str, &print_fatal_signals);
1239 
1240 	return 1;
1241 }
1242 
1243 __setup("print-fatal-signals=", setup_print_fatal_signals);
1244 
1245 int
1246 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1247 {
1248 	return send_signal(sig, info, p, PIDTYPE_TGID);
1249 }
1250 
1251 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1252 			enum pid_type type)
1253 {
1254 	unsigned long flags;
1255 	int ret = -ESRCH;
1256 
1257 	if (lock_task_sighand(p, &flags)) {
1258 		ret = send_signal(sig, info, p, type);
1259 		unlock_task_sighand(p, &flags);
1260 	}
1261 
1262 	return ret;
1263 }
1264 
1265 /*
1266  * Force a signal that the process can't ignore: if necessary
1267  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1268  *
1269  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1270  * since we do not want to have a signal handler that was blocked
1271  * be invoked when user space had explicitly blocked it.
1272  *
1273  * We don't want to have recursive SIGSEGV's etc, for example,
1274  * that is why we also clear SIGNAL_UNKILLABLE.
1275  */
1276 int
1277 force_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *t)
1278 {
1279 	unsigned long int flags;
1280 	int ret, blocked, ignored;
1281 	struct k_sigaction *action;
1282 
1283 	spin_lock_irqsave(&t->sighand->siglock, flags);
1284 	action = &t->sighand->action[sig-1];
1285 	ignored = action->sa.sa_handler == SIG_IGN;
1286 	blocked = sigismember(&t->blocked, sig);
1287 	if (blocked || ignored) {
1288 		action->sa.sa_handler = SIG_DFL;
1289 		if (blocked) {
1290 			sigdelset(&t->blocked, sig);
1291 			recalc_sigpending_and_wake(t);
1292 		}
1293 	}
1294 	/*
1295 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1296 	 * debugging to leave init killable.
1297 	 */
1298 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1299 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1300 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1301 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1302 
1303 	return ret;
1304 }
1305 
1306 /*
1307  * Nuke all other threads in the group.
1308  */
1309 int zap_other_threads(struct task_struct *p)
1310 {
1311 	struct task_struct *t = p;
1312 	int count = 0;
1313 
1314 	p->signal->group_stop_count = 0;
1315 
1316 	while_each_thread(p, t) {
1317 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1318 		count++;
1319 
1320 		/* Don't bother with already dead threads */
1321 		if (t->exit_state)
1322 			continue;
1323 		sigaddset(&t->pending.signal, SIGKILL);
1324 		signal_wake_up(t, 1);
1325 	}
1326 
1327 	return count;
1328 }
1329 
1330 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1331 					   unsigned long *flags)
1332 {
1333 	struct sighand_struct *sighand;
1334 
1335 	rcu_read_lock();
1336 	for (;;) {
1337 		sighand = rcu_dereference(tsk->sighand);
1338 		if (unlikely(sighand == NULL))
1339 			break;
1340 
1341 		/*
1342 		 * This sighand can be already freed and even reused, but
1343 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1344 		 * initializes ->siglock: this slab can't go away, it has
1345 		 * the same object type, ->siglock can't be reinitialized.
1346 		 *
1347 		 * We need to ensure that tsk->sighand is still the same
1348 		 * after we take the lock, we can race with de_thread() or
1349 		 * __exit_signal(). In the latter case the next iteration
1350 		 * must see ->sighand == NULL.
1351 		 */
1352 		spin_lock_irqsave(&sighand->siglock, *flags);
1353 		if (likely(sighand == tsk->sighand))
1354 			break;
1355 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1356 	}
1357 	rcu_read_unlock();
1358 
1359 	return sighand;
1360 }
1361 
1362 /*
1363  * send signal info to all the members of a group
1364  */
1365 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1366 			struct task_struct *p, enum pid_type type)
1367 {
1368 	int ret;
1369 
1370 	rcu_read_lock();
1371 	ret = check_kill_permission(sig, info, p);
1372 	rcu_read_unlock();
1373 
1374 	if (!ret && sig)
1375 		ret = do_send_sig_info(sig, info, p, type);
1376 
1377 	return ret;
1378 }
1379 
1380 /*
1381  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1382  * control characters do (^C, ^Z etc)
1383  * - the caller must hold at least a readlock on tasklist_lock
1384  */
1385 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1386 {
1387 	struct task_struct *p = NULL;
1388 	int retval, success;
1389 
1390 	success = 0;
1391 	retval = -ESRCH;
1392 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1393 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1394 		success |= !err;
1395 		retval = err;
1396 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1397 	return success ? 0 : retval;
1398 }
1399 
1400 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1401 {
1402 	int error = -ESRCH;
1403 	struct task_struct *p;
1404 
1405 	for (;;) {
1406 		rcu_read_lock();
1407 		p = pid_task(pid, PIDTYPE_PID);
1408 		if (p)
1409 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1410 		rcu_read_unlock();
1411 		if (likely(!p || error != -ESRCH))
1412 			return error;
1413 
1414 		/*
1415 		 * The task was unhashed in between, try again.  If it
1416 		 * is dead, pid_task() will return NULL, if we race with
1417 		 * de_thread() it will find the new leader.
1418 		 */
1419 	}
1420 }
1421 
1422 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1423 {
1424 	int error;
1425 	rcu_read_lock();
1426 	error = kill_pid_info(sig, info, find_vpid(pid));
1427 	rcu_read_unlock();
1428 	return error;
1429 }
1430 
1431 static inline bool kill_as_cred_perm(const struct cred *cred,
1432 				     struct task_struct *target)
1433 {
1434 	const struct cred *pcred = __task_cred(target);
1435 
1436 	return uid_eq(cred->euid, pcred->suid) ||
1437 	       uid_eq(cred->euid, pcred->uid) ||
1438 	       uid_eq(cred->uid, pcred->suid) ||
1439 	       uid_eq(cred->uid, pcred->uid);
1440 }
1441 
1442 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1443 int kill_pid_info_as_cred(int sig, struct kernel_siginfo *info, struct pid *pid,
1444 			 const struct cred *cred)
1445 {
1446 	int ret = -EINVAL;
1447 	struct task_struct *p;
1448 	unsigned long flags;
1449 
1450 	if (!valid_signal(sig))
1451 		return ret;
1452 
1453 	rcu_read_lock();
1454 	p = pid_task(pid, PIDTYPE_PID);
1455 	if (!p) {
1456 		ret = -ESRCH;
1457 		goto out_unlock;
1458 	}
1459 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1460 		ret = -EPERM;
1461 		goto out_unlock;
1462 	}
1463 	ret = security_task_kill(p, info, sig, cred);
1464 	if (ret)
1465 		goto out_unlock;
1466 
1467 	if (sig) {
1468 		if (lock_task_sighand(p, &flags)) {
1469 			ret = __send_signal(sig, info, p, PIDTYPE_TGID, 0);
1470 			unlock_task_sighand(p, &flags);
1471 		} else
1472 			ret = -ESRCH;
1473 	}
1474 out_unlock:
1475 	rcu_read_unlock();
1476 	return ret;
1477 }
1478 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1479 
1480 /*
1481  * kill_something_info() interprets pid in interesting ways just like kill(2).
1482  *
1483  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1484  * is probably wrong.  Should make it like BSD or SYSV.
1485  */
1486 
1487 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1488 {
1489 	int ret;
1490 
1491 	if (pid > 0) {
1492 		rcu_read_lock();
1493 		ret = kill_pid_info(sig, info, find_vpid(pid));
1494 		rcu_read_unlock();
1495 		return ret;
1496 	}
1497 
1498 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1499 	if (pid == INT_MIN)
1500 		return -ESRCH;
1501 
1502 	read_lock(&tasklist_lock);
1503 	if (pid != -1) {
1504 		ret = __kill_pgrp_info(sig, info,
1505 				pid ? find_vpid(-pid) : task_pgrp(current));
1506 	} else {
1507 		int retval = 0, count = 0;
1508 		struct task_struct * p;
1509 
1510 		for_each_process(p) {
1511 			if (task_pid_vnr(p) > 1 &&
1512 					!same_thread_group(p, current)) {
1513 				int err = group_send_sig_info(sig, info, p,
1514 							      PIDTYPE_MAX);
1515 				++count;
1516 				if (err != -EPERM)
1517 					retval = err;
1518 			}
1519 		}
1520 		ret = count ? retval : -ESRCH;
1521 	}
1522 	read_unlock(&tasklist_lock);
1523 
1524 	return ret;
1525 }
1526 
1527 /*
1528  * These are for backward compatibility with the rest of the kernel source.
1529  */
1530 
1531 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1532 {
1533 	/*
1534 	 * Make sure legacy kernel users don't send in bad values
1535 	 * (normal paths check this in check_kill_permission).
1536 	 */
1537 	if (!valid_signal(sig))
1538 		return -EINVAL;
1539 
1540 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1541 }
1542 EXPORT_SYMBOL(send_sig_info);
1543 
1544 #define __si_special(priv) \
1545 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1546 
1547 int
1548 send_sig(int sig, struct task_struct *p, int priv)
1549 {
1550 	return send_sig_info(sig, __si_special(priv), p);
1551 }
1552 EXPORT_SYMBOL(send_sig);
1553 
1554 void force_sig(int sig, struct task_struct *p)
1555 {
1556 	force_sig_info(sig, SEND_SIG_PRIV, p);
1557 }
1558 EXPORT_SYMBOL(force_sig);
1559 
1560 /*
1561  * When things go south during signal handling, we
1562  * will force a SIGSEGV. And if the signal that caused
1563  * the problem was already a SIGSEGV, we'll want to
1564  * make sure we don't even try to deliver the signal..
1565  */
1566 void force_sigsegv(int sig, struct task_struct *p)
1567 {
1568 	if (sig == SIGSEGV) {
1569 		unsigned long flags;
1570 		spin_lock_irqsave(&p->sighand->siglock, flags);
1571 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1572 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1573 	}
1574 	force_sig(SIGSEGV, p);
1575 }
1576 
1577 int force_sig_fault(int sig, int code, void __user *addr
1578 	___ARCH_SI_TRAPNO(int trapno)
1579 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1580 	, struct task_struct *t)
1581 {
1582 	struct kernel_siginfo info;
1583 
1584 	clear_siginfo(&info);
1585 	info.si_signo = sig;
1586 	info.si_errno = 0;
1587 	info.si_code  = code;
1588 	info.si_addr  = addr;
1589 #ifdef __ARCH_SI_TRAPNO
1590 	info.si_trapno = trapno;
1591 #endif
1592 #ifdef __ia64__
1593 	info.si_imm = imm;
1594 	info.si_flags = flags;
1595 	info.si_isr = isr;
1596 #endif
1597 	return force_sig_info(info.si_signo, &info, t);
1598 }
1599 
1600 int send_sig_fault(int sig, int code, void __user *addr
1601 	___ARCH_SI_TRAPNO(int trapno)
1602 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1603 	, struct task_struct *t)
1604 {
1605 	struct kernel_siginfo info;
1606 
1607 	clear_siginfo(&info);
1608 	info.si_signo = sig;
1609 	info.si_errno = 0;
1610 	info.si_code  = code;
1611 	info.si_addr  = addr;
1612 #ifdef __ARCH_SI_TRAPNO
1613 	info.si_trapno = trapno;
1614 #endif
1615 #ifdef __ia64__
1616 	info.si_imm = imm;
1617 	info.si_flags = flags;
1618 	info.si_isr = isr;
1619 #endif
1620 	return send_sig_info(info.si_signo, &info, t);
1621 }
1622 
1623 int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1624 {
1625 	struct kernel_siginfo info;
1626 
1627 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1628 	clear_siginfo(&info);
1629 	info.si_signo = SIGBUS;
1630 	info.si_errno = 0;
1631 	info.si_code = code;
1632 	info.si_addr = addr;
1633 	info.si_addr_lsb = lsb;
1634 	return force_sig_info(info.si_signo, &info, t);
1635 }
1636 
1637 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1638 {
1639 	struct kernel_siginfo info;
1640 
1641 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1642 	clear_siginfo(&info);
1643 	info.si_signo = SIGBUS;
1644 	info.si_errno = 0;
1645 	info.si_code = code;
1646 	info.si_addr = addr;
1647 	info.si_addr_lsb = lsb;
1648 	return send_sig_info(info.si_signo, &info, t);
1649 }
1650 EXPORT_SYMBOL(send_sig_mceerr);
1651 
1652 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1653 {
1654 	struct kernel_siginfo info;
1655 
1656 	clear_siginfo(&info);
1657 	info.si_signo = SIGSEGV;
1658 	info.si_errno = 0;
1659 	info.si_code  = SEGV_BNDERR;
1660 	info.si_addr  = addr;
1661 	info.si_lower = lower;
1662 	info.si_upper = upper;
1663 	return force_sig_info(info.si_signo, &info, current);
1664 }
1665 
1666 #ifdef SEGV_PKUERR
1667 int force_sig_pkuerr(void __user *addr, u32 pkey)
1668 {
1669 	struct kernel_siginfo info;
1670 
1671 	clear_siginfo(&info);
1672 	info.si_signo = SIGSEGV;
1673 	info.si_errno = 0;
1674 	info.si_code  = SEGV_PKUERR;
1675 	info.si_addr  = addr;
1676 	info.si_pkey  = pkey;
1677 	return force_sig_info(info.si_signo, &info, current);
1678 }
1679 #endif
1680 
1681 /* For the crazy architectures that include trap information in
1682  * the errno field, instead of an actual errno value.
1683  */
1684 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1685 {
1686 	struct kernel_siginfo info;
1687 
1688 	clear_siginfo(&info);
1689 	info.si_signo = SIGTRAP;
1690 	info.si_errno = errno;
1691 	info.si_code  = TRAP_HWBKPT;
1692 	info.si_addr  = addr;
1693 	return force_sig_info(info.si_signo, &info, current);
1694 }
1695 
1696 int kill_pgrp(struct pid *pid, int sig, int priv)
1697 {
1698 	int ret;
1699 
1700 	read_lock(&tasklist_lock);
1701 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1702 	read_unlock(&tasklist_lock);
1703 
1704 	return ret;
1705 }
1706 EXPORT_SYMBOL(kill_pgrp);
1707 
1708 int kill_pid(struct pid *pid, int sig, int priv)
1709 {
1710 	return kill_pid_info(sig, __si_special(priv), pid);
1711 }
1712 EXPORT_SYMBOL(kill_pid);
1713 
1714 /*
1715  * These functions support sending signals using preallocated sigqueue
1716  * structures.  This is needed "because realtime applications cannot
1717  * afford to lose notifications of asynchronous events, like timer
1718  * expirations or I/O completions".  In the case of POSIX Timers
1719  * we allocate the sigqueue structure from the timer_create.  If this
1720  * allocation fails we are able to report the failure to the application
1721  * with an EAGAIN error.
1722  */
1723 struct sigqueue *sigqueue_alloc(void)
1724 {
1725 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1726 
1727 	if (q)
1728 		q->flags |= SIGQUEUE_PREALLOC;
1729 
1730 	return q;
1731 }
1732 
1733 void sigqueue_free(struct sigqueue *q)
1734 {
1735 	unsigned long flags;
1736 	spinlock_t *lock = &current->sighand->siglock;
1737 
1738 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1739 	/*
1740 	 * We must hold ->siglock while testing q->list
1741 	 * to serialize with collect_signal() or with
1742 	 * __exit_signal()->flush_sigqueue().
1743 	 */
1744 	spin_lock_irqsave(lock, flags);
1745 	q->flags &= ~SIGQUEUE_PREALLOC;
1746 	/*
1747 	 * If it is queued it will be freed when dequeued,
1748 	 * like the "regular" sigqueue.
1749 	 */
1750 	if (!list_empty(&q->list))
1751 		q = NULL;
1752 	spin_unlock_irqrestore(lock, flags);
1753 
1754 	if (q)
1755 		__sigqueue_free(q);
1756 }
1757 
1758 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1759 {
1760 	int sig = q->info.si_signo;
1761 	struct sigpending *pending;
1762 	struct task_struct *t;
1763 	unsigned long flags;
1764 	int ret, result;
1765 
1766 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1767 
1768 	ret = -1;
1769 	rcu_read_lock();
1770 	t = pid_task(pid, type);
1771 	if (!t || !likely(lock_task_sighand(t, &flags)))
1772 		goto ret;
1773 
1774 	ret = 1; /* the signal is ignored */
1775 	result = TRACE_SIGNAL_IGNORED;
1776 	if (!prepare_signal(sig, t, false))
1777 		goto out;
1778 
1779 	ret = 0;
1780 	if (unlikely(!list_empty(&q->list))) {
1781 		/*
1782 		 * If an SI_TIMER entry is already queue just increment
1783 		 * the overrun count.
1784 		 */
1785 		BUG_ON(q->info.si_code != SI_TIMER);
1786 		q->info.si_overrun++;
1787 		result = TRACE_SIGNAL_ALREADY_PENDING;
1788 		goto out;
1789 	}
1790 	q->info.si_overrun = 0;
1791 
1792 	signalfd_notify(t, sig);
1793 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1794 	list_add_tail(&q->list, &pending->list);
1795 	sigaddset(&pending->signal, sig);
1796 	complete_signal(sig, t, type);
1797 	result = TRACE_SIGNAL_DELIVERED;
1798 out:
1799 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1800 	unlock_task_sighand(t, &flags);
1801 ret:
1802 	rcu_read_unlock();
1803 	return ret;
1804 }
1805 
1806 /*
1807  * Let a parent know about the death of a child.
1808  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1809  *
1810  * Returns true if our parent ignored us and so we've switched to
1811  * self-reaping.
1812  */
1813 bool do_notify_parent(struct task_struct *tsk, int sig)
1814 {
1815 	struct kernel_siginfo info;
1816 	unsigned long flags;
1817 	struct sighand_struct *psig;
1818 	bool autoreap = false;
1819 	u64 utime, stime;
1820 
1821 	BUG_ON(sig == -1);
1822 
1823  	/* do_notify_parent_cldstop should have been called instead.  */
1824  	BUG_ON(task_is_stopped_or_traced(tsk));
1825 
1826 	BUG_ON(!tsk->ptrace &&
1827 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1828 
1829 	if (sig != SIGCHLD) {
1830 		/*
1831 		 * This is only possible if parent == real_parent.
1832 		 * Check if it has changed security domain.
1833 		 */
1834 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1835 			sig = SIGCHLD;
1836 	}
1837 
1838 	clear_siginfo(&info);
1839 	info.si_signo = sig;
1840 	info.si_errno = 0;
1841 	/*
1842 	 * We are under tasklist_lock here so our parent is tied to
1843 	 * us and cannot change.
1844 	 *
1845 	 * task_active_pid_ns will always return the same pid namespace
1846 	 * until a task passes through release_task.
1847 	 *
1848 	 * write_lock() currently calls preempt_disable() which is the
1849 	 * same as rcu_read_lock(), but according to Oleg, this is not
1850 	 * correct to rely on this
1851 	 */
1852 	rcu_read_lock();
1853 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1854 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1855 				       task_uid(tsk));
1856 	rcu_read_unlock();
1857 
1858 	task_cputime(tsk, &utime, &stime);
1859 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1860 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1861 
1862 	info.si_status = tsk->exit_code & 0x7f;
1863 	if (tsk->exit_code & 0x80)
1864 		info.si_code = CLD_DUMPED;
1865 	else if (tsk->exit_code & 0x7f)
1866 		info.si_code = CLD_KILLED;
1867 	else {
1868 		info.si_code = CLD_EXITED;
1869 		info.si_status = tsk->exit_code >> 8;
1870 	}
1871 
1872 	psig = tsk->parent->sighand;
1873 	spin_lock_irqsave(&psig->siglock, flags);
1874 	if (!tsk->ptrace && sig == SIGCHLD &&
1875 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1876 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1877 		/*
1878 		 * We are exiting and our parent doesn't care.  POSIX.1
1879 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1880 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1881 		 * automatically and not left for our parent's wait4 call.
1882 		 * Rather than having the parent do it as a magic kind of
1883 		 * signal handler, we just set this to tell do_exit that we
1884 		 * can be cleaned up without becoming a zombie.  Note that
1885 		 * we still call __wake_up_parent in this case, because a
1886 		 * blocked sys_wait4 might now return -ECHILD.
1887 		 *
1888 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1889 		 * is implementation-defined: we do (if you don't want
1890 		 * it, just use SIG_IGN instead).
1891 		 */
1892 		autoreap = true;
1893 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1894 			sig = 0;
1895 	}
1896 	if (valid_signal(sig) && sig)
1897 		__group_send_sig_info(sig, &info, tsk->parent);
1898 	__wake_up_parent(tsk, tsk->parent);
1899 	spin_unlock_irqrestore(&psig->siglock, flags);
1900 
1901 	return autoreap;
1902 }
1903 
1904 /**
1905  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1906  * @tsk: task reporting the state change
1907  * @for_ptracer: the notification is for ptracer
1908  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1909  *
1910  * Notify @tsk's parent that the stopped/continued state has changed.  If
1911  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1912  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1913  *
1914  * CONTEXT:
1915  * Must be called with tasklist_lock at least read locked.
1916  */
1917 static void do_notify_parent_cldstop(struct task_struct *tsk,
1918 				     bool for_ptracer, int why)
1919 {
1920 	struct kernel_siginfo info;
1921 	unsigned long flags;
1922 	struct task_struct *parent;
1923 	struct sighand_struct *sighand;
1924 	u64 utime, stime;
1925 
1926 	if (for_ptracer) {
1927 		parent = tsk->parent;
1928 	} else {
1929 		tsk = tsk->group_leader;
1930 		parent = tsk->real_parent;
1931 	}
1932 
1933 	clear_siginfo(&info);
1934 	info.si_signo = SIGCHLD;
1935 	info.si_errno = 0;
1936 	/*
1937 	 * see comment in do_notify_parent() about the following 4 lines
1938 	 */
1939 	rcu_read_lock();
1940 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1941 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1942 	rcu_read_unlock();
1943 
1944 	task_cputime(tsk, &utime, &stime);
1945 	info.si_utime = nsec_to_clock_t(utime);
1946 	info.si_stime = nsec_to_clock_t(stime);
1947 
1948  	info.si_code = why;
1949  	switch (why) {
1950  	case CLD_CONTINUED:
1951  		info.si_status = SIGCONT;
1952  		break;
1953  	case CLD_STOPPED:
1954  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1955  		break;
1956  	case CLD_TRAPPED:
1957  		info.si_status = tsk->exit_code & 0x7f;
1958  		break;
1959  	default:
1960  		BUG();
1961  	}
1962 
1963 	sighand = parent->sighand;
1964 	spin_lock_irqsave(&sighand->siglock, flags);
1965 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1966 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1967 		__group_send_sig_info(SIGCHLD, &info, parent);
1968 	/*
1969 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1970 	 */
1971 	__wake_up_parent(tsk, parent);
1972 	spin_unlock_irqrestore(&sighand->siglock, flags);
1973 }
1974 
1975 static inline bool may_ptrace_stop(void)
1976 {
1977 	if (!likely(current->ptrace))
1978 		return false;
1979 	/*
1980 	 * Are we in the middle of do_coredump?
1981 	 * If so and our tracer is also part of the coredump stopping
1982 	 * is a deadlock situation, and pointless because our tracer
1983 	 * is dead so don't allow us to stop.
1984 	 * If SIGKILL was already sent before the caller unlocked
1985 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1986 	 * is safe to enter schedule().
1987 	 *
1988 	 * This is almost outdated, a task with the pending SIGKILL can't
1989 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1990 	 * after SIGKILL was already dequeued.
1991 	 */
1992 	if (unlikely(current->mm->core_state) &&
1993 	    unlikely(current->mm == current->parent->mm))
1994 		return false;
1995 
1996 	return true;
1997 }
1998 
1999 /*
2000  * Return non-zero if there is a SIGKILL that should be waking us up.
2001  * Called with the siglock held.
2002  */
2003 static bool sigkill_pending(struct task_struct *tsk)
2004 {
2005 	return sigismember(&tsk->pending.signal, SIGKILL) ||
2006 	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2007 }
2008 
2009 /*
2010  * This must be called with current->sighand->siglock held.
2011  *
2012  * This should be the path for all ptrace stops.
2013  * We always set current->last_siginfo while stopped here.
2014  * That makes it a way to test a stopped process for
2015  * being ptrace-stopped vs being job-control-stopped.
2016  *
2017  * If we actually decide not to stop at all because the tracer
2018  * is gone, we keep current->exit_code unless clear_code.
2019  */
2020 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2021 	__releases(&current->sighand->siglock)
2022 	__acquires(&current->sighand->siglock)
2023 {
2024 	bool gstop_done = false;
2025 
2026 	if (arch_ptrace_stop_needed(exit_code, info)) {
2027 		/*
2028 		 * The arch code has something special to do before a
2029 		 * ptrace stop.  This is allowed to block, e.g. for faults
2030 		 * on user stack pages.  We can't keep the siglock while
2031 		 * calling arch_ptrace_stop, so we must release it now.
2032 		 * To preserve proper semantics, we must do this before
2033 		 * any signal bookkeeping like checking group_stop_count.
2034 		 * Meanwhile, a SIGKILL could come in before we retake the
2035 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2036 		 * So after regaining the lock, we must check for SIGKILL.
2037 		 */
2038 		spin_unlock_irq(&current->sighand->siglock);
2039 		arch_ptrace_stop(exit_code, info);
2040 		spin_lock_irq(&current->sighand->siglock);
2041 		if (sigkill_pending(current))
2042 			return;
2043 	}
2044 
2045 	set_special_state(TASK_TRACED);
2046 
2047 	/*
2048 	 * We're committing to trapping.  TRACED should be visible before
2049 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2050 	 * Also, transition to TRACED and updates to ->jobctl should be
2051 	 * atomic with respect to siglock and should be done after the arch
2052 	 * hook as siglock is released and regrabbed across it.
2053 	 *
2054 	 *     TRACER				    TRACEE
2055 	 *
2056 	 *     ptrace_attach()
2057 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2058 	 *     do_wait()
2059 	 *       set_current_state()                smp_wmb();
2060 	 *       ptrace_do_wait()
2061 	 *         wait_task_stopped()
2062 	 *           task_stopped_code()
2063 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2064 	 */
2065 	smp_wmb();
2066 
2067 	current->last_siginfo = info;
2068 	current->exit_code = exit_code;
2069 
2070 	/*
2071 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2072 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2073 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2074 	 * could be clear now.  We act as if SIGCONT is received after
2075 	 * TASK_TRACED is entered - ignore it.
2076 	 */
2077 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2078 		gstop_done = task_participate_group_stop(current);
2079 
2080 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2081 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2082 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2083 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2084 
2085 	/* entering a trap, clear TRAPPING */
2086 	task_clear_jobctl_trapping(current);
2087 
2088 	spin_unlock_irq(&current->sighand->siglock);
2089 	read_lock(&tasklist_lock);
2090 	if (may_ptrace_stop()) {
2091 		/*
2092 		 * Notify parents of the stop.
2093 		 *
2094 		 * While ptraced, there are two parents - the ptracer and
2095 		 * the real_parent of the group_leader.  The ptracer should
2096 		 * know about every stop while the real parent is only
2097 		 * interested in the completion of group stop.  The states
2098 		 * for the two don't interact with each other.  Notify
2099 		 * separately unless they're gonna be duplicates.
2100 		 */
2101 		do_notify_parent_cldstop(current, true, why);
2102 		if (gstop_done && ptrace_reparented(current))
2103 			do_notify_parent_cldstop(current, false, why);
2104 
2105 		/*
2106 		 * Don't want to allow preemption here, because
2107 		 * sys_ptrace() needs this task to be inactive.
2108 		 *
2109 		 * XXX: implement read_unlock_no_resched().
2110 		 */
2111 		preempt_disable();
2112 		read_unlock(&tasklist_lock);
2113 		preempt_enable_no_resched();
2114 		cgroup_enter_frozen();
2115 		freezable_schedule();
2116 		cgroup_leave_frozen(true);
2117 	} else {
2118 		/*
2119 		 * By the time we got the lock, our tracer went away.
2120 		 * Don't drop the lock yet, another tracer may come.
2121 		 *
2122 		 * If @gstop_done, the ptracer went away between group stop
2123 		 * completion and here.  During detach, it would have set
2124 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2125 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2126 		 * the real parent of the group stop completion is enough.
2127 		 */
2128 		if (gstop_done)
2129 			do_notify_parent_cldstop(current, false, why);
2130 
2131 		/* tasklist protects us from ptrace_freeze_traced() */
2132 		__set_current_state(TASK_RUNNING);
2133 		if (clear_code)
2134 			current->exit_code = 0;
2135 		read_unlock(&tasklist_lock);
2136 	}
2137 
2138 	/*
2139 	 * We are back.  Now reacquire the siglock before touching
2140 	 * last_siginfo, so that we are sure to have synchronized with
2141 	 * any signal-sending on another CPU that wants to examine it.
2142 	 */
2143 	spin_lock_irq(&current->sighand->siglock);
2144 	current->last_siginfo = NULL;
2145 
2146 	/* LISTENING can be set only during STOP traps, clear it */
2147 	current->jobctl &= ~JOBCTL_LISTENING;
2148 
2149 	/*
2150 	 * Queued signals ignored us while we were stopped for tracing.
2151 	 * So check for any that we should take before resuming user mode.
2152 	 * This sets TIF_SIGPENDING, but never clears it.
2153 	 */
2154 	recalc_sigpending_tsk(current);
2155 }
2156 
2157 static void ptrace_do_notify(int signr, int exit_code, int why)
2158 {
2159 	kernel_siginfo_t info;
2160 
2161 	clear_siginfo(&info);
2162 	info.si_signo = signr;
2163 	info.si_code = exit_code;
2164 	info.si_pid = task_pid_vnr(current);
2165 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2166 
2167 	/* Let the debugger run.  */
2168 	ptrace_stop(exit_code, why, 1, &info);
2169 }
2170 
2171 void ptrace_notify(int exit_code)
2172 {
2173 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2174 	if (unlikely(current->task_works))
2175 		task_work_run();
2176 
2177 	spin_lock_irq(&current->sighand->siglock);
2178 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2179 	spin_unlock_irq(&current->sighand->siglock);
2180 }
2181 
2182 /**
2183  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2184  * @signr: signr causing group stop if initiating
2185  *
2186  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2187  * and participate in it.  If already set, participate in the existing
2188  * group stop.  If participated in a group stop (and thus slept), %true is
2189  * returned with siglock released.
2190  *
2191  * If ptraced, this function doesn't handle stop itself.  Instead,
2192  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2193  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2194  * places afterwards.
2195  *
2196  * CONTEXT:
2197  * Must be called with @current->sighand->siglock held, which is released
2198  * on %true return.
2199  *
2200  * RETURNS:
2201  * %false if group stop is already cancelled or ptrace trap is scheduled.
2202  * %true if participated in group stop.
2203  */
2204 static bool do_signal_stop(int signr)
2205 	__releases(&current->sighand->siglock)
2206 {
2207 	struct signal_struct *sig = current->signal;
2208 
2209 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2210 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2211 		struct task_struct *t;
2212 
2213 		/* signr will be recorded in task->jobctl for retries */
2214 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2215 
2216 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2217 		    unlikely(signal_group_exit(sig)))
2218 			return false;
2219 		/*
2220 		 * There is no group stop already in progress.  We must
2221 		 * initiate one now.
2222 		 *
2223 		 * While ptraced, a task may be resumed while group stop is
2224 		 * still in effect and then receive a stop signal and
2225 		 * initiate another group stop.  This deviates from the
2226 		 * usual behavior as two consecutive stop signals can't
2227 		 * cause two group stops when !ptraced.  That is why we
2228 		 * also check !task_is_stopped(t) below.
2229 		 *
2230 		 * The condition can be distinguished by testing whether
2231 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2232 		 * group_exit_code in such case.
2233 		 *
2234 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2235 		 * an intervening stop signal is required to cause two
2236 		 * continued events regardless of ptrace.
2237 		 */
2238 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2239 			sig->group_exit_code = signr;
2240 
2241 		sig->group_stop_count = 0;
2242 
2243 		if (task_set_jobctl_pending(current, signr | gstop))
2244 			sig->group_stop_count++;
2245 
2246 		t = current;
2247 		while_each_thread(current, t) {
2248 			/*
2249 			 * Setting state to TASK_STOPPED for a group
2250 			 * stop is always done with the siglock held,
2251 			 * so this check has no races.
2252 			 */
2253 			if (!task_is_stopped(t) &&
2254 			    task_set_jobctl_pending(t, signr | gstop)) {
2255 				sig->group_stop_count++;
2256 				if (likely(!(t->ptrace & PT_SEIZED)))
2257 					signal_wake_up(t, 0);
2258 				else
2259 					ptrace_trap_notify(t);
2260 			}
2261 		}
2262 	}
2263 
2264 	if (likely(!current->ptrace)) {
2265 		int notify = 0;
2266 
2267 		/*
2268 		 * If there are no other threads in the group, or if there
2269 		 * is a group stop in progress and we are the last to stop,
2270 		 * report to the parent.
2271 		 */
2272 		if (task_participate_group_stop(current))
2273 			notify = CLD_STOPPED;
2274 
2275 		set_special_state(TASK_STOPPED);
2276 		spin_unlock_irq(&current->sighand->siglock);
2277 
2278 		/*
2279 		 * Notify the parent of the group stop completion.  Because
2280 		 * we're not holding either the siglock or tasklist_lock
2281 		 * here, ptracer may attach inbetween; however, this is for
2282 		 * group stop and should always be delivered to the real
2283 		 * parent of the group leader.  The new ptracer will get
2284 		 * its notification when this task transitions into
2285 		 * TASK_TRACED.
2286 		 */
2287 		if (notify) {
2288 			read_lock(&tasklist_lock);
2289 			do_notify_parent_cldstop(current, false, notify);
2290 			read_unlock(&tasklist_lock);
2291 		}
2292 
2293 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2294 		cgroup_enter_frozen();
2295 		freezable_schedule();
2296 		return true;
2297 	} else {
2298 		/*
2299 		 * While ptraced, group stop is handled by STOP trap.
2300 		 * Schedule it and let the caller deal with it.
2301 		 */
2302 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2303 		return false;
2304 	}
2305 }
2306 
2307 /**
2308  * do_jobctl_trap - take care of ptrace jobctl traps
2309  *
2310  * When PT_SEIZED, it's used for both group stop and explicit
2311  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2312  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2313  * the stop signal; otherwise, %SIGTRAP.
2314  *
2315  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2316  * number as exit_code and no siginfo.
2317  *
2318  * CONTEXT:
2319  * Must be called with @current->sighand->siglock held, which may be
2320  * released and re-acquired before returning with intervening sleep.
2321  */
2322 static void do_jobctl_trap(void)
2323 {
2324 	struct signal_struct *signal = current->signal;
2325 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2326 
2327 	if (current->ptrace & PT_SEIZED) {
2328 		if (!signal->group_stop_count &&
2329 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2330 			signr = SIGTRAP;
2331 		WARN_ON_ONCE(!signr);
2332 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2333 				 CLD_STOPPED);
2334 	} else {
2335 		WARN_ON_ONCE(!signr);
2336 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2337 		current->exit_code = 0;
2338 	}
2339 }
2340 
2341 /**
2342  * do_freezer_trap - handle the freezer jobctl trap
2343  *
2344  * Puts the task into frozen state, if only the task is not about to quit.
2345  * In this case it drops JOBCTL_TRAP_FREEZE.
2346  *
2347  * CONTEXT:
2348  * Must be called with @current->sighand->siglock held,
2349  * which is always released before returning.
2350  */
2351 static void do_freezer_trap(void)
2352 	__releases(&current->sighand->siglock)
2353 {
2354 	/*
2355 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2356 	 * let's make another loop to give it a chance to be handled.
2357 	 * In any case, we'll return back.
2358 	 */
2359 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2360 	     JOBCTL_TRAP_FREEZE) {
2361 		spin_unlock_irq(&current->sighand->siglock);
2362 		return;
2363 	}
2364 
2365 	/*
2366 	 * Now we're sure that there is no pending fatal signal and no
2367 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2368 	 * immediately (if there is a non-fatal signal pending), and
2369 	 * put the task into sleep.
2370 	 */
2371 	__set_current_state(TASK_INTERRUPTIBLE);
2372 	clear_thread_flag(TIF_SIGPENDING);
2373 	spin_unlock_irq(&current->sighand->siglock);
2374 	cgroup_enter_frozen();
2375 	freezable_schedule();
2376 }
2377 
2378 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2379 {
2380 	/*
2381 	 * We do not check sig_kernel_stop(signr) but set this marker
2382 	 * unconditionally because we do not know whether debugger will
2383 	 * change signr. This flag has no meaning unless we are going
2384 	 * to stop after return from ptrace_stop(). In this case it will
2385 	 * be checked in do_signal_stop(), we should only stop if it was
2386 	 * not cleared by SIGCONT while we were sleeping. See also the
2387 	 * comment in dequeue_signal().
2388 	 */
2389 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2390 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2391 
2392 	/* We're back.  Did the debugger cancel the sig?  */
2393 	signr = current->exit_code;
2394 	if (signr == 0)
2395 		return signr;
2396 
2397 	current->exit_code = 0;
2398 
2399 	/*
2400 	 * Update the siginfo structure if the signal has
2401 	 * changed.  If the debugger wanted something
2402 	 * specific in the siginfo structure then it should
2403 	 * have updated *info via PTRACE_SETSIGINFO.
2404 	 */
2405 	if (signr != info->si_signo) {
2406 		clear_siginfo(info);
2407 		info->si_signo = signr;
2408 		info->si_errno = 0;
2409 		info->si_code = SI_USER;
2410 		rcu_read_lock();
2411 		info->si_pid = task_pid_vnr(current->parent);
2412 		info->si_uid = from_kuid_munged(current_user_ns(),
2413 						task_uid(current->parent));
2414 		rcu_read_unlock();
2415 	}
2416 
2417 	/* If the (new) signal is now blocked, requeue it.  */
2418 	if (sigismember(&current->blocked, signr)) {
2419 		send_signal(signr, info, current, PIDTYPE_PID);
2420 		signr = 0;
2421 	}
2422 
2423 	return signr;
2424 }
2425 
2426 bool get_signal(struct ksignal *ksig)
2427 {
2428 	struct sighand_struct *sighand = current->sighand;
2429 	struct signal_struct *signal = current->signal;
2430 	int signr;
2431 
2432 	if (unlikely(current->task_works))
2433 		task_work_run();
2434 
2435 	if (unlikely(uprobe_deny_signal()))
2436 		return false;
2437 
2438 	/*
2439 	 * Do this once, we can't return to user-mode if freezing() == T.
2440 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2441 	 * thus do not need another check after return.
2442 	 */
2443 	try_to_freeze();
2444 
2445 relock:
2446 	spin_lock_irq(&sighand->siglock);
2447 	/*
2448 	 * Every stopped thread goes here after wakeup. Check to see if
2449 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2450 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2451 	 */
2452 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2453 		int why;
2454 
2455 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2456 			why = CLD_CONTINUED;
2457 		else
2458 			why = CLD_STOPPED;
2459 
2460 		signal->flags &= ~SIGNAL_CLD_MASK;
2461 
2462 		spin_unlock_irq(&sighand->siglock);
2463 
2464 		/*
2465 		 * Notify the parent that we're continuing.  This event is
2466 		 * always per-process and doesn't make whole lot of sense
2467 		 * for ptracers, who shouldn't consume the state via
2468 		 * wait(2) either, but, for backward compatibility, notify
2469 		 * the ptracer of the group leader too unless it's gonna be
2470 		 * a duplicate.
2471 		 */
2472 		read_lock(&tasklist_lock);
2473 		do_notify_parent_cldstop(current, false, why);
2474 
2475 		if (ptrace_reparented(current->group_leader))
2476 			do_notify_parent_cldstop(current->group_leader,
2477 						true, why);
2478 		read_unlock(&tasklist_lock);
2479 
2480 		goto relock;
2481 	}
2482 
2483 	/* Has this task already been marked for death? */
2484 	if (signal_group_exit(signal)) {
2485 		ksig->info.si_signo = signr = SIGKILL;
2486 		sigdelset(&current->pending.signal, SIGKILL);
2487 		recalc_sigpending();
2488 		goto fatal;
2489 	}
2490 
2491 	for (;;) {
2492 		struct k_sigaction *ka;
2493 
2494 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2495 		    do_signal_stop(0))
2496 			goto relock;
2497 
2498 		if (unlikely(current->jobctl &
2499 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2500 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2501 				do_jobctl_trap();
2502 				spin_unlock_irq(&sighand->siglock);
2503 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2504 				do_freezer_trap();
2505 
2506 			goto relock;
2507 		}
2508 
2509 		/*
2510 		 * If the task is leaving the frozen state, let's update
2511 		 * cgroup counters and reset the frozen bit.
2512 		 */
2513 		if (unlikely(cgroup_task_frozen(current))) {
2514 			spin_unlock_irq(&sighand->siglock);
2515 			cgroup_leave_frozen(false);
2516 			goto relock;
2517 		}
2518 
2519 		/*
2520 		 * Signals generated by the execution of an instruction
2521 		 * need to be delivered before any other pending signals
2522 		 * so that the instruction pointer in the signal stack
2523 		 * frame points to the faulting instruction.
2524 		 */
2525 		signr = dequeue_synchronous_signal(&ksig->info);
2526 		if (!signr)
2527 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2528 
2529 		if (!signr)
2530 			break; /* will return 0 */
2531 
2532 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2533 			signr = ptrace_signal(signr, &ksig->info);
2534 			if (!signr)
2535 				continue;
2536 		}
2537 
2538 		ka = &sighand->action[signr-1];
2539 
2540 		/* Trace actually delivered signals. */
2541 		trace_signal_deliver(signr, &ksig->info, ka);
2542 
2543 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2544 			continue;
2545 		if (ka->sa.sa_handler != SIG_DFL) {
2546 			/* Run the handler.  */
2547 			ksig->ka = *ka;
2548 
2549 			if (ka->sa.sa_flags & SA_ONESHOT)
2550 				ka->sa.sa_handler = SIG_DFL;
2551 
2552 			break; /* will return non-zero "signr" value */
2553 		}
2554 
2555 		/*
2556 		 * Now we are doing the default action for this signal.
2557 		 */
2558 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2559 			continue;
2560 
2561 		/*
2562 		 * Global init gets no signals it doesn't want.
2563 		 * Container-init gets no signals it doesn't want from same
2564 		 * container.
2565 		 *
2566 		 * Note that if global/container-init sees a sig_kernel_only()
2567 		 * signal here, the signal must have been generated internally
2568 		 * or must have come from an ancestor namespace. In either
2569 		 * case, the signal cannot be dropped.
2570 		 */
2571 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2572 				!sig_kernel_only(signr))
2573 			continue;
2574 
2575 		if (sig_kernel_stop(signr)) {
2576 			/*
2577 			 * The default action is to stop all threads in
2578 			 * the thread group.  The job control signals
2579 			 * do nothing in an orphaned pgrp, but SIGSTOP
2580 			 * always works.  Note that siglock needs to be
2581 			 * dropped during the call to is_orphaned_pgrp()
2582 			 * because of lock ordering with tasklist_lock.
2583 			 * This allows an intervening SIGCONT to be posted.
2584 			 * We need to check for that and bail out if necessary.
2585 			 */
2586 			if (signr != SIGSTOP) {
2587 				spin_unlock_irq(&sighand->siglock);
2588 
2589 				/* signals can be posted during this window */
2590 
2591 				if (is_current_pgrp_orphaned())
2592 					goto relock;
2593 
2594 				spin_lock_irq(&sighand->siglock);
2595 			}
2596 
2597 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2598 				/* It released the siglock.  */
2599 				goto relock;
2600 			}
2601 
2602 			/*
2603 			 * We didn't actually stop, due to a race
2604 			 * with SIGCONT or something like that.
2605 			 */
2606 			continue;
2607 		}
2608 
2609 	fatal:
2610 		spin_unlock_irq(&sighand->siglock);
2611 		if (unlikely(cgroup_task_frozen(current)))
2612 			cgroup_leave_frozen(true);
2613 
2614 		/*
2615 		 * Anything else is fatal, maybe with a core dump.
2616 		 */
2617 		current->flags |= PF_SIGNALED;
2618 
2619 		if (sig_kernel_coredump(signr)) {
2620 			if (print_fatal_signals)
2621 				print_fatal_signal(ksig->info.si_signo);
2622 			proc_coredump_connector(current);
2623 			/*
2624 			 * If it was able to dump core, this kills all
2625 			 * other threads in the group and synchronizes with
2626 			 * their demise.  If we lost the race with another
2627 			 * thread getting here, it set group_exit_code
2628 			 * first and our do_group_exit call below will use
2629 			 * that value and ignore the one we pass it.
2630 			 */
2631 			do_coredump(&ksig->info);
2632 		}
2633 
2634 		/*
2635 		 * Death signals, no core dump.
2636 		 */
2637 		do_group_exit(ksig->info.si_signo);
2638 		/* NOTREACHED */
2639 	}
2640 	spin_unlock_irq(&sighand->siglock);
2641 
2642 	ksig->sig = signr;
2643 	return ksig->sig > 0;
2644 }
2645 
2646 /**
2647  * signal_delivered -
2648  * @ksig:		kernel signal struct
2649  * @stepping:		nonzero if debugger single-step or block-step in use
2650  *
2651  * This function should be called when a signal has successfully been
2652  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2653  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2654  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2655  */
2656 static void signal_delivered(struct ksignal *ksig, int stepping)
2657 {
2658 	sigset_t blocked;
2659 
2660 	/* A signal was successfully delivered, and the
2661 	   saved sigmask was stored on the signal frame,
2662 	   and will be restored by sigreturn.  So we can
2663 	   simply clear the restore sigmask flag.  */
2664 	clear_restore_sigmask();
2665 
2666 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2667 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2668 		sigaddset(&blocked, ksig->sig);
2669 	set_current_blocked(&blocked);
2670 	tracehook_signal_handler(stepping);
2671 }
2672 
2673 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2674 {
2675 	if (failed)
2676 		force_sigsegv(ksig->sig, current);
2677 	else
2678 		signal_delivered(ksig, stepping);
2679 }
2680 
2681 /*
2682  * It could be that complete_signal() picked us to notify about the
2683  * group-wide signal. Other threads should be notified now to take
2684  * the shared signals in @which since we will not.
2685  */
2686 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2687 {
2688 	sigset_t retarget;
2689 	struct task_struct *t;
2690 
2691 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2692 	if (sigisemptyset(&retarget))
2693 		return;
2694 
2695 	t = tsk;
2696 	while_each_thread(tsk, t) {
2697 		if (t->flags & PF_EXITING)
2698 			continue;
2699 
2700 		if (!has_pending_signals(&retarget, &t->blocked))
2701 			continue;
2702 		/* Remove the signals this thread can handle. */
2703 		sigandsets(&retarget, &retarget, &t->blocked);
2704 
2705 		if (!signal_pending(t))
2706 			signal_wake_up(t, 0);
2707 
2708 		if (sigisemptyset(&retarget))
2709 			break;
2710 	}
2711 }
2712 
2713 void exit_signals(struct task_struct *tsk)
2714 {
2715 	int group_stop = 0;
2716 	sigset_t unblocked;
2717 
2718 	/*
2719 	 * @tsk is about to have PF_EXITING set - lock out users which
2720 	 * expect stable threadgroup.
2721 	 */
2722 	cgroup_threadgroup_change_begin(tsk);
2723 
2724 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2725 		tsk->flags |= PF_EXITING;
2726 		cgroup_threadgroup_change_end(tsk);
2727 		return;
2728 	}
2729 
2730 	spin_lock_irq(&tsk->sighand->siglock);
2731 	/*
2732 	 * From now this task is not visible for group-wide signals,
2733 	 * see wants_signal(), do_signal_stop().
2734 	 */
2735 	tsk->flags |= PF_EXITING;
2736 
2737 	cgroup_threadgroup_change_end(tsk);
2738 
2739 	if (!signal_pending(tsk))
2740 		goto out;
2741 
2742 	unblocked = tsk->blocked;
2743 	signotset(&unblocked);
2744 	retarget_shared_pending(tsk, &unblocked);
2745 
2746 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2747 	    task_participate_group_stop(tsk))
2748 		group_stop = CLD_STOPPED;
2749 out:
2750 	spin_unlock_irq(&tsk->sighand->siglock);
2751 
2752 	/*
2753 	 * If group stop has completed, deliver the notification.  This
2754 	 * should always go to the real parent of the group leader.
2755 	 */
2756 	if (unlikely(group_stop)) {
2757 		read_lock(&tasklist_lock);
2758 		do_notify_parent_cldstop(tsk, false, group_stop);
2759 		read_unlock(&tasklist_lock);
2760 	}
2761 }
2762 
2763 /*
2764  * System call entry points.
2765  */
2766 
2767 /**
2768  *  sys_restart_syscall - restart a system call
2769  */
2770 SYSCALL_DEFINE0(restart_syscall)
2771 {
2772 	struct restart_block *restart = &current->restart_block;
2773 	return restart->fn(restart);
2774 }
2775 
2776 long do_no_restart_syscall(struct restart_block *param)
2777 {
2778 	return -EINTR;
2779 }
2780 
2781 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2782 {
2783 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2784 		sigset_t newblocked;
2785 		/* A set of now blocked but previously unblocked signals. */
2786 		sigandnsets(&newblocked, newset, &current->blocked);
2787 		retarget_shared_pending(tsk, &newblocked);
2788 	}
2789 	tsk->blocked = *newset;
2790 	recalc_sigpending();
2791 }
2792 
2793 /**
2794  * set_current_blocked - change current->blocked mask
2795  * @newset: new mask
2796  *
2797  * It is wrong to change ->blocked directly, this helper should be used
2798  * to ensure the process can't miss a shared signal we are going to block.
2799  */
2800 void set_current_blocked(sigset_t *newset)
2801 {
2802 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2803 	__set_current_blocked(newset);
2804 }
2805 
2806 void __set_current_blocked(const sigset_t *newset)
2807 {
2808 	struct task_struct *tsk = current;
2809 
2810 	/*
2811 	 * In case the signal mask hasn't changed, there is nothing we need
2812 	 * to do. The current->blocked shouldn't be modified by other task.
2813 	 */
2814 	if (sigequalsets(&tsk->blocked, newset))
2815 		return;
2816 
2817 	spin_lock_irq(&tsk->sighand->siglock);
2818 	__set_task_blocked(tsk, newset);
2819 	spin_unlock_irq(&tsk->sighand->siglock);
2820 }
2821 
2822 /*
2823  * This is also useful for kernel threads that want to temporarily
2824  * (or permanently) block certain signals.
2825  *
2826  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2827  * interface happily blocks "unblockable" signals like SIGKILL
2828  * and friends.
2829  */
2830 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2831 {
2832 	struct task_struct *tsk = current;
2833 	sigset_t newset;
2834 
2835 	/* Lockless, only current can change ->blocked, never from irq */
2836 	if (oldset)
2837 		*oldset = tsk->blocked;
2838 
2839 	switch (how) {
2840 	case SIG_BLOCK:
2841 		sigorsets(&newset, &tsk->blocked, set);
2842 		break;
2843 	case SIG_UNBLOCK:
2844 		sigandnsets(&newset, &tsk->blocked, set);
2845 		break;
2846 	case SIG_SETMASK:
2847 		newset = *set;
2848 		break;
2849 	default:
2850 		return -EINVAL;
2851 	}
2852 
2853 	__set_current_blocked(&newset);
2854 	return 0;
2855 }
2856 EXPORT_SYMBOL(sigprocmask);
2857 
2858 /*
2859  * The api helps set app-provided sigmasks.
2860  *
2861  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2862  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2863  */
2864 int set_user_sigmask(const sigset_t __user *usigmask, sigset_t *set,
2865 		     sigset_t *oldset, size_t sigsetsize)
2866 {
2867 	if (!usigmask)
2868 		return 0;
2869 
2870 	if (sigsetsize != sizeof(sigset_t))
2871 		return -EINVAL;
2872 	if (copy_from_user(set, usigmask, sizeof(sigset_t)))
2873 		return -EFAULT;
2874 
2875 	*oldset = current->blocked;
2876 	set_current_blocked(set);
2877 
2878 	return 0;
2879 }
2880 EXPORT_SYMBOL(set_user_sigmask);
2881 
2882 #ifdef CONFIG_COMPAT
2883 int set_compat_user_sigmask(const compat_sigset_t __user *usigmask,
2884 			    sigset_t *set, sigset_t *oldset,
2885 			    size_t sigsetsize)
2886 {
2887 	if (!usigmask)
2888 		return 0;
2889 
2890 	if (sigsetsize != sizeof(compat_sigset_t))
2891 		return -EINVAL;
2892 	if (get_compat_sigset(set, usigmask))
2893 		return -EFAULT;
2894 
2895 	*oldset = current->blocked;
2896 	set_current_blocked(set);
2897 
2898 	return 0;
2899 }
2900 EXPORT_SYMBOL(set_compat_user_sigmask);
2901 #endif
2902 
2903 /*
2904  * restore_user_sigmask:
2905  * usigmask: sigmask passed in from userland.
2906  * sigsaved: saved sigmask when the syscall started and changed the sigmask to
2907  *           usigmask.
2908  *
2909  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2910  * epoll_pwait where a new sigmask is passed in from userland for the syscalls.
2911  */
2912 void restore_user_sigmask(const void __user *usigmask, sigset_t *sigsaved)
2913 {
2914 
2915 	if (!usigmask)
2916 		return;
2917 	/*
2918 	 * When signals are pending, do not restore them here.
2919 	 * Restoring sigmask here can lead to delivering signals that the above
2920 	 * syscalls are intended to block because of the sigmask passed in.
2921 	 */
2922 	if (signal_pending(current)) {
2923 		current->saved_sigmask = *sigsaved;
2924 		set_restore_sigmask();
2925 		return;
2926 	}
2927 
2928 	/*
2929 	 * This is needed because the fast syscall return path does not restore
2930 	 * saved_sigmask when signals are not pending.
2931 	 */
2932 	set_current_blocked(sigsaved);
2933 }
2934 EXPORT_SYMBOL(restore_user_sigmask);
2935 
2936 /**
2937  *  sys_rt_sigprocmask - change the list of currently blocked signals
2938  *  @how: whether to add, remove, or set signals
2939  *  @nset: stores pending signals
2940  *  @oset: previous value of signal mask if non-null
2941  *  @sigsetsize: size of sigset_t type
2942  */
2943 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2944 		sigset_t __user *, oset, size_t, sigsetsize)
2945 {
2946 	sigset_t old_set, new_set;
2947 	int error;
2948 
2949 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2950 	if (sigsetsize != sizeof(sigset_t))
2951 		return -EINVAL;
2952 
2953 	old_set = current->blocked;
2954 
2955 	if (nset) {
2956 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2957 			return -EFAULT;
2958 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2959 
2960 		error = sigprocmask(how, &new_set, NULL);
2961 		if (error)
2962 			return error;
2963 	}
2964 
2965 	if (oset) {
2966 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2967 			return -EFAULT;
2968 	}
2969 
2970 	return 0;
2971 }
2972 
2973 #ifdef CONFIG_COMPAT
2974 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2975 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2976 {
2977 	sigset_t old_set = current->blocked;
2978 
2979 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2980 	if (sigsetsize != sizeof(sigset_t))
2981 		return -EINVAL;
2982 
2983 	if (nset) {
2984 		sigset_t new_set;
2985 		int error;
2986 		if (get_compat_sigset(&new_set, nset))
2987 			return -EFAULT;
2988 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2989 
2990 		error = sigprocmask(how, &new_set, NULL);
2991 		if (error)
2992 			return error;
2993 	}
2994 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2995 }
2996 #endif
2997 
2998 static void do_sigpending(sigset_t *set)
2999 {
3000 	spin_lock_irq(&current->sighand->siglock);
3001 	sigorsets(set, &current->pending.signal,
3002 		  &current->signal->shared_pending.signal);
3003 	spin_unlock_irq(&current->sighand->siglock);
3004 
3005 	/* Outside the lock because only this thread touches it.  */
3006 	sigandsets(set, &current->blocked, set);
3007 }
3008 
3009 /**
3010  *  sys_rt_sigpending - examine a pending signal that has been raised
3011  *			while blocked
3012  *  @uset: stores pending signals
3013  *  @sigsetsize: size of sigset_t type or larger
3014  */
3015 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3016 {
3017 	sigset_t set;
3018 
3019 	if (sigsetsize > sizeof(*uset))
3020 		return -EINVAL;
3021 
3022 	do_sigpending(&set);
3023 
3024 	if (copy_to_user(uset, &set, sigsetsize))
3025 		return -EFAULT;
3026 
3027 	return 0;
3028 }
3029 
3030 #ifdef CONFIG_COMPAT
3031 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3032 		compat_size_t, sigsetsize)
3033 {
3034 	sigset_t set;
3035 
3036 	if (sigsetsize > sizeof(*uset))
3037 		return -EINVAL;
3038 
3039 	do_sigpending(&set);
3040 
3041 	return put_compat_sigset(uset, &set, sigsetsize);
3042 }
3043 #endif
3044 
3045 static const struct {
3046 	unsigned char limit, layout;
3047 } sig_sicodes[] = {
3048 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3049 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3050 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3051 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3052 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3053 #if defined(SIGEMT)
3054 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3055 #endif
3056 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3057 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3058 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3059 };
3060 
3061 static bool known_siginfo_layout(unsigned sig, int si_code)
3062 {
3063 	if (si_code == SI_KERNEL)
3064 		return true;
3065 	else if ((si_code > SI_USER)) {
3066 		if (sig_specific_sicodes(sig)) {
3067 			if (si_code <= sig_sicodes[sig].limit)
3068 				return true;
3069 		}
3070 		else if (si_code <= NSIGPOLL)
3071 			return true;
3072 	}
3073 	else if (si_code >= SI_DETHREAD)
3074 		return true;
3075 	else if (si_code == SI_ASYNCNL)
3076 		return true;
3077 	return false;
3078 }
3079 
3080 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3081 {
3082 	enum siginfo_layout layout = SIL_KILL;
3083 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3084 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3085 		    (si_code <= sig_sicodes[sig].limit)) {
3086 			layout = sig_sicodes[sig].layout;
3087 			/* Handle the exceptions */
3088 			if ((sig == SIGBUS) &&
3089 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3090 				layout = SIL_FAULT_MCEERR;
3091 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3092 				layout = SIL_FAULT_BNDERR;
3093 #ifdef SEGV_PKUERR
3094 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3095 				layout = SIL_FAULT_PKUERR;
3096 #endif
3097 		}
3098 		else if (si_code <= NSIGPOLL)
3099 			layout = SIL_POLL;
3100 	} else {
3101 		if (si_code == SI_TIMER)
3102 			layout = SIL_TIMER;
3103 		else if (si_code == SI_SIGIO)
3104 			layout = SIL_POLL;
3105 		else if (si_code < 0)
3106 			layout = SIL_RT;
3107 	}
3108 	return layout;
3109 }
3110 
3111 static inline char __user *si_expansion(const siginfo_t __user *info)
3112 {
3113 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3114 }
3115 
3116 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3117 {
3118 	char __user *expansion = si_expansion(to);
3119 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3120 		return -EFAULT;
3121 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3122 		return -EFAULT;
3123 	return 0;
3124 }
3125 
3126 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3127 				       const siginfo_t __user *from)
3128 {
3129 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3130 		char __user *expansion = si_expansion(from);
3131 		char buf[SI_EXPANSION_SIZE];
3132 		int i;
3133 		/*
3134 		 * An unknown si_code might need more than
3135 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3136 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3137 		 * will return this data to userspace exactly.
3138 		 */
3139 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3140 			return -EFAULT;
3141 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3142 			if (buf[i] != 0)
3143 				return -E2BIG;
3144 		}
3145 	}
3146 	return 0;
3147 }
3148 
3149 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3150 				    const siginfo_t __user *from)
3151 {
3152 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3153 		return -EFAULT;
3154 	to->si_signo = signo;
3155 	return post_copy_siginfo_from_user(to, from);
3156 }
3157 
3158 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3159 {
3160 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3161 		return -EFAULT;
3162 	return post_copy_siginfo_from_user(to, from);
3163 }
3164 
3165 #ifdef CONFIG_COMPAT
3166 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3167 			   const struct kernel_siginfo *from)
3168 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3169 {
3170 	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3171 }
3172 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3173 			     const struct kernel_siginfo *from, bool x32_ABI)
3174 #endif
3175 {
3176 	struct compat_siginfo new;
3177 	memset(&new, 0, sizeof(new));
3178 
3179 	new.si_signo = from->si_signo;
3180 	new.si_errno = from->si_errno;
3181 	new.si_code  = from->si_code;
3182 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3183 	case SIL_KILL:
3184 		new.si_pid = from->si_pid;
3185 		new.si_uid = from->si_uid;
3186 		break;
3187 	case SIL_TIMER:
3188 		new.si_tid     = from->si_tid;
3189 		new.si_overrun = from->si_overrun;
3190 		new.si_int     = from->si_int;
3191 		break;
3192 	case SIL_POLL:
3193 		new.si_band = from->si_band;
3194 		new.si_fd   = from->si_fd;
3195 		break;
3196 	case SIL_FAULT:
3197 		new.si_addr = ptr_to_compat(from->si_addr);
3198 #ifdef __ARCH_SI_TRAPNO
3199 		new.si_trapno = from->si_trapno;
3200 #endif
3201 		break;
3202 	case SIL_FAULT_MCEERR:
3203 		new.si_addr = ptr_to_compat(from->si_addr);
3204 #ifdef __ARCH_SI_TRAPNO
3205 		new.si_trapno = from->si_trapno;
3206 #endif
3207 		new.si_addr_lsb = from->si_addr_lsb;
3208 		break;
3209 	case SIL_FAULT_BNDERR:
3210 		new.si_addr = ptr_to_compat(from->si_addr);
3211 #ifdef __ARCH_SI_TRAPNO
3212 		new.si_trapno = from->si_trapno;
3213 #endif
3214 		new.si_lower = ptr_to_compat(from->si_lower);
3215 		new.si_upper = ptr_to_compat(from->si_upper);
3216 		break;
3217 	case SIL_FAULT_PKUERR:
3218 		new.si_addr = ptr_to_compat(from->si_addr);
3219 #ifdef __ARCH_SI_TRAPNO
3220 		new.si_trapno = from->si_trapno;
3221 #endif
3222 		new.si_pkey = from->si_pkey;
3223 		break;
3224 	case SIL_CHLD:
3225 		new.si_pid    = from->si_pid;
3226 		new.si_uid    = from->si_uid;
3227 		new.si_status = from->si_status;
3228 #ifdef CONFIG_X86_X32_ABI
3229 		if (x32_ABI) {
3230 			new._sifields._sigchld_x32._utime = from->si_utime;
3231 			new._sifields._sigchld_x32._stime = from->si_stime;
3232 		} else
3233 #endif
3234 		{
3235 			new.si_utime = from->si_utime;
3236 			new.si_stime = from->si_stime;
3237 		}
3238 		break;
3239 	case SIL_RT:
3240 		new.si_pid = from->si_pid;
3241 		new.si_uid = from->si_uid;
3242 		new.si_int = from->si_int;
3243 		break;
3244 	case SIL_SYS:
3245 		new.si_call_addr = ptr_to_compat(from->si_call_addr);
3246 		new.si_syscall   = from->si_syscall;
3247 		new.si_arch      = from->si_arch;
3248 		break;
3249 	}
3250 
3251 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3252 		return -EFAULT;
3253 
3254 	return 0;
3255 }
3256 
3257 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3258 					 const struct compat_siginfo *from)
3259 {
3260 	clear_siginfo(to);
3261 	to->si_signo = from->si_signo;
3262 	to->si_errno = from->si_errno;
3263 	to->si_code  = from->si_code;
3264 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3265 	case SIL_KILL:
3266 		to->si_pid = from->si_pid;
3267 		to->si_uid = from->si_uid;
3268 		break;
3269 	case SIL_TIMER:
3270 		to->si_tid     = from->si_tid;
3271 		to->si_overrun = from->si_overrun;
3272 		to->si_int     = from->si_int;
3273 		break;
3274 	case SIL_POLL:
3275 		to->si_band = from->si_band;
3276 		to->si_fd   = from->si_fd;
3277 		break;
3278 	case SIL_FAULT:
3279 		to->si_addr = compat_ptr(from->si_addr);
3280 #ifdef __ARCH_SI_TRAPNO
3281 		to->si_trapno = from->si_trapno;
3282 #endif
3283 		break;
3284 	case SIL_FAULT_MCEERR:
3285 		to->si_addr = compat_ptr(from->si_addr);
3286 #ifdef __ARCH_SI_TRAPNO
3287 		to->si_trapno = from->si_trapno;
3288 #endif
3289 		to->si_addr_lsb = from->si_addr_lsb;
3290 		break;
3291 	case SIL_FAULT_BNDERR:
3292 		to->si_addr = compat_ptr(from->si_addr);
3293 #ifdef __ARCH_SI_TRAPNO
3294 		to->si_trapno = from->si_trapno;
3295 #endif
3296 		to->si_lower = compat_ptr(from->si_lower);
3297 		to->si_upper = compat_ptr(from->si_upper);
3298 		break;
3299 	case SIL_FAULT_PKUERR:
3300 		to->si_addr = compat_ptr(from->si_addr);
3301 #ifdef __ARCH_SI_TRAPNO
3302 		to->si_trapno = from->si_trapno;
3303 #endif
3304 		to->si_pkey = from->si_pkey;
3305 		break;
3306 	case SIL_CHLD:
3307 		to->si_pid    = from->si_pid;
3308 		to->si_uid    = from->si_uid;
3309 		to->si_status = from->si_status;
3310 #ifdef CONFIG_X86_X32_ABI
3311 		if (in_x32_syscall()) {
3312 			to->si_utime = from->_sifields._sigchld_x32._utime;
3313 			to->si_stime = from->_sifields._sigchld_x32._stime;
3314 		} else
3315 #endif
3316 		{
3317 			to->si_utime = from->si_utime;
3318 			to->si_stime = from->si_stime;
3319 		}
3320 		break;
3321 	case SIL_RT:
3322 		to->si_pid = from->si_pid;
3323 		to->si_uid = from->si_uid;
3324 		to->si_int = from->si_int;
3325 		break;
3326 	case SIL_SYS:
3327 		to->si_call_addr = compat_ptr(from->si_call_addr);
3328 		to->si_syscall   = from->si_syscall;
3329 		to->si_arch      = from->si_arch;
3330 		break;
3331 	}
3332 	return 0;
3333 }
3334 
3335 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3336 				      const struct compat_siginfo __user *ufrom)
3337 {
3338 	struct compat_siginfo from;
3339 
3340 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3341 		return -EFAULT;
3342 
3343 	from.si_signo = signo;
3344 	return post_copy_siginfo_from_user32(to, &from);
3345 }
3346 
3347 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3348 			     const struct compat_siginfo __user *ufrom)
3349 {
3350 	struct compat_siginfo from;
3351 
3352 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3353 		return -EFAULT;
3354 
3355 	return post_copy_siginfo_from_user32(to, &from);
3356 }
3357 #endif /* CONFIG_COMPAT */
3358 
3359 /**
3360  *  do_sigtimedwait - wait for queued signals specified in @which
3361  *  @which: queued signals to wait for
3362  *  @info: if non-null, the signal's siginfo is returned here
3363  *  @ts: upper bound on process time suspension
3364  */
3365 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3366 		    const struct timespec64 *ts)
3367 {
3368 	ktime_t *to = NULL, timeout = KTIME_MAX;
3369 	struct task_struct *tsk = current;
3370 	sigset_t mask = *which;
3371 	int sig, ret = 0;
3372 
3373 	if (ts) {
3374 		if (!timespec64_valid(ts))
3375 			return -EINVAL;
3376 		timeout = timespec64_to_ktime(*ts);
3377 		to = &timeout;
3378 	}
3379 
3380 	/*
3381 	 * Invert the set of allowed signals to get those we want to block.
3382 	 */
3383 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3384 	signotset(&mask);
3385 
3386 	spin_lock_irq(&tsk->sighand->siglock);
3387 	sig = dequeue_signal(tsk, &mask, info);
3388 	if (!sig && timeout) {
3389 		/*
3390 		 * None ready, temporarily unblock those we're interested
3391 		 * while we are sleeping in so that we'll be awakened when
3392 		 * they arrive. Unblocking is always fine, we can avoid
3393 		 * set_current_blocked().
3394 		 */
3395 		tsk->real_blocked = tsk->blocked;
3396 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3397 		recalc_sigpending();
3398 		spin_unlock_irq(&tsk->sighand->siglock);
3399 
3400 		__set_current_state(TASK_INTERRUPTIBLE);
3401 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3402 							 HRTIMER_MODE_REL);
3403 		spin_lock_irq(&tsk->sighand->siglock);
3404 		__set_task_blocked(tsk, &tsk->real_blocked);
3405 		sigemptyset(&tsk->real_blocked);
3406 		sig = dequeue_signal(tsk, &mask, info);
3407 	}
3408 	spin_unlock_irq(&tsk->sighand->siglock);
3409 
3410 	if (sig)
3411 		return sig;
3412 	return ret ? -EINTR : -EAGAIN;
3413 }
3414 
3415 /**
3416  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3417  *			in @uthese
3418  *  @uthese: queued signals to wait for
3419  *  @uinfo: if non-null, the signal's siginfo is returned here
3420  *  @uts: upper bound on process time suspension
3421  *  @sigsetsize: size of sigset_t type
3422  */
3423 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3424 		siginfo_t __user *, uinfo,
3425 		const struct __kernel_timespec __user *, uts,
3426 		size_t, sigsetsize)
3427 {
3428 	sigset_t these;
3429 	struct timespec64 ts;
3430 	kernel_siginfo_t info;
3431 	int ret;
3432 
3433 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3434 	if (sigsetsize != sizeof(sigset_t))
3435 		return -EINVAL;
3436 
3437 	if (copy_from_user(&these, uthese, sizeof(these)))
3438 		return -EFAULT;
3439 
3440 	if (uts) {
3441 		if (get_timespec64(&ts, uts))
3442 			return -EFAULT;
3443 	}
3444 
3445 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3446 
3447 	if (ret > 0 && uinfo) {
3448 		if (copy_siginfo_to_user(uinfo, &info))
3449 			ret = -EFAULT;
3450 	}
3451 
3452 	return ret;
3453 }
3454 
3455 #ifdef CONFIG_COMPAT_32BIT_TIME
3456 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3457 		siginfo_t __user *, uinfo,
3458 		const struct old_timespec32 __user *, uts,
3459 		size_t, sigsetsize)
3460 {
3461 	sigset_t these;
3462 	struct timespec64 ts;
3463 	kernel_siginfo_t info;
3464 	int ret;
3465 
3466 	if (sigsetsize != sizeof(sigset_t))
3467 		return -EINVAL;
3468 
3469 	if (copy_from_user(&these, uthese, sizeof(these)))
3470 		return -EFAULT;
3471 
3472 	if (uts) {
3473 		if (get_old_timespec32(&ts, uts))
3474 			return -EFAULT;
3475 	}
3476 
3477 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3478 
3479 	if (ret > 0 && uinfo) {
3480 		if (copy_siginfo_to_user(uinfo, &info))
3481 			ret = -EFAULT;
3482 	}
3483 
3484 	return ret;
3485 }
3486 #endif
3487 
3488 #ifdef CONFIG_COMPAT
3489 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3490 		struct compat_siginfo __user *, uinfo,
3491 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3492 {
3493 	sigset_t s;
3494 	struct timespec64 t;
3495 	kernel_siginfo_t info;
3496 	long ret;
3497 
3498 	if (sigsetsize != sizeof(sigset_t))
3499 		return -EINVAL;
3500 
3501 	if (get_compat_sigset(&s, uthese))
3502 		return -EFAULT;
3503 
3504 	if (uts) {
3505 		if (get_timespec64(&t, uts))
3506 			return -EFAULT;
3507 	}
3508 
3509 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3510 
3511 	if (ret > 0 && uinfo) {
3512 		if (copy_siginfo_to_user32(uinfo, &info))
3513 			ret = -EFAULT;
3514 	}
3515 
3516 	return ret;
3517 }
3518 
3519 #ifdef CONFIG_COMPAT_32BIT_TIME
3520 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3521 		struct compat_siginfo __user *, uinfo,
3522 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3523 {
3524 	sigset_t s;
3525 	struct timespec64 t;
3526 	kernel_siginfo_t info;
3527 	long ret;
3528 
3529 	if (sigsetsize != sizeof(sigset_t))
3530 		return -EINVAL;
3531 
3532 	if (get_compat_sigset(&s, uthese))
3533 		return -EFAULT;
3534 
3535 	if (uts) {
3536 		if (get_old_timespec32(&t, uts))
3537 			return -EFAULT;
3538 	}
3539 
3540 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3541 
3542 	if (ret > 0 && uinfo) {
3543 		if (copy_siginfo_to_user32(uinfo, &info))
3544 			ret = -EFAULT;
3545 	}
3546 
3547 	return ret;
3548 }
3549 #endif
3550 #endif
3551 
3552 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3553 {
3554 	clear_siginfo(info);
3555 	info->si_signo = sig;
3556 	info->si_errno = 0;
3557 	info->si_code = SI_USER;
3558 	info->si_pid = task_tgid_vnr(current);
3559 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3560 }
3561 
3562 /**
3563  *  sys_kill - send a signal to a process
3564  *  @pid: the PID of the process
3565  *  @sig: signal to be sent
3566  */
3567 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3568 {
3569 	struct kernel_siginfo info;
3570 
3571 	prepare_kill_siginfo(sig, &info);
3572 
3573 	return kill_something_info(sig, &info, pid);
3574 }
3575 
3576 /*
3577  * Verify that the signaler and signalee either are in the same pid namespace
3578  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3579  * namespace.
3580  */
3581 static bool access_pidfd_pidns(struct pid *pid)
3582 {
3583 	struct pid_namespace *active = task_active_pid_ns(current);
3584 	struct pid_namespace *p = ns_of_pid(pid);
3585 
3586 	for (;;) {
3587 		if (!p)
3588 			return false;
3589 		if (p == active)
3590 			break;
3591 		p = p->parent;
3592 	}
3593 
3594 	return true;
3595 }
3596 
3597 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3598 {
3599 #ifdef CONFIG_COMPAT
3600 	/*
3601 	 * Avoid hooking up compat syscalls and instead handle necessary
3602 	 * conversions here. Note, this is a stop-gap measure and should not be
3603 	 * considered a generic solution.
3604 	 */
3605 	if (in_compat_syscall())
3606 		return copy_siginfo_from_user32(
3607 			kinfo, (struct compat_siginfo __user *)info);
3608 #endif
3609 	return copy_siginfo_from_user(kinfo, info);
3610 }
3611 
3612 static struct pid *pidfd_to_pid(const struct file *file)
3613 {
3614 	if (file->f_op == &pidfd_fops)
3615 		return file->private_data;
3616 
3617 	return tgid_pidfd_to_pid(file);
3618 }
3619 
3620 /**
3621  * sys_pidfd_send_signal - send a signal to a process through a task file
3622  *                          descriptor
3623  * @pidfd:  the file descriptor of the process
3624  * @sig:    signal to be sent
3625  * @info:   the signal info
3626  * @flags:  future flags to be passed
3627  *
3628  * The syscall currently only signals via PIDTYPE_PID which covers
3629  * kill(<positive-pid>, <signal>. It does not signal threads or process
3630  * groups.
3631  * In order to extend the syscall to threads and process groups the @flags
3632  * argument should be used. In essence, the @flags argument will determine
3633  * what is signaled and not the file descriptor itself. Put in other words,
3634  * grouping is a property of the flags argument not a property of the file
3635  * descriptor.
3636  *
3637  * Return: 0 on success, negative errno on failure
3638  */
3639 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3640 		siginfo_t __user *, info, unsigned int, flags)
3641 {
3642 	int ret;
3643 	struct fd f;
3644 	struct pid *pid;
3645 	kernel_siginfo_t kinfo;
3646 
3647 	/* Enforce flags be set to 0 until we add an extension. */
3648 	if (flags)
3649 		return -EINVAL;
3650 
3651 	f = fdget(pidfd);
3652 	if (!f.file)
3653 		return -EBADF;
3654 
3655 	/* Is this a pidfd? */
3656 	pid = pidfd_to_pid(f.file);
3657 	if (IS_ERR(pid)) {
3658 		ret = PTR_ERR(pid);
3659 		goto err;
3660 	}
3661 
3662 	ret = -EINVAL;
3663 	if (!access_pidfd_pidns(pid))
3664 		goto err;
3665 
3666 	if (info) {
3667 		ret = copy_siginfo_from_user_any(&kinfo, info);
3668 		if (unlikely(ret))
3669 			goto err;
3670 
3671 		ret = -EINVAL;
3672 		if (unlikely(sig != kinfo.si_signo))
3673 			goto err;
3674 
3675 		/* Only allow sending arbitrary signals to yourself. */
3676 		ret = -EPERM;
3677 		if ((task_pid(current) != pid) &&
3678 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3679 			goto err;
3680 	} else {
3681 		prepare_kill_siginfo(sig, &kinfo);
3682 	}
3683 
3684 	ret = kill_pid_info(sig, &kinfo, pid);
3685 
3686 err:
3687 	fdput(f);
3688 	return ret;
3689 }
3690 
3691 static int
3692 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3693 {
3694 	struct task_struct *p;
3695 	int error = -ESRCH;
3696 
3697 	rcu_read_lock();
3698 	p = find_task_by_vpid(pid);
3699 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3700 		error = check_kill_permission(sig, info, p);
3701 		/*
3702 		 * The null signal is a permissions and process existence
3703 		 * probe.  No signal is actually delivered.
3704 		 */
3705 		if (!error && sig) {
3706 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3707 			/*
3708 			 * If lock_task_sighand() failed we pretend the task
3709 			 * dies after receiving the signal. The window is tiny,
3710 			 * and the signal is private anyway.
3711 			 */
3712 			if (unlikely(error == -ESRCH))
3713 				error = 0;
3714 		}
3715 	}
3716 	rcu_read_unlock();
3717 
3718 	return error;
3719 }
3720 
3721 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3722 {
3723 	struct kernel_siginfo info;
3724 
3725 	clear_siginfo(&info);
3726 	info.si_signo = sig;
3727 	info.si_errno = 0;
3728 	info.si_code = SI_TKILL;
3729 	info.si_pid = task_tgid_vnr(current);
3730 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3731 
3732 	return do_send_specific(tgid, pid, sig, &info);
3733 }
3734 
3735 /**
3736  *  sys_tgkill - send signal to one specific thread
3737  *  @tgid: the thread group ID of the thread
3738  *  @pid: the PID of the thread
3739  *  @sig: signal to be sent
3740  *
3741  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3742  *  exists but it's not belonging to the target process anymore. This
3743  *  method solves the problem of threads exiting and PIDs getting reused.
3744  */
3745 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3746 {
3747 	/* This is only valid for single tasks */
3748 	if (pid <= 0 || tgid <= 0)
3749 		return -EINVAL;
3750 
3751 	return do_tkill(tgid, pid, sig);
3752 }
3753 
3754 /**
3755  *  sys_tkill - send signal to one specific task
3756  *  @pid: the PID of the task
3757  *  @sig: signal to be sent
3758  *
3759  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3760  */
3761 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3762 {
3763 	/* This is only valid for single tasks */
3764 	if (pid <= 0)
3765 		return -EINVAL;
3766 
3767 	return do_tkill(0, pid, sig);
3768 }
3769 
3770 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3771 {
3772 	/* Not even root can pretend to send signals from the kernel.
3773 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3774 	 */
3775 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3776 	    (task_pid_vnr(current) != pid))
3777 		return -EPERM;
3778 
3779 	/* POSIX.1b doesn't mention process groups.  */
3780 	return kill_proc_info(sig, info, pid);
3781 }
3782 
3783 /**
3784  *  sys_rt_sigqueueinfo - send signal information to a signal
3785  *  @pid: the PID of the thread
3786  *  @sig: signal to be sent
3787  *  @uinfo: signal info to be sent
3788  */
3789 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3790 		siginfo_t __user *, uinfo)
3791 {
3792 	kernel_siginfo_t info;
3793 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3794 	if (unlikely(ret))
3795 		return ret;
3796 	return do_rt_sigqueueinfo(pid, sig, &info);
3797 }
3798 
3799 #ifdef CONFIG_COMPAT
3800 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3801 			compat_pid_t, pid,
3802 			int, sig,
3803 			struct compat_siginfo __user *, uinfo)
3804 {
3805 	kernel_siginfo_t info;
3806 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3807 	if (unlikely(ret))
3808 		return ret;
3809 	return do_rt_sigqueueinfo(pid, sig, &info);
3810 }
3811 #endif
3812 
3813 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3814 {
3815 	/* This is only valid for single tasks */
3816 	if (pid <= 0 || tgid <= 0)
3817 		return -EINVAL;
3818 
3819 	/* Not even root can pretend to send signals from the kernel.
3820 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3821 	 */
3822 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3823 	    (task_pid_vnr(current) != pid))
3824 		return -EPERM;
3825 
3826 	return do_send_specific(tgid, pid, sig, info);
3827 }
3828 
3829 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3830 		siginfo_t __user *, uinfo)
3831 {
3832 	kernel_siginfo_t info;
3833 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3834 	if (unlikely(ret))
3835 		return ret;
3836 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3837 }
3838 
3839 #ifdef CONFIG_COMPAT
3840 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3841 			compat_pid_t, tgid,
3842 			compat_pid_t, pid,
3843 			int, sig,
3844 			struct compat_siginfo __user *, uinfo)
3845 {
3846 	kernel_siginfo_t info;
3847 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3848 	if (unlikely(ret))
3849 		return ret;
3850 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3851 }
3852 #endif
3853 
3854 /*
3855  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3856  */
3857 void kernel_sigaction(int sig, __sighandler_t action)
3858 {
3859 	spin_lock_irq(&current->sighand->siglock);
3860 	current->sighand->action[sig - 1].sa.sa_handler = action;
3861 	if (action == SIG_IGN) {
3862 		sigset_t mask;
3863 
3864 		sigemptyset(&mask);
3865 		sigaddset(&mask, sig);
3866 
3867 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3868 		flush_sigqueue_mask(&mask, &current->pending);
3869 		recalc_sigpending();
3870 	}
3871 	spin_unlock_irq(&current->sighand->siglock);
3872 }
3873 EXPORT_SYMBOL(kernel_sigaction);
3874 
3875 void __weak sigaction_compat_abi(struct k_sigaction *act,
3876 		struct k_sigaction *oact)
3877 {
3878 }
3879 
3880 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3881 {
3882 	struct task_struct *p = current, *t;
3883 	struct k_sigaction *k;
3884 	sigset_t mask;
3885 
3886 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3887 		return -EINVAL;
3888 
3889 	k = &p->sighand->action[sig-1];
3890 
3891 	spin_lock_irq(&p->sighand->siglock);
3892 	if (oact)
3893 		*oact = *k;
3894 
3895 	sigaction_compat_abi(act, oact);
3896 
3897 	if (act) {
3898 		sigdelsetmask(&act->sa.sa_mask,
3899 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3900 		*k = *act;
3901 		/*
3902 		 * POSIX 3.3.1.3:
3903 		 *  "Setting a signal action to SIG_IGN for a signal that is
3904 		 *   pending shall cause the pending signal to be discarded,
3905 		 *   whether or not it is blocked."
3906 		 *
3907 		 *  "Setting a signal action to SIG_DFL for a signal that is
3908 		 *   pending and whose default action is to ignore the signal
3909 		 *   (for example, SIGCHLD), shall cause the pending signal to
3910 		 *   be discarded, whether or not it is blocked"
3911 		 */
3912 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3913 			sigemptyset(&mask);
3914 			sigaddset(&mask, sig);
3915 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3916 			for_each_thread(p, t)
3917 				flush_sigqueue_mask(&mask, &t->pending);
3918 		}
3919 	}
3920 
3921 	spin_unlock_irq(&p->sighand->siglock);
3922 	return 0;
3923 }
3924 
3925 static int
3926 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3927 		size_t min_ss_size)
3928 {
3929 	struct task_struct *t = current;
3930 
3931 	if (oss) {
3932 		memset(oss, 0, sizeof(stack_t));
3933 		oss->ss_sp = (void __user *) t->sas_ss_sp;
3934 		oss->ss_size = t->sas_ss_size;
3935 		oss->ss_flags = sas_ss_flags(sp) |
3936 			(current->sas_ss_flags & SS_FLAG_BITS);
3937 	}
3938 
3939 	if (ss) {
3940 		void __user *ss_sp = ss->ss_sp;
3941 		size_t ss_size = ss->ss_size;
3942 		unsigned ss_flags = ss->ss_flags;
3943 		int ss_mode;
3944 
3945 		if (unlikely(on_sig_stack(sp)))
3946 			return -EPERM;
3947 
3948 		ss_mode = ss_flags & ~SS_FLAG_BITS;
3949 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3950 				ss_mode != 0))
3951 			return -EINVAL;
3952 
3953 		if (ss_mode == SS_DISABLE) {
3954 			ss_size = 0;
3955 			ss_sp = NULL;
3956 		} else {
3957 			if (unlikely(ss_size < min_ss_size))
3958 				return -ENOMEM;
3959 		}
3960 
3961 		t->sas_ss_sp = (unsigned long) ss_sp;
3962 		t->sas_ss_size = ss_size;
3963 		t->sas_ss_flags = ss_flags;
3964 	}
3965 	return 0;
3966 }
3967 
3968 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3969 {
3970 	stack_t new, old;
3971 	int err;
3972 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3973 		return -EFAULT;
3974 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3975 			      current_user_stack_pointer(),
3976 			      MINSIGSTKSZ);
3977 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3978 		err = -EFAULT;
3979 	return err;
3980 }
3981 
3982 int restore_altstack(const stack_t __user *uss)
3983 {
3984 	stack_t new;
3985 	if (copy_from_user(&new, uss, sizeof(stack_t)))
3986 		return -EFAULT;
3987 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
3988 			     MINSIGSTKSZ);
3989 	/* squash all but EFAULT for now */
3990 	return 0;
3991 }
3992 
3993 int __save_altstack(stack_t __user *uss, unsigned long sp)
3994 {
3995 	struct task_struct *t = current;
3996 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3997 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3998 		__put_user(t->sas_ss_size, &uss->ss_size);
3999 	if (err)
4000 		return err;
4001 	if (t->sas_ss_flags & SS_AUTODISARM)
4002 		sas_ss_reset(t);
4003 	return 0;
4004 }
4005 
4006 #ifdef CONFIG_COMPAT
4007 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4008 				 compat_stack_t __user *uoss_ptr)
4009 {
4010 	stack_t uss, uoss;
4011 	int ret;
4012 
4013 	if (uss_ptr) {
4014 		compat_stack_t uss32;
4015 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4016 			return -EFAULT;
4017 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4018 		uss.ss_flags = uss32.ss_flags;
4019 		uss.ss_size = uss32.ss_size;
4020 	}
4021 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4022 			     compat_user_stack_pointer(),
4023 			     COMPAT_MINSIGSTKSZ);
4024 	if (ret >= 0 && uoss_ptr)  {
4025 		compat_stack_t old;
4026 		memset(&old, 0, sizeof(old));
4027 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4028 		old.ss_flags = uoss.ss_flags;
4029 		old.ss_size = uoss.ss_size;
4030 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4031 			ret = -EFAULT;
4032 	}
4033 	return ret;
4034 }
4035 
4036 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4037 			const compat_stack_t __user *, uss_ptr,
4038 			compat_stack_t __user *, uoss_ptr)
4039 {
4040 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4041 }
4042 
4043 int compat_restore_altstack(const compat_stack_t __user *uss)
4044 {
4045 	int err = do_compat_sigaltstack(uss, NULL);
4046 	/* squash all but -EFAULT for now */
4047 	return err == -EFAULT ? err : 0;
4048 }
4049 
4050 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4051 {
4052 	int err;
4053 	struct task_struct *t = current;
4054 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4055 			 &uss->ss_sp) |
4056 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4057 		__put_user(t->sas_ss_size, &uss->ss_size);
4058 	if (err)
4059 		return err;
4060 	if (t->sas_ss_flags & SS_AUTODISARM)
4061 		sas_ss_reset(t);
4062 	return 0;
4063 }
4064 #endif
4065 
4066 #ifdef __ARCH_WANT_SYS_SIGPENDING
4067 
4068 /**
4069  *  sys_sigpending - examine pending signals
4070  *  @uset: where mask of pending signal is returned
4071  */
4072 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4073 {
4074 	sigset_t set;
4075 
4076 	if (sizeof(old_sigset_t) > sizeof(*uset))
4077 		return -EINVAL;
4078 
4079 	do_sigpending(&set);
4080 
4081 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4082 		return -EFAULT;
4083 
4084 	return 0;
4085 }
4086 
4087 #ifdef CONFIG_COMPAT
4088 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4089 {
4090 	sigset_t set;
4091 
4092 	do_sigpending(&set);
4093 
4094 	return put_user(set.sig[0], set32);
4095 }
4096 #endif
4097 
4098 #endif
4099 
4100 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4101 /**
4102  *  sys_sigprocmask - examine and change blocked signals
4103  *  @how: whether to add, remove, or set signals
4104  *  @nset: signals to add or remove (if non-null)
4105  *  @oset: previous value of signal mask if non-null
4106  *
4107  * Some platforms have their own version with special arguments;
4108  * others support only sys_rt_sigprocmask.
4109  */
4110 
4111 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4112 		old_sigset_t __user *, oset)
4113 {
4114 	old_sigset_t old_set, new_set;
4115 	sigset_t new_blocked;
4116 
4117 	old_set = current->blocked.sig[0];
4118 
4119 	if (nset) {
4120 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4121 			return -EFAULT;
4122 
4123 		new_blocked = current->blocked;
4124 
4125 		switch (how) {
4126 		case SIG_BLOCK:
4127 			sigaddsetmask(&new_blocked, new_set);
4128 			break;
4129 		case SIG_UNBLOCK:
4130 			sigdelsetmask(&new_blocked, new_set);
4131 			break;
4132 		case SIG_SETMASK:
4133 			new_blocked.sig[0] = new_set;
4134 			break;
4135 		default:
4136 			return -EINVAL;
4137 		}
4138 
4139 		set_current_blocked(&new_blocked);
4140 	}
4141 
4142 	if (oset) {
4143 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4144 			return -EFAULT;
4145 	}
4146 
4147 	return 0;
4148 }
4149 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4150 
4151 #ifndef CONFIG_ODD_RT_SIGACTION
4152 /**
4153  *  sys_rt_sigaction - alter an action taken by a process
4154  *  @sig: signal to be sent
4155  *  @act: new sigaction
4156  *  @oact: used to save the previous sigaction
4157  *  @sigsetsize: size of sigset_t type
4158  */
4159 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4160 		const struct sigaction __user *, act,
4161 		struct sigaction __user *, oact,
4162 		size_t, sigsetsize)
4163 {
4164 	struct k_sigaction new_sa, old_sa;
4165 	int ret;
4166 
4167 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4168 	if (sigsetsize != sizeof(sigset_t))
4169 		return -EINVAL;
4170 
4171 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4172 		return -EFAULT;
4173 
4174 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4175 	if (ret)
4176 		return ret;
4177 
4178 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4179 		return -EFAULT;
4180 
4181 	return 0;
4182 }
4183 #ifdef CONFIG_COMPAT
4184 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4185 		const struct compat_sigaction __user *, act,
4186 		struct compat_sigaction __user *, oact,
4187 		compat_size_t, sigsetsize)
4188 {
4189 	struct k_sigaction new_ka, old_ka;
4190 #ifdef __ARCH_HAS_SA_RESTORER
4191 	compat_uptr_t restorer;
4192 #endif
4193 	int ret;
4194 
4195 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4196 	if (sigsetsize != sizeof(compat_sigset_t))
4197 		return -EINVAL;
4198 
4199 	if (act) {
4200 		compat_uptr_t handler;
4201 		ret = get_user(handler, &act->sa_handler);
4202 		new_ka.sa.sa_handler = compat_ptr(handler);
4203 #ifdef __ARCH_HAS_SA_RESTORER
4204 		ret |= get_user(restorer, &act->sa_restorer);
4205 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4206 #endif
4207 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4208 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4209 		if (ret)
4210 			return -EFAULT;
4211 	}
4212 
4213 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4214 	if (!ret && oact) {
4215 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4216 			       &oact->sa_handler);
4217 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4218 					 sizeof(oact->sa_mask));
4219 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4220 #ifdef __ARCH_HAS_SA_RESTORER
4221 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4222 				&oact->sa_restorer);
4223 #endif
4224 	}
4225 	return ret;
4226 }
4227 #endif
4228 #endif /* !CONFIG_ODD_RT_SIGACTION */
4229 
4230 #ifdef CONFIG_OLD_SIGACTION
4231 SYSCALL_DEFINE3(sigaction, int, sig,
4232 		const struct old_sigaction __user *, act,
4233 	        struct old_sigaction __user *, oact)
4234 {
4235 	struct k_sigaction new_ka, old_ka;
4236 	int ret;
4237 
4238 	if (act) {
4239 		old_sigset_t mask;
4240 		if (!access_ok(act, sizeof(*act)) ||
4241 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4242 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4243 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4244 		    __get_user(mask, &act->sa_mask))
4245 			return -EFAULT;
4246 #ifdef __ARCH_HAS_KA_RESTORER
4247 		new_ka.ka_restorer = NULL;
4248 #endif
4249 		siginitset(&new_ka.sa.sa_mask, mask);
4250 	}
4251 
4252 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4253 
4254 	if (!ret && oact) {
4255 		if (!access_ok(oact, sizeof(*oact)) ||
4256 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4257 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4258 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4259 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4260 			return -EFAULT;
4261 	}
4262 
4263 	return ret;
4264 }
4265 #endif
4266 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4267 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4268 		const struct compat_old_sigaction __user *, act,
4269 	        struct compat_old_sigaction __user *, oact)
4270 {
4271 	struct k_sigaction new_ka, old_ka;
4272 	int ret;
4273 	compat_old_sigset_t mask;
4274 	compat_uptr_t handler, restorer;
4275 
4276 	if (act) {
4277 		if (!access_ok(act, sizeof(*act)) ||
4278 		    __get_user(handler, &act->sa_handler) ||
4279 		    __get_user(restorer, &act->sa_restorer) ||
4280 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4281 		    __get_user(mask, &act->sa_mask))
4282 			return -EFAULT;
4283 
4284 #ifdef __ARCH_HAS_KA_RESTORER
4285 		new_ka.ka_restorer = NULL;
4286 #endif
4287 		new_ka.sa.sa_handler = compat_ptr(handler);
4288 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4289 		siginitset(&new_ka.sa.sa_mask, mask);
4290 	}
4291 
4292 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4293 
4294 	if (!ret && oact) {
4295 		if (!access_ok(oact, sizeof(*oact)) ||
4296 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4297 			       &oact->sa_handler) ||
4298 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4299 			       &oact->sa_restorer) ||
4300 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4301 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4302 			return -EFAULT;
4303 	}
4304 	return ret;
4305 }
4306 #endif
4307 
4308 #ifdef CONFIG_SGETMASK_SYSCALL
4309 
4310 /*
4311  * For backwards compatibility.  Functionality superseded by sigprocmask.
4312  */
4313 SYSCALL_DEFINE0(sgetmask)
4314 {
4315 	/* SMP safe */
4316 	return current->blocked.sig[0];
4317 }
4318 
4319 SYSCALL_DEFINE1(ssetmask, int, newmask)
4320 {
4321 	int old = current->blocked.sig[0];
4322 	sigset_t newset;
4323 
4324 	siginitset(&newset, newmask);
4325 	set_current_blocked(&newset);
4326 
4327 	return old;
4328 }
4329 #endif /* CONFIG_SGETMASK_SYSCALL */
4330 
4331 #ifdef __ARCH_WANT_SYS_SIGNAL
4332 /*
4333  * For backwards compatibility.  Functionality superseded by sigaction.
4334  */
4335 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4336 {
4337 	struct k_sigaction new_sa, old_sa;
4338 	int ret;
4339 
4340 	new_sa.sa.sa_handler = handler;
4341 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4342 	sigemptyset(&new_sa.sa.sa_mask);
4343 
4344 	ret = do_sigaction(sig, &new_sa, &old_sa);
4345 
4346 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4347 }
4348 #endif /* __ARCH_WANT_SYS_SIGNAL */
4349 
4350 #ifdef __ARCH_WANT_SYS_PAUSE
4351 
4352 SYSCALL_DEFINE0(pause)
4353 {
4354 	while (!signal_pending(current)) {
4355 		__set_current_state(TASK_INTERRUPTIBLE);
4356 		schedule();
4357 	}
4358 	return -ERESTARTNOHAND;
4359 }
4360 
4361 #endif
4362 
4363 static int sigsuspend(sigset_t *set)
4364 {
4365 	current->saved_sigmask = current->blocked;
4366 	set_current_blocked(set);
4367 
4368 	while (!signal_pending(current)) {
4369 		__set_current_state(TASK_INTERRUPTIBLE);
4370 		schedule();
4371 	}
4372 	set_restore_sigmask();
4373 	return -ERESTARTNOHAND;
4374 }
4375 
4376 /**
4377  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4378  *	@unewset value until a signal is received
4379  *  @unewset: new signal mask value
4380  *  @sigsetsize: size of sigset_t type
4381  */
4382 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4383 {
4384 	sigset_t newset;
4385 
4386 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4387 	if (sigsetsize != sizeof(sigset_t))
4388 		return -EINVAL;
4389 
4390 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4391 		return -EFAULT;
4392 	return sigsuspend(&newset);
4393 }
4394 
4395 #ifdef CONFIG_COMPAT
4396 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4397 {
4398 	sigset_t newset;
4399 
4400 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4401 	if (sigsetsize != sizeof(sigset_t))
4402 		return -EINVAL;
4403 
4404 	if (get_compat_sigset(&newset, unewset))
4405 		return -EFAULT;
4406 	return sigsuspend(&newset);
4407 }
4408 #endif
4409 
4410 #ifdef CONFIG_OLD_SIGSUSPEND
4411 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4412 {
4413 	sigset_t blocked;
4414 	siginitset(&blocked, mask);
4415 	return sigsuspend(&blocked);
4416 }
4417 #endif
4418 #ifdef CONFIG_OLD_SIGSUSPEND3
4419 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4420 {
4421 	sigset_t blocked;
4422 	siginitset(&blocked, mask);
4423 	return sigsuspend(&blocked);
4424 }
4425 #endif
4426 
4427 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4428 {
4429 	return NULL;
4430 }
4431 
4432 static inline void siginfo_buildtime_checks(void)
4433 {
4434 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4435 
4436 	/* Verify the offsets in the two siginfos match */
4437 #define CHECK_OFFSET(field) \
4438 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4439 
4440 	/* kill */
4441 	CHECK_OFFSET(si_pid);
4442 	CHECK_OFFSET(si_uid);
4443 
4444 	/* timer */
4445 	CHECK_OFFSET(si_tid);
4446 	CHECK_OFFSET(si_overrun);
4447 	CHECK_OFFSET(si_value);
4448 
4449 	/* rt */
4450 	CHECK_OFFSET(si_pid);
4451 	CHECK_OFFSET(si_uid);
4452 	CHECK_OFFSET(si_value);
4453 
4454 	/* sigchld */
4455 	CHECK_OFFSET(si_pid);
4456 	CHECK_OFFSET(si_uid);
4457 	CHECK_OFFSET(si_status);
4458 	CHECK_OFFSET(si_utime);
4459 	CHECK_OFFSET(si_stime);
4460 
4461 	/* sigfault */
4462 	CHECK_OFFSET(si_addr);
4463 	CHECK_OFFSET(si_addr_lsb);
4464 	CHECK_OFFSET(si_lower);
4465 	CHECK_OFFSET(si_upper);
4466 	CHECK_OFFSET(si_pkey);
4467 
4468 	/* sigpoll */
4469 	CHECK_OFFSET(si_band);
4470 	CHECK_OFFSET(si_fd);
4471 
4472 	/* sigsys */
4473 	CHECK_OFFSET(si_call_addr);
4474 	CHECK_OFFSET(si_syscall);
4475 	CHECK_OFFSET(si_arch);
4476 #undef CHECK_OFFSET
4477 }
4478 
4479 void __init signals_init(void)
4480 {
4481 	siginfo_buildtime_checks();
4482 
4483 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4484 }
4485 
4486 #ifdef CONFIG_KGDB_KDB
4487 #include <linux/kdb.h>
4488 /*
4489  * kdb_send_sig - Allows kdb to send signals without exposing
4490  * signal internals.  This function checks if the required locks are
4491  * available before calling the main signal code, to avoid kdb
4492  * deadlocks.
4493  */
4494 void kdb_send_sig(struct task_struct *t, int sig)
4495 {
4496 	static struct task_struct *kdb_prev_t;
4497 	int new_t, ret;
4498 	if (!spin_trylock(&t->sighand->siglock)) {
4499 		kdb_printf("Can't do kill command now.\n"
4500 			   "The sigmask lock is held somewhere else in "
4501 			   "kernel, try again later\n");
4502 		return;
4503 	}
4504 	new_t = kdb_prev_t != t;
4505 	kdb_prev_t = t;
4506 	if (t->state != TASK_RUNNING && new_t) {
4507 		spin_unlock(&t->sighand->siglock);
4508 		kdb_printf("Process is not RUNNING, sending a signal from "
4509 			   "kdb risks deadlock\n"
4510 			   "on the run queue locks. "
4511 			   "The signal has _not_ been sent.\n"
4512 			   "Reissue the kill command if you want to risk "
4513 			   "the deadlock.\n");
4514 		return;
4515 	}
4516 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4517 	spin_unlock(&t->sighand->siglock);
4518 	if (ret)
4519 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4520 			   sig, t->pid);
4521 	else
4522 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4523 }
4524 #endif	/* CONFIG_KGDB_KDB */
4525