1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/user.h> 18 #include <linux/sched/debug.h> 19 #include <linux/sched/task.h> 20 #include <linux/sched/task_stack.h> 21 #include <linux/sched/cputime.h> 22 #include <linux/fs.h> 23 #include <linux/tty.h> 24 #include <linux/binfmts.h> 25 #include <linux/coredump.h> 26 #include <linux/security.h> 27 #include <linux/syscalls.h> 28 #include <linux/ptrace.h> 29 #include <linux/signal.h> 30 #include <linux/signalfd.h> 31 #include <linux/ratelimit.h> 32 #include <linux/tracehook.h> 33 #include <linux/capability.h> 34 #include <linux/freezer.h> 35 #include <linux/pid_namespace.h> 36 #include <linux/nsproxy.h> 37 #include <linux/user_namespace.h> 38 #include <linux/uprobes.h> 39 #include <linux/compat.h> 40 #include <linux/cn_proc.h> 41 #include <linux/compiler.h> 42 #include <linux/posix-timers.h> 43 #include <linux/livepatch.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/signal.h> 47 48 #include <asm/param.h> 49 #include <linux/uaccess.h> 50 #include <asm/unistd.h> 51 #include <asm/siginfo.h> 52 #include <asm/cacheflush.h> 53 #include "audit.h" /* audit_signal_info() */ 54 55 /* 56 * SLAB caches for signal bits. 57 */ 58 59 static struct kmem_cache *sigqueue_cachep; 60 61 int print_fatal_signals __read_mostly; 62 63 static void __user *sig_handler(struct task_struct *t, int sig) 64 { 65 return t->sighand->action[sig - 1].sa.sa_handler; 66 } 67 68 static inline bool sig_handler_ignored(void __user *handler, int sig) 69 { 70 /* Is it explicitly or implicitly ignored? */ 71 return handler == SIG_IGN || 72 (handler == SIG_DFL && sig_kernel_ignore(sig)); 73 } 74 75 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 76 { 77 void __user *handler; 78 79 handler = sig_handler(t, sig); 80 81 /* SIGKILL and SIGSTOP may not be sent to the global init */ 82 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 83 return true; 84 85 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 86 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 87 return true; 88 89 return sig_handler_ignored(handler, sig); 90 } 91 92 static bool sig_ignored(struct task_struct *t, int sig, bool force) 93 { 94 /* 95 * Blocked signals are never ignored, since the 96 * signal handler may change by the time it is 97 * unblocked. 98 */ 99 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 100 return false; 101 102 /* 103 * Tracers may want to know about even ignored signal unless it 104 * is SIGKILL which can't be reported anyway but can be ignored 105 * by SIGNAL_UNKILLABLE task. 106 */ 107 if (t->ptrace && sig != SIGKILL) 108 return false; 109 110 return sig_task_ignored(t, sig, force); 111 } 112 113 /* 114 * Re-calculate pending state from the set of locally pending 115 * signals, globally pending signals, and blocked signals. 116 */ 117 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 118 { 119 unsigned long ready; 120 long i; 121 122 switch (_NSIG_WORDS) { 123 default: 124 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 125 ready |= signal->sig[i] &~ blocked->sig[i]; 126 break; 127 128 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 129 ready |= signal->sig[2] &~ blocked->sig[2]; 130 ready |= signal->sig[1] &~ blocked->sig[1]; 131 ready |= signal->sig[0] &~ blocked->sig[0]; 132 break; 133 134 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 135 ready |= signal->sig[0] &~ blocked->sig[0]; 136 break; 137 138 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 139 } 140 return ready != 0; 141 } 142 143 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 144 145 static bool recalc_sigpending_tsk(struct task_struct *t) 146 { 147 if ((t->jobctl & JOBCTL_PENDING_MASK) || 148 PENDING(&t->pending, &t->blocked) || 149 PENDING(&t->signal->shared_pending, &t->blocked)) { 150 set_tsk_thread_flag(t, TIF_SIGPENDING); 151 return true; 152 } 153 154 /* 155 * We must never clear the flag in another thread, or in current 156 * when it's possible the current syscall is returning -ERESTART*. 157 * So we don't clear it here, and only callers who know they should do. 158 */ 159 return false; 160 } 161 162 /* 163 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 164 * This is superfluous when called on current, the wakeup is a harmless no-op. 165 */ 166 void recalc_sigpending_and_wake(struct task_struct *t) 167 { 168 if (recalc_sigpending_tsk(t)) 169 signal_wake_up(t, 0); 170 } 171 172 void recalc_sigpending(void) 173 { 174 if (!recalc_sigpending_tsk(current) && !freezing(current) && 175 !klp_patch_pending(current)) 176 clear_thread_flag(TIF_SIGPENDING); 177 178 } 179 EXPORT_SYMBOL(recalc_sigpending); 180 181 void calculate_sigpending(void) 182 { 183 /* Have any signals or users of TIF_SIGPENDING been delayed 184 * until after fork? 185 */ 186 spin_lock_irq(¤t->sighand->siglock); 187 set_tsk_thread_flag(current, TIF_SIGPENDING); 188 recalc_sigpending(); 189 spin_unlock_irq(¤t->sighand->siglock); 190 } 191 192 /* Given the mask, find the first available signal that should be serviced. */ 193 194 #define SYNCHRONOUS_MASK \ 195 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 196 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 197 198 int next_signal(struct sigpending *pending, sigset_t *mask) 199 { 200 unsigned long i, *s, *m, x; 201 int sig = 0; 202 203 s = pending->signal.sig; 204 m = mask->sig; 205 206 /* 207 * Handle the first word specially: it contains the 208 * synchronous signals that need to be dequeued first. 209 */ 210 x = *s &~ *m; 211 if (x) { 212 if (x & SYNCHRONOUS_MASK) 213 x &= SYNCHRONOUS_MASK; 214 sig = ffz(~x) + 1; 215 return sig; 216 } 217 218 switch (_NSIG_WORDS) { 219 default: 220 for (i = 1; i < _NSIG_WORDS; ++i) { 221 x = *++s &~ *++m; 222 if (!x) 223 continue; 224 sig = ffz(~x) + i*_NSIG_BPW + 1; 225 break; 226 } 227 break; 228 229 case 2: 230 x = s[1] &~ m[1]; 231 if (!x) 232 break; 233 sig = ffz(~x) + _NSIG_BPW + 1; 234 break; 235 236 case 1: 237 /* Nothing to do */ 238 break; 239 } 240 241 return sig; 242 } 243 244 static inline void print_dropped_signal(int sig) 245 { 246 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 247 248 if (!print_fatal_signals) 249 return; 250 251 if (!__ratelimit(&ratelimit_state)) 252 return; 253 254 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 255 current->comm, current->pid, sig); 256 } 257 258 /** 259 * task_set_jobctl_pending - set jobctl pending bits 260 * @task: target task 261 * @mask: pending bits to set 262 * 263 * Clear @mask from @task->jobctl. @mask must be subset of 264 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 265 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 266 * cleared. If @task is already being killed or exiting, this function 267 * becomes noop. 268 * 269 * CONTEXT: 270 * Must be called with @task->sighand->siglock held. 271 * 272 * RETURNS: 273 * %true if @mask is set, %false if made noop because @task was dying. 274 */ 275 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 276 { 277 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 278 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 279 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 280 281 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 282 return false; 283 284 if (mask & JOBCTL_STOP_SIGMASK) 285 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 286 287 task->jobctl |= mask; 288 return true; 289 } 290 291 /** 292 * task_clear_jobctl_trapping - clear jobctl trapping bit 293 * @task: target task 294 * 295 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 296 * Clear it and wake up the ptracer. Note that we don't need any further 297 * locking. @task->siglock guarantees that @task->parent points to the 298 * ptracer. 299 * 300 * CONTEXT: 301 * Must be called with @task->sighand->siglock held. 302 */ 303 void task_clear_jobctl_trapping(struct task_struct *task) 304 { 305 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 306 task->jobctl &= ~JOBCTL_TRAPPING; 307 smp_mb(); /* advised by wake_up_bit() */ 308 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 309 } 310 } 311 312 /** 313 * task_clear_jobctl_pending - clear jobctl pending bits 314 * @task: target task 315 * @mask: pending bits to clear 316 * 317 * Clear @mask from @task->jobctl. @mask must be subset of 318 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 319 * STOP bits are cleared together. 320 * 321 * If clearing of @mask leaves no stop or trap pending, this function calls 322 * task_clear_jobctl_trapping(). 323 * 324 * CONTEXT: 325 * Must be called with @task->sighand->siglock held. 326 */ 327 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 328 { 329 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 330 331 if (mask & JOBCTL_STOP_PENDING) 332 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 333 334 task->jobctl &= ~mask; 335 336 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 337 task_clear_jobctl_trapping(task); 338 } 339 340 /** 341 * task_participate_group_stop - participate in a group stop 342 * @task: task participating in a group stop 343 * 344 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 345 * Group stop states are cleared and the group stop count is consumed if 346 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 347 * stop, the appropriate %SIGNAL_* flags are set. 348 * 349 * CONTEXT: 350 * Must be called with @task->sighand->siglock held. 351 * 352 * RETURNS: 353 * %true if group stop completion should be notified to the parent, %false 354 * otherwise. 355 */ 356 static bool task_participate_group_stop(struct task_struct *task) 357 { 358 struct signal_struct *sig = task->signal; 359 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 360 361 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 362 363 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 364 365 if (!consume) 366 return false; 367 368 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 369 sig->group_stop_count--; 370 371 /* 372 * Tell the caller to notify completion iff we are entering into a 373 * fresh group stop. Read comment in do_signal_stop() for details. 374 */ 375 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 376 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 377 return true; 378 } 379 return false; 380 } 381 382 void task_join_group_stop(struct task_struct *task) 383 { 384 /* Have the new thread join an on-going signal group stop */ 385 unsigned long jobctl = current->jobctl; 386 if (jobctl & JOBCTL_STOP_PENDING) { 387 struct signal_struct *sig = current->signal; 388 unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK; 389 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 390 if (task_set_jobctl_pending(task, signr | gstop)) { 391 sig->group_stop_count++; 392 } 393 } 394 } 395 396 /* 397 * allocate a new signal queue record 398 * - this may be called without locks if and only if t == current, otherwise an 399 * appropriate lock must be held to stop the target task from exiting 400 */ 401 static struct sigqueue * 402 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 403 { 404 struct sigqueue *q = NULL; 405 struct user_struct *user; 406 407 /* 408 * Protect access to @t credentials. This can go away when all 409 * callers hold rcu read lock. 410 */ 411 rcu_read_lock(); 412 user = get_uid(__task_cred(t)->user); 413 atomic_inc(&user->sigpending); 414 rcu_read_unlock(); 415 416 if (override_rlimit || 417 atomic_read(&user->sigpending) <= 418 task_rlimit(t, RLIMIT_SIGPENDING)) { 419 q = kmem_cache_alloc(sigqueue_cachep, flags); 420 } else { 421 print_dropped_signal(sig); 422 } 423 424 if (unlikely(q == NULL)) { 425 atomic_dec(&user->sigpending); 426 free_uid(user); 427 } else { 428 INIT_LIST_HEAD(&q->list); 429 q->flags = 0; 430 q->user = user; 431 } 432 433 return q; 434 } 435 436 static void __sigqueue_free(struct sigqueue *q) 437 { 438 if (q->flags & SIGQUEUE_PREALLOC) 439 return; 440 atomic_dec(&q->user->sigpending); 441 free_uid(q->user); 442 kmem_cache_free(sigqueue_cachep, q); 443 } 444 445 void flush_sigqueue(struct sigpending *queue) 446 { 447 struct sigqueue *q; 448 449 sigemptyset(&queue->signal); 450 while (!list_empty(&queue->list)) { 451 q = list_entry(queue->list.next, struct sigqueue , list); 452 list_del_init(&q->list); 453 __sigqueue_free(q); 454 } 455 } 456 457 /* 458 * Flush all pending signals for this kthread. 459 */ 460 void flush_signals(struct task_struct *t) 461 { 462 unsigned long flags; 463 464 spin_lock_irqsave(&t->sighand->siglock, flags); 465 clear_tsk_thread_flag(t, TIF_SIGPENDING); 466 flush_sigqueue(&t->pending); 467 flush_sigqueue(&t->signal->shared_pending); 468 spin_unlock_irqrestore(&t->sighand->siglock, flags); 469 } 470 EXPORT_SYMBOL(flush_signals); 471 472 #ifdef CONFIG_POSIX_TIMERS 473 static void __flush_itimer_signals(struct sigpending *pending) 474 { 475 sigset_t signal, retain; 476 struct sigqueue *q, *n; 477 478 signal = pending->signal; 479 sigemptyset(&retain); 480 481 list_for_each_entry_safe(q, n, &pending->list, list) { 482 int sig = q->info.si_signo; 483 484 if (likely(q->info.si_code != SI_TIMER)) { 485 sigaddset(&retain, sig); 486 } else { 487 sigdelset(&signal, sig); 488 list_del_init(&q->list); 489 __sigqueue_free(q); 490 } 491 } 492 493 sigorsets(&pending->signal, &signal, &retain); 494 } 495 496 void flush_itimer_signals(void) 497 { 498 struct task_struct *tsk = current; 499 unsigned long flags; 500 501 spin_lock_irqsave(&tsk->sighand->siglock, flags); 502 __flush_itimer_signals(&tsk->pending); 503 __flush_itimer_signals(&tsk->signal->shared_pending); 504 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 505 } 506 #endif 507 508 void ignore_signals(struct task_struct *t) 509 { 510 int i; 511 512 for (i = 0; i < _NSIG; ++i) 513 t->sighand->action[i].sa.sa_handler = SIG_IGN; 514 515 flush_signals(t); 516 } 517 518 /* 519 * Flush all handlers for a task. 520 */ 521 522 void 523 flush_signal_handlers(struct task_struct *t, int force_default) 524 { 525 int i; 526 struct k_sigaction *ka = &t->sighand->action[0]; 527 for (i = _NSIG ; i != 0 ; i--) { 528 if (force_default || ka->sa.sa_handler != SIG_IGN) 529 ka->sa.sa_handler = SIG_DFL; 530 ka->sa.sa_flags = 0; 531 #ifdef __ARCH_HAS_SA_RESTORER 532 ka->sa.sa_restorer = NULL; 533 #endif 534 sigemptyset(&ka->sa.sa_mask); 535 ka++; 536 } 537 } 538 539 bool unhandled_signal(struct task_struct *tsk, int sig) 540 { 541 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 542 if (is_global_init(tsk)) 543 return true; 544 545 if (handler != SIG_IGN && handler != SIG_DFL) 546 return false; 547 548 /* if ptraced, let the tracer determine */ 549 return !tsk->ptrace; 550 } 551 552 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 553 bool *resched_timer) 554 { 555 struct sigqueue *q, *first = NULL; 556 557 /* 558 * Collect the siginfo appropriate to this signal. Check if 559 * there is another siginfo for the same signal. 560 */ 561 list_for_each_entry(q, &list->list, list) { 562 if (q->info.si_signo == sig) { 563 if (first) 564 goto still_pending; 565 first = q; 566 } 567 } 568 569 sigdelset(&list->signal, sig); 570 571 if (first) { 572 still_pending: 573 list_del_init(&first->list); 574 copy_siginfo(info, &first->info); 575 576 *resched_timer = 577 (first->flags & SIGQUEUE_PREALLOC) && 578 (info->si_code == SI_TIMER) && 579 (info->si_sys_private); 580 581 __sigqueue_free(first); 582 } else { 583 /* 584 * Ok, it wasn't in the queue. This must be 585 * a fast-pathed signal or we must have been 586 * out of queue space. So zero out the info. 587 */ 588 clear_siginfo(info); 589 info->si_signo = sig; 590 info->si_errno = 0; 591 info->si_code = SI_USER; 592 info->si_pid = 0; 593 info->si_uid = 0; 594 } 595 } 596 597 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 598 kernel_siginfo_t *info, bool *resched_timer) 599 { 600 int sig = next_signal(pending, mask); 601 602 if (sig) 603 collect_signal(sig, pending, info, resched_timer); 604 return sig; 605 } 606 607 /* 608 * Dequeue a signal and return the element to the caller, which is 609 * expected to free it. 610 * 611 * All callers have to hold the siglock. 612 */ 613 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info) 614 { 615 bool resched_timer = false; 616 int signr; 617 618 /* We only dequeue private signals from ourselves, we don't let 619 * signalfd steal them 620 */ 621 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 622 if (!signr) { 623 signr = __dequeue_signal(&tsk->signal->shared_pending, 624 mask, info, &resched_timer); 625 #ifdef CONFIG_POSIX_TIMERS 626 /* 627 * itimer signal ? 628 * 629 * itimers are process shared and we restart periodic 630 * itimers in the signal delivery path to prevent DoS 631 * attacks in the high resolution timer case. This is 632 * compliant with the old way of self-restarting 633 * itimers, as the SIGALRM is a legacy signal and only 634 * queued once. Changing the restart behaviour to 635 * restart the timer in the signal dequeue path is 636 * reducing the timer noise on heavy loaded !highres 637 * systems too. 638 */ 639 if (unlikely(signr == SIGALRM)) { 640 struct hrtimer *tmr = &tsk->signal->real_timer; 641 642 if (!hrtimer_is_queued(tmr) && 643 tsk->signal->it_real_incr != 0) { 644 hrtimer_forward(tmr, tmr->base->get_time(), 645 tsk->signal->it_real_incr); 646 hrtimer_restart(tmr); 647 } 648 } 649 #endif 650 } 651 652 recalc_sigpending(); 653 if (!signr) 654 return 0; 655 656 if (unlikely(sig_kernel_stop(signr))) { 657 /* 658 * Set a marker that we have dequeued a stop signal. Our 659 * caller might release the siglock and then the pending 660 * stop signal it is about to process is no longer in the 661 * pending bitmasks, but must still be cleared by a SIGCONT 662 * (and overruled by a SIGKILL). So those cases clear this 663 * shared flag after we've set it. Note that this flag may 664 * remain set after the signal we return is ignored or 665 * handled. That doesn't matter because its only purpose 666 * is to alert stop-signal processing code when another 667 * processor has come along and cleared the flag. 668 */ 669 current->jobctl |= JOBCTL_STOP_DEQUEUED; 670 } 671 #ifdef CONFIG_POSIX_TIMERS 672 if (resched_timer) { 673 /* 674 * Release the siglock to ensure proper locking order 675 * of timer locks outside of siglocks. Note, we leave 676 * irqs disabled here, since the posix-timers code is 677 * about to disable them again anyway. 678 */ 679 spin_unlock(&tsk->sighand->siglock); 680 posixtimer_rearm(info); 681 spin_lock(&tsk->sighand->siglock); 682 683 /* Don't expose the si_sys_private value to userspace */ 684 info->si_sys_private = 0; 685 } 686 #endif 687 return signr; 688 } 689 EXPORT_SYMBOL_GPL(dequeue_signal); 690 691 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 692 { 693 struct task_struct *tsk = current; 694 struct sigpending *pending = &tsk->pending; 695 struct sigqueue *q, *sync = NULL; 696 697 /* 698 * Might a synchronous signal be in the queue? 699 */ 700 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 701 return 0; 702 703 /* 704 * Return the first synchronous signal in the queue. 705 */ 706 list_for_each_entry(q, &pending->list, list) { 707 /* Synchronous signals have a postive si_code */ 708 if ((q->info.si_code > SI_USER) && 709 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 710 sync = q; 711 goto next; 712 } 713 } 714 return 0; 715 next: 716 /* 717 * Check if there is another siginfo for the same signal. 718 */ 719 list_for_each_entry_continue(q, &pending->list, list) { 720 if (q->info.si_signo == sync->info.si_signo) 721 goto still_pending; 722 } 723 724 sigdelset(&pending->signal, sync->info.si_signo); 725 recalc_sigpending(); 726 still_pending: 727 list_del_init(&sync->list); 728 copy_siginfo(info, &sync->info); 729 __sigqueue_free(sync); 730 return info->si_signo; 731 } 732 733 /* 734 * Tell a process that it has a new active signal.. 735 * 736 * NOTE! we rely on the previous spin_lock to 737 * lock interrupts for us! We can only be called with 738 * "siglock" held, and the local interrupt must 739 * have been disabled when that got acquired! 740 * 741 * No need to set need_resched since signal event passing 742 * goes through ->blocked 743 */ 744 void signal_wake_up_state(struct task_struct *t, unsigned int state) 745 { 746 set_tsk_thread_flag(t, TIF_SIGPENDING); 747 /* 748 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 749 * case. We don't check t->state here because there is a race with it 750 * executing another processor and just now entering stopped state. 751 * By using wake_up_state, we ensure the process will wake up and 752 * handle its death signal. 753 */ 754 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 755 kick_process(t); 756 } 757 758 /* 759 * Remove signals in mask from the pending set and queue. 760 * Returns 1 if any signals were found. 761 * 762 * All callers must be holding the siglock. 763 */ 764 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 765 { 766 struct sigqueue *q, *n; 767 sigset_t m; 768 769 sigandsets(&m, mask, &s->signal); 770 if (sigisemptyset(&m)) 771 return; 772 773 sigandnsets(&s->signal, &s->signal, mask); 774 list_for_each_entry_safe(q, n, &s->list, list) { 775 if (sigismember(mask, q->info.si_signo)) { 776 list_del_init(&q->list); 777 __sigqueue_free(q); 778 } 779 } 780 } 781 782 static inline int is_si_special(const struct kernel_siginfo *info) 783 { 784 return info <= SEND_SIG_PRIV; 785 } 786 787 static inline bool si_fromuser(const struct kernel_siginfo *info) 788 { 789 return info == SEND_SIG_NOINFO || 790 (!is_si_special(info) && SI_FROMUSER(info)); 791 } 792 793 /* 794 * called with RCU read lock from check_kill_permission() 795 */ 796 static bool kill_ok_by_cred(struct task_struct *t) 797 { 798 const struct cred *cred = current_cred(); 799 const struct cred *tcred = __task_cred(t); 800 801 return uid_eq(cred->euid, tcred->suid) || 802 uid_eq(cred->euid, tcred->uid) || 803 uid_eq(cred->uid, tcred->suid) || 804 uid_eq(cred->uid, tcred->uid) || 805 ns_capable(tcred->user_ns, CAP_KILL); 806 } 807 808 /* 809 * Bad permissions for sending the signal 810 * - the caller must hold the RCU read lock 811 */ 812 static int check_kill_permission(int sig, struct kernel_siginfo *info, 813 struct task_struct *t) 814 { 815 struct pid *sid; 816 int error; 817 818 if (!valid_signal(sig)) 819 return -EINVAL; 820 821 if (!si_fromuser(info)) 822 return 0; 823 824 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 825 if (error) 826 return error; 827 828 if (!same_thread_group(current, t) && 829 !kill_ok_by_cred(t)) { 830 switch (sig) { 831 case SIGCONT: 832 sid = task_session(t); 833 /* 834 * We don't return the error if sid == NULL. The 835 * task was unhashed, the caller must notice this. 836 */ 837 if (!sid || sid == task_session(current)) 838 break; 839 default: 840 return -EPERM; 841 } 842 } 843 844 return security_task_kill(t, info, sig, NULL); 845 } 846 847 /** 848 * ptrace_trap_notify - schedule trap to notify ptracer 849 * @t: tracee wanting to notify tracer 850 * 851 * This function schedules sticky ptrace trap which is cleared on the next 852 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 853 * ptracer. 854 * 855 * If @t is running, STOP trap will be taken. If trapped for STOP and 856 * ptracer is listening for events, tracee is woken up so that it can 857 * re-trap for the new event. If trapped otherwise, STOP trap will be 858 * eventually taken without returning to userland after the existing traps 859 * are finished by PTRACE_CONT. 860 * 861 * CONTEXT: 862 * Must be called with @task->sighand->siglock held. 863 */ 864 static void ptrace_trap_notify(struct task_struct *t) 865 { 866 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 867 assert_spin_locked(&t->sighand->siglock); 868 869 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 870 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 871 } 872 873 /* 874 * Handle magic process-wide effects of stop/continue signals. Unlike 875 * the signal actions, these happen immediately at signal-generation 876 * time regardless of blocking, ignoring, or handling. This does the 877 * actual continuing for SIGCONT, but not the actual stopping for stop 878 * signals. The process stop is done as a signal action for SIG_DFL. 879 * 880 * Returns true if the signal should be actually delivered, otherwise 881 * it should be dropped. 882 */ 883 static bool prepare_signal(int sig, struct task_struct *p, bool force) 884 { 885 struct signal_struct *signal = p->signal; 886 struct task_struct *t; 887 sigset_t flush; 888 889 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 890 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 891 return sig == SIGKILL; 892 /* 893 * The process is in the middle of dying, nothing to do. 894 */ 895 } else if (sig_kernel_stop(sig)) { 896 /* 897 * This is a stop signal. Remove SIGCONT from all queues. 898 */ 899 siginitset(&flush, sigmask(SIGCONT)); 900 flush_sigqueue_mask(&flush, &signal->shared_pending); 901 for_each_thread(p, t) 902 flush_sigqueue_mask(&flush, &t->pending); 903 } else if (sig == SIGCONT) { 904 unsigned int why; 905 /* 906 * Remove all stop signals from all queues, wake all threads. 907 */ 908 siginitset(&flush, SIG_KERNEL_STOP_MASK); 909 flush_sigqueue_mask(&flush, &signal->shared_pending); 910 for_each_thread(p, t) { 911 flush_sigqueue_mask(&flush, &t->pending); 912 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 913 if (likely(!(t->ptrace & PT_SEIZED))) 914 wake_up_state(t, __TASK_STOPPED); 915 else 916 ptrace_trap_notify(t); 917 } 918 919 /* 920 * Notify the parent with CLD_CONTINUED if we were stopped. 921 * 922 * If we were in the middle of a group stop, we pretend it 923 * was already finished, and then continued. Since SIGCHLD 924 * doesn't queue we report only CLD_STOPPED, as if the next 925 * CLD_CONTINUED was dropped. 926 */ 927 why = 0; 928 if (signal->flags & SIGNAL_STOP_STOPPED) 929 why |= SIGNAL_CLD_CONTINUED; 930 else if (signal->group_stop_count) 931 why |= SIGNAL_CLD_STOPPED; 932 933 if (why) { 934 /* 935 * The first thread which returns from do_signal_stop() 936 * will take ->siglock, notice SIGNAL_CLD_MASK, and 937 * notify its parent. See get_signal(). 938 */ 939 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 940 signal->group_stop_count = 0; 941 signal->group_exit_code = 0; 942 } 943 } 944 945 return !sig_ignored(p, sig, force); 946 } 947 948 /* 949 * Test if P wants to take SIG. After we've checked all threads with this, 950 * it's equivalent to finding no threads not blocking SIG. Any threads not 951 * blocking SIG were ruled out because they are not running and already 952 * have pending signals. Such threads will dequeue from the shared queue 953 * as soon as they're available, so putting the signal on the shared queue 954 * will be equivalent to sending it to one such thread. 955 */ 956 static inline bool wants_signal(int sig, struct task_struct *p) 957 { 958 if (sigismember(&p->blocked, sig)) 959 return false; 960 961 if (p->flags & PF_EXITING) 962 return false; 963 964 if (sig == SIGKILL) 965 return true; 966 967 if (task_is_stopped_or_traced(p)) 968 return false; 969 970 return task_curr(p) || !signal_pending(p); 971 } 972 973 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 974 { 975 struct signal_struct *signal = p->signal; 976 struct task_struct *t; 977 978 /* 979 * Now find a thread we can wake up to take the signal off the queue. 980 * 981 * If the main thread wants the signal, it gets first crack. 982 * Probably the least surprising to the average bear. 983 */ 984 if (wants_signal(sig, p)) 985 t = p; 986 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 987 /* 988 * There is just one thread and it does not need to be woken. 989 * It will dequeue unblocked signals before it runs again. 990 */ 991 return; 992 else { 993 /* 994 * Otherwise try to find a suitable thread. 995 */ 996 t = signal->curr_target; 997 while (!wants_signal(sig, t)) { 998 t = next_thread(t); 999 if (t == signal->curr_target) 1000 /* 1001 * No thread needs to be woken. 1002 * Any eligible threads will see 1003 * the signal in the queue soon. 1004 */ 1005 return; 1006 } 1007 signal->curr_target = t; 1008 } 1009 1010 /* 1011 * Found a killable thread. If the signal will be fatal, 1012 * then start taking the whole group down immediately. 1013 */ 1014 if (sig_fatal(p, sig) && 1015 !(signal->flags & SIGNAL_GROUP_EXIT) && 1016 !sigismember(&t->real_blocked, sig) && 1017 (sig == SIGKILL || !p->ptrace)) { 1018 /* 1019 * This signal will be fatal to the whole group. 1020 */ 1021 if (!sig_kernel_coredump(sig)) { 1022 /* 1023 * Start a group exit and wake everybody up. 1024 * This way we don't have other threads 1025 * running and doing things after a slower 1026 * thread has the fatal signal pending. 1027 */ 1028 signal->flags = SIGNAL_GROUP_EXIT; 1029 signal->group_exit_code = sig; 1030 signal->group_stop_count = 0; 1031 t = p; 1032 do { 1033 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1034 sigaddset(&t->pending.signal, SIGKILL); 1035 signal_wake_up(t, 1); 1036 } while_each_thread(p, t); 1037 return; 1038 } 1039 } 1040 1041 /* 1042 * The signal is already in the shared-pending queue. 1043 * Tell the chosen thread to wake up and dequeue it. 1044 */ 1045 signal_wake_up(t, sig == SIGKILL); 1046 return; 1047 } 1048 1049 static inline bool legacy_queue(struct sigpending *signals, int sig) 1050 { 1051 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1052 } 1053 1054 #ifdef CONFIG_USER_NS 1055 static inline void userns_fixup_signal_uid(struct kernel_siginfo *info, struct task_struct *t) 1056 { 1057 if (current_user_ns() == task_cred_xxx(t, user_ns)) 1058 return; 1059 1060 if (SI_FROMKERNEL(info)) 1061 return; 1062 1063 rcu_read_lock(); 1064 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), 1065 make_kuid(current_user_ns(), info->si_uid)); 1066 rcu_read_unlock(); 1067 } 1068 #else 1069 static inline void userns_fixup_signal_uid(struct kernel_siginfo *info, struct task_struct *t) 1070 { 1071 return; 1072 } 1073 #endif 1074 1075 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1076 enum pid_type type, int from_ancestor_ns) 1077 { 1078 struct sigpending *pending; 1079 struct sigqueue *q; 1080 int override_rlimit; 1081 int ret = 0, result; 1082 1083 assert_spin_locked(&t->sighand->siglock); 1084 1085 result = TRACE_SIGNAL_IGNORED; 1086 if (!prepare_signal(sig, t, 1087 from_ancestor_ns || (info == SEND_SIG_PRIV))) 1088 goto ret; 1089 1090 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1091 /* 1092 * Short-circuit ignored signals and support queuing 1093 * exactly one non-rt signal, so that we can get more 1094 * detailed information about the cause of the signal. 1095 */ 1096 result = TRACE_SIGNAL_ALREADY_PENDING; 1097 if (legacy_queue(pending, sig)) 1098 goto ret; 1099 1100 result = TRACE_SIGNAL_DELIVERED; 1101 /* 1102 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1103 */ 1104 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1105 goto out_set; 1106 1107 /* 1108 * Real-time signals must be queued if sent by sigqueue, or 1109 * some other real-time mechanism. It is implementation 1110 * defined whether kill() does so. We attempt to do so, on 1111 * the principle of least surprise, but since kill is not 1112 * allowed to fail with EAGAIN when low on memory we just 1113 * make sure at least one signal gets delivered and don't 1114 * pass on the info struct. 1115 */ 1116 if (sig < SIGRTMIN) 1117 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1118 else 1119 override_rlimit = 0; 1120 1121 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit); 1122 if (q) { 1123 list_add_tail(&q->list, &pending->list); 1124 switch ((unsigned long) info) { 1125 case (unsigned long) SEND_SIG_NOINFO: 1126 clear_siginfo(&q->info); 1127 q->info.si_signo = sig; 1128 q->info.si_errno = 0; 1129 q->info.si_code = SI_USER; 1130 q->info.si_pid = task_tgid_nr_ns(current, 1131 task_active_pid_ns(t)); 1132 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1133 break; 1134 case (unsigned long) SEND_SIG_PRIV: 1135 clear_siginfo(&q->info); 1136 q->info.si_signo = sig; 1137 q->info.si_errno = 0; 1138 q->info.si_code = SI_KERNEL; 1139 q->info.si_pid = 0; 1140 q->info.si_uid = 0; 1141 break; 1142 default: 1143 copy_siginfo(&q->info, info); 1144 if (from_ancestor_ns) 1145 q->info.si_pid = 0; 1146 break; 1147 } 1148 1149 userns_fixup_signal_uid(&q->info, t); 1150 1151 } else if (!is_si_special(info)) { 1152 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1153 /* 1154 * Queue overflow, abort. We may abort if the 1155 * signal was rt and sent by user using something 1156 * other than kill(). 1157 */ 1158 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1159 ret = -EAGAIN; 1160 goto ret; 1161 } else { 1162 /* 1163 * This is a silent loss of information. We still 1164 * send the signal, but the *info bits are lost. 1165 */ 1166 result = TRACE_SIGNAL_LOSE_INFO; 1167 } 1168 } 1169 1170 out_set: 1171 signalfd_notify(t, sig); 1172 sigaddset(&pending->signal, sig); 1173 1174 /* Let multiprocess signals appear after on-going forks */ 1175 if (type > PIDTYPE_TGID) { 1176 struct multiprocess_signals *delayed; 1177 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1178 sigset_t *signal = &delayed->signal; 1179 /* Can't queue both a stop and a continue signal */ 1180 if (sig == SIGCONT) 1181 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1182 else if (sig_kernel_stop(sig)) 1183 sigdelset(signal, SIGCONT); 1184 sigaddset(signal, sig); 1185 } 1186 } 1187 1188 complete_signal(sig, t, type); 1189 ret: 1190 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1191 return ret; 1192 } 1193 1194 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1195 enum pid_type type) 1196 { 1197 int from_ancestor_ns = 0; 1198 1199 #ifdef CONFIG_PID_NS 1200 from_ancestor_ns = si_fromuser(info) && 1201 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1202 #endif 1203 1204 return __send_signal(sig, info, t, type, from_ancestor_ns); 1205 } 1206 1207 static void print_fatal_signal(int signr) 1208 { 1209 struct pt_regs *regs = signal_pt_regs(); 1210 pr_info("potentially unexpected fatal signal %d.\n", signr); 1211 1212 #if defined(__i386__) && !defined(__arch_um__) 1213 pr_info("code at %08lx: ", regs->ip); 1214 { 1215 int i; 1216 for (i = 0; i < 16; i++) { 1217 unsigned char insn; 1218 1219 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1220 break; 1221 pr_cont("%02x ", insn); 1222 } 1223 } 1224 pr_cont("\n"); 1225 #endif 1226 preempt_disable(); 1227 show_regs(regs); 1228 preempt_enable(); 1229 } 1230 1231 static int __init setup_print_fatal_signals(char *str) 1232 { 1233 get_option (&str, &print_fatal_signals); 1234 1235 return 1; 1236 } 1237 1238 __setup("print-fatal-signals=", setup_print_fatal_signals); 1239 1240 int 1241 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1242 { 1243 return send_signal(sig, info, p, PIDTYPE_TGID); 1244 } 1245 1246 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1247 enum pid_type type) 1248 { 1249 unsigned long flags; 1250 int ret = -ESRCH; 1251 1252 if (lock_task_sighand(p, &flags)) { 1253 ret = send_signal(sig, info, p, type); 1254 unlock_task_sighand(p, &flags); 1255 } 1256 1257 return ret; 1258 } 1259 1260 /* 1261 * Force a signal that the process can't ignore: if necessary 1262 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1263 * 1264 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1265 * since we do not want to have a signal handler that was blocked 1266 * be invoked when user space had explicitly blocked it. 1267 * 1268 * We don't want to have recursive SIGSEGV's etc, for example, 1269 * that is why we also clear SIGNAL_UNKILLABLE. 1270 */ 1271 int 1272 force_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *t) 1273 { 1274 unsigned long int flags; 1275 int ret, blocked, ignored; 1276 struct k_sigaction *action; 1277 1278 spin_lock_irqsave(&t->sighand->siglock, flags); 1279 action = &t->sighand->action[sig-1]; 1280 ignored = action->sa.sa_handler == SIG_IGN; 1281 blocked = sigismember(&t->blocked, sig); 1282 if (blocked || ignored) { 1283 action->sa.sa_handler = SIG_DFL; 1284 if (blocked) { 1285 sigdelset(&t->blocked, sig); 1286 recalc_sigpending_and_wake(t); 1287 } 1288 } 1289 /* 1290 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1291 * debugging to leave init killable. 1292 */ 1293 if (action->sa.sa_handler == SIG_DFL && !t->ptrace) 1294 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1295 ret = send_signal(sig, info, t, PIDTYPE_PID); 1296 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1297 1298 return ret; 1299 } 1300 1301 /* 1302 * Nuke all other threads in the group. 1303 */ 1304 int zap_other_threads(struct task_struct *p) 1305 { 1306 struct task_struct *t = p; 1307 int count = 0; 1308 1309 p->signal->group_stop_count = 0; 1310 1311 while_each_thread(p, t) { 1312 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1313 count++; 1314 1315 /* Don't bother with already dead threads */ 1316 if (t->exit_state) 1317 continue; 1318 sigaddset(&t->pending.signal, SIGKILL); 1319 signal_wake_up(t, 1); 1320 } 1321 1322 return count; 1323 } 1324 1325 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1326 unsigned long *flags) 1327 { 1328 struct sighand_struct *sighand; 1329 1330 rcu_read_lock(); 1331 for (;;) { 1332 sighand = rcu_dereference(tsk->sighand); 1333 if (unlikely(sighand == NULL)) 1334 break; 1335 1336 /* 1337 * This sighand can be already freed and even reused, but 1338 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1339 * initializes ->siglock: this slab can't go away, it has 1340 * the same object type, ->siglock can't be reinitialized. 1341 * 1342 * We need to ensure that tsk->sighand is still the same 1343 * after we take the lock, we can race with de_thread() or 1344 * __exit_signal(). In the latter case the next iteration 1345 * must see ->sighand == NULL. 1346 */ 1347 spin_lock_irqsave(&sighand->siglock, *flags); 1348 if (likely(sighand == tsk->sighand)) 1349 break; 1350 spin_unlock_irqrestore(&sighand->siglock, *flags); 1351 } 1352 rcu_read_unlock(); 1353 1354 return sighand; 1355 } 1356 1357 /* 1358 * send signal info to all the members of a group 1359 */ 1360 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1361 struct task_struct *p, enum pid_type type) 1362 { 1363 int ret; 1364 1365 rcu_read_lock(); 1366 ret = check_kill_permission(sig, info, p); 1367 rcu_read_unlock(); 1368 1369 if (!ret && sig) 1370 ret = do_send_sig_info(sig, info, p, type); 1371 1372 return ret; 1373 } 1374 1375 /* 1376 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1377 * control characters do (^C, ^Z etc) 1378 * - the caller must hold at least a readlock on tasklist_lock 1379 */ 1380 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1381 { 1382 struct task_struct *p = NULL; 1383 int retval, success; 1384 1385 success = 0; 1386 retval = -ESRCH; 1387 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1388 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1389 success |= !err; 1390 retval = err; 1391 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1392 return success ? 0 : retval; 1393 } 1394 1395 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1396 { 1397 int error = -ESRCH; 1398 struct task_struct *p; 1399 1400 for (;;) { 1401 rcu_read_lock(); 1402 p = pid_task(pid, PIDTYPE_PID); 1403 if (p) 1404 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1405 rcu_read_unlock(); 1406 if (likely(!p || error != -ESRCH)) 1407 return error; 1408 1409 /* 1410 * The task was unhashed in between, try again. If it 1411 * is dead, pid_task() will return NULL, if we race with 1412 * de_thread() it will find the new leader. 1413 */ 1414 } 1415 } 1416 1417 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1418 { 1419 int error; 1420 rcu_read_lock(); 1421 error = kill_pid_info(sig, info, find_vpid(pid)); 1422 rcu_read_unlock(); 1423 return error; 1424 } 1425 1426 static inline bool kill_as_cred_perm(const struct cred *cred, 1427 struct task_struct *target) 1428 { 1429 const struct cred *pcred = __task_cred(target); 1430 1431 return uid_eq(cred->euid, pcred->suid) || 1432 uid_eq(cred->euid, pcred->uid) || 1433 uid_eq(cred->uid, pcred->suid) || 1434 uid_eq(cred->uid, pcred->uid); 1435 } 1436 1437 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1438 int kill_pid_info_as_cred(int sig, struct kernel_siginfo *info, struct pid *pid, 1439 const struct cred *cred) 1440 { 1441 int ret = -EINVAL; 1442 struct task_struct *p; 1443 unsigned long flags; 1444 1445 if (!valid_signal(sig)) 1446 return ret; 1447 1448 rcu_read_lock(); 1449 p = pid_task(pid, PIDTYPE_PID); 1450 if (!p) { 1451 ret = -ESRCH; 1452 goto out_unlock; 1453 } 1454 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1455 ret = -EPERM; 1456 goto out_unlock; 1457 } 1458 ret = security_task_kill(p, info, sig, cred); 1459 if (ret) 1460 goto out_unlock; 1461 1462 if (sig) { 1463 if (lock_task_sighand(p, &flags)) { 1464 ret = __send_signal(sig, info, p, PIDTYPE_TGID, 0); 1465 unlock_task_sighand(p, &flags); 1466 } else 1467 ret = -ESRCH; 1468 } 1469 out_unlock: 1470 rcu_read_unlock(); 1471 return ret; 1472 } 1473 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1474 1475 /* 1476 * kill_something_info() interprets pid in interesting ways just like kill(2). 1477 * 1478 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1479 * is probably wrong. Should make it like BSD or SYSV. 1480 */ 1481 1482 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1483 { 1484 int ret; 1485 1486 if (pid > 0) { 1487 rcu_read_lock(); 1488 ret = kill_pid_info(sig, info, find_vpid(pid)); 1489 rcu_read_unlock(); 1490 return ret; 1491 } 1492 1493 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1494 if (pid == INT_MIN) 1495 return -ESRCH; 1496 1497 read_lock(&tasklist_lock); 1498 if (pid != -1) { 1499 ret = __kill_pgrp_info(sig, info, 1500 pid ? find_vpid(-pid) : task_pgrp(current)); 1501 } else { 1502 int retval = 0, count = 0; 1503 struct task_struct * p; 1504 1505 for_each_process(p) { 1506 if (task_pid_vnr(p) > 1 && 1507 !same_thread_group(p, current)) { 1508 int err = group_send_sig_info(sig, info, p, 1509 PIDTYPE_MAX); 1510 ++count; 1511 if (err != -EPERM) 1512 retval = err; 1513 } 1514 } 1515 ret = count ? retval : -ESRCH; 1516 } 1517 read_unlock(&tasklist_lock); 1518 1519 return ret; 1520 } 1521 1522 /* 1523 * These are for backward compatibility with the rest of the kernel source. 1524 */ 1525 1526 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1527 { 1528 /* 1529 * Make sure legacy kernel users don't send in bad values 1530 * (normal paths check this in check_kill_permission). 1531 */ 1532 if (!valid_signal(sig)) 1533 return -EINVAL; 1534 1535 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1536 } 1537 EXPORT_SYMBOL(send_sig_info); 1538 1539 #define __si_special(priv) \ 1540 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1541 1542 int 1543 send_sig(int sig, struct task_struct *p, int priv) 1544 { 1545 return send_sig_info(sig, __si_special(priv), p); 1546 } 1547 EXPORT_SYMBOL(send_sig); 1548 1549 void force_sig(int sig, struct task_struct *p) 1550 { 1551 force_sig_info(sig, SEND_SIG_PRIV, p); 1552 } 1553 EXPORT_SYMBOL(force_sig); 1554 1555 /* 1556 * When things go south during signal handling, we 1557 * will force a SIGSEGV. And if the signal that caused 1558 * the problem was already a SIGSEGV, we'll want to 1559 * make sure we don't even try to deliver the signal.. 1560 */ 1561 void force_sigsegv(int sig, struct task_struct *p) 1562 { 1563 if (sig == SIGSEGV) { 1564 unsigned long flags; 1565 spin_lock_irqsave(&p->sighand->siglock, flags); 1566 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1567 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1568 } 1569 force_sig(SIGSEGV, p); 1570 } 1571 1572 int force_sig_fault(int sig, int code, void __user *addr 1573 ___ARCH_SI_TRAPNO(int trapno) 1574 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1575 , struct task_struct *t) 1576 { 1577 struct kernel_siginfo info; 1578 1579 clear_siginfo(&info); 1580 info.si_signo = sig; 1581 info.si_errno = 0; 1582 info.si_code = code; 1583 info.si_addr = addr; 1584 #ifdef __ARCH_SI_TRAPNO 1585 info.si_trapno = trapno; 1586 #endif 1587 #ifdef __ia64__ 1588 info.si_imm = imm; 1589 info.si_flags = flags; 1590 info.si_isr = isr; 1591 #endif 1592 return force_sig_info(info.si_signo, &info, t); 1593 } 1594 1595 int send_sig_fault(int sig, int code, void __user *addr 1596 ___ARCH_SI_TRAPNO(int trapno) 1597 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1598 , struct task_struct *t) 1599 { 1600 struct kernel_siginfo info; 1601 1602 clear_siginfo(&info); 1603 info.si_signo = sig; 1604 info.si_errno = 0; 1605 info.si_code = code; 1606 info.si_addr = addr; 1607 #ifdef __ARCH_SI_TRAPNO 1608 info.si_trapno = trapno; 1609 #endif 1610 #ifdef __ia64__ 1611 info.si_imm = imm; 1612 info.si_flags = flags; 1613 info.si_isr = isr; 1614 #endif 1615 return send_sig_info(info.si_signo, &info, t); 1616 } 1617 1618 int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1619 { 1620 struct kernel_siginfo info; 1621 1622 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1623 clear_siginfo(&info); 1624 info.si_signo = SIGBUS; 1625 info.si_errno = 0; 1626 info.si_code = code; 1627 info.si_addr = addr; 1628 info.si_addr_lsb = lsb; 1629 return force_sig_info(info.si_signo, &info, t); 1630 } 1631 1632 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1633 { 1634 struct kernel_siginfo info; 1635 1636 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1637 clear_siginfo(&info); 1638 info.si_signo = SIGBUS; 1639 info.si_errno = 0; 1640 info.si_code = code; 1641 info.si_addr = addr; 1642 info.si_addr_lsb = lsb; 1643 return send_sig_info(info.si_signo, &info, t); 1644 } 1645 EXPORT_SYMBOL(send_sig_mceerr); 1646 1647 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1648 { 1649 struct kernel_siginfo info; 1650 1651 clear_siginfo(&info); 1652 info.si_signo = SIGSEGV; 1653 info.si_errno = 0; 1654 info.si_code = SEGV_BNDERR; 1655 info.si_addr = addr; 1656 info.si_lower = lower; 1657 info.si_upper = upper; 1658 return force_sig_info(info.si_signo, &info, current); 1659 } 1660 1661 #ifdef SEGV_PKUERR 1662 int force_sig_pkuerr(void __user *addr, u32 pkey) 1663 { 1664 struct kernel_siginfo info; 1665 1666 clear_siginfo(&info); 1667 info.si_signo = SIGSEGV; 1668 info.si_errno = 0; 1669 info.si_code = SEGV_PKUERR; 1670 info.si_addr = addr; 1671 info.si_pkey = pkey; 1672 return force_sig_info(info.si_signo, &info, current); 1673 } 1674 #endif 1675 1676 /* For the crazy architectures that include trap information in 1677 * the errno field, instead of an actual errno value. 1678 */ 1679 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1680 { 1681 struct kernel_siginfo info; 1682 1683 clear_siginfo(&info); 1684 info.si_signo = SIGTRAP; 1685 info.si_errno = errno; 1686 info.si_code = TRAP_HWBKPT; 1687 info.si_addr = addr; 1688 return force_sig_info(info.si_signo, &info, current); 1689 } 1690 1691 int kill_pgrp(struct pid *pid, int sig, int priv) 1692 { 1693 int ret; 1694 1695 read_lock(&tasklist_lock); 1696 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1697 read_unlock(&tasklist_lock); 1698 1699 return ret; 1700 } 1701 EXPORT_SYMBOL(kill_pgrp); 1702 1703 int kill_pid(struct pid *pid, int sig, int priv) 1704 { 1705 return kill_pid_info(sig, __si_special(priv), pid); 1706 } 1707 EXPORT_SYMBOL(kill_pid); 1708 1709 /* 1710 * These functions support sending signals using preallocated sigqueue 1711 * structures. This is needed "because realtime applications cannot 1712 * afford to lose notifications of asynchronous events, like timer 1713 * expirations or I/O completions". In the case of POSIX Timers 1714 * we allocate the sigqueue structure from the timer_create. If this 1715 * allocation fails we are able to report the failure to the application 1716 * with an EAGAIN error. 1717 */ 1718 struct sigqueue *sigqueue_alloc(void) 1719 { 1720 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1721 1722 if (q) 1723 q->flags |= SIGQUEUE_PREALLOC; 1724 1725 return q; 1726 } 1727 1728 void sigqueue_free(struct sigqueue *q) 1729 { 1730 unsigned long flags; 1731 spinlock_t *lock = ¤t->sighand->siglock; 1732 1733 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1734 /* 1735 * We must hold ->siglock while testing q->list 1736 * to serialize with collect_signal() or with 1737 * __exit_signal()->flush_sigqueue(). 1738 */ 1739 spin_lock_irqsave(lock, flags); 1740 q->flags &= ~SIGQUEUE_PREALLOC; 1741 /* 1742 * If it is queued it will be freed when dequeued, 1743 * like the "regular" sigqueue. 1744 */ 1745 if (!list_empty(&q->list)) 1746 q = NULL; 1747 spin_unlock_irqrestore(lock, flags); 1748 1749 if (q) 1750 __sigqueue_free(q); 1751 } 1752 1753 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1754 { 1755 int sig = q->info.si_signo; 1756 struct sigpending *pending; 1757 struct task_struct *t; 1758 unsigned long flags; 1759 int ret, result; 1760 1761 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1762 1763 ret = -1; 1764 rcu_read_lock(); 1765 t = pid_task(pid, type); 1766 if (!t || !likely(lock_task_sighand(t, &flags))) 1767 goto ret; 1768 1769 ret = 1; /* the signal is ignored */ 1770 result = TRACE_SIGNAL_IGNORED; 1771 if (!prepare_signal(sig, t, false)) 1772 goto out; 1773 1774 ret = 0; 1775 if (unlikely(!list_empty(&q->list))) { 1776 /* 1777 * If an SI_TIMER entry is already queue just increment 1778 * the overrun count. 1779 */ 1780 BUG_ON(q->info.si_code != SI_TIMER); 1781 q->info.si_overrun++; 1782 result = TRACE_SIGNAL_ALREADY_PENDING; 1783 goto out; 1784 } 1785 q->info.si_overrun = 0; 1786 1787 signalfd_notify(t, sig); 1788 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1789 list_add_tail(&q->list, &pending->list); 1790 sigaddset(&pending->signal, sig); 1791 complete_signal(sig, t, type); 1792 result = TRACE_SIGNAL_DELIVERED; 1793 out: 1794 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 1795 unlock_task_sighand(t, &flags); 1796 ret: 1797 rcu_read_unlock(); 1798 return ret; 1799 } 1800 1801 /* 1802 * Let a parent know about the death of a child. 1803 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1804 * 1805 * Returns true if our parent ignored us and so we've switched to 1806 * self-reaping. 1807 */ 1808 bool do_notify_parent(struct task_struct *tsk, int sig) 1809 { 1810 struct kernel_siginfo info; 1811 unsigned long flags; 1812 struct sighand_struct *psig; 1813 bool autoreap = false; 1814 u64 utime, stime; 1815 1816 BUG_ON(sig == -1); 1817 1818 /* do_notify_parent_cldstop should have been called instead. */ 1819 BUG_ON(task_is_stopped_or_traced(tsk)); 1820 1821 BUG_ON(!tsk->ptrace && 1822 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1823 1824 if (sig != SIGCHLD) { 1825 /* 1826 * This is only possible if parent == real_parent. 1827 * Check if it has changed security domain. 1828 */ 1829 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1830 sig = SIGCHLD; 1831 } 1832 1833 clear_siginfo(&info); 1834 info.si_signo = sig; 1835 info.si_errno = 0; 1836 /* 1837 * We are under tasklist_lock here so our parent is tied to 1838 * us and cannot change. 1839 * 1840 * task_active_pid_ns will always return the same pid namespace 1841 * until a task passes through release_task. 1842 * 1843 * write_lock() currently calls preempt_disable() which is the 1844 * same as rcu_read_lock(), but according to Oleg, this is not 1845 * correct to rely on this 1846 */ 1847 rcu_read_lock(); 1848 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1849 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1850 task_uid(tsk)); 1851 rcu_read_unlock(); 1852 1853 task_cputime(tsk, &utime, &stime); 1854 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 1855 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 1856 1857 info.si_status = tsk->exit_code & 0x7f; 1858 if (tsk->exit_code & 0x80) 1859 info.si_code = CLD_DUMPED; 1860 else if (tsk->exit_code & 0x7f) 1861 info.si_code = CLD_KILLED; 1862 else { 1863 info.si_code = CLD_EXITED; 1864 info.si_status = tsk->exit_code >> 8; 1865 } 1866 1867 psig = tsk->parent->sighand; 1868 spin_lock_irqsave(&psig->siglock, flags); 1869 if (!tsk->ptrace && sig == SIGCHLD && 1870 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1871 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1872 /* 1873 * We are exiting and our parent doesn't care. POSIX.1 1874 * defines special semantics for setting SIGCHLD to SIG_IGN 1875 * or setting the SA_NOCLDWAIT flag: we should be reaped 1876 * automatically and not left for our parent's wait4 call. 1877 * Rather than having the parent do it as a magic kind of 1878 * signal handler, we just set this to tell do_exit that we 1879 * can be cleaned up without becoming a zombie. Note that 1880 * we still call __wake_up_parent in this case, because a 1881 * blocked sys_wait4 might now return -ECHILD. 1882 * 1883 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1884 * is implementation-defined: we do (if you don't want 1885 * it, just use SIG_IGN instead). 1886 */ 1887 autoreap = true; 1888 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1889 sig = 0; 1890 } 1891 if (valid_signal(sig) && sig) 1892 __group_send_sig_info(sig, &info, tsk->parent); 1893 __wake_up_parent(tsk, tsk->parent); 1894 spin_unlock_irqrestore(&psig->siglock, flags); 1895 1896 return autoreap; 1897 } 1898 1899 /** 1900 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1901 * @tsk: task reporting the state change 1902 * @for_ptracer: the notification is for ptracer 1903 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1904 * 1905 * Notify @tsk's parent that the stopped/continued state has changed. If 1906 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1907 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1908 * 1909 * CONTEXT: 1910 * Must be called with tasklist_lock at least read locked. 1911 */ 1912 static void do_notify_parent_cldstop(struct task_struct *tsk, 1913 bool for_ptracer, int why) 1914 { 1915 struct kernel_siginfo info; 1916 unsigned long flags; 1917 struct task_struct *parent; 1918 struct sighand_struct *sighand; 1919 u64 utime, stime; 1920 1921 if (for_ptracer) { 1922 parent = tsk->parent; 1923 } else { 1924 tsk = tsk->group_leader; 1925 parent = tsk->real_parent; 1926 } 1927 1928 clear_siginfo(&info); 1929 info.si_signo = SIGCHLD; 1930 info.si_errno = 0; 1931 /* 1932 * see comment in do_notify_parent() about the following 4 lines 1933 */ 1934 rcu_read_lock(); 1935 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 1936 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 1937 rcu_read_unlock(); 1938 1939 task_cputime(tsk, &utime, &stime); 1940 info.si_utime = nsec_to_clock_t(utime); 1941 info.si_stime = nsec_to_clock_t(stime); 1942 1943 info.si_code = why; 1944 switch (why) { 1945 case CLD_CONTINUED: 1946 info.si_status = SIGCONT; 1947 break; 1948 case CLD_STOPPED: 1949 info.si_status = tsk->signal->group_exit_code & 0x7f; 1950 break; 1951 case CLD_TRAPPED: 1952 info.si_status = tsk->exit_code & 0x7f; 1953 break; 1954 default: 1955 BUG(); 1956 } 1957 1958 sighand = parent->sighand; 1959 spin_lock_irqsave(&sighand->siglock, flags); 1960 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1961 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1962 __group_send_sig_info(SIGCHLD, &info, parent); 1963 /* 1964 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1965 */ 1966 __wake_up_parent(tsk, parent); 1967 spin_unlock_irqrestore(&sighand->siglock, flags); 1968 } 1969 1970 static inline bool may_ptrace_stop(void) 1971 { 1972 if (!likely(current->ptrace)) 1973 return false; 1974 /* 1975 * Are we in the middle of do_coredump? 1976 * If so and our tracer is also part of the coredump stopping 1977 * is a deadlock situation, and pointless because our tracer 1978 * is dead so don't allow us to stop. 1979 * If SIGKILL was already sent before the caller unlocked 1980 * ->siglock we must see ->core_state != NULL. Otherwise it 1981 * is safe to enter schedule(). 1982 * 1983 * This is almost outdated, a task with the pending SIGKILL can't 1984 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 1985 * after SIGKILL was already dequeued. 1986 */ 1987 if (unlikely(current->mm->core_state) && 1988 unlikely(current->mm == current->parent->mm)) 1989 return false; 1990 1991 return true; 1992 } 1993 1994 /* 1995 * Return non-zero if there is a SIGKILL that should be waking us up. 1996 * Called with the siglock held. 1997 */ 1998 static bool sigkill_pending(struct task_struct *tsk) 1999 { 2000 return sigismember(&tsk->pending.signal, SIGKILL) || 2001 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 2002 } 2003 2004 /* 2005 * This must be called with current->sighand->siglock held. 2006 * 2007 * This should be the path for all ptrace stops. 2008 * We always set current->last_siginfo while stopped here. 2009 * That makes it a way to test a stopped process for 2010 * being ptrace-stopped vs being job-control-stopped. 2011 * 2012 * If we actually decide not to stop at all because the tracer 2013 * is gone, we keep current->exit_code unless clear_code. 2014 */ 2015 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info) 2016 __releases(¤t->sighand->siglock) 2017 __acquires(¤t->sighand->siglock) 2018 { 2019 bool gstop_done = false; 2020 2021 if (arch_ptrace_stop_needed(exit_code, info)) { 2022 /* 2023 * The arch code has something special to do before a 2024 * ptrace stop. This is allowed to block, e.g. for faults 2025 * on user stack pages. We can't keep the siglock while 2026 * calling arch_ptrace_stop, so we must release it now. 2027 * To preserve proper semantics, we must do this before 2028 * any signal bookkeeping like checking group_stop_count. 2029 * Meanwhile, a SIGKILL could come in before we retake the 2030 * siglock. That must prevent us from sleeping in TASK_TRACED. 2031 * So after regaining the lock, we must check for SIGKILL. 2032 */ 2033 spin_unlock_irq(¤t->sighand->siglock); 2034 arch_ptrace_stop(exit_code, info); 2035 spin_lock_irq(¤t->sighand->siglock); 2036 if (sigkill_pending(current)) 2037 return; 2038 } 2039 2040 set_special_state(TASK_TRACED); 2041 2042 /* 2043 * We're committing to trapping. TRACED should be visible before 2044 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2045 * Also, transition to TRACED and updates to ->jobctl should be 2046 * atomic with respect to siglock and should be done after the arch 2047 * hook as siglock is released and regrabbed across it. 2048 * 2049 * TRACER TRACEE 2050 * 2051 * ptrace_attach() 2052 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2053 * do_wait() 2054 * set_current_state() smp_wmb(); 2055 * ptrace_do_wait() 2056 * wait_task_stopped() 2057 * task_stopped_code() 2058 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2059 */ 2060 smp_wmb(); 2061 2062 current->last_siginfo = info; 2063 current->exit_code = exit_code; 2064 2065 /* 2066 * If @why is CLD_STOPPED, we're trapping to participate in a group 2067 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2068 * across siglock relocks since INTERRUPT was scheduled, PENDING 2069 * could be clear now. We act as if SIGCONT is received after 2070 * TASK_TRACED is entered - ignore it. 2071 */ 2072 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2073 gstop_done = task_participate_group_stop(current); 2074 2075 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2076 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2077 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2078 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2079 2080 /* entering a trap, clear TRAPPING */ 2081 task_clear_jobctl_trapping(current); 2082 2083 spin_unlock_irq(¤t->sighand->siglock); 2084 read_lock(&tasklist_lock); 2085 if (may_ptrace_stop()) { 2086 /* 2087 * Notify parents of the stop. 2088 * 2089 * While ptraced, there are two parents - the ptracer and 2090 * the real_parent of the group_leader. The ptracer should 2091 * know about every stop while the real parent is only 2092 * interested in the completion of group stop. The states 2093 * for the two don't interact with each other. Notify 2094 * separately unless they're gonna be duplicates. 2095 */ 2096 do_notify_parent_cldstop(current, true, why); 2097 if (gstop_done && ptrace_reparented(current)) 2098 do_notify_parent_cldstop(current, false, why); 2099 2100 /* 2101 * Don't want to allow preemption here, because 2102 * sys_ptrace() needs this task to be inactive. 2103 * 2104 * XXX: implement read_unlock_no_resched(). 2105 */ 2106 preempt_disable(); 2107 read_unlock(&tasklist_lock); 2108 preempt_enable_no_resched(); 2109 freezable_schedule(); 2110 } else { 2111 /* 2112 * By the time we got the lock, our tracer went away. 2113 * Don't drop the lock yet, another tracer may come. 2114 * 2115 * If @gstop_done, the ptracer went away between group stop 2116 * completion and here. During detach, it would have set 2117 * JOBCTL_STOP_PENDING on us and we'll re-enter 2118 * TASK_STOPPED in do_signal_stop() on return, so notifying 2119 * the real parent of the group stop completion is enough. 2120 */ 2121 if (gstop_done) 2122 do_notify_parent_cldstop(current, false, why); 2123 2124 /* tasklist protects us from ptrace_freeze_traced() */ 2125 __set_current_state(TASK_RUNNING); 2126 if (clear_code) 2127 current->exit_code = 0; 2128 read_unlock(&tasklist_lock); 2129 } 2130 2131 /* 2132 * We are back. Now reacquire the siglock before touching 2133 * last_siginfo, so that we are sure to have synchronized with 2134 * any signal-sending on another CPU that wants to examine it. 2135 */ 2136 spin_lock_irq(¤t->sighand->siglock); 2137 current->last_siginfo = NULL; 2138 2139 /* LISTENING can be set only during STOP traps, clear it */ 2140 current->jobctl &= ~JOBCTL_LISTENING; 2141 2142 /* 2143 * Queued signals ignored us while we were stopped for tracing. 2144 * So check for any that we should take before resuming user mode. 2145 * This sets TIF_SIGPENDING, but never clears it. 2146 */ 2147 recalc_sigpending_tsk(current); 2148 } 2149 2150 static void ptrace_do_notify(int signr, int exit_code, int why) 2151 { 2152 kernel_siginfo_t info; 2153 2154 clear_siginfo(&info); 2155 info.si_signo = signr; 2156 info.si_code = exit_code; 2157 info.si_pid = task_pid_vnr(current); 2158 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2159 2160 /* Let the debugger run. */ 2161 ptrace_stop(exit_code, why, 1, &info); 2162 } 2163 2164 void ptrace_notify(int exit_code) 2165 { 2166 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2167 if (unlikely(current->task_works)) 2168 task_work_run(); 2169 2170 spin_lock_irq(¤t->sighand->siglock); 2171 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 2172 spin_unlock_irq(¤t->sighand->siglock); 2173 } 2174 2175 /** 2176 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2177 * @signr: signr causing group stop if initiating 2178 * 2179 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2180 * and participate in it. If already set, participate in the existing 2181 * group stop. If participated in a group stop (and thus slept), %true is 2182 * returned with siglock released. 2183 * 2184 * If ptraced, this function doesn't handle stop itself. Instead, 2185 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2186 * untouched. The caller must ensure that INTERRUPT trap handling takes 2187 * places afterwards. 2188 * 2189 * CONTEXT: 2190 * Must be called with @current->sighand->siglock held, which is released 2191 * on %true return. 2192 * 2193 * RETURNS: 2194 * %false if group stop is already cancelled or ptrace trap is scheduled. 2195 * %true if participated in group stop. 2196 */ 2197 static bool do_signal_stop(int signr) 2198 __releases(¤t->sighand->siglock) 2199 { 2200 struct signal_struct *sig = current->signal; 2201 2202 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2203 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2204 struct task_struct *t; 2205 2206 /* signr will be recorded in task->jobctl for retries */ 2207 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2208 2209 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2210 unlikely(signal_group_exit(sig))) 2211 return false; 2212 /* 2213 * There is no group stop already in progress. We must 2214 * initiate one now. 2215 * 2216 * While ptraced, a task may be resumed while group stop is 2217 * still in effect and then receive a stop signal and 2218 * initiate another group stop. This deviates from the 2219 * usual behavior as two consecutive stop signals can't 2220 * cause two group stops when !ptraced. That is why we 2221 * also check !task_is_stopped(t) below. 2222 * 2223 * The condition can be distinguished by testing whether 2224 * SIGNAL_STOP_STOPPED is already set. Don't generate 2225 * group_exit_code in such case. 2226 * 2227 * This is not necessary for SIGNAL_STOP_CONTINUED because 2228 * an intervening stop signal is required to cause two 2229 * continued events regardless of ptrace. 2230 */ 2231 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2232 sig->group_exit_code = signr; 2233 2234 sig->group_stop_count = 0; 2235 2236 if (task_set_jobctl_pending(current, signr | gstop)) 2237 sig->group_stop_count++; 2238 2239 t = current; 2240 while_each_thread(current, t) { 2241 /* 2242 * Setting state to TASK_STOPPED for a group 2243 * stop is always done with the siglock held, 2244 * so this check has no races. 2245 */ 2246 if (!task_is_stopped(t) && 2247 task_set_jobctl_pending(t, signr | gstop)) { 2248 sig->group_stop_count++; 2249 if (likely(!(t->ptrace & PT_SEIZED))) 2250 signal_wake_up(t, 0); 2251 else 2252 ptrace_trap_notify(t); 2253 } 2254 } 2255 } 2256 2257 if (likely(!current->ptrace)) { 2258 int notify = 0; 2259 2260 /* 2261 * If there are no other threads in the group, or if there 2262 * is a group stop in progress and we are the last to stop, 2263 * report to the parent. 2264 */ 2265 if (task_participate_group_stop(current)) 2266 notify = CLD_STOPPED; 2267 2268 set_special_state(TASK_STOPPED); 2269 spin_unlock_irq(¤t->sighand->siglock); 2270 2271 /* 2272 * Notify the parent of the group stop completion. Because 2273 * we're not holding either the siglock or tasklist_lock 2274 * here, ptracer may attach inbetween; however, this is for 2275 * group stop and should always be delivered to the real 2276 * parent of the group leader. The new ptracer will get 2277 * its notification when this task transitions into 2278 * TASK_TRACED. 2279 */ 2280 if (notify) { 2281 read_lock(&tasklist_lock); 2282 do_notify_parent_cldstop(current, false, notify); 2283 read_unlock(&tasklist_lock); 2284 } 2285 2286 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2287 freezable_schedule(); 2288 return true; 2289 } else { 2290 /* 2291 * While ptraced, group stop is handled by STOP trap. 2292 * Schedule it and let the caller deal with it. 2293 */ 2294 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2295 return false; 2296 } 2297 } 2298 2299 /** 2300 * do_jobctl_trap - take care of ptrace jobctl traps 2301 * 2302 * When PT_SEIZED, it's used for both group stop and explicit 2303 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2304 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2305 * the stop signal; otherwise, %SIGTRAP. 2306 * 2307 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2308 * number as exit_code and no siginfo. 2309 * 2310 * CONTEXT: 2311 * Must be called with @current->sighand->siglock held, which may be 2312 * released and re-acquired before returning with intervening sleep. 2313 */ 2314 static void do_jobctl_trap(void) 2315 { 2316 struct signal_struct *signal = current->signal; 2317 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2318 2319 if (current->ptrace & PT_SEIZED) { 2320 if (!signal->group_stop_count && 2321 !(signal->flags & SIGNAL_STOP_STOPPED)) 2322 signr = SIGTRAP; 2323 WARN_ON_ONCE(!signr); 2324 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2325 CLD_STOPPED); 2326 } else { 2327 WARN_ON_ONCE(!signr); 2328 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2329 current->exit_code = 0; 2330 } 2331 } 2332 2333 static int ptrace_signal(int signr, kernel_siginfo_t *info) 2334 { 2335 /* 2336 * We do not check sig_kernel_stop(signr) but set this marker 2337 * unconditionally because we do not know whether debugger will 2338 * change signr. This flag has no meaning unless we are going 2339 * to stop after return from ptrace_stop(). In this case it will 2340 * be checked in do_signal_stop(), we should only stop if it was 2341 * not cleared by SIGCONT while we were sleeping. See also the 2342 * comment in dequeue_signal(). 2343 */ 2344 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2345 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2346 2347 /* We're back. Did the debugger cancel the sig? */ 2348 signr = current->exit_code; 2349 if (signr == 0) 2350 return signr; 2351 2352 current->exit_code = 0; 2353 2354 /* 2355 * Update the siginfo structure if the signal has 2356 * changed. If the debugger wanted something 2357 * specific in the siginfo structure then it should 2358 * have updated *info via PTRACE_SETSIGINFO. 2359 */ 2360 if (signr != info->si_signo) { 2361 clear_siginfo(info); 2362 info->si_signo = signr; 2363 info->si_errno = 0; 2364 info->si_code = SI_USER; 2365 rcu_read_lock(); 2366 info->si_pid = task_pid_vnr(current->parent); 2367 info->si_uid = from_kuid_munged(current_user_ns(), 2368 task_uid(current->parent)); 2369 rcu_read_unlock(); 2370 } 2371 2372 /* If the (new) signal is now blocked, requeue it. */ 2373 if (sigismember(¤t->blocked, signr)) { 2374 send_signal(signr, info, current, PIDTYPE_PID); 2375 signr = 0; 2376 } 2377 2378 return signr; 2379 } 2380 2381 bool get_signal(struct ksignal *ksig) 2382 { 2383 struct sighand_struct *sighand = current->sighand; 2384 struct signal_struct *signal = current->signal; 2385 int signr; 2386 2387 if (unlikely(current->task_works)) 2388 task_work_run(); 2389 2390 if (unlikely(uprobe_deny_signal())) 2391 return false; 2392 2393 /* 2394 * Do this once, we can't return to user-mode if freezing() == T. 2395 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2396 * thus do not need another check after return. 2397 */ 2398 try_to_freeze(); 2399 2400 relock: 2401 spin_lock_irq(&sighand->siglock); 2402 /* 2403 * Every stopped thread goes here after wakeup. Check to see if 2404 * we should notify the parent, prepare_signal(SIGCONT) encodes 2405 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2406 */ 2407 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2408 int why; 2409 2410 if (signal->flags & SIGNAL_CLD_CONTINUED) 2411 why = CLD_CONTINUED; 2412 else 2413 why = CLD_STOPPED; 2414 2415 signal->flags &= ~SIGNAL_CLD_MASK; 2416 2417 spin_unlock_irq(&sighand->siglock); 2418 2419 /* 2420 * Notify the parent that we're continuing. This event is 2421 * always per-process and doesn't make whole lot of sense 2422 * for ptracers, who shouldn't consume the state via 2423 * wait(2) either, but, for backward compatibility, notify 2424 * the ptracer of the group leader too unless it's gonna be 2425 * a duplicate. 2426 */ 2427 read_lock(&tasklist_lock); 2428 do_notify_parent_cldstop(current, false, why); 2429 2430 if (ptrace_reparented(current->group_leader)) 2431 do_notify_parent_cldstop(current->group_leader, 2432 true, why); 2433 read_unlock(&tasklist_lock); 2434 2435 goto relock; 2436 } 2437 2438 /* Has this task already been marked for death? */ 2439 ksig->info.si_signo = signr = SIGKILL; 2440 if (signal_group_exit(signal)) 2441 goto fatal; 2442 2443 for (;;) { 2444 struct k_sigaction *ka; 2445 2446 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2447 do_signal_stop(0)) 2448 goto relock; 2449 2450 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2451 do_jobctl_trap(); 2452 spin_unlock_irq(&sighand->siglock); 2453 goto relock; 2454 } 2455 2456 /* 2457 * Signals generated by the execution of an instruction 2458 * need to be delivered before any other pending signals 2459 * so that the instruction pointer in the signal stack 2460 * frame points to the faulting instruction. 2461 */ 2462 signr = dequeue_synchronous_signal(&ksig->info); 2463 if (!signr) 2464 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2465 2466 if (!signr) 2467 break; /* will return 0 */ 2468 2469 if (unlikely(current->ptrace) && signr != SIGKILL) { 2470 signr = ptrace_signal(signr, &ksig->info); 2471 if (!signr) 2472 continue; 2473 } 2474 2475 ka = &sighand->action[signr-1]; 2476 2477 /* Trace actually delivered signals. */ 2478 trace_signal_deliver(signr, &ksig->info, ka); 2479 2480 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2481 continue; 2482 if (ka->sa.sa_handler != SIG_DFL) { 2483 /* Run the handler. */ 2484 ksig->ka = *ka; 2485 2486 if (ka->sa.sa_flags & SA_ONESHOT) 2487 ka->sa.sa_handler = SIG_DFL; 2488 2489 break; /* will return non-zero "signr" value */ 2490 } 2491 2492 /* 2493 * Now we are doing the default action for this signal. 2494 */ 2495 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2496 continue; 2497 2498 /* 2499 * Global init gets no signals it doesn't want. 2500 * Container-init gets no signals it doesn't want from same 2501 * container. 2502 * 2503 * Note that if global/container-init sees a sig_kernel_only() 2504 * signal here, the signal must have been generated internally 2505 * or must have come from an ancestor namespace. In either 2506 * case, the signal cannot be dropped. 2507 */ 2508 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2509 !sig_kernel_only(signr)) 2510 continue; 2511 2512 if (sig_kernel_stop(signr)) { 2513 /* 2514 * The default action is to stop all threads in 2515 * the thread group. The job control signals 2516 * do nothing in an orphaned pgrp, but SIGSTOP 2517 * always works. Note that siglock needs to be 2518 * dropped during the call to is_orphaned_pgrp() 2519 * because of lock ordering with tasklist_lock. 2520 * This allows an intervening SIGCONT to be posted. 2521 * We need to check for that and bail out if necessary. 2522 */ 2523 if (signr != SIGSTOP) { 2524 spin_unlock_irq(&sighand->siglock); 2525 2526 /* signals can be posted during this window */ 2527 2528 if (is_current_pgrp_orphaned()) 2529 goto relock; 2530 2531 spin_lock_irq(&sighand->siglock); 2532 } 2533 2534 if (likely(do_signal_stop(ksig->info.si_signo))) { 2535 /* It released the siglock. */ 2536 goto relock; 2537 } 2538 2539 /* 2540 * We didn't actually stop, due to a race 2541 * with SIGCONT or something like that. 2542 */ 2543 continue; 2544 } 2545 2546 fatal: 2547 spin_unlock_irq(&sighand->siglock); 2548 2549 /* 2550 * Anything else is fatal, maybe with a core dump. 2551 */ 2552 current->flags |= PF_SIGNALED; 2553 2554 if (sig_kernel_coredump(signr)) { 2555 if (print_fatal_signals) 2556 print_fatal_signal(ksig->info.si_signo); 2557 proc_coredump_connector(current); 2558 /* 2559 * If it was able to dump core, this kills all 2560 * other threads in the group and synchronizes with 2561 * their demise. If we lost the race with another 2562 * thread getting here, it set group_exit_code 2563 * first and our do_group_exit call below will use 2564 * that value and ignore the one we pass it. 2565 */ 2566 do_coredump(&ksig->info); 2567 } 2568 2569 /* 2570 * Death signals, no core dump. 2571 */ 2572 do_group_exit(ksig->info.si_signo); 2573 /* NOTREACHED */ 2574 } 2575 spin_unlock_irq(&sighand->siglock); 2576 2577 ksig->sig = signr; 2578 return ksig->sig > 0; 2579 } 2580 2581 /** 2582 * signal_delivered - 2583 * @ksig: kernel signal struct 2584 * @stepping: nonzero if debugger single-step or block-step in use 2585 * 2586 * This function should be called when a signal has successfully been 2587 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2588 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2589 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2590 */ 2591 static void signal_delivered(struct ksignal *ksig, int stepping) 2592 { 2593 sigset_t blocked; 2594 2595 /* A signal was successfully delivered, and the 2596 saved sigmask was stored on the signal frame, 2597 and will be restored by sigreturn. So we can 2598 simply clear the restore sigmask flag. */ 2599 clear_restore_sigmask(); 2600 2601 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2602 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2603 sigaddset(&blocked, ksig->sig); 2604 set_current_blocked(&blocked); 2605 tracehook_signal_handler(stepping); 2606 } 2607 2608 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2609 { 2610 if (failed) 2611 force_sigsegv(ksig->sig, current); 2612 else 2613 signal_delivered(ksig, stepping); 2614 } 2615 2616 /* 2617 * It could be that complete_signal() picked us to notify about the 2618 * group-wide signal. Other threads should be notified now to take 2619 * the shared signals in @which since we will not. 2620 */ 2621 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2622 { 2623 sigset_t retarget; 2624 struct task_struct *t; 2625 2626 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2627 if (sigisemptyset(&retarget)) 2628 return; 2629 2630 t = tsk; 2631 while_each_thread(tsk, t) { 2632 if (t->flags & PF_EXITING) 2633 continue; 2634 2635 if (!has_pending_signals(&retarget, &t->blocked)) 2636 continue; 2637 /* Remove the signals this thread can handle. */ 2638 sigandsets(&retarget, &retarget, &t->blocked); 2639 2640 if (!signal_pending(t)) 2641 signal_wake_up(t, 0); 2642 2643 if (sigisemptyset(&retarget)) 2644 break; 2645 } 2646 } 2647 2648 void exit_signals(struct task_struct *tsk) 2649 { 2650 int group_stop = 0; 2651 sigset_t unblocked; 2652 2653 /* 2654 * @tsk is about to have PF_EXITING set - lock out users which 2655 * expect stable threadgroup. 2656 */ 2657 cgroup_threadgroup_change_begin(tsk); 2658 2659 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2660 tsk->flags |= PF_EXITING; 2661 cgroup_threadgroup_change_end(tsk); 2662 return; 2663 } 2664 2665 spin_lock_irq(&tsk->sighand->siglock); 2666 /* 2667 * From now this task is not visible for group-wide signals, 2668 * see wants_signal(), do_signal_stop(). 2669 */ 2670 tsk->flags |= PF_EXITING; 2671 2672 cgroup_threadgroup_change_end(tsk); 2673 2674 if (!signal_pending(tsk)) 2675 goto out; 2676 2677 unblocked = tsk->blocked; 2678 signotset(&unblocked); 2679 retarget_shared_pending(tsk, &unblocked); 2680 2681 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2682 task_participate_group_stop(tsk)) 2683 group_stop = CLD_STOPPED; 2684 out: 2685 spin_unlock_irq(&tsk->sighand->siglock); 2686 2687 /* 2688 * If group stop has completed, deliver the notification. This 2689 * should always go to the real parent of the group leader. 2690 */ 2691 if (unlikely(group_stop)) { 2692 read_lock(&tasklist_lock); 2693 do_notify_parent_cldstop(tsk, false, group_stop); 2694 read_unlock(&tasklist_lock); 2695 } 2696 } 2697 2698 /* 2699 * System call entry points. 2700 */ 2701 2702 /** 2703 * sys_restart_syscall - restart a system call 2704 */ 2705 SYSCALL_DEFINE0(restart_syscall) 2706 { 2707 struct restart_block *restart = ¤t->restart_block; 2708 return restart->fn(restart); 2709 } 2710 2711 long do_no_restart_syscall(struct restart_block *param) 2712 { 2713 return -EINTR; 2714 } 2715 2716 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2717 { 2718 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2719 sigset_t newblocked; 2720 /* A set of now blocked but previously unblocked signals. */ 2721 sigandnsets(&newblocked, newset, ¤t->blocked); 2722 retarget_shared_pending(tsk, &newblocked); 2723 } 2724 tsk->blocked = *newset; 2725 recalc_sigpending(); 2726 } 2727 2728 /** 2729 * set_current_blocked - change current->blocked mask 2730 * @newset: new mask 2731 * 2732 * It is wrong to change ->blocked directly, this helper should be used 2733 * to ensure the process can't miss a shared signal we are going to block. 2734 */ 2735 void set_current_blocked(sigset_t *newset) 2736 { 2737 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2738 __set_current_blocked(newset); 2739 } 2740 2741 void __set_current_blocked(const sigset_t *newset) 2742 { 2743 struct task_struct *tsk = current; 2744 2745 /* 2746 * In case the signal mask hasn't changed, there is nothing we need 2747 * to do. The current->blocked shouldn't be modified by other task. 2748 */ 2749 if (sigequalsets(&tsk->blocked, newset)) 2750 return; 2751 2752 spin_lock_irq(&tsk->sighand->siglock); 2753 __set_task_blocked(tsk, newset); 2754 spin_unlock_irq(&tsk->sighand->siglock); 2755 } 2756 2757 /* 2758 * This is also useful for kernel threads that want to temporarily 2759 * (or permanently) block certain signals. 2760 * 2761 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2762 * interface happily blocks "unblockable" signals like SIGKILL 2763 * and friends. 2764 */ 2765 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2766 { 2767 struct task_struct *tsk = current; 2768 sigset_t newset; 2769 2770 /* Lockless, only current can change ->blocked, never from irq */ 2771 if (oldset) 2772 *oldset = tsk->blocked; 2773 2774 switch (how) { 2775 case SIG_BLOCK: 2776 sigorsets(&newset, &tsk->blocked, set); 2777 break; 2778 case SIG_UNBLOCK: 2779 sigandnsets(&newset, &tsk->blocked, set); 2780 break; 2781 case SIG_SETMASK: 2782 newset = *set; 2783 break; 2784 default: 2785 return -EINVAL; 2786 } 2787 2788 __set_current_blocked(&newset); 2789 return 0; 2790 } 2791 EXPORT_SYMBOL(sigprocmask); 2792 2793 /* 2794 * The api helps set app-provided sigmasks. 2795 * 2796 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 2797 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 2798 */ 2799 int set_user_sigmask(const sigset_t __user *usigmask, sigset_t *set, 2800 sigset_t *oldset, size_t sigsetsize) 2801 { 2802 if (!usigmask) 2803 return 0; 2804 2805 if (sigsetsize != sizeof(sigset_t)) 2806 return -EINVAL; 2807 if (copy_from_user(set, usigmask, sizeof(sigset_t))) 2808 return -EFAULT; 2809 2810 *oldset = current->blocked; 2811 set_current_blocked(set); 2812 2813 return 0; 2814 } 2815 EXPORT_SYMBOL(set_user_sigmask); 2816 2817 #ifdef CONFIG_COMPAT 2818 int set_compat_user_sigmask(const compat_sigset_t __user *usigmask, 2819 sigset_t *set, sigset_t *oldset, 2820 size_t sigsetsize) 2821 { 2822 if (!usigmask) 2823 return 0; 2824 2825 if (sigsetsize != sizeof(compat_sigset_t)) 2826 return -EINVAL; 2827 if (get_compat_sigset(set, usigmask)) 2828 return -EFAULT; 2829 2830 *oldset = current->blocked; 2831 set_current_blocked(set); 2832 2833 return 0; 2834 } 2835 EXPORT_SYMBOL(set_compat_user_sigmask); 2836 #endif 2837 2838 /* 2839 * restore_user_sigmask: 2840 * usigmask: sigmask passed in from userland. 2841 * sigsaved: saved sigmask when the syscall started and changed the sigmask to 2842 * usigmask. 2843 * 2844 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 2845 * epoll_pwait where a new sigmask is passed in from userland for the syscalls. 2846 */ 2847 void restore_user_sigmask(const void __user *usigmask, sigset_t *sigsaved) 2848 { 2849 2850 if (!usigmask) 2851 return; 2852 /* 2853 * When signals are pending, do not restore them here. 2854 * Restoring sigmask here can lead to delivering signals that the above 2855 * syscalls are intended to block because of the sigmask passed in. 2856 */ 2857 if (signal_pending(current)) { 2858 current->saved_sigmask = *sigsaved; 2859 set_restore_sigmask(); 2860 return; 2861 } 2862 2863 /* 2864 * This is needed because the fast syscall return path does not restore 2865 * saved_sigmask when signals are not pending. 2866 */ 2867 set_current_blocked(sigsaved); 2868 } 2869 EXPORT_SYMBOL(restore_user_sigmask); 2870 2871 /** 2872 * sys_rt_sigprocmask - change the list of currently blocked signals 2873 * @how: whether to add, remove, or set signals 2874 * @nset: stores pending signals 2875 * @oset: previous value of signal mask if non-null 2876 * @sigsetsize: size of sigset_t type 2877 */ 2878 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2879 sigset_t __user *, oset, size_t, sigsetsize) 2880 { 2881 sigset_t old_set, new_set; 2882 int error; 2883 2884 /* XXX: Don't preclude handling different sized sigset_t's. */ 2885 if (sigsetsize != sizeof(sigset_t)) 2886 return -EINVAL; 2887 2888 old_set = current->blocked; 2889 2890 if (nset) { 2891 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2892 return -EFAULT; 2893 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2894 2895 error = sigprocmask(how, &new_set, NULL); 2896 if (error) 2897 return error; 2898 } 2899 2900 if (oset) { 2901 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2902 return -EFAULT; 2903 } 2904 2905 return 0; 2906 } 2907 2908 #ifdef CONFIG_COMPAT 2909 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 2910 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 2911 { 2912 sigset_t old_set = current->blocked; 2913 2914 /* XXX: Don't preclude handling different sized sigset_t's. */ 2915 if (sigsetsize != sizeof(sigset_t)) 2916 return -EINVAL; 2917 2918 if (nset) { 2919 sigset_t new_set; 2920 int error; 2921 if (get_compat_sigset(&new_set, nset)) 2922 return -EFAULT; 2923 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2924 2925 error = sigprocmask(how, &new_set, NULL); 2926 if (error) 2927 return error; 2928 } 2929 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 2930 } 2931 #endif 2932 2933 static void do_sigpending(sigset_t *set) 2934 { 2935 spin_lock_irq(¤t->sighand->siglock); 2936 sigorsets(set, ¤t->pending.signal, 2937 ¤t->signal->shared_pending.signal); 2938 spin_unlock_irq(¤t->sighand->siglock); 2939 2940 /* Outside the lock because only this thread touches it. */ 2941 sigandsets(set, ¤t->blocked, set); 2942 } 2943 2944 /** 2945 * sys_rt_sigpending - examine a pending signal that has been raised 2946 * while blocked 2947 * @uset: stores pending signals 2948 * @sigsetsize: size of sigset_t type or larger 2949 */ 2950 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 2951 { 2952 sigset_t set; 2953 2954 if (sigsetsize > sizeof(*uset)) 2955 return -EINVAL; 2956 2957 do_sigpending(&set); 2958 2959 if (copy_to_user(uset, &set, sigsetsize)) 2960 return -EFAULT; 2961 2962 return 0; 2963 } 2964 2965 #ifdef CONFIG_COMPAT 2966 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 2967 compat_size_t, sigsetsize) 2968 { 2969 sigset_t set; 2970 2971 if (sigsetsize > sizeof(*uset)) 2972 return -EINVAL; 2973 2974 do_sigpending(&set); 2975 2976 return put_compat_sigset(uset, &set, sigsetsize); 2977 } 2978 #endif 2979 2980 static const struct { 2981 unsigned char limit, layout; 2982 } sig_sicodes[] = { 2983 [SIGILL] = { NSIGILL, SIL_FAULT }, 2984 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 2985 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 2986 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 2987 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 2988 #if defined(SIGEMT) 2989 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 2990 #endif 2991 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 2992 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 2993 [SIGSYS] = { NSIGSYS, SIL_SYS }, 2994 }; 2995 2996 static bool known_siginfo_layout(unsigned sig, int si_code) 2997 { 2998 if (si_code == SI_KERNEL) 2999 return true; 3000 else if ((si_code > SI_USER)) { 3001 if (sig_specific_sicodes(sig)) { 3002 if (si_code <= sig_sicodes[sig].limit) 3003 return true; 3004 } 3005 else if (si_code <= NSIGPOLL) 3006 return true; 3007 } 3008 else if (si_code >= SI_DETHREAD) 3009 return true; 3010 else if (si_code == SI_ASYNCNL) 3011 return true; 3012 return false; 3013 } 3014 3015 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3016 { 3017 enum siginfo_layout layout = SIL_KILL; 3018 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3019 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3020 (si_code <= sig_sicodes[sig].limit)) { 3021 layout = sig_sicodes[sig].layout; 3022 /* Handle the exceptions */ 3023 if ((sig == SIGBUS) && 3024 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3025 layout = SIL_FAULT_MCEERR; 3026 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3027 layout = SIL_FAULT_BNDERR; 3028 #ifdef SEGV_PKUERR 3029 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3030 layout = SIL_FAULT_PKUERR; 3031 #endif 3032 } 3033 else if (si_code <= NSIGPOLL) 3034 layout = SIL_POLL; 3035 } else { 3036 if (si_code == SI_TIMER) 3037 layout = SIL_TIMER; 3038 else if (si_code == SI_SIGIO) 3039 layout = SIL_POLL; 3040 else if (si_code < 0) 3041 layout = SIL_RT; 3042 } 3043 return layout; 3044 } 3045 3046 static inline char __user *si_expansion(const siginfo_t __user *info) 3047 { 3048 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3049 } 3050 3051 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3052 { 3053 char __user *expansion = si_expansion(to); 3054 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3055 return -EFAULT; 3056 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3057 return -EFAULT; 3058 return 0; 3059 } 3060 3061 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3062 const siginfo_t __user *from) 3063 { 3064 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3065 char __user *expansion = si_expansion(from); 3066 char buf[SI_EXPANSION_SIZE]; 3067 int i; 3068 /* 3069 * An unknown si_code might need more than 3070 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3071 * extra bytes are 0. This guarantees copy_siginfo_to_user 3072 * will return this data to userspace exactly. 3073 */ 3074 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3075 return -EFAULT; 3076 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3077 if (buf[i] != 0) 3078 return -E2BIG; 3079 } 3080 } 3081 return 0; 3082 } 3083 3084 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3085 const siginfo_t __user *from) 3086 { 3087 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3088 return -EFAULT; 3089 to->si_signo = signo; 3090 return post_copy_siginfo_from_user(to, from); 3091 } 3092 3093 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3094 { 3095 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3096 return -EFAULT; 3097 return post_copy_siginfo_from_user(to, from); 3098 } 3099 3100 #ifdef CONFIG_COMPAT 3101 int copy_siginfo_to_user32(struct compat_siginfo __user *to, 3102 const struct kernel_siginfo *from) 3103 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION) 3104 { 3105 return __copy_siginfo_to_user32(to, from, in_x32_syscall()); 3106 } 3107 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3108 const struct kernel_siginfo *from, bool x32_ABI) 3109 #endif 3110 { 3111 struct compat_siginfo new; 3112 memset(&new, 0, sizeof(new)); 3113 3114 new.si_signo = from->si_signo; 3115 new.si_errno = from->si_errno; 3116 new.si_code = from->si_code; 3117 switch(siginfo_layout(from->si_signo, from->si_code)) { 3118 case SIL_KILL: 3119 new.si_pid = from->si_pid; 3120 new.si_uid = from->si_uid; 3121 break; 3122 case SIL_TIMER: 3123 new.si_tid = from->si_tid; 3124 new.si_overrun = from->si_overrun; 3125 new.si_int = from->si_int; 3126 break; 3127 case SIL_POLL: 3128 new.si_band = from->si_band; 3129 new.si_fd = from->si_fd; 3130 break; 3131 case SIL_FAULT: 3132 new.si_addr = ptr_to_compat(from->si_addr); 3133 #ifdef __ARCH_SI_TRAPNO 3134 new.si_trapno = from->si_trapno; 3135 #endif 3136 break; 3137 case SIL_FAULT_MCEERR: 3138 new.si_addr = ptr_to_compat(from->si_addr); 3139 #ifdef __ARCH_SI_TRAPNO 3140 new.si_trapno = from->si_trapno; 3141 #endif 3142 new.si_addr_lsb = from->si_addr_lsb; 3143 break; 3144 case SIL_FAULT_BNDERR: 3145 new.si_addr = ptr_to_compat(from->si_addr); 3146 #ifdef __ARCH_SI_TRAPNO 3147 new.si_trapno = from->si_trapno; 3148 #endif 3149 new.si_lower = ptr_to_compat(from->si_lower); 3150 new.si_upper = ptr_to_compat(from->si_upper); 3151 break; 3152 case SIL_FAULT_PKUERR: 3153 new.si_addr = ptr_to_compat(from->si_addr); 3154 #ifdef __ARCH_SI_TRAPNO 3155 new.si_trapno = from->si_trapno; 3156 #endif 3157 new.si_pkey = from->si_pkey; 3158 break; 3159 case SIL_CHLD: 3160 new.si_pid = from->si_pid; 3161 new.si_uid = from->si_uid; 3162 new.si_status = from->si_status; 3163 #ifdef CONFIG_X86_X32_ABI 3164 if (x32_ABI) { 3165 new._sifields._sigchld_x32._utime = from->si_utime; 3166 new._sifields._sigchld_x32._stime = from->si_stime; 3167 } else 3168 #endif 3169 { 3170 new.si_utime = from->si_utime; 3171 new.si_stime = from->si_stime; 3172 } 3173 break; 3174 case SIL_RT: 3175 new.si_pid = from->si_pid; 3176 new.si_uid = from->si_uid; 3177 new.si_int = from->si_int; 3178 break; 3179 case SIL_SYS: 3180 new.si_call_addr = ptr_to_compat(from->si_call_addr); 3181 new.si_syscall = from->si_syscall; 3182 new.si_arch = from->si_arch; 3183 break; 3184 } 3185 3186 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3187 return -EFAULT; 3188 3189 return 0; 3190 } 3191 3192 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3193 const struct compat_siginfo *from) 3194 { 3195 clear_siginfo(to); 3196 to->si_signo = from->si_signo; 3197 to->si_errno = from->si_errno; 3198 to->si_code = from->si_code; 3199 switch(siginfo_layout(from->si_signo, from->si_code)) { 3200 case SIL_KILL: 3201 to->si_pid = from->si_pid; 3202 to->si_uid = from->si_uid; 3203 break; 3204 case SIL_TIMER: 3205 to->si_tid = from->si_tid; 3206 to->si_overrun = from->si_overrun; 3207 to->si_int = from->si_int; 3208 break; 3209 case SIL_POLL: 3210 to->si_band = from->si_band; 3211 to->si_fd = from->si_fd; 3212 break; 3213 case SIL_FAULT: 3214 to->si_addr = compat_ptr(from->si_addr); 3215 #ifdef __ARCH_SI_TRAPNO 3216 to->si_trapno = from->si_trapno; 3217 #endif 3218 break; 3219 case SIL_FAULT_MCEERR: 3220 to->si_addr = compat_ptr(from->si_addr); 3221 #ifdef __ARCH_SI_TRAPNO 3222 to->si_trapno = from->si_trapno; 3223 #endif 3224 to->si_addr_lsb = from->si_addr_lsb; 3225 break; 3226 case SIL_FAULT_BNDERR: 3227 to->si_addr = compat_ptr(from->si_addr); 3228 #ifdef __ARCH_SI_TRAPNO 3229 to->si_trapno = from->si_trapno; 3230 #endif 3231 to->si_lower = compat_ptr(from->si_lower); 3232 to->si_upper = compat_ptr(from->si_upper); 3233 break; 3234 case SIL_FAULT_PKUERR: 3235 to->si_addr = compat_ptr(from->si_addr); 3236 #ifdef __ARCH_SI_TRAPNO 3237 to->si_trapno = from->si_trapno; 3238 #endif 3239 to->si_pkey = from->si_pkey; 3240 break; 3241 case SIL_CHLD: 3242 to->si_pid = from->si_pid; 3243 to->si_uid = from->si_uid; 3244 to->si_status = from->si_status; 3245 #ifdef CONFIG_X86_X32_ABI 3246 if (in_x32_syscall()) { 3247 to->si_utime = from->_sifields._sigchld_x32._utime; 3248 to->si_stime = from->_sifields._sigchld_x32._stime; 3249 } else 3250 #endif 3251 { 3252 to->si_utime = from->si_utime; 3253 to->si_stime = from->si_stime; 3254 } 3255 break; 3256 case SIL_RT: 3257 to->si_pid = from->si_pid; 3258 to->si_uid = from->si_uid; 3259 to->si_int = from->si_int; 3260 break; 3261 case SIL_SYS: 3262 to->si_call_addr = compat_ptr(from->si_call_addr); 3263 to->si_syscall = from->si_syscall; 3264 to->si_arch = from->si_arch; 3265 break; 3266 } 3267 return 0; 3268 } 3269 3270 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3271 const struct compat_siginfo __user *ufrom) 3272 { 3273 struct compat_siginfo from; 3274 3275 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3276 return -EFAULT; 3277 3278 from.si_signo = signo; 3279 return post_copy_siginfo_from_user32(to, &from); 3280 } 3281 3282 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3283 const struct compat_siginfo __user *ufrom) 3284 { 3285 struct compat_siginfo from; 3286 3287 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3288 return -EFAULT; 3289 3290 return post_copy_siginfo_from_user32(to, &from); 3291 } 3292 #endif /* CONFIG_COMPAT */ 3293 3294 /** 3295 * do_sigtimedwait - wait for queued signals specified in @which 3296 * @which: queued signals to wait for 3297 * @info: if non-null, the signal's siginfo is returned here 3298 * @ts: upper bound on process time suspension 3299 */ 3300 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3301 const struct timespec64 *ts) 3302 { 3303 ktime_t *to = NULL, timeout = KTIME_MAX; 3304 struct task_struct *tsk = current; 3305 sigset_t mask = *which; 3306 int sig, ret = 0; 3307 3308 if (ts) { 3309 if (!timespec64_valid(ts)) 3310 return -EINVAL; 3311 timeout = timespec64_to_ktime(*ts); 3312 to = &timeout; 3313 } 3314 3315 /* 3316 * Invert the set of allowed signals to get those we want to block. 3317 */ 3318 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3319 signotset(&mask); 3320 3321 spin_lock_irq(&tsk->sighand->siglock); 3322 sig = dequeue_signal(tsk, &mask, info); 3323 if (!sig && timeout) { 3324 /* 3325 * None ready, temporarily unblock those we're interested 3326 * while we are sleeping in so that we'll be awakened when 3327 * they arrive. Unblocking is always fine, we can avoid 3328 * set_current_blocked(). 3329 */ 3330 tsk->real_blocked = tsk->blocked; 3331 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3332 recalc_sigpending(); 3333 spin_unlock_irq(&tsk->sighand->siglock); 3334 3335 __set_current_state(TASK_INTERRUPTIBLE); 3336 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3337 HRTIMER_MODE_REL); 3338 spin_lock_irq(&tsk->sighand->siglock); 3339 __set_task_blocked(tsk, &tsk->real_blocked); 3340 sigemptyset(&tsk->real_blocked); 3341 sig = dequeue_signal(tsk, &mask, info); 3342 } 3343 spin_unlock_irq(&tsk->sighand->siglock); 3344 3345 if (sig) 3346 return sig; 3347 return ret ? -EINTR : -EAGAIN; 3348 } 3349 3350 /** 3351 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3352 * in @uthese 3353 * @uthese: queued signals to wait for 3354 * @uinfo: if non-null, the signal's siginfo is returned here 3355 * @uts: upper bound on process time suspension 3356 * @sigsetsize: size of sigset_t type 3357 */ 3358 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3359 siginfo_t __user *, uinfo, 3360 const struct __kernel_timespec __user *, uts, 3361 size_t, sigsetsize) 3362 { 3363 sigset_t these; 3364 struct timespec64 ts; 3365 kernel_siginfo_t info; 3366 int ret; 3367 3368 /* XXX: Don't preclude handling different sized sigset_t's. */ 3369 if (sigsetsize != sizeof(sigset_t)) 3370 return -EINVAL; 3371 3372 if (copy_from_user(&these, uthese, sizeof(these))) 3373 return -EFAULT; 3374 3375 if (uts) { 3376 if (get_timespec64(&ts, uts)) 3377 return -EFAULT; 3378 } 3379 3380 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3381 3382 if (ret > 0 && uinfo) { 3383 if (copy_siginfo_to_user(uinfo, &info)) 3384 ret = -EFAULT; 3385 } 3386 3387 return ret; 3388 } 3389 3390 #ifdef CONFIG_COMPAT_32BIT_TIME 3391 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3392 siginfo_t __user *, uinfo, 3393 const struct old_timespec32 __user *, uts, 3394 size_t, sigsetsize) 3395 { 3396 sigset_t these; 3397 struct timespec64 ts; 3398 kernel_siginfo_t info; 3399 int ret; 3400 3401 if (sigsetsize != sizeof(sigset_t)) 3402 return -EINVAL; 3403 3404 if (copy_from_user(&these, uthese, sizeof(these))) 3405 return -EFAULT; 3406 3407 if (uts) { 3408 if (get_old_timespec32(&ts, uts)) 3409 return -EFAULT; 3410 } 3411 3412 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3413 3414 if (ret > 0 && uinfo) { 3415 if (copy_siginfo_to_user(uinfo, &info)) 3416 ret = -EFAULT; 3417 } 3418 3419 return ret; 3420 } 3421 #endif 3422 3423 #ifdef CONFIG_COMPAT 3424 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3425 struct compat_siginfo __user *, uinfo, 3426 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3427 { 3428 sigset_t s; 3429 struct timespec64 t; 3430 kernel_siginfo_t info; 3431 long ret; 3432 3433 if (sigsetsize != sizeof(sigset_t)) 3434 return -EINVAL; 3435 3436 if (get_compat_sigset(&s, uthese)) 3437 return -EFAULT; 3438 3439 if (uts) { 3440 if (get_timespec64(&t, uts)) 3441 return -EFAULT; 3442 } 3443 3444 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3445 3446 if (ret > 0 && uinfo) { 3447 if (copy_siginfo_to_user32(uinfo, &info)) 3448 ret = -EFAULT; 3449 } 3450 3451 return ret; 3452 } 3453 3454 #ifdef CONFIG_COMPAT_32BIT_TIME 3455 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese, 3456 struct compat_siginfo __user *, uinfo, 3457 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3458 { 3459 sigset_t s; 3460 struct timespec64 t; 3461 kernel_siginfo_t info; 3462 long ret; 3463 3464 if (sigsetsize != sizeof(sigset_t)) 3465 return -EINVAL; 3466 3467 if (get_compat_sigset(&s, uthese)) 3468 return -EFAULT; 3469 3470 if (uts) { 3471 if (get_old_timespec32(&t, uts)) 3472 return -EFAULT; 3473 } 3474 3475 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3476 3477 if (ret > 0 && uinfo) { 3478 if (copy_siginfo_to_user32(uinfo, &info)) 3479 ret = -EFAULT; 3480 } 3481 3482 return ret; 3483 } 3484 #endif 3485 #endif 3486 3487 /** 3488 * sys_kill - send a signal to a process 3489 * @pid: the PID of the process 3490 * @sig: signal to be sent 3491 */ 3492 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3493 { 3494 struct kernel_siginfo info; 3495 3496 clear_siginfo(&info); 3497 info.si_signo = sig; 3498 info.si_errno = 0; 3499 info.si_code = SI_USER; 3500 info.si_pid = task_tgid_vnr(current); 3501 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3502 3503 return kill_something_info(sig, &info, pid); 3504 } 3505 3506 static int 3507 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3508 { 3509 struct task_struct *p; 3510 int error = -ESRCH; 3511 3512 rcu_read_lock(); 3513 p = find_task_by_vpid(pid); 3514 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3515 error = check_kill_permission(sig, info, p); 3516 /* 3517 * The null signal is a permissions and process existence 3518 * probe. No signal is actually delivered. 3519 */ 3520 if (!error && sig) { 3521 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3522 /* 3523 * If lock_task_sighand() failed we pretend the task 3524 * dies after receiving the signal. The window is tiny, 3525 * and the signal is private anyway. 3526 */ 3527 if (unlikely(error == -ESRCH)) 3528 error = 0; 3529 } 3530 } 3531 rcu_read_unlock(); 3532 3533 return error; 3534 } 3535 3536 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3537 { 3538 struct kernel_siginfo info; 3539 3540 clear_siginfo(&info); 3541 info.si_signo = sig; 3542 info.si_errno = 0; 3543 info.si_code = SI_TKILL; 3544 info.si_pid = task_tgid_vnr(current); 3545 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3546 3547 return do_send_specific(tgid, pid, sig, &info); 3548 } 3549 3550 /** 3551 * sys_tgkill - send signal to one specific thread 3552 * @tgid: the thread group ID of the thread 3553 * @pid: the PID of the thread 3554 * @sig: signal to be sent 3555 * 3556 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3557 * exists but it's not belonging to the target process anymore. This 3558 * method solves the problem of threads exiting and PIDs getting reused. 3559 */ 3560 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3561 { 3562 /* This is only valid for single tasks */ 3563 if (pid <= 0 || tgid <= 0) 3564 return -EINVAL; 3565 3566 return do_tkill(tgid, pid, sig); 3567 } 3568 3569 /** 3570 * sys_tkill - send signal to one specific task 3571 * @pid: the PID of the task 3572 * @sig: signal to be sent 3573 * 3574 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3575 */ 3576 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3577 { 3578 /* This is only valid for single tasks */ 3579 if (pid <= 0) 3580 return -EINVAL; 3581 3582 return do_tkill(0, pid, sig); 3583 } 3584 3585 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 3586 { 3587 /* Not even root can pretend to send signals from the kernel. 3588 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3589 */ 3590 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3591 (task_pid_vnr(current) != pid)) 3592 return -EPERM; 3593 3594 /* POSIX.1b doesn't mention process groups. */ 3595 return kill_proc_info(sig, info, pid); 3596 } 3597 3598 /** 3599 * sys_rt_sigqueueinfo - send signal information to a signal 3600 * @pid: the PID of the thread 3601 * @sig: signal to be sent 3602 * @uinfo: signal info to be sent 3603 */ 3604 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3605 siginfo_t __user *, uinfo) 3606 { 3607 kernel_siginfo_t info; 3608 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3609 if (unlikely(ret)) 3610 return ret; 3611 return do_rt_sigqueueinfo(pid, sig, &info); 3612 } 3613 3614 #ifdef CONFIG_COMPAT 3615 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3616 compat_pid_t, pid, 3617 int, sig, 3618 struct compat_siginfo __user *, uinfo) 3619 { 3620 kernel_siginfo_t info; 3621 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 3622 if (unlikely(ret)) 3623 return ret; 3624 return do_rt_sigqueueinfo(pid, sig, &info); 3625 } 3626 #endif 3627 3628 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 3629 { 3630 /* This is only valid for single tasks */ 3631 if (pid <= 0 || tgid <= 0) 3632 return -EINVAL; 3633 3634 /* Not even root can pretend to send signals from the kernel. 3635 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3636 */ 3637 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3638 (task_pid_vnr(current) != pid)) 3639 return -EPERM; 3640 3641 return do_send_specific(tgid, pid, sig, info); 3642 } 3643 3644 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3645 siginfo_t __user *, uinfo) 3646 { 3647 kernel_siginfo_t info; 3648 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3649 if (unlikely(ret)) 3650 return ret; 3651 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3652 } 3653 3654 #ifdef CONFIG_COMPAT 3655 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3656 compat_pid_t, tgid, 3657 compat_pid_t, pid, 3658 int, sig, 3659 struct compat_siginfo __user *, uinfo) 3660 { 3661 kernel_siginfo_t info; 3662 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 3663 if (unlikely(ret)) 3664 return ret; 3665 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3666 } 3667 #endif 3668 3669 /* 3670 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 3671 */ 3672 void kernel_sigaction(int sig, __sighandler_t action) 3673 { 3674 spin_lock_irq(¤t->sighand->siglock); 3675 current->sighand->action[sig - 1].sa.sa_handler = action; 3676 if (action == SIG_IGN) { 3677 sigset_t mask; 3678 3679 sigemptyset(&mask); 3680 sigaddset(&mask, sig); 3681 3682 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 3683 flush_sigqueue_mask(&mask, ¤t->pending); 3684 recalc_sigpending(); 3685 } 3686 spin_unlock_irq(¤t->sighand->siglock); 3687 } 3688 EXPORT_SYMBOL(kernel_sigaction); 3689 3690 void __weak sigaction_compat_abi(struct k_sigaction *act, 3691 struct k_sigaction *oact) 3692 { 3693 } 3694 3695 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 3696 { 3697 struct task_struct *p = current, *t; 3698 struct k_sigaction *k; 3699 sigset_t mask; 3700 3701 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3702 return -EINVAL; 3703 3704 k = &p->sighand->action[sig-1]; 3705 3706 spin_lock_irq(&p->sighand->siglock); 3707 if (oact) 3708 *oact = *k; 3709 3710 sigaction_compat_abi(act, oact); 3711 3712 if (act) { 3713 sigdelsetmask(&act->sa.sa_mask, 3714 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3715 *k = *act; 3716 /* 3717 * POSIX 3.3.1.3: 3718 * "Setting a signal action to SIG_IGN for a signal that is 3719 * pending shall cause the pending signal to be discarded, 3720 * whether or not it is blocked." 3721 * 3722 * "Setting a signal action to SIG_DFL for a signal that is 3723 * pending and whose default action is to ignore the signal 3724 * (for example, SIGCHLD), shall cause the pending signal to 3725 * be discarded, whether or not it is blocked" 3726 */ 3727 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 3728 sigemptyset(&mask); 3729 sigaddset(&mask, sig); 3730 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 3731 for_each_thread(p, t) 3732 flush_sigqueue_mask(&mask, &t->pending); 3733 } 3734 } 3735 3736 spin_unlock_irq(&p->sighand->siglock); 3737 return 0; 3738 } 3739 3740 static int 3741 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 3742 size_t min_ss_size) 3743 { 3744 struct task_struct *t = current; 3745 3746 if (oss) { 3747 memset(oss, 0, sizeof(stack_t)); 3748 oss->ss_sp = (void __user *) t->sas_ss_sp; 3749 oss->ss_size = t->sas_ss_size; 3750 oss->ss_flags = sas_ss_flags(sp) | 3751 (current->sas_ss_flags & SS_FLAG_BITS); 3752 } 3753 3754 if (ss) { 3755 void __user *ss_sp = ss->ss_sp; 3756 size_t ss_size = ss->ss_size; 3757 unsigned ss_flags = ss->ss_flags; 3758 int ss_mode; 3759 3760 if (unlikely(on_sig_stack(sp))) 3761 return -EPERM; 3762 3763 ss_mode = ss_flags & ~SS_FLAG_BITS; 3764 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 3765 ss_mode != 0)) 3766 return -EINVAL; 3767 3768 if (ss_mode == SS_DISABLE) { 3769 ss_size = 0; 3770 ss_sp = NULL; 3771 } else { 3772 if (unlikely(ss_size < min_ss_size)) 3773 return -ENOMEM; 3774 } 3775 3776 t->sas_ss_sp = (unsigned long) ss_sp; 3777 t->sas_ss_size = ss_size; 3778 t->sas_ss_flags = ss_flags; 3779 } 3780 return 0; 3781 } 3782 3783 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 3784 { 3785 stack_t new, old; 3786 int err; 3787 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 3788 return -EFAULT; 3789 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 3790 current_user_stack_pointer(), 3791 MINSIGSTKSZ); 3792 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 3793 err = -EFAULT; 3794 return err; 3795 } 3796 3797 int restore_altstack(const stack_t __user *uss) 3798 { 3799 stack_t new; 3800 if (copy_from_user(&new, uss, sizeof(stack_t))) 3801 return -EFAULT; 3802 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 3803 MINSIGSTKSZ); 3804 /* squash all but EFAULT for now */ 3805 return 0; 3806 } 3807 3808 int __save_altstack(stack_t __user *uss, unsigned long sp) 3809 { 3810 struct task_struct *t = current; 3811 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 3812 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3813 __put_user(t->sas_ss_size, &uss->ss_size); 3814 if (err) 3815 return err; 3816 if (t->sas_ss_flags & SS_AUTODISARM) 3817 sas_ss_reset(t); 3818 return 0; 3819 } 3820 3821 #ifdef CONFIG_COMPAT 3822 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 3823 compat_stack_t __user *uoss_ptr) 3824 { 3825 stack_t uss, uoss; 3826 int ret; 3827 3828 if (uss_ptr) { 3829 compat_stack_t uss32; 3830 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 3831 return -EFAULT; 3832 uss.ss_sp = compat_ptr(uss32.ss_sp); 3833 uss.ss_flags = uss32.ss_flags; 3834 uss.ss_size = uss32.ss_size; 3835 } 3836 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 3837 compat_user_stack_pointer(), 3838 COMPAT_MINSIGSTKSZ); 3839 if (ret >= 0 && uoss_ptr) { 3840 compat_stack_t old; 3841 memset(&old, 0, sizeof(old)); 3842 old.ss_sp = ptr_to_compat(uoss.ss_sp); 3843 old.ss_flags = uoss.ss_flags; 3844 old.ss_size = uoss.ss_size; 3845 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 3846 ret = -EFAULT; 3847 } 3848 return ret; 3849 } 3850 3851 COMPAT_SYSCALL_DEFINE2(sigaltstack, 3852 const compat_stack_t __user *, uss_ptr, 3853 compat_stack_t __user *, uoss_ptr) 3854 { 3855 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 3856 } 3857 3858 int compat_restore_altstack(const compat_stack_t __user *uss) 3859 { 3860 int err = do_compat_sigaltstack(uss, NULL); 3861 /* squash all but -EFAULT for now */ 3862 return err == -EFAULT ? err : 0; 3863 } 3864 3865 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 3866 { 3867 int err; 3868 struct task_struct *t = current; 3869 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 3870 &uss->ss_sp) | 3871 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3872 __put_user(t->sas_ss_size, &uss->ss_size); 3873 if (err) 3874 return err; 3875 if (t->sas_ss_flags & SS_AUTODISARM) 3876 sas_ss_reset(t); 3877 return 0; 3878 } 3879 #endif 3880 3881 #ifdef __ARCH_WANT_SYS_SIGPENDING 3882 3883 /** 3884 * sys_sigpending - examine pending signals 3885 * @uset: where mask of pending signal is returned 3886 */ 3887 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 3888 { 3889 sigset_t set; 3890 3891 if (sizeof(old_sigset_t) > sizeof(*uset)) 3892 return -EINVAL; 3893 3894 do_sigpending(&set); 3895 3896 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 3897 return -EFAULT; 3898 3899 return 0; 3900 } 3901 3902 #ifdef CONFIG_COMPAT 3903 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 3904 { 3905 sigset_t set; 3906 3907 do_sigpending(&set); 3908 3909 return put_user(set.sig[0], set32); 3910 } 3911 #endif 3912 3913 #endif 3914 3915 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 3916 /** 3917 * sys_sigprocmask - examine and change blocked signals 3918 * @how: whether to add, remove, or set signals 3919 * @nset: signals to add or remove (if non-null) 3920 * @oset: previous value of signal mask if non-null 3921 * 3922 * Some platforms have their own version with special arguments; 3923 * others support only sys_rt_sigprocmask. 3924 */ 3925 3926 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3927 old_sigset_t __user *, oset) 3928 { 3929 old_sigset_t old_set, new_set; 3930 sigset_t new_blocked; 3931 3932 old_set = current->blocked.sig[0]; 3933 3934 if (nset) { 3935 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3936 return -EFAULT; 3937 3938 new_blocked = current->blocked; 3939 3940 switch (how) { 3941 case SIG_BLOCK: 3942 sigaddsetmask(&new_blocked, new_set); 3943 break; 3944 case SIG_UNBLOCK: 3945 sigdelsetmask(&new_blocked, new_set); 3946 break; 3947 case SIG_SETMASK: 3948 new_blocked.sig[0] = new_set; 3949 break; 3950 default: 3951 return -EINVAL; 3952 } 3953 3954 set_current_blocked(&new_blocked); 3955 } 3956 3957 if (oset) { 3958 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3959 return -EFAULT; 3960 } 3961 3962 return 0; 3963 } 3964 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3965 3966 #ifndef CONFIG_ODD_RT_SIGACTION 3967 /** 3968 * sys_rt_sigaction - alter an action taken by a process 3969 * @sig: signal to be sent 3970 * @act: new sigaction 3971 * @oact: used to save the previous sigaction 3972 * @sigsetsize: size of sigset_t type 3973 */ 3974 SYSCALL_DEFINE4(rt_sigaction, int, sig, 3975 const struct sigaction __user *, act, 3976 struct sigaction __user *, oact, 3977 size_t, sigsetsize) 3978 { 3979 struct k_sigaction new_sa, old_sa; 3980 int ret; 3981 3982 /* XXX: Don't preclude handling different sized sigset_t's. */ 3983 if (sigsetsize != sizeof(sigset_t)) 3984 return -EINVAL; 3985 3986 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3987 return -EFAULT; 3988 3989 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3990 if (ret) 3991 return ret; 3992 3993 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3994 return -EFAULT; 3995 3996 return 0; 3997 } 3998 #ifdef CONFIG_COMPAT 3999 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4000 const struct compat_sigaction __user *, act, 4001 struct compat_sigaction __user *, oact, 4002 compat_size_t, sigsetsize) 4003 { 4004 struct k_sigaction new_ka, old_ka; 4005 #ifdef __ARCH_HAS_SA_RESTORER 4006 compat_uptr_t restorer; 4007 #endif 4008 int ret; 4009 4010 /* XXX: Don't preclude handling different sized sigset_t's. */ 4011 if (sigsetsize != sizeof(compat_sigset_t)) 4012 return -EINVAL; 4013 4014 if (act) { 4015 compat_uptr_t handler; 4016 ret = get_user(handler, &act->sa_handler); 4017 new_ka.sa.sa_handler = compat_ptr(handler); 4018 #ifdef __ARCH_HAS_SA_RESTORER 4019 ret |= get_user(restorer, &act->sa_restorer); 4020 new_ka.sa.sa_restorer = compat_ptr(restorer); 4021 #endif 4022 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4023 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4024 if (ret) 4025 return -EFAULT; 4026 } 4027 4028 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4029 if (!ret && oact) { 4030 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4031 &oact->sa_handler); 4032 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4033 sizeof(oact->sa_mask)); 4034 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4035 #ifdef __ARCH_HAS_SA_RESTORER 4036 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4037 &oact->sa_restorer); 4038 #endif 4039 } 4040 return ret; 4041 } 4042 #endif 4043 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4044 4045 #ifdef CONFIG_OLD_SIGACTION 4046 SYSCALL_DEFINE3(sigaction, int, sig, 4047 const struct old_sigaction __user *, act, 4048 struct old_sigaction __user *, oact) 4049 { 4050 struct k_sigaction new_ka, old_ka; 4051 int ret; 4052 4053 if (act) { 4054 old_sigset_t mask; 4055 if (!access_ok(act, sizeof(*act)) || 4056 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4057 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4058 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4059 __get_user(mask, &act->sa_mask)) 4060 return -EFAULT; 4061 #ifdef __ARCH_HAS_KA_RESTORER 4062 new_ka.ka_restorer = NULL; 4063 #endif 4064 siginitset(&new_ka.sa.sa_mask, mask); 4065 } 4066 4067 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4068 4069 if (!ret && oact) { 4070 if (!access_ok(oact, sizeof(*oact)) || 4071 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4072 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4073 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4074 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4075 return -EFAULT; 4076 } 4077 4078 return ret; 4079 } 4080 #endif 4081 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4082 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4083 const struct compat_old_sigaction __user *, act, 4084 struct compat_old_sigaction __user *, oact) 4085 { 4086 struct k_sigaction new_ka, old_ka; 4087 int ret; 4088 compat_old_sigset_t mask; 4089 compat_uptr_t handler, restorer; 4090 4091 if (act) { 4092 if (!access_ok(act, sizeof(*act)) || 4093 __get_user(handler, &act->sa_handler) || 4094 __get_user(restorer, &act->sa_restorer) || 4095 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4096 __get_user(mask, &act->sa_mask)) 4097 return -EFAULT; 4098 4099 #ifdef __ARCH_HAS_KA_RESTORER 4100 new_ka.ka_restorer = NULL; 4101 #endif 4102 new_ka.sa.sa_handler = compat_ptr(handler); 4103 new_ka.sa.sa_restorer = compat_ptr(restorer); 4104 siginitset(&new_ka.sa.sa_mask, mask); 4105 } 4106 4107 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4108 4109 if (!ret && oact) { 4110 if (!access_ok(oact, sizeof(*oact)) || 4111 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4112 &oact->sa_handler) || 4113 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4114 &oact->sa_restorer) || 4115 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4116 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4117 return -EFAULT; 4118 } 4119 return ret; 4120 } 4121 #endif 4122 4123 #ifdef CONFIG_SGETMASK_SYSCALL 4124 4125 /* 4126 * For backwards compatibility. Functionality superseded by sigprocmask. 4127 */ 4128 SYSCALL_DEFINE0(sgetmask) 4129 { 4130 /* SMP safe */ 4131 return current->blocked.sig[0]; 4132 } 4133 4134 SYSCALL_DEFINE1(ssetmask, int, newmask) 4135 { 4136 int old = current->blocked.sig[0]; 4137 sigset_t newset; 4138 4139 siginitset(&newset, newmask); 4140 set_current_blocked(&newset); 4141 4142 return old; 4143 } 4144 #endif /* CONFIG_SGETMASK_SYSCALL */ 4145 4146 #ifdef __ARCH_WANT_SYS_SIGNAL 4147 /* 4148 * For backwards compatibility. Functionality superseded by sigaction. 4149 */ 4150 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4151 { 4152 struct k_sigaction new_sa, old_sa; 4153 int ret; 4154 4155 new_sa.sa.sa_handler = handler; 4156 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4157 sigemptyset(&new_sa.sa.sa_mask); 4158 4159 ret = do_sigaction(sig, &new_sa, &old_sa); 4160 4161 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4162 } 4163 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4164 4165 #ifdef __ARCH_WANT_SYS_PAUSE 4166 4167 SYSCALL_DEFINE0(pause) 4168 { 4169 while (!signal_pending(current)) { 4170 __set_current_state(TASK_INTERRUPTIBLE); 4171 schedule(); 4172 } 4173 return -ERESTARTNOHAND; 4174 } 4175 4176 #endif 4177 4178 static int sigsuspend(sigset_t *set) 4179 { 4180 current->saved_sigmask = current->blocked; 4181 set_current_blocked(set); 4182 4183 while (!signal_pending(current)) { 4184 __set_current_state(TASK_INTERRUPTIBLE); 4185 schedule(); 4186 } 4187 set_restore_sigmask(); 4188 return -ERESTARTNOHAND; 4189 } 4190 4191 /** 4192 * sys_rt_sigsuspend - replace the signal mask for a value with the 4193 * @unewset value until a signal is received 4194 * @unewset: new signal mask value 4195 * @sigsetsize: size of sigset_t type 4196 */ 4197 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4198 { 4199 sigset_t newset; 4200 4201 /* XXX: Don't preclude handling different sized sigset_t's. */ 4202 if (sigsetsize != sizeof(sigset_t)) 4203 return -EINVAL; 4204 4205 if (copy_from_user(&newset, unewset, sizeof(newset))) 4206 return -EFAULT; 4207 return sigsuspend(&newset); 4208 } 4209 4210 #ifdef CONFIG_COMPAT 4211 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4212 { 4213 sigset_t newset; 4214 4215 /* XXX: Don't preclude handling different sized sigset_t's. */ 4216 if (sigsetsize != sizeof(sigset_t)) 4217 return -EINVAL; 4218 4219 if (get_compat_sigset(&newset, unewset)) 4220 return -EFAULT; 4221 return sigsuspend(&newset); 4222 } 4223 #endif 4224 4225 #ifdef CONFIG_OLD_SIGSUSPEND 4226 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4227 { 4228 sigset_t blocked; 4229 siginitset(&blocked, mask); 4230 return sigsuspend(&blocked); 4231 } 4232 #endif 4233 #ifdef CONFIG_OLD_SIGSUSPEND3 4234 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4235 { 4236 sigset_t blocked; 4237 siginitset(&blocked, mask); 4238 return sigsuspend(&blocked); 4239 } 4240 #endif 4241 4242 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4243 { 4244 return NULL; 4245 } 4246 4247 static inline void siginfo_buildtime_checks(void) 4248 { 4249 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4250 4251 /* Verify the offsets in the two siginfos match */ 4252 #define CHECK_OFFSET(field) \ 4253 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4254 4255 /* kill */ 4256 CHECK_OFFSET(si_pid); 4257 CHECK_OFFSET(si_uid); 4258 4259 /* timer */ 4260 CHECK_OFFSET(si_tid); 4261 CHECK_OFFSET(si_overrun); 4262 CHECK_OFFSET(si_value); 4263 4264 /* rt */ 4265 CHECK_OFFSET(si_pid); 4266 CHECK_OFFSET(si_uid); 4267 CHECK_OFFSET(si_value); 4268 4269 /* sigchld */ 4270 CHECK_OFFSET(si_pid); 4271 CHECK_OFFSET(si_uid); 4272 CHECK_OFFSET(si_status); 4273 CHECK_OFFSET(si_utime); 4274 CHECK_OFFSET(si_stime); 4275 4276 /* sigfault */ 4277 CHECK_OFFSET(si_addr); 4278 CHECK_OFFSET(si_addr_lsb); 4279 CHECK_OFFSET(si_lower); 4280 CHECK_OFFSET(si_upper); 4281 CHECK_OFFSET(si_pkey); 4282 4283 /* sigpoll */ 4284 CHECK_OFFSET(si_band); 4285 CHECK_OFFSET(si_fd); 4286 4287 /* sigsys */ 4288 CHECK_OFFSET(si_call_addr); 4289 CHECK_OFFSET(si_syscall); 4290 CHECK_OFFSET(si_arch); 4291 #undef CHECK_OFFSET 4292 } 4293 4294 void __init signals_init(void) 4295 { 4296 siginfo_buildtime_checks(); 4297 4298 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 4299 } 4300 4301 #ifdef CONFIG_KGDB_KDB 4302 #include <linux/kdb.h> 4303 /* 4304 * kdb_send_sig - Allows kdb to send signals without exposing 4305 * signal internals. This function checks if the required locks are 4306 * available before calling the main signal code, to avoid kdb 4307 * deadlocks. 4308 */ 4309 void kdb_send_sig(struct task_struct *t, int sig) 4310 { 4311 static struct task_struct *kdb_prev_t; 4312 int new_t, ret; 4313 if (!spin_trylock(&t->sighand->siglock)) { 4314 kdb_printf("Can't do kill command now.\n" 4315 "The sigmask lock is held somewhere else in " 4316 "kernel, try again later\n"); 4317 return; 4318 } 4319 new_t = kdb_prev_t != t; 4320 kdb_prev_t = t; 4321 if (t->state != TASK_RUNNING && new_t) { 4322 spin_unlock(&t->sighand->siglock); 4323 kdb_printf("Process is not RUNNING, sending a signal from " 4324 "kdb risks deadlock\n" 4325 "on the run queue locks. " 4326 "The signal has _not_ been sent.\n" 4327 "Reissue the kill command if you want to risk " 4328 "the deadlock.\n"); 4329 return; 4330 } 4331 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4332 spin_unlock(&t->sighand->siglock); 4333 if (ret) 4334 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4335 sig, t->pid); 4336 else 4337 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4338 } 4339 #endif /* CONFIG_KGDB_KDB */ 4340