xref: /openbmc/linux/kernel/signal.c (revision c8ec3743)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/fs.h>
23 #include <linux/tty.h>
24 #include <linux/binfmts.h>
25 #include <linux/coredump.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/ptrace.h>
29 #include <linux/signal.h>
30 #include <linux/signalfd.h>
31 #include <linux/ratelimit.h>
32 #include <linux/tracehook.h>
33 #include <linux/capability.h>
34 #include <linux/freezer.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/nsproxy.h>
37 #include <linux/user_namespace.h>
38 #include <linux/uprobes.h>
39 #include <linux/compat.h>
40 #include <linux/cn_proc.h>
41 #include <linux/compiler.h>
42 #include <linux/posix-timers.h>
43 #include <linux/livepatch.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/signal.h>
47 
48 #include <asm/param.h>
49 #include <linux/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/siginfo.h>
52 #include <asm/cacheflush.h>
53 #include "audit.h"	/* audit_signal_info() */
54 
55 /*
56  * SLAB caches for signal bits.
57  */
58 
59 static struct kmem_cache *sigqueue_cachep;
60 
61 int print_fatal_signals __read_mostly;
62 
63 static void __user *sig_handler(struct task_struct *t, int sig)
64 {
65 	return t->sighand->action[sig - 1].sa.sa_handler;
66 }
67 
68 static inline bool sig_handler_ignored(void __user *handler, int sig)
69 {
70 	/* Is it explicitly or implicitly ignored? */
71 	return handler == SIG_IGN ||
72 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
73 }
74 
75 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
76 {
77 	void __user *handler;
78 
79 	handler = sig_handler(t, sig);
80 
81 	/* SIGKILL and SIGSTOP may not be sent to the global init */
82 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
83 		return true;
84 
85 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
86 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
87 		return true;
88 
89 	return sig_handler_ignored(handler, sig);
90 }
91 
92 static bool sig_ignored(struct task_struct *t, int sig, bool force)
93 {
94 	/*
95 	 * Blocked signals are never ignored, since the
96 	 * signal handler may change by the time it is
97 	 * unblocked.
98 	 */
99 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
100 		return false;
101 
102 	/*
103 	 * Tracers may want to know about even ignored signal unless it
104 	 * is SIGKILL which can't be reported anyway but can be ignored
105 	 * by SIGNAL_UNKILLABLE task.
106 	 */
107 	if (t->ptrace && sig != SIGKILL)
108 		return false;
109 
110 	return sig_task_ignored(t, sig, force);
111 }
112 
113 /*
114  * Re-calculate pending state from the set of locally pending
115  * signals, globally pending signals, and blocked signals.
116  */
117 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
118 {
119 	unsigned long ready;
120 	long i;
121 
122 	switch (_NSIG_WORDS) {
123 	default:
124 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
125 			ready |= signal->sig[i] &~ blocked->sig[i];
126 		break;
127 
128 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
129 		ready |= signal->sig[2] &~ blocked->sig[2];
130 		ready |= signal->sig[1] &~ blocked->sig[1];
131 		ready |= signal->sig[0] &~ blocked->sig[0];
132 		break;
133 
134 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
135 		ready |= signal->sig[0] &~ blocked->sig[0];
136 		break;
137 
138 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
139 	}
140 	return ready !=	0;
141 }
142 
143 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
144 
145 static bool recalc_sigpending_tsk(struct task_struct *t)
146 {
147 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
148 	    PENDING(&t->pending, &t->blocked) ||
149 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
150 		set_tsk_thread_flag(t, TIF_SIGPENDING);
151 		return true;
152 	}
153 
154 	/*
155 	 * We must never clear the flag in another thread, or in current
156 	 * when it's possible the current syscall is returning -ERESTART*.
157 	 * So we don't clear it here, and only callers who know they should do.
158 	 */
159 	return false;
160 }
161 
162 /*
163  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
164  * This is superfluous when called on current, the wakeup is a harmless no-op.
165  */
166 void recalc_sigpending_and_wake(struct task_struct *t)
167 {
168 	if (recalc_sigpending_tsk(t))
169 		signal_wake_up(t, 0);
170 }
171 
172 void recalc_sigpending(void)
173 {
174 	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
175 	    !klp_patch_pending(current))
176 		clear_thread_flag(TIF_SIGPENDING);
177 
178 }
179 EXPORT_SYMBOL(recalc_sigpending);
180 
181 void calculate_sigpending(void)
182 {
183 	/* Have any signals or users of TIF_SIGPENDING been delayed
184 	 * until after fork?
185 	 */
186 	spin_lock_irq(&current->sighand->siglock);
187 	set_tsk_thread_flag(current, TIF_SIGPENDING);
188 	recalc_sigpending();
189 	spin_unlock_irq(&current->sighand->siglock);
190 }
191 
192 /* Given the mask, find the first available signal that should be serviced. */
193 
194 #define SYNCHRONOUS_MASK \
195 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
196 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
197 
198 int next_signal(struct sigpending *pending, sigset_t *mask)
199 {
200 	unsigned long i, *s, *m, x;
201 	int sig = 0;
202 
203 	s = pending->signal.sig;
204 	m = mask->sig;
205 
206 	/*
207 	 * Handle the first word specially: it contains the
208 	 * synchronous signals that need to be dequeued first.
209 	 */
210 	x = *s &~ *m;
211 	if (x) {
212 		if (x & SYNCHRONOUS_MASK)
213 			x &= SYNCHRONOUS_MASK;
214 		sig = ffz(~x) + 1;
215 		return sig;
216 	}
217 
218 	switch (_NSIG_WORDS) {
219 	default:
220 		for (i = 1; i < _NSIG_WORDS; ++i) {
221 			x = *++s &~ *++m;
222 			if (!x)
223 				continue;
224 			sig = ffz(~x) + i*_NSIG_BPW + 1;
225 			break;
226 		}
227 		break;
228 
229 	case 2:
230 		x = s[1] &~ m[1];
231 		if (!x)
232 			break;
233 		sig = ffz(~x) + _NSIG_BPW + 1;
234 		break;
235 
236 	case 1:
237 		/* Nothing to do */
238 		break;
239 	}
240 
241 	return sig;
242 }
243 
244 static inline void print_dropped_signal(int sig)
245 {
246 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
247 
248 	if (!print_fatal_signals)
249 		return;
250 
251 	if (!__ratelimit(&ratelimit_state))
252 		return;
253 
254 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
255 				current->comm, current->pid, sig);
256 }
257 
258 /**
259  * task_set_jobctl_pending - set jobctl pending bits
260  * @task: target task
261  * @mask: pending bits to set
262  *
263  * Clear @mask from @task->jobctl.  @mask must be subset of
264  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
265  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
266  * cleared.  If @task is already being killed or exiting, this function
267  * becomes noop.
268  *
269  * CONTEXT:
270  * Must be called with @task->sighand->siglock held.
271  *
272  * RETURNS:
273  * %true if @mask is set, %false if made noop because @task was dying.
274  */
275 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
276 {
277 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
278 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
279 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
280 
281 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
282 		return false;
283 
284 	if (mask & JOBCTL_STOP_SIGMASK)
285 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
286 
287 	task->jobctl |= mask;
288 	return true;
289 }
290 
291 /**
292  * task_clear_jobctl_trapping - clear jobctl trapping bit
293  * @task: target task
294  *
295  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
296  * Clear it and wake up the ptracer.  Note that we don't need any further
297  * locking.  @task->siglock guarantees that @task->parent points to the
298  * ptracer.
299  *
300  * CONTEXT:
301  * Must be called with @task->sighand->siglock held.
302  */
303 void task_clear_jobctl_trapping(struct task_struct *task)
304 {
305 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
306 		task->jobctl &= ~JOBCTL_TRAPPING;
307 		smp_mb();	/* advised by wake_up_bit() */
308 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
309 	}
310 }
311 
312 /**
313  * task_clear_jobctl_pending - clear jobctl pending bits
314  * @task: target task
315  * @mask: pending bits to clear
316  *
317  * Clear @mask from @task->jobctl.  @mask must be subset of
318  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
319  * STOP bits are cleared together.
320  *
321  * If clearing of @mask leaves no stop or trap pending, this function calls
322  * task_clear_jobctl_trapping().
323  *
324  * CONTEXT:
325  * Must be called with @task->sighand->siglock held.
326  */
327 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
328 {
329 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
330 
331 	if (mask & JOBCTL_STOP_PENDING)
332 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
333 
334 	task->jobctl &= ~mask;
335 
336 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
337 		task_clear_jobctl_trapping(task);
338 }
339 
340 /**
341  * task_participate_group_stop - participate in a group stop
342  * @task: task participating in a group stop
343  *
344  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
345  * Group stop states are cleared and the group stop count is consumed if
346  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
347  * stop, the appropriate %SIGNAL_* flags are set.
348  *
349  * CONTEXT:
350  * Must be called with @task->sighand->siglock held.
351  *
352  * RETURNS:
353  * %true if group stop completion should be notified to the parent, %false
354  * otherwise.
355  */
356 static bool task_participate_group_stop(struct task_struct *task)
357 {
358 	struct signal_struct *sig = task->signal;
359 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
360 
361 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
362 
363 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
364 
365 	if (!consume)
366 		return false;
367 
368 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
369 		sig->group_stop_count--;
370 
371 	/*
372 	 * Tell the caller to notify completion iff we are entering into a
373 	 * fresh group stop.  Read comment in do_signal_stop() for details.
374 	 */
375 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
376 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
377 		return true;
378 	}
379 	return false;
380 }
381 
382 void task_join_group_stop(struct task_struct *task)
383 {
384 	/* Have the new thread join an on-going signal group stop */
385 	unsigned long jobctl = current->jobctl;
386 	if (jobctl & JOBCTL_STOP_PENDING) {
387 		struct signal_struct *sig = current->signal;
388 		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
389 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
390 		if (task_set_jobctl_pending(task, signr | gstop)) {
391 			sig->group_stop_count++;
392 		}
393 	}
394 }
395 
396 /*
397  * allocate a new signal queue record
398  * - this may be called without locks if and only if t == current, otherwise an
399  *   appropriate lock must be held to stop the target task from exiting
400  */
401 static struct sigqueue *
402 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
403 {
404 	struct sigqueue *q = NULL;
405 	struct user_struct *user;
406 
407 	/*
408 	 * Protect access to @t credentials. This can go away when all
409 	 * callers hold rcu read lock.
410 	 */
411 	rcu_read_lock();
412 	user = get_uid(__task_cred(t)->user);
413 	atomic_inc(&user->sigpending);
414 	rcu_read_unlock();
415 
416 	if (override_rlimit ||
417 	    atomic_read(&user->sigpending) <=
418 			task_rlimit(t, RLIMIT_SIGPENDING)) {
419 		q = kmem_cache_alloc(sigqueue_cachep, flags);
420 	} else {
421 		print_dropped_signal(sig);
422 	}
423 
424 	if (unlikely(q == NULL)) {
425 		atomic_dec(&user->sigpending);
426 		free_uid(user);
427 	} else {
428 		INIT_LIST_HEAD(&q->list);
429 		q->flags = 0;
430 		q->user = user;
431 	}
432 
433 	return q;
434 }
435 
436 static void __sigqueue_free(struct sigqueue *q)
437 {
438 	if (q->flags & SIGQUEUE_PREALLOC)
439 		return;
440 	atomic_dec(&q->user->sigpending);
441 	free_uid(q->user);
442 	kmem_cache_free(sigqueue_cachep, q);
443 }
444 
445 void flush_sigqueue(struct sigpending *queue)
446 {
447 	struct sigqueue *q;
448 
449 	sigemptyset(&queue->signal);
450 	while (!list_empty(&queue->list)) {
451 		q = list_entry(queue->list.next, struct sigqueue , list);
452 		list_del_init(&q->list);
453 		__sigqueue_free(q);
454 	}
455 }
456 
457 /*
458  * Flush all pending signals for this kthread.
459  */
460 void flush_signals(struct task_struct *t)
461 {
462 	unsigned long flags;
463 
464 	spin_lock_irqsave(&t->sighand->siglock, flags);
465 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
466 	flush_sigqueue(&t->pending);
467 	flush_sigqueue(&t->signal->shared_pending);
468 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
469 }
470 EXPORT_SYMBOL(flush_signals);
471 
472 #ifdef CONFIG_POSIX_TIMERS
473 static void __flush_itimer_signals(struct sigpending *pending)
474 {
475 	sigset_t signal, retain;
476 	struct sigqueue *q, *n;
477 
478 	signal = pending->signal;
479 	sigemptyset(&retain);
480 
481 	list_for_each_entry_safe(q, n, &pending->list, list) {
482 		int sig = q->info.si_signo;
483 
484 		if (likely(q->info.si_code != SI_TIMER)) {
485 			sigaddset(&retain, sig);
486 		} else {
487 			sigdelset(&signal, sig);
488 			list_del_init(&q->list);
489 			__sigqueue_free(q);
490 		}
491 	}
492 
493 	sigorsets(&pending->signal, &signal, &retain);
494 }
495 
496 void flush_itimer_signals(void)
497 {
498 	struct task_struct *tsk = current;
499 	unsigned long flags;
500 
501 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
502 	__flush_itimer_signals(&tsk->pending);
503 	__flush_itimer_signals(&tsk->signal->shared_pending);
504 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
505 }
506 #endif
507 
508 void ignore_signals(struct task_struct *t)
509 {
510 	int i;
511 
512 	for (i = 0; i < _NSIG; ++i)
513 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
514 
515 	flush_signals(t);
516 }
517 
518 /*
519  * Flush all handlers for a task.
520  */
521 
522 void
523 flush_signal_handlers(struct task_struct *t, int force_default)
524 {
525 	int i;
526 	struct k_sigaction *ka = &t->sighand->action[0];
527 	for (i = _NSIG ; i != 0 ; i--) {
528 		if (force_default || ka->sa.sa_handler != SIG_IGN)
529 			ka->sa.sa_handler = SIG_DFL;
530 		ka->sa.sa_flags = 0;
531 #ifdef __ARCH_HAS_SA_RESTORER
532 		ka->sa.sa_restorer = NULL;
533 #endif
534 		sigemptyset(&ka->sa.sa_mask);
535 		ka++;
536 	}
537 }
538 
539 bool unhandled_signal(struct task_struct *tsk, int sig)
540 {
541 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
542 	if (is_global_init(tsk))
543 		return true;
544 
545 	if (handler != SIG_IGN && handler != SIG_DFL)
546 		return false;
547 
548 	/* if ptraced, let the tracer determine */
549 	return !tsk->ptrace;
550 }
551 
552 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
553 			   bool *resched_timer)
554 {
555 	struct sigqueue *q, *first = NULL;
556 
557 	/*
558 	 * Collect the siginfo appropriate to this signal.  Check if
559 	 * there is another siginfo for the same signal.
560 	*/
561 	list_for_each_entry(q, &list->list, list) {
562 		if (q->info.si_signo == sig) {
563 			if (first)
564 				goto still_pending;
565 			first = q;
566 		}
567 	}
568 
569 	sigdelset(&list->signal, sig);
570 
571 	if (first) {
572 still_pending:
573 		list_del_init(&first->list);
574 		copy_siginfo(info, &first->info);
575 
576 		*resched_timer =
577 			(first->flags & SIGQUEUE_PREALLOC) &&
578 			(info->si_code == SI_TIMER) &&
579 			(info->si_sys_private);
580 
581 		__sigqueue_free(first);
582 	} else {
583 		/*
584 		 * Ok, it wasn't in the queue.  This must be
585 		 * a fast-pathed signal or we must have been
586 		 * out of queue space.  So zero out the info.
587 		 */
588 		clear_siginfo(info);
589 		info->si_signo = sig;
590 		info->si_errno = 0;
591 		info->si_code = SI_USER;
592 		info->si_pid = 0;
593 		info->si_uid = 0;
594 	}
595 }
596 
597 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
598 			kernel_siginfo_t *info, bool *resched_timer)
599 {
600 	int sig = next_signal(pending, mask);
601 
602 	if (sig)
603 		collect_signal(sig, pending, info, resched_timer);
604 	return sig;
605 }
606 
607 /*
608  * Dequeue a signal and return the element to the caller, which is
609  * expected to free it.
610  *
611  * All callers have to hold the siglock.
612  */
613 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
614 {
615 	bool resched_timer = false;
616 	int signr;
617 
618 	/* We only dequeue private signals from ourselves, we don't let
619 	 * signalfd steal them
620 	 */
621 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
622 	if (!signr) {
623 		signr = __dequeue_signal(&tsk->signal->shared_pending,
624 					 mask, info, &resched_timer);
625 #ifdef CONFIG_POSIX_TIMERS
626 		/*
627 		 * itimer signal ?
628 		 *
629 		 * itimers are process shared and we restart periodic
630 		 * itimers in the signal delivery path to prevent DoS
631 		 * attacks in the high resolution timer case. This is
632 		 * compliant with the old way of self-restarting
633 		 * itimers, as the SIGALRM is a legacy signal and only
634 		 * queued once. Changing the restart behaviour to
635 		 * restart the timer in the signal dequeue path is
636 		 * reducing the timer noise on heavy loaded !highres
637 		 * systems too.
638 		 */
639 		if (unlikely(signr == SIGALRM)) {
640 			struct hrtimer *tmr = &tsk->signal->real_timer;
641 
642 			if (!hrtimer_is_queued(tmr) &&
643 			    tsk->signal->it_real_incr != 0) {
644 				hrtimer_forward(tmr, tmr->base->get_time(),
645 						tsk->signal->it_real_incr);
646 				hrtimer_restart(tmr);
647 			}
648 		}
649 #endif
650 	}
651 
652 	recalc_sigpending();
653 	if (!signr)
654 		return 0;
655 
656 	if (unlikely(sig_kernel_stop(signr))) {
657 		/*
658 		 * Set a marker that we have dequeued a stop signal.  Our
659 		 * caller might release the siglock and then the pending
660 		 * stop signal it is about to process is no longer in the
661 		 * pending bitmasks, but must still be cleared by a SIGCONT
662 		 * (and overruled by a SIGKILL).  So those cases clear this
663 		 * shared flag after we've set it.  Note that this flag may
664 		 * remain set after the signal we return is ignored or
665 		 * handled.  That doesn't matter because its only purpose
666 		 * is to alert stop-signal processing code when another
667 		 * processor has come along and cleared the flag.
668 		 */
669 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
670 	}
671 #ifdef CONFIG_POSIX_TIMERS
672 	if (resched_timer) {
673 		/*
674 		 * Release the siglock to ensure proper locking order
675 		 * of timer locks outside of siglocks.  Note, we leave
676 		 * irqs disabled here, since the posix-timers code is
677 		 * about to disable them again anyway.
678 		 */
679 		spin_unlock(&tsk->sighand->siglock);
680 		posixtimer_rearm(info);
681 		spin_lock(&tsk->sighand->siglock);
682 
683 		/* Don't expose the si_sys_private value to userspace */
684 		info->si_sys_private = 0;
685 	}
686 #endif
687 	return signr;
688 }
689 EXPORT_SYMBOL_GPL(dequeue_signal);
690 
691 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
692 {
693 	struct task_struct *tsk = current;
694 	struct sigpending *pending = &tsk->pending;
695 	struct sigqueue *q, *sync = NULL;
696 
697 	/*
698 	 * Might a synchronous signal be in the queue?
699 	 */
700 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
701 		return 0;
702 
703 	/*
704 	 * Return the first synchronous signal in the queue.
705 	 */
706 	list_for_each_entry(q, &pending->list, list) {
707 		/* Synchronous signals have a postive si_code */
708 		if ((q->info.si_code > SI_USER) &&
709 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
710 			sync = q;
711 			goto next;
712 		}
713 	}
714 	return 0;
715 next:
716 	/*
717 	 * Check if there is another siginfo for the same signal.
718 	 */
719 	list_for_each_entry_continue(q, &pending->list, list) {
720 		if (q->info.si_signo == sync->info.si_signo)
721 			goto still_pending;
722 	}
723 
724 	sigdelset(&pending->signal, sync->info.si_signo);
725 	recalc_sigpending();
726 still_pending:
727 	list_del_init(&sync->list);
728 	copy_siginfo(info, &sync->info);
729 	__sigqueue_free(sync);
730 	return info->si_signo;
731 }
732 
733 /*
734  * Tell a process that it has a new active signal..
735  *
736  * NOTE! we rely on the previous spin_lock to
737  * lock interrupts for us! We can only be called with
738  * "siglock" held, and the local interrupt must
739  * have been disabled when that got acquired!
740  *
741  * No need to set need_resched since signal event passing
742  * goes through ->blocked
743  */
744 void signal_wake_up_state(struct task_struct *t, unsigned int state)
745 {
746 	set_tsk_thread_flag(t, TIF_SIGPENDING);
747 	/*
748 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
749 	 * case. We don't check t->state here because there is a race with it
750 	 * executing another processor and just now entering stopped state.
751 	 * By using wake_up_state, we ensure the process will wake up and
752 	 * handle its death signal.
753 	 */
754 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
755 		kick_process(t);
756 }
757 
758 /*
759  * Remove signals in mask from the pending set and queue.
760  * Returns 1 if any signals were found.
761  *
762  * All callers must be holding the siglock.
763  */
764 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
765 {
766 	struct sigqueue *q, *n;
767 	sigset_t m;
768 
769 	sigandsets(&m, mask, &s->signal);
770 	if (sigisemptyset(&m))
771 		return;
772 
773 	sigandnsets(&s->signal, &s->signal, mask);
774 	list_for_each_entry_safe(q, n, &s->list, list) {
775 		if (sigismember(mask, q->info.si_signo)) {
776 			list_del_init(&q->list);
777 			__sigqueue_free(q);
778 		}
779 	}
780 }
781 
782 static inline int is_si_special(const struct kernel_siginfo *info)
783 {
784 	return info <= SEND_SIG_PRIV;
785 }
786 
787 static inline bool si_fromuser(const struct kernel_siginfo *info)
788 {
789 	return info == SEND_SIG_NOINFO ||
790 		(!is_si_special(info) && SI_FROMUSER(info));
791 }
792 
793 /*
794  * called with RCU read lock from check_kill_permission()
795  */
796 static bool kill_ok_by_cred(struct task_struct *t)
797 {
798 	const struct cred *cred = current_cred();
799 	const struct cred *tcred = __task_cred(t);
800 
801 	return uid_eq(cred->euid, tcred->suid) ||
802 	       uid_eq(cred->euid, tcred->uid) ||
803 	       uid_eq(cred->uid, tcred->suid) ||
804 	       uid_eq(cred->uid, tcred->uid) ||
805 	       ns_capable(tcred->user_ns, CAP_KILL);
806 }
807 
808 /*
809  * Bad permissions for sending the signal
810  * - the caller must hold the RCU read lock
811  */
812 static int check_kill_permission(int sig, struct kernel_siginfo *info,
813 				 struct task_struct *t)
814 {
815 	struct pid *sid;
816 	int error;
817 
818 	if (!valid_signal(sig))
819 		return -EINVAL;
820 
821 	if (!si_fromuser(info))
822 		return 0;
823 
824 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
825 	if (error)
826 		return error;
827 
828 	if (!same_thread_group(current, t) &&
829 	    !kill_ok_by_cred(t)) {
830 		switch (sig) {
831 		case SIGCONT:
832 			sid = task_session(t);
833 			/*
834 			 * We don't return the error if sid == NULL. The
835 			 * task was unhashed, the caller must notice this.
836 			 */
837 			if (!sid || sid == task_session(current))
838 				break;
839 		default:
840 			return -EPERM;
841 		}
842 	}
843 
844 	return security_task_kill(t, info, sig, NULL);
845 }
846 
847 /**
848  * ptrace_trap_notify - schedule trap to notify ptracer
849  * @t: tracee wanting to notify tracer
850  *
851  * This function schedules sticky ptrace trap which is cleared on the next
852  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
853  * ptracer.
854  *
855  * If @t is running, STOP trap will be taken.  If trapped for STOP and
856  * ptracer is listening for events, tracee is woken up so that it can
857  * re-trap for the new event.  If trapped otherwise, STOP trap will be
858  * eventually taken without returning to userland after the existing traps
859  * are finished by PTRACE_CONT.
860  *
861  * CONTEXT:
862  * Must be called with @task->sighand->siglock held.
863  */
864 static void ptrace_trap_notify(struct task_struct *t)
865 {
866 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
867 	assert_spin_locked(&t->sighand->siglock);
868 
869 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
870 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
871 }
872 
873 /*
874  * Handle magic process-wide effects of stop/continue signals. Unlike
875  * the signal actions, these happen immediately at signal-generation
876  * time regardless of blocking, ignoring, or handling.  This does the
877  * actual continuing for SIGCONT, but not the actual stopping for stop
878  * signals. The process stop is done as a signal action for SIG_DFL.
879  *
880  * Returns true if the signal should be actually delivered, otherwise
881  * it should be dropped.
882  */
883 static bool prepare_signal(int sig, struct task_struct *p, bool force)
884 {
885 	struct signal_struct *signal = p->signal;
886 	struct task_struct *t;
887 	sigset_t flush;
888 
889 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
890 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
891 			return sig == SIGKILL;
892 		/*
893 		 * The process is in the middle of dying, nothing to do.
894 		 */
895 	} else if (sig_kernel_stop(sig)) {
896 		/*
897 		 * This is a stop signal.  Remove SIGCONT from all queues.
898 		 */
899 		siginitset(&flush, sigmask(SIGCONT));
900 		flush_sigqueue_mask(&flush, &signal->shared_pending);
901 		for_each_thread(p, t)
902 			flush_sigqueue_mask(&flush, &t->pending);
903 	} else if (sig == SIGCONT) {
904 		unsigned int why;
905 		/*
906 		 * Remove all stop signals from all queues, wake all threads.
907 		 */
908 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
909 		flush_sigqueue_mask(&flush, &signal->shared_pending);
910 		for_each_thread(p, t) {
911 			flush_sigqueue_mask(&flush, &t->pending);
912 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
913 			if (likely(!(t->ptrace & PT_SEIZED)))
914 				wake_up_state(t, __TASK_STOPPED);
915 			else
916 				ptrace_trap_notify(t);
917 		}
918 
919 		/*
920 		 * Notify the parent with CLD_CONTINUED if we were stopped.
921 		 *
922 		 * If we were in the middle of a group stop, we pretend it
923 		 * was already finished, and then continued. Since SIGCHLD
924 		 * doesn't queue we report only CLD_STOPPED, as if the next
925 		 * CLD_CONTINUED was dropped.
926 		 */
927 		why = 0;
928 		if (signal->flags & SIGNAL_STOP_STOPPED)
929 			why |= SIGNAL_CLD_CONTINUED;
930 		else if (signal->group_stop_count)
931 			why |= SIGNAL_CLD_STOPPED;
932 
933 		if (why) {
934 			/*
935 			 * The first thread which returns from do_signal_stop()
936 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
937 			 * notify its parent. See get_signal().
938 			 */
939 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
940 			signal->group_stop_count = 0;
941 			signal->group_exit_code = 0;
942 		}
943 	}
944 
945 	return !sig_ignored(p, sig, force);
946 }
947 
948 /*
949  * Test if P wants to take SIG.  After we've checked all threads with this,
950  * it's equivalent to finding no threads not blocking SIG.  Any threads not
951  * blocking SIG were ruled out because they are not running and already
952  * have pending signals.  Such threads will dequeue from the shared queue
953  * as soon as they're available, so putting the signal on the shared queue
954  * will be equivalent to sending it to one such thread.
955  */
956 static inline bool wants_signal(int sig, struct task_struct *p)
957 {
958 	if (sigismember(&p->blocked, sig))
959 		return false;
960 
961 	if (p->flags & PF_EXITING)
962 		return false;
963 
964 	if (sig == SIGKILL)
965 		return true;
966 
967 	if (task_is_stopped_or_traced(p))
968 		return false;
969 
970 	return task_curr(p) || !signal_pending(p);
971 }
972 
973 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
974 {
975 	struct signal_struct *signal = p->signal;
976 	struct task_struct *t;
977 
978 	/*
979 	 * Now find a thread we can wake up to take the signal off the queue.
980 	 *
981 	 * If the main thread wants the signal, it gets first crack.
982 	 * Probably the least surprising to the average bear.
983 	 */
984 	if (wants_signal(sig, p))
985 		t = p;
986 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
987 		/*
988 		 * There is just one thread and it does not need to be woken.
989 		 * It will dequeue unblocked signals before it runs again.
990 		 */
991 		return;
992 	else {
993 		/*
994 		 * Otherwise try to find a suitable thread.
995 		 */
996 		t = signal->curr_target;
997 		while (!wants_signal(sig, t)) {
998 			t = next_thread(t);
999 			if (t == signal->curr_target)
1000 				/*
1001 				 * No thread needs to be woken.
1002 				 * Any eligible threads will see
1003 				 * the signal in the queue soon.
1004 				 */
1005 				return;
1006 		}
1007 		signal->curr_target = t;
1008 	}
1009 
1010 	/*
1011 	 * Found a killable thread.  If the signal will be fatal,
1012 	 * then start taking the whole group down immediately.
1013 	 */
1014 	if (sig_fatal(p, sig) &&
1015 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1016 	    !sigismember(&t->real_blocked, sig) &&
1017 	    (sig == SIGKILL || !p->ptrace)) {
1018 		/*
1019 		 * This signal will be fatal to the whole group.
1020 		 */
1021 		if (!sig_kernel_coredump(sig)) {
1022 			/*
1023 			 * Start a group exit and wake everybody up.
1024 			 * This way we don't have other threads
1025 			 * running and doing things after a slower
1026 			 * thread has the fatal signal pending.
1027 			 */
1028 			signal->flags = SIGNAL_GROUP_EXIT;
1029 			signal->group_exit_code = sig;
1030 			signal->group_stop_count = 0;
1031 			t = p;
1032 			do {
1033 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1034 				sigaddset(&t->pending.signal, SIGKILL);
1035 				signal_wake_up(t, 1);
1036 			} while_each_thread(p, t);
1037 			return;
1038 		}
1039 	}
1040 
1041 	/*
1042 	 * The signal is already in the shared-pending queue.
1043 	 * Tell the chosen thread to wake up and dequeue it.
1044 	 */
1045 	signal_wake_up(t, sig == SIGKILL);
1046 	return;
1047 }
1048 
1049 static inline bool legacy_queue(struct sigpending *signals, int sig)
1050 {
1051 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1052 }
1053 
1054 #ifdef CONFIG_USER_NS
1055 static inline void userns_fixup_signal_uid(struct kernel_siginfo *info, struct task_struct *t)
1056 {
1057 	if (current_user_ns() == task_cred_xxx(t, user_ns))
1058 		return;
1059 
1060 	if (SI_FROMKERNEL(info))
1061 		return;
1062 
1063 	rcu_read_lock();
1064 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1065 					make_kuid(current_user_ns(), info->si_uid));
1066 	rcu_read_unlock();
1067 }
1068 #else
1069 static inline void userns_fixup_signal_uid(struct kernel_siginfo *info, struct task_struct *t)
1070 {
1071 	return;
1072 }
1073 #endif
1074 
1075 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1076 			enum pid_type type, int from_ancestor_ns)
1077 {
1078 	struct sigpending *pending;
1079 	struct sigqueue *q;
1080 	int override_rlimit;
1081 	int ret = 0, result;
1082 
1083 	assert_spin_locked(&t->sighand->siglock);
1084 
1085 	result = TRACE_SIGNAL_IGNORED;
1086 	if (!prepare_signal(sig, t,
1087 			from_ancestor_ns || (info == SEND_SIG_PRIV)))
1088 		goto ret;
1089 
1090 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1091 	/*
1092 	 * Short-circuit ignored signals and support queuing
1093 	 * exactly one non-rt signal, so that we can get more
1094 	 * detailed information about the cause of the signal.
1095 	 */
1096 	result = TRACE_SIGNAL_ALREADY_PENDING;
1097 	if (legacy_queue(pending, sig))
1098 		goto ret;
1099 
1100 	result = TRACE_SIGNAL_DELIVERED;
1101 	/*
1102 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1103 	 */
1104 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1105 		goto out_set;
1106 
1107 	/*
1108 	 * Real-time signals must be queued if sent by sigqueue, or
1109 	 * some other real-time mechanism.  It is implementation
1110 	 * defined whether kill() does so.  We attempt to do so, on
1111 	 * the principle of least surprise, but since kill is not
1112 	 * allowed to fail with EAGAIN when low on memory we just
1113 	 * make sure at least one signal gets delivered and don't
1114 	 * pass on the info struct.
1115 	 */
1116 	if (sig < SIGRTMIN)
1117 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1118 	else
1119 		override_rlimit = 0;
1120 
1121 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1122 	if (q) {
1123 		list_add_tail(&q->list, &pending->list);
1124 		switch ((unsigned long) info) {
1125 		case (unsigned long) SEND_SIG_NOINFO:
1126 			clear_siginfo(&q->info);
1127 			q->info.si_signo = sig;
1128 			q->info.si_errno = 0;
1129 			q->info.si_code = SI_USER;
1130 			q->info.si_pid = task_tgid_nr_ns(current,
1131 							task_active_pid_ns(t));
1132 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1133 			break;
1134 		case (unsigned long) SEND_SIG_PRIV:
1135 			clear_siginfo(&q->info);
1136 			q->info.si_signo = sig;
1137 			q->info.si_errno = 0;
1138 			q->info.si_code = SI_KERNEL;
1139 			q->info.si_pid = 0;
1140 			q->info.si_uid = 0;
1141 			break;
1142 		default:
1143 			copy_siginfo(&q->info, info);
1144 			if (from_ancestor_ns)
1145 				q->info.si_pid = 0;
1146 			break;
1147 		}
1148 
1149 		userns_fixup_signal_uid(&q->info, t);
1150 
1151 	} else if (!is_si_special(info)) {
1152 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1153 			/*
1154 			 * Queue overflow, abort.  We may abort if the
1155 			 * signal was rt and sent by user using something
1156 			 * other than kill().
1157 			 */
1158 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1159 			ret = -EAGAIN;
1160 			goto ret;
1161 		} else {
1162 			/*
1163 			 * This is a silent loss of information.  We still
1164 			 * send the signal, but the *info bits are lost.
1165 			 */
1166 			result = TRACE_SIGNAL_LOSE_INFO;
1167 		}
1168 	}
1169 
1170 out_set:
1171 	signalfd_notify(t, sig);
1172 	sigaddset(&pending->signal, sig);
1173 
1174 	/* Let multiprocess signals appear after on-going forks */
1175 	if (type > PIDTYPE_TGID) {
1176 		struct multiprocess_signals *delayed;
1177 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1178 			sigset_t *signal = &delayed->signal;
1179 			/* Can't queue both a stop and a continue signal */
1180 			if (sig == SIGCONT)
1181 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1182 			else if (sig_kernel_stop(sig))
1183 				sigdelset(signal, SIGCONT);
1184 			sigaddset(signal, sig);
1185 		}
1186 	}
1187 
1188 	complete_signal(sig, t, type);
1189 ret:
1190 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1191 	return ret;
1192 }
1193 
1194 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1195 			enum pid_type type)
1196 {
1197 	int from_ancestor_ns = 0;
1198 
1199 #ifdef CONFIG_PID_NS
1200 	from_ancestor_ns = si_fromuser(info) &&
1201 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1202 #endif
1203 
1204 	return __send_signal(sig, info, t, type, from_ancestor_ns);
1205 }
1206 
1207 static void print_fatal_signal(int signr)
1208 {
1209 	struct pt_regs *regs = signal_pt_regs();
1210 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1211 
1212 #if defined(__i386__) && !defined(__arch_um__)
1213 	pr_info("code at %08lx: ", regs->ip);
1214 	{
1215 		int i;
1216 		for (i = 0; i < 16; i++) {
1217 			unsigned char insn;
1218 
1219 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1220 				break;
1221 			pr_cont("%02x ", insn);
1222 		}
1223 	}
1224 	pr_cont("\n");
1225 #endif
1226 	preempt_disable();
1227 	show_regs(regs);
1228 	preempt_enable();
1229 }
1230 
1231 static int __init setup_print_fatal_signals(char *str)
1232 {
1233 	get_option (&str, &print_fatal_signals);
1234 
1235 	return 1;
1236 }
1237 
1238 __setup("print-fatal-signals=", setup_print_fatal_signals);
1239 
1240 int
1241 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1242 {
1243 	return send_signal(sig, info, p, PIDTYPE_TGID);
1244 }
1245 
1246 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1247 			enum pid_type type)
1248 {
1249 	unsigned long flags;
1250 	int ret = -ESRCH;
1251 
1252 	if (lock_task_sighand(p, &flags)) {
1253 		ret = send_signal(sig, info, p, type);
1254 		unlock_task_sighand(p, &flags);
1255 	}
1256 
1257 	return ret;
1258 }
1259 
1260 /*
1261  * Force a signal that the process can't ignore: if necessary
1262  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1263  *
1264  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1265  * since we do not want to have a signal handler that was blocked
1266  * be invoked when user space had explicitly blocked it.
1267  *
1268  * We don't want to have recursive SIGSEGV's etc, for example,
1269  * that is why we also clear SIGNAL_UNKILLABLE.
1270  */
1271 int
1272 force_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *t)
1273 {
1274 	unsigned long int flags;
1275 	int ret, blocked, ignored;
1276 	struct k_sigaction *action;
1277 
1278 	spin_lock_irqsave(&t->sighand->siglock, flags);
1279 	action = &t->sighand->action[sig-1];
1280 	ignored = action->sa.sa_handler == SIG_IGN;
1281 	blocked = sigismember(&t->blocked, sig);
1282 	if (blocked || ignored) {
1283 		action->sa.sa_handler = SIG_DFL;
1284 		if (blocked) {
1285 			sigdelset(&t->blocked, sig);
1286 			recalc_sigpending_and_wake(t);
1287 		}
1288 	}
1289 	/*
1290 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1291 	 * debugging to leave init killable.
1292 	 */
1293 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1294 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1295 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1296 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1297 
1298 	return ret;
1299 }
1300 
1301 /*
1302  * Nuke all other threads in the group.
1303  */
1304 int zap_other_threads(struct task_struct *p)
1305 {
1306 	struct task_struct *t = p;
1307 	int count = 0;
1308 
1309 	p->signal->group_stop_count = 0;
1310 
1311 	while_each_thread(p, t) {
1312 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1313 		count++;
1314 
1315 		/* Don't bother with already dead threads */
1316 		if (t->exit_state)
1317 			continue;
1318 		sigaddset(&t->pending.signal, SIGKILL);
1319 		signal_wake_up(t, 1);
1320 	}
1321 
1322 	return count;
1323 }
1324 
1325 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1326 					   unsigned long *flags)
1327 {
1328 	struct sighand_struct *sighand;
1329 
1330 	rcu_read_lock();
1331 	for (;;) {
1332 		sighand = rcu_dereference(tsk->sighand);
1333 		if (unlikely(sighand == NULL))
1334 			break;
1335 
1336 		/*
1337 		 * This sighand can be already freed and even reused, but
1338 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1339 		 * initializes ->siglock: this slab can't go away, it has
1340 		 * the same object type, ->siglock can't be reinitialized.
1341 		 *
1342 		 * We need to ensure that tsk->sighand is still the same
1343 		 * after we take the lock, we can race with de_thread() or
1344 		 * __exit_signal(). In the latter case the next iteration
1345 		 * must see ->sighand == NULL.
1346 		 */
1347 		spin_lock_irqsave(&sighand->siglock, *flags);
1348 		if (likely(sighand == tsk->sighand))
1349 			break;
1350 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1351 	}
1352 	rcu_read_unlock();
1353 
1354 	return sighand;
1355 }
1356 
1357 /*
1358  * send signal info to all the members of a group
1359  */
1360 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1361 			struct task_struct *p, enum pid_type type)
1362 {
1363 	int ret;
1364 
1365 	rcu_read_lock();
1366 	ret = check_kill_permission(sig, info, p);
1367 	rcu_read_unlock();
1368 
1369 	if (!ret && sig)
1370 		ret = do_send_sig_info(sig, info, p, type);
1371 
1372 	return ret;
1373 }
1374 
1375 /*
1376  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1377  * control characters do (^C, ^Z etc)
1378  * - the caller must hold at least a readlock on tasklist_lock
1379  */
1380 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1381 {
1382 	struct task_struct *p = NULL;
1383 	int retval, success;
1384 
1385 	success = 0;
1386 	retval = -ESRCH;
1387 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1388 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1389 		success |= !err;
1390 		retval = err;
1391 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1392 	return success ? 0 : retval;
1393 }
1394 
1395 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1396 {
1397 	int error = -ESRCH;
1398 	struct task_struct *p;
1399 
1400 	for (;;) {
1401 		rcu_read_lock();
1402 		p = pid_task(pid, PIDTYPE_PID);
1403 		if (p)
1404 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1405 		rcu_read_unlock();
1406 		if (likely(!p || error != -ESRCH))
1407 			return error;
1408 
1409 		/*
1410 		 * The task was unhashed in between, try again.  If it
1411 		 * is dead, pid_task() will return NULL, if we race with
1412 		 * de_thread() it will find the new leader.
1413 		 */
1414 	}
1415 }
1416 
1417 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1418 {
1419 	int error;
1420 	rcu_read_lock();
1421 	error = kill_pid_info(sig, info, find_vpid(pid));
1422 	rcu_read_unlock();
1423 	return error;
1424 }
1425 
1426 static inline bool kill_as_cred_perm(const struct cred *cred,
1427 				     struct task_struct *target)
1428 {
1429 	const struct cred *pcred = __task_cred(target);
1430 
1431 	return uid_eq(cred->euid, pcred->suid) ||
1432 	       uid_eq(cred->euid, pcred->uid) ||
1433 	       uid_eq(cred->uid, pcred->suid) ||
1434 	       uid_eq(cred->uid, pcred->uid);
1435 }
1436 
1437 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1438 int kill_pid_info_as_cred(int sig, struct kernel_siginfo *info, struct pid *pid,
1439 			 const struct cred *cred)
1440 {
1441 	int ret = -EINVAL;
1442 	struct task_struct *p;
1443 	unsigned long flags;
1444 
1445 	if (!valid_signal(sig))
1446 		return ret;
1447 
1448 	rcu_read_lock();
1449 	p = pid_task(pid, PIDTYPE_PID);
1450 	if (!p) {
1451 		ret = -ESRCH;
1452 		goto out_unlock;
1453 	}
1454 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1455 		ret = -EPERM;
1456 		goto out_unlock;
1457 	}
1458 	ret = security_task_kill(p, info, sig, cred);
1459 	if (ret)
1460 		goto out_unlock;
1461 
1462 	if (sig) {
1463 		if (lock_task_sighand(p, &flags)) {
1464 			ret = __send_signal(sig, info, p, PIDTYPE_TGID, 0);
1465 			unlock_task_sighand(p, &flags);
1466 		} else
1467 			ret = -ESRCH;
1468 	}
1469 out_unlock:
1470 	rcu_read_unlock();
1471 	return ret;
1472 }
1473 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1474 
1475 /*
1476  * kill_something_info() interprets pid in interesting ways just like kill(2).
1477  *
1478  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1479  * is probably wrong.  Should make it like BSD or SYSV.
1480  */
1481 
1482 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1483 {
1484 	int ret;
1485 
1486 	if (pid > 0) {
1487 		rcu_read_lock();
1488 		ret = kill_pid_info(sig, info, find_vpid(pid));
1489 		rcu_read_unlock();
1490 		return ret;
1491 	}
1492 
1493 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1494 	if (pid == INT_MIN)
1495 		return -ESRCH;
1496 
1497 	read_lock(&tasklist_lock);
1498 	if (pid != -1) {
1499 		ret = __kill_pgrp_info(sig, info,
1500 				pid ? find_vpid(-pid) : task_pgrp(current));
1501 	} else {
1502 		int retval = 0, count = 0;
1503 		struct task_struct * p;
1504 
1505 		for_each_process(p) {
1506 			if (task_pid_vnr(p) > 1 &&
1507 					!same_thread_group(p, current)) {
1508 				int err = group_send_sig_info(sig, info, p,
1509 							      PIDTYPE_MAX);
1510 				++count;
1511 				if (err != -EPERM)
1512 					retval = err;
1513 			}
1514 		}
1515 		ret = count ? retval : -ESRCH;
1516 	}
1517 	read_unlock(&tasklist_lock);
1518 
1519 	return ret;
1520 }
1521 
1522 /*
1523  * These are for backward compatibility with the rest of the kernel source.
1524  */
1525 
1526 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1527 {
1528 	/*
1529 	 * Make sure legacy kernel users don't send in bad values
1530 	 * (normal paths check this in check_kill_permission).
1531 	 */
1532 	if (!valid_signal(sig))
1533 		return -EINVAL;
1534 
1535 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1536 }
1537 EXPORT_SYMBOL(send_sig_info);
1538 
1539 #define __si_special(priv) \
1540 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1541 
1542 int
1543 send_sig(int sig, struct task_struct *p, int priv)
1544 {
1545 	return send_sig_info(sig, __si_special(priv), p);
1546 }
1547 EXPORT_SYMBOL(send_sig);
1548 
1549 void force_sig(int sig, struct task_struct *p)
1550 {
1551 	force_sig_info(sig, SEND_SIG_PRIV, p);
1552 }
1553 EXPORT_SYMBOL(force_sig);
1554 
1555 /*
1556  * When things go south during signal handling, we
1557  * will force a SIGSEGV. And if the signal that caused
1558  * the problem was already a SIGSEGV, we'll want to
1559  * make sure we don't even try to deliver the signal..
1560  */
1561 void force_sigsegv(int sig, struct task_struct *p)
1562 {
1563 	if (sig == SIGSEGV) {
1564 		unsigned long flags;
1565 		spin_lock_irqsave(&p->sighand->siglock, flags);
1566 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1567 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1568 	}
1569 	force_sig(SIGSEGV, p);
1570 }
1571 
1572 int force_sig_fault(int sig, int code, void __user *addr
1573 	___ARCH_SI_TRAPNO(int trapno)
1574 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1575 	, struct task_struct *t)
1576 {
1577 	struct kernel_siginfo info;
1578 
1579 	clear_siginfo(&info);
1580 	info.si_signo = sig;
1581 	info.si_errno = 0;
1582 	info.si_code  = code;
1583 	info.si_addr  = addr;
1584 #ifdef __ARCH_SI_TRAPNO
1585 	info.si_trapno = trapno;
1586 #endif
1587 #ifdef __ia64__
1588 	info.si_imm = imm;
1589 	info.si_flags = flags;
1590 	info.si_isr = isr;
1591 #endif
1592 	return force_sig_info(info.si_signo, &info, t);
1593 }
1594 
1595 int send_sig_fault(int sig, int code, void __user *addr
1596 	___ARCH_SI_TRAPNO(int trapno)
1597 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1598 	, struct task_struct *t)
1599 {
1600 	struct kernel_siginfo info;
1601 
1602 	clear_siginfo(&info);
1603 	info.si_signo = sig;
1604 	info.si_errno = 0;
1605 	info.si_code  = code;
1606 	info.si_addr  = addr;
1607 #ifdef __ARCH_SI_TRAPNO
1608 	info.si_trapno = trapno;
1609 #endif
1610 #ifdef __ia64__
1611 	info.si_imm = imm;
1612 	info.si_flags = flags;
1613 	info.si_isr = isr;
1614 #endif
1615 	return send_sig_info(info.si_signo, &info, t);
1616 }
1617 
1618 int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1619 {
1620 	struct kernel_siginfo info;
1621 
1622 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1623 	clear_siginfo(&info);
1624 	info.si_signo = SIGBUS;
1625 	info.si_errno = 0;
1626 	info.si_code = code;
1627 	info.si_addr = addr;
1628 	info.si_addr_lsb = lsb;
1629 	return force_sig_info(info.si_signo, &info, t);
1630 }
1631 
1632 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1633 {
1634 	struct kernel_siginfo info;
1635 
1636 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1637 	clear_siginfo(&info);
1638 	info.si_signo = SIGBUS;
1639 	info.si_errno = 0;
1640 	info.si_code = code;
1641 	info.si_addr = addr;
1642 	info.si_addr_lsb = lsb;
1643 	return send_sig_info(info.si_signo, &info, t);
1644 }
1645 EXPORT_SYMBOL(send_sig_mceerr);
1646 
1647 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1648 {
1649 	struct kernel_siginfo info;
1650 
1651 	clear_siginfo(&info);
1652 	info.si_signo = SIGSEGV;
1653 	info.si_errno = 0;
1654 	info.si_code  = SEGV_BNDERR;
1655 	info.si_addr  = addr;
1656 	info.si_lower = lower;
1657 	info.si_upper = upper;
1658 	return force_sig_info(info.si_signo, &info, current);
1659 }
1660 
1661 #ifdef SEGV_PKUERR
1662 int force_sig_pkuerr(void __user *addr, u32 pkey)
1663 {
1664 	struct kernel_siginfo info;
1665 
1666 	clear_siginfo(&info);
1667 	info.si_signo = SIGSEGV;
1668 	info.si_errno = 0;
1669 	info.si_code  = SEGV_PKUERR;
1670 	info.si_addr  = addr;
1671 	info.si_pkey  = pkey;
1672 	return force_sig_info(info.si_signo, &info, current);
1673 }
1674 #endif
1675 
1676 /* For the crazy architectures that include trap information in
1677  * the errno field, instead of an actual errno value.
1678  */
1679 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1680 {
1681 	struct kernel_siginfo info;
1682 
1683 	clear_siginfo(&info);
1684 	info.si_signo = SIGTRAP;
1685 	info.si_errno = errno;
1686 	info.si_code  = TRAP_HWBKPT;
1687 	info.si_addr  = addr;
1688 	return force_sig_info(info.si_signo, &info, current);
1689 }
1690 
1691 int kill_pgrp(struct pid *pid, int sig, int priv)
1692 {
1693 	int ret;
1694 
1695 	read_lock(&tasklist_lock);
1696 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1697 	read_unlock(&tasklist_lock);
1698 
1699 	return ret;
1700 }
1701 EXPORT_SYMBOL(kill_pgrp);
1702 
1703 int kill_pid(struct pid *pid, int sig, int priv)
1704 {
1705 	return kill_pid_info(sig, __si_special(priv), pid);
1706 }
1707 EXPORT_SYMBOL(kill_pid);
1708 
1709 /*
1710  * These functions support sending signals using preallocated sigqueue
1711  * structures.  This is needed "because realtime applications cannot
1712  * afford to lose notifications of asynchronous events, like timer
1713  * expirations or I/O completions".  In the case of POSIX Timers
1714  * we allocate the sigqueue structure from the timer_create.  If this
1715  * allocation fails we are able to report the failure to the application
1716  * with an EAGAIN error.
1717  */
1718 struct sigqueue *sigqueue_alloc(void)
1719 {
1720 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1721 
1722 	if (q)
1723 		q->flags |= SIGQUEUE_PREALLOC;
1724 
1725 	return q;
1726 }
1727 
1728 void sigqueue_free(struct sigqueue *q)
1729 {
1730 	unsigned long flags;
1731 	spinlock_t *lock = &current->sighand->siglock;
1732 
1733 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1734 	/*
1735 	 * We must hold ->siglock while testing q->list
1736 	 * to serialize with collect_signal() or with
1737 	 * __exit_signal()->flush_sigqueue().
1738 	 */
1739 	spin_lock_irqsave(lock, flags);
1740 	q->flags &= ~SIGQUEUE_PREALLOC;
1741 	/*
1742 	 * If it is queued it will be freed when dequeued,
1743 	 * like the "regular" sigqueue.
1744 	 */
1745 	if (!list_empty(&q->list))
1746 		q = NULL;
1747 	spin_unlock_irqrestore(lock, flags);
1748 
1749 	if (q)
1750 		__sigqueue_free(q);
1751 }
1752 
1753 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1754 {
1755 	int sig = q->info.si_signo;
1756 	struct sigpending *pending;
1757 	struct task_struct *t;
1758 	unsigned long flags;
1759 	int ret, result;
1760 
1761 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1762 
1763 	ret = -1;
1764 	rcu_read_lock();
1765 	t = pid_task(pid, type);
1766 	if (!t || !likely(lock_task_sighand(t, &flags)))
1767 		goto ret;
1768 
1769 	ret = 1; /* the signal is ignored */
1770 	result = TRACE_SIGNAL_IGNORED;
1771 	if (!prepare_signal(sig, t, false))
1772 		goto out;
1773 
1774 	ret = 0;
1775 	if (unlikely(!list_empty(&q->list))) {
1776 		/*
1777 		 * If an SI_TIMER entry is already queue just increment
1778 		 * the overrun count.
1779 		 */
1780 		BUG_ON(q->info.si_code != SI_TIMER);
1781 		q->info.si_overrun++;
1782 		result = TRACE_SIGNAL_ALREADY_PENDING;
1783 		goto out;
1784 	}
1785 	q->info.si_overrun = 0;
1786 
1787 	signalfd_notify(t, sig);
1788 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1789 	list_add_tail(&q->list, &pending->list);
1790 	sigaddset(&pending->signal, sig);
1791 	complete_signal(sig, t, type);
1792 	result = TRACE_SIGNAL_DELIVERED;
1793 out:
1794 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1795 	unlock_task_sighand(t, &flags);
1796 ret:
1797 	rcu_read_unlock();
1798 	return ret;
1799 }
1800 
1801 /*
1802  * Let a parent know about the death of a child.
1803  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1804  *
1805  * Returns true if our parent ignored us and so we've switched to
1806  * self-reaping.
1807  */
1808 bool do_notify_parent(struct task_struct *tsk, int sig)
1809 {
1810 	struct kernel_siginfo info;
1811 	unsigned long flags;
1812 	struct sighand_struct *psig;
1813 	bool autoreap = false;
1814 	u64 utime, stime;
1815 
1816 	BUG_ON(sig == -1);
1817 
1818  	/* do_notify_parent_cldstop should have been called instead.  */
1819  	BUG_ON(task_is_stopped_or_traced(tsk));
1820 
1821 	BUG_ON(!tsk->ptrace &&
1822 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1823 
1824 	if (sig != SIGCHLD) {
1825 		/*
1826 		 * This is only possible if parent == real_parent.
1827 		 * Check if it has changed security domain.
1828 		 */
1829 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1830 			sig = SIGCHLD;
1831 	}
1832 
1833 	clear_siginfo(&info);
1834 	info.si_signo = sig;
1835 	info.si_errno = 0;
1836 	/*
1837 	 * We are under tasklist_lock here so our parent is tied to
1838 	 * us and cannot change.
1839 	 *
1840 	 * task_active_pid_ns will always return the same pid namespace
1841 	 * until a task passes through release_task.
1842 	 *
1843 	 * write_lock() currently calls preempt_disable() which is the
1844 	 * same as rcu_read_lock(), but according to Oleg, this is not
1845 	 * correct to rely on this
1846 	 */
1847 	rcu_read_lock();
1848 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1849 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1850 				       task_uid(tsk));
1851 	rcu_read_unlock();
1852 
1853 	task_cputime(tsk, &utime, &stime);
1854 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1855 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1856 
1857 	info.si_status = tsk->exit_code & 0x7f;
1858 	if (tsk->exit_code & 0x80)
1859 		info.si_code = CLD_DUMPED;
1860 	else if (tsk->exit_code & 0x7f)
1861 		info.si_code = CLD_KILLED;
1862 	else {
1863 		info.si_code = CLD_EXITED;
1864 		info.si_status = tsk->exit_code >> 8;
1865 	}
1866 
1867 	psig = tsk->parent->sighand;
1868 	spin_lock_irqsave(&psig->siglock, flags);
1869 	if (!tsk->ptrace && sig == SIGCHLD &&
1870 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1871 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1872 		/*
1873 		 * We are exiting and our parent doesn't care.  POSIX.1
1874 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1875 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1876 		 * automatically and not left for our parent's wait4 call.
1877 		 * Rather than having the parent do it as a magic kind of
1878 		 * signal handler, we just set this to tell do_exit that we
1879 		 * can be cleaned up without becoming a zombie.  Note that
1880 		 * we still call __wake_up_parent in this case, because a
1881 		 * blocked sys_wait4 might now return -ECHILD.
1882 		 *
1883 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1884 		 * is implementation-defined: we do (if you don't want
1885 		 * it, just use SIG_IGN instead).
1886 		 */
1887 		autoreap = true;
1888 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1889 			sig = 0;
1890 	}
1891 	if (valid_signal(sig) && sig)
1892 		__group_send_sig_info(sig, &info, tsk->parent);
1893 	__wake_up_parent(tsk, tsk->parent);
1894 	spin_unlock_irqrestore(&psig->siglock, flags);
1895 
1896 	return autoreap;
1897 }
1898 
1899 /**
1900  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1901  * @tsk: task reporting the state change
1902  * @for_ptracer: the notification is for ptracer
1903  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1904  *
1905  * Notify @tsk's parent that the stopped/continued state has changed.  If
1906  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1907  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1908  *
1909  * CONTEXT:
1910  * Must be called with tasklist_lock at least read locked.
1911  */
1912 static void do_notify_parent_cldstop(struct task_struct *tsk,
1913 				     bool for_ptracer, int why)
1914 {
1915 	struct kernel_siginfo info;
1916 	unsigned long flags;
1917 	struct task_struct *parent;
1918 	struct sighand_struct *sighand;
1919 	u64 utime, stime;
1920 
1921 	if (for_ptracer) {
1922 		parent = tsk->parent;
1923 	} else {
1924 		tsk = tsk->group_leader;
1925 		parent = tsk->real_parent;
1926 	}
1927 
1928 	clear_siginfo(&info);
1929 	info.si_signo = SIGCHLD;
1930 	info.si_errno = 0;
1931 	/*
1932 	 * see comment in do_notify_parent() about the following 4 lines
1933 	 */
1934 	rcu_read_lock();
1935 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1936 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1937 	rcu_read_unlock();
1938 
1939 	task_cputime(tsk, &utime, &stime);
1940 	info.si_utime = nsec_to_clock_t(utime);
1941 	info.si_stime = nsec_to_clock_t(stime);
1942 
1943  	info.si_code = why;
1944  	switch (why) {
1945  	case CLD_CONTINUED:
1946  		info.si_status = SIGCONT;
1947  		break;
1948  	case CLD_STOPPED:
1949  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1950  		break;
1951  	case CLD_TRAPPED:
1952  		info.si_status = tsk->exit_code & 0x7f;
1953  		break;
1954  	default:
1955  		BUG();
1956  	}
1957 
1958 	sighand = parent->sighand;
1959 	spin_lock_irqsave(&sighand->siglock, flags);
1960 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1961 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1962 		__group_send_sig_info(SIGCHLD, &info, parent);
1963 	/*
1964 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1965 	 */
1966 	__wake_up_parent(tsk, parent);
1967 	spin_unlock_irqrestore(&sighand->siglock, flags);
1968 }
1969 
1970 static inline bool may_ptrace_stop(void)
1971 {
1972 	if (!likely(current->ptrace))
1973 		return false;
1974 	/*
1975 	 * Are we in the middle of do_coredump?
1976 	 * If so and our tracer is also part of the coredump stopping
1977 	 * is a deadlock situation, and pointless because our tracer
1978 	 * is dead so don't allow us to stop.
1979 	 * If SIGKILL was already sent before the caller unlocked
1980 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1981 	 * is safe to enter schedule().
1982 	 *
1983 	 * This is almost outdated, a task with the pending SIGKILL can't
1984 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1985 	 * after SIGKILL was already dequeued.
1986 	 */
1987 	if (unlikely(current->mm->core_state) &&
1988 	    unlikely(current->mm == current->parent->mm))
1989 		return false;
1990 
1991 	return true;
1992 }
1993 
1994 /*
1995  * Return non-zero if there is a SIGKILL that should be waking us up.
1996  * Called with the siglock held.
1997  */
1998 static bool sigkill_pending(struct task_struct *tsk)
1999 {
2000 	return sigismember(&tsk->pending.signal, SIGKILL) ||
2001 	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2002 }
2003 
2004 /*
2005  * This must be called with current->sighand->siglock held.
2006  *
2007  * This should be the path for all ptrace stops.
2008  * We always set current->last_siginfo while stopped here.
2009  * That makes it a way to test a stopped process for
2010  * being ptrace-stopped vs being job-control-stopped.
2011  *
2012  * If we actually decide not to stop at all because the tracer
2013  * is gone, we keep current->exit_code unless clear_code.
2014  */
2015 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2016 	__releases(&current->sighand->siglock)
2017 	__acquires(&current->sighand->siglock)
2018 {
2019 	bool gstop_done = false;
2020 
2021 	if (arch_ptrace_stop_needed(exit_code, info)) {
2022 		/*
2023 		 * The arch code has something special to do before a
2024 		 * ptrace stop.  This is allowed to block, e.g. for faults
2025 		 * on user stack pages.  We can't keep the siglock while
2026 		 * calling arch_ptrace_stop, so we must release it now.
2027 		 * To preserve proper semantics, we must do this before
2028 		 * any signal bookkeeping like checking group_stop_count.
2029 		 * Meanwhile, a SIGKILL could come in before we retake the
2030 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2031 		 * So after regaining the lock, we must check for SIGKILL.
2032 		 */
2033 		spin_unlock_irq(&current->sighand->siglock);
2034 		arch_ptrace_stop(exit_code, info);
2035 		spin_lock_irq(&current->sighand->siglock);
2036 		if (sigkill_pending(current))
2037 			return;
2038 	}
2039 
2040 	set_special_state(TASK_TRACED);
2041 
2042 	/*
2043 	 * We're committing to trapping.  TRACED should be visible before
2044 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2045 	 * Also, transition to TRACED and updates to ->jobctl should be
2046 	 * atomic with respect to siglock and should be done after the arch
2047 	 * hook as siglock is released and regrabbed across it.
2048 	 *
2049 	 *     TRACER				    TRACEE
2050 	 *
2051 	 *     ptrace_attach()
2052 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2053 	 *     do_wait()
2054 	 *       set_current_state()                smp_wmb();
2055 	 *       ptrace_do_wait()
2056 	 *         wait_task_stopped()
2057 	 *           task_stopped_code()
2058 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2059 	 */
2060 	smp_wmb();
2061 
2062 	current->last_siginfo = info;
2063 	current->exit_code = exit_code;
2064 
2065 	/*
2066 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2067 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2068 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2069 	 * could be clear now.  We act as if SIGCONT is received after
2070 	 * TASK_TRACED is entered - ignore it.
2071 	 */
2072 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2073 		gstop_done = task_participate_group_stop(current);
2074 
2075 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2076 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2077 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2078 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2079 
2080 	/* entering a trap, clear TRAPPING */
2081 	task_clear_jobctl_trapping(current);
2082 
2083 	spin_unlock_irq(&current->sighand->siglock);
2084 	read_lock(&tasklist_lock);
2085 	if (may_ptrace_stop()) {
2086 		/*
2087 		 * Notify parents of the stop.
2088 		 *
2089 		 * While ptraced, there are two parents - the ptracer and
2090 		 * the real_parent of the group_leader.  The ptracer should
2091 		 * know about every stop while the real parent is only
2092 		 * interested in the completion of group stop.  The states
2093 		 * for the two don't interact with each other.  Notify
2094 		 * separately unless they're gonna be duplicates.
2095 		 */
2096 		do_notify_parent_cldstop(current, true, why);
2097 		if (gstop_done && ptrace_reparented(current))
2098 			do_notify_parent_cldstop(current, false, why);
2099 
2100 		/*
2101 		 * Don't want to allow preemption here, because
2102 		 * sys_ptrace() needs this task to be inactive.
2103 		 *
2104 		 * XXX: implement read_unlock_no_resched().
2105 		 */
2106 		preempt_disable();
2107 		read_unlock(&tasklist_lock);
2108 		preempt_enable_no_resched();
2109 		freezable_schedule();
2110 	} else {
2111 		/*
2112 		 * By the time we got the lock, our tracer went away.
2113 		 * Don't drop the lock yet, another tracer may come.
2114 		 *
2115 		 * If @gstop_done, the ptracer went away between group stop
2116 		 * completion and here.  During detach, it would have set
2117 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2118 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2119 		 * the real parent of the group stop completion is enough.
2120 		 */
2121 		if (gstop_done)
2122 			do_notify_parent_cldstop(current, false, why);
2123 
2124 		/* tasklist protects us from ptrace_freeze_traced() */
2125 		__set_current_state(TASK_RUNNING);
2126 		if (clear_code)
2127 			current->exit_code = 0;
2128 		read_unlock(&tasklist_lock);
2129 	}
2130 
2131 	/*
2132 	 * We are back.  Now reacquire the siglock before touching
2133 	 * last_siginfo, so that we are sure to have synchronized with
2134 	 * any signal-sending on another CPU that wants to examine it.
2135 	 */
2136 	spin_lock_irq(&current->sighand->siglock);
2137 	current->last_siginfo = NULL;
2138 
2139 	/* LISTENING can be set only during STOP traps, clear it */
2140 	current->jobctl &= ~JOBCTL_LISTENING;
2141 
2142 	/*
2143 	 * Queued signals ignored us while we were stopped for tracing.
2144 	 * So check for any that we should take before resuming user mode.
2145 	 * This sets TIF_SIGPENDING, but never clears it.
2146 	 */
2147 	recalc_sigpending_tsk(current);
2148 }
2149 
2150 static void ptrace_do_notify(int signr, int exit_code, int why)
2151 {
2152 	kernel_siginfo_t info;
2153 
2154 	clear_siginfo(&info);
2155 	info.si_signo = signr;
2156 	info.si_code = exit_code;
2157 	info.si_pid = task_pid_vnr(current);
2158 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2159 
2160 	/* Let the debugger run.  */
2161 	ptrace_stop(exit_code, why, 1, &info);
2162 }
2163 
2164 void ptrace_notify(int exit_code)
2165 {
2166 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2167 	if (unlikely(current->task_works))
2168 		task_work_run();
2169 
2170 	spin_lock_irq(&current->sighand->siglock);
2171 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2172 	spin_unlock_irq(&current->sighand->siglock);
2173 }
2174 
2175 /**
2176  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2177  * @signr: signr causing group stop if initiating
2178  *
2179  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2180  * and participate in it.  If already set, participate in the existing
2181  * group stop.  If participated in a group stop (and thus slept), %true is
2182  * returned with siglock released.
2183  *
2184  * If ptraced, this function doesn't handle stop itself.  Instead,
2185  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2186  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2187  * places afterwards.
2188  *
2189  * CONTEXT:
2190  * Must be called with @current->sighand->siglock held, which is released
2191  * on %true return.
2192  *
2193  * RETURNS:
2194  * %false if group stop is already cancelled or ptrace trap is scheduled.
2195  * %true if participated in group stop.
2196  */
2197 static bool do_signal_stop(int signr)
2198 	__releases(&current->sighand->siglock)
2199 {
2200 	struct signal_struct *sig = current->signal;
2201 
2202 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2203 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2204 		struct task_struct *t;
2205 
2206 		/* signr will be recorded in task->jobctl for retries */
2207 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2208 
2209 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2210 		    unlikely(signal_group_exit(sig)))
2211 			return false;
2212 		/*
2213 		 * There is no group stop already in progress.  We must
2214 		 * initiate one now.
2215 		 *
2216 		 * While ptraced, a task may be resumed while group stop is
2217 		 * still in effect and then receive a stop signal and
2218 		 * initiate another group stop.  This deviates from the
2219 		 * usual behavior as two consecutive stop signals can't
2220 		 * cause two group stops when !ptraced.  That is why we
2221 		 * also check !task_is_stopped(t) below.
2222 		 *
2223 		 * The condition can be distinguished by testing whether
2224 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2225 		 * group_exit_code in such case.
2226 		 *
2227 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2228 		 * an intervening stop signal is required to cause two
2229 		 * continued events regardless of ptrace.
2230 		 */
2231 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2232 			sig->group_exit_code = signr;
2233 
2234 		sig->group_stop_count = 0;
2235 
2236 		if (task_set_jobctl_pending(current, signr | gstop))
2237 			sig->group_stop_count++;
2238 
2239 		t = current;
2240 		while_each_thread(current, t) {
2241 			/*
2242 			 * Setting state to TASK_STOPPED for a group
2243 			 * stop is always done with the siglock held,
2244 			 * so this check has no races.
2245 			 */
2246 			if (!task_is_stopped(t) &&
2247 			    task_set_jobctl_pending(t, signr | gstop)) {
2248 				sig->group_stop_count++;
2249 				if (likely(!(t->ptrace & PT_SEIZED)))
2250 					signal_wake_up(t, 0);
2251 				else
2252 					ptrace_trap_notify(t);
2253 			}
2254 		}
2255 	}
2256 
2257 	if (likely(!current->ptrace)) {
2258 		int notify = 0;
2259 
2260 		/*
2261 		 * If there are no other threads in the group, or if there
2262 		 * is a group stop in progress and we are the last to stop,
2263 		 * report to the parent.
2264 		 */
2265 		if (task_participate_group_stop(current))
2266 			notify = CLD_STOPPED;
2267 
2268 		set_special_state(TASK_STOPPED);
2269 		spin_unlock_irq(&current->sighand->siglock);
2270 
2271 		/*
2272 		 * Notify the parent of the group stop completion.  Because
2273 		 * we're not holding either the siglock or tasklist_lock
2274 		 * here, ptracer may attach inbetween; however, this is for
2275 		 * group stop and should always be delivered to the real
2276 		 * parent of the group leader.  The new ptracer will get
2277 		 * its notification when this task transitions into
2278 		 * TASK_TRACED.
2279 		 */
2280 		if (notify) {
2281 			read_lock(&tasklist_lock);
2282 			do_notify_parent_cldstop(current, false, notify);
2283 			read_unlock(&tasklist_lock);
2284 		}
2285 
2286 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2287 		freezable_schedule();
2288 		return true;
2289 	} else {
2290 		/*
2291 		 * While ptraced, group stop is handled by STOP trap.
2292 		 * Schedule it and let the caller deal with it.
2293 		 */
2294 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2295 		return false;
2296 	}
2297 }
2298 
2299 /**
2300  * do_jobctl_trap - take care of ptrace jobctl traps
2301  *
2302  * When PT_SEIZED, it's used for both group stop and explicit
2303  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2304  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2305  * the stop signal; otherwise, %SIGTRAP.
2306  *
2307  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2308  * number as exit_code and no siginfo.
2309  *
2310  * CONTEXT:
2311  * Must be called with @current->sighand->siglock held, which may be
2312  * released and re-acquired before returning with intervening sleep.
2313  */
2314 static void do_jobctl_trap(void)
2315 {
2316 	struct signal_struct *signal = current->signal;
2317 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2318 
2319 	if (current->ptrace & PT_SEIZED) {
2320 		if (!signal->group_stop_count &&
2321 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2322 			signr = SIGTRAP;
2323 		WARN_ON_ONCE(!signr);
2324 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2325 				 CLD_STOPPED);
2326 	} else {
2327 		WARN_ON_ONCE(!signr);
2328 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2329 		current->exit_code = 0;
2330 	}
2331 }
2332 
2333 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2334 {
2335 	/*
2336 	 * We do not check sig_kernel_stop(signr) but set this marker
2337 	 * unconditionally because we do not know whether debugger will
2338 	 * change signr. This flag has no meaning unless we are going
2339 	 * to stop after return from ptrace_stop(). In this case it will
2340 	 * be checked in do_signal_stop(), we should only stop if it was
2341 	 * not cleared by SIGCONT while we were sleeping. See also the
2342 	 * comment in dequeue_signal().
2343 	 */
2344 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2345 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2346 
2347 	/* We're back.  Did the debugger cancel the sig?  */
2348 	signr = current->exit_code;
2349 	if (signr == 0)
2350 		return signr;
2351 
2352 	current->exit_code = 0;
2353 
2354 	/*
2355 	 * Update the siginfo structure if the signal has
2356 	 * changed.  If the debugger wanted something
2357 	 * specific in the siginfo structure then it should
2358 	 * have updated *info via PTRACE_SETSIGINFO.
2359 	 */
2360 	if (signr != info->si_signo) {
2361 		clear_siginfo(info);
2362 		info->si_signo = signr;
2363 		info->si_errno = 0;
2364 		info->si_code = SI_USER;
2365 		rcu_read_lock();
2366 		info->si_pid = task_pid_vnr(current->parent);
2367 		info->si_uid = from_kuid_munged(current_user_ns(),
2368 						task_uid(current->parent));
2369 		rcu_read_unlock();
2370 	}
2371 
2372 	/* If the (new) signal is now blocked, requeue it.  */
2373 	if (sigismember(&current->blocked, signr)) {
2374 		send_signal(signr, info, current, PIDTYPE_PID);
2375 		signr = 0;
2376 	}
2377 
2378 	return signr;
2379 }
2380 
2381 bool get_signal(struct ksignal *ksig)
2382 {
2383 	struct sighand_struct *sighand = current->sighand;
2384 	struct signal_struct *signal = current->signal;
2385 	int signr;
2386 
2387 	if (unlikely(current->task_works))
2388 		task_work_run();
2389 
2390 	if (unlikely(uprobe_deny_signal()))
2391 		return false;
2392 
2393 	/*
2394 	 * Do this once, we can't return to user-mode if freezing() == T.
2395 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2396 	 * thus do not need another check after return.
2397 	 */
2398 	try_to_freeze();
2399 
2400 relock:
2401 	spin_lock_irq(&sighand->siglock);
2402 	/*
2403 	 * Every stopped thread goes here after wakeup. Check to see if
2404 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2405 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2406 	 */
2407 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2408 		int why;
2409 
2410 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2411 			why = CLD_CONTINUED;
2412 		else
2413 			why = CLD_STOPPED;
2414 
2415 		signal->flags &= ~SIGNAL_CLD_MASK;
2416 
2417 		spin_unlock_irq(&sighand->siglock);
2418 
2419 		/*
2420 		 * Notify the parent that we're continuing.  This event is
2421 		 * always per-process and doesn't make whole lot of sense
2422 		 * for ptracers, who shouldn't consume the state via
2423 		 * wait(2) either, but, for backward compatibility, notify
2424 		 * the ptracer of the group leader too unless it's gonna be
2425 		 * a duplicate.
2426 		 */
2427 		read_lock(&tasklist_lock);
2428 		do_notify_parent_cldstop(current, false, why);
2429 
2430 		if (ptrace_reparented(current->group_leader))
2431 			do_notify_parent_cldstop(current->group_leader,
2432 						true, why);
2433 		read_unlock(&tasklist_lock);
2434 
2435 		goto relock;
2436 	}
2437 
2438 	/* Has this task already been marked for death? */
2439 	ksig->info.si_signo = signr = SIGKILL;
2440 	if (signal_group_exit(signal))
2441 		goto fatal;
2442 
2443 	for (;;) {
2444 		struct k_sigaction *ka;
2445 
2446 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2447 		    do_signal_stop(0))
2448 			goto relock;
2449 
2450 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2451 			do_jobctl_trap();
2452 			spin_unlock_irq(&sighand->siglock);
2453 			goto relock;
2454 		}
2455 
2456 		/*
2457 		 * Signals generated by the execution of an instruction
2458 		 * need to be delivered before any other pending signals
2459 		 * so that the instruction pointer in the signal stack
2460 		 * frame points to the faulting instruction.
2461 		 */
2462 		signr = dequeue_synchronous_signal(&ksig->info);
2463 		if (!signr)
2464 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2465 
2466 		if (!signr)
2467 			break; /* will return 0 */
2468 
2469 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2470 			signr = ptrace_signal(signr, &ksig->info);
2471 			if (!signr)
2472 				continue;
2473 		}
2474 
2475 		ka = &sighand->action[signr-1];
2476 
2477 		/* Trace actually delivered signals. */
2478 		trace_signal_deliver(signr, &ksig->info, ka);
2479 
2480 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2481 			continue;
2482 		if (ka->sa.sa_handler != SIG_DFL) {
2483 			/* Run the handler.  */
2484 			ksig->ka = *ka;
2485 
2486 			if (ka->sa.sa_flags & SA_ONESHOT)
2487 				ka->sa.sa_handler = SIG_DFL;
2488 
2489 			break; /* will return non-zero "signr" value */
2490 		}
2491 
2492 		/*
2493 		 * Now we are doing the default action for this signal.
2494 		 */
2495 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2496 			continue;
2497 
2498 		/*
2499 		 * Global init gets no signals it doesn't want.
2500 		 * Container-init gets no signals it doesn't want from same
2501 		 * container.
2502 		 *
2503 		 * Note that if global/container-init sees a sig_kernel_only()
2504 		 * signal here, the signal must have been generated internally
2505 		 * or must have come from an ancestor namespace. In either
2506 		 * case, the signal cannot be dropped.
2507 		 */
2508 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2509 				!sig_kernel_only(signr))
2510 			continue;
2511 
2512 		if (sig_kernel_stop(signr)) {
2513 			/*
2514 			 * The default action is to stop all threads in
2515 			 * the thread group.  The job control signals
2516 			 * do nothing in an orphaned pgrp, but SIGSTOP
2517 			 * always works.  Note that siglock needs to be
2518 			 * dropped during the call to is_orphaned_pgrp()
2519 			 * because of lock ordering with tasklist_lock.
2520 			 * This allows an intervening SIGCONT to be posted.
2521 			 * We need to check for that and bail out if necessary.
2522 			 */
2523 			if (signr != SIGSTOP) {
2524 				spin_unlock_irq(&sighand->siglock);
2525 
2526 				/* signals can be posted during this window */
2527 
2528 				if (is_current_pgrp_orphaned())
2529 					goto relock;
2530 
2531 				spin_lock_irq(&sighand->siglock);
2532 			}
2533 
2534 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2535 				/* It released the siglock.  */
2536 				goto relock;
2537 			}
2538 
2539 			/*
2540 			 * We didn't actually stop, due to a race
2541 			 * with SIGCONT or something like that.
2542 			 */
2543 			continue;
2544 		}
2545 
2546 	fatal:
2547 		spin_unlock_irq(&sighand->siglock);
2548 
2549 		/*
2550 		 * Anything else is fatal, maybe with a core dump.
2551 		 */
2552 		current->flags |= PF_SIGNALED;
2553 
2554 		if (sig_kernel_coredump(signr)) {
2555 			if (print_fatal_signals)
2556 				print_fatal_signal(ksig->info.si_signo);
2557 			proc_coredump_connector(current);
2558 			/*
2559 			 * If it was able to dump core, this kills all
2560 			 * other threads in the group and synchronizes with
2561 			 * their demise.  If we lost the race with another
2562 			 * thread getting here, it set group_exit_code
2563 			 * first and our do_group_exit call below will use
2564 			 * that value and ignore the one we pass it.
2565 			 */
2566 			do_coredump(&ksig->info);
2567 		}
2568 
2569 		/*
2570 		 * Death signals, no core dump.
2571 		 */
2572 		do_group_exit(ksig->info.si_signo);
2573 		/* NOTREACHED */
2574 	}
2575 	spin_unlock_irq(&sighand->siglock);
2576 
2577 	ksig->sig = signr;
2578 	return ksig->sig > 0;
2579 }
2580 
2581 /**
2582  * signal_delivered -
2583  * @ksig:		kernel signal struct
2584  * @stepping:		nonzero if debugger single-step or block-step in use
2585  *
2586  * This function should be called when a signal has successfully been
2587  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2588  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2589  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2590  */
2591 static void signal_delivered(struct ksignal *ksig, int stepping)
2592 {
2593 	sigset_t blocked;
2594 
2595 	/* A signal was successfully delivered, and the
2596 	   saved sigmask was stored on the signal frame,
2597 	   and will be restored by sigreturn.  So we can
2598 	   simply clear the restore sigmask flag.  */
2599 	clear_restore_sigmask();
2600 
2601 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2602 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2603 		sigaddset(&blocked, ksig->sig);
2604 	set_current_blocked(&blocked);
2605 	tracehook_signal_handler(stepping);
2606 }
2607 
2608 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2609 {
2610 	if (failed)
2611 		force_sigsegv(ksig->sig, current);
2612 	else
2613 		signal_delivered(ksig, stepping);
2614 }
2615 
2616 /*
2617  * It could be that complete_signal() picked us to notify about the
2618  * group-wide signal. Other threads should be notified now to take
2619  * the shared signals in @which since we will not.
2620  */
2621 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2622 {
2623 	sigset_t retarget;
2624 	struct task_struct *t;
2625 
2626 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2627 	if (sigisemptyset(&retarget))
2628 		return;
2629 
2630 	t = tsk;
2631 	while_each_thread(tsk, t) {
2632 		if (t->flags & PF_EXITING)
2633 			continue;
2634 
2635 		if (!has_pending_signals(&retarget, &t->blocked))
2636 			continue;
2637 		/* Remove the signals this thread can handle. */
2638 		sigandsets(&retarget, &retarget, &t->blocked);
2639 
2640 		if (!signal_pending(t))
2641 			signal_wake_up(t, 0);
2642 
2643 		if (sigisemptyset(&retarget))
2644 			break;
2645 	}
2646 }
2647 
2648 void exit_signals(struct task_struct *tsk)
2649 {
2650 	int group_stop = 0;
2651 	sigset_t unblocked;
2652 
2653 	/*
2654 	 * @tsk is about to have PF_EXITING set - lock out users which
2655 	 * expect stable threadgroup.
2656 	 */
2657 	cgroup_threadgroup_change_begin(tsk);
2658 
2659 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2660 		tsk->flags |= PF_EXITING;
2661 		cgroup_threadgroup_change_end(tsk);
2662 		return;
2663 	}
2664 
2665 	spin_lock_irq(&tsk->sighand->siglock);
2666 	/*
2667 	 * From now this task is not visible for group-wide signals,
2668 	 * see wants_signal(), do_signal_stop().
2669 	 */
2670 	tsk->flags |= PF_EXITING;
2671 
2672 	cgroup_threadgroup_change_end(tsk);
2673 
2674 	if (!signal_pending(tsk))
2675 		goto out;
2676 
2677 	unblocked = tsk->blocked;
2678 	signotset(&unblocked);
2679 	retarget_shared_pending(tsk, &unblocked);
2680 
2681 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2682 	    task_participate_group_stop(tsk))
2683 		group_stop = CLD_STOPPED;
2684 out:
2685 	spin_unlock_irq(&tsk->sighand->siglock);
2686 
2687 	/*
2688 	 * If group stop has completed, deliver the notification.  This
2689 	 * should always go to the real parent of the group leader.
2690 	 */
2691 	if (unlikely(group_stop)) {
2692 		read_lock(&tasklist_lock);
2693 		do_notify_parent_cldstop(tsk, false, group_stop);
2694 		read_unlock(&tasklist_lock);
2695 	}
2696 }
2697 
2698 /*
2699  * System call entry points.
2700  */
2701 
2702 /**
2703  *  sys_restart_syscall - restart a system call
2704  */
2705 SYSCALL_DEFINE0(restart_syscall)
2706 {
2707 	struct restart_block *restart = &current->restart_block;
2708 	return restart->fn(restart);
2709 }
2710 
2711 long do_no_restart_syscall(struct restart_block *param)
2712 {
2713 	return -EINTR;
2714 }
2715 
2716 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2717 {
2718 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2719 		sigset_t newblocked;
2720 		/* A set of now blocked but previously unblocked signals. */
2721 		sigandnsets(&newblocked, newset, &current->blocked);
2722 		retarget_shared_pending(tsk, &newblocked);
2723 	}
2724 	tsk->blocked = *newset;
2725 	recalc_sigpending();
2726 }
2727 
2728 /**
2729  * set_current_blocked - change current->blocked mask
2730  * @newset: new mask
2731  *
2732  * It is wrong to change ->blocked directly, this helper should be used
2733  * to ensure the process can't miss a shared signal we are going to block.
2734  */
2735 void set_current_blocked(sigset_t *newset)
2736 {
2737 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2738 	__set_current_blocked(newset);
2739 }
2740 
2741 void __set_current_blocked(const sigset_t *newset)
2742 {
2743 	struct task_struct *tsk = current;
2744 
2745 	/*
2746 	 * In case the signal mask hasn't changed, there is nothing we need
2747 	 * to do. The current->blocked shouldn't be modified by other task.
2748 	 */
2749 	if (sigequalsets(&tsk->blocked, newset))
2750 		return;
2751 
2752 	spin_lock_irq(&tsk->sighand->siglock);
2753 	__set_task_blocked(tsk, newset);
2754 	spin_unlock_irq(&tsk->sighand->siglock);
2755 }
2756 
2757 /*
2758  * This is also useful for kernel threads that want to temporarily
2759  * (or permanently) block certain signals.
2760  *
2761  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2762  * interface happily blocks "unblockable" signals like SIGKILL
2763  * and friends.
2764  */
2765 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2766 {
2767 	struct task_struct *tsk = current;
2768 	sigset_t newset;
2769 
2770 	/* Lockless, only current can change ->blocked, never from irq */
2771 	if (oldset)
2772 		*oldset = tsk->blocked;
2773 
2774 	switch (how) {
2775 	case SIG_BLOCK:
2776 		sigorsets(&newset, &tsk->blocked, set);
2777 		break;
2778 	case SIG_UNBLOCK:
2779 		sigandnsets(&newset, &tsk->blocked, set);
2780 		break;
2781 	case SIG_SETMASK:
2782 		newset = *set;
2783 		break;
2784 	default:
2785 		return -EINVAL;
2786 	}
2787 
2788 	__set_current_blocked(&newset);
2789 	return 0;
2790 }
2791 EXPORT_SYMBOL(sigprocmask);
2792 
2793 /*
2794  * The api helps set app-provided sigmasks.
2795  *
2796  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2797  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2798  */
2799 int set_user_sigmask(const sigset_t __user *usigmask, sigset_t *set,
2800 		     sigset_t *oldset, size_t sigsetsize)
2801 {
2802 	if (!usigmask)
2803 		return 0;
2804 
2805 	if (sigsetsize != sizeof(sigset_t))
2806 		return -EINVAL;
2807 	if (copy_from_user(set, usigmask, sizeof(sigset_t)))
2808 		return -EFAULT;
2809 
2810 	*oldset = current->blocked;
2811 	set_current_blocked(set);
2812 
2813 	return 0;
2814 }
2815 EXPORT_SYMBOL(set_user_sigmask);
2816 
2817 #ifdef CONFIG_COMPAT
2818 int set_compat_user_sigmask(const compat_sigset_t __user *usigmask,
2819 			    sigset_t *set, sigset_t *oldset,
2820 			    size_t sigsetsize)
2821 {
2822 	if (!usigmask)
2823 		return 0;
2824 
2825 	if (sigsetsize != sizeof(compat_sigset_t))
2826 		return -EINVAL;
2827 	if (get_compat_sigset(set, usigmask))
2828 		return -EFAULT;
2829 
2830 	*oldset = current->blocked;
2831 	set_current_blocked(set);
2832 
2833 	return 0;
2834 }
2835 EXPORT_SYMBOL(set_compat_user_sigmask);
2836 #endif
2837 
2838 /*
2839  * restore_user_sigmask:
2840  * usigmask: sigmask passed in from userland.
2841  * sigsaved: saved sigmask when the syscall started and changed the sigmask to
2842  *           usigmask.
2843  *
2844  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2845  * epoll_pwait where a new sigmask is passed in from userland for the syscalls.
2846  */
2847 void restore_user_sigmask(const void __user *usigmask, sigset_t *sigsaved)
2848 {
2849 
2850 	if (!usigmask)
2851 		return;
2852 	/*
2853 	 * When signals are pending, do not restore them here.
2854 	 * Restoring sigmask here can lead to delivering signals that the above
2855 	 * syscalls are intended to block because of the sigmask passed in.
2856 	 */
2857 	if (signal_pending(current)) {
2858 		current->saved_sigmask = *sigsaved;
2859 		set_restore_sigmask();
2860 		return;
2861 	}
2862 
2863 	/*
2864 	 * This is needed because the fast syscall return path does not restore
2865 	 * saved_sigmask when signals are not pending.
2866 	 */
2867 	set_current_blocked(sigsaved);
2868 }
2869 EXPORT_SYMBOL(restore_user_sigmask);
2870 
2871 /**
2872  *  sys_rt_sigprocmask - change the list of currently blocked signals
2873  *  @how: whether to add, remove, or set signals
2874  *  @nset: stores pending signals
2875  *  @oset: previous value of signal mask if non-null
2876  *  @sigsetsize: size of sigset_t type
2877  */
2878 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2879 		sigset_t __user *, oset, size_t, sigsetsize)
2880 {
2881 	sigset_t old_set, new_set;
2882 	int error;
2883 
2884 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2885 	if (sigsetsize != sizeof(sigset_t))
2886 		return -EINVAL;
2887 
2888 	old_set = current->blocked;
2889 
2890 	if (nset) {
2891 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2892 			return -EFAULT;
2893 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2894 
2895 		error = sigprocmask(how, &new_set, NULL);
2896 		if (error)
2897 			return error;
2898 	}
2899 
2900 	if (oset) {
2901 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2902 			return -EFAULT;
2903 	}
2904 
2905 	return 0;
2906 }
2907 
2908 #ifdef CONFIG_COMPAT
2909 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2910 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2911 {
2912 	sigset_t old_set = current->blocked;
2913 
2914 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2915 	if (sigsetsize != sizeof(sigset_t))
2916 		return -EINVAL;
2917 
2918 	if (nset) {
2919 		sigset_t new_set;
2920 		int error;
2921 		if (get_compat_sigset(&new_set, nset))
2922 			return -EFAULT;
2923 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2924 
2925 		error = sigprocmask(how, &new_set, NULL);
2926 		if (error)
2927 			return error;
2928 	}
2929 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2930 }
2931 #endif
2932 
2933 static void do_sigpending(sigset_t *set)
2934 {
2935 	spin_lock_irq(&current->sighand->siglock);
2936 	sigorsets(set, &current->pending.signal,
2937 		  &current->signal->shared_pending.signal);
2938 	spin_unlock_irq(&current->sighand->siglock);
2939 
2940 	/* Outside the lock because only this thread touches it.  */
2941 	sigandsets(set, &current->blocked, set);
2942 }
2943 
2944 /**
2945  *  sys_rt_sigpending - examine a pending signal that has been raised
2946  *			while blocked
2947  *  @uset: stores pending signals
2948  *  @sigsetsize: size of sigset_t type or larger
2949  */
2950 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2951 {
2952 	sigset_t set;
2953 
2954 	if (sigsetsize > sizeof(*uset))
2955 		return -EINVAL;
2956 
2957 	do_sigpending(&set);
2958 
2959 	if (copy_to_user(uset, &set, sigsetsize))
2960 		return -EFAULT;
2961 
2962 	return 0;
2963 }
2964 
2965 #ifdef CONFIG_COMPAT
2966 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2967 		compat_size_t, sigsetsize)
2968 {
2969 	sigset_t set;
2970 
2971 	if (sigsetsize > sizeof(*uset))
2972 		return -EINVAL;
2973 
2974 	do_sigpending(&set);
2975 
2976 	return put_compat_sigset(uset, &set, sigsetsize);
2977 }
2978 #endif
2979 
2980 static const struct {
2981 	unsigned char limit, layout;
2982 } sig_sicodes[] = {
2983 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
2984 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
2985 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2986 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
2987 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2988 #if defined(SIGEMT)
2989 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
2990 #endif
2991 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2992 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
2993 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
2994 };
2995 
2996 static bool known_siginfo_layout(unsigned sig, int si_code)
2997 {
2998 	if (si_code == SI_KERNEL)
2999 		return true;
3000 	else if ((si_code > SI_USER)) {
3001 		if (sig_specific_sicodes(sig)) {
3002 			if (si_code <= sig_sicodes[sig].limit)
3003 				return true;
3004 		}
3005 		else if (si_code <= NSIGPOLL)
3006 			return true;
3007 	}
3008 	else if (si_code >= SI_DETHREAD)
3009 		return true;
3010 	else if (si_code == SI_ASYNCNL)
3011 		return true;
3012 	return false;
3013 }
3014 
3015 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3016 {
3017 	enum siginfo_layout layout = SIL_KILL;
3018 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3019 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3020 		    (si_code <= sig_sicodes[sig].limit)) {
3021 			layout = sig_sicodes[sig].layout;
3022 			/* Handle the exceptions */
3023 			if ((sig == SIGBUS) &&
3024 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3025 				layout = SIL_FAULT_MCEERR;
3026 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3027 				layout = SIL_FAULT_BNDERR;
3028 #ifdef SEGV_PKUERR
3029 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3030 				layout = SIL_FAULT_PKUERR;
3031 #endif
3032 		}
3033 		else if (si_code <= NSIGPOLL)
3034 			layout = SIL_POLL;
3035 	} else {
3036 		if (si_code == SI_TIMER)
3037 			layout = SIL_TIMER;
3038 		else if (si_code == SI_SIGIO)
3039 			layout = SIL_POLL;
3040 		else if (si_code < 0)
3041 			layout = SIL_RT;
3042 	}
3043 	return layout;
3044 }
3045 
3046 static inline char __user *si_expansion(const siginfo_t __user *info)
3047 {
3048 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3049 }
3050 
3051 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3052 {
3053 	char __user *expansion = si_expansion(to);
3054 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3055 		return -EFAULT;
3056 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3057 		return -EFAULT;
3058 	return 0;
3059 }
3060 
3061 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3062 				       const siginfo_t __user *from)
3063 {
3064 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3065 		char __user *expansion = si_expansion(from);
3066 		char buf[SI_EXPANSION_SIZE];
3067 		int i;
3068 		/*
3069 		 * An unknown si_code might need more than
3070 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3071 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3072 		 * will return this data to userspace exactly.
3073 		 */
3074 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3075 			return -EFAULT;
3076 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3077 			if (buf[i] != 0)
3078 				return -E2BIG;
3079 		}
3080 	}
3081 	return 0;
3082 }
3083 
3084 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3085 				    const siginfo_t __user *from)
3086 {
3087 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3088 		return -EFAULT;
3089 	to->si_signo = signo;
3090 	return post_copy_siginfo_from_user(to, from);
3091 }
3092 
3093 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3094 {
3095 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3096 		return -EFAULT;
3097 	return post_copy_siginfo_from_user(to, from);
3098 }
3099 
3100 #ifdef CONFIG_COMPAT
3101 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3102 			   const struct kernel_siginfo *from)
3103 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3104 {
3105 	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3106 }
3107 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3108 			     const struct kernel_siginfo *from, bool x32_ABI)
3109 #endif
3110 {
3111 	struct compat_siginfo new;
3112 	memset(&new, 0, sizeof(new));
3113 
3114 	new.si_signo = from->si_signo;
3115 	new.si_errno = from->si_errno;
3116 	new.si_code  = from->si_code;
3117 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3118 	case SIL_KILL:
3119 		new.si_pid = from->si_pid;
3120 		new.si_uid = from->si_uid;
3121 		break;
3122 	case SIL_TIMER:
3123 		new.si_tid     = from->si_tid;
3124 		new.si_overrun = from->si_overrun;
3125 		new.si_int     = from->si_int;
3126 		break;
3127 	case SIL_POLL:
3128 		new.si_band = from->si_band;
3129 		new.si_fd   = from->si_fd;
3130 		break;
3131 	case SIL_FAULT:
3132 		new.si_addr = ptr_to_compat(from->si_addr);
3133 #ifdef __ARCH_SI_TRAPNO
3134 		new.si_trapno = from->si_trapno;
3135 #endif
3136 		break;
3137 	case SIL_FAULT_MCEERR:
3138 		new.si_addr = ptr_to_compat(from->si_addr);
3139 #ifdef __ARCH_SI_TRAPNO
3140 		new.si_trapno = from->si_trapno;
3141 #endif
3142 		new.si_addr_lsb = from->si_addr_lsb;
3143 		break;
3144 	case SIL_FAULT_BNDERR:
3145 		new.si_addr = ptr_to_compat(from->si_addr);
3146 #ifdef __ARCH_SI_TRAPNO
3147 		new.si_trapno = from->si_trapno;
3148 #endif
3149 		new.si_lower = ptr_to_compat(from->si_lower);
3150 		new.si_upper = ptr_to_compat(from->si_upper);
3151 		break;
3152 	case SIL_FAULT_PKUERR:
3153 		new.si_addr = ptr_to_compat(from->si_addr);
3154 #ifdef __ARCH_SI_TRAPNO
3155 		new.si_trapno = from->si_trapno;
3156 #endif
3157 		new.si_pkey = from->si_pkey;
3158 		break;
3159 	case SIL_CHLD:
3160 		new.si_pid    = from->si_pid;
3161 		new.si_uid    = from->si_uid;
3162 		new.si_status = from->si_status;
3163 #ifdef CONFIG_X86_X32_ABI
3164 		if (x32_ABI) {
3165 			new._sifields._sigchld_x32._utime = from->si_utime;
3166 			new._sifields._sigchld_x32._stime = from->si_stime;
3167 		} else
3168 #endif
3169 		{
3170 			new.si_utime = from->si_utime;
3171 			new.si_stime = from->si_stime;
3172 		}
3173 		break;
3174 	case SIL_RT:
3175 		new.si_pid = from->si_pid;
3176 		new.si_uid = from->si_uid;
3177 		new.si_int = from->si_int;
3178 		break;
3179 	case SIL_SYS:
3180 		new.si_call_addr = ptr_to_compat(from->si_call_addr);
3181 		new.si_syscall   = from->si_syscall;
3182 		new.si_arch      = from->si_arch;
3183 		break;
3184 	}
3185 
3186 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3187 		return -EFAULT;
3188 
3189 	return 0;
3190 }
3191 
3192 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3193 					 const struct compat_siginfo *from)
3194 {
3195 	clear_siginfo(to);
3196 	to->si_signo = from->si_signo;
3197 	to->si_errno = from->si_errno;
3198 	to->si_code  = from->si_code;
3199 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3200 	case SIL_KILL:
3201 		to->si_pid = from->si_pid;
3202 		to->si_uid = from->si_uid;
3203 		break;
3204 	case SIL_TIMER:
3205 		to->si_tid     = from->si_tid;
3206 		to->si_overrun = from->si_overrun;
3207 		to->si_int     = from->si_int;
3208 		break;
3209 	case SIL_POLL:
3210 		to->si_band = from->si_band;
3211 		to->si_fd   = from->si_fd;
3212 		break;
3213 	case SIL_FAULT:
3214 		to->si_addr = compat_ptr(from->si_addr);
3215 #ifdef __ARCH_SI_TRAPNO
3216 		to->si_trapno = from->si_trapno;
3217 #endif
3218 		break;
3219 	case SIL_FAULT_MCEERR:
3220 		to->si_addr = compat_ptr(from->si_addr);
3221 #ifdef __ARCH_SI_TRAPNO
3222 		to->si_trapno = from->si_trapno;
3223 #endif
3224 		to->si_addr_lsb = from->si_addr_lsb;
3225 		break;
3226 	case SIL_FAULT_BNDERR:
3227 		to->si_addr = compat_ptr(from->si_addr);
3228 #ifdef __ARCH_SI_TRAPNO
3229 		to->si_trapno = from->si_trapno;
3230 #endif
3231 		to->si_lower = compat_ptr(from->si_lower);
3232 		to->si_upper = compat_ptr(from->si_upper);
3233 		break;
3234 	case SIL_FAULT_PKUERR:
3235 		to->si_addr = compat_ptr(from->si_addr);
3236 #ifdef __ARCH_SI_TRAPNO
3237 		to->si_trapno = from->si_trapno;
3238 #endif
3239 		to->si_pkey = from->si_pkey;
3240 		break;
3241 	case SIL_CHLD:
3242 		to->si_pid    = from->si_pid;
3243 		to->si_uid    = from->si_uid;
3244 		to->si_status = from->si_status;
3245 #ifdef CONFIG_X86_X32_ABI
3246 		if (in_x32_syscall()) {
3247 			to->si_utime = from->_sifields._sigchld_x32._utime;
3248 			to->si_stime = from->_sifields._sigchld_x32._stime;
3249 		} else
3250 #endif
3251 		{
3252 			to->si_utime = from->si_utime;
3253 			to->si_stime = from->si_stime;
3254 		}
3255 		break;
3256 	case SIL_RT:
3257 		to->si_pid = from->si_pid;
3258 		to->si_uid = from->si_uid;
3259 		to->si_int = from->si_int;
3260 		break;
3261 	case SIL_SYS:
3262 		to->si_call_addr = compat_ptr(from->si_call_addr);
3263 		to->si_syscall   = from->si_syscall;
3264 		to->si_arch      = from->si_arch;
3265 		break;
3266 	}
3267 	return 0;
3268 }
3269 
3270 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3271 				      const struct compat_siginfo __user *ufrom)
3272 {
3273 	struct compat_siginfo from;
3274 
3275 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3276 		return -EFAULT;
3277 
3278 	from.si_signo = signo;
3279 	return post_copy_siginfo_from_user32(to, &from);
3280 }
3281 
3282 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3283 			     const struct compat_siginfo __user *ufrom)
3284 {
3285 	struct compat_siginfo from;
3286 
3287 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3288 		return -EFAULT;
3289 
3290 	return post_copy_siginfo_from_user32(to, &from);
3291 }
3292 #endif /* CONFIG_COMPAT */
3293 
3294 /**
3295  *  do_sigtimedwait - wait for queued signals specified in @which
3296  *  @which: queued signals to wait for
3297  *  @info: if non-null, the signal's siginfo is returned here
3298  *  @ts: upper bound on process time suspension
3299  */
3300 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3301 		    const struct timespec64 *ts)
3302 {
3303 	ktime_t *to = NULL, timeout = KTIME_MAX;
3304 	struct task_struct *tsk = current;
3305 	sigset_t mask = *which;
3306 	int sig, ret = 0;
3307 
3308 	if (ts) {
3309 		if (!timespec64_valid(ts))
3310 			return -EINVAL;
3311 		timeout = timespec64_to_ktime(*ts);
3312 		to = &timeout;
3313 	}
3314 
3315 	/*
3316 	 * Invert the set of allowed signals to get those we want to block.
3317 	 */
3318 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3319 	signotset(&mask);
3320 
3321 	spin_lock_irq(&tsk->sighand->siglock);
3322 	sig = dequeue_signal(tsk, &mask, info);
3323 	if (!sig && timeout) {
3324 		/*
3325 		 * None ready, temporarily unblock those we're interested
3326 		 * while we are sleeping in so that we'll be awakened when
3327 		 * they arrive. Unblocking is always fine, we can avoid
3328 		 * set_current_blocked().
3329 		 */
3330 		tsk->real_blocked = tsk->blocked;
3331 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3332 		recalc_sigpending();
3333 		spin_unlock_irq(&tsk->sighand->siglock);
3334 
3335 		__set_current_state(TASK_INTERRUPTIBLE);
3336 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3337 							 HRTIMER_MODE_REL);
3338 		spin_lock_irq(&tsk->sighand->siglock);
3339 		__set_task_blocked(tsk, &tsk->real_blocked);
3340 		sigemptyset(&tsk->real_blocked);
3341 		sig = dequeue_signal(tsk, &mask, info);
3342 	}
3343 	spin_unlock_irq(&tsk->sighand->siglock);
3344 
3345 	if (sig)
3346 		return sig;
3347 	return ret ? -EINTR : -EAGAIN;
3348 }
3349 
3350 /**
3351  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3352  *			in @uthese
3353  *  @uthese: queued signals to wait for
3354  *  @uinfo: if non-null, the signal's siginfo is returned here
3355  *  @uts: upper bound on process time suspension
3356  *  @sigsetsize: size of sigset_t type
3357  */
3358 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3359 		siginfo_t __user *, uinfo,
3360 		const struct __kernel_timespec __user *, uts,
3361 		size_t, sigsetsize)
3362 {
3363 	sigset_t these;
3364 	struct timespec64 ts;
3365 	kernel_siginfo_t info;
3366 	int ret;
3367 
3368 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3369 	if (sigsetsize != sizeof(sigset_t))
3370 		return -EINVAL;
3371 
3372 	if (copy_from_user(&these, uthese, sizeof(these)))
3373 		return -EFAULT;
3374 
3375 	if (uts) {
3376 		if (get_timespec64(&ts, uts))
3377 			return -EFAULT;
3378 	}
3379 
3380 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3381 
3382 	if (ret > 0 && uinfo) {
3383 		if (copy_siginfo_to_user(uinfo, &info))
3384 			ret = -EFAULT;
3385 	}
3386 
3387 	return ret;
3388 }
3389 
3390 #ifdef CONFIG_COMPAT_32BIT_TIME
3391 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3392 		siginfo_t __user *, uinfo,
3393 		const struct old_timespec32 __user *, uts,
3394 		size_t, sigsetsize)
3395 {
3396 	sigset_t these;
3397 	struct timespec64 ts;
3398 	kernel_siginfo_t info;
3399 	int ret;
3400 
3401 	if (sigsetsize != sizeof(sigset_t))
3402 		return -EINVAL;
3403 
3404 	if (copy_from_user(&these, uthese, sizeof(these)))
3405 		return -EFAULT;
3406 
3407 	if (uts) {
3408 		if (get_old_timespec32(&ts, uts))
3409 			return -EFAULT;
3410 	}
3411 
3412 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3413 
3414 	if (ret > 0 && uinfo) {
3415 		if (copy_siginfo_to_user(uinfo, &info))
3416 			ret = -EFAULT;
3417 	}
3418 
3419 	return ret;
3420 }
3421 #endif
3422 
3423 #ifdef CONFIG_COMPAT
3424 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3425 		struct compat_siginfo __user *, uinfo,
3426 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3427 {
3428 	sigset_t s;
3429 	struct timespec64 t;
3430 	kernel_siginfo_t info;
3431 	long ret;
3432 
3433 	if (sigsetsize != sizeof(sigset_t))
3434 		return -EINVAL;
3435 
3436 	if (get_compat_sigset(&s, uthese))
3437 		return -EFAULT;
3438 
3439 	if (uts) {
3440 		if (get_timespec64(&t, uts))
3441 			return -EFAULT;
3442 	}
3443 
3444 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3445 
3446 	if (ret > 0 && uinfo) {
3447 		if (copy_siginfo_to_user32(uinfo, &info))
3448 			ret = -EFAULT;
3449 	}
3450 
3451 	return ret;
3452 }
3453 
3454 #ifdef CONFIG_COMPAT_32BIT_TIME
3455 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
3456 		struct compat_siginfo __user *, uinfo,
3457 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3458 {
3459 	sigset_t s;
3460 	struct timespec64 t;
3461 	kernel_siginfo_t info;
3462 	long ret;
3463 
3464 	if (sigsetsize != sizeof(sigset_t))
3465 		return -EINVAL;
3466 
3467 	if (get_compat_sigset(&s, uthese))
3468 		return -EFAULT;
3469 
3470 	if (uts) {
3471 		if (get_old_timespec32(&t, uts))
3472 			return -EFAULT;
3473 	}
3474 
3475 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3476 
3477 	if (ret > 0 && uinfo) {
3478 		if (copy_siginfo_to_user32(uinfo, &info))
3479 			ret = -EFAULT;
3480 	}
3481 
3482 	return ret;
3483 }
3484 #endif
3485 #endif
3486 
3487 /**
3488  *  sys_kill - send a signal to a process
3489  *  @pid: the PID of the process
3490  *  @sig: signal to be sent
3491  */
3492 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3493 {
3494 	struct kernel_siginfo info;
3495 
3496 	clear_siginfo(&info);
3497 	info.si_signo = sig;
3498 	info.si_errno = 0;
3499 	info.si_code = SI_USER;
3500 	info.si_pid = task_tgid_vnr(current);
3501 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3502 
3503 	return kill_something_info(sig, &info, pid);
3504 }
3505 
3506 static int
3507 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3508 {
3509 	struct task_struct *p;
3510 	int error = -ESRCH;
3511 
3512 	rcu_read_lock();
3513 	p = find_task_by_vpid(pid);
3514 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3515 		error = check_kill_permission(sig, info, p);
3516 		/*
3517 		 * The null signal is a permissions and process existence
3518 		 * probe.  No signal is actually delivered.
3519 		 */
3520 		if (!error && sig) {
3521 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3522 			/*
3523 			 * If lock_task_sighand() failed we pretend the task
3524 			 * dies after receiving the signal. The window is tiny,
3525 			 * and the signal is private anyway.
3526 			 */
3527 			if (unlikely(error == -ESRCH))
3528 				error = 0;
3529 		}
3530 	}
3531 	rcu_read_unlock();
3532 
3533 	return error;
3534 }
3535 
3536 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3537 {
3538 	struct kernel_siginfo info;
3539 
3540 	clear_siginfo(&info);
3541 	info.si_signo = sig;
3542 	info.si_errno = 0;
3543 	info.si_code = SI_TKILL;
3544 	info.si_pid = task_tgid_vnr(current);
3545 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3546 
3547 	return do_send_specific(tgid, pid, sig, &info);
3548 }
3549 
3550 /**
3551  *  sys_tgkill - send signal to one specific thread
3552  *  @tgid: the thread group ID of the thread
3553  *  @pid: the PID of the thread
3554  *  @sig: signal to be sent
3555  *
3556  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3557  *  exists but it's not belonging to the target process anymore. This
3558  *  method solves the problem of threads exiting and PIDs getting reused.
3559  */
3560 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3561 {
3562 	/* This is only valid for single tasks */
3563 	if (pid <= 0 || tgid <= 0)
3564 		return -EINVAL;
3565 
3566 	return do_tkill(tgid, pid, sig);
3567 }
3568 
3569 /**
3570  *  sys_tkill - send signal to one specific task
3571  *  @pid: the PID of the task
3572  *  @sig: signal to be sent
3573  *
3574  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3575  */
3576 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3577 {
3578 	/* This is only valid for single tasks */
3579 	if (pid <= 0)
3580 		return -EINVAL;
3581 
3582 	return do_tkill(0, pid, sig);
3583 }
3584 
3585 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3586 {
3587 	/* Not even root can pretend to send signals from the kernel.
3588 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3589 	 */
3590 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3591 	    (task_pid_vnr(current) != pid))
3592 		return -EPERM;
3593 
3594 	/* POSIX.1b doesn't mention process groups.  */
3595 	return kill_proc_info(sig, info, pid);
3596 }
3597 
3598 /**
3599  *  sys_rt_sigqueueinfo - send signal information to a signal
3600  *  @pid: the PID of the thread
3601  *  @sig: signal to be sent
3602  *  @uinfo: signal info to be sent
3603  */
3604 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3605 		siginfo_t __user *, uinfo)
3606 {
3607 	kernel_siginfo_t info;
3608 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3609 	if (unlikely(ret))
3610 		return ret;
3611 	return do_rt_sigqueueinfo(pid, sig, &info);
3612 }
3613 
3614 #ifdef CONFIG_COMPAT
3615 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3616 			compat_pid_t, pid,
3617 			int, sig,
3618 			struct compat_siginfo __user *, uinfo)
3619 {
3620 	kernel_siginfo_t info;
3621 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3622 	if (unlikely(ret))
3623 		return ret;
3624 	return do_rt_sigqueueinfo(pid, sig, &info);
3625 }
3626 #endif
3627 
3628 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3629 {
3630 	/* This is only valid for single tasks */
3631 	if (pid <= 0 || tgid <= 0)
3632 		return -EINVAL;
3633 
3634 	/* Not even root can pretend to send signals from the kernel.
3635 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3636 	 */
3637 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3638 	    (task_pid_vnr(current) != pid))
3639 		return -EPERM;
3640 
3641 	return do_send_specific(tgid, pid, sig, info);
3642 }
3643 
3644 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3645 		siginfo_t __user *, uinfo)
3646 {
3647 	kernel_siginfo_t info;
3648 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3649 	if (unlikely(ret))
3650 		return ret;
3651 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3652 }
3653 
3654 #ifdef CONFIG_COMPAT
3655 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3656 			compat_pid_t, tgid,
3657 			compat_pid_t, pid,
3658 			int, sig,
3659 			struct compat_siginfo __user *, uinfo)
3660 {
3661 	kernel_siginfo_t info;
3662 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3663 	if (unlikely(ret))
3664 		return ret;
3665 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3666 }
3667 #endif
3668 
3669 /*
3670  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3671  */
3672 void kernel_sigaction(int sig, __sighandler_t action)
3673 {
3674 	spin_lock_irq(&current->sighand->siglock);
3675 	current->sighand->action[sig - 1].sa.sa_handler = action;
3676 	if (action == SIG_IGN) {
3677 		sigset_t mask;
3678 
3679 		sigemptyset(&mask);
3680 		sigaddset(&mask, sig);
3681 
3682 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3683 		flush_sigqueue_mask(&mask, &current->pending);
3684 		recalc_sigpending();
3685 	}
3686 	spin_unlock_irq(&current->sighand->siglock);
3687 }
3688 EXPORT_SYMBOL(kernel_sigaction);
3689 
3690 void __weak sigaction_compat_abi(struct k_sigaction *act,
3691 		struct k_sigaction *oact)
3692 {
3693 }
3694 
3695 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3696 {
3697 	struct task_struct *p = current, *t;
3698 	struct k_sigaction *k;
3699 	sigset_t mask;
3700 
3701 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3702 		return -EINVAL;
3703 
3704 	k = &p->sighand->action[sig-1];
3705 
3706 	spin_lock_irq(&p->sighand->siglock);
3707 	if (oact)
3708 		*oact = *k;
3709 
3710 	sigaction_compat_abi(act, oact);
3711 
3712 	if (act) {
3713 		sigdelsetmask(&act->sa.sa_mask,
3714 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3715 		*k = *act;
3716 		/*
3717 		 * POSIX 3.3.1.3:
3718 		 *  "Setting a signal action to SIG_IGN for a signal that is
3719 		 *   pending shall cause the pending signal to be discarded,
3720 		 *   whether or not it is blocked."
3721 		 *
3722 		 *  "Setting a signal action to SIG_DFL for a signal that is
3723 		 *   pending and whose default action is to ignore the signal
3724 		 *   (for example, SIGCHLD), shall cause the pending signal to
3725 		 *   be discarded, whether or not it is blocked"
3726 		 */
3727 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3728 			sigemptyset(&mask);
3729 			sigaddset(&mask, sig);
3730 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3731 			for_each_thread(p, t)
3732 				flush_sigqueue_mask(&mask, &t->pending);
3733 		}
3734 	}
3735 
3736 	spin_unlock_irq(&p->sighand->siglock);
3737 	return 0;
3738 }
3739 
3740 static int
3741 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3742 		size_t min_ss_size)
3743 {
3744 	struct task_struct *t = current;
3745 
3746 	if (oss) {
3747 		memset(oss, 0, sizeof(stack_t));
3748 		oss->ss_sp = (void __user *) t->sas_ss_sp;
3749 		oss->ss_size = t->sas_ss_size;
3750 		oss->ss_flags = sas_ss_flags(sp) |
3751 			(current->sas_ss_flags & SS_FLAG_BITS);
3752 	}
3753 
3754 	if (ss) {
3755 		void __user *ss_sp = ss->ss_sp;
3756 		size_t ss_size = ss->ss_size;
3757 		unsigned ss_flags = ss->ss_flags;
3758 		int ss_mode;
3759 
3760 		if (unlikely(on_sig_stack(sp)))
3761 			return -EPERM;
3762 
3763 		ss_mode = ss_flags & ~SS_FLAG_BITS;
3764 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3765 				ss_mode != 0))
3766 			return -EINVAL;
3767 
3768 		if (ss_mode == SS_DISABLE) {
3769 			ss_size = 0;
3770 			ss_sp = NULL;
3771 		} else {
3772 			if (unlikely(ss_size < min_ss_size))
3773 				return -ENOMEM;
3774 		}
3775 
3776 		t->sas_ss_sp = (unsigned long) ss_sp;
3777 		t->sas_ss_size = ss_size;
3778 		t->sas_ss_flags = ss_flags;
3779 	}
3780 	return 0;
3781 }
3782 
3783 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3784 {
3785 	stack_t new, old;
3786 	int err;
3787 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3788 		return -EFAULT;
3789 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3790 			      current_user_stack_pointer(),
3791 			      MINSIGSTKSZ);
3792 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3793 		err = -EFAULT;
3794 	return err;
3795 }
3796 
3797 int restore_altstack(const stack_t __user *uss)
3798 {
3799 	stack_t new;
3800 	if (copy_from_user(&new, uss, sizeof(stack_t)))
3801 		return -EFAULT;
3802 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
3803 			     MINSIGSTKSZ);
3804 	/* squash all but EFAULT for now */
3805 	return 0;
3806 }
3807 
3808 int __save_altstack(stack_t __user *uss, unsigned long sp)
3809 {
3810 	struct task_struct *t = current;
3811 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3812 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3813 		__put_user(t->sas_ss_size, &uss->ss_size);
3814 	if (err)
3815 		return err;
3816 	if (t->sas_ss_flags & SS_AUTODISARM)
3817 		sas_ss_reset(t);
3818 	return 0;
3819 }
3820 
3821 #ifdef CONFIG_COMPAT
3822 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
3823 				 compat_stack_t __user *uoss_ptr)
3824 {
3825 	stack_t uss, uoss;
3826 	int ret;
3827 
3828 	if (uss_ptr) {
3829 		compat_stack_t uss32;
3830 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3831 			return -EFAULT;
3832 		uss.ss_sp = compat_ptr(uss32.ss_sp);
3833 		uss.ss_flags = uss32.ss_flags;
3834 		uss.ss_size = uss32.ss_size;
3835 	}
3836 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3837 			     compat_user_stack_pointer(),
3838 			     COMPAT_MINSIGSTKSZ);
3839 	if (ret >= 0 && uoss_ptr)  {
3840 		compat_stack_t old;
3841 		memset(&old, 0, sizeof(old));
3842 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
3843 		old.ss_flags = uoss.ss_flags;
3844 		old.ss_size = uoss.ss_size;
3845 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3846 			ret = -EFAULT;
3847 	}
3848 	return ret;
3849 }
3850 
3851 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3852 			const compat_stack_t __user *, uss_ptr,
3853 			compat_stack_t __user *, uoss_ptr)
3854 {
3855 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
3856 }
3857 
3858 int compat_restore_altstack(const compat_stack_t __user *uss)
3859 {
3860 	int err = do_compat_sigaltstack(uss, NULL);
3861 	/* squash all but -EFAULT for now */
3862 	return err == -EFAULT ? err : 0;
3863 }
3864 
3865 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3866 {
3867 	int err;
3868 	struct task_struct *t = current;
3869 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3870 			 &uss->ss_sp) |
3871 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3872 		__put_user(t->sas_ss_size, &uss->ss_size);
3873 	if (err)
3874 		return err;
3875 	if (t->sas_ss_flags & SS_AUTODISARM)
3876 		sas_ss_reset(t);
3877 	return 0;
3878 }
3879 #endif
3880 
3881 #ifdef __ARCH_WANT_SYS_SIGPENDING
3882 
3883 /**
3884  *  sys_sigpending - examine pending signals
3885  *  @uset: where mask of pending signal is returned
3886  */
3887 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
3888 {
3889 	sigset_t set;
3890 
3891 	if (sizeof(old_sigset_t) > sizeof(*uset))
3892 		return -EINVAL;
3893 
3894 	do_sigpending(&set);
3895 
3896 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
3897 		return -EFAULT;
3898 
3899 	return 0;
3900 }
3901 
3902 #ifdef CONFIG_COMPAT
3903 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3904 {
3905 	sigset_t set;
3906 
3907 	do_sigpending(&set);
3908 
3909 	return put_user(set.sig[0], set32);
3910 }
3911 #endif
3912 
3913 #endif
3914 
3915 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3916 /**
3917  *  sys_sigprocmask - examine and change blocked signals
3918  *  @how: whether to add, remove, or set signals
3919  *  @nset: signals to add or remove (if non-null)
3920  *  @oset: previous value of signal mask if non-null
3921  *
3922  * Some platforms have their own version with special arguments;
3923  * others support only sys_rt_sigprocmask.
3924  */
3925 
3926 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3927 		old_sigset_t __user *, oset)
3928 {
3929 	old_sigset_t old_set, new_set;
3930 	sigset_t new_blocked;
3931 
3932 	old_set = current->blocked.sig[0];
3933 
3934 	if (nset) {
3935 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3936 			return -EFAULT;
3937 
3938 		new_blocked = current->blocked;
3939 
3940 		switch (how) {
3941 		case SIG_BLOCK:
3942 			sigaddsetmask(&new_blocked, new_set);
3943 			break;
3944 		case SIG_UNBLOCK:
3945 			sigdelsetmask(&new_blocked, new_set);
3946 			break;
3947 		case SIG_SETMASK:
3948 			new_blocked.sig[0] = new_set;
3949 			break;
3950 		default:
3951 			return -EINVAL;
3952 		}
3953 
3954 		set_current_blocked(&new_blocked);
3955 	}
3956 
3957 	if (oset) {
3958 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3959 			return -EFAULT;
3960 	}
3961 
3962 	return 0;
3963 }
3964 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3965 
3966 #ifndef CONFIG_ODD_RT_SIGACTION
3967 /**
3968  *  sys_rt_sigaction - alter an action taken by a process
3969  *  @sig: signal to be sent
3970  *  @act: new sigaction
3971  *  @oact: used to save the previous sigaction
3972  *  @sigsetsize: size of sigset_t type
3973  */
3974 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3975 		const struct sigaction __user *, act,
3976 		struct sigaction __user *, oact,
3977 		size_t, sigsetsize)
3978 {
3979 	struct k_sigaction new_sa, old_sa;
3980 	int ret;
3981 
3982 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3983 	if (sigsetsize != sizeof(sigset_t))
3984 		return -EINVAL;
3985 
3986 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3987 		return -EFAULT;
3988 
3989 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3990 	if (ret)
3991 		return ret;
3992 
3993 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3994 		return -EFAULT;
3995 
3996 	return 0;
3997 }
3998 #ifdef CONFIG_COMPAT
3999 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4000 		const struct compat_sigaction __user *, act,
4001 		struct compat_sigaction __user *, oact,
4002 		compat_size_t, sigsetsize)
4003 {
4004 	struct k_sigaction new_ka, old_ka;
4005 #ifdef __ARCH_HAS_SA_RESTORER
4006 	compat_uptr_t restorer;
4007 #endif
4008 	int ret;
4009 
4010 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4011 	if (sigsetsize != sizeof(compat_sigset_t))
4012 		return -EINVAL;
4013 
4014 	if (act) {
4015 		compat_uptr_t handler;
4016 		ret = get_user(handler, &act->sa_handler);
4017 		new_ka.sa.sa_handler = compat_ptr(handler);
4018 #ifdef __ARCH_HAS_SA_RESTORER
4019 		ret |= get_user(restorer, &act->sa_restorer);
4020 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4021 #endif
4022 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4023 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4024 		if (ret)
4025 			return -EFAULT;
4026 	}
4027 
4028 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4029 	if (!ret && oact) {
4030 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4031 			       &oact->sa_handler);
4032 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4033 					 sizeof(oact->sa_mask));
4034 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4035 #ifdef __ARCH_HAS_SA_RESTORER
4036 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4037 				&oact->sa_restorer);
4038 #endif
4039 	}
4040 	return ret;
4041 }
4042 #endif
4043 #endif /* !CONFIG_ODD_RT_SIGACTION */
4044 
4045 #ifdef CONFIG_OLD_SIGACTION
4046 SYSCALL_DEFINE3(sigaction, int, sig,
4047 		const struct old_sigaction __user *, act,
4048 	        struct old_sigaction __user *, oact)
4049 {
4050 	struct k_sigaction new_ka, old_ka;
4051 	int ret;
4052 
4053 	if (act) {
4054 		old_sigset_t mask;
4055 		if (!access_ok(act, sizeof(*act)) ||
4056 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4057 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4058 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4059 		    __get_user(mask, &act->sa_mask))
4060 			return -EFAULT;
4061 #ifdef __ARCH_HAS_KA_RESTORER
4062 		new_ka.ka_restorer = NULL;
4063 #endif
4064 		siginitset(&new_ka.sa.sa_mask, mask);
4065 	}
4066 
4067 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4068 
4069 	if (!ret && oact) {
4070 		if (!access_ok(oact, sizeof(*oact)) ||
4071 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4072 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4073 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4074 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4075 			return -EFAULT;
4076 	}
4077 
4078 	return ret;
4079 }
4080 #endif
4081 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4082 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4083 		const struct compat_old_sigaction __user *, act,
4084 	        struct compat_old_sigaction __user *, oact)
4085 {
4086 	struct k_sigaction new_ka, old_ka;
4087 	int ret;
4088 	compat_old_sigset_t mask;
4089 	compat_uptr_t handler, restorer;
4090 
4091 	if (act) {
4092 		if (!access_ok(act, sizeof(*act)) ||
4093 		    __get_user(handler, &act->sa_handler) ||
4094 		    __get_user(restorer, &act->sa_restorer) ||
4095 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4096 		    __get_user(mask, &act->sa_mask))
4097 			return -EFAULT;
4098 
4099 #ifdef __ARCH_HAS_KA_RESTORER
4100 		new_ka.ka_restorer = NULL;
4101 #endif
4102 		new_ka.sa.sa_handler = compat_ptr(handler);
4103 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4104 		siginitset(&new_ka.sa.sa_mask, mask);
4105 	}
4106 
4107 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4108 
4109 	if (!ret && oact) {
4110 		if (!access_ok(oact, sizeof(*oact)) ||
4111 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4112 			       &oact->sa_handler) ||
4113 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4114 			       &oact->sa_restorer) ||
4115 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4116 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4117 			return -EFAULT;
4118 	}
4119 	return ret;
4120 }
4121 #endif
4122 
4123 #ifdef CONFIG_SGETMASK_SYSCALL
4124 
4125 /*
4126  * For backwards compatibility.  Functionality superseded by sigprocmask.
4127  */
4128 SYSCALL_DEFINE0(sgetmask)
4129 {
4130 	/* SMP safe */
4131 	return current->blocked.sig[0];
4132 }
4133 
4134 SYSCALL_DEFINE1(ssetmask, int, newmask)
4135 {
4136 	int old = current->blocked.sig[0];
4137 	sigset_t newset;
4138 
4139 	siginitset(&newset, newmask);
4140 	set_current_blocked(&newset);
4141 
4142 	return old;
4143 }
4144 #endif /* CONFIG_SGETMASK_SYSCALL */
4145 
4146 #ifdef __ARCH_WANT_SYS_SIGNAL
4147 /*
4148  * For backwards compatibility.  Functionality superseded by sigaction.
4149  */
4150 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4151 {
4152 	struct k_sigaction new_sa, old_sa;
4153 	int ret;
4154 
4155 	new_sa.sa.sa_handler = handler;
4156 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4157 	sigemptyset(&new_sa.sa.sa_mask);
4158 
4159 	ret = do_sigaction(sig, &new_sa, &old_sa);
4160 
4161 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4162 }
4163 #endif /* __ARCH_WANT_SYS_SIGNAL */
4164 
4165 #ifdef __ARCH_WANT_SYS_PAUSE
4166 
4167 SYSCALL_DEFINE0(pause)
4168 {
4169 	while (!signal_pending(current)) {
4170 		__set_current_state(TASK_INTERRUPTIBLE);
4171 		schedule();
4172 	}
4173 	return -ERESTARTNOHAND;
4174 }
4175 
4176 #endif
4177 
4178 static int sigsuspend(sigset_t *set)
4179 {
4180 	current->saved_sigmask = current->blocked;
4181 	set_current_blocked(set);
4182 
4183 	while (!signal_pending(current)) {
4184 		__set_current_state(TASK_INTERRUPTIBLE);
4185 		schedule();
4186 	}
4187 	set_restore_sigmask();
4188 	return -ERESTARTNOHAND;
4189 }
4190 
4191 /**
4192  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4193  *	@unewset value until a signal is received
4194  *  @unewset: new signal mask value
4195  *  @sigsetsize: size of sigset_t type
4196  */
4197 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4198 {
4199 	sigset_t newset;
4200 
4201 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4202 	if (sigsetsize != sizeof(sigset_t))
4203 		return -EINVAL;
4204 
4205 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4206 		return -EFAULT;
4207 	return sigsuspend(&newset);
4208 }
4209 
4210 #ifdef CONFIG_COMPAT
4211 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4212 {
4213 	sigset_t newset;
4214 
4215 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4216 	if (sigsetsize != sizeof(sigset_t))
4217 		return -EINVAL;
4218 
4219 	if (get_compat_sigset(&newset, unewset))
4220 		return -EFAULT;
4221 	return sigsuspend(&newset);
4222 }
4223 #endif
4224 
4225 #ifdef CONFIG_OLD_SIGSUSPEND
4226 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4227 {
4228 	sigset_t blocked;
4229 	siginitset(&blocked, mask);
4230 	return sigsuspend(&blocked);
4231 }
4232 #endif
4233 #ifdef CONFIG_OLD_SIGSUSPEND3
4234 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4235 {
4236 	sigset_t blocked;
4237 	siginitset(&blocked, mask);
4238 	return sigsuspend(&blocked);
4239 }
4240 #endif
4241 
4242 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4243 {
4244 	return NULL;
4245 }
4246 
4247 static inline void siginfo_buildtime_checks(void)
4248 {
4249 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4250 
4251 	/* Verify the offsets in the two siginfos match */
4252 #define CHECK_OFFSET(field) \
4253 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4254 
4255 	/* kill */
4256 	CHECK_OFFSET(si_pid);
4257 	CHECK_OFFSET(si_uid);
4258 
4259 	/* timer */
4260 	CHECK_OFFSET(si_tid);
4261 	CHECK_OFFSET(si_overrun);
4262 	CHECK_OFFSET(si_value);
4263 
4264 	/* rt */
4265 	CHECK_OFFSET(si_pid);
4266 	CHECK_OFFSET(si_uid);
4267 	CHECK_OFFSET(si_value);
4268 
4269 	/* sigchld */
4270 	CHECK_OFFSET(si_pid);
4271 	CHECK_OFFSET(si_uid);
4272 	CHECK_OFFSET(si_status);
4273 	CHECK_OFFSET(si_utime);
4274 	CHECK_OFFSET(si_stime);
4275 
4276 	/* sigfault */
4277 	CHECK_OFFSET(si_addr);
4278 	CHECK_OFFSET(si_addr_lsb);
4279 	CHECK_OFFSET(si_lower);
4280 	CHECK_OFFSET(si_upper);
4281 	CHECK_OFFSET(si_pkey);
4282 
4283 	/* sigpoll */
4284 	CHECK_OFFSET(si_band);
4285 	CHECK_OFFSET(si_fd);
4286 
4287 	/* sigsys */
4288 	CHECK_OFFSET(si_call_addr);
4289 	CHECK_OFFSET(si_syscall);
4290 	CHECK_OFFSET(si_arch);
4291 #undef CHECK_OFFSET
4292 }
4293 
4294 void __init signals_init(void)
4295 {
4296 	siginfo_buildtime_checks();
4297 
4298 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4299 }
4300 
4301 #ifdef CONFIG_KGDB_KDB
4302 #include <linux/kdb.h>
4303 /*
4304  * kdb_send_sig - Allows kdb to send signals without exposing
4305  * signal internals.  This function checks if the required locks are
4306  * available before calling the main signal code, to avoid kdb
4307  * deadlocks.
4308  */
4309 void kdb_send_sig(struct task_struct *t, int sig)
4310 {
4311 	static struct task_struct *kdb_prev_t;
4312 	int new_t, ret;
4313 	if (!spin_trylock(&t->sighand->siglock)) {
4314 		kdb_printf("Can't do kill command now.\n"
4315 			   "The sigmask lock is held somewhere else in "
4316 			   "kernel, try again later\n");
4317 		return;
4318 	}
4319 	new_t = kdb_prev_t != t;
4320 	kdb_prev_t = t;
4321 	if (t->state != TASK_RUNNING && new_t) {
4322 		spin_unlock(&t->sighand->siglock);
4323 		kdb_printf("Process is not RUNNING, sending a signal from "
4324 			   "kdb risks deadlock\n"
4325 			   "on the run queue locks. "
4326 			   "The signal has _not_ been sent.\n"
4327 			   "Reissue the kill command if you want to risk "
4328 			   "the deadlock.\n");
4329 		return;
4330 	}
4331 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4332 	spin_unlock(&t->sighand->siglock);
4333 	if (ret)
4334 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4335 			   sig, t->pid);
4336 	else
4337 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4338 }
4339 #endif	/* CONFIG_KGDB_KDB */
4340