1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/proc_fs.h> 26 #include <linux/tty.h> 27 #include <linux/binfmts.h> 28 #include <linux/coredump.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/ptrace.h> 32 #include <linux/signal.h> 33 #include <linux/signalfd.h> 34 #include <linux/ratelimit.h> 35 #include <linux/tracehook.h> 36 #include <linux/capability.h> 37 #include <linux/freezer.h> 38 #include <linux/pid_namespace.h> 39 #include <linux/nsproxy.h> 40 #include <linux/user_namespace.h> 41 #include <linux/uprobes.h> 42 #include <linux/compat.h> 43 #include <linux/cn_proc.h> 44 #include <linux/compiler.h> 45 #include <linux/posix-timers.h> 46 #include <linux/cgroup.h> 47 #include <linux/audit.h> 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/signal.h> 51 52 #include <asm/param.h> 53 #include <linux/uaccess.h> 54 #include <asm/unistd.h> 55 #include <asm/siginfo.h> 56 #include <asm/cacheflush.h> 57 #include <asm/syscall.h> /* for syscall_get_* */ 58 59 /* 60 * SLAB caches for signal bits. 61 */ 62 63 static struct kmem_cache *sigqueue_cachep; 64 65 int print_fatal_signals __read_mostly; 66 67 static void __user *sig_handler(struct task_struct *t, int sig) 68 { 69 return t->sighand->action[sig - 1].sa.sa_handler; 70 } 71 72 static inline bool sig_handler_ignored(void __user *handler, int sig) 73 { 74 /* Is it explicitly or implicitly ignored? */ 75 return handler == SIG_IGN || 76 (handler == SIG_DFL && sig_kernel_ignore(sig)); 77 } 78 79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 80 { 81 void __user *handler; 82 83 handler = sig_handler(t, sig); 84 85 /* SIGKILL and SIGSTOP may not be sent to the global init */ 86 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 87 return true; 88 89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 90 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 91 return true; 92 93 /* Only allow kernel generated signals to this kthread */ 94 if (unlikely((t->flags & PF_KTHREAD) && 95 (handler == SIG_KTHREAD_KERNEL) && !force)) 96 return true; 97 98 return sig_handler_ignored(handler, sig); 99 } 100 101 static bool sig_ignored(struct task_struct *t, int sig, bool force) 102 { 103 /* 104 * Blocked signals are never ignored, since the 105 * signal handler may change by the time it is 106 * unblocked. 107 */ 108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 109 return false; 110 111 /* 112 * Tracers may want to know about even ignored signal unless it 113 * is SIGKILL which can't be reported anyway but can be ignored 114 * by SIGNAL_UNKILLABLE task. 115 */ 116 if (t->ptrace && sig != SIGKILL) 117 return false; 118 119 return sig_task_ignored(t, sig, force); 120 } 121 122 /* 123 * Re-calculate pending state from the set of locally pending 124 * signals, globally pending signals, and blocked signals. 125 */ 126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 127 { 128 unsigned long ready; 129 long i; 130 131 switch (_NSIG_WORDS) { 132 default: 133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 134 ready |= signal->sig[i] &~ blocked->sig[i]; 135 break; 136 137 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 138 ready |= signal->sig[2] &~ blocked->sig[2]; 139 ready |= signal->sig[1] &~ blocked->sig[1]; 140 ready |= signal->sig[0] &~ blocked->sig[0]; 141 break; 142 143 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 144 ready |= signal->sig[0] &~ blocked->sig[0]; 145 break; 146 147 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 148 } 149 return ready != 0; 150 } 151 152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 153 154 static bool recalc_sigpending_tsk(struct task_struct *t) 155 { 156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 157 PENDING(&t->pending, &t->blocked) || 158 PENDING(&t->signal->shared_pending, &t->blocked) || 159 cgroup_task_frozen(t)) { 160 set_tsk_thread_flag(t, TIF_SIGPENDING); 161 return true; 162 } 163 164 /* 165 * We must never clear the flag in another thread, or in current 166 * when it's possible the current syscall is returning -ERESTART*. 167 * So we don't clear it here, and only callers who know they should do. 168 */ 169 return false; 170 } 171 172 /* 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 174 * This is superfluous when called on current, the wakeup is a harmless no-op. 175 */ 176 void recalc_sigpending_and_wake(struct task_struct *t) 177 { 178 if (recalc_sigpending_tsk(t)) 179 signal_wake_up(t, 0); 180 } 181 182 void recalc_sigpending(void) 183 { 184 if (!recalc_sigpending_tsk(current) && !freezing(current)) 185 clear_thread_flag(TIF_SIGPENDING); 186 187 } 188 EXPORT_SYMBOL(recalc_sigpending); 189 190 void calculate_sigpending(void) 191 { 192 /* Have any signals or users of TIF_SIGPENDING been delayed 193 * until after fork? 194 */ 195 spin_lock_irq(¤t->sighand->siglock); 196 set_tsk_thread_flag(current, TIF_SIGPENDING); 197 recalc_sigpending(); 198 spin_unlock_irq(¤t->sighand->siglock); 199 } 200 201 /* Given the mask, find the first available signal that should be serviced. */ 202 203 #define SYNCHRONOUS_MASK \ 204 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 205 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 206 207 int next_signal(struct sigpending *pending, sigset_t *mask) 208 { 209 unsigned long i, *s, *m, x; 210 int sig = 0; 211 212 s = pending->signal.sig; 213 m = mask->sig; 214 215 /* 216 * Handle the first word specially: it contains the 217 * synchronous signals that need to be dequeued first. 218 */ 219 x = *s &~ *m; 220 if (x) { 221 if (x & SYNCHRONOUS_MASK) 222 x &= SYNCHRONOUS_MASK; 223 sig = ffz(~x) + 1; 224 return sig; 225 } 226 227 switch (_NSIG_WORDS) { 228 default: 229 for (i = 1; i < _NSIG_WORDS; ++i) { 230 x = *++s &~ *++m; 231 if (!x) 232 continue; 233 sig = ffz(~x) + i*_NSIG_BPW + 1; 234 break; 235 } 236 break; 237 238 case 2: 239 x = s[1] &~ m[1]; 240 if (!x) 241 break; 242 sig = ffz(~x) + _NSIG_BPW + 1; 243 break; 244 245 case 1: 246 /* Nothing to do */ 247 break; 248 } 249 250 return sig; 251 } 252 253 static inline void print_dropped_signal(int sig) 254 { 255 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 256 257 if (!print_fatal_signals) 258 return; 259 260 if (!__ratelimit(&ratelimit_state)) 261 return; 262 263 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 264 current->comm, current->pid, sig); 265 } 266 267 /** 268 * task_set_jobctl_pending - set jobctl pending bits 269 * @task: target task 270 * @mask: pending bits to set 271 * 272 * Clear @mask from @task->jobctl. @mask must be subset of 273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 274 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 275 * cleared. If @task is already being killed or exiting, this function 276 * becomes noop. 277 * 278 * CONTEXT: 279 * Must be called with @task->sighand->siglock held. 280 * 281 * RETURNS: 282 * %true if @mask is set, %false if made noop because @task was dying. 283 */ 284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 285 { 286 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 287 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 288 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 289 290 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 291 return false; 292 293 if (mask & JOBCTL_STOP_SIGMASK) 294 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 295 296 task->jobctl |= mask; 297 return true; 298 } 299 300 /** 301 * task_clear_jobctl_trapping - clear jobctl trapping bit 302 * @task: target task 303 * 304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 305 * Clear it and wake up the ptracer. Note that we don't need any further 306 * locking. @task->siglock guarantees that @task->parent points to the 307 * ptracer. 308 * 309 * CONTEXT: 310 * Must be called with @task->sighand->siglock held. 311 */ 312 void task_clear_jobctl_trapping(struct task_struct *task) 313 { 314 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 315 task->jobctl &= ~JOBCTL_TRAPPING; 316 smp_mb(); /* advised by wake_up_bit() */ 317 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 318 } 319 } 320 321 /** 322 * task_clear_jobctl_pending - clear jobctl pending bits 323 * @task: target task 324 * @mask: pending bits to clear 325 * 326 * Clear @mask from @task->jobctl. @mask must be subset of 327 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 328 * STOP bits are cleared together. 329 * 330 * If clearing of @mask leaves no stop or trap pending, this function calls 331 * task_clear_jobctl_trapping(). 332 * 333 * CONTEXT: 334 * Must be called with @task->sighand->siglock held. 335 */ 336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 337 { 338 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 339 340 if (mask & JOBCTL_STOP_PENDING) 341 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 342 343 task->jobctl &= ~mask; 344 345 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 346 task_clear_jobctl_trapping(task); 347 } 348 349 /** 350 * task_participate_group_stop - participate in a group stop 351 * @task: task participating in a group stop 352 * 353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 354 * Group stop states are cleared and the group stop count is consumed if 355 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 356 * stop, the appropriate `SIGNAL_*` flags are set. 357 * 358 * CONTEXT: 359 * Must be called with @task->sighand->siglock held. 360 * 361 * RETURNS: 362 * %true if group stop completion should be notified to the parent, %false 363 * otherwise. 364 */ 365 static bool task_participate_group_stop(struct task_struct *task) 366 { 367 struct signal_struct *sig = task->signal; 368 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 369 370 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 371 372 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 373 374 if (!consume) 375 return false; 376 377 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 378 sig->group_stop_count--; 379 380 /* 381 * Tell the caller to notify completion iff we are entering into a 382 * fresh group stop. Read comment in do_signal_stop() for details. 383 */ 384 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 385 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 386 return true; 387 } 388 return false; 389 } 390 391 void task_join_group_stop(struct task_struct *task) 392 { 393 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 394 struct signal_struct *sig = current->signal; 395 396 if (sig->group_stop_count) { 397 sig->group_stop_count++; 398 mask |= JOBCTL_STOP_CONSUME; 399 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 400 return; 401 402 /* Have the new thread join an on-going signal group stop */ 403 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 404 } 405 406 /* 407 * allocate a new signal queue record 408 * - this may be called without locks if and only if t == current, otherwise an 409 * appropriate lock must be held to stop the target task from exiting 410 */ 411 static struct sigqueue * 412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 413 int override_rlimit, const unsigned int sigqueue_flags) 414 { 415 struct sigqueue *q = NULL; 416 struct ucounts *ucounts = NULL; 417 long sigpending; 418 419 /* 420 * Protect access to @t credentials. This can go away when all 421 * callers hold rcu read lock. 422 * 423 * NOTE! A pending signal will hold on to the user refcount, 424 * and we get/put the refcount only when the sigpending count 425 * changes from/to zero. 426 */ 427 rcu_read_lock(); 428 ucounts = task_ucounts(t); 429 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 430 rcu_read_unlock(); 431 if (!sigpending) 432 return NULL; 433 434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 435 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 436 } else { 437 print_dropped_signal(sig); 438 } 439 440 if (unlikely(q == NULL)) { 441 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 442 } else { 443 INIT_LIST_HEAD(&q->list); 444 q->flags = sigqueue_flags; 445 q->ucounts = ucounts; 446 } 447 return q; 448 } 449 450 static void __sigqueue_free(struct sigqueue *q) 451 { 452 if (q->flags & SIGQUEUE_PREALLOC) 453 return; 454 if (q->ucounts) { 455 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 456 q->ucounts = NULL; 457 } 458 kmem_cache_free(sigqueue_cachep, q); 459 } 460 461 void flush_sigqueue(struct sigpending *queue) 462 { 463 struct sigqueue *q; 464 465 sigemptyset(&queue->signal); 466 while (!list_empty(&queue->list)) { 467 q = list_entry(queue->list.next, struct sigqueue , list); 468 list_del_init(&q->list); 469 __sigqueue_free(q); 470 } 471 } 472 473 /* 474 * Flush all pending signals for this kthread. 475 */ 476 void flush_signals(struct task_struct *t) 477 { 478 unsigned long flags; 479 480 spin_lock_irqsave(&t->sighand->siglock, flags); 481 clear_tsk_thread_flag(t, TIF_SIGPENDING); 482 flush_sigqueue(&t->pending); 483 flush_sigqueue(&t->signal->shared_pending); 484 spin_unlock_irqrestore(&t->sighand->siglock, flags); 485 } 486 EXPORT_SYMBOL(flush_signals); 487 488 #ifdef CONFIG_POSIX_TIMERS 489 static void __flush_itimer_signals(struct sigpending *pending) 490 { 491 sigset_t signal, retain; 492 struct sigqueue *q, *n; 493 494 signal = pending->signal; 495 sigemptyset(&retain); 496 497 list_for_each_entry_safe(q, n, &pending->list, list) { 498 int sig = q->info.si_signo; 499 500 if (likely(q->info.si_code != SI_TIMER)) { 501 sigaddset(&retain, sig); 502 } else { 503 sigdelset(&signal, sig); 504 list_del_init(&q->list); 505 __sigqueue_free(q); 506 } 507 } 508 509 sigorsets(&pending->signal, &signal, &retain); 510 } 511 512 void flush_itimer_signals(void) 513 { 514 struct task_struct *tsk = current; 515 unsigned long flags; 516 517 spin_lock_irqsave(&tsk->sighand->siglock, flags); 518 __flush_itimer_signals(&tsk->pending); 519 __flush_itimer_signals(&tsk->signal->shared_pending); 520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 521 } 522 #endif 523 524 void ignore_signals(struct task_struct *t) 525 { 526 int i; 527 528 for (i = 0; i < _NSIG; ++i) 529 t->sighand->action[i].sa.sa_handler = SIG_IGN; 530 531 flush_signals(t); 532 } 533 534 /* 535 * Flush all handlers for a task. 536 */ 537 538 void 539 flush_signal_handlers(struct task_struct *t, int force_default) 540 { 541 int i; 542 struct k_sigaction *ka = &t->sighand->action[0]; 543 for (i = _NSIG ; i != 0 ; i--) { 544 if (force_default || ka->sa.sa_handler != SIG_IGN) 545 ka->sa.sa_handler = SIG_DFL; 546 ka->sa.sa_flags = 0; 547 #ifdef __ARCH_HAS_SA_RESTORER 548 ka->sa.sa_restorer = NULL; 549 #endif 550 sigemptyset(&ka->sa.sa_mask); 551 ka++; 552 } 553 } 554 555 bool unhandled_signal(struct task_struct *tsk, int sig) 556 { 557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 558 if (is_global_init(tsk)) 559 return true; 560 561 if (handler != SIG_IGN && handler != SIG_DFL) 562 return false; 563 564 /* if ptraced, let the tracer determine */ 565 return !tsk->ptrace; 566 } 567 568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 569 bool *resched_timer) 570 { 571 struct sigqueue *q, *first = NULL; 572 573 /* 574 * Collect the siginfo appropriate to this signal. Check if 575 * there is another siginfo for the same signal. 576 */ 577 list_for_each_entry(q, &list->list, list) { 578 if (q->info.si_signo == sig) { 579 if (first) 580 goto still_pending; 581 first = q; 582 } 583 } 584 585 sigdelset(&list->signal, sig); 586 587 if (first) { 588 still_pending: 589 list_del_init(&first->list); 590 copy_siginfo(info, &first->info); 591 592 *resched_timer = 593 (first->flags & SIGQUEUE_PREALLOC) && 594 (info->si_code == SI_TIMER) && 595 (info->si_sys_private); 596 597 __sigqueue_free(first); 598 } else { 599 /* 600 * Ok, it wasn't in the queue. This must be 601 * a fast-pathed signal or we must have been 602 * out of queue space. So zero out the info. 603 */ 604 clear_siginfo(info); 605 info->si_signo = sig; 606 info->si_errno = 0; 607 info->si_code = SI_USER; 608 info->si_pid = 0; 609 info->si_uid = 0; 610 } 611 } 612 613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 614 kernel_siginfo_t *info, bool *resched_timer) 615 { 616 int sig = next_signal(pending, mask); 617 618 if (sig) 619 collect_signal(sig, pending, info, resched_timer); 620 return sig; 621 } 622 623 /* 624 * Dequeue a signal and return the element to the caller, which is 625 * expected to free it. 626 * 627 * All callers have to hold the siglock. 628 */ 629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info) 630 { 631 bool resched_timer = false; 632 int signr; 633 634 /* We only dequeue private signals from ourselves, we don't let 635 * signalfd steal them 636 */ 637 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 638 if (!signr) { 639 signr = __dequeue_signal(&tsk->signal->shared_pending, 640 mask, info, &resched_timer); 641 #ifdef CONFIG_POSIX_TIMERS 642 /* 643 * itimer signal ? 644 * 645 * itimers are process shared and we restart periodic 646 * itimers in the signal delivery path to prevent DoS 647 * attacks in the high resolution timer case. This is 648 * compliant with the old way of self-restarting 649 * itimers, as the SIGALRM is a legacy signal and only 650 * queued once. Changing the restart behaviour to 651 * restart the timer in the signal dequeue path is 652 * reducing the timer noise on heavy loaded !highres 653 * systems too. 654 */ 655 if (unlikely(signr == SIGALRM)) { 656 struct hrtimer *tmr = &tsk->signal->real_timer; 657 658 if (!hrtimer_is_queued(tmr) && 659 tsk->signal->it_real_incr != 0) { 660 hrtimer_forward(tmr, tmr->base->get_time(), 661 tsk->signal->it_real_incr); 662 hrtimer_restart(tmr); 663 } 664 } 665 #endif 666 } 667 668 recalc_sigpending(); 669 if (!signr) 670 return 0; 671 672 if (unlikely(sig_kernel_stop(signr))) { 673 /* 674 * Set a marker that we have dequeued a stop signal. Our 675 * caller might release the siglock and then the pending 676 * stop signal it is about to process is no longer in the 677 * pending bitmasks, but must still be cleared by a SIGCONT 678 * (and overruled by a SIGKILL). So those cases clear this 679 * shared flag after we've set it. Note that this flag may 680 * remain set after the signal we return is ignored or 681 * handled. That doesn't matter because its only purpose 682 * is to alert stop-signal processing code when another 683 * processor has come along and cleared the flag. 684 */ 685 current->jobctl |= JOBCTL_STOP_DEQUEUED; 686 } 687 #ifdef CONFIG_POSIX_TIMERS 688 if (resched_timer) { 689 /* 690 * Release the siglock to ensure proper locking order 691 * of timer locks outside of siglocks. Note, we leave 692 * irqs disabled here, since the posix-timers code is 693 * about to disable them again anyway. 694 */ 695 spin_unlock(&tsk->sighand->siglock); 696 posixtimer_rearm(info); 697 spin_lock(&tsk->sighand->siglock); 698 699 /* Don't expose the si_sys_private value to userspace */ 700 info->si_sys_private = 0; 701 } 702 #endif 703 return signr; 704 } 705 EXPORT_SYMBOL_GPL(dequeue_signal); 706 707 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 708 { 709 struct task_struct *tsk = current; 710 struct sigpending *pending = &tsk->pending; 711 struct sigqueue *q, *sync = NULL; 712 713 /* 714 * Might a synchronous signal be in the queue? 715 */ 716 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 717 return 0; 718 719 /* 720 * Return the first synchronous signal in the queue. 721 */ 722 list_for_each_entry(q, &pending->list, list) { 723 /* Synchronous signals have a positive si_code */ 724 if ((q->info.si_code > SI_USER) && 725 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 726 sync = q; 727 goto next; 728 } 729 } 730 return 0; 731 next: 732 /* 733 * Check if there is another siginfo for the same signal. 734 */ 735 list_for_each_entry_continue(q, &pending->list, list) { 736 if (q->info.si_signo == sync->info.si_signo) 737 goto still_pending; 738 } 739 740 sigdelset(&pending->signal, sync->info.si_signo); 741 recalc_sigpending(); 742 still_pending: 743 list_del_init(&sync->list); 744 copy_siginfo(info, &sync->info); 745 __sigqueue_free(sync); 746 return info->si_signo; 747 } 748 749 /* 750 * Tell a process that it has a new active signal.. 751 * 752 * NOTE! we rely on the previous spin_lock to 753 * lock interrupts for us! We can only be called with 754 * "siglock" held, and the local interrupt must 755 * have been disabled when that got acquired! 756 * 757 * No need to set need_resched since signal event passing 758 * goes through ->blocked 759 */ 760 void signal_wake_up_state(struct task_struct *t, unsigned int state) 761 { 762 set_tsk_thread_flag(t, TIF_SIGPENDING); 763 /* 764 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 765 * case. We don't check t->state here because there is a race with it 766 * executing another processor and just now entering stopped state. 767 * By using wake_up_state, we ensure the process will wake up and 768 * handle its death signal. 769 */ 770 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 771 kick_process(t); 772 } 773 774 /* 775 * Remove signals in mask from the pending set and queue. 776 * Returns 1 if any signals were found. 777 * 778 * All callers must be holding the siglock. 779 */ 780 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 781 { 782 struct sigqueue *q, *n; 783 sigset_t m; 784 785 sigandsets(&m, mask, &s->signal); 786 if (sigisemptyset(&m)) 787 return; 788 789 sigandnsets(&s->signal, &s->signal, mask); 790 list_for_each_entry_safe(q, n, &s->list, list) { 791 if (sigismember(mask, q->info.si_signo)) { 792 list_del_init(&q->list); 793 __sigqueue_free(q); 794 } 795 } 796 } 797 798 static inline int is_si_special(const struct kernel_siginfo *info) 799 { 800 return info <= SEND_SIG_PRIV; 801 } 802 803 static inline bool si_fromuser(const struct kernel_siginfo *info) 804 { 805 return info == SEND_SIG_NOINFO || 806 (!is_si_special(info) && SI_FROMUSER(info)); 807 } 808 809 /* 810 * called with RCU read lock from check_kill_permission() 811 */ 812 static bool kill_ok_by_cred(struct task_struct *t) 813 { 814 const struct cred *cred = current_cred(); 815 const struct cred *tcred = __task_cred(t); 816 817 return uid_eq(cred->euid, tcred->suid) || 818 uid_eq(cred->euid, tcred->uid) || 819 uid_eq(cred->uid, tcred->suid) || 820 uid_eq(cred->uid, tcred->uid) || 821 ns_capable(tcred->user_ns, CAP_KILL); 822 } 823 824 /* 825 * Bad permissions for sending the signal 826 * - the caller must hold the RCU read lock 827 */ 828 static int check_kill_permission(int sig, struct kernel_siginfo *info, 829 struct task_struct *t) 830 { 831 struct pid *sid; 832 int error; 833 834 if (!valid_signal(sig)) 835 return -EINVAL; 836 837 if (!si_fromuser(info)) 838 return 0; 839 840 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 841 if (error) 842 return error; 843 844 if (!same_thread_group(current, t) && 845 !kill_ok_by_cred(t)) { 846 switch (sig) { 847 case SIGCONT: 848 sid = task_session(t); 849 /* 850 * We don't return the error if sid == NULL. The 851 * task was unhashed, the caller must notice this. 852 */ 853 if (!sid || sid == task_session(current)) 854 break; 855 fallthrough; 856 default: 857 return -EPERM; 858 } 859 } 860 861 return security_task_kill(t, info, sig, NULL); 862 } 863 864 /** 865 * ptrace_trap_notify - schedule trap to notify ptracer 866 * @t: tracee wanting to notify tracer 867 * 868 * This function schedules sticky ptrace trap which is cleared on the next 869 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 870 * ptracer. 871 * 872 * If @t is running, STOP trap will be taken. If trapped for STOP and 873 * ptracer is listening for events, tracee is woken up so that it can 874 * re-trap for the new event. If trapped otherwise, STOP trap will be 875 * eventually taken without returning to userland after the existing traps 876 * are finished by PTRACE_CONT. 877 * 878 * CONTEXT: 879 * Must be called with @task->sighand->siglock held. 880 */ 881 static void ptrace_trap_notify(struct task_struct *t) 882 { 883 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 884 assert_spin_locked(&t->sighand->siglock); 885 886 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 887 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 888 } 889 890 /* 891 * Handle magic process-wide effects of stop/continue signals. Unlike 892 * the signal actions, these happen immediately at signal-generation 893 * time regardless of blocking, ignoring, or handling. This does the 894 * actual continuing for SIGCONT, but not the actual stopping for stop 895 * signals. The process stop is done as a signal action for SIG_DFL. 896 * 897 * Returns true if the signal should be actually delivered, otherwise 898 * it should be dropped. 899 */ 900 static bool prepare_signal(int sig, struct task_struct *p, bool force) 901 { 902 struct signal_struct *signal = p->signal; 903 struct task_struct *t; 904 sigset_t flush; 905 906 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 907 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 908 return sig == SIGKILL; 909 /* 910 * The process is in the middle of dying, nothing to do. 911 */ 912 } else if (sig_kernel_stop(sig)) { 913 /* 914 * This is a stop signal. Remove SIGCONT from all queues. 915 */ 916 siginitset(&flush, sigmask(SIGCONT)); 917 flush_sigqueue_mask(&flush, &signal->shared_pending); 918 for_each_thread(p, t) 919 flush_sigqueue_mask(&flush, &t->pending); 920 } else if (sig == SIGCONT) { 921 unsigned int why; 922 /* 923 * Remove all stop signals from all queues, wake all threads. 924 */ 925 siginitset(&flush, SIG_KERNEL_STOP_MASK); 926 flush_sigqueue_mask(&flush, &signal->shared_pending); 927 for_each_thread(p, t) { 928 flush_sigqueue_mask(&flush, &t->pending); 929 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 930 if (likely(!(t->ptrace & PT_SEIZED))) 931 wake_up_state(t, __TASK_STOPPED); 932 else 933 ptrace_trap_notify(t); 934 } 935 936 /* 937 * Notify the parent with CLD_CONTINUED if we were stopped. 938 * 939 * If we were in the middle of a group stop, we pretend it 940 * was already finished, and then continued. Since SIGCHLD 941 * doesn't queue we report only CLD_STOPPED, as if the next 942 * CLD_CONTINUED was dropped. 943 */ 944 why = 0; 945 if (signal->flags & SIGNAL_STOP_STOPPED) 946 why |= SIGNAL_CLD_CONTINUED; 947 else if (signal->group_stop_count) 948 why |= SIGNAL_CLD_STOPPED; 949 950 if (why) { 951 /* 952 * The first thread which returns from do_signal_stop() 953 * will take ->siglock, notice SIGNAL_CLD_MASK, and 954 * notify its parent. See get_signal(). 955 */ 956 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 957 signal->group_stop_count = 0; 958 signal->group_exit_code = 0; 959 } 960 } 961 962 return !sig_ignored(p, sig, force); 963 } 964 965 /* 966 * Test if P wants to take SIG. After we've checked all threads with this, 967 * it's equivalent to finding no threads not blocking SIG. Any threads not 968 * blocking SIG were ruled out because they are not running and already 969 * have pending signals. Such threads will dequeue from the shared queue 970 * as soon as they're available, so putting the signal on the shared queue 971 * will be equivalent to sending it to one such thread. 972 */ 973 static inline bool wants_signal(int sig, struct task_struct *p) 974 { 975 if (sigismember(&p->blocked, sig)) 976 return false; 977 978 if (p->flags & PF_EXITING) 979 return false; 980 981 if (sig == SIGKILL) 982 return true; 983 984 if (task_is_stopped_or_traced(p)) 985 return false; 986 987 return task_curr(p) || !task_sigpending(p); 988 } 989 990 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 991 { 992 struct signal_struct *signal = p->signal; 993 struct task_struct *t; 994 995 /* 996 * Now find a thread we can wake up to take the signal off the queue. 997 * 998 * If the main thread wants the signal, it gets first crack. 999 * Probably the least surprising to the average bear. 1000 */ 1001 if (wants_signal(sig, p)) 1002 t = p; 1003 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1004 /* 1005 * There is just one thread and it does not need to be woken. 1006 * It will dequeue unblocked signals before it runs again. 1007 */ 1008 return; 1009 else { 1010 /* 1011 * Otherwise try to find a suitable thread. 1012 */ 1013 t = signal->curr_target; 1014 while (!wants_signal(sig, t)) { 1015 t = next_thread(t); 1016 if (t == signal->curr_target) 1017 /* 1018 * No thread needs to be woken. 1019 * Any eligible threads will see 1020 * the signal in the queue soon. 1021 */ 1022 return; 1023 } 1024 signal->curr_target = t; 1025 } 1026 1027 /* 1028 * Found a killable thread. If the signal will be fatal, 1029 * then start taking the whole group down immediately. 1030 */ 1031 if (sig_fatal(p, sig) && 1032 !(signal->flags & SIGNAL_GROUP_EXIT) && 1033 !sigismember(&t->real_blocked, sig) && 1034 (sig == SIGKILL || !p->ptrace)) { 1035 /* 1036 * This signal will be fatal to the whole group. 1037 */ 1038 if (!sig_kernel_coredump(sig)) { 1039 /* 1040 * Start a group exit and wake everybody up. 1041 * This way we don't have other threads 1042 * running and doing things after a slower 1043 * thread has the fatal signal pending. 1044 */ 1045 signal->flags = SIGNAL_GROUP_EXIT; 1046 signal->group_exit_code = sig; 1047 signal->group_stop_count = 0; 1048 t = p; 1049 do { 1050 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1051 sigaddset(&t->pending.signal, SIGKILL); 1052 signal_wake_up(t, 1); 1053 } while_each_thread(p, t); 1054 return; 1055 } 1056 } 1057 1058 /* 1059 * The signal is already in the shared-pending queue. 1060 * Tell the chosen thread to wake up and dequeue it. 1061 */ 1062 signal_wake_up(t, sig == SIGKILL); 1063 return; 1064 } 1065 1066 static inline bool legacy_queue(struct sigpending *signals, int sig) 1067 { 1068 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1069 } 1070 1071 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1072 enum pid_type type, bool force) 1073 { 1074 struct sigpending *pending; 1075 struct sigqueue *q; 1076 int override_rlimit; 1077 int ret = 0, result; 1078 1079 assert_spin_locked(&t->sighand->siglock); 1080 1081 result = TRACE_SIGNAL_IGNORED; 1082 if (!prepare_signal(sig, t, force)) 1083 goto ret; 1084 1085 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1086 /* 1087 * Short-circuit ignored signals and support queuing 1088 * exactly one non-rt signal, so that we can get more 1089 * detailed information about the cause of the signal. 1090 */ 1091 result = TRACE_SIGNAL_ALREADY_PENDING; 1092 if (legacy_queue(pending, sig)) 1093 goto ret; 1094 1095 result = TRACE_SIGNAL_DELIVERED; 1096 /* 1097 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1098 */ 1099 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1100 goto out_set; 1101 1102 /* 1103 * Real-time signals must be queued if sent by sigqueue, or 1104 * some other real-time mechanism. It is implementation 1105 * defined whether kill() does so. We attempt to do so, on 1106 * the principle of least surprise, but since kill is not 1107 * allowed to fail with EAGAIN when low on memory we just 1108 * make sure at least one signal gets delivered and don't 1109 * pass on the info struct. 1110 */ 1111 if (sig < SIGRTMIN) 1112 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1113 else 1114 override_rlimit = 0; 1115 1116 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1117 1118 if (q) { 1119 list_add_tail(&q->list, &pending->list); 1120 switch ((unsigned long) info) { 1121 case (unsigned long) SEND_SIG_NOINFO: 1122 clear_siginfo(&q->info); 1123 q->info.si_signo = sig; 1124 q->info.si_errno = 0; 1125 q->info.si_code = SI_USER; 1126 q->info.si_pid = task_tgid_nr_ns(current, 1127 task_active_pid_ns(t)); 1128 rcu_read_lock(); 1129 q->info.si_uid = 1130 from_kuid_munged(task_cred_xxx(t, user_ns), 1131 current_uid()); 1132 rcu_read_unlock(); 1133 break; 1134 case (unsigned long) SEND_SIG_PRIV: 1135 clear_siginfo(&q->info); 1136 q->info.si_signo = sig; 1137 q->info.si_errno = 0; 1138 q->info.si_code = SI_KERNEL; 1139 q->info.si_pid = 0; 1140 q->info.si_uid = 0; 1141 break; 1142 default: 1143 copy_siginfo(&q->info, info); 1144 break; 1145 } 1146 } else if (!is_si_special(info) && 1147 sig >= SIGRTMIN && info->si_code != SI_USER) { 1148 /* 1149 * Queue overflow, abort. We may abort if the 1150 * signal was rt and sent by user using something 1151 * other than kill(). 1152 */ 1153 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1154 ret = -EAGAIN; 1155 goto ret; 1156 } else { 1157 /* 1158 * This is a silent loss of information. We still 1159 * send the signal, but the *info bits are lost. 1160 */ 1161 result = TRACE_SIGNAL_LOSE_INFO; 1162 } 1163 1164 out_set: 1165 signalfd_notify(t, sig); 1166 sigaddset(&pending->signal, sig); 1167 1168 /* Let multiprocess signals appear after on-going forks */ 1169 if (type > PIDTYPE_TGID) { 1170 struct multiprocess_signals *delayed; 1171 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1172 sigset_t *signal = &delayed->signal; 1173 /* Can't queue both a stop and a continue signal */ 1174 if (sig == SIGCONT) 1175 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1176 else if (sig_kernel_stop(sig)) 1177 sigdelset(signal, SIGCONT); 1178 sigaddset(signal, sig); 1179 } 1180 } 1181 1182 complete_signal(sig, t, type); 1183 ret: 1184 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1185 return ret; 1186 } 1187 1188 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1189 { 1190 bool ret = false; 1191 switch (siginfo_layout(info->si_signo, info->si_code)) { 1192 case SIL_KILL: 1193 case SIL_CHLD: 1194 case SIL_RT: 1195 ret = true; 1196 break; 1197 case SIL_TIMER: 1198 case SIL_POLL: 1199 case SIL_FAULT: 1200 case SIL_FAULT_TRAPNO: 1201 case SIL_FAULT_MCEERR: 1202 case SIL_FAULT_BNDERR: 1203 case SIL_FAULT_PKUERR: 1204 case SIL_FAULT_PERF_EVENT: 1205 case SIL_SYS: 1206 ret = false; 1207 break; 1208 } 1209 return ret; 1210 } 1211 1212 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1213 enum pid_type type) 1214 { 1215 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1216 bool force = false; 1217 1218 if (info == SEND_SIG_NOINFO) { 1219 /* Force if sent from an ancestor pid namespace */ 1220 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1221 } else if (info == SEND_SIG_PRIV) { 1222 /* Don't ignore kernel generated signals */ 1223 force = true; 1224 } else if (has_si_pid_and_uid(info)) { 1225 /* SIGKILL and SIGSTOP is special or has ids */ 1226 struct user_namespace *t_user_ns; 1227 1228 rcu_read_lock(); 1229 t_user_ns = task_cred_xxx(t, user_ns); 1230 if (current_user_ns() != t_user_ns) { 1231 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1232 info->si_uid = from_kuid_munged(t_user_ns, uid); 1233 } 1234 rcu_read_unlock(); 1235 1236 /* A kernel generated signal? */ 1237 force = (info->si_code == SI_KERNEL); 1238 1239 /* From an ancestor pid namespace? */ 1240 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1241 info->si_pid = 0; 1242 force = true; 1243 } 1244 } 1245 return __send_signal(sig, info, t, type, force); 1246 } 1247 1248 static void print_fatal_signal(int signr) 1249 { 1250 struct pt_regs *regs = signal_pt_regs(); 1251 pr_info("potentially unexpected fatal signal %d.\n", signr); 1252 1253 #if defined(__i386__) && !defined(__arch_um__) 1254 pr_info("code at %08lx: ", regs->ip); 1255 { 1256 int i; 1257 for (i = 0; i < 16; i++) { 1258 unsigned char insn; 1259 1260 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1261 break; 1262 pr_cont("%02x ", insn); 1263 } 1264 } 1265 pr_cont("\n"); 1266 #endif 1267 preempt_disable(); 1268 show_regs(regs); 1269 preempt_enable(); 1270 } 1271 1272 static int __init setup_print_fatal_signals(char *str) 1273 { 1274 get_option (&str, &print_fatal_signals); 1275 1276 return 1; 1277 } 1278 1279 __setup("print-fatal-signals=", setup_print_fatal_signals); 1280 1281 int 1282 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1283 { 1284 return send_signal(sig, info, p, PIDTYPE_TGID); 1285 } 1286 1287 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1288 enum pid_type type) 1289 { 1290 unsigned long flags; 1291 int ret = -ESRCH; 1292 1293 if (lock_task_sighand(p, &flags)) { 1294 ret = send_signal(sig, info, p, type); 1295 unlock_task_sighand(p, &flags); 1296 } 1297 1298 return ret; 1299 } 1300 1301 /* 1302 * Force a signal that the process can't ignore: if necessary 1303 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1304 * 1305 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1306 * since we do not want to have a signal handler that was blocked 1307 * be invoked when user space had explicitly blocked it. 1308 * 1309 * We don't want to have recursive SIGSEGV's etc, for example, 1310 * that is why we also clear SIGNAL_UNKILLABLE. 1311 */ 1312 static int 1313 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, bool sigdfl) 1314 { 1315 unsigned long int flags; 1316 int ret, blocked, ignored; 1317 struct k_sigaction *action; 1318 int sig = info->si_signo; 1319 1320 spin_lock_irqsave(&t->sighand->siglock, flags); 1321 action = &t->sighand->action[sig-1]; 1322 ignored = action->sa.sa_handler == SIG_IGN; 1323 blocked = sigismember(&t->blocked, sig); 1324 if (blocked || ignored || sigdfl) { 1325 action->sa.sa_handler = SIG_DFL; 1326 action->sa.sa_flags |= SA_IMMUTABLE; 1327 if (blocked) { 1328 sigdelset(&t->blocked, sig); 1329 recalc_sigpending_and_wake(t); 1330 } 1331 } 1332 /* 1333 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1334 * debugging to leave init killable. 1335 */ 1336 if (action->sa.sa_handler == SIG_DFL && !t->ptrace) 1337 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1338 ret = send_signal(sig, info, t, PIDTYPE_PID); 1339 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1340 1341 return ret; 1342 } 1343 1344 int force_sig_info(struct kernel_siginfo *info) 1345 { 1346 return force_sig_info_to_task(info, current, false); 1347 } 1348 1349 /* 1350 * Nuke all other threads in the group. 1351 */ 1352 int zap_other_threads(struct task_struct *p) 1353 { 1354 struct task_struct *t = p; 1355 int count = 0; 1356 1357 p->signal->group_stop_count = 0; 1358 1359 while_each_thread(p, t) { 1360 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1361 count++; 1362 1363 /* Don't bother with already dead threads */ 1364 if (t->exit_state) 1365 continue; 1366 sigaddset(&t->pending.signal, SIGKILL); 1367 signal_wake_up(t, 1); 1368 } 1369 1370 return count; 1371 } 1372 1373 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1374 unsigned long *flags) 1375 { 1376 struct sighand_struct *sighand; 1377 1378 rcu_read_lock(); 1379 for (;;) { 1380 sighand = rcu_dereference(tsk->sighand); 1381 if (unlikely(sighand == NULL)) 1382 break; 1383 1384 /* 1385 * This sighand can be already freed and even reused, but 1386 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1387 * initializes ->siglock: this slab can't go away, it has 1388 * the same object type, ->siglock can't be reinitialized. 1389 * 1390 * We need to ensure that tsk->sighand is still the same 1391 * after we take the lock, we can race with de_thread() or 1392 * __exit_signal(). In the latter case the next iteration 1393 * must see ->sighand == NULL. 1394 */ 1395 spin_lock_irqsave(&sighand->siglock, *flags); 1396 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1397 break; 1398 spin_unlock_irqrestore(&sighand->siglock, *flags); 1399 } 1400 rcu_read_unlock(); 1401 1402 return sighand; 1403 } 1404 1405 #ifdef CONFIG_LOCKDEP 1406 void lockdep_assert_task_sighand_held(struct task_struct *task) 1407 { 1408 struct sighand_struct *sighand; 1409 1410 rcu_read_lock(); 1411 sighand = rcu_dereference(task->sighand); 1412 if (sighand) 1413 lockdep_assert_held(&sighand->siglock); 1414 else 1415 WARN_ON_ONCE(1); 1416 rcu_read_unlock(); 1417 } 1418 #endif 1419 1420 /* 1421 * send signal info to all the members of a group 1422 */ 1423 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1424 struct task_struct *p, enum pid_type type) 1425 { 1426 int ret; 1427 1428 rcu_read_lock(); 1429 ret = check_kill_permission(sig, info, p); 1430 rcu_read_unlock(); 1431 1432 if (!ret && sig) 1433 ret = do_send_sig_info(sig, info, p, type); 1434 1435 return ret; 1436 } 1437 1438 /* 1439 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1440 * control characters do (^C, ^Z etc) 1441 * - the caller must hold at least a readlock on tasklist_lock 1442 */ 1443 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1444 { 1445 struct task_struct *p = NULL; 1446 int retval, success; 1447 1448 success = 0; 1449 retval = -ESRCH; 1450 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1451 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1452 success |= !err; 1453 retval = err; 1454 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1455 return success ? 0 : retval; 1456 } 1457 1458 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1459 { 1460 int error = -ESRCH; 1461 struct task_struct *p; 1462 1463 for (;;) { 1464 rcu_read_lock(); 1465 p = pid_task(pid, PIDTYPE_PID); 1466 if (p) 1467 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1468 rcu_read_unlock(); 1469 if (likely(!p || error != -ESRCH)) 1470 return error; 1471 1472 /* 1473 * The task was unhashed in between, try again. If it 1474 * is dead, pid_task() will return NULL, if we race with 1475 * de_thread() it will find the new leader. 1476 */ 1477 } 1478 } 1479 1480 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1481 { 1482 int error; 1483 rcu_read_lock(); 1484 error = kill_pid_info(sig, info, find_vpid(pid)); 1485 rcu_read_unlock(); 1486 return error; 1487 } 1488 1489 static inline bool kill_as_cred_perm(const struct cred *cred, 1490 struct task_struct *target) 1491 { 1492 const struct cred *pcred = __task_cred(target); 1493 1494 return uid_eq(cred->euid, pcred->suid) || 1495 uid_eq(cred->euid, pcred->uid) || 1496 uid_eq(cred->uid, pcred->suid) || 1497 uid_eq(cred->uid, pcred->uid); 1498 } 1499 1500 /* 1501 * The usb asyncio usage of siginfo is wrong. The glibc support 1502 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1503 * AKA after the generic fields: 1504 * kernel_pid_t si_pid; 1505 * kernel_uid32_t si_uid; 1506 * sigval_t si_value; 1507 * 1508 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1509 * after the generic fields is: 1510 * void __user *si_addr; 1511 * 1512 * This is a practical problem when there is a 64bit big endian kernel 1513 * and a 32bit userspace. As the 32bit address will encoded in the low 1514 * 32bits of the pointer. Those low 32bits will be stored at higher 1515 * address than appear in a 32 bit pointer. So userspace will not 1516 * see the address it was expecting for it's completions. 1517 * 1518 * There is nothing in the encoding that can allow 1519 * copy_siginfo_to_user32 to detect this confusion of formats, so 1520 * handle this by requiring the caller of kill_pid_usb_asyncio to 1521 * notice when this situration takes place and to store the 32bit 1522 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1523 * parameter. 1524 */ 1525 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1526 struct pid *pid, const struct cred *cred) 1527 { 1528 struct kernel_siginfo info; 1529 struct task_struct *p; 1530 unsigned long flags; 1531 int ret = -EINVAL; 1532 1533 if (!valid_signal(sig)) 1534 return ret; 1535 1536 clear_siginfo(&info); 1537 info.si_signo = sig; 1538 info.si_errno = errno; 1539 info.si_code = SI_ASYNCIO; 1540 *((sigval_t *)&info.si_pid) = addr; 1541 1542 rcu_read_lock(); 1543 p = pid_task(pid, PIDTYPE_PID); 1544 if (!p) { 1545 ret = -ESRCH; 1546 goto out_unlock; 1547 } 1548 if (!kill_as_cred_perm(cred, p)) { 1549 ret = -EPERM; 1550 goto out_unlock; 1551 } 1552 ret = security_task_kill(p, &info, sig, cred); 1553 if (ret) 1554 goto out_unlock; 1555 1556 if (sig) { 1557 if (lock_task_sighand(p, &flags)) { 1558 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false); 1559 unlock_task_sighand(p, &flags); 1560 } else 1561 ret = -ESRCH; 1562 } 1563 out_unlock: 1564 rcu_read_unlock(); 1565 return ret; 1566 } 1567 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1568 1569 /* 1570 * kill_something_info() interprets pid in interesting ways just like kill(2). 1571 * 1572 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1573 * is probably wrong. Should make it like BSD or SYSV. 1574 */ 1575 1576 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1577 { 1578 int ret; 1579 1580 if (pid > 0) 1581 return kill_proc_info(sig, info, pid); 1582 1583 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1584 if (pid == INT_MIN) 1585 return -ESRCH; 1586 1587 read_lock(&tasklist_lock); 1588 if (pid != -1) { 1589 ret = __kill_pgrp_info(sig, info, 1590 pid ? find_vpid(-pid) : task_pgrp(current)); 1591 } else { 1592 int retval = 0, count = 0; 1593 struct task_struct * p; 1594 1595 for_each_process(p) { 1596 if (task_pid_vnr(p) > 1 && 1597 !same_thread_group(p, current)) { 1598 int err = group_send_sig_info(sig, info, p, 1599 PIDTYPE_MAX); 1600 ++count; 1601 if (err != -EPERM) 1602 retval = err; 1603 } 1604 } 1605 ret = count ? retval : -ESRCH; 1606 } 1607 read_unlock(&tasklist_lock); 1608 1609 return ret; 1610 } 1611 1612 /* 1613 * These are for backward compatibility with the rest of the kernel source. 1614 */ 1615 1616 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1617 { 1618 /* 1619 * Make sure legacy kernel users don't send in bad values 1620 * (normal paths check this in check_kill_permission). 1621 */ 1622 if (!valid_signal(sig)) 1623 return -EINVAL; 1624 1625 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1626 } 1627 EXPORT_SYMBOL(send_sig_info); 1628 1629 #define __si_special(priv) \ 1630 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1631 1632 int 1633 send_sig(int sig, struct task_struct *p, int priv) 1634 { 1635 return send_sig_info(sig, __si_special(priv), p); 1636 } 1637 EXPORT_SYMBOL(send_sig); 1638 1639 void force_sig(int sig) 1640 { 1641 struct kernel_siginfo info; 1642 1643 clear_siginfo(&info); 1644 info.si_signo = sig; 1645 info.si_errno = 0; 1646 info.si_code = SI_KERNEL; 1647 info.si_pid = 0; 1648 info.si_uid = 0; 1649 force_sig_info(&info); 1650 } 1651 EXPORT_SYMBOL(force_sig); 1652 1653 void force_fatal_sig(int sig) 1654 { 1655 struct kernel_siginfo info; 1656 1657 clear_siginfo(&info); 1658 info.si_signo = sig; 1659 info.si_errno = 0; 1660 info.si_code = SI_KERNEL; 1661 info.si_pid = 0; 1662 info.si_uid = 0; 1663 force_sig_info_to_task(&info, current, true); 1664 } 1665 1666 /* 1667 * When things go south during signal handling, we 1668 * will force a SIGSEGV. And if the signal that caused 1669 * the problem was already a SIGSEGV, we'll want to 1670 * make sure we don't even try to deliver the signal.. 1671 */ 1672 void force_sigsegv(int sig) 1673 { 1674 if (sig == SIGSEGV) 1675 force_fatal_sig(SIGSEGV); 1676 else 1677 force_sig(SIGSEGV); 1678 } 1679 1680 int force_sig_fault_to_task(int sig, int code, void __user *addr 1681 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1682 , struct task_struct *t) 1683 { 1684 struct kernel_siginfo info; 1685 1686 clear_siginfo(&info); 1687 info.si_signo = sig; 1688 info.si_errno = 0; 1689 info.si_code = code; 1690 info.si_addr = addr; 1691 #ifdef __ia64__ 1692 info.si_imm = imm; 1693 info.si_flags = flags; 1694 info.si_isr = isr; 1695 #endif 1696 return force_sig_info_to_task(&info, t, false); 1697 } 1698 1699 int force_sig_fault(int sig, int code, void __user *addr 1700 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1701 { 1702 return force_sig_fault_to_task(sig, code, addr 1703 ___ARCH_SI_IA64(imm, flags, isr), current); 1704 } 1705 1706 int send_sig_fault(int sig, int code, void __user *addr 1707 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1708 , struct task_struct *t) 1709 { 1710 struct kernel_siginfo info; 1711 1712 clear_siginfo(&info); 1713 info.si_signo = sig; 1714 info.si_errno = 0; 1715 info.si_code = code; 1716 info.si_addr = addr; 1717 #ifdef __ia64__ 1718 info.si_imm = imm; 1719 info.si_flags = flags; 1720 info.si_isr = isr; 1721 #endif 1722 return send_sig_info(info.si_signo, &info, t); 1723 } 1724 1725 int force_sig_mceerr(int code, void __user *addr, short lsb) 1726 { 1727 struct kernel_siginfo info; 1728 1729 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1730 clear_siginfo(&info); 1731 info.si_signo = SIGBUS; 1732 info.si_errno = 0; 1733 info.si_code = code; 1734 info.si_addr = addr; 1735 info.si_addr_lsb = lsb; 1736 return force_sig_info(&info); 1737 } 1738 1739 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1740 { 1741 struct kernel_siginfo info; 1742 1743 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1744 clear_siginfo(&info); 1745 info.si_signo = SIGBUS; 1746 info.si_errno = 0; 1747 info.si_code = code; 1748 info.si_addr = addr; 1749 info.si_addr_lsb = lsb; 1750 return send_sig_info(info.si_signo, &info, t); 1751 } 1752 EXPORT_SYMBOL(send_sig_mceerr); 1753 1754 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1755 { 1756 struct kernel_siginfo info; 1757 1758 clear_siginfo(&info); 1759 info.si_signo = SIGSEGV; 1760 info.si_errno = 0; 1761 info.si_code = SEGV_BNDERR; 1762 info.si_addr = addr; 1763 info.si_lower = lower; 1764 info.si_upper = upper; 1765 return force_sig_info(&info); 1766 } 1767 1768 #ifdef SEGV_PKUERR 1769 int force_sig_pkuerr(void __user *addr, u32 pkey) 1770 { 1771 struct kernel_siginfo info; 1772 1773 clear_siginfo(&info); 1774 info.si_signo = SIGSEGV; 1775 info.si_errno = 0; 1776 info.si_code = SEGV_PKUERR; 1777 info.si_addr = addr; 1778 info.si_pkey = pkey; 1779 return force_sig_info(&info); 1780 } 1781 #endif 1782 1783 int force_sig_perf(void __user *addr, u32 type, u64 sig_data) 1784 { 1785 struct kernel_siginfo info; 1786 1787 clear_siginfo(&info); 1788 info.si_signo = SIGTRAP; 1789 info.si_errno = 0; 1790 info.si_code = TRAP_PERF; 1791 info.si_addr = addr; 1792 info.si_perf_data = sig_data; 1793 info.si_perf_type = type; 1794 1795 return force_sig_info(&info); 1796 } 1797 1798 /** 1799 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1800 * @syscall: syscall number to send to userland 1801 * @reason: filter-supplied reason code to send to userland (via si_errno) 1802 * 1803 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1804 */ 1805 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1806 { 1807 struct kernel_siginfo info; 1808 1809 clear_siginfo(&info); 1810 info.si_signo = SIGSYS; 1811 info.si_code = SYS_SECCOMP; 1812 info.si_call_addr = (void __user *)KSTK_EIP(current); 1813 info.si_errno = reason; 1814 info.si_arch = syscall_get_arch(current); 1815 info.si_syscall = syscall; 1816 return force_sig_info_to_task(&info, current, force_coredump); 1817 } 1818 1819 /* For the crazy architectures that include trap information in 1820 * the errno field, instead of an actual errno value. 1821 */ 1822 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1823 { 1824 struct kernel_siginfo info; 1825 1826 clear_siginfo(&info); 1827 info.si_signo = SIGTRAP; 1828 info.si_errno = errno; 1829 info.si_code = TRAP_HWBKPT; 1830 info.si_addr = addr; 1831 return force_sig_info(&info); 1832 } 1833 1834 /* For the rare architectures that include trap information using 1835 * si_trapno. 1836 */ 1837 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1838 { 1839 struct kernel_siginfo info; 1840 1841 clear_siginfo(&info); 1842 info.si_signo = sig; 1843 info.si_errno = 0; 1844 info.si_code = code; 1845 info.si_addr = addr; 1846 info.si_trapno = trapno; 1847 return force_sig_info(&info); 1848 } 1849 1850 /* For the rare architectures that include trap information using 1851 * si_trapno. 1852 */ 1853 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1854 struct task_struct *t) 1855 { 1856 struct kernel_siginfo info; 1857 1858 clear_siginfo(&info); 1859 info.si_signo = sig; 1860 info.si_errno = 0; 1861 info.si_code = code; 1862 info.si_addr = addr; 1863 info.si_trapno = trapno; 1864 return send_sig_info(info.si_signo, &info, t); 1865 } 1866 1867 int kill_pgrp(struct pid *pid, int sig, int priv) 1868 { 1869 int ret; 1870 1871 read_lock(&tasklist_lock); 1872 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1873 read_unlock(&tasklist_lock); 1874 1875 return ret; 1876 } 1877 EXPORT_SYMBOL(kill_pgrp); 1878 1879 int kill_pid(struct pid *pid, int sig, int priv) 1880 { 1881 return kill_pid_info(sig, __si_special(priv), pid); 1882 } 1883 EXPORT_SYMBOL(kill_pid); 1884 1885 /* 1886 * These functions support sending signals using preallocated sigqueue 1887 * structures. This is needed "because realtime applications cannot 1888 * afford to lose notifications of asynchronous events, like timer 1889 * expirations or I/O completions". In the case of POSIX Timers 1890 * we allocate the sigqueue structure from the timer_create. If this 1891 * allocation fails we are able to report the failure to the application 1892 * with an EAGAIN error. 1893 */ 1894 struct sigqueue *sigqueue_alloc(void) 1895 { 1896 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1897 } 1898 1899 void sigqueue_free(struct sigqueue *q) 1900 { 1901 unsigned long flags; 1902 spinlock_t *lock = ¤t->sighand->siglock; 1903 1904 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1905 /* 1906 * We must hold ->siglock while testing q->list 1907 * to serialize with collect_signal() or with 1908 * __exit_signal()->flush_sigqueue(). 1909 */ 1910 spin_lock_irqsave(lock, flags); 1911 q->flags &= ~SIGQUEUE_PREALLOC; 1912 /* 1913 * If it is queued it will be freed when dequeued, 1914 * like the "regular" sigqueue. 1915 */ 1916 if (!list_empty(&q->list)) 1917 q = NULL; 1918 spin_unlock_irqrestore(lock, flags); 1919 1920 if (q) 1921 __sigqueue_free(q); 1922 } 1923 1924 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1925 { 1926 int sig = q->info.si_signo; 1927 struct sigpending *pending; 1928 struct task_struct *t; 1929 unsigned long flags; 1930 int ret, result; 1931 1932 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1933 1934 ret = -1; 1935 rcu_read_lock(); 1936 t = pid_task(pid, type); 1937 if (!t || !likely(lock_task_sighand(t, &flags))) 1938 goto ret; 1939 1940 ret = 1; /* the signal is ignored */ 1941 result = TRACE_SIGNAL_IGNORED; 1942 if (!prepare_signal(sig, t, false)) 1943 goto out; 1944 1945 ret = 0; 1946 if (unlikely(!list_empty(&q->list))) { 1947 /* 1948 * If an SI_TIMER entry is already queue just increment 1949 * the overrun count. 1950 */ 1951 BUG_ON(q->info.si_code != SI_TIMER); 1952 q->info.si_overrun++; 1953 result = TRACE_SIGNAL_ALREADY_PENDING; 1954 goto out; 1955 } 1956 q->info.si_overrun = 0; 1957 1958 signalfd_notify(t, sig); 1959 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1960 list_add_tail(&q->list, &pending->list); 1961 sigaddset(&pending->signal, sig); 1962 complete_signal(sig, t, type); 1963 result = TRACE_SIGNAL_DELIVERED; 1964 out: 1965 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 1966 unlock_task_sighand(t, &flags); 1967 ret: 1968 rcu_read_unlock(); 1969 return ret; 1970 } 1971 1972 static void do_notify_pidfd(struct task_struct *task) 1973 { 1974 struct pid *pid; 1975 1976 WARN_ON(task->exit_state == 0); 1977 pid = task_pid(task); 1978 wake_up_all(&pid->wait_pidfd); 1979 } 1980 1981 /* 1982 * Let a parent know about the death of a child. 1983 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1984 * 1985 * Returns true if our parent ignored us and so we've switched to 1986 * self-reaping. 1987 */ 1988 bool do_notify_parent(struct task_struct *tsk, int sig) 1989 { 1990 struct kernel_siginfo info; 1991 unsigned long flags; 1992 struct sighand_struct *psig; 1993 bool autoreap = false; 1994 u64 utime, stime; 1995 1996 BUG_ON(sig == -1); 1997 1998 /* do_notify_parent_cldstop should have been called instead. */ 1999 BUG_ON(task_is_stopped_or_traced(tsk)); 2000 2001 BUG_ON(!tsk->ptrace && 2002 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2003 2004 /* Wake up all pidfd waiters */ 2005 do_notify_pidfd(tsk); 2006 2007 if (sig != SIGCHLD) { 2008 /* 2009 * This is only possible if parent == real_parent. 2010 * Check if it has changed security domain. 2011 */ 2012 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2013 sig = SIGCHLD; 2014 } 2015 2016 clear_siginfo(&info); 2017 info.si_signo = sig; 2018 info.si_errno = 0; 2019 /* 2020 * We are under tasklist_lock here so our parent is tied to 2021 * us and cannot change. 2022 * 2023 * task_active_pid_ns will always return the same pid namespace 2024 * until a task passes through release_task. 2025 * 2026 * write_lock() currently calls preempt_disable() which is the 2027 * same as rcu_read_lock(), but according to Oleg, this is not 2028 * correct to rely on this 2029 */ 2030 rcu_read_lock(); 2031 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2032 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2033 task_uid(tsk)); 2034 rcu_read_unlock(); 2035 2036 task_cputime(tsk, &utime, &stime); 2037 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2038 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2039 2040 info.si_status = tsk->exit_code & 0x7f; 2041 if (tsk->exit_code & 0x80) 2042 info.si_code = CLD_DUMPED; 2043 else if (tsk->exit_code & 0x7f) 2044 info.si_code = CLD_KILLED; 2045 else { 2046 info.si_code = CLD_EXITED; 2047 info.si_status = tsk->exit_code >> 8; 2048 } 2049 2050 psig = tsk->parent->sighand; 2051 spin_lock_irqsave(&psig->siglock, flags); 2052 if (!tsk->ptrace && sig == SIGCHLD && 2053 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2054 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2055 /* 2056 * We are exiting and our parent doesn't care. POSIX.1 2057 * defines special semantics for setting SIGCHLD to SIG_IGN 2058 * or setting the SA_NOCLDWAIT flag: we should be reaped 2059 * automatically and not left for our parent's wait4 call. 2060 * Rather than having the parent do it as a magic kind of 2061 * signal handler, we just set this to tell do_exit that we 2062 * can be cleaned up without becoming a zombie. Note that 2063 * we still call __wake_up_parent in this case, because a 2064 * blocked sys_wait4 might now return -ECHILD. 2065 * 2066 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2067 * is implementation-defined: we do (if you don't want 2068 * it, just use SIG_IGN instead). 2069 */ 2070 autoreap = true; 2071 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2072 sig = 0; 2073 } 2074 /* 2075 * Send with __send_signal as si_pid and si_uid are in the 2076 * parent's namespaces. 2077 */ 2078 if (valid_signal(sig) && sig) 2079 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2080 __wake_up_parent(tsk, tsk->parent); 2081 spin_unlock_irqrestore(&psig->siglock, flags); 2082 2083 return autoreap; 2084 } 2085 2086 /** 2087 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2088 * @tsk: task reporting the state change 2089 * @for_ptracer: the notification is for ptracer 2090 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2091 * 2092 * Notify @tsk's parent that the stopped/continued state has changed. If 2093 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2094 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2095 * 2096 * CONTEXT: 2097 * Must be called with tasklist_lock at least read locked. 2098 */ 2099 static void do_notify_parent_cldstop(struct task_struct *tsk, 2100 bool for_ptracer, int why) 2101 { 2102 struct kernel_siginfo info; 2103 unsigned long flags; 2104 struct task_struct *parent; 2105 struct sighand_struct *sighand; 2106 u64 utime, stime; 2107 2108 if (for_ptracer) { 2109 parent = tsk->parent; 2110 } else { 2111 tsk = tsk->group_leader; 2112 parent = tsk->real_parent; 2113 } 2114 2115 clear_siginfo(&info); 2116 info.si_signo = SIGCHLD; 2117 info.si_errno = 0; 2118 /* 2119 * see comment in do_notify_parent() about the following 4 lines 2120 */ 2121 rcu_read_lock(); 2122 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2123 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2124 rcu_read_unlock(); 2125 2126 task_cputime(tsk, &utime, &stime); 2127 info.si_utime = nsec_to_clock_t(utime); 2128 info.si_stime = nsec_to_clock_t(stime); 2129 2130 info.si_code = why; 2131 switch (why) { 2132 case CLD_CONTINUED: 2133 info.si_status = SIGCONT; 2134 break; 2135 case CLD_STOPPED: 2136 info.si_status = tsk->signal->group_exit_code & 0x7f; 2137 break; 2138 case CLD_TRAPPED: 2139 info.si_status = tsk->exit_code & 0x7f; 2140 break; 2141 default: 2142 BUG(); 2143 } 2144 2145 sighand = parent->sighand; 2146 spin_lock_irqsave(&sighand->siglock, flags); 2147 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2148 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2149 __group_send_sig_info(SIGCHLD, &info, parent); 2150 /* 2151 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2152 */ 2153 __wake_up_parent(tsk, parent); 2154 spin_unlock_irqrestore(&sighand->siglock, flags); 2155 } 2156 2157 /* 2158 * This must be called with current->sighand->siglock held. 2159 * 2160 * This should be the path for all ptrace stops. 2161 * We always set current->last_siginfo while stopped here. 2162 * That makes it a way to test a stopped process for 2163 * being ptrace-stopped vs being job-control-stopped. 2164 * 2165 * If we actually decide not to stop at all because the tracer 2166 * is gone, we keep current->exit_code unless clear_code. 2167 */ 2168 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info) 2169 __releases(¤t->sighand->siglock) 2170 __acquires(¤t->sighand->siglock) 2171 { 2172 bool gstop_done = false; 2173 2174 if (arch_ptrace_stop_needed()) { 2175 /* 2176 * The arch code has something special to do before a 2177 * ptrace stop. This is allowed to block, e.g. for faults 2178 * on user stack pages. We can't keep the siglock while 2179 * calling arch_ptrace_stop, so we must release it now. 2180 * To preserve proper semantics, we must do this before 2181 * any signal bookkeeping like checking group_stop_count. 2182 */ 2183 spin_unlock_irq(¤t->sighand->siglock); 2184 arch_ptrace_stop(); 2185 spin_lock_irq(¤t->sighand->siglock); 2186 } 2187 2188 /* 2189 * schedule() will not sleep if there is a pending signal that 2190 * can awaken the task. 2191 */ 2192 set_special_state(TASK_TRACED); 2193 2194 /* 2195 * We're committing to trapping. TRACED should be visible before 2196 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2197 * Also, transition to TRACED and updates to ->jobctl should be 2198 * atomic with respect to siglock and should be done after the arch 2199 * hook as siglock is released and regrabbed across it. 2200 * 2201 * TRACER TRACEE 2202 * 2203 * ptrace_attach() 2204 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2205 * do_wait() 2206 * set_current_state() smp_wmb(); 2207 * ptrace_do_wait() 2208 * wait_task_stopped() 2209 * task_stopped_code() 2210 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2211 */ 2212 smp_wmb(); 2213 2214 current->last_siginfo = info; 2215 current->exit_code = exit_code; 2216 2217 /* 2218 * If @why is CLD_STOPPED, we're trapping to participate in a group 2219 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2220 * across siglock relocks since INTERRUPT was scheduled, PENDING 2221 * could be clear now. We act as if SIGCONT is received after 2222 * TASK_TRACED is entered - ignore it. 2223 */ 2224 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2225 gstop_done = task_participate_group_stop(current); 2226 2227 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2228 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2229 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2230 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2231 2232 /* entering a trap, clear TRAPPING */ 2233 task_clear_jobctl_trapping(current); 2234 2235 spin_unlock_irq(¤t->sighand->siglock); 2236 read_lock(&tasklist_lock); 2237 if (likely(current->ptrace)) { 2238 /* 2239 * Notify parents of the stop. 2240 * 2241 * While ptraced, there are two parents - the ptracer and 2242 * the real_parent of the group_leader. The ptracer should 2243 * know about every stop while the real parent is only 2244 * interested in the completion of group stop. The states 2245 * for the two don't interact with each other. Notify 2246 * separately unless they're gonna be duplicates. 2247 */ 2248 do_notify_parent_cldstop(current, true, why); 2249 if (gstop_done && ptrace_reparented(current)) 2250 do_notify_parent_cldstop(current, false, why); 2251 2252 /* 2253 * Don't want to allow preemption here, because 2254 * sys_ptrace() needs this task to be inactive. 2255 * 2256 * XXX: implement read_unlock_no_resched(). 2257 */ 2258 preempt_disable(); 2259 read_unlock(&tasklist_lock); 2260 cgroup_enter_frozen(); 2261 preempt_enable_no_resched(); 2262 freezable_schedule(); 2263 cgroup_leave_frozen(true); 2264 } else { 2265 /* 2266 * By the time we got the lock, our tracer went away. 2267 * Don't drop the lock yet, another tracer may come. 2268 * 2269 * If @gstop_done, the ptracer went away between group stop 2270 * completion and here. During detach, it would have set 2271 * JOBCTL_STOP_PENDING on us and we'll re-enter 2272 * TASK_STOPPED in do_signal_stop() on return, so notifying 2273 * the real parent of the group stop completion is enough. 2274 */ 2275 if (gstop_done) 2276 do_notify_parent_cldstop(current, false, why); 2277 2278 /* tasklist protects us from ptrace_freeze_traced() */ 2279 __set_current_state(TASK_RUNNING); 2280 if (clear_code) 2281 current->exit_code = 0; 2282 read_unlock(&tasklist_lock); 2283 } 2284 2285 /* 2286 * We are back. Now reacquire the siglock before touching 2287 * last_siginfo, so that we are sure to have synchronized with 2288 * any signal-sending on another CPU that wants to examine it. 2289 */ 2290 spin_lock_irq(¤t->sighand->siglock); 2291 current->last_siginfo = NULL; 2292 2293 /* LISTENING can be set only during STOP traps, clear it */ 2294 current->jobctl &= ~JOBCTL_LISTENING; 2295 2296 /* 2297 * Queued signals ignored us while we were stopped for tracing. 2298 * So check for any that we should take before resuming user mode. 2299 * This sets TIF_SIGPENDING, but never clears it. 2300 */ 2301 recalc_sigpending_tsk(current); 2302 } 2303 2304 static void ptrace_do_notify(int signr, int exit_code, int why) 2305 { 2306 kernel_siginfo_t info; 2307 2308 clear_siginfo(&info); 2309 info.si_signo = signr; 2310 info.si_code = exit_code; 2311 info.si_pid = task_pid_vnr(current); 2312 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2313 2314 /* Let the debugger run. */ 2315 ptrace_stop(exit_code, why, 1, &info); 2316 } 2317 2318 void ptrace_notify(int exit_code) 2319 { 2320 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2321 if (unlikely(current->task_works)) 2322 task_work_run(); 2323 2324 spin_lock_irq(¤t->sighand->siglock); 2325 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 2326 spin_unlock_irq(¤t->sighand->siglock); 2327 } 2328 2329 /** 2330 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2331 * @signr: signr causing group stop if initiating 2332 * 2333 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2334 * and participate in it. If already set, participate in the existing 2335 * group stop. If participated in a group stop (and thus slept), %true is 2336 * returned with siglock released. 2337 * 2338 * If ptraced, this function doesn't handle stop itself. Instead, 2339 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2340 * untouched. The caller must ensure that INTERRUPT trap handling takes 2341 * places afterwards. 2342 * 2343 * CONTEXT: 2344 * Must be called with @current->sighand->siglock held, which is released 2345 * on %true return. 2346 * 2347 * RETURNS: 2348 * %false if group stop is already cancelled or ptrace trap is scheduled. 2349 * %true if participated in group stop. 2350 */ 2351 static bool do_signal_stop(int signr) 2352 __releases(¤t->sighand->siglock) 2353 { 2354 struct signal_struct *sig = current->signal; 2355 2356 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2357 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2358 struct task_struct *t; 2359 2360 /* signr will be recorded in task->jobctl for retries */ 2361 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2362 2363 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2364 unlikely(signal_group_exit(sig))) 2365 return false; 2366 /* 2367 * There is no group stop already in progress. We must 2368 * initiate one now. 2369 * 2370 * While ptraced, a task may be resumed while group stop is 2371 * still in effect and then receive a stop signal and 2372 * initiate another group stop. This deviates from the 2373 * usual behavior as two consecutive stop signals can't 2374 * cause two group stops when !ptraced. That is why we 2375 * also check !task_is_stopped(t) below. 2376 * 2377 * The condition can be distinguished by testing whether 2378 * SIGNAL_STOP_STOPPED is already set. Don't generate 2379 * group_exit_code in such case. 2380 * 2381 * This is not necessary for SIGNAL_STOP_CONTINUED because 2382 * an intervening stop signal is required to cause two 2383 * continued events regardless of ptrace. 2384 */ 2385 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2386 sig->group_exit_code = signr; 2387 2388 sig->group_stop_count = 0; 2389 2390 if (task_set_jobctl_pending(current, signr | gstop)) 2391 sig->group_stop_count++; 2392 2393 t = current; 2394 while_each_thread(current, t) { 2395 /* 2396 * Setting state to TASK_STOPPED for a group 2397 * stop is always done with the siglock held, 2398 * so this check has no races. 2399 */ 2400 if (!task_is_stopped(t) && 2401 task_set_jobctl_pending(t, signr | gstop)) { 2402 sig->group_stop_count++; 2403 if (likely(!(t->ptrace & PT_SEIZED))) 2404 signal_wake_up(t, 0); 2405 else 2406 ptrace_trap_notify(t); 2407 } 2408 } 2409 } 2410 2411 if (likely(!current->ptrace)) { 2412 int notify = 0; 2413 2414 /* 2415 * If there are no other threads in the group, or if there 2416 * is a group stop in progress and we are the last to stop, 2417 * report to the parent. 2418 */ 2419 if (task_participate_group_stop(current)) 2420 notify = CLD_STOPPED; 2421 2422 set_special_state(TASK_STOPPED); 2423 spin_unlock_irq(¤t->sighand->siglock); 2424 2425 /* 2426 * Notify the parent of the group stop completion. Because 2427 * we're not holding either the siglock or tasklist_lock 2428 * here, ptracer may attach inbetween; however, this is for 2429 * group stop and should always be delivered to the real 2430 * parent of the group leader. The new ptracer will get 2431 * its notification when this task transitions into 2432 * TASK_TRACED. 2433 */ 2434 if (notify) { 2435 read_lock(&tasklist_lock); 2436 do_notify_parent_cldstop(current, false, notify); 2437 read_unlock(&tasklist_lock); 2438 } 2439 2440 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2441 cgroup_enter_frozen(); 2442 freezable_schedule(); 2443 return true; 2444 } else { 2445 /* 2446 * While ptraced, group stop is handled by STOP trap. 2447 * Schedule it and let the caller deal with it. 2448 */ 2449 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2450 return false; 2451 } 2452 } 2453 2454 /** 2455 * do_jobctl_trap - take care of ptrace jobctl traps 2456 * 2457 * When PT_SEIZED, it's used for both group stop and explicit 2458 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2459 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2460 * the stop signal; otherwise, %SIGTRAP. 2461 * 2462 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2463 * number as exit_code and no siginfo. 2464 * 2465 * CONTEXT: 2466 * Must be called with @current->sighand->siglock held, which may be 2467 * released and re-acquired before returning with intervening sleep. 2468 */ 2469 static void do_jobctl_trap(void) 2470 { 2471 struct signal_struct *signal = current->signal; 2472 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2473 2474 if (current->ptrace & PT_SEIZED) { 2475 if (!signal->group_stop_count && 2476 !(signal->flags & SIGNAL_STOP_STOPPED)) 2477 signr = SIGTRAP; 2478 WARN_ON_ONCE(!signr); 2479 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2480 CLD_STOPPED); 2481 } else { 2482 WARN_ON_ONCE(!signr); 2483 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2484 current->exit_code = 0; 2485 } 2486 } 2487 2488 /** 2489 * do_freezer_trap - handle the freezer jobctl trap 2490 * 2491 * Puts the task into frozen state, if only the task is not about to quit. 2492 * In this case it drops JOBCTL_TRAP_FREEZE. 2493 * 2494 * CONTEXT: 2495 * Must be called with @current->sighand->siglock held, 2496 * which is always released before returning. 2497 */ 2498 static void do_freezer_trap(void) 2499 __releases(¤t->sighand->siglock) 2500 { 2501 /* 2502 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2503 * let's make another loop to give it a chance to be handled. 2504 * In any case, we'll return back. 2505 */ 2506 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2507 JOBCTL_TRAP_FREEZE) { 2508 spin_unlock_irq(¤t->sighand->siglock); 2509 return; 2510 } 2511 2512 /* 2513 * Now we're sure that there is no pending fatal signal and no 2514 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2515 * immediately (if there is a non-fatal signal pending), and 2516 * put the task into sleep. 2517 */ 2518 __set_current_state(TASK_INTERRUPTIBLE); 2519 clear_thread_flag(TIF_SIGPENDING); 2520 spin_unlock_irq(¤t->sighand->siglock); 2521 cgroup_enter_frozen(); 2522 freezable_schedule(); 2523 } 2524 2525 static int ptrace_signal(int signr, kernel_siginfo_t *info) 2526 { 2527 /* 2528 * We do not check sig_kernel_stop(signr) but set this marker 2529 * unconditionally because we do not know whether debugger will 2530 * change signr. This flag has no meaning unless we are going 2531 * to stop after return from ptrace_stop(). In this case it will 2532 * be checked in do_signal_stop(), we should only stop if it was 2533 * not cleared by SIGCONT while we were sleeping. See also the 2534 * comment in dequeue_signal(). 2535 */ 2536 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2537 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2538 2539 /* We're back. Did the debugger cancel the sig? */ 2540 signr = current->exit_code; 2541 if (signr == 0) 2542 return signr; 2543 2544 current->exit_code = 0; 2545 2546 /* 2547 * Update the siginfo structure if the signal has 2548 * changed. If the debugger wanted something 2549 * specific in the siginfo structure then it should 2550 * have updated *info via PTRACE_SETSIGINFO. 2551 */ 2552 if (signr != info->si_signo) { 2553 clear_siginfo(info); 2554 info->si_signo = signr; 2555 info->si_errno = 0; 2556 info->si_code = SI_USER; 2557 rcu_read_lock(); 2558 info->si_pid = task_pid_vnr(current->parent); 2559 info->si_uid = from_kuid_munged(current_user_ns(), 2560 task_uid(current->parent)); 2561 rcu_read_unlock(); 2562 } 2563 2564 /* If the (new) signal is now blocked, requeue it. */ 2565 if (sigismember(¤t->blocked, signr)) { 2566 send_signal(signr, info, current, PIDTYPE_PID); 2567 signr = 0; 2568 } 2569 2570 return signr; 2571 } 2572 2573 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2574 { 2575 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2576 case SIL_FAULT: 2577 case SIL_FAULT_TRAPNO: 2578 case SIL_FAULT_MCEERR: 2579 case SIL_FAULT_BNDERR: 2580 case SIL_FAULT_PKUERR: 2581 case SIL_FAULT_PERF_EVENT: 2582 ksig->info.si_addr = arch_untagged_si_addr( 2583 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2584 break; 2585 case SIL_KILL: 2586 case SIL_TIMER: 2587 case SIL_POLL: 2588 case SIL_CHLD: 2589 case SIL_RT: 2590 case SIL_SYS: 2591 break; 2592 } 2593 } 2594 2595 bool get_signal(struct ksignal *ksig) 2596 { 2597 struct sighand_struct *sighand = current->sighand; 2598 struct signal_struct *signal = current->signal; 2599 int signr; 2600 2601 if (unlikely(current->task_works)) 2602 task_work_run(); 2603 2604 /* 2605 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so 2606 * that the arch handlers don't all have to do it. If we get here 2607 * without TIF_SIGPENDING, just exit after running signal work. 2608 */ 2609 if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) { 2610 if (test_thread_flag(TIF_NOTIFY_SIGNAL)) 2611 tracehook_notify_signal(); 2612 if (!task_sigpending(current)) 2613 return false; 2614 } 2615 2616 if (unlikely(uprobe_deny_signal())) 2617 return false; 2618 2619 /* 2620 * Do this once, we can't return to user-mode if freezing() == T. 2621 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2622 * thus do not need another check after return. 2623 */ 2624 try_to_freeze(); 2625 2626 relock: 2627 spin_lock_irq(&sighand->siglock); 2628 2629 /* 2630 * Every stopped thread goes here after wakeup. Check to see if 2631 * we should notify the parent, prepare_signal(SIGCONT) encodes 2632 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2633 */ 2634 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2635 int why; 2636 2637 if (signal->flags & SIGNAL_CLD_CONTINUED) 2638 why = CLD_CONTINUED; 2639 else 2640 why = CLD_STOPPED; 2641 2642 signal->flags &= ~SIGNAL_CLD_MASK; 2643 2644 spin_unlock_irq(&sighand->siglock); 2645 2646 /* 2647 * Notify the parent that we're continuing. This event is 2648 * always per-process and doesn't make whole lot of sense 2649 * for ptracers, who shouldn't consume the state via 2650 * wait(2) either, but, for backward compatibility, notify 2651 * the ptracer of the group leader too unless it's gonna be 2652 * a duplicate. 2653 */ 2654 read_lock(&tasklist_lock); 2655 do_notify_parent_cldstop(current, false, why); 2656 2657 if (ptrace_reparented(current->group_leader)) 2658 do_notify_parent_cldstop(current->group_leader, 2659 true, why); 2660 read_unlock(&tasklist_lock); 2661 2662 goto relock; 2663 } 2664 2665 /* Has this task already been marked for death? */ 2666 if (signal_group_exit(signal)) { 2667 ksig->info.si_signo = signr = SIGKILL; 2668 sigdelset(¤t->pending.signal, SIGKILL); 2669 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2670 &sighand->action[SIGKILL - 1]); 2671 recalc_sigpending(); 2672 goto fatal; 2673 } 2674 2675 for (;;) { 2676 struct k_sigaction *ka; 2677 2678 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2679 do_signal_stop(0)) 2680 goto relock; 2681 2682 if (unlikely(current->jobctl & 2683 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2684 if (current->jobctl & JOBCTL_TRAP_MASK) { 2685 do_jobctl_trap(); 2686 spin_unlock_irq(&sighand->siglock); 2687 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2688 do_freezer_trap(); 2689 2690 goto relock; 2691 } 2692 2693 /* 2694 * If the task is leaving the frozen state, let's update 2695 * cgroup counters and reset the frozen bit. 2696 */ 2697 if (unlikely(cgroup_task_frozen(current))) { 2698 spin_unlock_irq(&sighand->siglock); 2699 cgroup_leave_frozen(false); 2700 goto relock; 2701 } 2702 2703 /* 2704 * Signals generated by the execution of an instruction 2705 * need to be delivered before any other pending signals 2706 * so that the instruction pointer in the signal stack 2707 * frame points to the faulting instruction. 2708 */ 2709 signr = dequeue_synchronous_signal(&ksig->info); 2710 if (!signr) 2711 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2712 2713 if (!signr) 2714 break; /* will return 0 */ 2715 2716 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2717 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2718 signr = ptrace_signal(signr, &ksig->info); 2719 if (!signr) 2720 continue; 2721 } 2722 2723 ka = &sighand->action[signr-1]; 2724 2725 /* Trace actually delivered signals. */ 2726 trace_signal_deliver(signr, &ksig->info, ka); 2727 2728 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2729 continue; 2730 if (ka->sa.sa_handler != SIG_DFL) { 2731 /* Run the handler. */ 2732 ksig->ka = *ka; 2733 2734 if (ka->sa.sa_flags & SA_ONESHOT) 2735 ka->sa.sa_handler = SIG_DFL; 2736 2737 break; /* will return non-zero "signr" value */ 2738 } 2739 2740 /* 2741 * Now we are doing the default action for this signal. 2742 */ 2743 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2744 continue; 2745 2746 /* 2747 * Global init gets no signals it doesn't want. 2748 * Container-init gets no signals it doesn't want from same 2749 * container. 2750 * 2751 * Note that if global/container-init sees a sig_kernel_only() 2752 * signal here, the signal must have been generated internally 2753 * or must have come from an ancestor namespace. In either 2754 * case, the signal cannot be dropped. 2755 */ 2756 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2757 !sig_kernel_only(signr)) 2758 continue; 2759 2760 if (sig_kernel_stop(signr)) { 2761 /* 2762 * The default action is to stop all threads in 2763 * the thread group. The job control signals 2764 * do nothing in an orphaned pgrp, but SIGSTOP 2765 * always works. Note that siglock needs to be 2766 * dropped during the call to is_orphaned_pgrp() 2767 * because of lock ordering with tasklist_lock. 2768 * This allows an intervening SIGCONT to be posted. 2769 * We need to check for that and bail out if necessary. 2770 */ 2771 if (signr != SIGSTOP) { 2772 spin_unlock_irq(&sighand->siglock); 2773 2774 /* signals can be posted during this window */ 2775 2776 if (is_current_pgrp_orphaned()) 2777 goto relock; 2778 2779 spin_lock_irq(&sighand->siglock); 2780 } 2781 2782 if (likely(do_signal_stop(ksig->info.si_signo))) { 2783 /* It released the siglock. */ 2784 goto relock; 2785 } 2786 2787 /* 2788 * We didn't actually stop, due to a race 2789 * with SIGCONT or something like that. 2790 */ 2791 continue; 2792 } 2793 2794 fatal: 2795 spin_unlock_irq(&sighand->siglock); 2796 if (unlikely(cgroup_task_frozen(current))) 2797 cgroup_leave_frozen(true); 2798 2799 /* 2800 * Anything else is fatal, maybe with a core dump. 2801 */ 2802 current->flags |= PF_SIGNALED; 2803 2804 if (sig_kernel_coredump(signr)) { 2805 if (print_fatal_signals) 2806 print_fatal_signal(ksig->info.si_signo); 2807 proc_coredump_connector(current); 2808 /* 2809 * If it was able to dump core, this kills all 2810 * other threads in the group and synchronizes with 2811 * their demise. If we lost the race with another 2812 * thread getting here, it set group_exit_code 2813 * first and our do_group_exit call below will use 2814 * that value and ignore the one we pass it. 2815 */ 2816 do_coredump(&ksig->info); 2817 } 2818 2819 /* 2820 * PF_IO_WORKER threads will catch and exit on fatal signals 2821 * themselves. They have cleanup that must be performed, so 2822 * we cannot call do_exit() on their behalf. 2823 */ 2824 if (current->flags & PF_IO_WORKER) 2825 goto out; 2826 2827 /* 2828 * Death signals, no core dump. 2829 */ 2830 do_group_exit(ksig->info.si_signo); 2831 /* NOTREACHED */ 2832 } 2833 spin_unlock_irq(&sighand->siglock); 2834 out: 2835 ksig->sig = signr; 2836 2837 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2838 hide_si_addr_tag_bits(ksig); 2839 2840 return ksig->sig > 0; 2841 } 2842 2843 /** 2844 * signal_delivered - 2845 * @ksig: kernel signal struct 2846 * @stepping: nonzero if debugger single-step or block-step in use 2847 * 2848 * This function should be called when a signal has successfully been 2849 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2850 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2851 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2852 */ 2853 static void signal_delivered(struct ksignal *ksig, int stepping) 2854 { 2855 sigset_t blocked; 2856 2857 /* A signal was successfully delivered, and the 2858 saved sigmask was stored on the signal frame, 2859 and will be restored by sigreturn. So we can 2860 simply clear the restore sigmask flag. */ 2861 clear_restore_sigmask(); 2862 2863 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2864 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2865 sigaddset(&blocked, ksig->sig); 2866 set_current_blocked(&blocked); 2867 if (current->sas_ss_flags & SS_AUTODISARM) 2868 sas_ss_reset(current); 2869 tracehook_signal_handler(stepping); 2870 } 2871 2872 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2873 { 2874 if (failed) 2875 force_sigsegv(ksig->sig); 2876 else 2877 signal_delivered(ksig, stepping); 2878 } 2879 2880 /* 2881 * It could be that complete_signal() picked us to notify about the 2882 * group-wide signal. Other threads should be notified now to take 2883 * the shared signals in @which since we will not. 2884 */ 2885 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2886 { 2887 sigset_t retarget; 2888 struct task_struct *t; 2889 2890 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2891 if (sigisemptyset(&retarget)) 2892 return; 2893 2894 t = tsk; 2895 while_each_thread(tsk, t) { 2896 if (t->flags & PF_EXITING) 2897 continue; 2898 2899 if (!has_pending_signals(&retarget, &t->blocked)) 2900 continue; 2901 /* Remove the signals this thread can handle. */ 2902 sigandsets(&retarget, &retarget, &t->blocked); 2903 2904 if (!task_sigpending(t)) 2905 signal_wake_up(t, 0); 2906 2907 if (sigisemptyset(&retarget)) 2908 break; 2909 } 2910 } 2911 2912 void exit_signals(struct task_struct *tsk) 2913 { 2914 int group_stop = 0; 2915 sigset_t unblocked; 2916 2917 /* 2918 * @tsk is about to have PF_EXITING set - lock out users which 2919 * expect stable threadgroup. 2920 */ 2921 cgroup_threadgroup_change_begin(tsk); 2922 2923 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2924 tsk->flags |= PF_EXITING; 2925 cgroup_threadgroup_change_end(tsk); 2926 return; 2927 } 2928 2929 spin_lock_irq(&tsk->sighand->siglock); 2930 /* 2931 * From now this task is not visible for group-wide signals, 2932 * see wants_signal(), do_signal_stop(). 2933 */ 2934 tsk->flags |= PF_EXITING; 2935 2936 cgroup_threadgroup_change_end(tsk); 2937 2938 if (!task_sigpending(tsk)) 2939 goto out; 2940 2941 unblocked = tsk->blocked; 2942 signotset(&unblocked); 2943 retarget_shared_pending(tsk, &unblocked); 2944 2945 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2946 task_participate_group_stop(tsk)) 2947 group_stop = CLD_STOPPED; 2948 out: 2949 spin_unlock_irq(&tsk->sighand->siglock); 2950 2951 /* 2952 * If group stop has completed, deliver the notification. This 2953 * should always go to the real parent of the group leader. 2954 */ 2955 if (unlikely(group_stop)) { 2956 read_lock(&tasklist_lock); 2957 do_notify_parent_cldstop(tsk, false, group_stop); 2958 read_unlock(&tasklist_lock); 2959 } 2960 } 2961 2962 /* 2963 * System call entry points. 2964 */ 2965 2966 /** 2967 * sys_restart_syscall - restart a system call 2968 */ 2969 SYSCALL_DEFINE0(restart_syscall) 2970 { 2971 struct restart_block *restart = ¤t->restart_block; 2972 return restart->fn(restart); 2973 } 2974 2975 long do_no_restart_syscall(struct restart_block *param) 2976 { 2977 return -EINTR; 2978 } 2979 2980 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2981 { 2982 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 2983 sigset_t newblocked; 2984 /* A set of now blocked but previously unblocked signals. */ 2985 sigandnsets(&newblocked, newset, ¤t->blocked); 2986 retarget_shared_pending(tsk, &newblocked); 2987 } 2988 tsk->blocked = *newset; 2989 recalc_sigpending(); 2990 } 2991 2992 /** 2993 * set_current_blocked - change current->blocked mask 2994 * @newset: new mask 2995 * 2996 * It is wrong to change ->blocked directly, this helper should be used 2997 * to ensure the process can't miss a shared signal we are going to block. 2998 */ 2999 void set_current_blocked(sigset_t *newset) 3000 { 3001 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3002 __set_current_blocked(newset); 3003 } 3004 3005 void __set_current_blocked(const sigset_t *newset) 3006 { 3007 struct task_struct *tsk = current; 3008 3009 /* 3010 * In case the signal mask hasn't changed, there is nothing we need 3011 * to do. The current->blocked shouldn't be modified by other task. 3012 */ 3013 if (sigequalsets(&tsk->blocked, newset)) 3014 return; 3015 3016 spin_lock_irq(&tsk->sighand->siglock); 3017 __set_task_blocked(tsk, newset); 3018 spin_unlock_irq(&tsk->sighand->siglock); 3019 } 3020 3021 /* 3022 * This is also useful for kernel threads that want to temporarily 3023 * (or permanently) block certain signals. 3024 * 3025 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3026 * interface happily blocks "unblockable" signals like SIGKILL 3027 * and friends. 3028 */ 3029 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3030 { 3031 struct task_struct *tsk = current; 3032 sigset_t newset; 3033 3034 /* Lockless, only current can change ->blocked, never from irq */ 3035 if (oldset) 3036 *oldset = tsk->blocked; 3037 3038 switch (how) { 3039 case SIG_BLOCK: 3040 sigorsets(&newset, &tsk->blocked, set); 3041 break; 3042 case SIG_UNBLOCK: 3043 sigandnsets(&newset, &tsk->blocked, set); 3044 break; 3045 case SIG_SETMASK: 3046 newset = *set; 3047 break; 3048 default: 3049 return -EINVAL; 3050 } 3051 3052 __set_current_blocked(&newset); 3053 return 0; 3054 } 3055 EXPORT_SYMBOL(sigprocmask); 3056 3057 /* 3058 * The api helps set app-provided sigmasks. 3059 * 3060 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3061 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3062 * 3063 * Note that it does set_restore_sigmask() in advance, so it must be always 3064 * paired with restore_saved_sigmask_unless() before return from syscall. 3065 */ 3066 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3067 { 3068 sigset_t kmask; 3069 3070 if (!umask) 3071 return 0; 3072 if (sigsetsize != sizeof(sigset_t)) 3073 return -EINVAL; 3074 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3075 return -EFAULT; 3076 3077 set_restore_sigmask(); 3078 current->saved_sigmask = current->blocked; 3079 set_current_blocked(&kmask); 3080 3081 return 0; 3082 } 3083 3084 #ifdef CONFIG_COMPAT 3085 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3086 size_t sigsetsize) 3087 { 3088 sigset_t kmask; 3089 3090 if (!umask) 3091 return 0; 3092 if (sigsetsize != sizeof(compat_sigset_t)) 3093 return -EINVAL; 3094 if (get_compat_sigset(&kmask, umask)) 3095 return -EFAULT; 3096 3097 set_restore_sigmask(); 3098 current->saved_sigmask = current->blocked; 3099 set_current_blocked(&kmask); 3100 3101 return 0; 3102 } 3103 #endif 3104 3105 /** 3106 * sys_rt_sigprocmask - change the list of currently blocked signals 3107 * @how: whether to add, remove, or set signals 3108 * @nset: stores pending signals 3109 * @oset: previous value of signal mask if non-null 3110 * @sigsetsize: size of sigset_t type 3111 */ 3112 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3113 sigset_t __user *, oset, size_t, sigsetsize) 3114 { 3115 sigset_t old_set, new_set; 3116 int error; 3117 3118 /* XXX: Don't preclude handling different sized sigset_t's. */ 3119 if (sigsetsize != sizeof(sigset_t)) 3120 return -EINVAL; 3121 3122 old_set = current->blocked; 3123 3124 if (nset) { 3125 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3126 return -EFAULT; 3127 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3128 3129 error = sigprocmask(how, &new_set, NULL); 3130 if (error) 3131 return error; 3132 } 3133 3134 if (oset) { 3135 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3136 return -EFAULT; 3137 } 3138 3139 return 0; 3140 } 3141 3142 #ifdef CONFIG_COMPAT 3143 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3144 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3145 { 3146 sigset_t old_set = current->blocked; 3147 3148 /* XXX: Don't preclude handling different sized sigset_t's. */ 3149 if (sigsetsize != sizeof(sigset_t)) 3150 return -EINVAL; 3151 3152 if (nset) { 3153 sigset_t new_set; 3154 int error; 3155 if (get_compat_sigset(&new_set, nset)) 3156 return -EFAULT; 3157 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3158 3159 error = sigprocmask(how, &new_set, NULL); 3160 if (error) 3161 return error; 3162 } 3163 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3164 } 3165 #endif 3166 3167 static void do_sigpending(sigset_t *set) 3168 { 3169 spin_lock_irq(¤t->sighand->siglock); 3170 sigorsets(set, ¤t->pending.signal, 3171 ¤t->signal->shared_pending.signal); 3172 spin_unlock_irq(¤t->sighand->siglock); 3173 3174 /* Outside the lock because only this thread touches it. */ 3175 sigandsets(set, ¤t->blocked, set); 3176 } 3177 3178 /** 3179 * sys_rt_sigpending - examine a pending signal that has been raised 3180 * while blocked 3181 * @uset: stores pending signals 3182 * @sigsetsize: size of sigset_t type or larger 3183 */ 3184 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3185 { 3186 sigset_t set; 3187 3188 if (sigsetsize > sizeof(*uset)) 3189 return -EINVAL; 3190 3191 do_sigpending(&set); 3192 3193 if (copy_to_user(uset, &set, sigsetsize)) 3194 return -EFAULT; 3195 3196 return 0; 3197 } 3198 3199 #ifdef CONFIG_COMPAT 3200 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3201 compat_size_t, sigsetsize) 3202 { 3203 sigset_t set; 3204 3205 if (sigsetsize > sizeof(*uset)) 3206 return -EINVAL; 3207 3208 do_sigpending(&set); 3209 3210 return put_compat_sigset(uset, &set, sigsetsize); 3211 } 3212 #endif 3213 3214 static const struct { 3215 unsigned char limit, layout; 3216 } sig_sicodes[] = { 3217 [SIGILL] = { NSIGILL, SIL_FAULT }, 3218 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3219 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3220 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3221 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3222 #if defined(SIGEMT) 3223 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3224 #endif 3225 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3226 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3227 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3228 }; 3229 3230 static bool known_siginfo_layout(unsigned sig, int si_code) 3231 { 3232 if (si_code == SI_KERNEL) 3233 return true; 3234 else if ((si_code > SI_USER)) { 3235 if (sig_specific_sicodes(sig)) { 3236 if (si_code <= sig_sicodes[sig].limit) 3237 return true; 3238 } 3239 else if (si_code <= NSIGPOLL) 3240 return true; 3241 } 3242 else if (si_code >= SI_DETHREAD) 3243 return true; 3244 else if (si_code == SI_ASYNCNL) 3245 return true; 3246 return false; 3247 } 3248 3249 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3250 { 3251 enum siginfo_layout layout = SIL_KILL; 3252 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3253 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3254 (si_code <= sig_sicodes[sig].limit)) { 3255 layout = sig_sicodes[sig].layout; 3256 /* Handle the exceptions */ 3257 if ((sig == SIGBUS) && 3258 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3259 layout = SIL_FAULT_MCEERR; 3260 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3261 layout = SIL_FAULT_BNDERR; 3262 #ifdef SEGV_PKUERR 3263 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3264 layout = SIL_FAULT_PKUERR; 3265 #endif 3266 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3267 layout = SIL_FAULT_PERF_EVENT; 3268 else if (IS_ENABLED(CONFIG_SPARC) && 3269 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3270 layout = SIL_FAULT_TRAPNO; 3271 else if (IS_ENABLED(CONFIG_ALPHA) && 3272 ((sig == SIGFPE) || 3273 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3274 layout = SIL_FAULT_TRAPNO; 3275 } 3276 else if (si_code <= NSIGPOLL) 3277 layout = SIL_POLL; 3278 } else { 3279 if (si_code == SI_TIMER) 3280 layout = SIL_TIMER; 3281 else if (si_code == SI_SIGIO) 3282 layout = SIL_POLL; 3283 else if (si_code < 0) 3284 layout = SIL_RT; 3285 } 3286 return layout; 3287 } 3288 3289 static inline char __user *si_expansion(const siginfo_t __user *info) 3290 { 3291 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3292 } 3293 3294 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3295 { 3296 char __user *expansion = si_expansion(to); 3297 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3298 return -EFAULT; 3299 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3300 return -EFAULT; 3301 return 0; 3302 } 3303 3304 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3305 const siginfo_t __user *from) 3306 { 3307 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3308 char __user *expansion = si_expansion(from); 3309 char buf[SI_EXPANSION_SIZE]; 3310 int i; 3311 /* 3312 * An unknown si_code might need more than 3313 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3314 * extra bytes are 0. This guarantees copy_siginfo_to_user 3315 * will return this data to userspace exactly. 3316 */ 3317 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3318 return -EFAULT; 3319 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3320 if (buf[i] != 0) 3321 return -E2BIG; 3322 } 3323 } 3324 return 0; 3325 } 3326 3327 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3328 const siginfo_t __user *from) 3329 { 3330 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3331 return -EFAULT; 3332 to->si_signo = signo; 3333 return post_copy_siginfo_from_user(to, from); 3334 } 3335 3336 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3337 { 3338 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3339 return -EFAULT; 3340 return post_copy_siginfo_from_user(to, from); 3341 } 3342 3343 #ifdef CONFIG_COMPAT 3344 /** 3345 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3346 * @to: compat siginfo destination 3347 * @from: kernel siginfo source 3348 * 3349 * Note: This function does not work properly for the SIGCHLD on x32, but 3350 * fortunately it doesn't have to. The only valid callers for this function are 3351 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3352 * The latter does not care because SIGCHLD will never cause a coredump. 3353 */ 3354 void copy_siginfo_to_external32(struct compat_siginfo *to, 3355 const struct kernel_siginfo *from) 3356 { 3357 memset(to, 0, sizeof(*to)); 3358 3359 to->si_signo = from->si_signo; 3360 to->si_errno = from->si_errno; 3361 to->si_code = from->si_code; 3362 switch(siginfo_layout(from->si_signo, from->si_code)) { 3363 case SIL_KILL: 3364 to->si_pid = from->si_pid; 3365 to->si_uid = from->si_uid; 3366 break; 3367 case SIL_TIMER: 3368 to->si_tid = from->si_tid; 3369 to->si_overrun = from->si_overrun; 3370 to->si_int = from->si_int; 3371 break; 3372 case SIL_POLL: 3373 to->si_band = from->si_band; 3374 to->si_fd = from->si_fd; 3375 break; 3376 case SIL_FAULT: 3377 to->si_addr = ptr_to_compat(from->si_addr); 3378 break; 3379 case SIL_FAULT_TRAPNO: 3380 to->si_addr = ptr_to_compat(from->si_addr); 3381 to->si_trapno = from->si_trapno; 3382 break; 3383 case SIL_FAULT_MCEERR: 3384 to->si_addr = ptr_to_compat(from->si_addr); 3385 to->si_addr_lsb = from->si_addr_lsb; 3386 break; 3387 case SIL_FAULT_BNDERR: 3388 to->si_addr = ptr_to_compat(from->si_addr); 3389 to->si_lower = ptr_to_compat(from->si_lower); 3390 to->si_upper = ptr_to_compat(from->si_upper); 3391 break; 3392 case SIL_FAULT_PKUERR: 3393 to->si_addr = ptr_to_compat(from->si_addr); 3394 to->si_pkey = from->si_pkey; 3395 break; 3396 case SIL_FAULT_PERF_EVENT: 3397 to->si_addr = ptr_to_compat(from->si_addr); 3398 to->si_perf_data = from->si_perf_data; 3399 to->si_perf_type = from->si_perf_type; 3400 break; 3401 case SIL_CHLD: 3402 to->si_pid = from->si_pid; 3403 to->si_uid = from->si_uid; 3404 to->si_status = from->si_status; 3405 to->si_utime = from->si_utime; 3406 to->si_stime = from->si_stime; 3407 break; 3408 case SIL_RT: 3409 to->si_pid = from->si_pid; 3410 to->si_uid = from->si_uid; 3411 to->si_int = from->si_int; 3412 break; 3413 case SIL_SYS: 3414 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3415 to->si_syscall = from->si_syscall; 3416 to->si_arch = from->si_arch; 3417 break; 3418 } 3419 } 3420 3421 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3422 const struct kernel_siginfo *from) 3423 { 3424 struct compat_siginfo new; 3425 3426 copy_siginfo_to_external32(&new, from); 3427 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3428 return -EFAULT; 3429 return 0; 3430 } 3431 3432 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3433 const struct compat_siginfo *from) 3434 { 3435 clear_siginfo(to); 3436 to->si_signo = from->si_signo; 3437 to->si_errno = from->si_errno; 3438 to->si_code = from->si_code; 3439 switch(siginfo_layout(from->si_signo, from->si_code)) { 3440 case SIL_KILL: 3441 to->si_pid = from->si_pid; 3442 to->si_uid = from->si_uid; 3443 break; 3444 case SIL_TIMER: 3445 to->si_tid = from->si_tid; 3446 to->si_overrun = from->si_overrun; 3447 to->si_int = from->si_int; 3448 break; 3449 case SIL_POLL: 3450 to->si_band = from->si_band; 3451 to->si_fd = from->si_fd; 3452 break; 3453 case SIL_FAULT: 3454 to->si_addr = compat_ptr(from->si_addr); 3455 break; 3456 case SIL_FAULT_TRAPNO: 3457 to->si_addr = compat_ptr(from->si_addr); 3458 to->si_trapno = from->si_trapno; 3459 break; 3460 case SIL_FAULT_MCEERR: 3461 to->si_addr = compat_ptr(from->si_addr); 3462 to->si_addr_lsb = from->si_addr_lsb; 3463 break; 3464 case SIL_FAULT_BNDERR: 3465 to->si_addr = compat_ptr(from->si_addr); 3466 to->si_lower = compat_ptr(from->si_lower); 3467 to->si_upper = compat_ptr(from->si_upper); 3468 break; 3469 case SIL_FAULT_PKUERR: 3470 to->si_addr = compat_ptr(from->si_addr); 3471 to->si_pkey = from->si_pkey; 3472 break; 3473 case SIL_FAULT_PERF_EVENT: 3474 to->si_addr = compat_ptr(from->si_addr); 3475 to->si_perf_data = from->si_perf_data; 3476 to->si_perf_type = from->si_perf_type; 3477 break; 3478 case SIL_CHLD: 3479 to->si_pid = from->si_pid; 3480 to->si_uid = from->si_uid; 3481 to->si_status = from->si_status; 3482 #ifdef CONFIG_X86_X32_ABI 3483 if (in_x32_syscall()) { 3484 to->si_utime = from->_sifields._sigchld_x32._utime; 3485 to->si_stime = from->_sifields._sigchld_x32._stime; 3486 } else 3487 #endif 3488 { 3489 to->si_utime = from->si_utime; 3490 to->si_stime = from->si_stime; 3491 } 3492 break; 3493 case SIL_RT: 3494 to->si_pid = from->si_pid; 3495 to->si_uid = from->si_uid; 3496 to->si_int = from->si_int; 3497 break; 3498 case SIL_SYS: 3499 to->si_call_addr = compat_ptr(from->si_call_addr); 3500 to->si_syscall = from->si_syscall; 3501 to->si_arch = from->si_arch; 3502 break; 3503 } 3504 return 0; 3505 } 3506 3507 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3508 const struct compat_siginfo __user *ufrom) 3509 { 3510 struct compat_siginfo from; 3511 3512 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3513 return -EFAULT; 3514 3515 from.si_signo = signo; 3516 return post_copy_siginfo_from_user32(to, &from); 3517 } 3518 3519 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3520 const struct compat_siginfo __user *ufrom) 3521 { 3522 struct compat_siginfo from; 3523 3524 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3525 return -EFAULT; 3526 3527 return post_copy_siginfo_from_user32(to, &from); 3528 } 3529 #endif /* CONFIG_COMPAT */ 3530 3531 /** 3532 * do_sigtimedwait - wait for queued signals specified in @which 3533 * @which: queued signals to wait for 3534 * @info: if non-null, the signal's siginfo is returned here 3535 * @ts: upper bound on process time suspension 3536 */ 3537 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3538 const struct timespec64 *ts) 3539 { 3540 ktime_t *to = NULL, timeout = KTIME_MAX; 3541 struct task_struct *tsk = current; 3542 sigset_t mask = *which; 3543 int sig, ret = 0; 3544 3545 if (ts) { 3546 if (!timespec64_valid(ts)) 3547 return -EINVAL; 3548 timeout = timespec64_to_ktime(*ts); 3549 to = &timeout; 3550 } 3551 3552 /* 3553 * Invert the set of allowed signals to get those we want to block. 3554 */ 3555 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3556 signotset(&mask); 3557 3558 spin_lock_irq(&tsk->sighand->siglock); 3559 sig = dequeue_signal(tsk, &mask, info); 3560 if (!sig && timeout) { 3561 /* 3562 * None ready, temporarily unblock those we're interested 3563 * while we are sleeping in so that we'll be awakened when 3564 * they arrive. Unblocking is always fine, we can avoid 3565 * set_current_blocked(). 3566 */ 3567 tsk->real_blocked = tsk->blocked; 3568 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3569 recalc_sigpending(); 3570 spin_unlock_irq(&tsk->sighand->siglock); 3571 3572 __set_current_state(TASK_INTERRUPTIBLE); 3573 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3574 HRTIMER_MODE_REL); 3575 spin_lock_irq(&tsk->sighand->siglock); 3576 __set_task_blocked(tsk, &tsk->real_blocked); 3577 sigemptyset(&tsk->real_blocked); 3578 sig = dequeue_signal(tsk, &mask, info); 3579 } 3580 spin_unlock_irq(&tsk->sighand->siglock); 3581 3582 if (sig) 3583 return sig; 3584 return ret ? -EINTR : -EAGAIN; 3585 } 3586 3587 /** 3588 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3589 * in @uthese 3590 * @uthese: queued signals to wait for 3591 * @uinfo: if non-null, the signal's siginfo is returned here 3592 * @uts: upper bound on process time suspension 3593 * @sigsetsize: size of sigset_t type 3594 */ 3595 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3596 siginfo_t __user *, uinfo, 3597 const struct __kernel_timespec __user *, uts, 3598 size_t, sigsetsize) 3599 { 3600 sigset_t these; 3601 struct timespec64 ts; 3602 kernel_siginfo_t info; 3603 int ret; 3604 3605 /* XXX: Don't preclude handling different sized sigset_t's. */ 3606 if (sigsetsize != sizeof(sigset_t)) 3607 return -EINVAL; 3608 3609 if (copy_from_user(&these, uthese, sizeof(these))) 3610 return -EFAULT; 3611 3612 if (uts) { 3613 if (get_timespec64(&ts, uts)) 3614 return -EFAULT; 3615 } 3616 3617 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3618 3619 if (ret > 0 && uinfo) { 3620 if (copy_siginfo_to_user(uinfo, &info)) 3621 ret = -EFAULT; 3622 } 3623 3624 return ret; 3625 } 3626 3627 #ifdef CONFIG_COMPAT_32BIT_TIME 3628 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3629 siginfo_t __user *, uinfo, 3630 const struct old_timespec32 __user *, uts, 3631 size_t, sigsetsize) 3632 { 3633 sigset_t these; 3634 struct timespec64 ts; 3635 kernel_siginfo_t info; 3636 int ret; 3637 3638 if (sigsetsize != sizeof(sigset_t)) 3639 return -EINVAL; 3640 3641 if (copy_from_user(&these, uthese, sizeof(these))) 3642 return -EFAULT; 3643 3644 if (uts) { 3645 if (get_old_timespec32(&ts, uts)) 3646 return -EFAULT; 3647 } 3648 3649 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3650 3651 if (ret > 0 && uinfo) { 3652 if (copy_siginfo_to_user(uinfo, &info)) 3653 ret = -EFAULT; 3654 } 3655 3656 return ret; 3657 } 3658 #endif 3659 3660 #ifdef CONFIG_COMPAT 3661 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3662 struct compat_siginfo __user *, uinfo, 3663 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3664 { 3665 sigset_t s; 3666 struct timespec64 t; 3667 kernel_siginfo_t info; 3668 long ret; 3669 3670 if (sigsetsize != sizeof(sigset_t)) 3671 return -EINVAL; 3672 3673 if (get_compat_sigset(&s, uthese)) 3674 return -EFAULT; 3675 3676 if (uts) { 3677 if (get_timespec64(&t, uts)) 3678 return -EFAULT; 3679 } 3680 3681 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3682 3683 if (ret > 0 && uinfo) { 3684 if (copy_siginfo_to_user32(uinfo, &info)) 3685 ret = -EFAULT; 3686 } 3687 3688 return ret; 3689 } 3690 3691 #ifdef CONFIG_COMPAT_32BIT_TIME 3692 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3693 struct compat_siginfo __user *, uinfo, 3694 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3695 { 3696 sigset_t s; 3697 struct timespec64 t; 3698 kernel_siginfo_t info; 3699 long ret; 3700 3701 if (sigsetsize != sizeof(sigset_t)) 3702 return -EINVAL; 3703 3704 if (get_compat_sigset(&s, uthese)) 3705 return -EFAULT; 3706 3707 if (uts) { 3708 if (get_old_timespec32(&t, uts)) 3709 return -EFAULT; 3710 } 3711 3712 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3713 3714 if (ret > 0 && uinfo) { 3715 if (copy_siginfo_to_user32(uinfo, &info)) 3716 ret = -EFAULT; 3717 } 3718 3719 return ret; 3720 } 3721 #endif 3722 #endif 3723 3724 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3725 { 3726 clear_siginfo(info); 3727 info->si_signo = sig; 3728 info->si_errno = 0; 3729 info->si_code = SI_USER; 3730 info->si_pid = task_tgid_vnr(current); 3731 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3732 } 3733 3734 /** 3735 * sys_kill - send a signal to a process 3736 * @pid: the PID of the process 3737 * @sig: signal to be sent 3738 */ 3739 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3740 { 3741 struct kernel_siginfo info; 3742 3743 prepare_kill_siginfo(sig, &info); 3744 3745 return kill_something_info(sig, &info, pid); 3746 } 3747 3748 /* 3749 * Verify that the signaler and signalee either are in the same pid namespace 3750 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3751 * namespace. 3752 */ 3753 static bool access_pidfd_pidns(struct pid *pid) 3754 { 3755 struct pid_namespace *active = task_active_pid_ns(current); 3756 struct pid_namespace *p = ns_of_pid(pid); 3757 3758 for (;;) { 3759 if (!p) 3760 return false; 3761 if (p == active) 3762 break; 3763 p = p->parent; 3764 } 3765 3766 return true; 3767 } 3768 3769 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3770 siginfo_t __user *info) 3771 { 3772 #ifdef CONFIG_COMPAT 3773 /* 3774 * Avoid hooking up compat syscalls and instead handle necessary 3775 * conversions here. Note, this is a stop-gap measure and should not be 3776 * considered a generic solution. 3777 */ 3778 if (in_compat_syscall()) 3779 return copy_siginfo_from_user32( 3780 kinfo, (struct compat_siginfo __user *)info); 3781 #endif 3782 return copy_siginfo_from_user(kinfo, info); 3783 } 3784 3785 static struct pid *pidfd_to_pid(const struct file *file) 3786 { 3787 struct pid *pid; 3788 3789 pid = pidfd_pid(file); 3790 if (!IS_ERR(pid)) 3791 return pid; 3792 3793 return tgid_pidfd_to_pid(file); 3794 } 3795 3796 /** 3797 * sys_pidfd_send_signal - Signal a process through a pidfd 3798 * @pidfd: file descriptor of the process 3799 * @sig: signal to send 3800 * @info: signal info 3801 * @flags: future flags 3802 * 3803 * The syscall currently only signals via PIDTYPE_PID which covers 3804 * kill(<positive-pid>, <signal>. It does not signal threads or process 3805 * groups. 3806 * In order to extend the syscall to threads and process groups the @flags 3807 * argument should be used. In essence, the @flags argument will determine 3808 * what is signaled and not the file descriptor itself. Put in other words, 3809 * grouping is a property of the flags argument not a property of the file 3810 * descriptor. 3811 * 3812 * Return: 0 on success, negative errno on failure 3813 */ 3814 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3815 siginfo_t __user *, info, unsigned int, flags) 3816 { 3817 int ret; 3818 struct fd f; 3819 struct pid *pid; 3820 kernel_siginfo_t kinfo; 3821 3822 /* Enforce flags be set to 0 until we add an extension. */ 3823 if (flags) 3824 return -EINVAL; 3825 3826 f = fdget(pidfd); 3827 if (!f.file) 3828 return -EBADF; 3829 3830 /* Is this a pidfd? */ 3831 pid = pidfd_to_pid(f.file); 3832 if (IS_ERR(pid)) { 3833 ret = PTR_ERR(pid); 3834 goto err; 3835 } 3836 3837 ret = -EINVAL; 3838 if (!access_pidfd_pidns(pid)) 3839 goto err; 3840 3841 if (info) { 3842 ret = copy_siginfo_from_user_any(&kinfo, info); 3843 if (unlikely(ret)) 3844 goto err; 3845 3846 ret = -EINVAL; 3847 if (unlikely(sig != kinfo.si_signo)) 3848 goto err; 3849 3850 /* Only allow sending arbitrary signals to yourself. */ 3851 ret = -EPERM; 3852 if ((task_pid(current) != pid) && 3853 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3854 goto err; 3855 } else { 3856 prepare_kill_siginfo(sig, &kinfo); 3857 } 3858 3859 ret = kill_pid_info(sig, &kinfo, pid); 3860 3861 err: 3862 fdput(f); 3863 return ret; 3864 } 3865 3866 static int 3867 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3868 { 3869 struct task_struct *p; 3870 int error = -ESRCH; 3871 3872 rcu_read_lock(); 3873 p = find_task_by_vpid(pid); 3874 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3875 error = check_kill_permission(sig, info, p); 3876 /* 3877 * The null signal is a permissions and process existence 3878 * probe. No signal is actually delivered. 3879 */ 3880 if (!error && sig) { 3881 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3882 /* 3883 * If lock_task_sighand() failed we pretend the task 3884 * dies after receiving the signal. The window is tiny, 3885 * and the signal is private anyway. 3886 */ 3887 if (unlikely(error == -ESRCH)) 3888 error = 0; 3889 } 3890 } 3891 rcu_read_unlock(); 3892 3893 return error; 3894 } 3895 3896 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3897 { 3898 struct kernel_siginfo info; 3899 3900 clear_siginfo(&info); 3901 info.si_signo = sig; 3902 info.si_errno = 0; 3903 info.si_code = SI_TKILL; 3904 info.si_pid = task_tgid_vnr(current); 3905 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3906 3907 return do_send_specific(tgid, pid, sig, &info); 3908 } 3909 3910 /** 3911 * sys_tgkill - send signal to one specific thread 3912 * @tgid: the thread group ID of the thread 3913 * @pid: the PID of the thread 3914 * @sig: signal to be sent 3915 * 3916 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3917 * exists but it's not belonging to the target process anymore. This 3918 * method solves the problem of threads exiting and PIDs getting reused. 3919 */ 3920 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3921 { 3922 /* This is only valid for single tasks */ 3923 if (pid <= 0 || tgid <= 0) 3924 return -EINVAL; 3925 3926 return do_tkill(tgid, pid, sig); 3927 } 3928 3929 /** 3930 * sys_tkill - send signal to one specific task 3931 * @pid: the PID of the task 3932 * @sig: signal to be sent 3933 * 3934 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3935 */ 3936 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3937 { 3938 /* This is only valid for single tasks */ 3939 if (pid <= 0) 3940 return -EINVAL; 3941 3942 return do_tkill(0, pid, sig); 3943 } 3944 3945 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 3946 { 3947 /* Not even root can pretend to send signals from the kernel. 3948 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3949 */ 3950 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3951 (task_pid_vnr(current) != pid)) 3952 return -EPERM; 3953 3954 /* POSIX.1b doesn't mention process groups. */ 3955 return kill_proc_info(sig, info, pid); 3956 } 3957 3958 /** 3959 * sys_rt_sigqueueinfo - send signal information to a signal 3960 * @pid: the PID of the thread 3961 * @sig: signal to be sent 3962 * @uinfo: signal info to be sent 3963 */ 3964 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3965 siginfo_t __user *, uinfo) 3966 { 3967 kernel_siginfo_t info; 3968 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3969 if (unlikely(ret)) 3970 return ret; 3971 return do_rt_sigqueueinfo(pid, sig, &info); 3972 } 3973 3974 #ifdef CONFIG_COMPAT 3975 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3976 compat_pid_t, pid, 3977 int, sig, 3978 struct compat_siginfo __user *, uinfo) 3979 { 3980 kernel_siginfo_t info; 3981 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 3982 if (unlikely(ret)) 3983 return ret; 3984 return do_rt_sigqueueinfo(pid, sig, &info); 3985 } 3986 #endif 3987 3988 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 3989 { 3990 /* This is only valid for single tasks */ 3991 if (pid <= 0 || tgid <= 0) 3992 return -EINVAL; 3993 3994 /* Not even root can pretend to send signals from the kernel. 3995 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3996 */ 3997 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3998 (task_pid_vnr(current) != pid)) 3999 return -EPERM; 4000 4001 return do_send_specific(tgid, pid, sig, info); 4002 } 4003 4004 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4005 siginfo_t __user *, uinfo) 4006 { 4007 kernel_siginfo_t info; 4008 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4009 if (unlikely(ret)) 4010 return ret; 4011 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4012 } 4013 4014 #ifdef CONFIG_COMPAT 4015 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4016 compat_pid_t, tgid, 4017 compat_pid_t, pid, 4018 int, sig, 4019 struct compat_siginfo __user *, uinfo) 4020 { 4021 kernel_siginfo_t info; 4022 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4023 if (unlikely(ret)) 4024 return ret; 4025 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4026 } 4027 #endif 4028 4029 /* 4030 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4031 */ 4032 void kernel_sigaction(int sig, __sighandler_t action) 4033 { 4034 spin_lock_irq(¤t->sighand->siglock); 4035 current->sighand->action[sig - 1].sa.sa_handler = action; 4036 if (action == SIG_IGN) { 4037 sigset_t mask; 4038 4039 sigemptyset(&mask); 4040 sigaddset(&mask, sig); 4041 4042 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4043 flush_sigqueue_mask(&mask, ¤t->pending); 4044 recalc_sigpending(); 4045 } 4046 spin_unlock_irq(¤t->sighand->siglock); 4047 } 4048 EXPORT_SYMBOL(kernel_sigaction); 4049 4050 void __weak sigaction_compat_abi(struct k_sigaction *act, 4051 struct k_sigaction *oact) 4052 { 4053 } 4054 4055 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4056 { 4057 struct task_struct *p = current, *t; 4058 struct k_sigaction *k; 4059 sigset_t mask; 4060 4061 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4062 return -EINVAL; 4063 4064 k = &p->sighand->action[sig-1]; 4065 4066 spin_lock_irq(&p->sighand->siglock); 4067 if (k->sa.sa_flags & SA_IMMUTABLE) { 4068 spin_unlock_irq(&p->sighand->siglock); 4069 return -EINVAL; 4070 } 4071 if (oact) 4072 *oact = *k; 4073 4074 /* 4075 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4076 * e.g. by having an architecture use the bit in their uapi. 4077 */ 4078 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4079 4080 /* 4081 * Clear unknown flag bits in order to allow userspace to detect missing 4082 * support for flag bits and to allow the kernel to use non-uapi bits 4083 * internally. 4084 */ 4085 if (act) 4086 act->sa.sa_flags &= UAPI_SA_FLAGS; 4087 if (oact) 4088 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4089 4090 sigaction_compat_abi(act, oact); 4091 4092 if (act) { 4093 sigdelsetmask(&act->sa.sa_mask, 4094 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4095 *k = *act; 4096 /* 4097 * POSIX 3.3.1.3: 4098 * "Setting a signal action to SIG_IGN for a signal that is 4099 * pending shall cause the pending signal to be discarded, 4100 * whether or not it is blocked." 4101 * 4102 * "Setting a signal action to SIG_DFL for a signal that is 4103 * pending and whose default action is to ignore the signal 4104 * (for example, SIGCHLD), shall cause the pending signal to 4105 * be discarded, whether or not it is blocked" 4106 */ 4107 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4108 sigemptyset(&mask); 4109 sigaddset(&mask, sig); 4110 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4111 for_each_thread(p, t) 4112 flush_sigqueue_mask(&mask, &t->pending); 4113 } 4114 } 4115 4116 spin_unlock_irq(&p->sighand->siglock); 4117 return 0; 4118 } 4119 4120 #ifdef CONFIG_DYNAMIC_SIGFRAME 4121 static inline void sigaltstack_lock(void) 4122 __acquires(¤t->sighand->siglock) 4123 { 4124 spin_lock_irq(¤t->sighand->siglock); 4125 } 4126 4127 static inline void sigaltstack_unlock(void) 4128 __releases(¤t->sighand->siglock) 4129 { 4130 spin_unlock_irq(¤t->sighand->siglock); 4131 } 4132 #else 4133 static inline void sigaltstack_lock(void) { } 4134 static inline void sigaltstack_unlock(void) { } 4135 #endif 4136 4137 static int 4138 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4139 size_t min_ss_size) 4140 { 4141 struct task_struct *t = current; 4142 int ret = 0; 4143 4144 if (oss) { 4145 memset(oss, 0, sizeof(stack_t)); 4146 oss->ss_sp = (void __user *) t->sas_ss_sp; 4147 oss->ss_size = t->sas_ss_size; 4148 oss->ss_flags = sas_ss_flags(sp) | 4149 (current->sas_ss_flags & SS_FLAG_BITS); 4150 } 4151 4152 if (ss) { 4153 void __user *ss_sp = ss->ss_sp; 4154 size_t ss_size = ss->ss_size; 4155 unsigned ss_flags = ss->ss_flags; 4156 int ss_mode; 4157 4158 if (unlikely(on_sig_stack(sp))) 4159 return -EPERM; 4160 4161 ss_mode = ss_flags & ~SS_FLAG_BITS; 4162 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4163 ss_mode != 0)) 4164 return -EINVAL; 4165 4166 sigaltstack_lock(); 4167 if (ss_mode == SS_DISABLE) { 4168 ss_size = 0; 4169 ss_sp = NULL; 4170 } else { 4171 if (unlikely(ss_size < min_ss_size)) 4172 ret = -ENOMEM; 4173 if (!sigaltstack_size_valid(ss_size)) 4174 ret = -ENOMEM; 4175 } 4176 if (!ret) { 4177 t->sas_ss_sp = (unsigned long) ss_sp; 4178 t->sas_ss_size = ss_size; 4179 t->sas_ss_flags = ss_flags; 4180 } 4181 sigaltstack_unlock(); 4182 } 4183 return ret; 4184 } 4185 4186 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4187 { 4188 stack_t new, old; 4189 int err; 4190 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4191 return -EFAULT; 4192 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4193 current_user_stack_pointer(), 4194 MINSIGSTKSZ); 4195 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4196 err = -EFAULT; 4197 return err; 4198 } 4199 4200 int restore_altstack(const stack_t __user *uss) 4201 { 4202 stack_t new; 4203 if (copy_from_user(&new, uss, sizeof(stack_t))) 4204 return -EFAULT; 4205 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4206 MINSIGSTKSZ); 4207 /* squash all but EFAULT for now */ 4208 return 0; 4209 } 4210 4211 int __save_altstack(stack_t __user *uss, unsigned long sp) 4212 { 4213 struct task_struct *t = current; 4214 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4215 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4216 __put_user(t->sas_ss_size, &uss->ss_size); 4217 return err; 4218 } 4219 4220 #ifdef CONFIG_COMPAT 4221 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4222 compat_stack_t __user *uoss_ptr) 4223 { 4224 stack_t uss, uoss; 4225 int ret; 4226 4227 if (uss_ptr) { 4228 compat_stack_t uss32; 4229 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4230 return -EFAULT; 4231 uss.ss_sp = compat_ptr(uss32.ss_sp); 4232 uss.ss_flags = uss32.ss_flags; 4233 uss.ss_size = uss32.ss_size; 4234 } 4235 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4236 compat_user_stack_pointer(), 4237 COMPAT_MINSIGSTKSZ); 4238 if (ret >= 0 && uoss_ptr) { 4239 compat_stack_t old; 4240 memset(&old, 0, sizeof(old)); 4241 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4242 old.ss_flags = uoss.ss_flags; 4243 old.ss_size = uoss.ss_size; 4244 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4245 ret = -EFAULT; 4246 } 4247 return ret; 4248 } 4249 4250 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4251 const compat_stack_t __user *, uss_ptr, 4252 compat_stack_t __user *, uoss_ptr) 4253 { 4254 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4255 } 4256 4257 int compat_restore_altstack(const compat_stack_t __user *uss) 4258 { 4259 int err = do_compat_sigaltstack(uss, NULL); 4260 /* squash all but -EFAULT for now */ 4261 return err == -EFAULT ? err : 0; 4262 } 4263 4264 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4265 { 4266 int err; 4267 struct task_struct *t = current; 4268 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4269 &uss->ss_sp) | 4270 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4271 __put_user(t->sas_ss_size, &uss->ss_size); 4272 return err; 4273 } 4274 #endif 4275 4276 #ifdef __ARCH_WANT_SYS_SIGPENDING 4277 4278 /** 4279 * sys_sigpending - examine pending signals 4280 * @uset: where mask of pending signal is returned 4281 */ 4282 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4283 { 4284 sigset_t set; 4285 4286 if (sizeof(old_sigset_t) > sizeof(*uset)) 4287 return -EINVAL; 4288 4289 do_sigpending(&set); 4290 4291 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4292 return -EFAULT; 4293 4294 return 0; 4295 } 4296 4297 #ifdef CONFIG_COMPAT 4298 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4299 { 4300 sigset_t set; 4301 4302 do_sigpending(&set); 4303 4304 return put_user(set.sig[0], set32); 4305 } 4306 #endif 4307 4308 #endif 4309 4310 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4311 /** 4312 * sys_sigprocmask - examine and change blocked signals 4313 * @how: whether to add, remove, or set signals 4314 * @nset: signals to add or remove (if non-null) 4315 * @oset: previous value of signal mask if non-null 4316 * 4317 * Some platforms have their own version with special arguments; 4318 * others support only sys_rt_sigprocmask. 4319 */ 4320 4321 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4322 old_sigset_t __user *, oset) 4323 { 4324 old_sigset_t old_set, new_set; 4325 sigset_t new_blocked; 4326 4327 old_set = current->blocked.sig[0]; 4328 4329 if (nset) { 4330 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4331 return -EFAULT; 4332 4333 new_blocked = current->blocked; 4334 4335 switch (how) { 4336 case SIG_BLOCK: 4337 sigaddsetmask(&new_blocked, new_set); 4338 break; 4339 case SIG_UNBLOCK: 4340 sigdelsetmask(&new_blocked, new_set); 4341 break; 4342 case SIG_SETMASK: 4343 new_blocked.sig[0] = new_set; 4344 break; 4345 default: 4346 return -EINVAL; 4347 } 4348 4349 set_current_blocked(&new_blocked); 4350 } 4351 4352 if (oset) { 4353 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4354 return -EFAULT; 4355 } 4356 4357 return 0; 4358 } 4359 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4360 4361 #ifndef CONFIG_ODD_RT_SIGACTION 4362 /** 4363 * sys_rt_sigaction - alter an action taken by a process 4364 * @sig: signal to be sent 4365 * @act: new sigaction 4366 * @oact: used to save the previous sigaction 4367 * @sigsetsize: size of sigset_t type 4368 */ 4369 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4370 const struct sigaction __user *, act, 4371 struct sigaction __user *, oact, 4372 size_t, sigsetsize) 4373 { 4374 struct k_sigaction new_sa, old_sa; 4375 int ret; 4376 4377 /* XXX: Don't preclude handling different sized sigset_t's. */ 4378 if (sigsetsize != sizeof(sigset_t)) 4379 return -EINVAL; 4380 4381 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4382 return -EFAULT; 4383 4384 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4385 if (ret) 4386 return ret; 4387 4388 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4389 return -EFAULT; 4390 4391 return 0; 4392 } 4393 #ifdef CONFIG_COMPAT 4394 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4395 const struct compat_sigaction __user *, act, 4396 struct compat_sigaction __user *, oact, 4397 compat_size_t, sigsetsize) 4398 { 4399 struct k_sigaction new_ka, old_ka; 4400 #ifdef __ARCH_HAS_SA_RESTORER 4401 compat_uptr_t restorer; 4402 #endif 4403 int ret; 4404 4405 /* XXX: Don't preclude handling different sized sigset_t's. */ 4406 if (sigsetsize != sizeof(compat_sigset_t)) 4407 return -EINVAL; 4408 4409 if (act) { 4410 compat_uptr_t handler; 4411 ret = get_user(handler, &act->sa_handler); 4412 new_ka.sa.sa_handler = compat_ptr(handler); 4413 #ifdef __ARCH_HAS_SA_RESTORER 4414 ret |= get_user(restorer, &act->sa_restorer); 4415 new_ka.sa.sa_restorer = compat_ptr(restorer); 4416 #endif 4417 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4418 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4419 if (ret) 4420 return -EFAULT; 4421 } 4422 4423 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4424 if (!ret && oact) { 4425 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4426 &oact->sa_handler); 4427 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4428 sizeof(oact->sa_mask)); 4429 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4430 #ifdef __ARCH_HAS_SA_RESTORER 4431 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4432 &oact->sa_restorer); 4433 #endif 4434 } 4435 return ret; 4436 } 4437 #endif 4438 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4439 4440 #ifdef CONFIG_OLD_SIGACTION 4441 SYSCALL_DEFINE3(sigaction, int, sig, 4442 const struct old_sigaction __user *, act, 4443 struct old_sigaction __user *, oact) 4444 { 4445 struct k_sigaction new_ka, old_ka; 4446 int ret; 4447 4448 if (act) { 4449 old_sigset_t mask; 4450 if (!access_ok(act, sizeof(*act)) || 4451 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4452 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4453 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4454 __get_user(mask, &act->sa_mask)) 4455 return -EFAULT; 4456 #ifdef __ARCH_HAS_KA_RESTORER 4457 new_ka.ka_restorer = NULL; 4458 #endif 4459 siginitset(&new_ka.sa.sa_mask, mask); 4460 } 4461 4462 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4463 4464 if (!ret && oact) { 4465 if (!access_ok(oact, sizeof(*oact)) || 4466 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4467 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4468 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4469 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4470 return -EFAULT; 4471 } 4472 4473 return ret; 4474 } 4475 #endif 4476 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4477 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4478 const struct compat_old_sigaction __user *, act, 4479 struct compat_old_sigaction __user *, oact) 4480 { 4481 struct k_sigaction new_ka, old_ka; 4482 int ret; 4483 compat_old_sigset_t mask; 4484 compat_uptr_t handler, restorer; 4485 4486 if (act) { 4487 if (!access_ok(act, sizeof(*act)) || 4488 __get_user(handler, &act->sa_handler) || 4489 __get_user(restorer, &act->sa_restorer) || 4490 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4491 __get_user(mask, &act->sa_mask)) 4492 return -EFAULT; 4493 4494 #ifdef __ARCH_HAS_KA_RESTORER 4495 new_ka.ka_restorer = NULL; 4496 #endif 4497 new_ka.sa.sa_handler = compat_ptr(handler); 4498 new_ka.sa.sa_restorer = compat_ptr(restorer); 4499 siginitset(&new_ka.sa.sa_mask, mask); 4500 } 4501 4502 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4503 4504 if (!ret && oact) { 4505 if (!access_ok(oact, sizeof(*oact)) || 4506 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4507 &oact->sa_handler) || 4508 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4509 &oact->sa_restorer) || 4510 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4511 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4512 return -EFAULT; 4513 } 4514 return ret; 4515 } 4516 #endif 4517 4518 #ifdef CONFIG_SGETMASK_SYSCALL 4519 4520 /* 4521 * For backwards compatibility. Functionality superseded by sigprocmask. 4522 */ 4523 SYSCALL_DEFINE0(sgetmask) 4524 { 4525 /* SMP safe */ 4526 return current->blocked.sig[0]; 4527 } 4528 4529 SYSCALL_DEFINE1(ssetmask, int, newmask) 4530 { 4531 int old = current->blocked.sig[0]; 4532 sigset_t newset; 4533 4534 siginitset(&newset, newmask); 4535 set_current_blocked(&newset); 4536 4537 return old; 4538 } 4539 #endif /* CONFIG_SGETMASK_SYSCALL */ 4540 4541 #ifdef __ARCH_WANT_SYS_SIGNAL 4542 /* 4543 * For backwards compatibility. Functionality superseded by sigaction. 4544 */ 4545 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4546 { 4547 struct k_sigaction new_sa, old_sa; 4548 int ret; 4549 4550 new_sa.sa.sa_handler = handler; 4551 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4552 sigemptyset(&new_sa.sa.sa_mask); 4553 4554 ret = do_sigaction(sig, &new_sa, &old_sa); 4555 4556 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4557 } 4558 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4559 4560 #ifdef __ARCH_WANT_SYS_PAUSE 4561 4562 SYSCALL_DEFINE0(pause) 4563 { 4564 while (!signal_pending(current)) { 4565 __set_current_state(TASK_INTERRUPTIBLE); 4566 schedule(); 4567 } 4568 return -ERESTARTNOHAND; 4569 } 4570 4571 #endif 4572 4573 static int sigsuspend(sigset_t *set) 4574 { 4575 current->saved_sigmask = current->blocked; 4576 set_current_blocked(set); 4577 4578 while (!signal_pending(current)) { 4579 __set_current_state(TASK_INTERRUPTIBLE); 4580 schedule(); 4581 } 4582 set_restore_sigmask(); 4583 return -ERESTARTNOHAND; 4584 } 4585 4586 /** 4587 * sys_rt_sigsuspend - replace the signal mask for a value with the 4588 * @unewset value until a signal is received 4589 * @unewset: new signal mask value 4590 * @sigsetsize: size of sigset_t type 4591 */ 4592 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4593 { 4594 sigset_t newset; 4595 4596 /* XXX: Don't preclude handling different sized sigset_t's. */ 4597 if (sigsetsize != sizeof(sigset_t)) 4598 return -EINVAL; 4599 4600 if (copy_from_user(&newset, unewset, sizeof(newset))) 4601 return -EFAULT; 4602 return sigsuspend(&newset); 4603 } 4604 4605 #ifdef CONFIG_COMPAT 4606 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4607 { 4608 sigset_t newset; 4609 4610 /* XXX: Don't preclude handling different sized sigset_t's. */ 4611 if (sigsetsize != sizeof(sigset_t)) 4612 return -EINVAL; 4613 4614 if (get_compat_sigset(&newset, unewset)) 4615 return -EFAULT; 4616 return sigsuspend(&newset); 4617 } 4618 #endif 4619 4620 #ifdef CONFIG_OLD_SIGSUSPEND 4621 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4622 { 4623 sigset_t blocked; 4624 siginitset(&blocked, mask); 4625 return sigsuspend(&blocked); 4626 } 4627 #endif 4628 #ifdef CONFIG_OLD_SIGSUSPEND3 4629 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4630 { 4631 sigset_t blocked; 4632 siginitset(&blocked, mask); 4633 return sigsuspend(&blocked); 4634 } 4635 #endif 4636 4637 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4638 { 4639 return NULL; 4640 } 4641 4642 static inline void siginfo_buildtime_checks(void) 4643 { 4644 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4645 4646 /* Verify the offsets in the two siginfos match */ 4647 #define CHECK_OFFSET(field) \ 4648 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4649 4650 /* kill */ 4651 CHECK_OFFSET(si_pid); 4652 CHECK_OFFSET(si_uid); 4653 4654 /* timer */ 4655 CHECK_OFFSET(si_tid); 4656 CHECK_OFFSET(si_overrun); 4657 CHECK_OFFSET(si_value); 4658 4659 /* rt */ 4660 CHECK_OFFSET(si_pid); 4661 CHECK_OFFSET(si_uid); 4662 CHECK_OFFSET(si_value); 4663 4664 /* sigchld */ 4665 CHECK_OFFSET(si_pid); 4666 CHECK_OFFSET(si_uid); 4667 CHECK_OFFSET(si_status); 4668 CHECK_OFFSET(si_utime); 4669 CHECK_OFFSET(si_stime); 4670 4671 /* sigfault */ 4672 CHECK_OFFSET(si_addr); 4673 CHECK_OFFSET(si_trapno); 4674 CHECK_OFFSET(si_addr_lsb); 4675 CHECK_OFFSET(si_lower); 4676 CHECK_OFFSET(si_upper); 4677 CHECK_OFFSET(si_pkey); 4678 CHECK_OFFSET(si_perf_data); 4679 CHECK_OFFSET(si_perf_type); 4680 4681 /* sigpoll */ 4682 CHECK_OFFSET(si_band); 4683 CHECK_OFFSET(si_fd); 4684 4685 /* sigsys */ 4686 CHECK_OFFSET(si_call_addr); 4687 CHECK_OFFSET(si_syscall); 4688 CHECK_OFFSET(si_arch); 4689 #undef CHECK_OFFSET 4690 4691 /* usb asyncio */ 4692 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4693 offsetof(struct siginfo, si_addr)); 4694 if (sizeof(int) == sizeof(void __user *)) { 4695 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4696 sizeof(void __user *)); 4697 } else { 4698 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4699 sizeof_field(struct siginfo, si_uid)) != 4700 sizeof(void __user *)); 4701 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4702 offsetof(struct siginfo, si_uid)); 4703 } 4704 #ifdef CONFIG_COMPAT 4705 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4706 offsetof(struct compat_siginfo, si_addr)); 4707 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4708 sizeof(compat_uptr_t)); 4709 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4710 sizeof_field(struct siginfo, si_pid)); 4711 #endif 4712 } 4713 4714 void __init signals_init(void) 4715 { 4716 siginfo_buildtime_checks(); 4717 4718 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4719 } 4720 4721 #ifdef CONFIG_KGDB_KDB 4722 #include <linux/kdb.h> 4723 /* 4724 * kdb_send_sig - Allows kdb to send signals without exposing 4725 * signal internals. This function checks if the required locks are 4726 * available before calling the main signal code, to avoid kdb 4727 * deadlocks. 4728 */ 4729 void kdb_send_sig(struct task_struct *t, int sig) 4730 { 4731 static struct task_struct *kdb_prev_t; 4732 int new_t, ret; 4733 if (!spin_trylock(&t->sighand->siglock)) { 4734 kdb_printf("Can't do kill command now.\n" 4735 "The sigmask lock is held somewhere else in " 4736 "kernel, try again later\n"); 4737 return; 4738 } 4739 new_t = kdb_prev_t != t; 4740 kdb_prev_t = t; 4741 if (!task_is_running(t) && new_t) { 4742 spin_unlock(&t->sighand->siglock); 4743 kdb_printf("Process is not RUNNING, sending a signal from " 4744 "kdb risks deadlock\n" 4745 "on the run queue locks. " 4746 "The signal has _not_ been sent.\n" 4747 "Reissue the kill command if you want to risk " 4748 "the deadlock.\n"); 4749 return; 4750 } 4751 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4752 spin_unlock(&t->sighand->siglock); 4753 if (ret) 4754 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4755 sig, t->pid); 4756 else 4757 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4758 } 4759 #endif /* CONFIG_KGDB_KDB */ 4760