xref: /openbmc/linux/kernel/signal.c (revision bd4af432)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/livepatch.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/signal.h>
52 
53 #include <asm/param.h>
54 #include <linux/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/siginfo.h>
57 #include <asm/cacheflush.h>
58 
59 /*
60  * SLAB caches for signal bits.
61  */
62 
63 static struct kmem_cache *sigqueue_cachep;
64 
65 int print_fatal_signals __read_mostly;
66 
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 	return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71 
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 	/* Is it explicitly or implicitly ignored? */
75 	return handler == SIG_IGN ||
76 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78 
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 	void __user *handler;
82 
83 	handler = sig_handler(t, sig);
84 
85 	/* SIGKILL and SIGSTOP may not be sent to the global init */
86 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 		return true;
88 
89 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 		return true;
92 
93 	/* Only allow kernel generated signals to this kthread */
94 	if (unlikely((t->flags & PF_KTHREAD) &&
95 		     (handler == SIG_KTHREAD_KERNEL) && !force))
96 		return true;
97 
98 	return sig_handler_ignored(handler, sig);
99 }
100 
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103 	/*
104 	 * Blocked signals are never ignored, since the
105 	 * signal handler may change by the time it is
106 	 * unblocked.
107 	 */
108 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 		return false;
110 
111 	/*
112 	 * Tracers may want to know about even ignored signal unless it
113 	 * is SIGKILL which can't be reported anyway but can be ignored
114 	 * by SIGNAL_UNKILLABLE task.
115 	 */
116 	if (t->ptrace && sig != SIGKILL)
117 		return false;
118 
119 	return sig_task_ignored(t, sig, force);
120 }
121 
122 /*
123  * Re-calculate pending state from the set of locally pending
124  * signals, globally pending signals, and blocked signals.
125  */
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128 	unsigned long ready;
129 	long i;
130 
131 	switch (_NSIG_WORDS) {
132 	default:
133 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 			ready |= signal->sig[i] &~ blocked->sig[i];
135 		break;
136 
137 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
138 		ready |= signal->sig[2] &~ blocked->sig[2];
139 		ready |= signal->sig[1] &~ blocked->sig[1];
140 		ready |= signal->sig[0] &~ blocked->sig[0];
141 		break;
142 
143 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
144 		ready |= signal->sig[0] &~ blocked->sig[0];
145 		break;
146 
147 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
148 	}
149 	return ready !=	0;
150 }
151 
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153 
154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 	    PENDING(&t->pending, &t->blocked) ||
158 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
159 	    cgroup_task_frozen(t)) {
160 		set_tsk_thread_flag(t, TIF_SIGPENDING);
161 		return true;
162 	}
163 
164 	/*
165 	 * We must never clear the flag in another thread, or in current
166 	 * when it's possible the current syscall is returning -ERESTART*.
167 	 * So we don't clear it here, and only callers who know they should do.
168 	 */
169 	return false;
170 }
171 
172 /*
173  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174  * This is superfluous when called on current, the wakeup is a harmless no-op.
175  */
176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178 	if (recalc_sigpending_tsk(t))
179 		signal_wake_up(t, 0);
180 }
181 
182 void recalc_sigpending(void)
183 {
184 	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
185 	    !klp_patch_pending(current))
186 		clear_thread_flag(TIF_SIGPENDING);
187 
188 }
189 EXPORT_SYMBOL(recalc_sigpending);
190 
191 void calculate_sigpending(void)
192 {
193 	/* Have any signals or users of TIF_SIGPENDING been delayed
194 	 * until after fork?
195 	 */
196 	spin_lock_irq(&current->sighand->siglock);
197 	set_tsk_thread_flag(current, TIF_SIGPENDING);
198 	recalc_sigpending();
199 	spin_unlock_irq(&current->sighand->siglock);
200 }
201 
202 /* Given the mask, find the first available signal that should be serviced. */
203 
204 #define SYNCHRONOUS_MASK \
205 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
206 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
207 
208 int next_signal(struct sigpending *pending, sigset_t *mask)
209 {
210 	unsigned long i, *s, *m, x;
211 	int sig = 0;
212 
213 	s = pending->signal.sig;
214 	m = mask->sig;
215 
216 	/*
217 	 * Handle the first word specially: it contains the
218 	 * synchronous signals that need to be dequeued first.
219 	 */
220 	x = *s &~ *m;
221 	if (x) {
222 		if (x & SYNCHRONOUS_MASK)
223 			x &= SYNCHRONOUS_MASK;
224 		sig = ffz(~x) + 1;
225 		return sig;
226 	}
227 
228 	switch (_NSIG_WORDS) {
229 	default:
230 		for (i = 1; i < _NSIG_WORDS; ++i) {
231 			x = *++s &~ *++m;
232 			if (!x)
233 				continue;
234 			sig = ffz(~x) + i*_NSIG_BPW + 1;
235 			break;
236 		}
237 		break;
238 
239 	case 2:
240 		x = s[1] &~ m[1];
241 		if (!x)
242 			break;
243 		sig = ffz(~x) + _NSIG_BPW + 1;
244 		break;
245 
246 	case 1:
247 		/* Nothing to do */
248 		break;
249 	}
250 
251 	return sig;
252 }
253 
254 static inline void print_dropped_signal(int sig)
255 {
256 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
257 
258 	if (!print_fatal_signals)
259 		return;
260 
261 	if (!__ratelimit(&ratelimit_state))
262 		return;
263 
264 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
265 				current->comm, current->pid, sig);
266 }
267 
268 /**
269  * task_set_jobctl_pending - set jobctl pending bits
270  * @task: target task
271  * @mask: pending bits to set
272  *
273  * Clear @mask from @task->jobctl.  @mask must be subset of
274  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
275  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
276  * cleared.  If @task is already being killed or exiting, this function
277  * becomes noop.
278  *
279  * CONTEXT:
280  * Must be called with @task->sighand->siglock held.
281  *
282  * RETURNS:
283  * %true if @mask is set, %false if made noop because @task was dying.
284  */
285 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
286 {
287 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
288 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
289 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
290 
291 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
292 		return false;
293 
294 	if (mask & JOBCTL_STOP_SIGMASK)
295 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
296 
297 	task->jobctl |= mask;
298 	return true;
299 }
300 
301 /**
302  * task_clear_jobctl_trapping - clear jobctl trapping bit
303  * @task: target task
304  *
305  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
306  * Clear it and wake up the ptracer.  Note that we don't need any further
307  * locking.  @task->siglock guarantees that @task->parent points to the
308  * ptracer.
309  *
310  * CONTEXT:
311  * Must be called with @task->sighand->siglock held.
312  */
313 void task_clear_jobctl_trapping(struct task_struct *task)
314 {
315 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
316 		task->jobctl &= ~JOBCTL_TRAPPING;
317 		smp_mb();	/* advised by wake_up_bit() */
318 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
319 	}
320 }
321 
322 /**
323  * task_clear_jobctl_pending - clear jobctl pending bits
324  * @task: target task
325  * @mask: pending bits to clear
326  *
327  * Clear @mask from @task->jobctl.  @mask must be subset of
328  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
329  * STOP bits are cleared together.
330  *
331  * If clearing of @mask leaves no stop or trap pending, this function calls
332  * task_clear_jobctl_trapping().
333  *
334  * CONTEXT:
335  * Must be called with @task->sighand->siglock held.
336  */
337 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
338 {
339 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
340 
341 	if (mask & JOBCTL_STOP_PENDING)
342 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
343 
344 	task->jobctl &= ~mask;
345 
346 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
347 		task_clear_jobctl_trapping(task);
348 }
349 
350 /**
351  * task_participate_group_stop - participate in a group stop
352  * @task: task participating in a group stop
353  *
354  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
355  * Group stop states are cleared and the group stop count is consumed if
356  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
357  * stop, the appropriate `SIGNAL_*` flags are set.
358  *
359  * CONTEXT:
360  * Must be called with @task->sighand->siglock held.
361  *
362  * RETURNS:
363  * %true if group stop completion should be notified to the parent, %false
364  * otherwise.
365  */
366 static bool task_participate_group_stop(struct task_struct *task)
367 {
368 	struct signal_struct *sig = task->signal;
369 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
370 
371 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
372 
373 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
374 
375 	if (!consume)
376 		return false;
377 
378 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
379 		sig->group_stop_count--;
380 
381 	/*
382 	 * Tell the caller to notify completion iff we are entering into a
383 	 * fresh group stop.  Read comment in do_signal_stop() for details.
384 	 */
385 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
386 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
387 		return true;
388 	}
389 	return false;
390 }
391 
392 void task_join_group_stop(struct task_struct *task)
393 {
394 	/* Have the new thread join an on-going signal group stop */
395 	unsigned long jobctl = current->jobctl;
396 	if (jobctl & JOBCTL_STOP_PENDING) {
397 		struct signal_struct *sig = current->signal;
398 		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
399 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
400 		if (task_set_jobctl_pending(task, signr | gstop)) {
401 			sig->group_stop_count++;
402 		}
403 	}
404 }
405 
406 /*
407  * allocate a new signal queue record
408  * - this may be called without locks if and only if t == current, otherwise an
409  *   appropriate lock must be held to stop the target task from exiting
410  */
411 static struct sigqueue *
412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
413 {
414 	struct sigqueue *q = NULL;
415 	struct user_struct *user;
416 	int sigpending;
417 
418 	/*
419 	 * Protect access to @t credentials. This can go away when all
420 	 * callers hold rcu read lock.
421 	 *
422 	 * NOTE! A pending signal will hold on to the user refcount,
423 	 * and we get/put the refcount only when the sigpending count
424 	 * changes from/to zero.
425 	 */
426 	rcu_read_lock();
427 	user = __task_cred(t)->user;
428 	sigpending = atomic_inc_return(&user->sigpending);
429 	if (sigpending == 1)
430 		get_uid(user);
431 	rcu_read_unlock();
432 
433 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
434 		q = kmem_cache_alloc(sigqueue_cachep, flags);
435 	} else {
436 		print_dropped_signal(sig);
437 	}
438 
439 	if (unlikely(q == NULL)) {
440 		if (atomic_dec_and_test(&user->sigpending))
441 			free_uid(user);
442 	} else {
443 		INIT_LIST_HEAD(&q->list);
444 		q->flags = 0;
445 		q->user = user;
446 	}
447 
448 	return q;
449 }
450 
451 static void __sigqueue_free(struct sigqueue *q)
452 {
453 	if (q->flags & SIGQUEUE_PREALLOC)
454 		return;
455 	if (atomic_dec_and_test(&q->user->sigpending))
456 		free_uid(q->user);
457 	kmem_cache_free(sigqueue_cachep, q);
458 }
459 
460 void flush_sigqueue(struct sigpending *queue)
461 {
462 	struct sigqueue *q;
463 
464 	sigemptyset(&queue->signal);
465 	while (!list_empty(&queue->list)) {
466 		q = list_entry(queue->list.next, struct sigqueue , list);
467 		list_del_init(&q->list);
468 		__sigqueue_free(q);
469 	}
470 }
471 
472 /*
473  * Flush all pending signals for this kthread.
474  */
475 void flush_signals(struct task_struct *t)
476 {
477 	unsigned long flags;
478 
479 	spin_lock_irqsave(&t->sighand->siglock, flags);
480 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
481 	flush_sigqueue(&t->pending);
482 	flush_sigqueue(&t->signal->shared_pending);
483 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
484 }
485 EXPORT_SYMBOL(flush_signals);
486 
487 #ifdef CONFIG_POSIX_TIMERS
488 static void __flush_itimer_signals(struct sigpending *pending)
489 {
490 	sigset_t signal, retain;
491 	struct sigqueue *q, *n;
492 
493 	signal = pending->signal;
494 	sigemptyset(&retain);
495 
496 	list_for_each_entry_safe(q, n, &pending->list, list) {
497 		int sig = q->info.si_signo;
498 
499 		if (likely(q->info.si_code != SI_TIMER)) {
500 			sigaddset(&retain, sig);
501 		} else {
502 			sigdelset(&signal, sig);
503 			list_del_init(&q->list);
504 			__sigqueue_free(q);
505 		}
506 	}
507 
508 	sigorsets(&pending->signal, &signal, &retain);
509 }
510 
511 void flush_itimer_signals(void)
512 {
513 	struct task_struct *tsk = current;
514 	unsigned long flags;
515 
516 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
517 	__flush_itimer_signals(&tsk->pending);
518 	__flush_itimer_signals(&tsk->signal->shared_pending);
519 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
520 }
521 #endif
522 
523 void ignore_signals(struct task_struct *t)
524 {
525 	int i;
526 
527 	for (i = 0; i < _NSIG; ++i)
528 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
529 
530 	flush_signals(t);
531 }
532 
533 /*
534  * Flush all handlers for a task.
535  */
536 
537 void
538 flush_signal_handlers(struct task_struct *t, int force_default)
539 {
540 	int i;
541 	struct k_sigaction *ka = &t->sighand->action[0];
542 	for (i = _NSIG ; i != 0 ; i--) {
543 		if (force_default || ka->sa.sa_handler != SIG_IGN)
544 			ka->sa.sa_handler = SIG_DFL;
545 		ka->sa.sa_flags = 0;
546 #ifdef __ARCH_HAS_SA_RESTORER
547 		ka->sa.sa_restorer = NULL;
548 #endif
549 		sigemptyset(&ka->sa.sa_mask);
550 		ka++;
551 	}
552 }
553 
554 bool unhandled_signal(struct task_struct *tsk, int sig)
555 {
556 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
557 	if (is_global_init(tsk))
558 		return true;
559 
560 	if (handler != SIG_IGN && handler != SIG_DFL)
561 		return false;
562 
563 	/* if ptraced, let the tracer determine */
564 	return !tsk->ptrace;
565 }
566 
567 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
568 			   bool *resched_timer)
569 {
570 	struct sigqueue *q, *first = NULL;
571 
572 	/*
573 	 * Collect the siginfo appropriate to this signal.  Check if
574 	 * there is another siginfo for the same signal.
575 	*/
576 	list_for_each_entry(q, &list->list, list) {
577 		if (q->info.si_signo == sig) {
578 			if (first)
579 				goto still_pending;
580 			first = q;
581 		}
582 	}
583 
584 	sigdelset(&list->signal, sig);
585 
586 	if (first) {
587 still_pending:
588 		list_del_init(&first->list);
589 		copy_siginfo(info, &first->info);
590 
591 		*resched_timer =
592 			(first->flags & SIGQUEUE_PREALLOC) &&
593 			(info->si_code == SI_TIMER) &&
594 			(info->si_sys_private);
595 
596 		__sigqueue_free(first);
597 	} else {
598 		/*
599 		 * Ok, it wasn't in the queue.  This must be
600 		 * a fast-pathed signal or we must have been
601 		 * out of queue space.  So zero out the info.
602 		 */
603 		clear_siginfo(info);
604 		info->si_signo = sig;
605 		info->si_errno = 0;
606 		info->si_code = SI_USER;
607 		info->si_pid = 0;
608 		info->si_uid = 0;
609 	}
610 }
611 
612 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
613 			kernel_siginfo_t *info, bool *resched_timer)
614 {
615 	int sig = next_signal(pending, mask);
616 
617 	if (sig)
618 		collect_signal(sig, pending, info, resched_timer);
619 	return sig;
620 }
621 
622 /*
623  * Dequeue a signal and return the element to the caller, which is
624  * expected to free it.
625  *
626  * All callers have to hold the siglock.
627  */
628 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
629 {
630 	bool resched_timer = false;
631 	int signr;
632 
633 	/* We only dequeue private signals from ourselves, we don't let
634 	 * signalfd steal them
635 	 */
636 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
637 	if (!signr) {
638 		signr = __dequeue_signal(&tsk->signal->shared_pending,
639 					 mask, info, &resched_timer);
640 #ifdef CONFIG_POSIX_TIMERS
641 		/*
642 		 * itimer signal ?
643 		 *
644 		 * itimers are process shared and we restart periodic
645 		 * itimers in the signal delivery path to prevent DoS
646 		 * attacks in the high resolution timer case. This is
647 		 * compliant with the old way of self-restarting
648 		 * itimers, as the SIGALRM is a legacy signal and only
649 		 * queued once. Changing the restart behaviour to
650 		 * restart the timer in the signal dequeue path is
651 		 * reducing the timer noise on heavy loaded !highres
652 		 * systems too.
653 		 */
654 		if (unlikely(signr == SIGALRM)) {
655 			struct hrtimer *tmr = &tsk->signal->real_timer;
656 
657 			if (!hrtimer_is_queued(tmr) &&
658 			    tsk->signal->it_real_incr != 0) {
659 				hrtimer_forward(tmr, tmr->base->get_time(),
660 						tsk->signal->it_real_incr);
661 				hrtimer_restart(tmr);
662 			}
663 		}
664 #endif
665 	}
666 
667 	recalc_sigpending();
668 	if (!signr)
669 		return 0;
670 
671 	if (unlikely(sig_kernel_stop(signr))) {
672 		/*
673 		 * Set a marker that we have dequeued a stop signal.  Our
674 		 * caller might release the siglock and then the pending
675 		 * stop signal it is about to process is no longer in the
676 		 * pending bitmasks, but must still be cleared by a SIGCONT
677 		 * (and overruled by a SIGKILL).  So those cases clear this
678 		 * shared flag after we've set it.  Note that this flag may
679 		 * remain set after the signal we return is ignored or
680 		 * handled.  That doesn't matter because its only purpose
681 		 * is to alert stop-signal processing code when another
682 		 * processor has come along and cleared the flag.
683 		 */
684 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
685 	}
686 #ifdef CONFIG_POSIX_TIMERS
687 	if (resched_timer) {
688 		/*
689 		 * Release the siglock to ensure proper locking order
690 		 * of timer locks outside of siglocks.  Note, we leave
691 		 * irqs disabled here, since the posix-timers code is
692 		 * about to disable them again anyway.
693 		 */
694 		spin_unlock(&tsk->sighand->siglock);
695 		posixtimer_rearm(info);
696 		spin_lock(&tsk->sighand->siglock);
697 
698 		/* Don't expose the si_sys_private value to userspace */
699 		info->si_sys_private = 0;
700 	}
701 #endif
702 	return signr;
703 }
704 EXPORT_SYMBOL_GPL(dequeue_signal);
705 
706 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
707 {
708 	struct task_struct *tsk = current;
709 	struct sigpending *pending = &tsk->pending;
710 	struct sigqueue *q, *sync = NULL;
711 
712 	/*
713 	 * Might a synchronous signal be in the queue?
714 	 */
715 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
716 		return 0;
717 
718 	/*
719 	 * Return the first synchronous signal in the queue.
720 	 */
721 	list_for_each_entry(q, &pending->list, list) {
722 		/* Synchronous signals have a postive si_code */
723 		if ((q->info.si_code > SI_USER) &&
724 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
725 			sync = q;
726 			goto next;
727 		}
728 	}
729 	return 0;
730 next:
731 	/*
732 	 * Check if there is another siginfo for the same signal.
733 	 */
734 	list_for_each_entry_continue(q, &pending->list, list) {
735 		if (q->info.si_signo == sync->info.si_signo)
736 			goto still_pending;
737 	}
738 
739 	sigdelset(&pending->signal, sync->info.si_signo);
740 	recalc_sigpending();
741 still_pending:
742 	list_del_init(&sync->list);
743 	copy_siginfo(info, &sync->info);
744 	__sigqueue_free(sync);
745 	return info->si_signo;
746 }
747 
748 /*
749  * Tell a process that it has a new active signal..
750  *
751  * NOTE! we rely on the previous spin_lock to
752  * lock interrupts for us! We can only be called with
753  * "siglock" held, and the local interrupt must
754  * have been disabled when that got acquired!
755  *
756  * No need to set need_resched since signal event passing
757  * goes through ->blocked
758  */
759 void signal_wake_up_state(struct task_struct *t, unsigned int state)
760 {
761 	set_tsk_thread_flag(t, TIF_SIGPENDING);
762 	/*
763 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
764 	 * case. We don't check t->state here because there is a race with it
765 	 * executing another processor and just now entering stopped state.
766 	 * By using wake_up_state, we ensure the process will wake up and
767 	 * handle its death signal.
768 	 */
769 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
770 		kick_process(t);
771 }
772 
773 /*
774  * Remove signals in mask from the pending set and queue.
775  * Returns 1 if any signals were found.
776  *
777  * All callers must be holding the siglock.
778  */
779 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
780 {
781 	struct sigqueue *q, *n;
782 	sigset_t m;
783 
784 	sigandsets(&m, mask, &s->signal);
785 	if (sigisemptyset(&m))
786 		return;
787 
788 	sigandnsets(&s->signal, &s->signal, mask);
789 	list_for_each_entry_safe(q, n, &s->list, list) {
790 		if (sigismember(mask, q->info.si_signo)) {
791 			list_del_init(&q->list);
792 			__sigqueue_free(q);
793 		}
794 	}
795 }
796 
797 static inline int is_si_special(const struct kernel_siginfo *info)
798 {
799 	return info <= SEND_SIG_PRIV;
800 }
801 
802 static inline bool si_fromuser(const struct kernel_siginfo *info)
803 {
804 	return info == SEND_SIG_NOINFO ||
805 		(!is_si_special(info) && SI_FROMUSER(info));
806 }
807 
808 /*
809  * called with RCU read lock from check_kill_permission()
810  */
811 static bool kill_ok_by_cred(struct task_struct *t)
812 {
813 	const struct cred *cred = current_cred();
814 	const struct cred *tcred = __task_cred(t);
815 
816 	return uid_eq(cred->euid, tcred->suid) ||
817 	       uid_eq(cred->euid, tcred->uid) ||
818 	       uid_eq(cred->uid, tcred->suid) ||
819 	       uid_eq(cred->uid, tcred->uid) ||
820 	       ns_capable(tcred->user_ns, CAP_KILL);
821 }
822 
823 /*
824  * Bad permissions for sending the signal
825  * - the caller must hold the RCU read lock
826  */
827 static int check_kill_permission(int sig, struct kernel_siginfo *info,
828 				 struct task_struct *t)
829 {
830 	struct pid *sid;
831 	int error;
832 
833 	if (!valid_signal(sig))
834 		return -EINVAL;
835 
836 	if (!si_fromuser(info))
837 		return 0;
838 
839 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
840 	if (error)
841 		return error;
842 
843 	if (!same_thread_group(current, t) &&
844 	    !kill_ok_by_cred(t)) {
845 		switch (sig) {
846 		case SIGCONT:
847 			sid = task_session(t);
848 			/*
849 			 * We don't return the error if sid == NULL. The
850 			 * task was unhashed, the caller must notice this.
851 			 */
852 			if (!sid || sid == task_session(current))
853 				break;
854 			/* fall through */
855 		default:
856 			return -EPERM;
857 		}
858 	}
859 
860 	return security_task_kill(t, info, sig, NULL);
861 }
862 
863 /**
864  * ptrace_trap_notify - schedule trap to notify ptracer
865  * @t: tracee wanting to notify tracer
866  *
867  * This function schedules sticky ptrace trap which is cleared on the next
868  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
869  * ptracer.
870  *
871  * If @t is running, STOP trap will be taken.  If trapped for STOP and
872  * ptracer is listening for events, tracee is woken up so that it can
873  * re-trap for the new event.  If trapped otherwise, STOP trap will be
874  * eventually taken without returning to userland after the existing traps
875  * are finished by PTRACE_CONT.
876  *
877  * CONTEXT:
878  * Must be called with @task->sighand->siglock held.
879  */
880 static void ptrace_trap_notify(struct task_struct *t)
881 {
882 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
883 	assert_spin_locked(&t->sighand->siglock);
884 
885 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
886 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
887 }
888 
889 /*
890  * Handle magic process-wide effects of stop/continue signals. Unlike
891  * the signal actions, these happen immediately at signal-generation
892  * time regardless of blocking, ignoring, or handling.  This does the
893  * actual continuing for SIGCONT, but not the actual stopping for stop
894  * signals. The process stop is done as a signal action for SIG_DFL.
895  *
896  * Returns true if the signal should be actually delivered, otherwise
897  * it should be dropped.
898  */
899 static bool prepare_signal(int sig, struct task_struct *p, bool force)
900 {
901 	struct signal_struct *signal = p->signal;
902 	struct task_struct *t;
903 	sigset_t flush;
904 
905 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
906 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
907 			return sig == SIGKILL;
908 		/*
909 		 * The process is in the middle of dying, nothing to do.
910 		 */
911 	} else if (sig_kernel_stop(sig)) {
912 		/*
913 		 * This is a stop signal.  Remove SIGCONT from all queues.
914 		 */
915 		siginitset(&flush, sigmask(SIGCONT));
916 		flush_sigqueue_mask(&flush, &signal->shared_pending);
917 		for_each_thread(p, t)
918 			flush_sigqueue_mask(&flush, &t->pending);
919 	} else if (sig == SIGCONT) {
920 		unsigned int why;
921 		/*
922 		 * Remove all stop signals from all queues, wake all threads.
923 		 */
924 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
925 		flush_sigqueue_mask(&flush, &signal->shared_pending);
926 		for_each_thread(p, t) {
927 			flush_sigqueue_mask(&flush, &t->pending);
928 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
929 			if (likely(!(t->ptrace & PT_SEIZED)))
930 				wake_up_state(t, __TASK_STOPPED);
931 			else
932 				ptrace_trap_notify(t);
933 		}
934 
935 		/*
936 		 * Notify the parent with CLD_CONTINUED if we were stopped.
937 		 *
938 		 * If we were in the middle of a group stop, we pretend it
939 		 * was already finished, and then continued. Since SIGCHLD
940 		 * doesn't queue we report only CLD_STOPPED, as if the next
941 		 * CLD_CONTINUED was dropped.
942 		 */
943 		why = 0;
944 		if (signal->flags & SIGNAL_STOP_STOPPED)
945 			why |= SIGNAL_CLD_CONTINUED;
946 		else if (signal->group_stop_count)
947 			why |= SIGNAL_CLD_STOPPED;
948 
949 		if (why) {
950 			/*
951 			 * The first thread which returns from do_signal_stop()
952 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
953 			 * notify its parent. See get_signal().
954 			 */
955 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
956 			signal->group_stop_count = 0;
957 			signal->group_exit_code = 0;
958 		}
959 	}
960 
961 	return !sig_ignored(p, sig, force);
962 }
963 
964 /*
965  * Test if P wants to take SIG.  After we've checked all threads with this,
966  * it's equivalent to finding no threads not blocking SIG.  Any threads not
967  * blocking SIG were ruled out because they are not running and already
968  * have pending signals.  Such threads will dequeue from the shared queue
969  * as soon as they're available, so putting the signal on the shared queue
970  * will be equivalent to sending it to one such thread.
971  */
972 static inline bool wants_signal(int sig, struct task_struct *p)
973 {
974 	if (sigismember(&p->blocked, sig))
975 		return false;
976 
977 	if (p->flags & PF_EXITING)
978 		return false;
979 
980 	if (sig == SIGKILL)
981 		return true;
982 
983 	if (task_is_stopped_or_traced(p))
984 		return false;
985 
986 	return task_curr(p) || !signal_pending(p);
987 }
988 
989 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
990 {
991 	struct signal_struct *signal = p->signal;
992 	struct task_struct *t;
993 
994 	/*
995 	 * Now find a thread we can wake up to take the signal off the queue.
996 	 *
997 	 * If the main thread wants the signal, it gets first crack.
998 	 * Probably the least surprising to the average bear.
999 	 */
1000 	if (wants_signal(sig, p))
1001 		t = p;
1002 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1003 		/*
1004 		 * There is just one thread and it does not need to be woken.
1005 		 * It will dequeue unblocked signals before it runs again.
1006 		 */
1007 		return;
1008 	else {
1009 		/*
1010 		 * Otherwise try to find a suitable thread.
1011 		 */
1012 		t = signal->curr_target;
1013 		while (!wants_signal(sig, t)) {
1014 			t = next_thread(t);
1015 			if (t == signal->curr_target)
1016 				/*
1017 				 * No thread needs to be woken.
1018 				 * Any eligible threads will see
1019 				 * the signal in the queue soon.
1020 				 */
1021 				return;
1022 		}
1023 		signal->curr_target = t;
1024 	}
1025 
1026 	/*
1027 	 * Found a killable thread.  If the signal will be fatal,
1028 	 * then start taking the whole group down immediately.
1029 	 */
1030 	if (sig_fatal(p, sig) &&
1031 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1032 	    !sigismember(&t->real_blocked, sig) &&
1033 	    (sig == SIGKILL || !p->ptrace)) {
1034 		/*
1035 		 * This signal will be fatal to the whole group.
1036 		 */
1037 		if (!sig_kernel_coredump(sig)) {
1038 			/*
1039 			 * Start a group exit and wake everybody up.
1040 			 * This way we don't have other threads
1041 			 * running and doing things after a slower
1042 			 * thread has the fatal signal pending.
1043 			 */
1044 			signal->flags = SIGNAL_GROUP_EXIT;
1045 			signal->group_exit_code = sig;
1046 			signal->group_stop_count = 0;
1047 			t = p;
1048 			do {
1049 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1050 				sigaddset(&t->pending.signal, SIGKILL);
1051 				signal_wake_up(t, 1);
1052 			} while_each_thread(p, t);
1053 			return;
1054 		}
1055 	}
1056 
1057 	/*
1058 	 * The signal is already in the shared-pending queue.
1059 	 * Tell the chosen thread to wake up and dequeue it.
1060 	 */
1061 	signal_wake_up(t, sig == SIGKILL);
1062 	return;
1063 }
1064 
1065 static inline bool legacy_queue(struct sigpending *signals, int sig)
1066 {
1067 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1068 }
1069 
1070 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1071 			enum pid_type type, bool force)
1072 {
1073 	struct sigpending *pending;
1074 	struct sigqueue *q;
1075 	int override_rlimit;
1076 	int ret = 0, result;
1077 
1078 	assert_spin_locked(&t->sighand->siglock);
1079 
1080 	result = TRACE_SIGNAL_IGNORED;
1081 	if (!prepare_signal(sig, t, force))
1082 		goto ret;
1083 
1084 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1085 	/*
1086 	 * Short-circuit ignored signals and support queuing
1087 	 * exactly one non-rt signal, so that we can get more
1088 	 * detailed information about the cause of the signal.
1089 	 */
1090 	result = TRACE_SIGNAL_ALREADY_PENDING;
1091 	if (legacy_queue(pending, sig))
1092 		goto ret;
1093 
1094 	result = TRACE_SIGNAL_DELIVERED;
1095 	/*
1096 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1097 	 */
1098 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1099 		goto out_set;
1100 
1101 	/*
1102 	 * Real-time signals must be queued if sent by sigqueue, or
1103 	 * some other real-time mechanism.  It is implementation
1104 	 * defined whether kill() does so.  We attempt to do so, on
1105 	 * the principle of least surprise, but since kill is not
1106 	 * allowed to fail with EAGAIN when low on memory we just
1107 	 * make sure at least one signal gets delivered and don't
1108 	 * pass on the info struct.
1109 	 */
1110 	if (sig < SIGRTMIN)
1111 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1112 	else
1113 		override_rlimit = 0;
1114 
1115 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1116 	if (q) {
1117 		list_add_tail(&q->list, &pending->list);
1118 		switch ((unsigned long) info) {
1119 		case (unsigned long) SEND_SIG_NOINFO:
1120 			clear_siginfo(&q->info);
1121 			q->info.si_signo = sig;
1122 			q->info.si_errno = 0;
1123 			q->info.si_code = SI_USER;
1124 			q->info.si_pid = task_tgid_nr_ns(current,
1125 							task_active_pid_ns(t));
1126 			rcu_read_lock();
1127 			q->info.si_uid =
1128 				from_kuid_munged(task_cred_xxx(t, user_ns),
1129 						 current_uid());
1130 			rcu_read_unlock();
1131 			break;
1132 		case (unsigned long) SEND_SIG_PRIV:
1133 			clear_siginfo(&q->info);
1134 			q->info.si_signo = sig;
1135 			q->info.si_errno = 0;
1136 			q->info.si_code = SI_KERNEL;
1137 			q->info.si_pid = 0;
1138 			q->info.si_uid = 0;
1139 			break;
1140 		default:
1141 			copy_siginfo(&q->info, info);
1142 			break;
1143 		}
1144 	} else if (!is_si_special(info) &&
1145 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1146 		/*
1147 		 * Queue overflow, abort.  We may abort if the
1148 		 * signal was rt and sent by user using something
1149 		 * other than kill().
1150 		 */
1151 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1152 		ret = -EAGAIN;
1153 		goto ret;
1154 	} else {
1155 		/*
1156 		 * This is a silent loss of information.  We still
1157 		 * send the signal, but the *info bits are lost.
1158 		 */
1159 		result = TRACE_SIGNAL_LOSE_INFO;
1160 	}
1161 
1162 out_set:
1163 	signalfd_notify(t, sig);
1164 	sigaddset(&pending->signal, sig);
1165 
1166 	/* Let multiprocess signals appear after on-going forks */
1167 	if (type > PIDTYPE_TGID) {
1168 		struct multiprocess_signals *delayed;
1169 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1170 			sigset_t *signal = &delayed->signal;
1171 			/* Can't queue both a stop and a continue signal */
1172 			if (sig == SIGCONT)
1173 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1174 			else if (sig_kernel_stop(sig))
1175 				sigdelset(signal, SIGCONT);
1176 			sigaddset(signal, sig);
1177 		}
1178 	}
1179 
1180 	complete_signal(sig, t, type);
1181 ret:
1182 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1183 	return ret;
1184 }
1185 
1186 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1187 {
1188 	bool ret = false;
1189 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1190 	case SIL_KILL:
1191 	case SIL_CHLD:
1192 	case SIL_RT:
1193 		ret = true;
1194 		break;
1195 	case SIL_TIMER:
1196 	case SIL_POLL:
1197 	case SIL_FAULT:
1198 	case SIL_FAULT_MCEERR:
1199 	case SIL_FAULT_BNDERR:
1200 	case SIL_FAULT_PKUERR:
1201 	case SIL_SYS:
1202 		ret = false;
1203 		break;
1204 	}
1205 	return ret;
1206 }
1207 
1208 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1209 			enum pid_type type)
1210 {
1211 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1212 	bool force = false;
1213 
1214 	if (info == SEND_SIG_NOINFO) {
1215 		/* Force if sent from an ancestor pid namespace */
1216 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1217 	} else if (info == SEND_SIG_PRIV) {
1218 		/* Don't ignore kernel generated signals */
1219 		force = true;
1220 	} else if (has_si_pid_and_uid(info)) {
1221 		/* SIGKILL and SIGSTOP is special or has ids */
1222 		struct user_namespace *t_user_ns;
1223 
1224 		rcu_read_lock();
1225 		t_user_ns = task_cred_xxx(t, user_ns);
1226 		if (current_user_ns() != t_user_ns) {
1227 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1228 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1229 		}
1230 		rcu_read_unlock();
1231 
1232 		/* A kernel generated signal? */
1233 		force = (info->si_code == SI_KERNEL);
1234 
1235 		/* From an ancestor pid namespace? */
1236 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1237 			info->si_pid = 0;
1238 			force = true;
1239 		}
1240 	}
1241 	return __send_signal(sig, info, t, type, force);
1242 }
1243 
1244 static void print_fatal_signal(int signr)
1245 {
1246 	struct pt_regs *regs = signal_pt_regs();
1247 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1248 
1249 #if defined(__i386__) && !defined(__arch_um__)
1250 	pr_info("code at %08lx: ", regs->ip);
1251 	{
1252 		int i;
1253 		for (i = 0; i < 16; i++) {
1254 			unsigned char insn;
1255 
1256 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1257 				break;
1258 			pr_cont("%02x ", insn);
1259 		}
1260 	}
1261 	pr_cont("\n");
1262 #endif
1263 	preempt_disable();
1264 	show_regs(regs);
1265 	preempt_enable();
1266 }
1267 
1268 static int __init setup_print_fatal_signals(char *str)
1269 {
1270 	get_option (&str, &print_fatal_signals);
1271 
1272 	return 1;
1273 }
1274 
1275 __setup("print-fatal-signals=", setup_print_fatal_signals);
1276 
1277 int
1278 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1279 {
1280 	return send_signal(sig, info, p, PIDTYPE_TGID);
1281 }
1282 
1283 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1284 			enum pid_type type)
1285 {
1286 	unsigned long flags;
1287 	int ret = -ESRCH;
1288 
1289 	if (lock_task_sighand(p, &flags)) {
1290 		ret = send_signal(sig, info, p, type);
1291 		unlock_task_sighand(p, &flags);
1292 	}
1293 
1294 	return ret;
1295 }
1296 
1297 /*
1298  * Force a signal that the process can't ignore: if necessary
1299  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1300  *
1301  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1302  * since we do not want to have a signal handler that was blocked
1303  * be invoked when user space had explicitly blocked it.
1304  *
1305  * We don't want to have recursive SIGSEGV's etc, for example,
1306  * that is why we also clear SIGNAL_UNKILLABLE.
1307  */
1308 static int
1309 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1310 {
1311 	unsigned long int flags;
1312 	int ret, blocked, ignored;
1313 	struct k_sigaction *action;
1314 	int sig = info->si_signo;
1315 
1316 	spin_lock_irqsave(&t->sighand->siglock, flags);
1317 	action = &t->sighand->action[sig-1];
1318 	ignored = action->sa.sa_handler == SIG_IGN;
1319 	blocked = sigismember(&t->blocked, sig);
1320 	if (blocked || ignored) {
1321 		action->sa.sa_handler = SIG_DFL;
1322 		if (blocked) {
1323 			sigdelset(&t->blocked, sig);
1324 			recalc_sigpending_and_wake(t);
1325 		}
1326 	}
1327 	/*
1328 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1329 	 * debugging to leave init killable.
1330 	 */
1331 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1332 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1333 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1334 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1335 
1336 	return ret;
1337 }
1338 
1339 int force_sig_info(struct kernel_siginfo *info)
1340 {
1341 	return force_sig_info_to_task(info, current);
1342 }
1343 
1344 /*
1345  * Nuke all other threads in the group.
1346  */
1347 int zap_other_threads(struct task_struct *p)
1348 {
1349 	struct task_struct *t = p;
1350 	int count = 0;
1351 
1352 	p->signal->group_stop_count = 0;
1353 
1354 	while_each_thread(p, t) {
1355 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1356 		count++;
1357 
1358 		/* Don't bother with already dead threads */
1359 		if (t->exit_state)
1360 			continue;
1361 		sigaddset(&t->pending.signal, SIGKILL);
1362 		signal_wake_up(t, 1);
1363 	}
1364 
1365 	return count;
1366 }
1367 
1368 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1369 					   unsigned long *flags)
1370 {
1371 	struct sighand_struct *sighand;
1372 
1373 	rcu_read_lock();
1374 	for (;;) {
1375 		sighand = rcu_dereference(tsk->sighand);
1376 		if (unlikely(sighand == NULL))
1377 			break;
1378 
1379 		/*
1380 		 * This sighand can be already freed and even reused, but
1381 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1382 		 * initializes ->siglock: this slab can't go away, it has
1383 		 * the same object type, ->siglock can't be reinitialized.
1384 		 *
1385 		 * We need to ensure that tsk->sighand is still the same
1386 		 * after we take the lock, we can race with de_thread() or
1387 		 * __exit_signal(). In the latter case the next iteration
1388 		 * must see ->sighand == NULL.
1389 		 */
1390 		spin_lock_irqsave(&sighand->siglock, *flags);
1391 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1392 			break;
1393 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1394 	}
1395 	rcu_read_unlock();
1396 
1397 	return sighand;
1398 }
1399 
1400 /*
1401  * send signal info to all the members of a group
1402  */
1403 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1404 			struct task_struct *p, enum pid_type type)
1405 {
1406 	int ret;
1407 
1408 	rcu_read_lock();
1409 	ret = check_kill_permission(sig, info, p);
1410 	rcu_read_unlock();
1411 
1412 	if (!ret && sig)
1413 		ret = do_send_sig_info(sig, info, p, type);
1414 
1415 	return ret;
1416 }
1417 
1418 /*
1419  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1420  * control characters do (^C, ^Z etc)
1421  * - the caller must hold at least a readlock on tasklist_lock
1422  */
1423 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1424 {
1425 	struct task_struct *p = NULL;
1426 	int retval, success;
1427 
1428 	success = 0;
1429 	retval = -ESRCH;
1430 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1431 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1432 		success |= !err;
1433 		retval = err;
1434 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1435 	return success ? 0 : retval;
1436 }
1437 
1438 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1439 {
1440 	int error = -ESRCH;
1441 	struct task_struct *p;
1442 
1443 	for (;;) {
1444 		rcu_read_lock();
1445 		p = pid_task(pid, PIDTYPE_PID);
1446 		if (p)
1447 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1448 		rcu_read_unlock();
1449 		if (likely(!p || error != -ESRCH))
1450 			return error;
1451 
1452 		/*
1453 		 * The task was unhashed in between, try again.  If it
1454 		 * is dead, pid_task() will return NULL, if we race with
1455 		 * de_thread() it will find the new leader.
1456 		 */
1457 	}
1458 }
1459 
1460 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1461 {
1462 	int error;
1463 	rcu_read_lock();
1464 	error = kill_pid_info(sig, info, find_vpid(pid));
1465 	rcu_read_unlock();
1466 	return error;
1467 }
1468 
1469 static inline bool kill_as_cred_perm(const struct cred *cred,
1470 				     struct task_struct *target)
1471 {
1472 	const struct cred *pcred = __task_cred(target);
1473 
1474 	return uid_eq(cred->euid, pcred->suid) ||
1475 	       uid_eq(cred->euid, pcred->uid) ||
1476 	       uid_eq(cred->uid, pcred->suid) ||
1477 	       uid_eq(cred->uid, pcred->uid);
1478 }
1479 
1480 /*
1481  * The usb asyncio usage of siginfo is wrong.  The glibc support
1482  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1483  * AKA after the generic fields:
1484  *	kernel_pid_t	si_pid;
1485  *	kernel_uid32_t	si_uid;
1486  *	sigval_t	si_value;
1487  *
1488  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1489  * after the generic fields is:
1490  *	void __user 	*si_addr;
1491  *
1492  * This is a practical problem when there is a 64bit big endian kernel
1493  * and a 32bit userspace.  As the 32bit address will encoded in the low
1494  * 32bits of the pointer.  Those low 32bits will be stored at higher
1495  * address than appear in a 32 bit pointer.  So userspace will not
1496  * see the address it was expecting for it's completions.
1497  *
1498  * There is nothing in the encoding that can allow
1499  * copy_siginfo_to_user32 to detect this confusion of formats, so
1500  * handle this by requiring the caller of kill_pid_usb_asyncio to
1501  * notice when this situration takes place and to store the 32bit
1502  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1503  * parameter.
1504  */
1505 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1506 			 struct pid *pid, const struct cred *cred)
1507 {
1508 	struct kernel_siginfo info;
1509 	struct task_struct *p;
1510 	unsigned long flags;
1511 	int ret = -EINVAL;
1512 
1513 	if (!valid_signal(sig))
1514 		return ret;
1515 
1516 	clear_siginfo(&info);
1517 	info.si_signo = sig;
1518 	info.si_errno = errno;
1519 	info.si_code = SI_ASYNCIO;
1520 	*((sigval_t *)&info.si_pid) = addr;
1521 
1522 	rcu_read_lock();
1523 	p = pid_task(pid, PIDTYPE_PID);
1524 	if (!p) {
1525 		ret = -ESRCH;
1526 		goto out_unlock;
1527 	}
1528 	if (!kill_as_cred_perm(cred, p)) {
1529 		ret = -EPERM;
1530 		goto out_unlock;
1531 	}
1532 	ret = security_task_kill(p, &info, sig, cred);
1533 	if (ret)
1534 		goto out_unlock;
1535 
1536 	if (sig) {
1537 		if (lock_task_sighand(p, &flags)) {
1538 			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1539 			unlock_task_sighand(p, &flags);
1540 		} else
1541 			ret = -ESRCH;
1542 	}
1543 out_unlock:
1544 	rcu_read_unlock();
1545 	return ret;
1546 }
1547 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1548 
1549 /*
1550  * kill_something_info() interprets pid in interesting ways just like kill(2).
1551  *
1552  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1553  * is probably wrong.  Should make it like BSD or SYSV.
1554  */
1555 
1556 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1557 {
1558 	int ret;
1559 
1560 	if (pid > 0)
1561 		return kill_proc_info(sig, info, pid);
1562 
1563 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1564 	if (pid == INT_MIN)
1565 		return -ESRCH;
1566 
1567 	read_lock(&tasklist_lock);
1568 	if (pid != -1) {
1569 		ret = __kill_pgrp_info(sig, info,
1570 				pid ? find_vpid(-pid) : task_pgrp(current));
1571 	} else {
1572 		int retval = 0, count = 0;
1573 		struct task_struct * p;
1574 
1575 		for_each_process(p) {
1576 			if (task_pid_vnr(p) > 1 &&
1577 					!same_thread_group(p, current)) {
1578 				int err = group_send_sig_info(sig, info, p,
1579 							      PIDTYPE_MAX);
1580 				++count;
1581 				if (err != -EPERM)
1582 					retval = err;
1583 			}
1584 		}
1585 		ret = count ? retval : -ESRCH;
1586 	}
1587 	read_unlock(&tasklist_lock);
1588 
1589 	return ret;
1590 }
1591 
1592 /*
1593  * These are for backward compatibility with the rest of the kernel source.
1594  */
1595 
1596 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1597 {
1598 	/*
1599 	 * Make sure legacy kernel users don't send in bad values
1600 	 * (normal paths check this in check_kill_permission).
1601 	 */
1602 	if (!valid_signal(sig))
1603 		return -EINVAL;
1604 
1605 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1606 }
1607 EXPORT_SYMBOL(send_sig_info);
1608 
1609 #define __si_special(priv) \
1610 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1611 
1612 int
1613 send_sig(int sig, struct task_struct *p, int priv)
1614 {
1615 	return send_sig_info(sig, __si_special(priv), p);
1616 }
1617 EXPORT_SYMBOL(send_sig);
1618 
1619 void force_sig(int sig)
1620 {
1621 	struct kernel_siginfo info;
1622 
1623 	clear_siginfo(&info);
1624 	info.si_signo = sig;
1625 	info.si_errno = 0;
1626 	info.si_code = SI_KERNEL;
1627 	info.si_pid = 0;
1628 	info.si_uid = 0;
1629 	force_sig_info(&info);
1630 }
1631 EXPORT_SYMBOL(force_sig);
1632 
1633 /*
1634  * When things go south during signal handling, we
1635  * will force a SIGSEGV. And if the signal that caused
1636  * the problem was already a SIGSEGV, we'll want to
1637  * make sure we don't even try to deliver the signal..
1638  */
1639 void force_sigsegv(int sig)
1640 {
1641 	struct task_struct *p = current;
1642 
1643 	if (sig == SIGSEGV) {
1644 		unsigned long flags;
1645 		spin_lock_irqsave(&p->sighand->siglock, flags);
1646 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1647 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1648 	}
1649 	force_sig(SIGSEGV);
1650 }
1651 
1652 int force_sig_fault_to_task(int sig, int code, void __user *addr
1653 	___ARCH_SI_TRAPNO(int trapno)
1654 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1655 	, struct task_struct *t)
1656 {
1657 	struct kernel_siginfo info;
1658 
1659 	clear_siginfo(&info);
1660 	info.si_signo = sig;
1661 	info.si_errno = 0;
1662 	info.si_code  = code;
1663 	info.si_addr  = addr;
1664 #ifdef __ARCH_SI_TRAPNO
1665 	info.si_trapno = trapno;
1666 #endif
1667 #ifdef __ia64__
1668 	info.si_imm = imm;
1669 	info.si_flags = flags;
1670 	info.si_isr = isr;
1671 #endif
1672 	return force_sig_info_to_task(&info, t);
1673 }
1674 
1675 int force_sig_fault(int sig, int code, void __user *addr
1676 	___ARCH_SI_TRAPNO(int trapno)
1677 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1678 {
1679 	return force_sig_fault_to_task(sig, code, addr
1680 				       ___ARCH_SI_TRAPNO(trapno)
1681 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1682 }
1683 
1684 int send_sig_fault(int sig, int code, void __user *addr
1685 	___ARCH_SI_TRAPNO(int trapno)
1686 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1687 	, struct task_struct *t)
1688 {
1689 	struct kernel_siginfo info;
1690 
1691 	clear_siginfo(&info);
1692 	info.si_signo = sig;
1693 	info.si_errno = 0;
1694 	info.si_code  = code;
1695 	info.si_addr  = addr;
1696 #ifdef __ARCH_SI_TRAPNO
1697 	info.si_trapno = trapno;
1698 #endif
1699 #ifdef __ia64__
1700 	info.si_imm = imm;
1701 	info.si_flags = flags;
1702 	info.si_isr = isr;
1703 #endif
1704 	return send_sig_info(info.si_signo, &info, t);
1705 }
1706 
1707 int force_sig_mceerr(int code, void __user *addr, short lsb)
1708 {
1709 	struct kernel_siginfo info;
1710 
1711 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1712 	clear_siginfo(&info);
1713 	info.si_signo = SIGBUS;
1714 	info.si_errno = 0;
1715 	info.si_code = code;
1716 	info.si_addr = addr;
1717 	info.si_addr_lsb = lsb;
1718 	return force_sig_info(&info);
1719 }
1720 
1721 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1722 {
1723 	struct kernel_siginfo info;
1724 
1725 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1726 	clear_siginfo(&info);
1727 	info.si_signo = SIGBUS;
1728 	info.si_errno = 0;
1729 	info.si_code = code;
1730 	info.si_addr = addr;
1731 	info.si_addr_lsb = lsb;
1732 	return send_sig_info(info.si_signo, &info, t);
1733 }
1734 EXPORT_SYMBOL(send_sig_mceerr);
1735 
1736 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1737 {
1738 	struct kernel_siginfo info;
1739 
1740 	clear_siginfo(&info);
1741 	info.si_signo = SIGSEGV;
1742 	info.si_errno = 0;
1743 	info.si_code  = SEGV_BNDERR;
1744 	info.si_addr  = addr;
1745 	info.si_lower = lower;
1746 	info.si_upper = upper;
1747 	return force_sig_info(&info);
1748 }
1749 
1750 #ifdef SEGV_PKUERR
1751 int force_sig_pkuerr(void __user *addr, u32 pkey)
1752 {
1753 	struct kernel_siginfo info;
1754 
1755 	clear_siginfo(&info);
1756 	info.si_signo = SIGSEGV;
1757 	info.si_errno = 0;
1758 	info.si_code  = SEGV_PKUERR;
1759 	info.si_addr  = addr;
1760 	info.si_pkey  = pkey;
1761 	return force_sig_info(&info);
1762 }
1763 #endif
1764 
1765 /* For the crazy architectures that include trap information in
1766  * the errno field, instead of an actual errno value.
1767  */
1768 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1769 {
1770 	struct kernel_siginfo info;
1771 
1772 	clear_siginfo(&info);
1773 	info.si_signo = SIGTRAP;
1774 	info.si_errno = errno;
1775 	info.si_code  = TRAP_HWBKPT;
1776 	info.si_addr  = addr;
1777 	return force_sig_info(&info);
1778 }
1779 
1780 int kill_pgrp(struct pid *pid, int sig, int priv)
1781 {
1782 	int ret;
1783 
1784 	read_lock(&tasklist_lock);
1785 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1786 	read_unlock(&tasklist_lock);
1787 
1788 	return ret;
1789 }
1790 EXPORT_SYMBOL(kill_pgrp);
1791 
1792 int kill_pid(struct pid *pid, int sig, int priv)
1793 {
1794 	return kill_pid_info(sig, __si_special(priv), pid);
1795 }
1796 EXPORT_SYMBOL(kill_pid);
1797 
1798 /*
1799  * These functions support sending signals using preallocated sigqueue
1800  * structures.  This is needed "because realtime applications cannot
1801  * afford to lose notifications of asynchronous events, like timer
1802  * expirations or I/O completions".  In the case of POSIX Timers
1803  * we allocate the sigqueue structure from the timer_create.  If this
1804  * allocation fails we are able to report the failure to the application
1805  * with an EAGAIN error.
1806  */
1807 struct sigqueue *sigqueue_alloc(void)
1808 {
1809 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1810 
1811 	if (q)
1812 		q->flags |= SIGQUEUE_PREALLOC;
1813 
1814 	return q;
1815 }
1816 
1817 void sigqueue_free(struct sigqueue *q)
1818 {
1819 	unsigned long flags;
1820 	spinlock_t *lock = &current->sighand->siglock;
1821 
1822 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1823 	/*
1824 	 * We must hold ->siglock while testing q->list
1825 	 * to serialize with collect_signal() or with
1826 	 * __exit_signal()->flush_sigqueue().
1827 	 */
1828 	spin_lock_irqsave(lock, flags);
1829 	q->flags &= ~SIGQUEUE_PREALLOC;
1830 	/*
1831 	 * If it is queued it will be freed when dequeued,
1832 	 * like the "regular" sigqueue.
1833 	 */
1834 	if (!list_empty(&q->list))
1835 		q = NULL;
1836 	spin_unlock_irqrestore(lock, flags);
1837 
1838 	if (q)
1839 		__sigqueue_free(q);
1840 }
1841 
1842 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1843 {
1844 	int sig = q->info.si_signo;
1845 	struct sigpending *pending;
1846 	struct task_struct *t;
1847 	unsigned long flags;
1848 	int ret, result;
1849 
1850 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1851 
1852 	ret = -1;
1853 	rcu_read_lock();
1854 	t = pid_task(pid, type);
1855 	if (!t || !likely(lock_task_sighand(t, &flags)))
1856 		goto ret;
1857 
1858 	ret = 1; /* the signal is ignored */
1859 	result = TRACE_SIGNAL_IGNORED;
1860 	if (!prepare_signal(sig, t, false))
1861 		goto out;
1862 
1863 	ret = 0;
1864 	if (unlikely(!list_empty(&q->list))) {
1865 		/*
1866 		 * If an SI_TIMER entry is already queue just increment
1867 		 * the overrun count.
1868 		 */
1869 		BUG_ON(q->info.si_code != SI_TIMER);
1870 		q->info.si_overrun++;
1871 		result = TRACE_SIGNAL_ALREADY_PENDING;
1872 		goto out;
1873 	}
1874 	q->info.si_overrun = 0;
1875 
1876 	signalfd_notify(t, sig);
1877 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1878 	list_add_tail(&q->list, &pending->list);
1879 	sigaddset(&pending->signal, sig);
1880 	complete_signal(sig, t, type);
1881 	result = TRACE_SIGNAL_DELIVERED;
1882 out:
1883 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1884 	unlock_task_sighand(t, &flags);
1885 ret:
1886 	rcu_read_unlock();
1887 	return ret;
1888 }
1889 
1890 static void do_notify_pidfd(struct task_struct *task)
1891 {
1892 	struct pid *pid;
1893 
1894 	WARN_ON(task->exit_state == 0);
1895 	pid = task_pid(task);
1896 	wake_up_all(&pid->wait_pidfd);
1897 }
1898 
1899 /*
1900  * Let a parent know about the death of a child.
1901  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1902  *
1903  * Returns true if our parent ignored us and so we've switched to
1904  * self-reaping.
1905  */
1906 bool do_notify_parent(struct task_struct *tsk, int sig)
1907 {
1908 	struct kernel_siginfo info;
1909 	unsigned long flags;
1910 	struct sighand_struct *psig;
1911 	bool autoreap = false;
1912 	u64 utime, stime;
1913 
1914 	BUG_ON(sig == -1);
1915 
1916  	/* do_notify_parent_cldstop should have been called instead.  */
1917  	BUG_ON(task_is_stopped_or_traced(tsk));
1918 
1919 	BUG_ON(!tsk->ptrace &&
1920 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1921 
1922 	/* Wake up all pidfd waiters */
1923 	do_notify_pidfd(tsk);
1924 
1925 	if (sig != SIGCHLD) {
1926 		/*
1927 		 * This is only possible if parent == real_parent.
1928 		 * Check if it has changed security domain.
1929 		 */
1930 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1931 			sig = SIGCHLD;
1932 	}
1933 
1934 	clear_siginfo(&info);
1935 	info.si_signo = sig;
1936 	info.si_errno = 0;
1937 	/*
1938 	 * We are under tasklist_lock here so our parent is tied to
1939 	 * us and cannot change.
1940 	 *
1941 	 * task_active_pid_ns will always return the same pid namespace
1942 	 * until a task passes through release_task.
1943 	 *
1944 	 * write_lock() currently calls preempt_disable() which is the
1945 	 * same as rcu_read_lock(), but according to Oleg, this is not
1946 	 * correct to rely on this
1947 	 */
1948 	rcu_read_lock();
1949 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1950 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1951 				       task_uid(tsk));
1952 	rcu_read_unlock();
1953 
1954 	task_cputime(tsk, &utime, &stime);
1955 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1956 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1957 
1958 	info.si_status = tsk->exit_code & 0x7f;
1959 	if (tsk->exit_code & 0x80)
1960 		info.si_code = CLD_DUMPED;
1961 	else if (tsk->exit_code & 0x7f)
1962 		info.si_code = CLD_KILLED;
1963 	else {
1964 		info.si_code = CLD_EXITED;
1965 		info.si_status = tsk->exit_code >> 8;
1966 	}
1967 
1968 	psig = tsk->parent->sighand;
1969 	spin_lock_irqsave(&psig->siglock, flags);
1970 	if (!tsk->ptrace && sig == SIGCHLD &&
1971 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1972 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1973 		/*
1974 		 * We are exiting and our parent doesn't care.  POSIX.1
1975 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1976 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1977 		 * automatically and not left for our parent's wait4 call.
1978 		 * Rather than having the parent do it as a magic kind of
1979 		 * signal handler, we just set this to tell do_exit that we
1980 		 * can be cleaned up without becoming a zombie.  Note that
1981 		 * we still call __wake_up_parent in this case, because a
1982 		 * blocked sys_wait4 might now return -ECHILD.
1983 		 *
1984 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1985 		 * is implementation-defined: we do (if you don't want
1986 		 * it, just use SIG_IGN instead).
1987 		 */
1988 		autoreap = true;
1989 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1990 			sig = 0;
1991 	}
1992 	/*
1993 	 * Send with __send_signal as si_pid and si_uid are in the
1994 	 * parent's namespaces.
1995 	 */
1996 	if (valid_signal(sig) && sig)
1997 		__send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
1998 	__wake_up_parent(tsk, tsk->parent);
1999 	spin_unlock_irqrestore(&psig->siglock, flags);
2000 
2001 	return autoreap;
2002 }
2003 
2004 /**
2005  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2006  * @tsk: task reporting the state change
2007  * @for_ptracer: the notification is for ptracer
2008  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2009  *
2010  * Notify @tsk's parent that the stopped/continued state has changed.  If
2011  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2012  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2013  *
2014  * CONTEXT:
2015  * Must be called with tasklist_lock at least read locked.
2016  */
2017 static void do_notify_parent_cldstop(struct task_struct *tsk,
2018 				     bool for_ptracer, int why)
2019 {
2020 	struct kernel_siginfo info;
2021 	unsigned long flags;
2022 	struct task_struct *parent;
2023 	struct sighand_struct *sighand;
2024 	u64 utime, stime;
2025 
2026 	if (for_ptracer) {
2027 		parent = tsk->parent;
2028 	} else {
2029 		tsk = tsk->group_leader;
2030 		parent = tsk->real_parent;
2031 	}
2032 
2033 	clear_siginfo(&info);
2034 	info.si_signo = SIGCHLD;
2035 	info.si_errno = 0;
2036 	/*
2037 	 * see comment in do_notify_parent() about the following 4 lines
2038 	 */
2039 	rcu_read_lock();
2040 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2041 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2042 	rcu_read_unlock();
2043 
2044 	task_cputime(tsk, &utime, &stime);
2045 	info.si_utime = nsec_to_clock_t(utime);
2046 	info.si_stime = nsec_to_clock_t(stime);
2047 
2048  	info.si_code = why;
2049  	switch (why) {
2050  	case CLD_CONTINUED:
2051  		info.si_status = SIGCONT;
2052  		break;
2053  	case CLD_STOPPED:
2054  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2055  		break;
2056  	case CLD_TRAPPED:
2057  		info.si_status = tsk->exit_code & 0x7f;
2058  		break;
2059  	default:
2060  		BUG();
2061  	}
2062 
2063 	sighand = parent->sighand;
2064 	spin_lock_irqsave(&sighand->siglock, flags);
2065 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2066 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2067 		__group_send_sig_info(SIGCHLD, &info, parent);
2068 	/*
2069 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2070 	 */
2071 	__wake_up_parent(tsk, parent);
2072 	spin_unlock_irqrestore(&sighand->siglock, flags);
2073 }
2074 
2075 static inline bool may_ptrace_stop(void)
2076 {
2077 	if (!likely(current->ptrace))
2078 		return false;
2079 	/*
2080 	 * Are we in the middle of do_coredump?
2081 	 * If so and our tracer is also part of the coredump stopping
2082 	 * is a deadlock situation, and pointless because our tracer
2083 	 * is dead so don't allow us to stop.
2084 	 * If SIGKILL was already sent before the caller unlocked
2085 	 * ->siglock we must see ->core_state != NULL. Otherwise it
2086 	 * is safe to enter schedule().
2087 	 *
2088 	 * This is almost outdated, a task with the pending SIGKILL can't
2089 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2090 	 * after SIGKILL was already dequeued.
2091 	 */
2092 	if (unlikely(current->mm->core_state) &&
2093 	    unlikely(current->mm == current->parent->mm))
2094 		return false;
2095 
2096 	return true;
2097 }
2098 
2099 /*
2100  * Return non-zero if there is a SIGKILL that should be waking us up.
2101  * Called with the siglock held.
2102  */
2103 static bool sigkill_pending(struct task_struct *tsk)
2104 {
2105 	return sigismember(&tsk->pending.signal, SIGKILL) ||
2106 	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2107 }
2108 
2109 /*
2110  * This must be called with current->sighand->siglock held.
2111  *
2112  * This should be the path for all ptrace stops.
2113  * We always set current->last_siginfo while stopped here.
2114  * That makes it a way to test a stopped process for
2115  * being ptrace-stopped vs being job-control-stopped.
2116  *
2117  * If we actually decide not to stop at all because the tracer
2118  * is gone, we keep current->exit_code unless clear_code.
2119  */
2120 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2121 	__releases(&current->sighand->siglock)
2122 	__acquires(&current->sighand->siglock)
2123 {
2124 	bool gstop_done = false;
2125 
2126 	if (arch_ptrace_stop_needed(exit_code, info)) {
2127 		/*
2128 		 * The arch code has something special to do before a
2129 		 * ptrace stop.  This is allowed to block, e.g. for faults
2130 		 * on user stack pages.  We can't keep the siglock while
2131 		 * calling arch_ptrace_stop, so we must release it now.
2132 		 * To preserve proper semantics, we must do this before
2133 		 * any signal bookkeeping like checking group_stop_count.
2134 		 * Meanwhile, a SIGKILL could come in before we retake the
2135 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2136 		 * So after regaining the lock, we must check for SIGKILL.
2137 		 */
2138 		spin_unlock_irq(&current->sighand->siglock);
2139 		arch_ptrace_stop(exit_code, info);
2140 		spin_lock_irq(&current->sighand->siglock);
2141 		if (sigkill_pending(current))
2142 			return;
2143 	}
2144 
2145 	set_special_state(TASK_TRACED);
2146 
2147 	/*
2148 	 * We're committing to trapping.  TRACED should be visible before
2149 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2150 	 * Also, transition to TRACED and updates to ->jobctl should be
2151 	 * atomic with respect to siglock and should be done after the arch
2152 	 * hook as siglock is released and regrabbed across it.
2153 	 *
2154 	 *     TRACER				    TRACEE
2155 	 *
2156 	 *     ptrace_attach()
2157 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2158 	 *     do_wait()
2159 	 *       set_current_state()                smp_wmb();
2160 	 *       ptrace_do_wait()
2161 	 *         wait_task_stopped()
2162 	 *           task_stopped_code()
2163 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2164 	 */
2165 	smp_wmb();
2166 
2167 	current->last_siginfo = info;
2168 	current->exit_code = exit_code;
2169 
2170 	/*
2171 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2172 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2173 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2174 	 * could be clear now.  We act as if SIGCONT is received after
2175 	 * TASK_TRACED is entered - ignore it.
2176 	 */
2177 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2178 		gstop_done = task_participate_group_stop(current);
2179 
2180 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2181 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2182 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2183 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2184 
2185 	/* entering a trap, clear TRAPPING */
2186 	task_clear_jobctl_trapping(current);
2187 
2188 	spin_unlock_irq(&current->sighand->siglock);
2189 	read_lock(&tasklist_lock);
2190 	if (may_ptrace_stop()) {
2191 		/*
2192 		 * Notify parents of the stop.
2193 		 *
2194 		 * While ptraced, there are two parents - the ptracer and
2195 		 * the real_parent of the group_leader.  The ptracer should
2196 		 * know about every stop while the real parent is only
2197 		 * interested in the completion of group stop.  The states
2198 		 * for the two don't interact with each other.  Notify
2199 		 * separately unless they're gonna be duplicates.
2200 		 */
2201 		do_notify_parent_cldstop(current, true, why);
2202 		if (gstop_done && ptrace_reparented(current))
2203 			do_notify_parent_cldstop(current, false, why);
2204 
2205 		/*
2206 		 * Don't want to allow preemption here, because
2207 		 * sys_ptrace() needs this task to be inactive.
2208 		 *
2209 		 * XXX: implement read_unlock_no_resched().
2210 		 */
2211 		preempt_disable();
2212 		read_unlock(&tasklist_lock);
2213 		cgroup_enter_frozen();
2214 		preempt_enable_no_resched();
2215 		freezable_schedule();
2216 		cgroup_leave_frozen(true);
2217 	} else {
2218 		/*
2219 		 * By the time we got the lock, our tracer went away.
2220 		 * Don't drop the lock yet, another tracer may come.
2221 		 *
2222 		 * If @gstop_done, the ptracer went away between group stop
2223 		 * completion and here.  During detach, it would have set
2224 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2225 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2226 		 * the real parent of the group stop completion is enough.
2227 		 */
2228 		if (gstop_done)
2229 			do_notify_parent_cldstop(current, false, why);
2230 
2231 		/* tasklist protects us from ptrace_freeze_traced() */
2232 		__set_current_state(TASK_RUNNING);
2233 		if (clear_code)
2234 			current->exit_code = 0;
2235 		read_unlock(&tasklist_lock);
2236 	}
2237 
2238 	/*
2239 	 * We are back.  Now reacquire the siglock before touching
2240 	 * last_siginfo, so that we are sure to have synchronized with
2241 	 * any signal-sending on another CPU that wants to examine it.
2242 	 */
2243 	spin_lock_irq(&current->sighand->siglock);
2244 	current->last_siginfo = NULL;
2245 
2246 	/* LISTENING can be set only during STOP traps, clear it */
2247 	current->jobctl &= ~JOBCTL_LISTENING;
2248 
2249 	/*
2250 	 * Queued signals ignored us while we were stopped for tracing.
2251 	 * So check for any that we should take before resuming user mode.
2252 	 * This sets TIF_SIGPENDING, but never clears it.
2253 	 */
2254 	recalc_sigpending_tsk(current);
2255 }
2256 
2257 static void ptrace_do_notify(int signr, int exit_code, int why)
2258 {
2259 	kernel_siginfo_t info;
2260 
2261 	clear_siginfo(&info);
2262 	info.si_signo = signr;
2263 	info.si_code = exit_code;
2264 	info.si_pid = task_pid_vnr(current);
2265 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2266 
2267 	/* Let the debugger run.  */
2268 	ptrace_stop(exit_code, why, 1, &info);
2269 }
2270 
2271 void ptrace_notify(int exit_code)
2272 {
2273 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2274 	if (unlikely(current->task_works))
2275 		task_work_run();
2276 
2277 	spin_lock_irq(&current->sighand->siglock);
2278 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2279 	spin_unlock_irq(&current->sighand->siglock);
2280 }
2281 
2282 /**
2283  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2284  * @signr: signr causing group stop if initiating
2285  *
2286  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2287  * and participate in it.  If already set, participate in the existing
2288  * group stop.  If participated in a group stop (and thus slept), %true is
2289  * returned with siglock released.
2290  *
2291  * If ptraced, this function doesn't handle stop itself.  Instead,
2292  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2293  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2294  * places afterwards.
2295  *
2296  * CONTEXT:
2297  * Must be called with @current->sighand->siglock held, which is released
2298  * on %true return.
2299  *
2300  * RETURNS:
2301  * %false if group stop is already cancelled or ptrace trap is scheduled.
2302  * %true if participated in group stop.
2303  */
2304 static bool do_signal_stop(int signr)
2305 	__releases(&current->sighand->siglock)
2306 {
2307 	struct signal_struct *sig = current->signal;
2308 
2309 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2310 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2311 		struct task_struct *t;
2312 
2313 		/* signr will be recorded in task->jobctl for retries */
2314 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2315 
2316 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2317 		    unlikely(signal_group_exit(sig)))
2318 			return false;
2319 		/*
2320 		 * There is no group stop already in progress.  We must
2321 		 * initiate one now.
2322 		 *
2323 		 * While ptraced, a task may be resumed while group stop is
2324 		 * still in effect and then receive a stop signal and
2325 		 * initiate another group stop.  This deviates from the
2326 		 * usual behavior as two consecutive stop signals can't
2327 		 * cause two group stops when !ptraced.  That is why we
2328 		 * also check !task_is_stopped(t) below.
2329 		 *
2330 		 * The condition can be distinguished by testing whether
2331 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2332 		 * group_exit_code in such case.
2333 		 *
2334 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2335 		 * an intervening stop signal is required to cause two
2336 		 * continued events regardless of ptrace.
2337 		 */
2338 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2339 			sig->group_exit_code = signr;
2340 
2341 		sig->group_stop_count = 0;
2342 
2343 		if (task_set_jobctl_pending(current, signr | gstop))
2344 			sig->group_stop_count++;
2345 
2346 		t = current;
2347 		while_each_thread(current, t) {
2348 			/*
2349 			 * Setting state to TASK_STOPPED for a group
2350 			 * stop is always done with the siglock held,
2351 			 * so this check has no races.
2352 			 */
2353 			if (!task_is_stopped(t) &&
2354 			    task_set_jobctl_pending(t, signr | gstop)) {
2355 				sig->group_stop_count++;
2356 				if (likely(!(t->ptrace & PT_SEIZED)))
2357 					signal_wake_up(t, 0);
2358 				else
2359 					ptrace_trap_notify(t);
2360 			}
2361 		}
2362 	}
2363 
2364 	if (likely(!current->ptrace)) {
2365 		int notify = 0;
2366 
2367 		/*
2368 		 * If there are no other threads in the group, or if there
2369 		 * is a group stop in progress and we are the last to stop,
2370 		 * report to the parent.
2371 		 */
2372 		if (task_participate_group_stop(current))
2373 			notify = CLD_STOPPED;
2374 
2375 		set_special_state(TASK_STOPPED);
2376 		spin_unlock_irq(&current->sighand->siglock);
2377 
2378 		/*
2379 		 * Notify the parent of the group stop completion.  Because
2380 		 * we're not holding either the siglock or tasklist_lock
2381 		 * here, ptracer may attach inbetween; however, this is for
2382 		 * group stop and should always be delivered to the real
2383 		 * parent of the group leader.  The new ptracer will get
2384 		 * its notification when this task transitions into
2385 		 * TASK_TRACED.
2386 		 */
2387 		if (notify) {
2388 			read_lock(&tasklist_lock);
2389 			do_notify_parent_cldstop(current, false, notify);
2390 			read_unlock(&tasklist_lock);
2391 		}
2392 
2393 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2394 		cgroup_enter_frozen();
2395 		freezable_schedule();
2396 		return true;
2397 	} else {
2398 		/*
2399 		 * While ptraced, group stop is handled by STOP trap.
2400 		 * Schedule it and let the caller deal with it.
2401 		 */
2402 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2403 		return false;
2404 	}
2405 }
2406 
2407 /**
2408  * do_jobctl_trap - take care of ptrace jobctl traps
2409  *
2410  * When PT_SEIZED, it's used for both group stop and explicit
2411  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2412  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2413  * the stop signal; otherwise, %SIGTRAP.
2414  *
2415  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2416  * number as exit_code and no siginfo.
2417  *
2418  * CONTEXT:
2419  * Must be called with @current->sighand->siglock held, which may be
2420  * released and re-acquired before returning with intervening sleep.
2421  */
2422 static void do_jobctl_trap(void)
2423 {
2424 	struct signal_struct *signal = current->signal;
2425 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2426 
2427 	if (current->ptrace & PT_SEIZED) {
2428 		if (!signal->group_stop_count &&
2429 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2430 			signr = SIGTRAP;
2431 		WARN_ON_ONCE(!signr);
2432 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2433 				 CLD_STOPPED);
2434 	} else {
2435 		WARN_ON_ONCE(!signr);
2436 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2437 		current->exit_code = 0;
2438 	}
2439 }
2440 
2441 /**
2442  * do_freezer_trap - handle the freezer jobctl trap
2443  *
2444  * Puts the task into frozen state, if only the task is not about to quit.
2445  * In this case it drops JOBCTL_TRAP_FREEZE.
2446  *
2447  * CONTEXT:
2448  * Must be called with @current->sighand->siglock held,
2449  * which is always released before returning.
2450  */
2451 static void do_freezer_trap(void)
2452 	__releases(&current->sighand->siglock)
2453 {
2454 	/*
2455 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2456 	 * let's make another loop to give it a chance to be handled.
2457 	 * In any case, we'll return back.
2458 	 */
2459 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2460 	     JOBCTL_TRAP_FREEZE) {
2461 		spin_unlock_irq(&current->sighand->siglock);
2462 		return;
2463 	}
2464 
2465 	/*
2466 	 * Now we're sure that there is no pending fatal signal and no
2467 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2468 	 * immediately (if there is a non-fatal signal pending), and
2469 	 * put the task into sleep.
2470 	 */
2471 	__set_current_state(TASK_INTERRUPTIBLE);
2472 	clear_thread_flag(TIF_SIGPENDING);
2473 	spin_unlock_irq(&current->sighand->siglock);
2474 	cgroup_enter_frozen();
2475 	freezable_schedule();
2476 }
2477 
2478 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2479 {
2480 	/*
2481 	 * We do not check sig_kernel_stop(signr) but set this marker
2482 	 * unconditionally because we do not know whether debugger will
2483 	 * change signr. This flag has no meaning unless we are going
2484 	 * to stop after return from ptrace_stop(). In this case it will
2485 	 * be checked in do_signal_stop(), we should only stop if it was
2486 	 * not cleared by SIGCONT while we were sleeping. See also the
2487 	 * comment in dequeue_signal().
2488 	 */
2489 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2490 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2491 
2492 	/* We're back.  Did the debugger cancel the sig?  */
2493 	signr = current->exit_code;
2494 	if (signr == 0)
2495 		return signr;
2496 
2497 	current->exit_code = 0;
2498 
2499 	/*
2500 	 * Update the siginfo structure if the signal has
2501 	 * changed.  If the debugger wanted something
2502 	 * specific in the siginfo structure then it should
2503 	 * have updated *info via PTRACE_SETSIGINFO.
2504 	 */
2505 	if (signr != info->si_signo) {
2506 		clear_siginfo(info);
2507 		info->si_signo = signr;
2508 		info->si_errno = 0;
2509 		info->si_code = SI_USER;
2510 		rcu_read_lock();
2511 		info->si_pid = task_pid_vnr(current->parent);
2512 		info->si_uid = from_kuid_munged(current_user_ns(),
2513 						task_uid(current->parent));
2514 		rcu_read_unlock();
2515 	}
2516 
2517 	/* If the (new) signal is now blocked, requeue it.  */
2518 	if (sigismember(&current->blocked, signr)) {
2519 		send_signal(signr, info, current, PIDTYPE_PID);
2520 		signr = 0;
2521 	}
2522 
2523 	return signr;
2524 }
2525 
2526 bool get_signal(struct ksignal *ksig)
2527 {
2528 	struct sighand_struct *sighand = current->sighand;
2529 	struct signal_struct *signal = current->signal;
2530 	int signr;
2531 
2532 	if (unlikely(current->task_works))
2533 		task_work_run();
2534 
2535 	if (unlikely(uprobe_deny_signal()))
2536 		return false;
2537 
2538 	/*
2539 	 * Do this once, we can't return to user-mode if freezing() == T.
2540 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2541 	 * thus do not need another check after return.
2542 	 */
2543 	try_to_freeze();
2544 
2545 relock:
2546 	spin_lock_irq(&sighand->siglock);
2547 	/*
2548 	 * Every stopped thread goes here after wakeup. Check to see if
2549 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2550 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2551 	 */
2552 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2553 		int why;
2554 
2555 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2556 			why = CLD_CONTINUED;
2557 		else
2558 			why = CLD_STOPPED;
2559 
2560 		signal->flags &= ~SIGNAL_CLD_MASK;
2561 
2562 		spin_unlock_irq(&sighand->siglock);
2563 
2564 		/*
2565 		 * Notify the parent that we're continuing.  This event is
2566 		 * always per-process and doesn't make whole lot of sense
2567 		 * for ptracers, who shouldn't consume the state via
2568 		 * wait(2) either, but, for backward compatibility, notify
2569 		 * the ptracer of the group leader too unless it's gonna be
2570 		 * a duplicate.
2571 		 */
2572 		read_lock(&tasklist_lock);
2573 		do_notify_parent_cldstop(current, false, why);
2574 
2575 		if (ptrace_reparented(current->group_leader))
2576 			do_notify_parent_cldstop(current->group_leader,
2577 						true, why);
2578 		read_unlock(&tasklist_lock);
2579 
2580 		goto relock;
2581 	}
2582 
2583 	/* Has this task already been marked for death? */
2584 	if (signal_group_exit(signal)) {
2585 		ksig->info.si_signo = signr = SIGKILL;
2586 		sigdelset(&current->pending.signal, SIGKILL);
2587 		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2588 				&sighand->action[SIGKILL - 1]);
2589 		recalc_sigpending();
2590 		goto fatal;
2591 	}
2592 
2593 	for (;;) {
2594 		struct k_sigaction *ka;
2595 
2596 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2597 		    do_signal_stop(0))
2598 			goto relock;
2599 
2600 		if (unlikely(current->jobctl &
2601 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2602 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2603 				do_jobctl_trap();
2604 				spin_unlock_irq(&sighand->siglock);
2605 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2606 				do_freezer_trap();
2607 
2608 			goto relock;
2609 		}
2610 
2611 		/*
2612 		 * If the task is leaving the frozen state, let's update
2613 		 * cgroup counters and reset the frozen bit.
2614 		 */
2615 		if (unlikely(cgroup_task_frozen(current))) {
2616 			spin_unlock_irq(&sighand->siglock);
2617 			cgroup_leave_frozen(false);
2618 			goto relock;
2619 		}
2620 
2621 		/*
2622 		 * Signals generated by the execution of an instruction
2623 		 * need to be delivered before any other pending signals
2624 		 * so that the instruction pointer in the signal stack
2625 		 * frame points to the faulting instruction.
2626 		 */
2627 		signr = dequeue_synchronous_signal(&ksig->info);
2628 		if (!signr)
2629 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2630 
2631 		if (!signr)
2632 			break; /* will return 0 */
2633 
2634 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2635 			signr = ptrace_signal(signr, &ksig->info);
2636 			if (!signr)
2637 				continue;
2638 		}
2639 
2640 		ka = &sighand->action[signr-1];
2641 
2642 		/* Trace actually delivered signals. */
2643 		trace_signal_deliver(signr, &ksig->info, ka);
2644 
2645 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2646 			continue;
2647 		if (ka->sa.sa_handler != SIG_DFL) {
2648 			/* Run the handler.  */
2649 			ksig->ka = *ka;
2650 
2651 			if (ka->sa.sa_flags & SA_ONESHOT)
2652 				ka->sa.sa_handler = SIG_DFL;
2653 
2654 			break; /* will return non-zero "signr" value */
2655 		}
2656 
2657 		/*
2658 		 * Now we are doing the default action for this signal.
2659 		 */
2660 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2661 			continue;
2662 
2663 		/*
2664 		 * Global init gets no signals it doesn't want.
2665 		 * Container-init gets no signals it doesn't want from same
2666 		 * container.
2667 		 *
2668 		 * Note that if global/container-init sees a sig_kernel_only()
2669 		 * signal here, the signal must have been generated internally
2670 		 * or must have come from an ancestor namespace. In either
2671 		 * case, the signal cannot be dropped.
2672 		 */
2673 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2674 				!sig_kernel_only(signr))
2675 			continue;
2676 
2677 		if (sig_kernel_stop(signr)) {
2678 			/*
2679 			 * The default action is to stop all threads in
2680 			 * the thread group.  The job control signals
2681 			 * do nothing in an orphaned pgrp, but SIGSTOP
2682 			 * always works.  Note that siglock needs to be
2683 			 * dropped during the call to is_orphaned_pgrp()
2684 			 * because of lock ordering with tasklist_lock.
2685 			 * This allows an intervening SIGCONT to be posted.
2686 			 * We need to check for that and bail out if necessary.
2687 			 */
2688 			if (signr != SIGSTOP) {
2689 				spin_unlock_irq(&sighand->siglock);
2690 
2691 				/* signals can be posted during this window */
2692 
2693 				if (is_current_pgrp_orphaned())
2694 					goto relock;
2695 
2696 				spin_lock_irq(&sighand->siglock);
2697 			}
2698 
2699 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2700 				/* It released the siglock.  */
2701 				goto relock;
2702 			}
2703 
2704 			/*
2705 			 * We didn't actually stop, due to a race
2706 			 * with SIGCONT or something like that.
2707 			 */
2708 			continue;
2709 		}
2710 
2711 	fatal:
2712 		spin_unlock_irq(&sighand->siglock);
2713 		if (unlikely(cgroup_task_frozen(current)))
2714 			cgroup_leave_frozen(true);
2715 
2716 		/*
2717 		 * Anything else is fatal, maybe with a core dump.
2718 		 */
2719 		current->flags |= PF_SIGNALED;
2720 
2721 		if (sig_kernel_coredump(signr)) {
2722 			if (print_fatal_signals)
2723 				print_fatal_signal(ksig->info.si_signo);
2724 			proc_coredump_connector(current);
2725 			/*
2726 			 * If it was able to dump core, this kills all
2727 			 * other threads in the group and synchronizes with
2728 			 * their demise.  If we lost the race with another
2729 			 * thread getting here, it set group_exit_code
2730 			 * first and our do_group_exit call below will use
2731 			 * that value and ignore the one we pass it.
2732 			 */
2733 			do_coredump(&ksig->info);
2734 		}
2735 
2736 		/*
2737 		 * Death signals, no core dump.
2738 		 */
2739 		do_group_exit(ksig->info.si_signo);
2740 		/* NOTREACHED */
2741 	}
2742 	spin_unlock_irq(&sighand->siglock);
2743 
2744 	ksig->sig = signr;
2745 	return ksig->sig > 0;
2746 }
2747 
2748 /**
2749  * signal_delivered -
2750  * @ksig:		kernel signal struct
2751  * @stepping:		nonzero if debugger single-step or block-step in use
2752  *
2753  * This function should be called when a signal has successfully been
2754  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2755  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2756  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2757  */
2758 static void signal_delivered(struct ksignal *ksig, int stepping)
2759 {
2760 	sigset_t blocked;
2761 
2762 	/* A signal was successfully delivered, and the
2763 	   saved sigmask was stored on the signal frame,
2764 	   and will be restored by sigreturn.  So we can
2765 	   simply clear the restore sigmask flag.  */
2766 	clear_restore_sigmask();
2767 
2768 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2769 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2770 		sigaddset(&blocked, ksig->sig);
2771 	set_current_blocked(&blocked);
2772 	tracehook_signal_handler(stepping);
2773 }
2774 
2775 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2776 {
2777 	if (failed)
2778 		force_sigsegv(ksig->sig);
2779 	else
2780 		signal_delivered(ksig, stepping);
2781 }
2782 
2783 /*
2784  * It could be that complete_signal() picked us to notify about the
2785  * group-wide signal. Other threads should be notified now to take
2786  * the shared signals in @which since we will not.
2787  */
2788 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2789 {
2790 	sigset_t retarget;
2791 	struct task_struct *t;
2792 
2793 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2794 	if (sigisemptyset(&retarget))
2795 		return;
2796 
2797 	t = tsk;
2798 	while_each_thread(tsk, t) {
2799 		if (t->flags & PF_EXITING)
2800 			continue;
2801 
2802 		if (!has_pending_signals(&retarget, &t->blocked))
2803 			continue;
2804 		/* Remove the signals this thread can handle. */
2805 		sigandsets(&retarget, &retarget, &t->blocked);
2806 
2807 		if (!signal_pending(t))
2808 			signal_wake_up(t, 0);
2809 
2810 		if (sigisemptyset(&retarget))
2811 			break;
2812 	}
2813 }
2814 
2815 void exit_signals(struct task_struct *tsk)
2816 {
2817 	int group_stop = 0;
2818 	sigset_t unblocked;
2819 
2820 	/*
2821 	 * @tsk is about to have PF_EXITING set - lock out users which
2822 	 * expect stable threadgroup.
2823 	 */
2824 	cgroup_threadgroup_change_begin(tsk);
2825 
2826 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2827 		tsk->flags |= PF_EXITING;
2828 		cgroup_threadgroup_change_end(tsk);
2829 		return;
2830 	}
2831 
2832 	spin_lock_irq(&tsk->sighand->siglock);
2833 	/*
2834 	 * From now this task is not visible for group-wide signals,
2835 	 * see wants_signal(), do_signal_stop().
2836 	 */
2837 	tsk->flags |= PF_EXITING;
2838 
2839 	cgroup_threadgroup_change_end(tsk);
2840 
2841 	if (!signal_pending(tsk))
2842 		goto out;
2843 
2844 	unblocked = tsk->blocked;
2845 	signotset(&unblocked);
2846 	retarget_shared_pending(tsk, &unblocked);
2847 
2848 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2849 	    task_participate_group_stop(tsk))
2850 		group_stop = CLD_STOPPED;
2851 out:
2852 	spin_unlock_irq(&tsk->sighand->siglock);
2853 
2854 	/*
2855 	 * If group stop has completed, deliver the notification.  This
2856 	 * should always go to the real parent of the group leader.
2857 	 */
2858 	if (unlikely(group_stop)) {
2859 		read_lock(&tasklist_lock);
2860 		do_notify_parent_cldstop(tsk, false, group_stop);
2861 		read_unlock(&tasklist_lock);
2862 	}
2863 }
2864 
2865 /*
2866  * System call entry points.
2867  */
2868 
2869 /**
2870  *  sys_restart_syscall - restart a system call
2871  */
2872 SYSCALL_DEFINE0(restart_syscall)
2873 {
2874 	struct restart_block *restart = &current->restart_block;
2875 	return restart->fn(restart);
2876 }
2877 
2878 long do_no_restart_syscall(struct restart_block *param)
2879 {
2880 	return -EINTR;
2881 }
2882 
2883 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2884 {
2885 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2886 		sigset_t newblocked;
2887 		/* A set of now blocked but previously unblocked signals. */
2888 		sigandnsets(&newblocked, newset, &current->blocked);
2889 		retarget_shared_pending(tsk, &newblocked);
2890 	}
2891 	tsk->blocked = *newset;
2892 	recalc_sigpending();
2893 }
2894 
2895 /**
2896  * set_current_blocked - change current->blocked mask
2897  * @newset: new mask
2898  *
2899  * It is wrong to change ->blocked directly, this helper should be used
2900  * to ensure the process can't miss a shared signal we are going to block.
2901  */
2902 void set_current_blocked(sigset_t *newset)
2903 {
2904 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2905 	__set_current_blocked(newset);
2906 }
2907 
2908 void __set_current_blocked(const sigset_t *newset)
2909 {
2910 	struct task_struct *tsk = current;
2911 
2912 	/*
2913 	 * In case the signal mask hasn't changed, there is nothing we need
2914 	 * to do. The current->blocked shouldn't be modified by other task.
2915 	 */
2916 	if (sigequalsets(&tsk->blocked, newset))
2917 		return;
2918 
2919 	spin_lock_irq(&tsk->sighand->siglock);
2920 	__set_task_blocked(tsk, newset);
2921 	spin_unlock_irq(&tsk->sighand->siglock);
2922 }
2923 
2924 /*
2925  * This is also useful for kernel threads that want to temporarily
2926  * (or permanently) block certain signals.
2927  *
2928  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2929  * interface happily blocks "unblockable" signals like SIGKILL
2930  * and friends.
2931  */
2932 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2933 {
2934 	struct task_struct *tsk = current;
2935 	sigset_t newset;
2936 
2937 	/* Lockless, only current can change ->blocked, never from irq */
2938 	if (oldset)
2939 		*oldset = tsk->blocked;
2940 
2941 	switch (how) {
2942 	case SIG_BLOCK:
2943 		sigorsets(&newset, &tsk->blocked, set);
2944 		break;
2945 	case SIG_UNBLOCK:
2946 		sigandnsets(&newset, &tsk->blocked, set);
2947 		break;
2948 	case SIG_SETMASK:
2949 		newset = *set;
2950 		break;
2951 	default:
2952 		return -EINVAL;
2953 	}
2954 
2955 	__set_current_blocked(&newset);
2956 	return 0;
2957 }
2958 EXPORT_SYMBOL(sigprocmask);
2959 
2960 /*
2961  * The api helps set app-provided sigmasks.
2962  *
2963  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2964  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2965  *
2966  * Note that it does set_restore_sigmask() in advance, so it must be always
2967  * paired with restore_saved_sigmask_unless() before return from syscall.
2968  */
2969 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2970 {
2971 	sigset_t kmask;
2972 
2973 	if (!umask)
2974 		return 0;
2975 	if (sigsetsize != sizeof(sigset_t))
2976 		return -EINVAL;
2977 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2978 		return -EFAULT;
2979 
2980 	set_restore_sigmask();
2981 	current->saved_sigmask = current->blocked;
2982 	set_current_blocked(&kmask);
2983 
2984 	return 0;
2985 }
2986 
2987 #ifdef CONFIG_COMPAT
2988 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
2989 			    size_t sigsetsize)
2990 {
2991 	sigset_t kmask;
2992 
2993 	if (!umask)
2994 		return 0;
2995 	if (sigsetsize != sizeof(compat_sigset_t))
2996 		return -EINVAL;
2997 	if (get_compat_sigset(&kmask, umask))
2998 		return -EFAULT;
2999 
3000 	set_restore_sigmask();
3001 	current->saved_sigmask = current->blocked;
3002 	set_current_blocked(&kmask);
3003 
3004 	return 0;
3005 }
3006 #endif
3007 
3008 /**
3009  *  sys_rt_sigprocmask - change the list of currently blocked signals
3010  *  @how: whether to add, remove, or set signals
3011  *  @nset: stores pending signals
3012  *  @oset: previous value of signal mask if non-null
3013  *  @sigsetsize: size of sigset_t type
3014  */
3015 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3016 		sigset_t __user *, oset, size_t, sigsetsize)
3017 {
3018 	sigset_t old_set, new_set;
3019 	int error;
3020 
3021 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3022 	if (sigsetsize != sizeof(sigset_t))
3023 		return -EINVAL;
3024 
3025 	old_set = current->blocked;
3026 
3027 	if (nset) {
3028 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3029 			return -EFAULT;
3030 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3031 
3032 		error = sigprocmask(how, &new_set, NULL);
3033 		if (error)
3034 			return error;
3035 	}
3036 
3037 	if (oset) {
3038 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3039 			return -EFAULT;
3040 	}
3041 
3042 	return 0;
3043 }
3044 
3045 #ifdef CONFIG_COMPAT
3046 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3047 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3048 {
3049 	sigset_t old_set = current->blocked;
3050 
3051 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3052 	if (sigsetsize != sizeof(sigset_t))
3053 		return -EINVAL;
3054 
3055 	if (nset) {
3056 		sigset_t new_set;
3057 		int error;
3058 		if (get_compat_sigset(&new_set, nset))
3059 			return -EFAULT;
3060 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3061 
3062 		error = sigprocmask(how, &new_set, NULL);
3063 		if (error)
3064 			return error;
3065 	}
3066 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3067 }
3068 #endif
3069 
3070 static void do_sigpending(sigset_t *set)
3071 {
3072 	spin_lock_irq(&current->sighand->siglock);
3073 	sigorsets(set, &current->pending.signal,
3074 		  &current->signal->shared_pending.signal);
3075 	spin_unlock_irq(&current->sighand->siglock);
3076 
3077 	/* Outside the lock because only this thread touches it.  */
3078 	sigandsets(set, &current->blocked, set);
3079 }
3080 
3081 /**
3082  *  sys_rt_sigpending - examine a pending signal that has been raised
3083  *			while blocked
3084  *  @uset: stores pending signals
3085  *  @sigsetsize: size of sigset_t type or larger
3086  */
3087 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3088 {
3089 	sigset_t set;
3090 
3091 	if (sigsetsize > sizeof(*uset))
3092 		return -EINVAL;
3093 
3094 	do_sigpending(&set);
3095 
3096 	if (copy_to_user(uset, &set, sigsetsize))
3097 		return -EFAULT;
3098 
3099 	return 0;
3100 }
3101 
3102 #ifdef CONFIG_COMPAT
3103 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3104 		compat_size_t, sigsetsize)
3105 {
3106 	sigset_t set;
3107 
3108 	if (sigsetsize > sizeof(*uset))
3109 		return -EINVAL;
3110 
3111 	do_sigpending(&set);
3112 
3113 	return put_compat_sigset(uset, &set, sigsetsize);
3114 }
3115 #endif
3116 
3117 static const struct {
3118 	unsigned char limit, layout;
3119 } sig_sicodes[] = {
3120 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3121 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3122 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3123 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3124 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3125 #if defined(SIGEMT)
3126 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3127 #endif
3128 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3129 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3130 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3131 };
3132 
3133 static bool known_siginfo_layout(unsigned sig, int si_code)
3134 {
3135 	if (si_code == SI_KERNEL)
3136 		return true;
3137 	else if ((si_code > SI_USER)) {
3138 		if (sig_specific_sicodes(sig)) {
3139 			if (si_code <= sig_sicodes[sig].limit)
3140 				return true;
3141 		}
3142 		else if (si_code <= NSIGPOLL)
3143 			return true;
3144 	}
3145 	else if (si_code >= SI_DETHREAD)
3146 		return true;
3147 	else if (si_code == SI_ASYNCNL)
3148 		return true;
3149 	return false;
3150 }
3151 
3152 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3153 {
3154 	enum siginfo_layout layout = SIL_KILL;
3155 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3156 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3157 		    (si_code <= sig_sicodes[sig].limit)) {
3158 			layout = sig_sicodes[sig].layout;
3159 			/* Handle the exceptions */
3160 			if ((sig == SIGBUS) &&
3161 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3162 				layout = SIL_FAULT_MCEERR;
3163 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3164 				layout = SIL_FAULT_BNDERR;
3165 #ifdef SEGV_PKUERR
3166 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3167 				layout = SIL_FAULT_PKUERR;
3168 #endif
3169 		}
3170 		else if (si_code <= NSIGPOLL)
3171 			layout = SIL_POLL;
3172 	} else {
3173 		if (si_code == SI_TIMER)
3174 			layout = SIL_TIMER;
3175 		else if (si_code == SI_SIGIO)
3176 			layout = SIL_POLL;
3177 		else if (si_code < 0)
3178 			layout = SIL_RT;
3179 	}
3180 	return layout;
3181 }
3182 
3183 static inline char __user *si_expansion(const siginfo_t __user *info)
3184 {
3185 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3186 }
3187 
3188 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3189 {
3190 	char __user *expansion = si_expansion(to);
3191 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3192 		return -EFAULT;
3193 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3194 		return -EFAULT;
3195 	return 0;
3196 }
3197 
3198 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3199 				       const siginfo_t __user *from)
3200 {
3201 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3202 		char __user *expansion = si_expansion(from);
3203 		char buf[SI_EXPANSION_SIZE];
3204 		int i;
3205 		/*
3206 		 * An unknown si_code might need more than
3207 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3208 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3209 		 * will return this data to userspace exactly.
3210 		 */
3211 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3212 			return -EFAULT;
3213 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3214 			if (buf[i] != 0)
3215 				return -E2BIG;
3216 		}
3217 	}
3218 	return 0;
3219 }
3220 
3221 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3222 				    const siginfo_t __user *from)
3223 {
3224 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3225 		return -EFAULT;
3226 	to->si_signo = signo;
3227 	return post_copy_siginfo_from_user(to, from);
3228 }
3229 
3230 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3231 {
3232 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3233 		return -EFAULT;
3234 	return post_copy_siginfo_from_user(to, from);
3235 }
3236 
3237 #ifdef CONFIG_COMPAT
3238 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3239 			   const struct kernel_siginfo *from)
3240 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3241 {
3242 	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3243 }
3244 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3245 			     const struct kernel_siginfo *from, bool x32_ABI)
3246 #endif
3247 {
3248 	struct compat_siginfo new;
3249 	memset(&new, 0, sizeof(new));
3250 
3251 	new.si_signo = from->si_signo;
3252 	new.si_errno = from->si_errno;
3253 	new.si_code  = from->si_code;
3254 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3255 	case SIL_KILL:
3256 		new.si_pid = from->si_pid;
3257 		new.si_uid = from->si_uid;
3258 		break;
3259 	case SIL_TIMER:
3260 		new.si_tid     = from->si_tid;
3261 		new.si_overrun = from->si_overrun;
3262 		new.si_int     = from->si_int;
3263 		break;
3264 	case SIL_POLL:
3265 		new.si_band = from->si_band;
3266 		new.si_fd   = from->si_fd;
3267 		break;
3268 	case SIL_FAULT:
3269 		new.si_addr = ptr_to_compat(from->si_addr);
3270 #ifdef __ARCH_SI_TRAPNO
3271 		new.si_trapno = from->si_trapno;
3272 #endif
3273 		break;
3274 	case SIL_FAULT_MCEERR:
3275 		new.si_addr = ptr_to_compat(from->si_addr);
3276 #ifdef __ARCH_SI_TRAPNO
3277 		new.si_trapno = from->si_trapno;
3278 #endif
3279 		new.si_addr_lsb = from->si_addr_lsb;
3280 		break;
3281 	case SIL_FAULT_BNDERR:
3282 		new.si_addr = ptr_to_compat(from->si_addr);
3283 #ifdef __ARCH_SI_TRAPNO
3284 		new.si_trapno = from->si_trapno;
3285 #endif
3286 		new.si_lower = ptr_to_compat(from->si_lower);
3287 		new.si_upper = ptr_to_compat(from->si_upper);
3288 		break;
3289 	case SIL_FAULT_PKUERR:
3290 		new.si_addr = ptr_to_compat(from->si_addr);
3291 #ifdef __ARCH_SI_TRAPNO
3292 		new.si_trapno = from->si_trapno;
3293 #endif
3294 		new.si_pkey = from->si_pkey;
3295 		break;
3296 	case SIL_CHLD:
3297 		new.si_pid    = from->si_pid;
3298 		new.si_uid    = from->si_uid;
3299 		new.si_status = from->si_status;
3300 #ifdef CONFIG_X86_X32_ABI
3301 		if (x32_ABI) {
3302 			new._sifields._sigchld_x32._utime = from->si_utime;
3303 			new._sifields._sigchld_x32._stime = from->si_stime;
3304 		} else
3305 #endif
3306 		{
3307 			new.si_utime = from->si_utime;
3308 			new.si_stime = from->si_stime;
3309 		}
3310 		break;
3311 	case SIL_RT:
3312 		new.si_pid = from->si_pid;
3313 		new.si_uid = from->si_uid;
3314 		new.si_int = from->si_int;
3315 		break;
3316 	case SIL_SYS:
3317 		new.si_call_addr = ptr_to_compat(from->si_call_addr);
3318 		new.si_syscall   = from->si_syscall;
3319 		new.si_arch      = from->si_arch;
3320 		break;
3321 	}
3322 
3323 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3324 		return -EFAULT;
3325 
3326 	return 0;
3327 }
3328 
3329 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3330 					 const struct compat_siginfo *from)
3331 {
3332 	clear_siginfo(to);
3333 	to->si_signo = from->si_signo;
3334 	to->si_errno = from->si_errno;
3335 	to->si_code  = from->si_code;
3336 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3337 	case SIL_KILL:
3338 		to->si_pid = from->si_pid;
3339 		to->si_uid = from->si_uid;
3340 		break;
3341 	case SIL_TIMER:
3342 		to->si_tid     = from->si_tid;
3343 		to->si_overrun = from->si_overrun;
3344 		to->si_int     = from->si_int;
3345 		break;
3346 	case SIL_POLL:
3347 		to->si_band = from->si_band;
3348 		to->si_fd   = from->si_fd;
3349 		break;
3350 	case SIL_FAULT:
3351 		to->si_addr = compat_ptr(from->si_addr);
3352 #ifdef __ARCH_SI_TRAPNO
3353 		to->si_trapno = from->si_trapno;
3354 #endif
3355 		break;
3356 	case SIL_FAULT_MCEERR:
3357 		to->si_addr = compat_ptr(from->si_addr);
3358 #ifdef __ARCH_SI_TRAPNO
3359 		to->si_trapno = from->si_trapno;
3360 #endif
3361 		to->si_addr_lsb = from->si_addr_lsb;
3362 		break;
3363 	case SIL_FAULT_BNDERR:
3364 		to->si_addr = compat_ptr(from->si_addr);
3365 #ifdef __ARCH_SI_TRAPNO
3366 		to->si_trapno = from->si_trapno;
3367 #endif
3368 		to->si_lower = compat_ptr(from->si_lower);
3369 		to->si_upper = compat_ptr(from->si_upper);
3370 		break;
3371 	case SIL_FAULT_PKUERR:
3372 		to->si_addr = compat_ptr(from->si_addr);
3373 #ifdef __ARCH_SI_TRAPNO
3374 		to->si_trapno = from->si_trapno;
3375 #endif
3376 		to->si_pkey = from->si_pkey;
3377 		break;
3378 	case SIL_CHLD:
3379 		to->si_pid    = from->si_pid;
3380 		to->si_uid    = from->si_uid;
3381 		to->si_status = from->si_status;
3382 #ifdef CONFIG_X86_X32_ABI
3383 		if (in_x32_syscall()) {
3384 			to->si_utime = from->_sifields._sigchld_x32._utime;
3385 			to->si_stime = from->_sifields._sigchld_x32._stime;
3386 		} else
3387 #endif
3388 		{
3389 			to->si_utime = from->si_utime;
3390 			to->si_stime = from->si_stime;
3391 		}
3392 		break;
3393 	case SIL_RT:
3394 		to->si_pid = from->si_pid;
3395 		to->si_uid = from->si_uid;
3396 		to->si_int = from->si_int;
3397 		break;
3398 	case SIL_SYS:
3399 		to->si_call_addr = compat_ptr(from->si_call_addr);
3400 		to->si_syscall   = from->si_syscall;
3401 		to->si_arch      = from->si_arch;
3402 		break;
3403 	}
3404 	return 0;
3405 }
3406 
3407 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3408 				      const struct compat_siginfo __user *ufrom)
3409 {
3410 	struct compat_siginfo from;
3411 
3412 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3413 		return -EFAULT;
3414 
3415 	from.si_signo = signo;
3416 	return post_copy_siginfo_from_user32(to, &from);
3417 }
3418 
3419 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3420 			     const struct compat_siginfo __user *ufrom)
3421 {
3422 	struct compat_siginfo from;
3423 
3424 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3425 		return -EFAULT;
3426 
3427 	return post_copy_siginfo_from_user32(to, &from);
3428 }
3429 #endif /* CONFIG_COMPAT */
3430 
3431 /**
3432  *  do_sigtimedwait - wait for queued signals specified in @which
3433  *  @which: queued signals to wait for
3434  *  @info: if non-null, the signal's siginfo is returned here
3435  *  @ts: upper bound on process time suspension
3436  */
3437 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3438 		    const struct timespec64 *ts)
3439 {
3440 	ktime_t *to = NULL, timeout = KTIME_MAX;
3441 	struct task_struct *tsk = current;
3442 	sigset_t mask = *which;
3443 	int sig, ret = 0;
3444 
3445 	if (ts) {
3446 		if (!timespec64_valid(ts))
3447 			return -EINVAL;
3448 		timeout = timespec64_to_ktime(*ts);
3449 		to = &timeout;
3450 	}
3451 
3452 	/*
3453 	 * Invert the set of allowed signals to get those we want to block.
3454 	 */
3455 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3456 	signotset(&mask);
3457 
3458 	spin_lock_irq(&tsk->sighand->siglock);
3459 	sig = dequeue_signal(tsk, &mask, info);
3460 	if (!sig && timeout) {
3461 		/*
3462 		 * None ready, temporarily unblock those we're interested
3463 		 * while we are sleeping in so that we'll be awakened when
3464 		 * they arrive. Unblocking is always fine, we can avoid
3465 		 * set_current_blocked().
3466 		 */
3467 		tsk->real_blocked = tsk->blocked;
3468 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3469 		recalc_sigpending();
3470 		spin_unlock_irq(&tsk->sighand->siglock);
3471 
3472 		__set_current_state(TASK_INTERRUPTIBLE);
3473 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3474 							 HRTIMER_MODE_REL);
3475 		spin_lock_irq(&tsk->sighand->siglock);
3476 		__set_task_blocked(tsk, &tsk->real_blocked);
3477 		sigemptyset(&tsk->real_blocked);
3478 		sig = dequeue_signal(tsk, &mask, info);
3479 	}
3480 	spin_unlock_irq(&tsk->sighand->siglock);
3481 
3482 	if (sig)
3483 		return sig;
3484 	return ret ? -EINTR : -EAGAIN;
3485 }
3486 
3487 /**
3488  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3489  *			in @uthese
3490  *  @uthese: queued signals to wait for
3491  *  @uinfo: if non-null, the signal's siginfo is returned here
3492  *  @uts: upper bound on process time suspension
3493  *  @sigsetsize: size of sigset_t type
3494  */
3495 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3496 		siginfo_t __user *, uinfo,
3497 		const struct __kernel_timespec __user *, uts,
3498 		size_t, sigsetsize)
3499 {
3500 	sigset_t these;
3501 	struct timespec64 ts;
3502 	kernel_siginfo_t info;
3503 	int ret;
3504 
3505 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3506 	if (sigsetsize != sizeof(sigset_t))
3507 		return -EINVAL;
3508 
3509 	if (copy_from_user(&these, uthese, sizeof(these)))
3510 		return -EFAULT;
3511 
3512 	if (uts) {
3513 		if (get_timespec64(&ts, uts))
3514 			return -EFAULT;
3515 	}
3516 
3517 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3518 
3519 	if (ret > 0 && uinfo) {
3520 		if (copy_siginfo_to_user(uinfo, &info))
3521 			ret = -EFAULT;
3522 	}
3523 
3524 	return ret;
3525 }
3526 
3527 #ifdef CONFIG_COMPAT_32BIT_TIME
3528 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3529 		siginfo_t __user *, uinfo,
3530 		const struct old_timespec32 __user *, uts,
3531 		size_t, sigsetsize)
3532 {
3533 	sigset_t these;
3534 	struct timespec64 ts;
3535 	kernel_siginfo_t info;
3536 	int ret;
3537 
3538 	if (sigsetsize != sizeof(sigset_t))
3539 		return -EINVAL;
3540 
3541 	if (copy_from_user(&these, uthese, sizeof(these)))
3542 		return -EFAULT;
3543 
3544 	if (uts) {
3545 		if (get_old_timespec32(&ts, uts))
3546 			return -EFAULT;
3547 	}
3548 
3549 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3550 
3551 	if (ret > 0 && uinfo) {
3552 		if (copy_siginfo_to_user(uinfo, &info))
3553 			ret = -EFAULT;
3554 	}
3555 
3556 	return ret;
3557 }
3558 #endif
3559 
3560 #ifdef CONFIG_COMPAT
3561 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3562 		struct compat_siginfo __user *, uinfo,
3563 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3564 {
3565 	sigset_t s;
3566 	struct timespec64 t;
3567 	kernel_siginfo_t info;
3568 	long ret;
3569 
3570 	if (sigsetsize != sizeof(sigset_t))
3571 		return -EINVAL;
3572 
3573 	if (get_compat_sigset(&s, uthese))
3574 		return -EFAULT;
3575 
3576 	if (uts) {
3577 		if (get_timespec64(&t, uts))
3578 			return -EFAULT;
3579 	}
3580 
3581 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3582 
3583 	if (ret > 0 && uinfo) {
3584 		if (copy_siginfo_to_user32(uinfo, &info))
3585 			ret = -EFAULT;
3586 	}
3587 
3588 	return ret;
3589 }
3590 
3591 #ifdef CONFIG_COMPAT_32BIT_TIME
3592 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3593 		struct compat_siginfo __user *, uinfo,
3594 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3595 {
3596 	sigset_t s;
3597 	struct timespec64 t;
3598 	kernel_siginfo_t info;
3599 	long ret;
3600 
3601 	if (sigsetsize != sizeof(sigset_t))
3602 		return -EINVAL;
3603 
3604 	if (get_compat_sigset(&s, uthese))
3605 		return -EFAULT;
3606 
3607 	if (uts) {
3608 		if (get_old_timespec32(&t, uts))
3609 			return -EFAULT;
3610 	}
3611 
3612 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3613 
3614 	if (ret > 0 && uinfo) {
3615 		if (copy_siginfo_to_user32(uinfo, &info))
3616 			ret = -EFAULT;
3617 	}
3618 
3619 	return ret;
3620 }
3621 #endif
3622 #endif
3623 
3624 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3625 {
3626 	clear_siginfo(info);
3627 	info->si_signo = sig;
3628 	info->si_errno = 0;
3629 	info->si_code = SI_USER;
3630 	info->si_pid = task_tgid_vnr(current);
3631 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3632 }
3633 
3634 /**
3635  *  sys_kill - send a signal to a process
3636  *  @pid: the PID of the process
3637  *  @sig: signal to be sent
3638  */
3639 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3640 {
3641 	struct kernel_siginfo info;
3642 
3643 	prepare_kill_siginfo(sig, &info);
3644 
3645 	return kill_something_info(sig, &info, pid);
3646 }
3647 
3648 /*
3649  * Verify that the signaler and signalee either are in the same pid namespace
3650  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3651  * namespace.
3652  */
3653 static bool access_pidfd_pidns(struct pid *pid)
3654 {
3655 	struct pid_namespace *active = task_active_pid_ns(current);
3656 	struct pid_namespace *p = ns_of_pid(pid);
3657 
3658 	for (;;) {
3659 		if (!p)
3660 			return false;
3661 		if (p == active)
3662 			break;
3663 		p = p->parent;
3664 	}
3665 
3666 	return true;
3667 }
3668 
3669 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3670 {
3671 #ifdef CONFIG_COMPAT
3672 	/*
3673 	 * Avoid hooking up compat syscalls and instead handle necessary
3674 	 * conversions here. Note, this is a stop-gap measure and should not be
3675 	 * considered a generic solution.
3676 	 */
3677 	if (in_compat_syscall())
3678 		return copy_siginfo_from_user32(
3679 			kinfo, (struct compat_siginfo __user *)info);
3680 #endif
3681 	return copy_siginfo_from_user(kinfo, info);
3682 }
3683 
3684 static struct pid *pidfd_to_pid(const struct file *file)
3685 {
3686 	struct pid *pid;
3687 
3688 	pid = pidfd_pid(file);
3689 	if (!IS_ERR(pid))
3690 		return pid;
3691 
3692 	return tgid_pidfd_to_pid(file);
3693 }
3694 
3695 /**
3696  * sys_pidfd_send_signal - Signal a process through a pidfd
3697  * @pidfd:  file descriptor of the process
3698  * @sig:    signal to send
3699  * @info:   signal info
3700  * @flags:  future flags
3701  *
3702  * The syscall currently only signals via PIDTYPE_PID which covers
3703  * kill(<positive-pid>, <signal>. It does not signal threads or process
3704  * groups.
3705  * In order to extend the syscall to threads and process groups the @flags
3706  * argument should be used. In essence, the @flags argument will determine
3707  * what is signaled and not the file descriptor itself. Put in other words,
3708  * grouping is a property of the flags argument not a property of the file
3709  * descriptor.
3710  *
3711  * Return: 0 on success, negative errno on failure
3712  */
3713 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3714 		siginfo_t __user *, info, unsigned int, flags)
3715 {
3716 	int ret;
3717 	struct fd f;
3718 	struct pid *pid;
3719 	kernel_siginfo_t kinfo;
3720 
3721 	/* Enforce flags be set to 0 until we add an extension. */
3722 	if (flags)
3723 		return -EINVAL;
3724 
3725 	f = fdget(pidfd);
3726 	if (!f.file)
3727 		return -EBADF;
3728 
3729 	/* Is this a pidfd? */
3730 	pid = pidfd_to_pid(f.file);
3731 	if (IS_ERR(pid)) {
3732 		ret = PTR_ERR(pid);
3733 		goto err;
3734 	}
3735 
3736 	ret = -EINVAL;
3737 	if (!access_pidfd_pidns(pid))
3738 		goto err;
3739 
3740 	if (info) {
3741 		ret = copy_siginfo_from_user_any(&kinfo, info);
3742 		if (unlikely(ret))
3743 			goto err;
3744 
3745 		ret = -EINVAL;
3746 		if (unlikely(sig != kinfo.si_signo))
3747 			goto err;
3748 
3749 		/* Only allow sending arbitrary signals to yourself. */
3750 		ret = -EPERM;
3751 		if ((task_pid(current) != pid) &&
3752 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3753 			goto err;
3754 	} else {
3755 		prepare_kill_siginfo(sig, &kinfo);
3756 	}
3757 
3758 	ret = kill_pid_info(sig, &kinfo, pid);
3759 
3760 err:
3761 	fdput(f);
3762 	return ret;
3763 }
3764 
3765 static int
3766 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3767 {
3768 	struct task_struct *p;
3769 	int error = -ESRCH;
3770 
3771 	rcu_read_lock();
3772 	p = find_task_by_vpid(pid);
3773 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3774 		error = check_kill_permission(sig, info, p);
3775 		/*
3776 		 * The null signal is a permissions and process existence
3777 		 * probe.  No signal is actually delivered.
3778 		 */
3779 		if (!error && sig) {
3780 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3781 			/*
3782 			 * If lock_task_sighand() failed we pretend the task
3783 			 * dies after receiving the signal. The window is tiny,
3784 			 * and the signal is private anyway.
3785 			 */
3786 			if (unlikely(error == -ESRCH))
3787 				error = 0;
3788 		}
3789 	}
3790 	rcu_read_unlock();
3791 
3792 	return error;
3793 }
3794 
3795 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3796 {
3797 	struct kernel_siginfo info;
3798 
3799 	clear_siginfo(&info);
3800 	info.si_signo = sig;
3801 	info.si_errno = 0;
3802 	info.si_code = SI_TKILL;
3803 	info.si_pid = task_tgid_vnr(current);
3804 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3805 
3806 	return do_send_specific(tgid, pid, sig, &info);
3807 }
3808 
3809 /**
3810  *  sys_tgkill - send signal to one specific thread
3811  *  @tgid: the thread group ID of the thread
3812  *  @pid: the PID of the thread
3813  *  @sig: signal to be sent
3814  *
3815  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3816  *  exists but it's not belonging to the target process anymore. This
3817  *  method solves the problem of threads exiting and PIDs getting reused.
3818  */
3819 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3820 {
3821 	/* This is only valid for single tasks */
3822 	if (pid <= 0 || tgid <= 0)
3823 		return -EINVAL;
3824 
3825 	return do_tkill(tgid, pid, sig);
3826 }
3827 
3828 /**
3829  *  sys_tkill - send signal to one specific task
3830  *  @pid: the PID of the task
3831  *  @sig: signal to be sent
3832  *
3833  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3834  */
3835 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3836 {
3837 	/* This is only valid for single tasks */
3838 	if (pid <= 0)
3839 		return -EINVAL;
3840 
3841 	return do_tkill(0, pid, sig);
3842 }
3843 
3844 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3845 {
3846 	/* Not even root can pretend to send signals from the kernel.
3847 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3848 	 */
3849 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3850 	    (task_pid_vnr(current) != pid))
3851 		return -EPERM;
3852 
3853 	/* POSIX.1b doesn't mention process groups.  */
3854 	return kill_proc_info(sig, info, pid);
3855 }
3856 
3857 /**
3858  *  sys_rt_sigqueueinfo - send signal information to a signal
3859  *  @pid: the PID of the thread
3860  *  @sig: signal to be sent
3861  *  @uinfo: signal info to be sent
3862  */
3863 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3864 		siginfo_t __user *, uinfo)
3865 {
3866 	kernel_siginfo_t info;
3867 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3868 	if (unlikely(ret))
3869 		return ret;
3870 	return do_rt_sigqueueinfo(pid, sig, &info);
3871 }
3872 
3873 #ifdef CONFIG_COMPAT
3874 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3875 			compat_pid_t, pid,
3876 			int, sig,
3877 			struct compat_siginfo __user *, uinfo)
3878 {
3879 	kernel_siginfo_t info;
3880 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3881 	if (unlikely(ret))
3882 		return ret;
3883 	return do_rt_sigqueueinfo(pid, sig, &info);
3884 }
3885 #endif
3886 
3887 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3888 {
3889 	/* This is only valid for single tasks */
3890 	if (pid <= 0 || tgid <= 0)
3891 		return -EINVAL;
3892 
3893 	/* Not even root can pretend to send signals from the kernel.
3894 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3895 	 */
3896 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3897 	    (task_pid_vnr(current) != pid))
3898 		return -EPERM;
3899 
3900 	return do_send_specific(tgid, pid, sig, info);
3901 }
3902 
3903 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3904 		siginfo_t __user *, uinfo)
3905 {
3906 	kernel_siginfo_t info;
3907 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3908 	if (unlikely(ret))
3909 		return ret;
3910 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3911 }
3912 
3913 #ifdef CONFIG_COMPAT
3914 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3915 			compat_pid_t, tgid,
3916 			compat_pid_t, pid,
3917 			int, sig,
3918 			struct compat_siginfo __user *, uinfo)
3919 {
3920 	kernel_siginfo_t info;
3921 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3922 	if (unlikely(ret))
3923 		return ret;
3924 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3925 }
3926 #endif
3927 
3928 /*
3929  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3930  */
3931 void kernel_sigaction(int sig, __sighandler_t action)
3932 {
3933 	spin_lock_irq(&current->sighand->siglock);
3934 	current->sighand->action[sig - 1].sa.sa_handler = action;
3935 	if (action == SIG_IGN) {
3936 		sigset_t mask;
3937 
3938 		sigemptyset(&mask);
3939 		sigaddset(&mask, sig);
3940 
3941 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3942 		flush_sigqueue_mask(&mask, &current->pending);
3943 		recalc_sigpending();
3944 	}
3945 	spin_unlock_irq(&current->sighand->siglock);
3946 }
3947 EXPORT_SYMBOL(kernel_sigaction);
3948 
3949 void __weak sigaction_compat_abi(struct k_sigaction *act,
3950 		struct k_sigaction *oact)
3951 {
3952 }
3953 
3954 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3955 {
3956 	struct task_struct *p = current, *t;
3957 	struct k_sigaction *k;
3958 	sigset_t mask;
3959 
3960 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3961 		return -EINVAL;
3962 
3963 	k = &p->sighand->action[sig-1];
3964 
3965 	spin_lock_irq(&p->sighand->siglock);
3966 	if (oact)
3967 		*oact = *k;
3968 
3969 	sigaction_compat_abi(act, oact);
3970 
3971 	if (act) {
3972 		sigdelsetmask(&act->sa.sa_mask,
3973 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3974 		*k = *act;
3975 		/*
3976 		 * POSIX 3.3.1.3:
3977 		 *  "Setting a signal action to SIG_IGN for a signal that is
3978 		 *   pending shall cause the pending signal to be discarded,
3979 		 *   whether or not it is blocked."
3980 		 *
3981 		 *  "Setting a signal action to SIG_DFL for a signal that is
3982 		 *   pending and whose default action is to ignore the signal
3983 		 *   (for example, SIGCHLD), shall cause the pending signal to
3984 		 *   be discarded, whether or not it is blocked"
3985 		 */
3986 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3987 			sigemptyset(&mask);
3988 			sigaddset(&mask, sig);
3989 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3990 			for_each_thread(p, t)
3991 				flush_sigqueue_mask(&mask, &t->pending);
3992 		}
3993 	}
3994 
3995 	spin_unlock_irq(&p->sighand->siglock);
3996 	return 0;
3997 }
3998 
3999 static int
4000 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4001 		size_t min_ss_size)
4002 {
4003 	struct task_struct *t = current;
4004 
4005 	if (oss) {
4006 		memset(oss, 0, sizeof(stack_t));
4007 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4008 		oss->ss_size = t->sas_ss_size;
4009 		oss->ss_flags = sas_ss_flags(sp) |
4010 			(current->sas_ss_flags & SS_FLAG_BITS);
4011 	}
4012 
4013 	if (ss) {
4014 		void __user *ss_sp = ss->ss_sp;
4015 		size_t ss_size = ss->ss_size;
4016 		unsigned ss_flags = ss->ss_flags;
4017 		int ss_mode;
4018 
4019 		if (unlikely(on_sig_stack(sp)))
4020 			return -EPERM;
4021 
4022 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4023 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4024 				ss_mode != 0))
4025 			return -EINVAL;
4026 
4027 		if (ss_mode == SS_DISABLE) {
4028 			ss_size = 0;
4029 			ss_sp = NULL;
4030 		} else {
4031 			if (unlikely(ss_size < min_ss_size))
4032 				return -ENOMEM;
4033 		}
4034 
4035 		t->sas_ss_sp = (unsigned long) ss_sp;
4036 		t->sas_ss_size = ss_size;
4037 		t->sas_ss_flags = ss_flags;
4038 	}
4039 	return 0;
4040 }
4041 
4042 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4043 {
4044 	stack_t new, old;
4045 	int err;
4046 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4047 		return -EFAULT;
4048 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4049 			      current_user_stack_pointer(),
4050 			      MINSIGSTKSZ);
4051 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4052 		err = -EFAULT;
4053 	return err;
4054 }
4055 
4056 int restore_altstack(const stack_t __user *uss)
4057 {
4058 	stack_t new;
4059 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4060 		return -EFAULT;
4061 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4062 			     MINSIGSTKSZ);
4063 	/* squash all but EFAULT for now */
4064 	return 0;
4065 }
4066 
4067 int __save_altstack(stack_t __user *uss, unsigned long sp)
4068 {
4069 	struct task_struct *t = current;
4070 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4071 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4072 		__put_user(t->sas_ss_size, &uss->ss_size);
4073 	if (err)
4074 		return err;
4075 	if (t->sas_ss_flags & SS_AUTODISARM)
4076 		sas_ss_reset(t);
4077 	return 0;
4078 }
4079 
4080 #ifdef CONFIG_COMPAT
4081 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4082 				 compat_stack_t __user *uoss_ptr)
4083 {
4084 	stack_t uss, uoss;
4085 	int ret;
4086 
4087 	if (uss_ptr) {
4088 		compat_stack_t uss32;
4089 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4090 			return -EFAULT;
4091 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4092 		uss.ss_flags = uss32.ss_flags;
4093 		uss.ss_size = uss32.ss_size;
4094 	}
4095 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4096 			     compat_user_stack_pointer(),
4097 			     COMPAT_MINSIGSTKSZ);
4098 	if (ret >= 0 && uoss_ptr)  {
4099 		compat_stack_t old;
4100 		memset(&old, 0, sizeof(old));
4101 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4102 		old.ss_flags = uoss.ss_flags;
4103 		old.ss_size = uoss.ss_size;
4104 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4105 			ret = -EFAULT;
4106 	}
4107 	return ret;
4108 }
4109 
4110 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4111 			const compat_stack_t __user *, uss_ptr,
4112 			compat_stack_t __user *, uoss_ptr)
4113 {
4114 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4115 }
4116 
4117 int compat_restore_altstack(const compat_stack_t __user *uss)
4118 {
4119 	int err = do_compat_sigaltstack(uss, NULL);
4120 	/* squash all but -EFAULT for now */
4121 	return err == -EFAULT ? err : 0;
4122 }
4123 
4124 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4125 {
4126 	int err;
4127 	struct task_struct *t = current;
4128 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4129 			 &uss->ss_sp) |
4130 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4131 		__put_user(t->sas_ss_size, &uss->ss_size);
4132 	if (err)
4133 		return err;
4134 	if (t->sas_ss_flags & SS_AUTODISARM)
4135 		sas_ss_reset(t);
4136 	return 0;
4137 }
4138 #endif
4139 
4140 #ifdef __ARCH_WANT_SYS_SIGPENDING
4141 
4142 /**
4143  *  sys_sigpending - examine pending signals
4144  *  @uset: where mask of pending signal is returned
4145  */
4146 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4147 {
4148 	sigset_t set;
4149 
4150 	if (sizeof(old_sigset_t) > sizeof(*uset))
4151 		return -EINVAL;
4152 
4153 	do_sigpending(&set);
4154 
4155 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4156 		return -EFAULT;
4157 
4158 	return 0;
4159 }
4160 
4161 #ifdef CONFIG_COMPAT
4162 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4163 {
4164 	sigset_t set;
4165 
4166 	do_sigpending(&set);
4167 
4168 	return put_user(set.sig[0], set32);
4169 }
4170 #endif
4171 
4172 #endif
4173 
4174 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4175 /**
4176  *  sys_sigprocmask - examine and change blocked signals
4177  *  @how: whether to add, remove, or set signals
4178  *  @nset: signals to add or remove (if non-null)
4179  *  @oset: previous value of signal mask if non-null
4180  *
4181  * Some platforms have their own version with special arguments;
4182  * others support only sys_rt_sigprocmask.
4183  */
4184 
4185 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4186 		old_sigset_t __user *, oset)
4187 {
4188 	old_sigset_t old_set, new_set;
4189 	sigset_t new_blocked;
4190 
4191 	old_set = current->blocked.sig[0];
4192 
4193 	if (nset) {
4194 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4195 			return -EFAULT;
4196 
4197 		new_blocked = current->blocked;
4198 
4199 		switch (how) {
4200 		case SIG_BLOCK:
4201 			sigaddsetmask(&new_blocked, new_set);
4202 			break;
4203 		case SIG_UNBLOCK:
4204 			sigdelsetmask(&new_blocked, new_set);
4205 			break;
4206 		case SIG_SETMASK:
4207 			new_blocked.sig[0] = new_set;
4208 			break;
4209 		default:
4210 			return -EINVAL;
4211 		}
4212 
4213 		set_current_blocked(&new_blocked);
4214 	}
4215 
4216 	if (oset) {
4217 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4218 			return -EFAULT;
4219 	}
4220 
4221 	return 0;
4222 }
4223 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4224 
4225 #ifndef CONFIG_ODD_RT_SIGACTION
4226 /**
4227  *  sys_rt_sigaction - alter an action taken by a process
4228  *  @sig: signal to be sent
4229  *  @act: new sigaction
4230  *  @oact: used to save the previous sigaction
4231  *  @sigsetsize: size of sigset_t type
4232  */
4233 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4234 		const struct sigaction __user *, act,
4235 		struct sigaction __user *, oact,
4236 		size_t, sigsetsize)
4237 {
4238 	struct k_sigaction new_sa, old_sa;
4239 	int ret;
4240 
4241 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4242 	if (sigsetsize != sizeof(sigset_t))
4243 		return -EINVAL;
4244 
4245 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4246 		return -EFAULT;
4247 
4248 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4249 	if (ret)
4250 		return ret;
4251 
4252 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4253 		return -EFAULT;
4254 
4255 	return 0;
4256 }
4257 #ifdef CONFIG_COMPAT
4258 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4259 		const struct compat_sigaction __user *, act,
4260 		struct compat_sigaction __user *, oact,
4261 		compat_size_t, sigsetsize)
4262 {
4263 	struct k_sigaction new_ka, old_ka;
4264 #ifdef __ARCH_HAS_SA_RESTORER
4265 	compat_uptr_t restorer;
4266 #endif
4267 	int ret;
4268 
4269 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4270 	if (sigsetsize != sizeof(compat_sigset_t))
4271 		return -EINVAL;
4272 
4273 	if (act) {
4274 		compat_uptr_t handler;
4275 		ret = get_user(handler, &act->sa_handler);
4276 		new_ka.sa.sa_handler = compat_ptr(handler);
4277 #ifdef __ARCH_HAS_SA_RESTORER
4278 		ret |= get_user(restorer, &act->sa_restorer);
4279 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4280 #endif
4281 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4282 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4283 		if (ret)
4284 			return -EFAULT;
4285 	}
4286 
4287 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4288 	if (!ret && oact) {
4289 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4290 			       &oact->sa_handler);
4291 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4292 					 sizeof(oact->sa_mask));
4293 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4294 #ifdef __ARCH_HAS_SA_RESTORER
4295 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4296 				&oact->sa_restorer);
4297 #endif
4298 	}
4299 	return ret;
4300 }
4301 #endif
4302 #endif /* !CONFIG_ODD_RT_SIGACTION */
4303 
4304 #ifdef CONFIG_OLD_SIGACTION
4305 SYSCALL_DEFINE3(sigaction, int, sig,
4306 		const struct old_sigaction __user *, act,
4307 	        struct old_sigaction __user *, oact)
4308 {
4309 	struct k_sigaction new_ka, old_ka;
4310 	int ret;
4311 
4312 	if (act) {
4313 		old_sigset_t mask;
4314 		if (!access_ok(act, sizeof(*act)) ||
4315 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4316 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4317 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4318 		    __get_user(mask, &act->sa_mask))
4319 			return -EFAULT;
4320 #ifdef __ARCH_HAS_KA_RESTORER
4321 		new_ka.ka_restorer = NULL;
4322 #endif
4323 		siginitset(&new_ka.sa.sa_mask, mask);
4324 	}
4325 
4326 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4327 
4328 	if (!ret && oact) {
4329 		if (!access_ok(oact, sizeof(*oact)) ||
4330 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4331 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4332 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4333 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4334 			return -EFAULT;
4335 	}
4336 
4337 	return ret;
4338 }
4339 #endif
4340 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4341 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4342 		const struct compat_old_sigaction __user *, act,
4343 	        struct compat_old_sigaction __user *, oact)
4344 {
4345 	struct k_sigaction new_ka, old_ka;
4346 	int ret;
4347 	compat_old_sigset_t mask;
4348 	compat_uptr_t handler, restorer;
4349 
4350 	if (act) {
4351 		if (!access_ok(act, sizeof(*act)) ||
4352 		    __get_user(handler, &act->sa_handler) ||
4353 		    __get_user(restorer, &act->sa_restorer) ||
4354 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4355 		    __get_user(mask, &act->sa_mask))
4356 			return -EFAULT;
4357 
4358 #ifdef __ARCH_HAS_KA_RESTORER
4359 		new_ka.ka_restorer = NULL;
4360 #endif
4361 		new_ka.sa.sa_handler = compat_ptr(handler);
4362 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4363 		siginitset(&new_ka.sa.sa_mask, mask);
4364 	}
4365 
4366 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4367 
4368 	if (!ret && oact) {
4369 		if (!access_ok(oact, sizeof(*oact)) ||
4370 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4371 			       &oact->sa_handler) ||
4372 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4373 			       &oact->sa_restorer) ||
4374 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4375 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4376 			return -EFAULT;
4377 	}
4378 	return ret;
4379 }
4380 #endif
4381 
4382 #ifdef CONFIG_SGETMASK_SYSCALL
4383 
4384 /*
4385  * For backwards compatibility.  Functionality superseded by sigprocmask.
4386  */
4387 SYSCALL_DEFINE0(sgetmask)
4388 {
4389 	/* SMP safe */
4390 	return current->blocked.sig[0];
4391 }
4392 
4393 SYSCALL_DEFINE1(ssetmask, int, newmask)
4394 {
4395 	int old = current->blocked.sig[0];
4396 	sigset_t newset;
4397 
4398 	siginitset(&newset, newmask);
4399 	set_current_blocked(&newset);
4400 
4401 	return old;
4402 }
4403 #endif /* CONFIG_SGETMASK_SYSCALL */
4404 
4405 #ifdef __ARCH_WANT_SYS_SIGNAL
4406 /*
4407  * For backwards compatibility.  Functionality superseded by sigaction.
4408  */
4409 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4410 {
4411 	struct k_sigaction new_sa, old_sa;
4412 	int ret;
4413 
4414 	new_sa.sa.sa_handler = handler;
4415 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4416 	sigemptyset(&new_sa.sa.sa_mask);
4417 
4418 	ret = do_sigaction(sig, &new_sa, &old_sa);
4419 
4420 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4421 }
4422 #endif /* __ARCH_WANT_SYS_SIGNAL */
4423 
4424 #ifdef __ARCH_WANT_SYS_PAUSE
4425 
4426 SYSCALL_DEFINE0(pause)
4427 {
4428 	while (!signal_pending(current)) {
4429 		__set_current_state(TASK_INTERRUPTIBLE);
4430 		schedule();
4431 	}
4432 	return -ERESTARTNOHAND;
4433 }
4434 
4435 #endif
4436 
4437 static int sigsuspend(sigset_t *set)
4438 {
4439 	current->saved_sigmask = current->blocked;
4440 	set_current_blocked(set);
4441 
4442 	while (!signal_pending(current)) {
4443 		__set_current_state(TASK_INTERRUPTIBLE);
4444 		schedule();
4445 	}
4446 	set_restore_sigmask();
4447 	return -ERESTARTNOHAND;
4448 }
4449 
4450 /**
4451  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4452  *	@unewset value until a signal is received
4453  *  @unewset: new signal mask value
4454  *  @sigsetsize: size of sigset_t type
4455  */
4456 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4457 {
4458 	sigset_t newset;
4459 
4460 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4461 	if (sigsetsize != sizeof(sigset_t))
4462 		return -EINVAL;
4463 
4464 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4465 		return -EFAULT;
4466 	return sigsuspend(&newset);
4467 }
4468 
4469 #ifdef CONFIG_COMPAT
4470 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4471 {
4472 	sigset_t newset;
4473 
4474 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4475 	if (sigsetsize != sizeof(sigset_t))
4476 		return -EINVAL;
4477 
4478 	if (get_compat_sigset(&newset, unewset))
4479 		return -EFAULT;
4480 	return sigsuspend(&newset);
4481 }
4482 #endif
4483 
4484 #ifdef CONFIG_OLD_SIGSUSPEND
4485 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4486 {
4487 	sigset_t blocked;
4488 	siginitset(&blocked, mask);
4489 	return sigsuspend(&blocked);
4490 }
4491 #endif
4492 #ifdef CONFIG_OLD_SIGSUSPEND3
4493 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4494 {
4495 	sigset_t blocked;
4496 	siginitset(&blocked, mask);
4497 	return sigsuspend(&blocked);
4498 }
4499 #endif
4500 
4501 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4502 {
4503 	return NULL;
4504 }
4505 
4506 static inline void siginfo_buildtime_checks(void)
4507 {
4508 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4509 
4510 	/* Verify the offsets in the two siginfos match */
4511 #define CHECK_OFFSET(field) \
4512 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4513 
4514 	/* kill */
4515 	CHECK_OFFSET(si_pid);
4516 	CHECK_OFFSET(si_uid);
4517 
4518 	/* timer */
4519 	CHECK_OFFSET(si_tid);
4520 	CHECK_OFFSET(si_overrun);
4521 	CHECK_OFFSET(si_value);
4522 
4523 	/* rt */
4524 	CHECK_OFFSET(si_pid);
4525 	CHECK_OFFSET(si_uid);
4526 	CHECK_OFFSET(si_value);
4527 
4528 	/* sigchld */
4529 	CHECK_OFFSET(si_pid);
4530 	CHECK_OFFSET(si_uid);
4531 	CHECK_OFFSET(si_status);
4532 	CHECK_OFFSET(si_utime);
4533 	CHECK_OFFSET(si_stime);
4534 
4535 	/* sigfault */
4536 	CHECK_OFFSET(si_addr);
4537 	CHECK_OFFSET(si_addr_lsb);
4538 	CHECK_OFFSET(si_lower);
4539 	CHECK_OFFSET(si_upper);
4540 	CHECK_OFFSET(si_pkey);
4541 
4542 	/* sigpoll */
4543 	CHECK_OFFSET(si_band);
4544 	CHECK_OFFSET(si_fd);
4545 
4546 	/* sigsys */
4547 	CHECK_OFFSET(si_call_addr);
4548 	CHECK_OFFSET(si_syscall);
4549 	CHECK_OFFSET(si_arch);
4550 #undef CHECK_OFFSET
4551 
4552 	/* usb asyncio */
4553 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4554 		     offsetof(struct siginfo, si_addr));
4555 	if (sizeof(int) == sizeof(void __user *)) {
4556 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4557 			     sizeof(void __user *));
4558 	} else {
4559 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4560 			      sizeof_field(struct siginfo, si_uid)) !=
4561 			     sizeof(void __user *));
4562 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4563 			     offsetof(struct siginfo, si_uid));
4564 	}
4565 #ifdef CONFIG_COMPAT
4566 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4567 		     offsetof(struct compat_siginfo, si_addr));
4568 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4569 		     sizeof(compat_uptr_t));
4570 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4571 		     sizeof_field(struct siginfo, si_pid));
4572 #endif
4573 }
4574 
4575 void __init signals_init(void)
4576 {
4577 	siginfo_buildtime_checks();
4578 
4579 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4580 }
4581 
4582 #ifdef CONFIG_KGDB_KDB
4583 #include <linux/kdb.h>
4584 /*
4585  * kdb_send_sig - Allows kdb to send signals without exposing
4586  * signal internals.  This function checks if the required locks are
4587  * available before calling the main signal code, to avoid kdb
4588  * deadlocks.
4589  */
4590 void kdb_send_sig(struct task_struct *t, int sig)
4591 {
4592 	static struct task_struct *kdb_prev_t;
4593 	int new_t, ret;
4594 	if (!spin_trylock(&t->sighand->siglock)) {
4595 		kdb_printf("Can't do kill command now.\n"
4596 			   "The sigmask lock is held somewhere else in "
4597 			   "kernel, try again later\n");
4598 		return;
4599 	}
4600 	new_t = kdb_prev_t != t;
4601 	kdb_prev_t = t;
4602 	if (t->state != TASK_RUNNING && new_t) {
4603 		spin_unlock(&t->sighand->siglock);
4604 		kdb_printf("Process is not RUNNING, sending a signal from "
4605 			   "kdb risks deadlock\n"
4606 			   "on the run queue locks. "
4607 			   "The signal has _not_ been sent.\n"
4608 			   "Reissue the kill command if you want to risk "
4609 			   "the deadlock.\n");
4610 		return;
4611 	}
4612 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4613 	spin_unlock(&t->sighand->siglock);
4614 	if (ret)
4615 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4616 			   sig, t->pid);
4617 	else
4618 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4619 }
4620 #endif	/* CONFIG_KGDB_KDB */
4621