xref: /openbmc/linux/kernel/signal.c (revision bb3982b4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/livepatch.h>
47 #include <linux/cgroup.h>
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
51 
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
57 #include "audit.h"	/* audit_signal_info() */
58 
59 /*
60  * SLAB caches for signal bits.
61  */
62 
63 static struct kmem_cache *sigqueue_cachep;
64 
65 int print_fatal_signals __read_mostly;
66 
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 	return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71 
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 	/* Is it explicitly or implicitly ignored? */
75 	return handler == SIG_IGN ||
76 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78 
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 	void __user *handler;
82 
83 	handler = sig_handler(t, sig);
84 
85 	/* SIGKILL and SIGSTOP may not be sent to the global init */
86 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 		return true;
88 
89 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 		return true;
92 
93 	return sig_handler_ignored(handler, sig);
94 }
95 
96 static bool sig_ignored(struct task_struct *t, int sig, bool force)
97 {
98 	/*
99 	 * Blocked signals are never ignored, since the
100 	 * signal handler may change by the time it is
101 	 * unblocked.
102 	 */
103 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
104 		return false;
105 
106 	/*
107 	 * Tracers may want to know about even ignored signal unless it
108 	 * is SIGKILL which can't be reported anyway but can be ignored
109 	 * by SIGNAL_UNKILLABLE task.
110 	 */
111 	if (t->ptrace && sig != SIGKILL)
112 		return false;
113 
114 	return sig_task_ignored(t, sig, force);
115 }
116 
117 /*
118  * Re-calculate pending state from the set of locally pending
119  * signals, globally pending signals, and blocked signals.
120  */
121 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
122 {
123 	unsigned long ready;
124 	long i;
125 
126 	switch (_NSIG_WORDS) {
127 	default:
128 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
129 			ready |= signal->sig[i] &~ blocked->sig[i];
130 		break;
131 
132 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
133 		ready |= signal->sig[2] &~ blocked->sig[2];
134 		ready |= signal->sig[1] &~ blocked->sig[1];
135 		ready |= signal->sig[0] &~ blocked->sig[0];
136 		break;
137 
138 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
139 		ready |= signal->sig[0] &~ blocked->sig[0];
140 		break;
141 
142 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
143 	}
144 	return ready !=	0;
145 }
146 
147 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
148 
149 static bool recalc_sigpending_tsk(struct task_struct *t)
150 {
151 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
152 	    PENDING(&t->pending, &t->blocked) ||
153 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
154 	    cgroup_task_frozen(t)) {
155 		set_tsk_thread_flag(t, TIF_SIGPENDING);
156 		return true;
157 	}
158 
159 	/*
160 	 * We must never clear the flag in another thread, or in current
161 	 * when it's possible the current syscall is returning -ERESTART*.
162 	 * So we don't clear it here, and only callers who know they should do.
163 	 */
164 	return false;
165 }
166 
167 /*
168  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
169  * This is superfluous when called on current, the wakeup is a harmless no-op.
170  */
171 void recalc_sigpending_and_wake(struct task_struct *t)
172 {
173 	if (recalc_sigpending_tsk(t))
174 		signal_wake_up(t, 0);
175 }
176 
177 void recalc_sigpending(void)
178 {
179 	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
180 	    !klp_patch_pending(current))
181 		clear_thread_flag(TIF_SIGPENDING);
182 
183 }
184 EXPORT_SYMBOL(recalc_sigpending);
185 
186 void calculate_sigpending(void)
187 {
188 	/* Have any signals or users of TIF_SIGPENDING been delayed
189 	 * until after fork?
190 	 */
191 	spin_lock_irq(&current->sighand->siglock);
192 	set_tsk_thread_flag(current, TIF_SIGPENDING);
193 	recalc_sigpending();
194 	spin_unlock_irq(&current->sighand->siglock);
195 }
196 
197 /* Given the mask, find the first available signal that should be serviced. */
198 
199 #define SYNCHRONOUS_MASK \
200 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
201 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
202 
203 int next_signal(struct sigpending *pending, sigset_t *mask)
204 {
205 	unsigned long i, *s, *m, x;
206 	int sig = 0;
207 
208 	s = pending->signal.sig;
209 	m = mask->sig;
210 
211 	/*
212 	 * Handle the first word specially: it contains the
213 	 * synchronous signals that need to be dequeued first.
214 	 */
215 	x = *s &~ *m;
216 	if (x) {
217 		if (x & SYNCHRONOUS_MASK)
218 			x &= SYNCHRONOUS_MASK;
219 		sig = ffz(~x) + 1;
220 		return sig;
221 	}
222 
223 	switch (_NSIG_WORDS) {
224 	default:
225 		for (i = 1; i < _NSIG_WORDS; ++i) {
226 			x = *++s &~ *++m;
227 			if (!x)
228 				continue;
229 			sig = ffz(~x) + i*_NSIG_BPW + 1;
230 			break;
231 		}
232 		break;
233 
234 	case 2:
235 		x = s[1] &~ m[1];
236 		if (!x)
237 			break;
238 		sig = ffz(~x) + _NSIG_BPW + 1;
239 		break;
240 
241 	case 1:
242 		/* Nothing to do */
243 		break;
244 	}
245 
246 	return sig;
247 }
248 
249 static inline void print_dropped_signal(int sig)
250 {
251 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
252 
253 	if (!print_fatal_signals)
254 		return;
255 
256 	if (!__ratelimit(&ratelimit_state))
257 		return;
258 
259 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
260 				current->comm, current->pid, sig);
261 }
262 
263 /**
264  * task_set_jobctl_pending - set jobctl pending bits
265  * @task: target task
266  * @mask: pending bits to set
267  *
268  * Clear @mask from @task->jobctl.  @mask must be subset of
269  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
270  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
271  * cleared.  If @task is already being killed or exiting, this function
272  * becomes noop.
273  *
274  * CONTEXT:
275  * Must be called with @task->sighand->siglock held.
276  *
277  * RETURNS:
278  * %true if @mask is set, %false if made noop because @task was dying.
279  */
280 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
281 {
282 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
283 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
284 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
285 
286 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
287 		return false;
288 
289 	if (mask & JOBCTL_STOP_SIGMASK)
290 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
291 
292 	task->jobctl |= mask;
293 	return true;
294 }
295 
296 /**
297  * task_clear_jobctl_trapping - clear jobctl trapping bit
298  * @task: target task
299  *
300  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
301  * Clear it and wake up the ptracer.  Note that we don't need any further
302  * locking.  @task->siglock guarantees that @task->parent points to the
303  * ptracer.
304  *
305  * CONTEXT:
306  * Must be called with @task->sighand->siglock held.
307  */
308 void task_clear_jobctl_trapping(struct task_struct *task)
309 {
310 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
311 		task->jobctl &= ~JOBCTL_TRAPPING;
312 		smp_mb();	/* advised by wake_up_bit() */
313 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
314 	}
315 }
316 
317 /**
318  * task_clear_jobctl_pending - clear jobctl pending bits
319  * @task: target task
320  * @mask: pending bits to clear
321  *
322  * Clear @mask from @task->jobctl.  @mask must be subset of
323  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
324  * STOP bits are cleared together.
325  *
326  * If clearing of @mask leaves no stop or trap pending, this function calls
327  * task_clear_jobctl_trapping().
328  *
329  * CONTEXT:
330  * Must be called with @task->sighand->siglock held.
331  */
332 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
333 {
334 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
335 
336 	if (mask & JOBCTL_STOP_PENDING)
337 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
338 
339 	task->jobctl &= ~mask;
340 
341 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
342 		task_clear_jobctl_trapping(task);
343 }
344 
345 /**
346  * task_participate_group_stop - participate in a group stop
347  * @task: task participating in a group stop
348  *
349  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
350  * Group stop states are cleared and the group stop count is consumed if
351  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
352  * stop, the appropriate %SIGNAL_* flags are set.
353  *
354  * CONTEXT:
355  * Must be called with @task->sighand->siglock held.
356  *
357  * RETURNS:
358  * %true if group stop completion should be notified to the parent, %false
359  * otherwise.
360  */
361 static bool task_participate_group_stop(struct task_struct *task)
362 {
363 	struct signal_struct *sig = task->signal;
364 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
365 
366 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
367 
368 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
369 
370 	if (!consume)
371 		return false;
372 
373 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
374 		sig->group_stop_count--;
375 
376 	/*
377 	 * Tell the caller to notify completion iff we are entering into a
378 	 * fresh group stop.  Read comment in do_signal_stop() for details.
379 	 */
380 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
381 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
382 		return true;
383 	}
384 	return false;
385 }
386 
387 void task_join_group_stop(struct task_struct *task)
388 {
389 	/* Have the new thread join an on-going signal group stop */
390 	unsigned long jobctl = current->jobctl;
391 	if (jobctl & JOBCTL_STOP_PENDING) {
392 		struct signal_struct *sig = current->signal;
393 		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
394 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
395 		if (task_set_jobctl_pending(task, signr | gstop)) {
396 			sig->group_stop_count++;
397 		}
398 	}
399 }
400 
401 /*
402  * allocate a new signal queue record
403  * - this may be called without locks if and only if t == current, otherwise an
404  *   appropriate lock must be held to stop the target task from exiting
405  */
406 static struct sigqueue *
407 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
408 {
409 	struct sigqueue *q = NULL;
410 	struct user_struct *user;
411 
412 	/*
413 	 * Protect access to @t credentials. This can go away when all
414 	 * callers hold rcu read lock.
415 	 */
416 	rcu_read_lock();
417 	user = get_uid(__task_cred(t)->user);
418 	atomic_inc(&user->sigpending);
419 	rcu_read_unlock();
420 
421 	if (override_rlimit ||
422 	    atomic_read(&user->sigpending) <=
423 			task_rlimit(t, RLIMIT_SIGPENDING)) {
424 		q = kmem_cache_alloc(sigqueue_cachep, flags);
425 	} else {
426 		print_dropped_signal(sig);
427 	}
428 
429 	if (unlikely(q == NULL)) {
430 		atomic_dec(&user->sigpending);
431 		free_uid(user);
432 	} else {
433 		INIT_LIST_HEAD(&q->list);
434 		q->flags = 0;
435 		q->user = user;
436 	}
437 
438 	return q;
439 }
440 
441 static void __sigqueue_free(struct sigqueue *q)
442 {
443 	if (q->flags & SIGQUEUE_PREALLOC)
444 		return;
445 	atomic_dec(&q->user->sigpending);
446 	free_uid(q->user);
447 	kmem_cache_free(sigqueue_cachep, q);
448 }
449 
450 void flush_sigqueue(struct sigpending *queue)
451 {
452 	struct sigqueue *q;
453 
454 	sigemptyset(&queue->signal);
455 	while (!list_empty(&queue->list)) {
456 		q = list_entry(queue->list.next, struct sigqueue , list);
457 		list_del_init(&q->list);
458 		__sigqueue_free(q);
459 	}
460 }
461 
462 /*
463  * Flush all pending signals for this kthread.
464  */
465 void flush_signals(struct task_struct *t)
466 {
467 	unsigned long flags;
468 
469 	spin_lock_irqsave(&t->sighand->siglock, flags);
470 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
471 	flush_sigqueue(&t->pending);
472 	flush_sigqueue(&t->signal->shared_pending);
473 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
474 }
475 EXPORT_SYMBOL(flush_signals);
476 
477 #ifdef CONFIG_POSIX_TIMERS
478 static void __flush_itimer_signals(struct sigpending *pending)
479 {
480 	sigset_t signal, retain;
481 	struct sigqueue *q, *n;
482 
483 	signal = pending->signal;
484 	sigemptyset(&retain);
485 
486 	list_for_each_entry_safe(q, n, &pending->list, list) {
487 		int sig = q->info.si_signo;
488 
489 		if (likely(q->info.si_code != SI_TIMER)) {
490 			sigaddset(&retain, sig);
491 		} else {
492 			sigdelset(&signal, sig);
493 			list_del_init(&q->list);
494 			__sigqueue_free(q);
495 		}
496 	}
497 
498 	sigorsets(&pending->signal, &signal, &retain);
499 }
500 
501 void flush_itimer_signals(void)
502 {
503 	struct task_struct *tsk = current;
504 	unsigned long flags;
505 
506 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
507 	__flush_itimer_signals(&tsk->pending);
508 	__flush_itimer_signals(&tsk->signal->shared_pending);
509 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
510 }
511 #endif
512 
513 void ignore_signals(struct task_struct *t)
514 {
515 	int i;
516 
517 	for (i = 0; i < _NSIG; ++i)
518 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
519 
520 	flush_signals(t);
521 }
522 
523 /*
524  * Flush all handlers for a task.
525  */
526 
527 void
528 flush_signal_handlers(struct task_struct *t, int force_default)
529 {
530 	int i;
531 	struct k_sigaction *ka = &t->sighand->action[0];
532 	for (i = _NSIG ; i != 0 ; i--) {
533 		if (force_default || ka->sa.sa_handler != SIG_IGN)
534 			ka->sa.sa_handler = SIG_DFL;
535 		ka->sa.sa_flags = 0;
536 #ifdef __ARCH_HAS_SA_RESTORER
537 		ka->sa.sa_restorer = NULL;
538 #endif
539 		sigemptyset(&ka->sa.sa_mask);
540 		ka++;
541 	}
542 }
543 
544 bool unhandled_signal(struct task_struct *tsk, int sig)
545 {
546 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
547 	if (is_global_init(tsk))
548 		return true;
549 
550 	if (handler != SIG_IGN && handler != SIG_DFL)
551 		return false;
552 
553 	/* if ptraced, let the tracer determine */
554 	return !tsk->ptrace;
555 }
556 
557 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
558 			   bool *resched_timer)
559 {
560 	struct sigqueue *q, *first = NULL;
561 
562 	/*
563 	 * Collect the siginfo appropriate to this signal.  Check if
564 	 * there is another siginfo for the same signal.
565 	*/
566 	list_for_each_entry(q, &list->list, list) {
567 		if (q->info.si_signo == sig) {
568 			if (first)
569 				goto still_pending;
570 			first = q;
571 		}
572 	}
573 
574 	sigdelset(&list->signal, sig);
575 
576 	if (first) {
577 still_pending:
578 		list_del_init(&first->list);
579 		copy_siginfo(info, &first->info);
580 
581 		*resched_timer =
582 			(first->flags & SIGQUEUE_PREALLOC) &&
583 			(info->si_code == SI_TIMER) &&
584 			(info->si_sys_private);
585 
586 		__sigqueue_free(first);
587 	} else {
588 		/*
589 		 * Ok, it wasn't in the queue.  This must be
590 		 * a fast-pathed signal or we must have been
591 		 * out of queue space.  So zero out the info.
592 		 */
593 		clear_siginfo(info);
594 		info->si_signo = sig;
595 		info->si_errno = 0;
596 		info->si_code = SI_USER;
597 		info->si_pid = 0;
598 		info->si_uid = 0;
599 	}
600 }
601 
602 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
603 			kernel_siginfo_t *info, bool *resched_timer)
604 {
605 	int sig = next_signal(pending, mask);
606 
607 	if (sig)
608 		collect_signal(sig, pending, info, resched_timer);
609 	return sig;
610 }
611 
612 /*
613  * Dequeue a signal and return the element to the caller, which is
614  * expected to free it.
615  *
616  * All callers have to hold the siglock.
617  */
618 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
619 {
620 	bool resched_timer = false;
621 	int signr;
622 
623 	/* We only dequeue private signals from ourselves, we don't let
624 	 * signalfd steal them
625 	 */
626 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
627 	if (!signr) {
628 		signr = __dequeue_signal(&tsk->signal->shared_pending,
629 					 mask, info, &resched_timer);
630 #ifdef CONFIG_POSIX_TIMERS
631 		/*
632 		 * itimer signal ?
633 		 *
634 		 * itimers are process shared and we restart periodic
635 		 * itimers in the signal delivery path to prevent DoS
636 		 * attacks in the high resolution timer case. This is
637 		 * compliant with the old way of self-restarting
638 		 * itimers, as the SIGALRM is a legacy signal and only
639 		 * queued once. Changing the restart behaviour to
640 		 * restart the timer in the signal dequeue path is
641 		 * reducing the timer noise on heavy loaded !highres
642 		 * systems too.
643 		 */
644 		if (unlikely(signr == SIGALRM)) {
645 			struct hrtimer *tmr = &tsk->signal->real_timer;
646 
647 			if (!hrtimer_is_queued(tmr) &&
648 			    tsk->signal->it_real_incr != 0) {
649 				hrtimer_forward(tmr, tmr->base->get_time(),
650 						tsk->signal->it_real_incr);
651 				hrtimer_restart(tmr);
652 			}
653 		}
654 #endif
655 	}
656 
657 	recalc_sigpending();
658 	if (!signr)
659 		return 0;
660 
661 	if (unlikely(sig_kernel_stop(signr))) {
662 		/*
663 		 * Set a marker that we have dequeued a stop signal.  Our
664 		 * caller might release the siglock and then the pending
665 		 * stop signal it is about to process is no longer in the
666 		 * pending bitmasks, but must still be cleared by a SIGCONT
667 		 * (and overruled by a SIGKILL).  So those cases clear this
668 		 * shared flag after we've set it.  Note that this flag may
669 		 * remain set after the signal we return is ignored or
670 		 * handled.  That doesn't matter because its only purpose
671 		 * is to alert stop-signal processing code when another
672 		 * processor has come along and cleared the flag.
673 		 */
674 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
675 	}
676 #ifdef CONFIG_POSIX_TIMERS
677 	if (resched_timer) {
678 		/*
679 		 * Release the siglock to ensure proper locking order
680 		 * of timer locks outside of siglocks.  Note, we leave
681 		 * irqs disabled here, since the posix-timers code is
682 		 * about to disable them again anyway.
683 		 */
684 		spin_unlock(&tsk->sighand->siglock);
685 		posixtimer_rearm(info);
686 		spin_lock(&tsk->sighand->siglock);
687 
688 		/* Don't expose the si_sys_private value to userspace */
689 		info->si_sys_private = 0;
690 	}
691 #endif
692 	return signr;
693 }
694 EXPORT_SYMBOL_GPL(dequeue_signal);
695 
696 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
697 {
698 	struct task_struct *tsk = current;
699 	struct sigpending *pending = &tsk->pending;
700 	struct sigqueue *q, *sync = NULL;
701 
702 	/*
703 	 * Might a synchronous signal be in the queue?
704 	 */
705 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
706 		return 0;
707 
708 	/*
709 	 * Return the first synchronous signal in the queue.
710 	 */
711 	list_for_each_entry(q, &pending->list, list) {
712 		/* Synchronous signals have a postive si_code */
713 		if ((q->info.si_code > SI_USER) &&
714 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
715 			sync = q;
716 			goto next;
717 		}
718 	}
719 	return 0;
720 next:
721 	/*
722 	 * Check if there is another siginfo for the same signal.
723 	 */
724 	list_for_each_entry_continue(q, &pending->list, list) {
725 		if (q->info.si_signo == sync->info.si_signo)
726 			goto still_pending;
727 	}
728 
729 	sigdelset(&pending->signal, sync->info.si_signo);
730 	recalc_sigpending();
731 still_pending:
732 	list_del_init(&sync->list);
733 	copy_siginfo(info, &sync->info);
734 	__sigqueue_free(sync);
735 	return info->si_signo;
736 }
737 
738 /*
739  * Tell a process that it has a new active signal..
740  *
741  * NOTE! we rely on the previous spin_lock to
742  * lock interrupts for us! We can only be called with
743  * "siglock" held, and the local interrupt must
744  * have been disabled when that got acquired!
745  *
746  * No need to set need_resched since signal event passing
747  * goes through ->blocked
748  */
749 void signal_wake_up_state(struct task_struct *t, unsigned int state)
750 {
751 	set_tsk_thread_flag(t, TIF_SIGPENDING);
752 	/*
753 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
754 	 * case. We don't check t->state here because there is a race with it
755 	 * executing another processor and just now entering stopped state.
756 	 * By using wake_up_state, we ensure the process will wake up and
757 	 * handle its death signal.
758 	 */
759 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
760 		kick_process(t);
761 }
762 
763 /*
764  * Remove signals in mask from the pending set and queue.
765  * Returns 1 if any signals were found.
766  *
767  * All callers must be holding the siglock.
768  */
769 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
770 {
771 	struct sigqueue *q, *n;
772 	sigset_t m;
773 
774 	sigandsets(&m, mask, &s->signal);
775 	if (sigisemptyset(&m))
776 		return;
777 
778 	sigandnsets(&s->signal, &s->signal, mask);
779 	list_for_each_entry_safe(q, n, &s->list, list) {
780 		if (sigismember(mask, q->info.si_signo)) {
781 			list_del_init(&q->list);
782 			__sigqueue_free(q);
783 		}
784 	}
785 }
786 
787 static inline int is_si_special(const struct kernel_siginfo *info)
788 {
789 	return info <= SEND_SIG_PRIV;
790 }
791 
792 static inline bool si_fromuser(const struct kernel_siginfo *info)
793 {
794 	return info == SEND_SIG_NOINFO ||
795 		(!is_si_special(info) && SI_FROMUSER(info));
796 }
797 
798 /*
799  * called with RCU read lock from check_kill_permission()
800  */
801 static bool kill_ok_by_cred(struct task_struct *t)
802 {
803 	const struct cred *cred = current_cred();
804 	const struct cred *tcred = __task_cred(t);
805 
806 	return uid_eq(cred->euid, tcred->suid) ||
807 	       uid_eq(cred->euid, tcred->uid) ||
808 	       uid_eq(cred->uid, tcred->suid) ||
809 	       uid_eq(cred->uid, tcred->uid) ||
810 	       ns_capable(tcred->user_ns, CAP_KILL);
811 }
812 
813 /*
814  * Bad permissions for sending the signal
815  * - the caller must hold the RCU read lock
816  */
817 static int check_kill_permission(int sig, struct kernel_siginfo *info,
818 				 struct task_struct *t)
819 {
820 	struct pid *sid;
821 	int error;
822 
823 	if (!valid_signal(sig))
824 		return -EINVAL;
825 
826 	if (!si_fromuser(info))
827 		return 0;
828 
829 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
830 	if (error)
831 		return error;
832 
833 	if (!same_thread_group(current, t) &&
834 	    !kill_ok_by_cred(t)) {
835 		switch (sig) {
836 		case SIGCONT:
837 			sid = task_session(t);
838 			/*
839 			 * We don't return the error if sid == NULL. The
840 			 * task was unhashed, the caller must notice this.
841 			 */
842 			if (!sid || sid == task_session(current))
843 				break;
844 			/* fall through */
845 		default:
846 			return -EPERM;
847 		}
848 	}
849 
850 	return security_task_kill(t, info, sig, NULL);
851 }
852 
853 /**
854  * ptrace_trap_notify - schedule trap to notify ptracer
855  * @t: tracee wanting to notify tracer
856  *
857  * This function schedules sticky ptrace trap which is cleared on the next
858  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
859  * ptracer.
860  *
861  * If @t is running, STOP trap will be taken.  If trapped for STOP and
862  * ptracer is listening for events, tracee is woken up so that it can
863  * re-trap for the new event.  If trapped otherwise, STOP trap will be
864  * eventually taken without returning to userland after the existing traps
865  * are finished by PTRACE_CONT.
866  *
867  * CONTEXT:
868  * Must be called with @task->sighand->siglock held.
869  */
870 static void ptrace_trap_notify(struct task_struct *t)
871 {
872 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
873 	assert_spin_locked(&t->sighand->siglock);
874 
875 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
876 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
877 }
878 
879 /*
880  * Handle magic process-wide effects of stop/continue signals. Unlike
881  * the signal actions, these happen immediately at signal-generation
882  * time regardless of blocking, ignoring, or handling.  This does the
883  * actual continuing for SIGCONT, but not the actual stopping for stop
884  * signals. The process stop is done as a signal action for SIG_DFL.
885  *
886  * Returns true if the signal should be actually delivered, otherwise
887  * it should be dropped.
888  */
889 static bool prepare_signal(int sig, struct task_struct *p, bool force)
890 {
891 	struct signal_struct *signal = p->signal;
892 	struct task_struct *t;
893 	sigset_t flush;
894 
895 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
896 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
897 			return sig == SIGKILL;
898 		/*
899 		 * The process is in the middle of dying, nothing to do.
900 		 */
901 	} else if (sig_kernel_stop(sig)) {
902 		/*
903 		 * This is a stop signal.  Remove SIGCONT from all queues.
904 		 */
905 		siginitset(&flush, sigmask(SIGCONT));
906 		flush_sigqueue_mask(&flush, &signal->shared_pending);
907 		for_each_thread(p, t)
908 			flush_sigqueue_mask(&flush, &t->pending);
909 	} else if (sig == SIGCONT) {
910 		unsigned int why;
911 		/*
912 		 * Remove all stop signals from all queues, wake all threads.
913 		 */
914 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
915 		flush_sigqueue_mask(&flush, &signal->shared_pending);
916 		for_each_thread(p, t) {
917 			flush_sigqueue_mask(&flush, &t->pending);
918 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
919 			if (likely(!(t->ptrace & PT_SEIZED)))
920 				wake_up_state(t, __TASK_STOPPED);
921 			else
922 				ptrace_trap_notify(t);
923 		}
924 
925 		/*
926 		 * Notify the parent with CLD_CONTINUED if we were stopped.
927 		 *
928 		 * If we were in the middle of a group stop, we pretend it
929 		 * was already finished, and then continued. Since SIGCHLD
930 		 * doesn't queue we report only CLD_STOPPED, as if the next
931 		 * CLD_CONTINUED was dropped.
932 		 */
933 		why = 0;
934 		if (signal->flags & SIGNAL_STOP_STOPPED)
935 			why |= SIGNAL_CLD_CONTINUED;
936 		else if (signal->group_stop_count)
937 			why |= SIGNAL_CLD_STOPPED;
938 
939 		if (why) {
940 			/*
941 			 * The first thread which returns from do_signal_stop()
942 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
943 			 * notify its parent. See get_signal().
944 			 */
945 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
946 			signal->group_stop_count = 0;
947 			signal->group_exit_code = 0;
948 		}
949 	}
950 
951 	return !sig_ignored(p, sig, force);
952 }
953 
954 /*
955  * Test if P wants to take SIG.  After we've checked all threads with this,
956  * it's equivalent to finding no threads not blocking SIG.  Any threads not
957  * blocking SIG were ruled out because they are not running and already
958  * have pending signals.  Such threads will dequeue from the shared queue
959  * as soon as they're available, so putting the signal on the shared queue
960  * will be equivalent to sending it to one such thread.
961  */
962 static inline bool wants_signal(int sig, struct task_struct *p)
963 {
964 	if (sigismember(&p->blocked, sig))
965 		return false;
966 
967 	if (p->flags & PF_EXITING)
968 		return false;
969 
970 	if (sig == SIGKILL)
971 		return true;
972 
973 	if (task_is_stopped_or_traced(p))
974 		return false;
975 
976 	return task_curr(p) || !signal_pending(p);
977 }
978 
979 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
980 {
981 	struct signal_struct *signal = p->signal;
982 	struct task_struct *t;
983 
984 	/*
985 	 * Now find a thread we can wake up to take the signal off the queue.
986 	 *
987 	 * If the main thread wants the signal, it gets first crack.
988 	 * Probably the least surprising to the average bear.
989 	 */
990 	if (wants_signal(sig, p))
991 		t = p;
992 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
993 		/*
994 		 * There is just one thread and it does not need to be woken.
995 		 * It will dequeue unblocked signals before it runs again.
996 		 */
997 		return;
998 	else {
999 		/*
1000 		 * Otherwise try to find a suitable thread.
1001 		 */
1002 		t = signal->curr_target;
1003 		while (!wants_signal(sig, t)) {
1004 			t = next_thread(t);
1005 			if (t == signal->curr_target)
1006 				/*
1007 				 * No thread needs to be woken.
1008 				 * Any eligible threads will see
1009 				 * the signal in the queue soon.
1010 				 */
1011 				return;
1012 		}
1013 		signal->curr_target = t;
1014 	}
1015 
1016 	/*
1017 	 * Found a killable thread.  If the signal will be fatal,
1018 	 * then start taking the whole group down immediately.
1019 	 */
1020 	if (sig_fatal(p, sig) &&
1021 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1022 	    !sigismember(&t->real_blocked, sig) &&
1023 	    (sig == SIGKILL || !p->ptrace)) {
1024 		/*
1025 		 * This signal will be fatal to the whole group.
1026 		 */
1027 		if (!sig_kernel_coredump(sig)) {
1028 			/*
1029 			 * Start a group exit and wake everybody up.
1030 			 * This way we don't have other threads
1031 			 * running and doing things after a slower
1032 			 * thread has the fatal signal pending.
1033 			 */
1034 			signal->flags = SIGNAL_GROUP_EXIT;
1035 			signal->group_exit_code = sig;
1036 			signal->group_stop_count = 0;
1037 			t = p;
1038 			do {
1039 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1040 				sigaddset(&t->pending.signal, SIGKILL);
1041 				signal_wake_up(t, 1);
1042 			} while_each_thread(p, t);
1043 			return;
1044 		}
1045 	}
1046 
1047 	/*
1048 	 * The signal is already in the shared-pending queue.
1049 	 * Tell the chosen thread to wake up and dequeue it.
1050 	 */
1051 	signal_wake_up(t, sig == SIGKILL);
1052 	return;
1053 }
1054 
1055 static inline bool legacy_queue(struct sigpending *signals, int sig)
1056 {
1057 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1058 }
1059 
1060 #ifdef CONFIG_USER_NS
1061 static inline void userns_fixup_signal_uid(struct kernel_siginfo *info, struct task_struct *t)
1062 {
1063 	if (current_user_ns() == task_cred_xxx(t, user_ns))
1064 		return;
1065 
1066 	if (SI_FROMKERNEL(info))
1067 		return;
1068 
1069 	rcu_read_lock();
1070 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1071 					make_kuid(current_user_ns(), info->si_uid));
1072 	rcu_read_unlock();
1073 }
1074 #else
1075 static inline void userns_fixup_signal_uid(struct kernel_siginfo *info, struct task_struct *t)
1076 {
1077 	return;
1078 }
1079 #endif
1080 
1081 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1082 			enum pid_type type, int from_ancestor_ns)
1083 {
1084 	struct sigpending *pending;
1085 	struct sigqueue *q;
1086 	int override_rlimit;
1087 	int ret = 0, result;
1088 
1089 	assert_spin_locked(&t->sighand->siglock);
1090 
1091 	result = TRACE_SIGNAL_IGNORED;
1092 	if (!prepare_signal(sig, t,
1093 			from_ancestor_ns || (info == SEND_SIG_PRIV)))
1094 		goto ret;
1095 
1096 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1097 	/*
1098 	 * Short-circuit ignored signals and support queuing
1099 	 * exactly one non-rt signal, so that we can get more
1100 	 * detailed information about the cause of the signal.
1101 	 */
1102 	result = TRACE_SIGNAL_ALREADY_PENDING;
1103 	if (legacy_queue(pending, sig))
1104 		goto ret;
1105 
1106 	result = TRACE_SIGNAL_DELIVERED;
1107 	/*
1108 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1109 	 */
1110 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1111 		goto out_set;
1112 
1113 	/*
1114 	 * Real-time signals must be queued if sent by sigqueue, or
1115 	 * some other real-time mechanism.  It is implementation
1116 	 * defined whether kill() does so.  We attempt to do so, on
1117 	 * the principle of least surprise, but since kill is not
1118 	 * allowed to fail with EAGAIN when low on memory we just
1119 	 * make sure at least one signal gets delivered and don't
1120 	 * pass on the info struct.
1121 	 */
1122 	if (sig < SIGRTMIN)
1123 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1124 	else
1125 		override_rlimit = 0;
1126 
1127 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1128 	if (q) {
1129 		list_add_tail(&q->list, &pending->list);
1130 		switch ((unsigned long) info) {
1131 		case (unsigned long) SEND_SIG_NOINFO:
1132 			clear_siginfo(&q->info);
1133 			q->info.si_signo = sig;
1134 			q->info.si_errno = 0;
1135 			q->info.si_code = SI_USER;
1136 			q->info.si_pid = task_tgid_nr_ns(current,
1137 							task_active_pid_ns(t));
1138 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1139 			break;
1140 		case (unsigned long) SEND_SIG_PRIV:
1141 			clear_siginfo(&q->info);
1142 			q->info.si_signo = sig;
1143 			q->info.si_errno = 0;
1144 			q->info.si_code = SI_KERNEL;
1145 			q->info.si_pid = 0;
1146 			q->info.si_uid = 0;
1147 			break;
1148 		default:
1149 			copy_siginfo(&q->info, info);
1150 			if (from_ancestor_ns)
1151 				q->info.si_pid = 0;
1152 			break;
1153 		}
1154 
1155 		userns_fixup_signal_uid(&q->info, t);
1156 
1157 	} else if (!is_si_special(info)) {
1158 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1159 			/*
1160 			 * Queue overflow, abort.  We may abort if the
1161 			 * signal was rt and sent by user using something
1162 			 * other than kill().
1163 			 */
1164 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1165 			ret = -EAGAIN;
1166 			goto ret;
1167 		} else {
1168 			/*
1169 			 * This is a silent loss of information.  We still
1170 			 * send the signal, but the *info bits are lost.
1171 			 */
1172 			result = TRACE_SIGNAL_LOSE_INFO;
1173 		}
1174 	}
1175 
1176 out_set:
1177 	signalfd_notify(t, sig);
1178 	sigaddset(&pending->signal, sig);
1179 
1180 	/* Let multiprocess signals appear after on-going forks */
1181 	if (type > PIDTYPE_TGID) {
1182 		struct multiprocess_signals *delayed;
1183 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1184 			sigset_t *signal = &delayed->signal;
1185 			/* Can't queue both a stop and a continue signal */
1186 			if (sig == SIGCONT)
1187 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1188 			else if (sig_kernel_stop(sig))
1189 				sigdelset(signal, SIGCONT);
1190 			sigaddset(signal, sig);
1191 		}
1192 	}
1193 
1194 	complete_signal(sig, t, type);
1195 ret:
1196 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1197 	return ret;
1198 }
1199 
1200 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1201 			enum pid_type type)
1202 {
1203 	int from_ancestor_ns = 0;
1204 
1205 #ifdef CONFIG_PID_NS
1206 	from_ancestor_ns = si_fromuser(info) &&
1207 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1208 #endif
1209 
1210 	return __send_signal(sig, info, t, type, from_ancestor_ns);
1211 }
1212 
1213 static void print_fatal_signal(int signr)
1214 {
1215 	struct pt_regs *regs = signal_pt_regs();
1216 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1217 
1218 #if defined(__i386__) && !defined(__arch_um__)
1219 	pr_info("code at %08lx: ", regs->ip);
1220 	{
1221 		int i;
1222 		for (i = 0; i < 16; i++) {
1223 			unsigned char insn;
1224 
1225 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1226 				break;
1227 			pr_cont("%02x ", insn);
1228 		}
1229 	}
1230 	pr_cont("\n");
1231 #endif
1232 	preempt_disable();
1233 	show_regs(regs);
1234 	preempt_enable();
1235 }
1236 
1237 static int __init setup_print_fatal_signals(char *str)
1238 {
1239 	get_option (&str, &print_fatal_signals);
1240 
1241 	return 1;
1242 }
1243 
1244 __setup("print-fatal-signals=", setup_print_fatal_signals);
1245 
1246 int
1247 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1248 {
1249 	return send_signal(sig, info, p, PIDTYPE_TGID);
1250 }
1251 
1252 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1253 			enum pid_type type)
1254 {
1255 	unsigned long flags;
1256 	int ret = -ESRCH;
1257 
1258 	if (lock_task_sighand(p, &flags)) {
1259 		ret = send_signal(sig, info, p, type);
1260 		unlock_task_sighand(p, &flags);
1261 	}
1262 
1263 	return ret;
1264 }
1265 
1266 /*
1267  * Force a signal that the process can't ignore: if necessary
1268  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1269  *
1270  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1271  * since we do not want to have a signal handler that was blocked
1272  * be invoked when user space had explicitly blocked it.
1273  *
1274  * We don't want to have recursive SIGSEGV's etc, for example,
1275  * that is why we also clear SIGNAL_UNKILLABLE.
1276  */
1277 int
1278 force_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *t)
1279 {
1280 	unsigned long int flags;
1281 	int ret, blocked, ignored;
1282 	struct k_sigaction *action;
1283 
1284 	spin_lock_irqsave(&t->sighand->siglock, flags);
1285 	action = &t->sighand->action[sig-1];
1286 	ignored = action->sa.sa_handler == SIG_IGN;
1287 	blocked = sigismember(&t->blocked, sig);
1288 	if (blocked || ignored) {
1289 		action->sa.sa_handler = SIG_DFL;
1290 		if (blocked) {
1291 			sigdelset(&t->blocked, sig);
1292 			recalc_sigpending_and_wake(t);
1293 		}
1294 	}
1295 	/*
1296 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1297 	 * debugging to leave init killable.
1298 	 */
1299 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1300 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1301 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1302 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1303 
1304 	return ret;
1305 }
1306 
1307 /*
1308  * Nuke all other threads in the group.
1309  */
1310 int zap_other_threads(struct task_struct *p)
1311 {
1312 	struct task_struct *t = p;
1313 	int count = 0;
1314 
1315 	p->signal->group_stop_count = 0;
1316 
1317 	while_each_thread(p, t) {
1318 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1319 		count++;
1320 
1321 		/* Don't bother with already dead threads */
1322 		if (t->exit_state)
1323 			continue;
1324 		sigaddset(&t->pending.signal, SIGKILL);
1325 		signal_wake_up(t, 1);
1326 	}
1327 
1328 	return count;
1329 }
1330 
1331 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1332 					   unsigned long *flags)
1333 {
1334 	struct sighand_struct *sighand;
1335 
1336 	rcu_read_lock();
1337 	for (;;) {
1338 		sighand = rcu_dereference(tsk->sighand);
1339 		if (unlikely(sighand == NULL))
1340 			break;
1341 
1342 		/*
1343 		 * This sighand can be already freed and even reused, but
1344 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1345 		 * initializes ->siglock: this slab can't go away, it has
1346 		 * the same object type, ->siglock can't be reinitialized.
1347 		 *
1348 		 * We need to ensure that tsk->sighand is still the same
1349 		 * after we take the lock, we can race with de_thread() or
1350 		 * __exit_signal(). In the latter case the next iteration
1351 		 * must see ->sighand == NULL.
1352 		 */
1353 		spin_lock_irqsave(&sighand->siglock, *flags);
1354 		if (likely(sighand == tsk->sighand))
1355 			break;
1356 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1357 	}
1358 	rcu_read_unlock();
1359 
1360 	return sighand;
1361 }
1362 
1363 /*
1364  * send signal info to all the members of a group
1365  */
1366 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1367 			struct task_struct *p, enum pid_type type)
1368 {
1369 	int ret;
1370 
1371 	rcu_read_lock();
1372 	ret = check_kill_permission(sig, info, p);
1373 	rcu_read_unlock();
1374 
1375 	if (!ret && sig)
1376 		ret = do_send_sig_info(sig, info, p, type);
1377 
1378 	return ret;
1379 }
1380 
1381 /*
1382  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1383  * control characters do (^C, ^Z etc)
1384  * - the caller must hold at least a readlock on tasklist_lock
1385  */
1386 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1387 {
1388 	struct task_struct *p = NULL;
1389 	int retval, success;
1390 
1391 	success = 0;
1392 	retval = -ESRCH;
1393 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1394 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1395 		success |= !err;
1396 		retval = err;
1397 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1398 	return success ? 0 : retval;
1399 }
1400 
1401 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1402 {
1403 	int error = -ESRCH;
1404 	struct task_struct *p;
1405 
1406 	for (;;) {
1407 		rcu_read_lock();
1408 		p = pid_task(pid, PIDTYPE_PID);
1409 		if (p)
1410 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1411 		rcu_read_unlock();
1412 		if (likely(!p || error != -ESRCH))
1413 			return error;
1414 
1415 		/*
1416 		 * The task was unhashed in between, try again.  If it
1417 		 * is dead, pid_task() will return NULL, if we race with
1418 		 * de_thread() it will find the new leader.
1419 		 */
1420 	}
1421 }
1422 
1423 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1424 {
1425 	int error;
1426 	rcu_read_lock();
1427 	error = kill_pid_info(sig, info, find_vpid(pid));
1428 	rcu_read_unlock();
1429 	return error;
1430 }
1431 
1432 static inline bool kill_as_cred_perm(const struct cred *cred,
1433 				     struct task_struct *target)
1434 {
1435 	const struct cred *pcred = __task_cred(target);
1436 
1437 	return uid_eq(cred->euid, pcred->suid) ||
1438 	       uid_eq(cred->euid, pcred->uid) ||
1439 	       uid_eq(cred->uid, pcred->suid) ||
1440 	       uid_eq(cred->uid, pcred->uid);
1441 }
1442 
1443 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1444 int kill_pid_info_as_cred(int sig, struct kernel_siginfo *info, struct pid *pid,
1445 			 const struct cred *cred)
1446 {
1447 	int ret = -EINVAL;
1448 	struct task_struct *p;
1449 	unsigned long flags;
1450 
1451 	if (!valid_signal(sig))
1452 		return ret;
1453 
1454 	rcu_read_lock();
1455 	p = pid_task(pid, PIDTYPE_PID);
1456 	if (!p) {
1457 		ret = -ESRCH;
1458 		goto out_unlock;
1459 	}
1460 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1461 		ret = -EPERM;
1462 		goto out_unlock;
1463 	}
1464 	ret = security_task_kill(p, info, sig, cred);
1465 	if (ret)
1466 		goto out_unlock;
1467 
1468 	if (sig) {
1469 		if (lock_task_sighand(p, &flags)) {
1470 			ret = __send_signal(sig, info, p, PIDTYPE_TGID, 0);
1471 			unlock_task_sighand(p, &flags);
1472 		} else
1473 			ret = -ESRCH;
1474 	}
1475 out_unlock:
1476 	rcu_read_unlock();
1477 	return ret;
1478 }
1479 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1480 
1481 /*
1482  * kill_something_info() interprets pid in interesting ways just like kill(2).
1483  *
1484  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1485  * is probably wrong.  Should make it like BSD or SYSV.
1486  */
1487 
1488 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1489 {
1490 	int ret;
1491 
1492 	if (pid > 0) {
1493 		rcu_read_lock();
1494 		ret = kill_pid_info(sig, info, find_vpid(pid));
1495 		rcu_read_unlock();
1496 		return ret;
1497 	}
1498 
1499 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1500 	if (pid == INT_MIN)
1501 		return -ESRCH;
1502 
1503 	read_lock(&tasklist_lock);
1504 	if (pid != -1) {
1505 		ret = __kill_pgrp_info(sig, info,
1506 				pid ? find_vpid(-pid) : task_pgrp(current));
1507 	} else {
1508 		int retval = 0, count = 0;
1509 		struct task_struct * p;
1510 
1511 		for_each_process(p) {
1512 			if (task_pid_vnr(p) > 1 &&
1513 					!same_thread_group(p, current)) {
1514 				int err = group_send_sig_info(sig, info, p,
1515 							      PIDTYPE_MAX);
1516 				++count;
1517 				if (err != -EPERM)
1518 					retval = err;
1519 			}
1520 		}
1521 		ret = count ? retval : -ESRCH;
1522 	}
1523 	read_unlock(&tasklist_lock);
1524 
1525 	return ret;
1526 }
1527 
1528 /*
1529  * These are for backward compatibility with the rest of the kernel source.
1530  */
1531 
1532 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1533 {
1534 	/*
1535 	 * Make sure legacy kernel users don't send in bad values
1536 	 * (normal paths check this in check_kill_permission).
1537 	 */
1538 	if (!valid_signal(sig))
1539 		return -EINVAL;
1540 
1541 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1542 }
1543 EXPORT_SYMBOL(send_sig_info);
1544 
1545 #define __si_special(priv) \
1546 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1547 
1548 int
1549 send_sig(int sig, struct task_struct *p, int priv)
1550 {
1551 	return send_sig_info(sig, __si_special(priv), p);
1552 }
1553 EXPORT_SYMBOL(send_sig);
1554 
1555 void force_sig(int sig, struct task_struct *p)
1556 {
1557 	force_sig_info(sig, SEND_SIG_PRIV, p);
1558 }
1559 EXPORT_SYMBOL(force_sig);
1560 
1561 /*
1562  * When things go south during signal handling, we
1563  * will force a SIGSEGV. And if the signal that caused
1564  * the problem was already a SIGSEGV, we'll want to
1565  * make sure we don't even try to deliver the signal..
1566  */
1567 void force_sigsegv(int sig, struct task_struct *p)
1568 {
1569 	if (sig == SIGSEGV) {
1570 		unsigned long flags;
1571 		spin_lock_irqsave(&p->sighand->siglock, flags);
1572 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1573 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1574 	}
1575 	force_sig(SIGSEGV, p);
1576 }
1577 
1578 int force_sig_fault(int sig, int code, void __user *addr
1579 	___ARCH_SI_TRAPNO(int trapno)
1580 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1581 	, struct task_struct *t)
1582 {
1583 	struct kernel_siginfo info;
1584 
1585 	clear_siginfo(&info);
1586 	info.si_signo = sig;
1587 	info.si_errno = 0;
1588 	info.si_code  = code;
1589 	info.si_addr  = addr;
1590 #ifdef __ARCH_SI_TRAPNO
1591 	info.si_trapno = trapno;
1592 #endif
1593 #ifdef __ia64__
1594 	info.si_imm = imm;
1595 	info.si_flags = flags;
1596 	info.si_isr = isr;
1597 #endif
1598 	return force_sig_info(info.si_signo, &info, t);
1599 }
1600 
1601 int send_sig_fault(int sig, int code, void __user *addr
1602 	___ARCH_SI_TRAPNO(int trapno)
1603 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1604 	, struct task_struct *t)
1605 {
1606 	struct kernel_siginfo info;
1607 
1608 	clear_siginfo(&info);
1609 	info.si_signo = sig;
1610 	info.si_errno = 0;
1611 	info.si_code  = code;
1612 	info.si_addr  = addr;
1613 #ifdef __ARCH_SI_TRAPNO
1614 	info.si_trapno = trapno;
1615 #endif
1616 #ifdef __ia64__
1617 	info.si_imm = imm;
1618 	info.si_flags = flags;
1619 	info.si_isr = isr;
1620 #endif
1621 	return send_sig_info(info.si_signo, &info, t);
1622 }
1623 
1624 int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1625 {
1626 	struct kernel_siginfo info;
1627 
1628 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1629 	clear_siginfo(&info);
1630 	info.si_signo = SIGBUS;
1631 	info.si_errno = 0;
1632 	info.si_code = code;
1633 	info.si_addr = addr;
1634 	info.si_addr_lsb = lsb;
1635 	return force_sig_info(info.si_signo, &info, t);
1636 }
1637 
1638 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1639 {
1640 	struct kernel_siginfo info;
1641 
1642 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1643 	clear_siginfo(&info);
1644 	info.si_signo = SIGBUS;
1645 	info.si_errno = 0;
1646 	info.si_code = code;
1647 	info.si_addr = addr;
1648 	info.si_addr_lsb = lsb;
1649 	return send_sig_info(info.si_signo, &info, t);
1650 }
1651 EXPORT_SYMBOL(send_sig_mceerr);
1652 
1653 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1654 {
1655 	struct kernel_siginfo info;
1656 
1657 	clear_siginfo(&info);
1658 	info.si_signo = SIGSEGV;
1659 	info.si_errno = 0;
1660 	info.si_code  = SEGV_BNDERR;
1661 	info.si_addr  = addr;
1662 	info.si_lower = lower;
1663 	info.si_upper = upper;
1664 	return force_sig_info(info.si_signo, &info, current);
1665 }
1666 
1667 #ifdef SEGV_PKUERR
1668 int force_sig_pkuerr(void __user *addr, u32 pkey)
1669 {
1670 	struct kernel_siginfo info;
1671 
1672 	clear_siginfo(&info);
1673 	info.si_signo = SIGSEGV;
1674 	info.si_errno = 0;
1675 	info.si_code  = SEGV_PKUERR;
1676 	info.si_addr  = addr;
1677 	info.si_pkey  = pkey;
1678 	return force_sig_info(info.si_signo, &info, current);
1679 }
1680 #endif
1681 
1682 /* For the crazy architectures that include trap information in
1683  * the errno field, instead of an actual errno value.
1684  */
1685 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1686 {
1687 	struct kernel_siginfo info;
1688 
1689 	clear_siginfo(&info);
1690 	info.si_signo = SIGTRAP;
1691 	info.si_errno = errno;
1692 	info.si_code  = TRAP_HWBKPT;
1693 	info.si_addr  = addr;
1694 	return force_sig_info(info.si_signo, &info, current);
1695 }
1696 
1697 int kill_pgrp(struct pid *pid, int sig, int priv)
1698 {
1699 	int ret;
1700 
1701 	read_lock(&tasklist_lock);
1702 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1703 	read_unlock(&tasklist_lock);
1704 
1705 	return ret;
1706 }
1707 EXPORT_SYMBOL(kill_pgrp);
1708 
1709 int kill_pid(struct pid *pid, int sig, int priv)
1710 {
1711 	return kill_pid_info(sig, __si_special(priv), pid);
1712 }
1713 EXPORT_SYMBOL(kill_pid);
1714 
1715 /*
1716  * These functions support sending signals using preallocated sigqueue
1717  * structures.  This is needed "because realtime applications cannot
1718  * afford to lose notifications of asynchronous events, like timer
1719  * expirations or I/O completions".  In the case of POSIX Timers
1720  * we allocate the sigqueue structure from the timer_create.  If this
1721  * allocation fails we are able to report the failure to the application
1722  * with an EAGAIN error.
1723  */
1724 struct sigqueue *sigqueue_alloc(void)
1725 {
1726 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1727 
1728 	if (q)
1729 		q->flags |= SIGQUEUE_PREALLOC;
1730 
1731 	return q;
1732 }
1733 
1734 void sigqueue_free(struct sigqueue *q)
1735 {
1736 	unsigned long flags;
1737 	spinlock_t *lock = &current->sighand->siglock;
1738 
1739 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1740 	/*
1741 	 * We must hold ->siglock while testing q->list
1742 	 * to serialize with collect_signal() or with
1743 	 * __exit_signal()->flush_sigqueue().
1744 	 */
1745 	spin_lock_irqsave(lock, flags);
1746 	q->flags &= ~SIGQUEUE_PREALLOC;
1747 	/*
1748 	 * If it is queued it will be freed when dequeued,
1749 	 * like the "regular" sigqueue.
1750 	 */
1751 	if (!list_empty(&q->list))
1752 		q = NULL;
1753 	spin_unlock_irqrestore(lock, flags);
1754 
1755 	if (q)
1756 		__sigqueue_free(q);
1757 }
1758 
1759 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1760 {
1761 	int sig = q->info.si_signo;
1762 	struct sigpending *pending;
1763 	struct task_struct *t;
1764 	unsigned long flags;
1765 	int ret, result;
1766 
1767 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1768 
1769 	ret = -1;
1770 	rcu_read_lock();
1771 	t = pid_task(pid, type);
1772 	if (!t || !likely(lock_task_sighand(t, &flags)))
1773 		goto ret;
1774 
1775 	ret = 1; /* the signal is ignored */
1776 	result = TRACE_SIGNAL_IGNORED;
1777 	if (!prepare_signal(sig, t, false))
1778 		goto out;
1779 
1780 	ret = 0;
1781 	if (unlikely(!list_empty(&q->list))) {
1782 		/*
1783 		 * If an SI_TIMER entry is already queue just increment
1784 		 * the overrun count.
1785 		 */
1786 		BUG_ON(q->info.si_code != SI_TIMER);
1787 		q->info.si_overrun++;
1788 		result = TRACE_SIGNAL_ALREADY_PENDING;
1789 		goto out;
1790 	}
1791 	q->info.si_overrun = 0;
1792 
1793 	signalfd_notify(t, sig);
1794 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1795 	list_add_tail(&q->list, &pending->list);
1796 	sigaddset(&pending->signal, sig);
1797 	complete_signal(sig, t, type);
1798 	result = TRACE_SIGNAL_DELIVERED;
1799 out:
1800 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1801 	unlock_task_sighand(t, &flags);
1802 ret:
1803 	rcu_read_unlock();
1804 	return ret;
1805 }
1806 
1807 /*
1808  * Let a parent know about the death of a child.
1809  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1810  *
1811  * Returns true if our parent ignored us and so we've switched to
1812  * self-reaping.
1813  */
1814 bool do_notify_parent(struct task_struct *tsk, int sig)
1815 {
1816 	struct kernel_siginfo info;
1817 	unsigned long flags;
1818 	struct sighand_struct *psig;
1819 	bool autoreap = false;
1820 	u64 utime, stime;
1821 
1822 	BUG_ON(sig == -1);
1823 
1824  	/* do_notify_parent_cldstop should have been called instead.  */
1825  	BUG_ON(task_is_stopped_or_traced(tsk));
1826 
1827 	BUG_ON(!tsk->ptrace &&
1828 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1829 
1830 	if (sig != SIGCHLD) {
1831 		/*
1832 		 * This is only possible if parent == real_parent.
1833 		 * Check if it has changed security domain.
1834 		 */
1835 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1836 			sig = SIGCHLD;
1837 	}
1838 
1839 	clear_siginfo(&info);
1840 	info.si_signo = sig;
1841 	info.si_errno = 0;
1842 	/*
1843 	 * We are under tasklist_lock here so our parent is tied to
1844 	 * us and cannot change.
1845 	 *
1846 	 * task_active_pid_ns will always return the same pid namespace
1847 	 * until a task passes through release_task.
1848 	 *
1849 	 * write_lock() currently calls preempt_disable() which is the
1850 	 * same as rcu_read_lock(), but according to Oleg, this is not
1851 	 * correct to rely on this
1852 	 */
1853 	rcu_read_lock();
1854 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1855 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1856 				       task_uid(tsk));
1857 	rcu_read_unlock();
1858 
1859 	task_cputime(tsk, &utime, &stime);
1860 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1861 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1862 
1863 	info.si_status = tsk->exit_code & 0x7f;
1864 	if (tsk->exit_code & 0x80)
1865 		info.si_code = CLD_DUMPED;
1866 	else if (tsk->exit_code & 0x7f)
1867 		info.si_code = CLD_KILLED;
1868 	else {
1869 		info.si_code = CLD_EXITED;
1870 		info.si_status = tsk->exit_code >> 8;
1871 	}
1872 
1873 	psig = tsk->parent->sighand;
1874 	spin_lock_irqsave(&psig->siglock, flags);
1875 	if (!tsk->ptrace && sig == SIGCHLD &&
1876 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1877 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1878 		/*
1879 		 * We are exiting and our parent doesn't care.  POSIX.1
1880 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1881 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1882 		 * automatically and not left for our parent's wait4 call.
1883 		 * Rather than having the parent do it as a magic kind of
1884 		 * signal handler, we just set this to tell do_exit that we
1885 		 * can be cleaned up without becoming a zombie.  Note that
1886 		 * we still call __wake_up_parent in this case, because a
1887 		 * blocked sys_wait4 might now return -ECHILD.
1888 		 *
1889 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1890 		 * is implementation-defined: we do (if you don't want
1891 		 * it, just use SIG_IGN instead).
1892 		 */
1893 		autoreap = true;
1894 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1895 			sig = 0;
1896 	}
1897 	if (valid_signal(sig) && sig)
1898 		__group_send_sig_info(sig, &info, tsk->parent);
1899 	__wake_up_parent(tsk, tsk->parent);
1900 	spin_unlock_irqrestore(&psig->siglock, flags);
1901 
1902 	return autoreap;
1903 }
1904 
1905 /**
1906  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1907  * @tsk: task reporting the state change
1908  * @for_ptracer: the notification is for ptracer
1909  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1910  *
1911  * Notify @tsk's parent that the stopped/continued state has changed.  If
1912  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1913  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1914  *
1915  * CONTEXT:
1916  * Must be called with tasklist_lock at least read locked.
1917  */
1918 static void do_notify_parent_cldstop(struct task_struct *tsk,
1919 				     bool for_ptracer, int why)
1920 {
1921 	struct kernel_siginfo info;
1922 	unsigned long flags;
1923 	struct task_struct *parent;
1924 	struct sighand_struct *sighand;
1925 	u64 utime, stime;
1926 
1927 	if (for_ptracer) {
1928 		parent = tsk->parent;
1929 	} else {
1930 		tsk = tsk->group_leader;
1931 		parent = tsk->real_parent;
1932 	}
1933 
1934 	clear_siginfo(&info);
1935 	info.si_signo = SIGCHLD;
1936 	info.si_errno = 0;
1937 	/*
1938 	 * see comment in do_notify_parent() about the following 4 lines
1939 	 */
1940 	rcu_read_lock();
1941 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1942 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1943 	rcu_read_unlock();
1944 
1945 	task_cputime(tsk, &utime, &stime);
1946 	info.si_utime = nsec_to_clock_t(utime);
1947 	info.si_stime = nsec_to_clock_t(stime);
1948 
1949  	info.si_code = why;
1950  	switch (why) {
1951  	case CLD_CONTINUED:
1952  		info.si_status = SIGCONT;
1953  		break;
1954  	case CLD_STOPPED:
1955  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1956  		break;
1957  	case CLD_TRAPPED:
1958  		info.si_status = tsk->exit_code & 0x7f;
1959  		break;
1960  	default:
1961  		BUG();
1962  	}
1963 
1964 	sighand = parent->sighand;
1965 	spin_lock_irqsave(&sighand->siglock, flags);
1966 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1967 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1968 		__group_send_sig_info(SIGCHLD, &info, parent);
1969 	/*
1970 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1971 	 */
1972 	__wake_up_parent(tsk, parent);
1973 	spin_unlock_irqrestore(&sighand->siglock, flags);
1974 }
1975 
1976 static inline bool may_ptrace_stop(void)
1977 {
1978 	if (!likely(current->ptrace))
1979 		return false;
1980 	/*
1981 	 * Are we in the middle of do_coredump?
1982 	 * If so and our tracer is also part of the coredump stopping
1983 	 * is a deadlock situation, and pointless because our tracer
1984 	 * is dead so don't allow us to stop.
1985 	 * If SIGKILL was already sent before the caller unlocked
1986 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1987 	 * is safe to enter schedule().
1988 	 *
1989 	 * This is almost outdated, a task with the pending SIGKILL can't
1990 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1991 	 * after SIGKILL was already dequeued.
1992 	 */
1993 	if (unlikely(current->mm->core_state) &&
1994 	    unlikely(current->mm == current->parent->mm))
1995 		return false;
1996 
1997 	return true;
1998 }
1999 
2000 /*
2001  * Return non-zero if there is a SIGKILL that should be waking us up.
2002  * Called with the siglock held.
2003  */
2004 static bool sigkill_pending(struct task_struct *tsk)
2005 {
2006 	return sigismember(&tsk->pending.signal, SIGKILL) ||
2007 	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2008 }
2009 
2010 /*
2011  * This must be called with current->sighand->siglock held.
2012  *
2013  * This should be the path for all ptrace stops.
2014  * We always set current->last_siginfo while stopped here.
2015  * That makes it a way to test a stopped process for
2016  * being ptrace-stopped vs being job-control-stopped.
2017  *
2018  * If we actually decide not to stop at all because the tracer
2019  * is gone, we keep current->exit_code unless clear_code.
2020  */
2021 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2022 	__releases(&current->sighand->siglock)
2023 	__acquires(&current->sighand->siglock)
2024 {
2025 	bool gstop_done = false;
2026 
2027 	if (arch_ptrace_stop_needed(exit_code, info)) {
2028 		/*
2029 		 * The arch code has something special to do before a
2030 		 * ptrace stop.  This is allowed to block, e.g. for faults
2031 		 * on user stack pages.  We can't keep the siglock while
2032 		 * calling arch_ptrace_stop, so we must release it now.
2033 		 * To preserve proper semantics, we must do this before
2034 		 * any signal bookkeeping like checking group_stop_count.
2035 		 * Meanwhile, a SIGKILL could come in before we retake the
2036 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2037 		 * So after regaining the lock, we must check for SIGKILL.
2038 		 */
2039 		spin_unlock_irq(&current->sighand->siglock);
2040 		arch_ptrace_stop(exit_code, info);
2041 		spin_lock_irq(&current->sighand->siglock);
2042 		if (sigkill_pending(current))
2043 			return;
2044 	}
2045 
2046 	set_special_state(TASK_TRACED);
2047 
2048 	/*
2049 	 * We're committing to trapping.  TRACED should be visible before
2050 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2051 	 * Also, transition to TRACED and updates to ->jobctl should be
2052 	 * atomic with respect to siglock and should be done after the arch
2053 	 * hook as siglock is released and regrabbed across it.
2054 	 *
2055 	 *     TRACER				    TRACEE
2056 	 *
2057 	 *     ptrace_attach()
2058 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2059 	 *     do_wait()
2060 	 *       set_current_state()                smp_wmb();
2061 	 *       ptrace_do_wait()
2062 	 *         wait_task_stopped()
2063 	 *           task_stopped_code()
2064 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2065 	 */
2066 	smp_wmb();
2067 
2068 	current->last_siginfo = info;
2069 	current->exit_code = exit_code;
2070 
2071 	/*
2072 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2073 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2074 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2075 	 * could be clear now.  We act as if SIGCONT is received after
2076 	 * TASK_TRACED is entered - ignore it.
2077 	 */
2078 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2079 		gstop_done = task_participate_group_stop(current);
2080 
2081 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2082 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2083 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2084 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2085 
2086 	/* entering a trap, clear TRAPPING */
2087 	task_clear_jobctl_trapping(current);
2088 
2089 	spin_unlock_irq(&current->sighand->siglock);
2090 	read_lock(&tasklist_lock);
2091 	if (may_ptrace_stop()) {
2092 		/*
2093 		 * Notify parents of the stop.
2094 		 *
2095 		 * While ptraced, there are two parents - the ptracer and
2096 		 * the real_parent of the group_leader.  The ptracer should
2097 		 * know about every stop while the real parent is only
2098 		 * interested in the completion of group stop.  The states
2099 		 * for the two don't interact with each other.  Notify
2100 		 * separately unless they're gonna be duplicates.
2101 		 */
2102 		do_notify_parent_cldstop(current, true, why);
2103 		if (gstop_done && ptrace_reparented(current))
2104 			do_notify_parent_cldstop(current, false, why);
2105 
2106 		/*
2107 		 * Don't want to allow preemption here, because
2108 		 * sys_ptrace() needs this task to be inactive.
2109 		 *
2110 		 * XXX: implement read_unlock_no_resched().
2111 		 */
2112 		preempt_disable();
2113 		read_unlock(&tasklist_lock);
2114 		preempt_enable_no_resched();
2115 		cgroup_enter_frozen();
2116 		freezable_schedule();
2117 		cgroup_leave_frozen(true);
2118 	} else {
2119 		/*
2120 		 * By the time we got the lock, our tracer went away.
2121 		 * Don't drop the lock yet, another tracer may come.
2122 		 *
2123 		 * If @gstop_done, the ptracer went away between group stop
2124 		 * completion and here.  During detach, it would have set
2125 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2126 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2127 		 * the real parent of the group stop completion is enough.
2128 		 */
2129 		if (gstop_done)
2130 			do_notify_parent_cldstop(current, false, why);
2131 
2132 		/* tasklist protects us from ptrace_freeze_traced() */
2133 		__set_current_state(TASK_RUNNING);
2134 		if (clear_code)
2135 			current->exit_code = 0;
2136 		read_unlock(&tasklist_lock);
2137 	}
2138 
2139 	/*
2140 	 * We are back.  Now reacquire the siglock before touching
2141 	 * last_siginfo, so that we are sure to have synchronized with
2142 	 * any signal-sending on another CPU that wants to examine it.
2143 	 */
2144 	spin_lock_irq(&current->sighand->siglock);
2145 	current->last_siginfo = NULL;
2146 
2147 	/* LISTENING can be set only during STOP traps, clear it */
2148 	current->jobctl &= ~JOBCTL_LISTENING;
2149 
2150 	/*
2151 	 * Queued signals ignored us while we were stopped for tracing.
2152 	 * So check for any that we should take before resuming user mode.
2153 	 * This sets TIF_SIGPENDING, but never clears it.
2154 	 */
2155 	recalc_sigpending_tsk(current);
2156 }
2157 
2158 static void ptrace_do_notify(int signr, int exit_code, int why)
2159 {
2160 	kernel_siginfo_t info;
2161 
2162 	clear_siginfo(&info);
2163 	info.si_signo = signr;
2164 	info.si_code = exit_code;
2165 	info.si_pid = task_pid_vnr(current);
2166 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2167 
2168 	/* Let the debugger run.  */
2169 	ptrace_stop(exit_code, why, 1, &info);
2170 }
2171 
2172 void ptrace_notify(int exit_code)
2173 {
2174 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2175 	if (unlikely(current->task_works))
2176 		task_work_run();
2177 
2178 	spin_lock_irq(&current->sighand->siglock);
2179 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2180 	spin_unlock_irq(&current->sighand->siglock);
2181 }
2182 
2183 /**
2184  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2185  * @signr: signr causing group stop if initiating
2186  *
2187  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2188  * and participate in it.  If already set, participate in the existing
2189  * group stop.  If participated in a group stop (and thus slept), %true is
2190  * returned with siglock released.
2191  *
2192  * If ptraced, this function doesn't handle stop itself.  Instead,
2193  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2194  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2195  * places afterwards.
2196  *
2197  * CONTEXT:
2198  * Must be called with @current->sighand->siglock held, which is released
2199  * on %true return.
2200  *
2201  * RETURNS:
2202  * %false if group stop is already cancelled or ptrace trap is scheduled.
2203  * %true if participated in group stop.
2204  */
2205 static bool do_signal_stop(int signr)
2206 	__releases(&current->sighand->siglock)
2207 {
2208 	struct signal_struct *sig = current->signal;
2209 
2210 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2211 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2212 		struct task_struct *t;
2213 
2214 		/* signr will be recorded in task->jobctl for retries */
2215 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2216 
2217 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2218 		    unlikely(signal_group_exit(sig)))
2219 			return false;
2220 		/*
2221 		 * There is no group stop already in progress.  We must
2222 		 * initiate one now.
2223 		 *
2224 		 * While ptraced, a task may be resumed while group stop is
2225 		 * still in effect and then receive a stop signal and
2226 		 * initiate another group stop.  This deviates from the
2227 		 * usual behavior as two consecutive stop signals can't
2228 		 * cause two group stops when !ptraced.  That is why we
2229 		 * also check !task_is_stopped(t) below.
2230 		 *
2231 		 * The condition can be distinguished by testing whether
2232 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2233 		 * group_exit_code in such case.
2234 		 *
2235 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2236 		 * an intervening stop signal is required to cause two
2237 		 * continued events regardless of ptrace.
2238 		 */
2239 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2240 			sig->group_exit_code = signr;
2241 
2242 		sig->group_stop_count = 0;
2243 
2244 		if (task_set_jobctl_pending(current, signr | gstop))
2245 			sig->group_stop_count++;
2246 
2247 		t = current;
2248 		while_each_thread(current, t) {
2249 			/*
2250 			 * Setting state to TASK_STOPPED for a group
2251 			 * stop is always done with the siglock held,
2252 			 * so this check has no races.
2253 			 */
2254 			if (!task_is_stopped(t) &&
2255 			    task_set_jobctl_pending(t, signr | gstop)) {
2256 				sig->group_stop_count++;
2257 				if (likely(!(t->ptrace & PT_SEIZED)))
2258 					signal_wake_up(t, 0);
2259 				else
2260 					ptrace_trap_notify(t);
2261 			}
2262 		}
2263 	}
2264 
2265 	if (likely(!current->ptrace)) {
2266 		int notify = 0;
2267 
2268 		/*
2269 		 * If there are no other threads in the group, or if there
2270 		 * is a group stop in progress and we are the last to stop,
2271 		 * report to the parent.
2272 		 */
2273 		if (task_participate_group_stop(current))
2274 			notify = CLD_STOPPED;
2275 
2276 		set_special_state(TASK_STOPPED);
2277 		spin_unlock_irq(&current->sighand->siglock);
2278 
2279 		/*
2280 		 * Notify the parent of the group stop completion.  Because
2281 		 * we're not holding either the siglock or tasklist_lock
2282 		 * here, ptracer may attach inbetween; however, this is for
2283 		 * group stop and should always be delivered to the real
2284 		 * parent of the group leader.  The new ptracer will get
2285 		 * its notification when this task transitions into
2286 		 * TASK_TRACED.
2287 		 */
2288 		if (notify) {
2289 			read_lock(&tasklist_lock);
2290 			do_notify_parent_cldstop(current, false, notify);
2291 			read_unlock(&tasklist_lock);
2292 		}
2293 
2294 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2295 		cgroup_enter_frozen();
2296 		freezable_schedule();
2297 		return true;
2298 	} else {
2299 		/*
2300 		 * While ptraced, group stop is handled by STOP trap.
2301 		 * Schedule it and let the caller deal with it.
2302 		 */
2303 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2304 		return false;
2305 	}
2306 }
2307 
2308 /**
2309  * do_jobctl_trap - take care of ptrace jobctl traps
2310  *
2311  * When PT_SEIZED, it's used for both group stop and explicit
2312  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2313  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2314  * the stop signal; otherwise, %SIGTRAP.
2315  *
2316  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2317  * number as exit_code and no siginfo.
2318  *
2319  * CONTEXT:
2320  * Must be called with @current->sighand->siglock held, which may be
2321  * released and re-acquired before returning with intervening sleep.
2322  */
2323 static void do_jobctl_trap(void)
2324 {
2325 	struct signal_struct *signal = current->signal;
2326 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2327 
2328 	if (current->ptrace & PT_SEIZED) {
2329 		if (!signal->group_stop_count &&
2330 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2331 			signr = SIGTRAP;
2332 		WARN_ON_ONCE(!signr);
2333 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2334 				 CLD_STOPPED);
2335 	} else {
2336 		WARN_ON_ONCE(!signr);
2337 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2338 		current->exit_code = 0;
2339 	}
2340 }
2341 
2342 /**
2343  * do_freezer_trap - handle the freezer jobctl trap
2344  *
2345  * Puts the task into frozen state, if only the task is not about to quit.
2346  * In this case it drops JOBCTL_TRAP_FREEZE.
2347  *
2348  * CONTEXT:
2349  * Must be called with @current->sighand->siglock held,
2350  * which is always released before returning.
2351  */
2352 static void do_freezer_trap(void)
2353 	__releases(&current->sighand->siglock)
2354 {
2355 	/*
2356 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2357 	 * let's make another loop to give it a chance to be handled.
2358 	 * In any case, we'll return back.
2359 	 */
2360 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2361 	     JOBCTL_TRAP_FREEZE) {
2362 		spin_unlock_irq(&current->sighand->siglock);
2363 		return;
2364 	}
2365 
2366 	/*
2367 	 * Now we're sure that there is no pending fatal signal and no
2368 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2369 	 * immediately (if there is a non-fatal signal pending), and
2370 	 * put the task into sleep.
2371 	 */
2372 	__set_current_state(TASK_INTERRUPTIBLE);
2373 	clear_thread_flag(TIF_SIGPENDING);
2374 	spin_unlock_irq(&current->sighand->siglock);
2375 	cgroup_enter_frozen();
2376 	freezable_schedule();
2377 }
2378 
2379 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2380 {
2381 	/*
2382 	 * We do not check sig_kernel_stop(signr) but set this marker
2383 	 * unconditionally because we do not know whether debugger will
2384 	 * change signr. This flag has no meaning unless we are going
2385 	 * to stop after return from ptrace_stop(). In this case it will
2386 	 * be checked in do_signal_stop(), we should only stop if it was
2387 	 * not cleared by SIGCONT while we were sleeping. See also the
2388 	 * comment in dequeue_signal().
2389 	 */
2390 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2391 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2392 
2393 	/* We're back.  Did the debugger cancel the sig?  */
2394 	signr = current->exit_code;
2395 	if (signr == 0)
2396 		return signr;
2397 
2398 	current->exit_code = 0;
2399 
2400 	/*
2401 	 * Update the siginfo structure if the signal has
2402 	 * changed.  If the debugger wanted something
2403 	 * specific in the siginfo structure then it should
2404 	 * have updated *info via PTRACE_SETSIGINFO.
2405 	 */
2406 	if (signr != info->si_signo) {
2407 		clear_siginfo(info);
2408 		info->si_signo = signr;
2409 		info->si_errno = 0;
2410 		info->si_code = SI_USER;
2411 		rcu_read_lock();
2412 		info->si_pid = task_pid_vnr(current->parent);
2413 		info->si_uid = from_kuid_munged(current_user_ns(),
2414 						task_uid(current->parent));
2415 		rcu_read_unlock();
2416 	}
2417 
2418 	/* If the (new) signal is now blocked, requeue it.  */
2419 	if (sigismember(&current->blocked, signr)) {
2420 		send_signal(signr, info, current, PIDTYPE_PID);
2421 		signr = 0;
2422 	}
2423 
2424 	return signr;
2425 }
2426 
2427 bool get_signal(struct ksignal *ksig)
2428 {
2429 	struct sighand_struct *sighand = current->sighand;
2430 	struct signal_struct *signal = current->signal;
2431 	int signr;
2432 
2433 	if (unlikely(current->task_works))
2434 		task_work_run();
2435 
2436 	if (unlikely(uprobe_deny_signal()))
2437 		return false;
2438 
2439 	/*
2440 	 * Do this once, we can't return to user-mode if freezing() == T.
2441 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2442 	 * thus do not need another check after return.
2443 	 */
2444 	try_to_freeze();
2445 
2446 relock:
2447 	spin_lock_irq(&sighand->siglock);
2448 	/*
2449 	 * Every stopped thread goes here after wakeup. Check to see if
2450 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2451 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2452 	 */
2453 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2454 		int why;
2455 
2456 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2457 			why = CLD_CONTINUED;
2458 		else
2459 			why = CLD_STOPPED;
2460 
2461 		signal->flags &= ~SIGNAL_CLD_MASK;
2462 
2463 		spin_unlock_irq(&sighand->siglock);
2464 
2465 		/*
2466 		 * Notify the parent that we're continuing.  This event is
2467 		 * always per-process and doesn't make whole lot of sense
2468 		 * for ptracers, who shouldn't consume the state via
2469 		 * wait(2) either, but, for backward compatibility, notify
2470 		 * the ptracer of the group leader too unless it's gonna be
2471 		 * a duplicate.
2472 		 */
2473 		read_lock(&tasklist_lock);
2474 		do_notify_parent_cldstop(current, false, why);
2475 
2476 		if (ptrace_reparented(current->group_leader))
2477 			do_notify_parent_cldstop(current->group_leader,
2478 						true, why);
2479 		read_unlock(&tasklist_lock);
2480 
2481 		goto relock;
2482 	}
2483 
2484 	/* Has this task already been marked for death? */
2485 	if (signal_group_exit(signal)) {
2486 		ksig->info.si_signo = signr = SIGKILL;
2487 		sigdelset(&current->pending.signal, SIGKILL);
2488 		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2489 				&sighand->action[SIGKILL - 1]);
2490 		recalc_sigpending();
2491 		goto fatal;
2492 	}
2493 
2494 	for (;;) {
2495 		struct k_sigaction *ka;
2496 
2497 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2498 		    do_signal_stop(0))
2499 			goto relock;
2500 
2501 		if (unlikely(current->jobctl &
2502 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2503 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2504 				do_jobctl_trap();
2505 				spin_unlock_irq(&sighand->siglock);
2506 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2507 				do_freezer_trap();
2508 
2509 			goto relock;
2510 		}
2511 
2512 		/*
2513 		 * If the task is leaving the frozen state, let's update
2514 		 * cgroup counters and reset the frozen bit.
2515 		 */
2516 		if (unlikely(cgroup_task_frozen(current))) {
2517 			spin_unlock_irq(&sighand->siglock);
2518 			cgroup_leave_frozen(false);
2519 			goto relock;
2520 		}
2521 
2522 		/*
2523 		 * Signals generated by the execution of an instruction
2524 		 * need to be delivered before any other pending signals
2525 		 * so that the instruction pointer in the signal stack
2526 		 * frame points to the faulting instruction.
2527 		 */
2528 		signr = dequeue_synchronous_signal(&ksig->info);
2529 		if (!signr)
2530 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2531 
2532 		if (!signr)
2533 			break; /* will return 0 */
2534 
2535 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2536 			signr = ptrace_signal(signr, &ksig->info);
2537 			if (!signr)
2538 				continue;
2539 		}
2540 
2541 		ka = &sighand->action[signr-1];
2542 
2543 		/* Trace actually delivered signals. */
2544 		trace_signal_deliver(signr, &ksig->info, ka);
2545 
2546 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2547 			continue;
2548 		if (ka->sa.sa_handler != SIG_DFL) {
2549 			/* Run the handler.  */
2550 			ksig->ka = *ka;
2551 
2552 			if (ka->sa.sa_flags & SA_ONESHOT)
2553 				ka->sa.sa_handler = SIG_DFL;
2554 
2555 			break; /* will return non-zero "signr" value */
2556 		}
2557 
2558 		/*
2559 		 * Now we are doing the default action for this signal.
2560 		 */
2561 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2562 			continue;
2563 
2564 		/*
2565 		 * Global init gets no signals it doesn't want.
2566 		 * Container-init gets no signals it doesn't want from same
2567 		 * container.
2568 		 *
2569 		 * Note that if global/container-init sees a sig_kernel_only()
2570 		 * signal here, the signal must have been generated internally
2571 		 * or must have come from an ancestor namespace. In either
2572 		 * case, the signal cannot be dropped.
2573 		 */
2574 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2575 				!sig_kernel_only(signr))
2576 			continue;
2577 
2578 		if (sig_kernel_stop(signr)) {
2579 			/*
2580 			 * The default action is to stop all threads in
2581 			 * the thread group.  The job control signals
2582 			 * do nothing in an orphaned pgrp, but SIGSTOP
2583 			 * always works.  Note that siglock needs to be
2584 			 * dropped during the call to is_orphaned_pgrp()
2585 			 * because of lock ordering with tasklist_lock.
2586 			 * This allows an intervening SIGCONT to be posted.
2587 			 * We need to check for that and bail out if necessary.
2588 			 */
2589 			if (signr != SIGSTOP) {
2590 				spin_unlock_irq(&sighand->siglock);
2591 
2592 				/* signals can be posted during this window */
2593 
2594 				if (is_current_pgrp_orphaned())
2595 					goto relock;
2596 
2597 				spin_lock_irq(&sighand->siglock);
2598 			}
2599 
2600 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2601 				/* It released the siglock.  */
2602 				goto relock;
2603 			}
2604 
2605 			/*
2606 			 * We didn't actually stop, due to a race
2607 			 * with SIGCONT or something like that.
2608 			 */
2609 			continue;
2610 		}
2611 
2612 	fatal:
2613 		spin_unlock_irq(&sighand->siglock);
2614 		if (unlikely(cgroup_task_frozen(current)))
2615 			cgroup_leave_frozen(true);
2616 
2617 		/*
2618 		 * Anything else is fatal, maybe with a core dump.
2619 		 */
2620 		current->flags |= PF_SIGNALED;
2621 
2622 		if (sig_kernel_coredump(signr)) {
2623 			if (print_fatal_signals)
2624 				print_fatal_signal(ksig->info.si_signo);
2625 			proc_coredump_connector(current);
2626 			/*
2627 			 * If it was able to dump core, this kills all
2628 			 * other threads in the group and synchronizes with
2629 			 * their demise.  If we lost the race with another
2630 			 * thread getting here, it set group_exit_code
2631 			 * first and our do_group_exit call below will use
2632 			 * that value and ignore the one we pass it.
2633 			 */
2634 			do_coredump(&ksig->info);
2635 		}
2636 
2637 		/*
2638 		 * Death signals, no core dump.
2639 		 */
2640 		do_group_exit(ksig->info.si_signo);
2641 		/* NOTREACHED */
2642 	}
2643 	spin_unlock_irq(&sighand->siglock);
2644 
2645 	ksig->sig = signr;
2646 	return ksig->sig > 0;
2647 }
2648 
2649 /**
2650  * signal_delivered -
2651  * @ksig:		kernel signal struct
2652  * @stepping:		nonzero if debugger single-step or block-step in use
2653  *
2654  * This function should be called when a signal has successfully been
2655  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2656  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2657  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2658  */
2659 static void signal_delivered(struct ksignal *ksig, int stepping)
2660 {
2661 	sigset_t blocked;
2662 
2663 	/* A signal was successfully delivered, and the
2664 	   saved sigmask was stored on the signal frame,
2665 	   and will be restored by sigreturn.  So we can
2666 	   simply clear the restore sigmask flag.  */
2667 	clear_restore_sigmask();
2668 
2669 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2670 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2671 		sigaddset(&blocked, ksig->sig);
2672 	set_current_blocked(&blocked);
2673 	tracehook_signal_handler(stepping);
2674 }
2675 
2676 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2677 {
2678 	if (failed)
2679 		force_sigsegv(ksig->sig, current);
2680 	else
2681 		signal_delivered(ksig, stepping);
2682 }
2683 
2684 /*
2685  * It could be that complete_signal() picked us to notify about the
2686  * group-wide signal. Other threads should be notified now to take
2687  * the shared signals in @which since we will not.
2688  */
2689 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2690 {
2691 	sigset_t retarget;
2692 	struct task_struct *t;
2693 
2694 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2695 	if (sigisemptyset(&retarget))
2696 		return;
2697 
2698 	t = tsk;
2699 	while_each_thread(tsk, t) {
2700 		if (t->flags & PF_EXITING)
2701 			continue;
2702 
2703 		if (!has_pending_signals(&retarget, &t->blocked))
2704 			continue;
2705 		/* Remove the signals this thread can handle. */
2706 		sigandsets(&retarget, &retarget, &t->blocked);
2707 
2708 		if (!signal_pending(t))
2709 			signal_wake_up(t, 0);
2710 
2711 		if (sigisemptyset(&retarget))
2712 			break;
2713 	}
2714 }
2715 
2716 void exit_signals(struct task_struct *tsk)
2717 {
2718 	int group_stop = 0;
2719 	sigset_t unblocked;
2720 
2721 	/*
2722 	 * @tsk is about to have PF_EXITING set - lock out users which
2723 	 * expect stable threadgroup.
2724 	 */
2725 	cgroup_threadgroup_change_begin(tsk);
2726 
2727 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2728 		tsk->flags |= PF_EXITING;
2729 		cgroup_threadgroup_change_end(tsk);
2730 		return;
2731 	}
2732 
2733 	spin_lock_irq(&tsk->sighand->siglock);
2734 	/*
2735 	 * From now this task is not visible for group-wide signals,
2736 	 * see wants_signal(), do_signal_stop().
2737 	 */
2738 	tsk->flags |= PF_EXITING;
2739 
2740 	cgroup_threadgroup_change_end(tsk);
2741 
2742 	if (!signal_pending(tsk))
2743 		goto out;
2744 
2745 	unblocked = tsk->blocked;
2746 	signotset(&unblocked);
2747 	retarget_shared_pending(tsk, &unblocked);
2748 
2749 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2750 	    task_participate_group_stop(tsk))
2751 		group_stop = CLD_STOPPED;
2752 out:
2753 	spin_unlock_irq(&tsk->sighand->siglock);
2754 
2755 	/*
2756 	 * If group stop has completed, deliver the notification.  This
2757 	 * should always go to the real parent of the group leader.
2758 	 */
2759 	if (unlikely(group_stop)) {
2760 		read_lock(&tasklist_lock);
2761 		do_notify_parent_cldstop(tsk, false, group_stop);
2762 		read_unlock(&tasklist_lock);
2763 	}
2764 }
2765 
2766 /*
2767  * System call entry points.
2768  */
2769 
2770 /**
2771  *  sys_restart_syscall - restart a system call
2772  */
2773 SYSCALL_DEFINE0(restart_syscall)
2774 {
2775 	struct restart_block *restart = &current->restart_block;
2776 	return restart->fn(restart);
2777 }
2778 
2779 long do_no_restart_syscall(struct restart_block *param)
2780 {
2781 	return -EINTR;
2782 }
2783 
2784 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2785 {
2786 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2787 		sigset_t newblocked;
2788 		/* A set of now blocked but previously unblocked signals. */
2789 		sigandnsets(&newblocked, newset, &current->blocked);
2790 		retarget_shared_pending(tsk, &newblocked);
2791 	}
2792 	tsk->blocked = *newset;
2793 	recalc_sigpending();
2794 }
2795 
2796 /**
2797  * set_current_blocked - change current->blocked mask
2798  * @newset: new mask
2799  *
2800  * It is wrong to change ->blocked directly, this helper should be used
2801  * to ensure the process can't miss a shared signal we are going to block.
2802  */
2803 void set_current_blocked(sigset_t *newset)
2804 {
2805 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2806 	__set_current_blocked(newset);
2807 }
2808 
2809 void __set_current_blocked(const sigset_t *newset)
2810 {
2811 	struct task_struct *tsk = current;
2812 
2813 	/*
2814 	 * In case the signal mask hasn't changed, there is nothing we need
2815 	 * to do. The current->blocked shouldn't be modified by other task.
2816 	 */
2817 	if (sigequalsets(&tsk->blocked, newset))
2818 		return;
2819 
2820 	spin_lock_irq(&tsk->sighand->siglock);
2821 	__set_task_blocked(tsk, newset);
2822 	spin_unlock_irq(&tsk->sighand->siglock);
2823 }
2824 
2825 /*
2826  * This is also useful for kernel threads that want to temporarily
2827  * (or permanently) block certain signals.
2828  *
2829  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2830  * interface happily blocks "unblockable" signals like SIGKILL
2831  * and friends.
2832  */
2833 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2834 {
2835 	struct task_struct *tsk = current;
2836 	sigset_t newset;
2837 
2838 	/* Lockless, only current can change ->blocked, never from irq */
2839 	if (oldset)
2840 		*oldset = tsk->blocked;
2841 
2842 	switch (how) {
2843 	case SIG_BLOCK:
2844 		sigorsets(&newset, &tsk->blocked, set);
2845 		break;
2846 	case SIG_UNBLOCK:
2847 		sigandnsets(&newset, &tsk->blocked, set);
2848 		break;
2849 	case SIG_SETMASK:
2850 		newset = *set;
2851 		break;
2852 	default:
2853 		return -EINVAL;
2854 	}
2855 
2856 	__set_current_blocked(&newset);
2857 	return 0;
2858 }
2859 EXPORT_SYMBOL(sigprocmask);
2860 
2861 /*
2862  * The api helps set app-provided sigmasks.
2863  *
2864  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2865  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2866  */
2867 int set_user_sigmask(const sigset_t __user *usigmask, sigset_t *set,
2868 		     sigset_t *oldset, size_t sigsetsize)
2869 {
2870 	if (!usigmask)
2871 		return 0;
2872 
2873 	if (sigsetsize != sizeof(sigset_t))
2874 		return -EINVAL;
2875 	if (copy_from_user(set, usigmask, sizeof(sigset_t)))
2876 		return -EFAULT;
2877 
2878 	*oldset = current->blocked;
2879 	set_current_blocked(set);
2880 
2881 	return 0;
2882 }
2883 EXPORT_SYMBOL(set_user_sigmask);
2884 
2885 #ifdef CONFIG_COMPAT
2886 int set_compat_user_sigmask(const compat_sigset_t __user *usigmask,
2887 			    sigset_t *set, sigset_t *oldset,
2888 			    size_t sigsetsize)
2889 {
2890 	if (!usigmask)
2891 		return 0;
2892 
2893 	if (sigsetsize != sizeof(compat_sigset_t))
2894 		return -EINVAL;
2895 	if (get_compat_sigset(set, usigmask))
2896 		return -EFAULT;
2897 
2898 	*oldset = current->blocked;
2899 	set_current_blocked(set);
2900 
2901 	return 0;
2902 }
2903 EXPORT_SYMBOL(set_compat_user_sigmask);
2904 #endif
2905 
2906 /*
2907  * restore_user_sigmask:
2908  * usigmask: sigmask passed in from userland.
2909  * sigsaved: saved sigmask when the syscall started and changed the sigmask to
2910  *           usigmask.
2911  *
2912  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2913  * epoll_pwait where a new sigmask is passed in from userland for the syscalls.
2914  */
2915 void restore_user_sigmask(const void __user *usigmask, sigset_t *sigsaved)
2916 {
2917 
2918 	if (!usigmask)
2919 		return;
2920 	/*
2921 	 * When signals are pending, do not restore them here.
2922 	 * Restoring sigmask here can lead to delivering signals that the above
2923 	 * syscalls are intended to block because of the sigmask passed in.
2924 	 */
2925 	if (signal_pending(current)) {
2926 		current->saved_sigmask = *sigsaved;
2927 		set_restore_sigmask();
2928 		return;
2929 	}
2930 
2931 	/*
2932 	 * This is needed because the fast syscall return path does not restore
2933 	 * saved_sigmask when signals are not pending.
2934 	 */
2935 	set_current_blocked(sigsaved);
2936 }
2937 EXPORT_SYMBOL(restore_user_sigmask);
2938 
2939 /**
2940  *  sys_rt_sigprocmask - change the list of currently blocked signals
2941  *  @how: whether to add, remove, or set signals
2942  *  @nset: stores pending signals
2943  *  @oset: previous value of signal mask if non-null
2944  *  @sigsetsize: size of sigset_t type
2945  */
2946 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2947 		sigset_t __user *, oset, size_t, sigsetsize)
2948 {
2949 	sigset_t old_set, new_set;
2950 	int error;
2951 
2952 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2953 	if (sigsetsize != sizeof(sigset_t))
2954 		return -EINVAL;
2955 
2956 	old_set = current->blocked;
2957 
2958 	if (nset) {
2959 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2960 			return -EFAULT;
2961 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2962 
2963 		error = sigprocmask(how, &new_set, NULL);
2964 		if (error)
2965 			return error;
2966 	}
2967 
2968 	if (oset) {
2969 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2970 			return -EFAULT;
2971 	}
2972 
2973 	return 0;
2974 }
2975 
2976 #ifdef CONFIG_COMPAT
2977 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2978 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2979 {
2980 	sigset_t old_set = current->blocked;
2981 
2982 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2983 	if (sigsetsize != sizeof(sigset_t))
2984 		return -EINVAL;
2985 
2986 	if (nset) {
2987 		sigset_t new_set;
2988 		int error;
2989 		if (get_compat_sigset(&new_set, nset))
2990 			return -EFAULT;
2991 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2992 
2993 		error = sigprocmask(how, &new_set, NULL);
2994 		if (error)
2995 			return error;
2996 	}
2997 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2998 }
2999 #endif
3000 
3001 static void do_sigpending(sigset_t *set)
3002 {
3003 	spin_lock_irq(&current->sighand->siglock);
3004 	sigorsets(set, &current->pending.signal,
3005 		  &current->signal->shared_pending.signal);
3006 	spin_unlock_irq(&current->sighand->siglock);
3007 
3008 	/* Outside the lock because only this thread touches it.  */
3009 	sigandsets(set, &current->blocked, set);
3010 }
3011 
3012 /**
3013  *  sys_rt_sigpending - examine a pending signal that has been raised
3014  *			while blocked
3015  *  @uset: stores pending signals
3016  *  @sigsetsize: size of sigset_t type or larger
3017  */
3018 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3019 {
3020 	sigset_t set;
3021 
3022 	if (sigsetsize > sizeof(*uset))
3023 		return -EINVAL;
3024 
3025 	do_sigpending(&set);
3026 
3027 	if (copy_to_user(uset, &set, sigsetsize))
3028 		return -EFAULT;
3029 
3030 	return 0;
3031 }
3032 
3033 #ifdef CONFIG_COMPAT
3034 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3035 		compat_size_t, sigsetsize)
3036 {
3037 	sigset_t set;
3038 
3039 	if (sigsetsize > sizeof(*uset))
3040 		return -EINVAL;
3041 
3042 	do_sigpending(&set);
3043 
3044 	return put_compat_sigset(uset, &set, sigsetsize);
3045 }
3046 #endif
3047 
3048 static const struct {
3049 	unsigned char limit, layout;
3050 } sig_sicodes[] = {
3051 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3052 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3053 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3054 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3055 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3056 #if defined(SIGEMT)
3057 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3058 #endif
3059 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3060 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3061 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3062 };
3063 
3064 static bool known_siginfo_layout(unsigned sig, int si_code)
3065 {
3066 	if (si_code == SI_KERNEL)
3067 		return true;
3068 	else if ((si_code > SI_USER)) {
3069 		if (sig_specific_sicodes(sig)) {
3070 			if (si_code <= sig_sicodes[sig].limit)
3071 				return true;
3072 		}
3073 		else if (si_code <= NSIGPOLL)
3074 			return true;
3075 	}
3076 	else if (si_code >= SI_DETHREAD)
3077 		return true;
3078 	else if (si_code == SI_ASYNCNL)
3079 		return true;
3080 	return false;
3081 }
3082 
3083 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3084 {
3085 	enum siginfo_layout layout = SIL_KILL;
3086 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3087 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3088 		    (si_code <= sig_sicodes[sig].limit)) {
3089 			layout = sig_sicodes[sig].layout;
3090 			/* Handle the exceptions */
3091 			if ((sig == SIGBUS) &&
3092 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3093 				layout = SIL_FAULT_MCEERR;
3094 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3095 				layout = SIL_FAULT_BNDERR;
3096 #ifdef SEGV_PKUERR
3097 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3098 				layout = SIL_FAULT_PKUERR;
3099 #endif
3100 		}
3101 		else if (si_code <= NSIGPOLL)
3102 			layout = SIL_POLL;
3103 	} else {
3104 		if (si_code == SI_TIMER)
3105 			layout = SIL_TIMER;
3106 		else if (si_code == SI_SIGIO)
3107 			layout = SIL_POLL;
3108 		else if (si_code < 0)
3109 			layout = SIL_RT;
3110 	}
3111 	return layout;
3112 }
3113 
3114 static inline char __user *si_expansion(const siginfo_t __user *info)
3115 {
3116 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3117 }
3118 
3119 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3120 {
3121 	char __user *expansion = si_expansion(to);
3122 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3123 		return -EFAULT;
3124 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3125 		return -EFAULT;
3126 	return 0;
3127 }
3128 
3129 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3130 				       const siginfo_t __user *from)
3131 {
3132 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3133 		char __user *expansion = si_expansion(from);
3134 		char buf[SI_EXPANSION_SIZE];
3135 		int i;
3136 		/*
3137 		 * An unknown si_code might need more than
3138 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3139 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3140 		 * will return this data to userspace exactly.
3141 		 */
3142 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3143 			return -EFAULT;
3144 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3145 			if (buf[i] != 0)
3146 				return -E2BIG;
3147 		}
3148 	}
3149 	return 0;
3150 }
3151 
3152 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3153 				    const siginfo_t __user *from)
3154 {
3155 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3156 		return -EFAULT;
3157 	to->si_signo = signo;
3158 	return post_copy_siginfo_from_user(to, from);
3159 }
3160 
3161 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3162 {
3163 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3164 		return -EFAULT;
3165 	return post_copy_siginfo_from_user(to, from);
3166 }
3167 
3168 #ifdef CONFIG_COMPAT
3169 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3170 			   const struct kernel_siginfo *from)
3171 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3172 {
3173 	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3174 }
3175 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3176 			     const struct kernel_siginfo *from, bool x32_ABI)
3177 #endif
3178 {
3179 	struct compat_siginfo new;
3180 	memset(&new, 0, sizeof(new));
3181 
3182 	new.si_signo = from->si_signo;
3183 	new.si_errno = from->si_errno;
3184 	new.si_code  = from->si_code;
3185 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3186 	case SIL_KILL:
3187 		new.si_pid = from->si_pid;
3188 		new.si_uid = from->si_uid;
3189 		break;
3190 	case SIL_TIMER:
3191 		new.si_tid     = from->si_tid;
3192 		new.si_overrun = from->si_overrun;
3193 		new.si_int     = from->si_int;
3194 		break;
3195 	case SIL_POLL:
3196 		new.si_band = from->si_band;
3197 		new.si_fd   = from->si_fd;
3198 		break;
3199 	case SIL_FAULT:
3200 		new.si_addr = ptr_to_compat(from->si_addr);
3201 #ifdef __ARCH_SI_TRAPNO
3202 		new.si_trapno = from->si_trapno;
3203 #endif
3204 		break;
3205 	case SIL_FAULT_MCEERR:
3206 		new.si_addr = ptr_to_compat(from->si_addr);
3207 #ifdef __ARCH_SI_TRAPNO
3208 		new.si_trapno = from->si_trapno;
3209 #endif
3210 		new.si_addr_lsb = from->si_addr_lsb;
3211 		break;
3212 	case SIL_FAULT_BNDERR:
3213 		new.si_addr = ptr_to_compat(from->si_addr);
3214 #ifdef __ARCH_SI_TRAPNO
3215 		new.si_trapno = from->si_trapno;
3216 #endif
3217 		new.si_lower = ptr_to_compat(from->si_lower);
3218 		new.si_upper = ptr_to_compat(from->si_upper);
3219 		break;
3220 	case SIL_FAULT_PKUERR:
3221 		new.si_addr = ptr_to_compat(from->si_addr);
3222 #ifdef __ARCH_SI_TRAPNO
3223 		new.si_trapno = from->si_trapno;
3224 #endif
3225 		new.si_pkey = from->si_pkey;
3226 		break;
3227 	case SIL_CHLD:
3228 		new.si_pid    = from->si_pid;
3229 		new.si_uid    = from->si_uid;
3230 		new.si_status = from->si_status;
3231 #ifdef CONFIG_X86_X32_ABI
3232 		if (x32_ABI) {
3233 			new._sifields._sigchld_x32._utime = from->si_utime;
3234 			new._sifields._sigchld_x32._stime = from->si_stime;
3235 		} else
3236 #endif
3237 		{
3238 			new.si_utime = from->si_utime;
3239 			new.si_stime = from->si_stime;
3240 		}
3241 		break;
3242 	case SIL_RT:
3243 		new.si_pid = from->si_pid;
3244 		new.si_uid = from->si_uid;
3245 		new.si_int = from->si_int;
3246 		break;
3247 	case SIL_SYS:
3248 		new.si_call_addr = ptr_to_compat(from->si_call_addr);
3249 		new.si_syscall   = from->si_syscall;
3250 		new.si_arch      = from->si_arch;
3251 		break;
3252 	}
3253 
3254 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3255 		return -EFAULT;
3256 
3257 	return 0;
3258 }
3259 
3260 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3261 					 const struct compat_siginfo *from)
3262 {
3263 	clear_siginfo(to);
3264 	to->si_signo = from->si_signo;
3265 	to->si_errno = from->si_errno;
3266 	to->si_code  = from->si_code;
3267 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3268 	case SIL_KILL:
3269 		to->si_pid = from->si_pid;
3270 		to->si_uid = from->si_uid;
3271 		break;
3272 	case SIL_TIMER:
3273 		to->si_tid     = from->si_tid;
3274 		to->si_overrun = from->si_overrun;
3275 		to->si_int     = from->si_int;
3276 		break;
3277 	case SIL_POLL:
3278 		to->si_band = from->si_band;
3279 		to->si_fd   = from->si_fd;
3280 		break;
3281 	case SIL_FAULT:
3282 		to->si_addr = compat_ptr(from->si_addr);
3283 #ifdef __ARCH_SI_TRAPNO
3284 		to->si_trapno = from->si_trapno;
3285 #endif
3286 		break;
3287 	case SIL_FAULT_MCEERR:
3288 		to->si_addr = compat_ptr(from->si_addr);
3289 #ifdef __ARCH_SI_TRAPNO
3290 		to->si_trapno = from->si_trapno;
3291 #endif
3292 		to->si_addr_lsb = from->si_addr_lsb;
3293 		break;
3294 	case SIL_FAULT_BNDERR:
3295 		to->si_addr = compat_ptr(from->si_addr);
3296 #ifdef __ARCH_SI_TRAPNO
3297 		to->si_trapno = from->si_trapno;
3298 #endif
3299 		to->si_lower = compat_ptr(from->si_lower);
3300 		to->si_upper = compat_ptr(from->si_upper);
3301 		break;
3302 	case SIL_FAULT_PKUERR:
3303 		to->si_addr = compat_ptr(from->si_addr);
3304 #ifdef __ARCH_SI_TRAPNO
3305 		to->si_trapno = from->si_trapno;
3306 #endif
3307 		to->si_pkey = from->si_pkey;
3308 		break;
3309 	case SIL_CHLD:
3310 		to->si_pid    = from->si_pid;
3311 		to->si_uid    = from->si_uid;
3312 		to->si_status = from->si_status;
3313 #ifdef CONFIG_X86_X32_ABI
3314 		if (in_x32_syscall()) {
3315 			to->si_utime = from->_sifields._sigchld_x32._utime;
3316 			to->si_stime = from->_sifields._sigchld_x32._stime;
3317 		} else
3318 #endif
3319 		{
3320 			to->si_utime = from->si_utime;
3321 			to->si_stime = from->si_stime;
3322 		}
3323 		break;
3324 	case SIL_RT:
3325 		to->si_pid = from->si_pid;
3326 		to->si_uid = from->si_uid;
3327 		to->si_int = from->si_int;
3328 		break;
3329 	case SIL_SYS:
3330 		to->si_call_addr = compat_ptr(from->si_call_addr);
3331 		to->si_syscall   = from->si_syscall;
3332 		to->si_arch      = from->si_arch;
3333 		break;
3334 	}
3335 	return 0;
3336 }
3337 
3338 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3339 				      const struct compat_siginfo __user *ufrom)
3340 {
3341 	struct compat_siginfo from;
3342 
3343 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3344 		return -EFAULT;
3345 
3346 	from.si_signo = signo;
3347 	return post_copy_siginfo_from_user32(to, &from);
3348 }
3349 
3350 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3351 			     const struct compat_siginfo __user *ufrom)
3352 {
3353 	struct compat_siginfo from;
3354 
3355 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3356 		return -EFAULT;
3357 
3358 	return post_copy_siginfo_from_user32(to, &from);
3359 }
3360 #endif /* CONFIG_COMPAT */
3361 
3362 /**
3363  *  do_sigtimedwait - wait for queued signals specified in @which
3364  *  @which: queued signals to wait for
3365  *  @info: if non-null, the signal's siginfo is returned here
3366  *  @ts: upper bound on process time suspension
3367  */
3368 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3369 		    const struct timespec64 *ts)
3370 {
3371 	ktime_t *to = NULL, timeout = KTIME_MAX;
3372 	struct task_struct *tsk = current;
3373 	sigset_t mask = *which;
3374 	int sig, ret = 0;
3375 
3376 	if (ts) {
3377 		if (!timespec64_valid(ts))
3378 			return -EINVAL;
3379 		timeout = timespec64_to_ktime(*ts);
3380 		to = &timeout;
3381 	}
3382 
3383 	/*
3384 	 * Invert the set of allowed signals to get those we want to block.
3385 	 */
3386 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3387 	signotset(&mask);
3388 
3389 	spin_lock_irq(&tsk->sighand->siglock);
3390 	sig = dequeue_signal(tsk, &mask, info);
3391 	if (!sig && timeout) {
3392 		/*
3393 		 * None ready, temporarily unblock those we're interested
3394 		 * while we are sleeping in so that we'll be awakened when
3395 		 * they arrive. Unblocking is always fine, we can avoid
3396 		 * set_current_blocked().
3397 		 */
3398 		tsk->real_blocked = tsk->blocked;
3399 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3400 		recalc_sigpending();
3401 		spin_unlock_irq(&tsk->sighand->siglock);
3402 
3403 		__set_current_state(TASK_INTERRUPTIBLE);
3404 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3405 							 HRTIMER_MODE_REL);
3406 		spin_lock_irq(&tsk->sighand->siglock);
3407 		__set_task_blocked(tsk, &tsk->real_blocked);
3408 		sigemptyset(&tsk->real_blocked);
3409 		sig = dequeue_signal(tsk, &mask, info);
3410 	}
3411 	spin_unlock_irq(&tsk->sighand->siglock);
3412 
3413 	if (sig)
3414 		return sig;
3415 	return ret ? -EINTR : -EAGAIN;
3416 }
3417 
3418 /**
3419  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3420  *			in @uthese
3421  *  @uthese: queued signals to wait for
3422  *  @uinfo: if non-null, the signal's siginfo is returned here
3423  *  @uts: upper bound on process time suspension
3424  *  @sigsetsize: size of sigset_t type
3425  */
3426 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3427 		siginfo_t __user *, uinfo,
3428 		const struct __kernel_timespec __user *, uts,
3429 		size_t, sigsetsize)
3430 {
3431 	sigset_t these;
3432 	struct timespec64 ts;
3433 	kernel_siginfo_t info;
3434 	int ret;
3435 
3436 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3437 	if (sigsetsize != sizeof(sigset_t))
3438 		return -EINVAL;
3439 
3440 	if (copy_from_user(&these, uthese, sizeof(these)))
3441 		return -EFAULT;
3442 
3443 	if (uts) {
3444 		if (get_timespec64(&ts, uts))
3445 			return -EFAULT;
3446 	}
3447 
3448 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3449 
3450 	if (ret > 0 && uinfo) {
3451 		if (copy_siginfo_to_user(uinfo, &info))
3452 			ret = -EFAULT;
3453 	}
3454 
3455 	return ret;
3456 }
3457 
3458 #ifdef CONFIG_COMPAT_32BIT_TIME
3459 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3460 		siginfo_t __user *, uinfo,
3461 		const struct old_timespec32 __user *, uts,
3462 		size_t, sigsetsize)
3463 {
3464 	sigset_t these;
3465 	struct timespec64 ts;
3466 	kernel_siginfo_t info;
3467 	int ret;
3468 
3469 	if (sigsetsize != sizeof(sigset_t))
3470 		return -EINVAL;
3471 
3472 	if (copy_from_user(&these, uthese, sizeof(these)))
3473 		return -EFAULT;
3474 
3475 	if (uts) {
3476 		if (get_old_timespec32(&ts, uts))
3477 			return -EFAULT;
3478 	}
3479 
3480 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3481 
3482 	if (ret > 0 && uinfo) {
3483 		if (copy_siginfo_to_user(uinfo, &info))
3484 			ret = -EFAULT;
3485 	}
3486 
3487 	return ret;
3488 }
3489 #endif
3490 
3491 #ifdef CONFIG_COMPAT
3492 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3493 		struct compat_siginfo __user *, uinfo,
3494 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3495 {
3496 	sigset_t s;
3497 	struct timespec64 t;
3498 	kernel_siginfo_t info;
3499 	long ret;
3500 
3501 	if (sigsetsize != sizeof(sigset_t))
3502 		return -EINVAL;
3503 
3504 	if (get_compat_sigset(&s, uthese))
3505 		return -EFAULT;
3506 
3507 	if (uts) {
3508 		if (get_timespec64(&t, uts))
3509 			return -EFAULT;
3510 	}
3511 
3512 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3513 
3514 	if (ret > 0 && uinfo) {
3515 		if (copy_siginfo_to_user32(uinfo, &info))
3516 			ret = -EFAULT;
3517 	}
3518 
3519 	return ret;
3520 }
3521 
3522 #ifdef CONFIG_COMPAT_32BIT_TIME
3523 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3524 		struct compat_siginfo __user *, uinfo,
3525 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3526 {
3527 	sigset_t s;
3528 	struct timespec64 t;
3529 	kernel_siginfo_t info;
3530 	long ret;
3531 
3532 	if (sigsetsize != sizeof(sigset_t))
3533 		return -EINVAL;
3534 
3535 	if (get_compat_sigset(&s, uthese))
3536 		return -EFAULT;
3537 
3538 	if (uts) {
3539 		if (get_old_timespec32(&t, uts))
3540 			return -EFAULT;
3541 	}
3542 
3543 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3544 
3545 	if (ret > 0 && uinfo) {
3546 		if (copy_siginfo_to_user32(uinfo, &info))
3547 			ret = -EFAULT;
3548 	}
3549 
3550 	return ret;
3551 }
3552 #endif
3553 #endif
3554 
3555 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3556 {
3557 	clear_siginfo(info);
3558 	info->si_signo = sig;
3559 	info->si_errno = 0;
3560 	info->si_code = SI_USER;
3561 	info->si_pid = task_tgid_vnr(current);
3562 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3563 }
3564 
3565 /**
3566  *  sys_kill - send a signal to a process
3567  *  @pid: the PID of the process
3568  *  @sig: signal to be sent
3569  */
3570 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3571 {
3572 	struct kernel_siginfo info;
3573 
3574 	prepare_kill_siginfo(sig, &info);
3575 
3576 	return kill_something_info(sig, &info, pid);
3577 }
3578 
3579 /*
3580  * Verify that the signaler and signalee either are in the same pid namespace
3581  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3582  * namespace.
3583  */
3584 static bool access_pidfd_pidns(struct pid *pid)
3585 {
3586 	struct pid_namespace *active = task_active_pid_ns(current);
3587 	struct pid_namespace *p = ns_of_pid(pid);
3588 
3589 	for (;;) {
3590 		if (!p)
3591 			return false;
3592 		if (p == active)
3593 			break;
3594 		p = p->parent;
3595 	}
3596 
3597 	return true;
3598 }
3599 
3600 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3601 {
3602 #ifdef CONFIG_COMPAT
3603 	/*
3604 	 * Avoid hooking up compat syscalls and instead handle necessary
3605 	 * conversions here. Note, this is a stop-gap measure and should not be
3606 	 * considered a generic solution.
3607 	 */
3608 	if (in_compat_syscall())
3609 		return copy_siginfo_from_user32(
3610 			kinfo, (struct compat_siginfo __user *)info);
3611 #endif
3612 	return copy_siginfo_from_user(kinfo, info);
3613 }
3614 
3615 static struct pid *pidfd_to_pid(const struct file *file)
3616 {
3617 	if (file->f_op == &pidfd_fops)
3618 		return file->private_data;
3619 
3620 	return tgid_pidfd_to_pid(file);
3621 }
3622 
3623 /**
3624  * sys_pidfd_send_signal - send a signal to a process through a task file
3625  *                          descriptor
3626  * @pidfd:  the file descriptor of the process
3627  * @sig:    signal to be sent
3628  * @info:   the signal info
3629  * @flags:  future flags to be passed
3630  *
3631  * The syscall currently only signals via PIDTYPE_PID which covers
3632  * kill(<positive-pid>, <signal>. It does not signal threads or process
3633  * groups.
3634  * In order to extend the syscall to threads and process groups the @flags
3635  * argument should be used. In essence, the @flags argument will determine
3636  * what is signaled and not the file descriptor itself. Put in other words,
3637  * grouping is a property of the flags argument not a property of the file
3638  * descriptor.
3639  *
3640  * Return: 0 on success, negative errno on failure
3641  */
3642 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3643 		siginfo_t __user *, info, unsigned int, flags)
3644 {
3645 	int ret;
3646 	struct fd f;
3647 	struct pid *pid;
3648 	kernel_siginfo_t kinfo;
3649 
3650 	/* Enforce flags be set to 0 until we add an extension. */
3651 	if (flags)
3652 		return -EINVAL;
3653 
3654 	f = fdget(pidfd);
3655 	if (!f.file)
3656 		return -EBADF;
3657 
3658 	/* Is this a pidfd? */
3659 	pid = pidfd_to_pid(f.file);
3660 	if (IS_ERR(pid)) {
3661 		ret = PTR_ERR(pid);
3662 		goto err;
3663 	}
3664 
3665 	ret = -EINVAL;
3666 	if (!access_pidfd_pidns(pid))
3667 		goto err;
3668 
3669 	if (info) {
3670 		ret = copy_siginfo_from_user_any(&kinfo, info);
3671 		if (unlikely(ret))
3672 			goto err;
3673 
3674 		ret = -EINVAL;
3675 		if (unlikely(sig != kinfo.si_signo))
3676 			goto err;
3677 
3678 		/* Only allow sending arbitrary signals to yourself. */
3679 		ret = -EPERM;
3680 		if ((task_pid(current) != pid) &&
3681 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3682 			goto err;
3683 	} else {
3684 		prepare_kill_siginfo(sig, &kinfo);
3685 	}
3686 
3687 	ret = kill_pid_info(sig, &kinfo, pid);
3688 
3689 err:
3690 	fdput(f);
3691 	return ret;
3692 }
3693 
3694 static int
3695 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3696 {
3697 	struct task_struct *p;
3698 	int error = -ESRCH;
3699 
3700 	rcu_read_lock();
3701 	p = find_task_by_vpid(pid);
3702 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3703 		error = check_kill_permission(sig, info, p);
3704 		/*
3705 		 * The null signal is a permissions and process existence
3706 		 * probe.  No signal is actually delivered.
3707 		 */
3708 		if (!error && sig) {
3709 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3710 			/*
3711 			 * If lock_task_sighand() failed we pretend the task
3712 			 * dies after receiving the signal. The window is tiny,
3713 			 * and the signal is private anyway.
3714 			 */
3715 			if (unlikely(error == -ESRCH))
3716 				error = 0;
3717 		}
3718 	}
3719 	rcu_read_unlock();
3720 
3721 	return error;
3722 }
3723 
3724 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3725 {
3726 	struct kernel_siginfo info;
3727 
3728 	clear_siginfo(&info);
3729 	info.si_signo = sig;
3730 	info.si_errno = 0;
3731 	info.si_code = SI_TKILL;
3732 	info.si_pid = task_tgid_vnr(current);
3733 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3734 
3735 	return do_send_specific(tgid, pid, sig, &info);
3736 }
3737 
3738 /**
3739  *  sys_tgkill - send signal to one specific thread
3740  *  @tgid: the thread group ID of the thread
3741  *  @pid: the PID of the thread
3742  *  @sig: signal to be sent
3743  *
3744  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3745  *  exists but it's not belonging to the target process anymore. This
3746  *  method solves the problem of threads exiting and PIDs getting reused.
3747  */
3748 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3749 {
3750 	/* This is only valid for single tasks */
3751 	if (pid <= 0 || tgid <= 0)
3752 		return -EINVAL;
3753 
3754 	return do_tkill(tgid, pid, sig);
3755 }
3756 
3757 /**
3758  *  sys_tkill - send signal to one specific task
3759  *  @pid: the PID of the task
3760  *  @sig: signal to be sent
3761  *
3762  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3763  */
3764 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3765 {
3766 	/* This is only valid for single tasks */
3767 	if (pid <= 0)
3768 		return -EINVAL;
3769 
3770 	return do_tkill(0, pid, sig);
3771 }
3772 
3773 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3774 {
3775 	/* Not even root can pretend to send signals from the kernel.
3776 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3777 	 */
3778 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3779 	    (task_pid_vnr(current) != pid))
3780 		return -EPERM;
3781 
3782 	/* POSIX.1b doesn't mention process groups.  */
3783 	return kill_proc_info(sig, info, pid);
3784 }
3785 
3786 /**
3787  *  sys_rt_sigqueueinfo - send signal information to a signal
3788  *  @pid: the PID of the thread
3789  *  @sig: signal to be sent
3790  *  @uinfo: signal info to be sent
3791  */
3792 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3793 		siginfo_t __user *, uinfo)
3794 {
3795 	kernel_siginfo_t info;
3796 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3797 	if (unlikely(ret))
3798 		return ret;
3799 	return do_rt_sigqueueinfo(pid, sig, &info);
3800 }
3801 
3802 #ifdef CONFIG_COMPAT
3803 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3804 			compat_pid_t, pid,
3805 			int, sig,
3806 			struct compat_siginfo __user *, uinfo)
3807 {
3808 	kernel_siginfo_t info;
3809 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3810 	if (unlikely(ret))
3811 		return ret;
3812 	return do_rt_sigqueueinfo(pid, sig, &info);
3813 }
3814 #endif
3815 
3816 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3817 {
3818 	/* This is only valid for single tasks */
3819 	if (pid <= 0 || tgid <= 0)
3820 		return -EINVAL;
3821 
3822 	/* Not even root can pretend to send signals from the kernel.
3823 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3824 	 */
3825 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3826 	    (task_pid_vnr(current) != pid))
3827 		return -EPERM;
3828 
3829 	return do_send_specific(tgid, pid, sig, info);
3830 }
3831 
3832 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3833 		siginfo_t __user *, uinfo)
3834 {
3835 	kernel_siginfo_t info;
3836 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3837 	if (unlikely(ret))
3838 		return ret;
3839 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3840 }
3841 
3842 #ifdef CONFIG_COMPAT
3843 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3844 			compat_pid_t, tgid,
3845 			compat_pid_t, pid,
3846 			int, sig,
3847 			struct compat_siginfo __user *, uinfo)
3848 {
3849 	kernel_siginfo_t info;
3850 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3851 	if (unlikely(ret))
3852 		return ret;
3853 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3854 }
3855 #endif
3856 
3857 /*
3858  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3859  */
3860 void kernel_sigaction(int sig, __sighandler_t action)
3861 {
3862 	spin_lock_irq(&current->sighand->siglock);
3863 	current->sighand->action[sig - 1].sa.sa_handler = action;
3864 	if (action == SIG_IGN) {
3865 		sigset_t mask;
3866 
3867 		sigemptyset(&mask);
3868 		sigaddset(&mask, sig);
3869 
3870 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3871 		flush_sigqueue_mask(&mask, &current->pending);
3872 		recalc_sigpending();
3873 	}
3874 	spin_unlock_irq(&current->sighand->siglock);
3875 }
3876 EXPORT_SYMBOL(kernel_sigaction);
3877 
3878 void __weak sigaction_compat_abi(struct k_sigaction *act,
3879 		struct k_sigaction *oact)
3880 {
3881 }
3882 
3883 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3884 {
3885 	struct task_struct *p = current, *t;
3886 	struct k_sigaction *k;
3887 	sigset_t mask;
3888 
3889 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3890 		return -EINVAL;
3891 
3892 	k = &p->sighand->action[sig-1];
3893 
3894 	spin_lock_irq(&p->sighand->siglock);
3895 	if (oact)
3896 		*oact = *k;
3897 
3898 	sigaction_compat_abi(act, oact);
3899 
3900 	if (act) {
3901 		sigdelsetmask(&act->sa.sa_mask,
3902 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3903 		*k = *act;
3904 		/*
3905 		 * POSIX 3.3.1.3:
3906 		 *  "Setting a signal action to SIG_IGN for a signal that is
3907 		 *   pending shall cause the pending signal to be discarded,
3908 		 *   whether or not it is blocked."
3909 		 *
3910 		 *  "Setting a signal action to SIG_DFL for a signal that is
3911 		 *   pending and whose default action is to ignore the signal
3912 		 *   (for example, SIGCHLD), shall cause the pending signal to
3913 		 *   be discarded, whether or not it is blocked"
3914 		 */
3915 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3916 			sigemptyset(&mask);
3917 			sigaddset(&mask, sig);
3918 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3919 			for_each_thread(p, t)
3920 				flush_sigqueue_mask(&mask, &t->pending);
3921 		}
3922 	}
3923 
3924 	spin_unlock_irq(&p->sighand->siglock);
3925 	return 0;
3926 }
3927 
3928 static int
3929 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3930 		size_t min_ss_size)
3931 {
3932 	struct task_struct *t = current;
3933 
3934 	if (oss) {
3935 		memset(oss, 0, sizeof(stack_t));
3936 		oss->ss_sp = (void __user *) t->sas_ss_sp;
3937 		oss->ss_size = t->sas_ss_size;
3938 		oss->ss_flags = sas_ss_flags(sp) |
3939 			(current->sas_ss_flags & SS_FLAG_BITS);
3940 	}
3941 
3942 	if (ss) {
3943 		void __user *ss_sp = ss->ss_sp;
3944 		size_t ss_size = ss->ss_size;
3945 		unsigned ss_flags = ss->ss_flags;
3946 		int ss_mode;
3947 
3948 		if (unlikely(on_sig_stack(sp)))
3949 			return -EPERM;
3950 
3951 		ss_mode = ss_flags & ~SS_FLAG_BITS;
3952 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3953 				ss_mode != 0))
3954 			return -EINVAL;
3955 
3956 		if (ss_mode == SS_DISABLE) {
3957 			ss_size = 0;
3958 			ss_sp = NULL;
3959 		} else {
3960 			if (unlikely(ss_size < min_ss_size))
3961 				return -ENOMEM;
3962 		}
3963 
3964 		t->sas_ss_sp = (unsigned long) ss_sp;
3965 		t->sas_ss_size = ss_size;
3966 		t->sas_ss_flags = ss_flags;
3967 	}
3968 	return 0;
3969 }
3970 
3971 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3972 {
3973 	stack_t new, old;
3974 	int err;
3975 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3976 		return -EFAULT;
3977 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3978 			      current_user_stack_pointer(),
3979 			      MINSIGSTKSZ);
3980 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3981 		err = -EFAULT;
3982 	return err;
3983 }
3984 
3985 int restore_altstack(const stack_t __user *uss)
3986 {
3987 	stack_t new;
3988 	if (copy_from_user(&new, uss, sizeof(stack_t)))
3989 		return -EFAULT;
3990 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
3991 			     MINSIGSTKSZ);
3992 	/* squash all but EFAULT for now */
3993 	return 0;
3994 }
3995 
3996 int __save_altstack(stack_t __user *uss, unsigned long sp)
3997 {
3998 	struct task_struct *t = current;
3999 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4000 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4001 		__put_user(t->sas_ss_size, &uss->ss_size);
4002 	if (err)
4003 		return err;
4004 	if (t->sas_ss_flags & SS_AUTODISARM)
4005 		sas_ss_reset(t);
4006 	return 0;
4007 }
4008 
4009 #ifdef CONFIG_COMPAT
4010 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4011 				 compat_stack_t __user *uoss_ptr)
4012 {
4013 	stack_t uss, uoss;
4014 	int ret;
4015 
4016 	if (uss_ptr) {
4017 		compat_stack_t uss32;
4018 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4019 			return -EFAULT;
4020 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4021 		uss.ss_flags = uss32.ss_flags;
4022 		uss.ss_size = uss32.ss_size;
4023 	}
4024 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4025 			     compat_user_stack_pointer(),
4026 			     COMPAT_MINSIGSTKSZ);
4027 	if (ret >= 0 && uoss_ptr)  {
4028 		compat_stack_t old;
4029 		memset(&old, 0, sizeof(old));
4030 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4031 		old.ss_flags = uoss.ss_flags;
4032 		old.ss_size = uoss.ss_size;
4033 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4034 			ret = -EFAULT;
4035 	}
4036 	return ret;
4037 }
4038 
4039 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4040 			const compat_stack_t __user *, uss_ptr,
4041 			compat_stack_t __user *, uoss_ptr)
4042 {
4043 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4044 }
4045 
4046 int compat_restore_altstack(const compat_stack_t __user *uss)
4047 {
4048 	int err = do_compat_sigaltstack(uss, NULL);
4049 	/* squash all but -EFAULT for now */
4050 	return err == -EFAULT ? err : 0;
4051 }
4052 
4053 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4054 {
4055 	int err;
4056 	struct task_struct *t = current;
4057 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4058 			 &uss->ss_sp) |
4059 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4060 		__put_user(t->sas_ss_size, &uss->ss_size);
4061 	if (err)
4062 		return err;
4063 	if (t->sas_ss_flags & SS_AUTODISARM)
4064 		sas_ss_reset(t);
4065 	return 0;
4066 }
4067 #endif
4068 
4069 #ifdef __ARCH_WANT_SYS_SIGPENDING
4070 
4071 /**
4072  *  sys_sigpending - examine pending signals
4073  *  @uset: where mask of pending signal is returned
4074  */
4075 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4076 {
4077 	sigset_t set;
4078 
4079 	if (sizeof(old_sigset_t) > sizeof(*uset))
4080 		return -EINVAL;
4081 
4082 	do_sigpending(&set);
4083 
4084 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4085 		return -EFAULT;
4086 
4087 	return 0;
4088 }
4089 
4090 #ifdef CONFIG_COMPAT
4091 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4092 {
4093 	sigset_t set;
4094 
4095 	do_sigpending(&set);
4096 
4097 	return put_user(set.sig[0], set32);
4098 }
4099 #endif
4100 
4101 #endif
4102 
4103 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4104 /**
4105  *  sys_sigprocmask - examine and change blocked signals
4106  *  @how: whether to add, remove, or set signals
4107  *  @nset: signals to add or remove (if non-null)
4108  *  @oset: previous value of signal mask if non-null
4109  *
4110  * Some platforms have their own version with special arguments;
4111  * others support only sys_rt_sigprocmask.
4112  */
4113 
4114 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4115 		old_sigset_t __user *, oset)
4116 {
4117 	old_sigset_t old_set, new_set;
4118 	sigset_t new_blocked;
4119 
4120 	old_set = current->blocked.sig[0];
4121 
4122 	if (nset) {
4123 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4124 			return -EFAULT;
4125 
4126 		new_blocked = current->blocked;
4127 
4128 		switch (how) {
4129 		case SIG_BLOCK:
4130 			sigaddsetmask(&new_blocked, new_set);
4131 			break;
4132 		case SIG_UNBLOCK:
4133 			sigdelsetmask(&new_blocked, new_set);
4134 			break;
4135 		case SIG_SETMASK:
4136 			new_blocked.sig[0] = new_set;
4137 			break;
4138 		default:
4139 			return -EINVAL;
4140 		}
4141 
4142 		set_current_blocked(&new_blocked);
4143 	}
4144 
4145 	if (oset) {
4146 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4147 			return -EFAULT;
4148 	}
4149 
4150 	return 0;
4151 }
4152 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4153 
4154 #ifndef CONFIG_ODD_RT_SIGACTION
4155 /**
4156  *  sys_rt_sigaction - alter an action taken by a process
4157  *  @sig: signal to be sent
4158  *  @act: new sigaction
4159  *  @oact: used to save the previous sigaction
4160  *  @sigsetsize: size of sigset_t type
4161  */
4162 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4163 		const struct sigaction __user *, act,
4164 		struct sigaction __user *, oact,
4165 		size_t, sigsetsize)
4166 {
4167 	struct k_sigaction new_sa, old_sa;
4168 	int ret;
4169 
4170 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4171 	if (sigsetsize != sizeof(sigset_t))
4172 		return -EINVAL;
4173 
4174 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4175 		return -EFAULT;
4176 
4177 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4178 	if (ret)
4179 		return ret;
4180 
4181 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4182 		return -EFAULT;
4183 
4184 	return 0;
4185 }
4186 #ifdef CONFIG_COMPAT
4187 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4188 		const struct compat_sigaction __user *, act,
4189 		struct compat_sigaction __user *, oact,
4190 		compat_size_t, sigsetsize)
4191 {
4192 	struct k_sigaction new_ka, old_ka;
4193 #ifdef __ARCH_HAS_SA_RESTORER
4194 	compat_uptr_t restorer;
4195 #endif
4196 	int ret;
4197 
4198 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4199 	if (sigsetsize != sizeof(compat_sigset_t))
4200 		return -EINVAL;
4201 
4202 	if (act) {
4203 		compat_uptr_t handler;
4204 		ret = get_user(handler, &act->sa_handler);
4205 		new_ka.sa.sa_handler = compat_ptr(handler);
4206 #ifdef __ARCH_HAS_SA_RESTORER
4207 		ret |= get_user(restorer, &act->sa_restorer);
4208 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4209 #endif
4210 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4211 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4212 		if (ret)
4213 			return -EFAULT;
4214 	}
4215 
4216 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4217 	if (!ret && oact) {
4218 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4219 			       &oact->sa_handler);
4220 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4221 					 sizeof(oact->sa_mask));
4222 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4223 #ifdef __ARCH_HAS_SA_RESTORER
4224 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4225 				&oact->sa_restorer);
4226 #endif
4227 	}
4228 	return ret;
4229 }
4230 #endif
4231 #endif /* !CONFIG_ODD_RT_SIGACTION */
4232 
4233 #ifdef CONFIG_OLD_SIGACTION
4234 SYSCALL_DEFINE3(sigaction, int, sig,
4235 		const struct old_sigaction __user *, act,
4236 	        struct old_sigaction __user *, oact)
4237 {
4238 	struct k_sigaction new_ka, old_ka;
4239 	int ret;
4240 
4241 	if (act) {
4242 		old_sigset_t mask;
4243 		if (!access_ok(act, sizeof(*act)) ||
4244 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4245 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4246 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4247 		    __get_user(mask, &act->sa_mask))
4248 			return -EFAULT;
4249 #ifdef __ARCH_HAS_KA_RESTORER
4250 		new_ka.ka_restorer = NULL;
4251 #endif
4252 		siginitset(&new_ka.sa.sa_mask, mask);
4253 	}
4254 
4255 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4256 
4257 	if (!ret && oact) {
4258 		if (!access_ok(oact, sizeof(*oact)) ||
4259 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4260 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4261 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4262 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4263 			return -EFAULT;
4264 	}
4265 
4266 	return ret;
4267 }
4268 #endif
4269 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4270 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4271 		const struct compat_old_sigaction __user *, act,
4272 	        struct compat_old_sigaction __user *, oact)
4273 {
4274 	struct k_sigaction new_ka, old_ka;
4275 	int ret;
4276 	compat_old_sigset_t mask;
4277 	compat_uptr_t handler, restorer;
4278 
4279 	if (act) {
4280 		if (!access_ok(act, sizeof(*act)) ||
4281 		    __get_user(handler, &act->sa_handler) ||
4282 		    __get_user(restorer, &act->sa_restorer) ||
4283 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4284 		    __get_user(mask, &act->sa_mask))
4285 			return -EFAULT;
4286 
4287 #ifdef __ARCH_HAS_KA_RESTORER
4288 		new_ka.ka_restorer = NULL;
4289 #endif
4290 		new_ka.sa.sa_handler = compat_ptr(handler);
4291 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4292 		siginitset(&new_ka.sa.sa_mask, mask);
4293 	}
4294 
4295 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4296 
4297 	if (!ret && oact) {
4298 		if (!access_ok(oact, sizeof(*oact)) ||
4299 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4300 			       &oact->sa_handler) ||
4301 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4302 			       &oact->sa_restorer) ||
4303 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4304 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4305 			return -EFAULT;
4306 	}
4307 	return ret;
4308 }
4309 #endif
4310 
4311 #ifdef CONFIG_SGETMASK_SYSCALL
4312 
4313 /*
4314  * For backwards compatibility.  Functionality superseded by sigprocmask.
4315  */
4316 SYSCALL_DEFINE0(sgetmask)
4317 {
4318 	/* SMP safe */
4319 	return current->blocked.sig[0];
4320 }
4321 
4322 SYSCALL_DEFINE1(ssetmask, int, newmask)
4323 {
4324 	int old = current->blocked.sig[0];
4325 	sigset_t newset;
4326 
4327 	siginitset(&newset, newmask);
4328 	set_current_blocked(&newset);
4329 
4330 	return old;
4331 }
4332 #endif /* CONFIG_SGETMASK_SYSCALL */
4333 
4334 #ifdef __ARCH_WANT_SYS_SIGNAL
4335 /*
4336  * For backwards compatibility.  Functionality superseded by sigaction.
4337  */
4338 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4339 {
4340 	struct k_sigaction new_sa, old_sa;
4341 	int ret;
4342 
4343 	new_sa.sa.sa_handler = handler;
4344 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4345 	sigemptyset(&new_sa.sa.sa_mask);
4346 
4347 	ret = do_sigaction(sig, &new_sa, &old_sa);
4348 
4349 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4350 }
4351 #endif /* __ARCH_WANT_SYS_SIGNAL */
4352 
4353 #ifdef __ARCH_WANT_SYS_PAUSE
4354 
4355 SYSCALL_DEFINE0(pause)
4356 {
4357 	while (!signal_pending(current)) {
4358 		__set_current_state(TASK_INTERRUPTIBLE);
4359 		schedule();
4360 	}
4361 	return -ERESTARTNOHAND;
4362 }
4363 
4364 #endif
4365 
4366 static int sigsuspend(sigset_t *set)
4367 {
4368 	current->saved_sigmask = current->blocked;
4369 	set_current_blocked(set);
4370 
4371 	while (!signal_pending(current)) {
4372 		__set_current_state(TASK_INTERRUPTIBLE);
4373 		schedule();
4374 	}
4375 	set_restore_sigmask();
4376 	return -ERESTARTNOHAND;
4377 }
4378 
4379 /**
4380  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4381  *	@unewset value until a signal is received
4382  *  @unewset: new signal mask value
4383  *  @sigsetsize: size of sigset_t type
4384  */
4385 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4386 {
4387 	sigset_t newset;
4388 
4389 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4390 	if (sigsetsize != sizeof(sigset_t))
4391 		return -EINVAL;
4392 
4393 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4394 		return -EFAULT;
4395 	return sigsuspend(&newset);
4396 }
4397 
4398 #ifdef CONFIG_COMPAT
4399 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4400 {
4401 	sigset_t newset;
4402 
4403 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4404 	if (sigsetsize != sizeof(sigset_t))
4405 		return -EINVAL;
4406 
4407 	if (get_compat_sigset(&newset, unewset))
4408 		return -EFAULT;
4409 	return sigsuspend(&newset);
4410 }
4411 #endif
4412 
4413 #ifdef CONFIG_OLD_SIGSUSPEND
4414 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4415 {
4416 	sigset_t blocked;
4417 	siginitset(&blocked, mask);
4418 	return sigsuspend(&blocked);
4419 }
4420 #endif
4421 #ifdef CONFIG_OLD_SIGSUSPEND3
4422 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4423 {
4424 	sigset_t blocked;
4425 	siginitset(&blocked, mask);
4426 	return sigsuspend(&blocked);
4427 }
4428 #endif
4429 
4430 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4431 {
4432 	return NULL;
4433 }
4434 
4435 static inline void siginfo_buildtime_checks(void)
4436 {
4437 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4438 
4439 	/* Verify the offsets in the two siginfos match */
4440 #define CHECK_OFFSET(field) \
4441 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4442 
4443 	/* kill */
4444 	CHECK_OFFSET(si_pid);
4445 	CHECK_OFFSET(si_uid);
4446 
4447 	/* timer */
4448 	CHECK_OFFSET(si_tid);
4449 	CHECK_OFFSET(si_overrun);
4450 	CHECK_OFFSET(si_value);
4451 
4452 	/* rt */
4453 	CHECK_OFFSET(si_pid);
4454 	CHECK_OFFSET(si_uid);
4455 	CHECK_OFFSET(si_value);
4456 
4457 	/* sigchld */
4458 	CHECK_OFFSET(si_pid);
4459 	CHECK_OFFSET(si_uid);
4460 	CHECK_OFFSET(si_status);
4461 	CHECK_OFFSET(si_utime);
4462 	CHECK_OFFSET(si_stime);
4463 
4464 	/* sigfault */
4465 	CHECK_OFFSET(si_addr);
4466 	CHECK_OFFSET(si_addr_lsb);
4467 	CHECK_OFFSET(si_lower);
4468 	CHECK_OFFSET(si_upper);
4469 	CHECK_OFFSET(si_pkey);
4470 
4471 	/* sigpoll */
4472 	CHECK_OFFSET(si_band);
4473 	CHECK_OFFSET(si_fd);
4474 
4475 	/* sigsys */
4476 	CHECK_OFFSET(si_call_addr);
4477 	CHECK_OFFSET(si_syscall);
4478 	CHECK_OFFSET(si_arch);
4479 #undef CHECK_OFFSET
4480 }
4481 
4482 void __init signals_init(void)
4483 {
4484 	siginfo_buildtime_checks();
4485 
4486 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4487 }
4488 
4489 #ifdef CONFIG_KGDB_KDB
4490 #include <linux/kdb.h>
4491 /*
4492  * kdb_send_sig - Allows kdb to send signals without exposing
4493  * signal internals.  This function checks if the required locks are
4494  * available before calling the main signal code, to avoid kdb
4495  * deadlocks.
4496  */
4497 void kdb_send_sig(struct task_struct *t, int sig)
4498 {
4499 	static struct task_struct *kdb_prev_t;
4500 	int new_t, ret;
4501 	if (!spin_trylock(&t->sighand->siglock)) {
4502 		kdb_printf("Can't do kill command now.\n"
4503 			   "The sigmask lock is held somewhere else in "
4504 			   "kernel, try again later\n");
4505 		return;
4506 	}
4507 	new_t = kdb_prev_t != t;
4508 	kdb_prev_t = t;
4509 	if (t->state != TASK_RUNNING && new_t) {
4510 		spin_unlock(&t->sighand->siglock);
4511 		kdb_printf("Process is not RUNNING, sending a signal from "
4512 			   "kdb risks deadlock\n"
4513 			   "on the run queue locks. "
4514 			   "The signal has _not_ been sent.\n"
4515 			   "Reissue the kill command if you want to risk "
4516 			   "the deadlock.\n");
4517 		return;
4518 	}
4519 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4520 	spin_unlock(&t->sighand->siglock);
4521 	if (ret)
4522 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4523 			   sig, t->pid);
4524 	else
4525 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4526 }
4527 #endif	/* CONFIG_KGDB_KDB */
4528