xref: /openbmc/linux/kernel/signal.c (revision bb0eb050)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/fs.h>
23 #include <linux/tty.h>
24 #include <linux/binfmts.h>
25 #include <linux/coredump.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/ptrace.h>
29 #include <linux/signal.h>
30 #include <linux/signalfd.h>
31 #include <linux/ratelimit.h>
32 #include <linux/tracehook.h>
33 #include <linux/capability.h>
34 #include <linux/freezer.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/nsproxy.h>
37 #include <linux/user_namespace.h>
38 #include <linux/uprobes.h>
39 #include <linux/compat.h>
40 #include <linux/cn_proc.h>
41 #include <linux/compiler.h>
42 #include <linux/posix-timers.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/signal.h>
46 
47 #include <asm/param.h>
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/siginfo.h>
51 #include <asm/cacheflush.h>
52 #include "audit.h"	/* audit_signal_info() */
53 
54 /*
55  * SLAB caches for signal bits.
56  */
57 
58 static struct kmem_cache *sigqueue_cachep;
59 
60 int print_fatal_signals __read_mostly;
61 
62 static void __user *sig_handler(struct task_struct *t, int sig)
63 {
64 	return t->sighand->action[sig - 1].sa.sa_handler;
65 }
66 
67 static int sig_handler_ignored(void __user *handler, int sig)
68 {
69 	/* Is it explicitly or implicitly ignored? */
70 	return handler == SIG_IGN ||
71 		(handler == SIG_DFL && sig_kernel_ignore(sig));
72 }
73 
74 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
75 {
76 	void __user *handler;
77 
78 	handler = sig_handler(t, sig);
79 
80 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
81 			handler == SIG_DFL && !force)
82 		return 1;
83 
84 	return sig_handler_ignored(handler, sig);
85 }
86 
87 static int sig_ignored(struct task_struct *t, int sig, bool force)
88 {
89 	/*
90 	 * Blocked signals are never ignored, since the
91 	 * signal handler may change by the time it is
92 	 * unblocked.
93 	 */
94 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
95 		return 0;
96 
97 	if (!sig_task_ignored(t, sig, force))
98 		return 0;
99 
100 	/*
101 	 * Tracers may want to know about even ignored signals.
102 	 */
103 	return !t->ptrace;
104 }
105 
106 /*
107  * Re-calculate pending state from the set of locally pending
108  * signals, globally pending signals, and blocked signals.
109  */
110 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
111 {
112 	unsigned long ready;
113 	long i;
114 
115 	switch (_NSIG_WORDS) {
116 	default:
117 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
118 			ready |= signal->sig[i] &~ blocked->sig[i];
119 		break;
120 
121 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
122 		ready |= signal->sig[2] &~ blocked->sig[2];
123 		ready |= signal->sig[1] &~ blocked->sig[1];
124 		ready |= signal->sig[0] &~ blocked->sig[0];
125 		break;
126 
127 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
128 		ready |= signal->sig[0] &~ blocked->sig[0];
129 		break;
130 
131 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
132 	}
133 	return ready !=	0;
134 }
135 
136 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
137 
138 static int recalc_sigpending_tsk(struct task_struct *t)
139 {
140 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
141 	    PENDING(&t->pending, &t->blocked) ||
142 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
143 		set_tsk_thread_flag(t, TIF_SIGPENDING);
144 		return 1;
145 	}
146 	/*
147 	 * We must never clear the flag in another thread, or in current
148 	 * when it's possible the current syscall is returning -ERESTART*.
149 	 * So we don't clear it here, and only callers who know they should do.
150 	 */
151 	return 0;
152 }
153 
154 /*
155  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
156  * This is superfluous when called on current, the wakeup is a harmless no-op.
157  */
158 void recalc_sigpending_and_wake(struct task_struct *t)
159 {
160 	if (recalc_sigpending_tsk(t))
161 		signal_wake_up(t, 0);
162 }
163 
164 void recalc_sigpending(void)
165 {
166 	if (!recalc_sigpending_tsk(current) && !freezing(current))
167 		clear_thread_flag(TIF_SIGPENDING);
168 
169 }
170 
171 /* Given the mask, find the first available signal that should be serviced. */
172 
173 #define SYNCHRONOUS_MASK \
174 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
175 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
176 
177 int next_signal(struct sigpending *pending, sigset_t *mask)
178 {
179 	unsigned long i, *s, *m, x;
180 	int sig = 0;
181 
182 	s = pending->signal.sig;
183 	m = mask->sig;
184 
185 	/*
186 	 * Handle the first word specially: it contains the
187 	 * synchronous signals that need to be dequeued first.
188 	 */
189 	x = *s &~ *m;
190 	if (x) {
191 		if (x & SYNCHRONOUS_MASK)
192 			x &= SYNCHRONOUS_MASK;
193 		sig = ffz(~x) + 1;
194 		return sig;
195 	}
196 
197 	switch (_NSIG_WORDS) {
198 	default:
199 		for (i = 1; i < _NSIG_WORDS; ++i) {
200 			x = *++s &~ *++m;
201 			if (!x)
202 				continue;
203 			sig = ffz(~x) + i*_NSIG_BPW + 1;
204 			break;
205 		}
206 		break;
207 
208 	case 2:
209 		x = s[1] &~ m[1];
210 		if (!x)
211 			break;
212 		sig = ffz(~x) + _NSIG_BPW + 1;
213 		break;
214 
215 	case 1:
216 		/* Nothing to do */
217 		break;
218 	}
219 
220 	return sig;
221 }
222 
223 static inline void print_dropped_signal(int sig)
224 {
225 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
226 
227 	if (!print_fatal_signals)
228 		return;
229 
230 	if (!__ratelimit(&ratelimit_state))
231 		return;
232 
233 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
234 				current->comm, current->pid, sig);
235 }
236 
237 /**
238  * task_set_jobctl_pending - set jobctl pending bits
239  * @task: target task
240  * @mask: pending bits to set
241  *
242  * Clear @mask from @task->jobctl.  @mask must be subset of
243  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
244  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
245  * cleared.  If @task is already being killed or exiting, this function
246  * becomes noop.
247  *
248  * CONTEXT:
249  * Must be called with @task->sighand->siglock held.
250  *
251  * RETURNS:
252  * %true if @mask is set, %false if made noop because @task was dying.
253  */
254 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
255 {
256 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
257 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
258 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
259 
260 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
261 		return false;
262 
263 	if (mask & JOBCTL_STOP_SIGMASK)
264 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
265 
266 	task->jobctl |= mask;
267 	return true;
268 }
269 
270 /**
271  * task_clear_jobctl_trapping - clear jobctl trapping bit
272  * @task: target task
273  *
274  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
275  * Clear it and wake up the ptracer.  Note that we don't need any further
276  * locking.  @task->siglock guarantees that @task->parent points to the
277  * ptracer.
278  *
279  * CONTEXT:
280  * Must be called with @task->sighand->siglock held.
281  */
282 void task_clear_jobctl_trapping(struct task_struct *task)
283 {
284 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
285 		task->jobctl &= ~JOBCTL_TRAPPING;
286 		smp_mb();	/* advised by wake_up_bit() */
287 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
288 	}
289 }
290 
291 /**
292  * task_clear_jobctl_pending - clear jobctl pending bits
293  * @task: target task
294  * @mask: pending bits to clear
295  *
296  * Clear @mask from @task->jobctl.  @mask must be subset of
297  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
298  * STOP bits are cleared together.
299  *
300  * If clearing of @mask leaves no stop or trap pending, this function calls
301  * task_clear_jobctl_trapping().
302  *
303  * CONTEXT:
304  * Must be called with @task->sighand->siglock held.
305  */
306 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
307 {
308 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
309 
310 	if (mask & JOBCTL_STOP_PENDING)
311 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
312 
313 	task->jobctl &= ~mask;
314 
315 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
316 		task_clear_jobctl_trapping(task);
317 }
318 
319 /**
320  * task_participate_group_stop - participate in a group stop
321  * @task: task participating in a group stop
322  *
323  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
324  * Group stop states are cleared and the group stop count is consumed if
325  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
326  * stop, the appropriate %SIGNAL_* flags are set.
327  *
328  * CONTEXT:
329  * Must be called with @task->sighand->siglock held.
330  *
331  * RETURNS:
332  * %true if group stop completion should be notified to the parent, %false
333  * otherwise.
334  */
335 static bool task_participate_group_stop(struct task_struct *task)
336 {
337 	struct signal_struct *sig = task->signal;
338 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
339 
340 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
341 
342 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
343 
344 	if (!consume)
345 		return false;
346 
347 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
348 		sig->group_stop_count--;
349 
350 	/*
351 	 * Tell the caller to notify completion iff we are entering into a
352 	 * fresh group stop.  Read comment in do_signal_stop() for details.
353 	 */
354 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
355 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
356 		return true;
357 	}
358 	return false;
359 }
360 
361 /*
362  * allocate a new signal queue record
363  * - this may be called without locks if and only if t == current, otherwise an
364  *   appropriate lock must be held to stop the target task from exiting
365  */
366 static struct sigqueue *
367 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
368 {
369 	struct sigqueue *q = NULL;
370 	struct user_struct *user;
371 
372 	/*
373 	 * Protect access to @t credentials. This can go away when all
374 	 * callers hold rcu read lock.
375 	 */
376 	rcu_read_lock();
377 	user = get_uid(__task_cred(t)->user);
378 	atomic_inc(&user->sigpending);
379 	rcu_read_unlock();
380 
381 	if (override_rlimit ||
382 	    atomic_read(&user->sigpending) <=
383 			task_rlimit(t, RLIMIT_SIGPENDING)) {
384 		q = kmem_cache_alloc(sigqueue_cachep, flags);
385 	} else {
386 		print_dropped_signal(sig);
387 	}
388 
389 	if (unlikely(q == NULL)) {
390 		atomic_dec(&user->sigpending);
391 		free_uid(user);
392 	} else {
393 		INIT_LIST_HEAD(&q->list);
394 		q->flags = 0;
395 		q->user = user;
396 	}
397 
398 	return q;
399 }
400 
401 static void __sigqueue_free(struct sigqueue *q)
402 {
403 	if (q->flags & SIGQUEUE_PREALLOC)
404 		return;
405 	atomic_dec(&q->user->sigpending);
406 	free_uid(q->user);
407 	kmem_cache_free(sigqueue_cachep, q);
408 }
409 
410 void flush_sigqueue(struct sigpending *queue)
411 {
412 	struct sigqueue *q;
413 
414 	sigemptyset(&queue->signal);
415 	while (!list_empty(&queue->list)) {
416 		q = list_entry(queue->list.next, struct sigqueue , list);
417 		list_del_init(&q->list);
418 		__sigqueue_free(q);
419 	}
420 }
421 
422 /*
423  * Flush all pending signals for this kthread.
424  */
425 void flush_signals(struct task_struct *t)
426 {
427 	unsigned long flags;
428 
429 	spin_lock_irqsave(&t->sighand->siglock, flags);
430 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
431 	flush_sigqueue(&t->pending);
432 	flush_sigqueue(&t->signal->shared_pending);
433 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
434 }
435 
436 #ifdef CONFIG_POSIX_TIMERS
437 static void __flush_itimer_signals(struct sigpending *pending)
438 {
439 	sigset_t signal, retain;
440 	struct sigqueue *q, *n;
441 
442 	signal = pending->signal;
443 	sigemptyset(&retain);
444 
445 	list_for_each_entry_safe(q, n, &pending->list, list) {
446 		int sig = q->info.si_signo;
447 
448 		if (likely(q->info.si_code != SI_TIMER)) {
449 			sigaddset(&retain, sig);
450 		} else {
451 			sigdelset(&signal, sig);
452 			list_del_init(&q->list);
453 			__sigqueue_free(q);
454 		}
455 	}
456 
457 	sigorsets(&pending->signal, &signal, &retain);
458 }
459 
460 void flush_itimer_signals(void)
461 {
462 	struct task_struct *tsk = current;
463 	unsigned long flags;
464 
465 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
466 	__flush_itimer_signals(&tsk->pending);
467 	__flush_itimer_signals(&tsk->signal->shared_pending);
468 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
469 }
470 #endif
471 
472 void ignore_signals(struct task_struct *t)
473 {
474 	int i;
475 
476 	for (i = 0; i < _NSIG; ++i)
477 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
478 
479 	flush_signals(t);
480 }
481 
482 /*
483  * Flush all handlers for a task.
484  */
485 
486 void
487 flush_signal_handlers(struct task_struct *t, int force_default)
488 {
489 	int i;
490 	struct k_sigaction *ka = &t->sighand->action[0];
491 	for (i = _NSIG ; i != 0 ; i--) {
492 		if (force_default || ka->sa.sa_handler != SIG_IGN)
493 			ka->sa.sa_handler = SIG_DFL;
494 		ka->sa.sa_flags = 0;
495 #ifdef __ARCH_HAS_SA_RESTORER
496 		ka->sa.sa_restorer = NULL;
497 #endif
498 		sigemptyset(&ka->sa.sa_mask);
499 		ka++;
500 	}
501 }
502 
503 int unhandled_signal(struct task_struct *tsk, int sig)
504 {
505 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
506 	if (is_global_init(tsk))
507 		return 1;
508 	if (handler != SIG_IGN && handler != SIG_DFL)
509 		return 0;
510 	/* if ptraced, let the tracer determine */
511 	return !tsk->ptrace;
512 }
513 
514 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
515 {
516 	struct sigqueue *q, *first = NULL;
517 
518 	/*
519 	 * Collect the siginfo appropriate to this signal.  Check if
520 	 * there is another siginfo for the same signal.
521 	*/
522 	list_for_each_entry(q, &list->list, list) {
523 		if (q->info.si_signo == sig) {
524 			if (first)
525 				goto still_pending;
526 			first = q;
527 		}
528 	}
529 
530 	sigdelset(&list->signal, sig);
531 
532 	if (first) {
533 still_pending:
534 		list_del_init(&first->list);
535 		copy_siginfo(info, &first->info);
536 		__sigqueue_free(first);
537 	} else {
538 		/*
539 		 * Ok, it wasn't in the queue.  This must be
540 		 * a fast-pathed signal or we must have been
541 		 * out of queue space.  So zero out the info.
542 		 */
543 		info->si_signo = sig;
544 		info->si_errno = 0;
545 		info->si_code = SI_USER;
546 		info->si_pid = 0;
547 		info->si_uid = 0;
548 	}
549 }
550 
551 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
552 			siginfo_t *info)
553 {
554 	int sig = next_signal(pending, mask);
555 
556 	if (sig)
557 		collect_signal(sig, pending, info);
558 	return sig;
559 }
560 
561 /*
562  * Dequeue a signal and return the element to the caller, which is
563  * expected to free it.
564  *
565  * All callers have to hold the siglock.
566  */
567 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
568 {
569 	int signr;
570 
571 	/* We only dequeue private signals from ourselves, we don't let
572 	 * signalfd steal them
573 	 */
574 	signr = __dequeue_signal(&tsk->pending, mask, info);
575 	if (!signr) {
576 		signr = __dequeue_signal(&tsk->signal->shared_pending,
577 					 mask, info);
578 #ifdef CONFIG_POSIX_TIMERS
579 		/*
580 		 * itimer signal ?
581 		 *
582 		 * itimers are process shared and we restart periodic
583 		 * itimers in the signal delivery path to prevent DoS
584 		 * attacks in the high resolution timer case. This is
585 		 * compliant with the old way of self-restarting
586 		 * itimers, as the SIGALRM is a legacy signal and only
587 		 * queued once. Changing the restart behaviour to
588 		 * restart the timer in the signal dequeue path is
589 		 * reducing the timer noise on heavy loaded !highres
590 		 * systems too.
591 		 */
592 		if (unlikely(signr == SIGALRM)) {
593 			struct hrtimer *tmr = &tsk->signal->real_timer;
594 
595 			if (!hrtimer_is_queued(tmr) &&
596 			    tsk->signal->it_real_incr != 0) {
597 				hrtimer_forward(tmr, tmr->base->get_time(),
598 						tsk->signal->it_real_incr);
599 				hrtimer_restart(tmr);
600 			}
601 		}
602 #endif
603 	}
604 
605 	recalc_sigpending();
606 	if (!signr)
607 		return 0;
608 
609 	if (unlikely(sig_kernel_stop(signr))) {
610 		/*
611 		 * Set a marker that we have dequeued a stop signal.  Our
612 		 * caller might release the siglock and then the pending
613 		 * stop signal it is about to process is no longer in the
614 		 * pending bitmasks, but must still be cleared by a SIGCONT
615 		 * (and overruled by a SIGKILL).  So those cases clear this
616 		 * shared flag after we've set it.  Note that this flag may
617 		 * remain set after the signal we return is ignored or
618 		 * handled.  That doesn't matter because its only purpose
619 		 * is to alert stop-signal processing code when another
620 		 * processor has come along and cleared the flag.
621 		 */
622 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
623 	}
624 #ifdef CONFIG_POSIX_TIMERS
625 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
626 		/*
627 		 * Release the siglock to ensure proper locking order
628 		 * of timer locks outside of siglocks.  Note, we leave
629 		 * irqs disabled here, since the posix-timers code is
630 		 * about to disable them again anyway.
631 		 */
632 		spin_unlock(&tsk->sighand->siglock);
633 		posixtimer_rearm(info);
634 		spin_lock(&tsk->sighand->siglock);
635 	}
636 #endif
637 	return signr;
638 }
639 
640 /*
641  * Tell a process that it has a new active signal..
642  *
643  * NOTE! we rely on the previous spin_lock to
644  * lock interrupts for us! We can only be called with
645  * "siglock" held, and the local interrupt must
646  * have been disabled when that got acquired!
647  *
648  * No need to set need_resched since signal event passing
649  * goes through ->blocked
650  */
651 void signal_wake_up_state(struct task_struct *t, unsigned int state)
652 {
653 	set_tsk_thread_flag(t, TIF_SIGPENDING);
654 	/*
655 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
656 	 * case. We don't check t->state here because there is a race with it
657 	 * executing another processor and just now entering stopped state.
658 	 * By using wake_up_state, we ensure the process will wake up and
659 	 * handle its death signal.
660 	 */
661 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
662 		kick_process(t);
663 }
664 
665 /*
666  * Remove signals in mask from the pending set and queue.
667  * Returns 1 if any signals were found.
668  *
669  * All callers must be holding the siglock.
670  */
671 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
672 {
673 	struct sigqueue *q, *n;
674 	sigset_t m;
675 
676 	sigandsets(&m, mask, &s->signal);
677 	if (sigisemptyset(&m))
678 		return 0;
679 
680 	sigandnsets(&s->signal, &s->signal, mask);
681 	list_for_each_entry_safe(q, n, &s->list, list) {
682 		if (sigismember(mask, q->info.si_signo)) {
683 			list_del_init(&q->list);
684 			__sigqueue_free(q);
685 		}
686 	}
687 	return 1;
688 }
689 
690 static inline int is_si_special(const struct siginfo *info)
691 {
692 	return info <= SEND_SIG_FORCED;
693 }
694 
695 static inline bool si_fromuser(const struct siginfo *info)
696 {
697 	return info == SEND_SIG_NOINFO ||
698 		(!is_si_special(info) && SI_FROMUSER(info));
699 }
700 
701 /*
702  * called with RCU read lock from check_kill_permission()
703  */
704 static int kill_ok_by_cred(struct task_struct *t)
705 {
706 	const struct cred *cred = current_cred();
707 	const struct cred *tcred = __task_cred(t);
708 
709 	if (uid_eq(cred->euid, tcred->suid) ||
710 	    uid_eq(cred->euid, tcred->uid)  ||
711 	    uid_eq(cred->uid,  tcred->suid) ||
712 	    uid_eq(cred->uid,  tcred->uid))
713 		return 1;
714 
715 	if (ns_capable(tcred->user_ns, CAP_KILL))
716 		return 1;
717 
718 	return 0;
719 }
720 
721 /*
722  * Bad permissions for sending the signal
723  * - the caller must hold the RCU read lock
724  */
725 static int check_kill_permission(int sig, struct siginfo *info,
726 				 struct task_struct *t)
727 {
728 	struct pid *sid;
729 	int error;
730 
731 	if (!valid_signal(sig))
732 		return -EINVAL;
733 
734 	if (!si_fromuser(info))
735 		return 0;
736 
737 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
738 	if (error)
739 		return error;
740 
741 	if (!same_thread_group(current, t) &&
742 	    !kill_ok_by_cred(t)) {
743 		switch (sig) {
744 		case SIGCONT:
745 			sid = task_session(t);
746 			/*
747 			 * We don't return the error if sid == NULL. The
748 			 * task was unhashed, the caller must notice this.
749 			 */
750 			if (!sid || sid == task_session(current))
751 				break;
752 		default:
753 			return -EPERM;
754 		}
755 	}
756 
757 	return security_task_kill(t, info, sig, 0);
758 }
759 
760 /**
761  * ptrace_trap_notify - schedule trap to notify ptracer
762  * @t: tracee wanting to notify tracer
763  *
764  * This function schedules sticky ptrace trap which is cleared on the next
765  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
766  * ptracer.
767  *
768  * If @t is running, STOP trap will be taken.  If trapped for STOP and
769  * ptracer is listening for events, tracee is woken up so that it can
770  * re-trap for the new event.  If trapped otherwise, STOP trap will be
771  * eventually taken without returning to userland after the existing traps
772  * are finished by PTRACE_CONT.
773  *
774  * CONTEXT:
775  * Must be called with @task->sighand->siglock held.
776  */
777 static void ptrace_trap_notify(struct task_struct *t)
778 {
779 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
780 	assert_spin_locked(&t->sighand->siglock);
781 
782 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
783 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
784 }
785 
786 /*
787  * Handle magic process-wide effects of stop/continue signals. Unlike
788  * the signal actions, these happen immediately at signal-generation
789  * time regardless of blocking, ignoring, or handling.  This does the
790  * actual continuing for SIGCONT, but not the actual stopping for stop
791  * signals. The process stop is done as a signal action for SIG_DFL.
792  *
793  * Returns true if the signal should be actually delivered, otherwise
794  * it should be dropped.
795  */
796 static bool prepare_signal(int sig, struct task_struct *p, bool force)
797 {
798 	struct signal_struct *signal = p->signal;
799 	struct task_struct *t;
800 	sigset_t flush;
801 
802 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
803 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
804 			return sig == SIGKILL;
805 		/*
806 		 * The process is in the middle of dying, nothing to do.
807 		 */
808 	} else if (sig_kernel_stop(sig)) {
809 		/*
810 		 * This is a stop signal.  Remove SIGCONT from all queues.
811 		 */
812 		siginitset(&flush, sigmask(SIGCONT));
813 		flush_sigqueue_mask(&flush, &signal->shared_pending);
814 		for_each_thread(p, t)
815 			flush_sigqueue_mask(&flush, &t->pending);
816 	} else if (sig == SIGCONT) {
817 		unsigned int why;
818 		/*
819 		 * Remove all stop signals from all queues, wake all threads.
820 		 */
821 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
822 		flush_sigqueue_mask(&flush, &signal->shared_pending);
823 		for_each_thread(p, t) {
824 			flush_sigqueue_mask(&flush, &t->pending);
825 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
826 			if (likely(!(t->ptrace & PT_SEIZED)))
827 				wake_up_state(t, __TASK_STOPPED);
828 			else
829 				ptrace_trap_notify(t);
830 		}
831 
832 		/*
833 		 * Notify the parent with CLD_CONTINUED if we were stopped.
834 		 *
835 		 * If we were in the middle of a group stop, we pretend it
836 		 * was already finished, and then continued. Since SIGCHLD
837 		 * doesn't queue we report only CLD_STOPPED, as if the next
838 		 * CLD_CONTINUED was dropped.
839 		 */
840 		why = 0;
841 		if (signal->flags & SIGNAL_STOP_STOPPED)
842 			why |= SIGNAL_CLD_CONTINUED;
843 		else if (signal->group_stop_count)
844 			why |= SIGNAL_CLD_STOPPED;
845 
846 		if (why) {
847 			/*
848 			 * The first thread which returns from do_signal_stop()
849 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
850 			 * notify its parent. See get_signal_to_deliver().
851 			 */
852 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
853 			signal->group_stop_count = 0;
854 			signal->group_exit_code = 0;
855 		}
856 	}
857 
858 	return !sig_ignored(p, sig, force);
859 }
860 
861 /*
862  * Test if P wants to take SIG.  After we've checked all threads with this,
863  * it's equivalent to finding no threads not blocking SIG.  Any threads not
864  * blocking SIG were ruled out because they are not running and already
865  * have pending signals.  Such threads will dequeue from the shared queue
866  * as soon as they're available, so putting the signal on the shared queue
867  * will be equivalent to sending it to one such thread.
868  */
869 static inline int wants_signal(int sig, struct task_struct *p)
870 {
871 	if (sigismember(&p->blocked, sig))
872 		return 0;
873 	if (p->flags & PF_EXITING)
874 		return 0;
875 	if (sig == SIGKILL)
876 		return 1;
877 	if (task_is_stopped_or_traced(p))
878 		return 0;
879 	return task_curr(p) || !signal_pending(p);
880 }
881 
882 static void complete_signal(int sig, struct task_struct *p, int group)
883 {
884 	struct signal_struct *signal = p->signal;
885 	struct task_struct *t;
886 
887 	/*
888 	 * Now find a thread we can wake up to take the signal off the queue.
889 	 *
890 	 * If the main thread wants the signal, it gets first crack.
891 	 * Probably the least surprising to the average bear.
892 	 */
893 	if (wants_signal(sig, p))
894 		t = p;
895 	else if (!group || thread_group_empty(p))
896 		/*
897 		 * There is just one thread and it does not need to be woken.
898 		 * It will dequeue unblocked signals before it runs again.
899 		 */
900 		return;
901 	else {
902 		/*
903 		 * Otherwise try to find a suitable thread.
904 		 */
905 		t = signal->curr_target;
906 		while (!wants_signal(sig, t)) {
907 			t = next_thread(t);
908 			if (t == signal->curr_target)
909 				/*
910 				 * No thread needs to be woken.
911 				 * Any eligible threads will see
912 				 * the signal in the queue soon.
913 				 */
914 				return;
915 		}
916 		signal->curr_target = t;
917 	}
918 
919 	/*
920 	 * Found a killable thread.  If the signal will be fatal,
921 	 * then start taking the whole group down immediately.
922 	 */
923 	if (sig_fatal(p, sig) &&
924 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
925 	    !sigismember(&t->real_blocked, sig) &&
926 	    (sig == SIGKILL || !t->ptrace)) {
927 		/*
928 		 * This signal will be fatal to the whole group.
929 		 */
930 		if (!sig_kernel_coredump(sig)) {
931 			/*
932 			 * Start a group exit and wake everybody up.
933 			 * This way we don't have other threads
934 			 * running and doing things after a slower
935 			 * thread has the fatal signal pending.
936 			 */
937 			signal->flags = SIGNAL_GROUP_EXIT;
938 			signal->group_exit_code = sig;
939 			signal->group_stop_count = 0;
940 			t = p;
941 			do {
942 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
943 				sigaddset(&t->pending.signal, SIGKILL);
944 				signal_wake_up(t, 1);
945 			} while_each_thread(p, t);
946 			return;
947 		}
948 	}
949 
950 	/*
951 	 * The signal is already in the shared-pending queue.
952 	 * Tell the chosen thread to wake up and dequeue it.
953 	 */
954 	signal_wake_up(t, sig == SIGKILL);
955 	return;
956 }
957 
958 static inline int legacy_queue(struct sigpending *signals, int sig)
959 {
960 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
961 }
962 
963 #ifdef CONFIG_USER_NS
964 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
965 {
966 	if (current_user_ns() == task_cred_xxx(t, user_ns))
967 		return;
968 
969 	if (SI_FROMKERNEL(info))
970 		return;
971 
972 	rcu_read_lock();
973 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
974 					make_kuid(current_user_ns(), info->si_uid));
975 	rcu_read_unlock();
976 }
977 #else
978 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
979 {
980 	return;
981 }
982 #endif
983 
984 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
985 			int group, int from_ancestor_ns)
986 {
987 	struct sigpending *pending;
988 	struct sigqueue *q;
989 	int override_rlimit;
990 	int ret = 0, result;
991 
992 	assert_spin_locked(&t->sighand->siglock);
993 
994 	result = TRACE_SIGNAL_IGNORED;
995 	if (!prepare_signal(sig, t,
996 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
997 		goto ret;
998 
999 	pending = group ? &t->signal->shared_pending : &t->pending;
1000 	/*
1001 	 * Short-circuit ignored signals and support queuing
1002 	 * exactly one non-rt signal, so that we can get more
1003 	 * detailed information about the cause of the signal.
1004 	 */
1005 	result = TRACE_SIGNAL_ALREADY_PENDING;
1006 	if (legacy_queue(pending, sig))
1007 		goto ret;
1008 
1009 	result = TRACE_SIGNAL_DELIVERED;
1010 	/*
1011 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1012 	 * or SIGKILL.
1013 	 */
1014 	if (info == SEND_SIG_FORCED)
1015 		goto out_set;
1016 
1017 	/*
1018 	 * Real-time signals must be queued if sent by sigqueue, or
1019 	 * some other real-time mechanism.  It is implementation
1020 	 * defined whether kill() does so.  We attempt to do so, on
1021 	 * the principle of least surprise, but since kill is not
1022 	 * allowed to fail with EAGAIN when low on memory we just
1023 	 * make sure at least one signal gets delivered and don't
1024 	 * pass on the info struct.
1025 	 */
1026 	if (sig < SIGRTMIN)
1027 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1028 	else
1029 		override_rlimit = 0;
1030 
1031 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1032 		override_rlimit);
1033 	if (q) {
1034 		list_add_tail(&q->list, &pending->list);
1035 		switch ((unsigned long) info) {
1036 		case (unsigned long) SEND_SIG_NOINFO:
1037 			q->info.si_signo = sig;
1038 			q->info.si_errno = 0;
1039 			q->info.si_code = SI_USER;
1040 			q->info.si_pid = task_tgid_nr_ns(current,
1041 							task_active_pid_ns(t));
1042 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1043 			break;
1044 		case (unsigned long) SEND_SIG_PRIV:
1045 			q->info.si_signo = sig;
1046 			q->info.si_errno = 0;
1047 			q->info.si_code = SI_KERNEL;
1048 			q->info.si_pid = 0;
1049 			q->info.si_uid = 0;
1050 			break;
1051 		default:
1052 			copy_siginfo(&q->info, info);
1053 			if (from_ancestor_ns)
1054 				q->info.si_pid = 0;
1055 			break;
1056 		}
1057 
1058 		userns_fixup_signal_uid(&q->info, t);
1059 
1060 	} else if (!is_si_special(info)) {
1061 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1062 			/*
1063 			 * Queue overflow, abort.  We may abort if the
1064 			 * signal was rt and sent by user using something
1065 			 * other than kill().
1066 			 */
1067 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1068 			ret = -EAGAIN;
1069 			goto ret;
1070 		} else {
1071 			/*
1072 			 * This is a silent loss of information.  We still
1073 			 * send the signal, but the *info bits are lost.
1074 			 */
1075 			result = TRACE_SIGNAL_LOSE_INFO;
1076 		}
1077 	}
1078 
1079 out_set:
1080 	signalfd_notify(t, sig);
1081 	sigaddset(&pending->signal, sig);
1082 	complete_signal(sig, t, group);
1083 ret:
1084 	trace_signal_generate(sig, info, t, group, result);
1085 	return ret;
1086 }
1087 
1088 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1089 			int group)
1090 {
1091 	int from_ancestor_ns = 0;
1092 
1093 #ifdef CONFIG_PID_NS
1094 	from_ancestor_ns = si_fromuser(info) &&
1095 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1096 #endif
1097 
1098 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1099 }
1100 
1101 static void print_fatal_signal(int signr)
1102 {
1103 	struct pt_regs *regs = signal_pt_regs();
1104 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1105 
1106 #if defined(__i386__) && !defined(__arch_um__)
1107 	pr_info("code at %08lx: ", regs->ip);
1108 	{
1109 		int i;
1110 		for (i = 0; i < 16; i++) {
1111 			unsigned char insn;
1112 
1113 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1114 				break;
1115 			pr_cont("%02x ", insn);
1116 		}
1117 	}
1118 	pr_cont("\n");
1119 #endif
1120 	preempt_disable();
1121 	show_regs(regs);
1122 	preempt_enable();
1123 }
1124 
1125 static int __init setup_print_fatal_signals(char *str)
1126 {
1127 	get_option (&str, &print_fatal_signals);
1128 
1129 	return 1;
1130 }
1131 
1132 __setup("print-fatal-signals=", setup_print_fatal_signals);
1133 
1134 int
1135 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1136 {
1137 	return send_signal(sig, info, p, 1);
1138 }
1139 
1140 static int
1141 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1142 {
1143 	return send_signal(sig, info, t, 0);
1144 }
1145 
1146 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1147 			bool group)
1148 {
1149 	unsigned long flags;
1150 	int ret = -ESRCH;
1151 
1152 	if (lock_task_sighand(p, &flags)) {
1153 		ret = send_signal(sig, info, p, group);
1154 		unlock_task_sighand(p, &flags);
1155 	}
1156 
1157 	return ret;
1158 }
1159 
1160 /*
1161  * Force a signal that the process can't ignore: if necessary
1162  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1163  *
1164  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1165  * since we do not want to have a signal handler that was blocked
1166  * be invoked when user space had explicitly blocked it.
1167  *
1168  * We don't want to have recursive SIGSEGV's etc, for example,
1169  * that is why we also clear SIGNAL_UNKILLABLE.
1170  */
1171 int
1172 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1173 {
1174 	unsigned long int flags;
1175 	int ret, blocked, ignored;
1176 	struct k_sigaction *action;
1177 
1178 	spin_lock_irqsave(&t->sighand->siglock, flags);
1179 	action = &t->sighand->action[sig-1];
1180 	ignored = action->sa.sa_handler == SIG_IGN;
1181 	blocked = sigismember(&t->blocked, sig);
1182 	if (blocked || ignored) {
1183 		action->sa.sa_handler = SIG_DFL;
1184 		if (blocked) {
1185 			sigdelset(&t->blocked, sig);
1186 			recalc_sigpending_and_wake(t);
1187 		}
1188 	}
1189 	if (action->sa.sa_handler == SIG_DFL)
1190 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1191 	ret = specific_send_sig_info(sig, info, t);
1192 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1193 
1194 	return ret;
1195 }
1196 
1197 /*
1198  * Nuke all other threads in the group.
1199  */
1200 int zap_other_threads(struct task_struct *p)
1201 {
1202 	struct task_struct *t = p;
1203 	int count = 0;
1204 
1205 	p->signal->group_stop_count = 0;
1206 
1207 	while_each_thread(p, t) {
1208 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1209 		count++;
1210 
1211 		/* Don't bother with already dead threads */
1212 		if (t->exit_state)
1213 			continue;
1214 		sigaddset(&t->pending.signal, SIGKILL);
1215 		signal_wake_up(t, 1);
1216 	}
1217 
1218 	return count;
1219 }
1220 
1221 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1222 					   unsigned long *flags)
1223 {
1224 	struct sighand_struct *sighand;
1225 
1226 	for (;;) {
1227 		/*
1228 		 * Disable interrupts early to avoid deadlocks.
1229 		 * See rcu_read_unlock() comment header for details.
1230 		 */
1231 		local_irq_save(*flags);
1232 		rcu_read_lock();
1233 		sighand = rcu_dereference(tsk->sighand);
1234 		if (unlikely(sighand == NULL)) {
1235 			rcu_read_unlock();
1236 			local_irq_restore(*flags);
1237 			break;
1238 		}
1239 		/*
1240 		 * This sighand can be already freed and even reused, but
1241 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1242 		 * initializes ->siglock: this slab can't go away, it has
1243 		 * the same object type, ->siglock can't be reinitialized.
1244 		 *
1245 		 * We need to ensure that tsk->sighand is still the same
1246 		 * after we take the lock, we can race with de_thread() or
1247 		 * __exit_signal(). In the latter case the next iteration
1248 		 * must see ->sighand == NULL.
1249 		 */
1250 		spin_lock(&sighand->siglock);
1251 		if (likely(sighand == tsk->sighand)) {
1252 			rcu_read_unlock();
1253 			break;
1254 		}
1255 		spin_unlock(&sighand->siglock);
1256 		rcu_read_unlock();
1257 		local_irq_restore(*flags);
1258 	}
1259 
1260 	return sighand;
1261 }
1262 
1263 /*
1264  * send signal info to all the members of a group
1265  */
1266 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1267 {
1268 	int ret;
1269 
1270 	rcu_read_lock();
1271 	ret = check_kill_permission(sig, info, p);
1272 	rcu_read_unlock();
1273 
1274 	if (!ret && sig)
1275 		ret = do_send_sig_info(sig, info, p, true);
1276 
1277 	return ret;
1278 }
1279 
1280 /*
1281  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1282  * control characters do (^C, ^Z etc)
1283  * - the caller must hold at least a readlock on tasklist_lock
1284  */
1285 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1286 {
1287 	struct task_struct *p = NULL;
1288 	int retval, success;
1289 
1290 	success = 0;
1291 	retval = -ESRCH;
1292 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1293 		int err = group_send_sig_info(sig, info, p);
1294 		success |= !err;
1295 		retval = err;
1296 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1297 	return success ? 0 : retval;
1298 }
1299 
1300 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1301 {
1302 	int error = -ESRCH;
1303 	struct task_struct *p;
1304 
1305 	for (;;) {
1306 		rcu_read_lock();
1307 		p = pid_task(pid, PIDTYPE_PID);
1308 		if (p)
1309 			error = group_send_sig_info(sig, info, p);
1310 		rcu_read_unlock();
1311 		if (likely(!p || error != -ESRCH))
1312 			return error;
1313 
1314 		/*
1315 		 * The task was unhashed in between, try again.  If it
1316 		 * is dead, pid_task() will return NULL, if we race with
1317 		 * de_thread() it will find the new leader.
1318 		 */
1319 	}
1320 }
1321 
1322 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1323 {
1324 	int error;
1325 	rcu_read_lock();
1326 	error = kill_pid_info(sig, info, find_vpid(pid));
1327 	rcu_read_unlock();
1328 	return error;
1329 }
1330 
1331 static int kill_as_cred_perm(const struct cred *cred,
1332 			     struct task_struct *target)
1333 {
1334 	const struct cred *pcred = __task_cred(target);
1335 	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1336 	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1337 		return 0;
1338 	return 1;
1339 }
1340 
1341 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1342 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1343 			 const struct cred *cred, u32 secid)
1344 {
1345 	int ret = -EINVAL;
1346 	struct task_struct *p;
1347 	unsigned long flags;
1348 
1349 	if (!valid_signal(sig))
1350 		return ret;
1351 
1352 	rcu_read_lock();
1353 	p = pid_task(pid, PIDTYPE_PID);
1354 	if (!p) {
1355 		ret = -ESRCH;
1356 		goto out_unlock;
1357 	}
1358 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1359 		ret = -EPERM;
1360 		goto out_unlock;
1361 	}
1362 	ret = security_task_kill(p, info, sig, secid);
1363 	if (ret)
1364 		goto out_unlock;
1365 
1366 	if (sig) {
1367 		if (lock_task_sighand(p, &flags)) {
1368 			ret = __send_signal(sig, info, p, 1, 0);
1369 			unlock_task_sighand(p, &flags);
1370 		} else
1371 			ret = -ESRCH;
1372 	}
1373 out_unlock:
1374 	rcu_read_unlock();
1375 	return ret;
1376 }
1377 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1378 
1379 /*
1380  * kill_something_info() interprets pid in interesting ways just like kill(2).
1381  *
1382  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1383  * is probably wrong.  Should make it like BSD or SYSV.
1384  */
1385 
1386 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1387 {
1388 	int ret;
1389 
1390 	if (pid > 0) {
1391 		rcu_read_lock();
1392 		ret = kill_pid_info(sig, info, find_vpid(pid));
1393 		rcu_read_unlock();
1394 		return ret;
1395 	}
1396 
1397 	read_lock(&tasklist_lock);
1398 	if (pid != -1) {
1399 		ret = __kill_pgrp_info(sig, info,
1400 				pid ? find_vpid(-pid) : task_pgrp(current));
1401 	} else {
1402 		int retval = 0, count = 0;
1403 		struct task_struct * p;
1404 
1405 		for_each_process(p) {
1406 			if (task_pid_vnr(p) > 1 &&
1407 					!same_thread_group(p, current)) {
1408 				int err = group_send_sig_info(sig, info, p);
1409 				++count;
1410 				if (err != -EPERM)
1411 					retval = err;
1412 			}
1413 		}
1414 		ret = count ? retval : -ESRCH;
1415 	}
1416 	read_unlock(&tasklist_lock);
1417 
1418 	return ret;
1419 }
1420 
1421 /*
1422  * These are for backward compatibility with the rest of the kernel source.
1423  */
1424 
1425 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1426 {
1427 	/*
1428 	 * Make sure legacy kernel users don't send in bad values
1429 	 * (normal paths check this in check_kill_permission).
1430 	 */
1431 	if (!valid_signal(sig))
1432 		return -EINVAL;
1433 
1434 	return do_send_sig_info(sig, info, p, false);
1435 }
1436 
1437 #define __si_special(priv) \
1438 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1439 
1440 int
1441 send_sig(int sig, struct task_struct *p, int priv)
1442 {
1443 	return send_sig_info(sig, __si_special(priv), p);
1444 }
1445 
1446 void
1447 force_sig(int sig, struct task_struct *p)
1448 {
1449 	force_sig_info(sig, SEND_SIG_PRIV, p);
1450 }
1451 
1452 /*
1453  * When things go south during signal handling, we
1454  * will force a SIGSEGV. And if the signal that caused
1455  * the problem was already a SIGSEGV, we'll want to
1456  * make sure we don't even try to deliver the signal..
1457  */
1458 int
1459 force_sigsegv(int sig, struct task_struct *p)
1460 {
1461 	if (sig == SIGSEGV) {
1462 		unsigned long flags;
1463 		spin_lock_irqsave(&p->sighand->siglock, flags);
1464 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1465 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1466 	}
1467 	force_sig(SIGSEGV, p);
1468 	return 0;
1469 }
1470 
1471 int kill_pgrp(struct pid *pid, int sig, int priv)
1472 {
1473 	int ret;
1474 
1475 	read_lock(&tasklist_lock);
1476 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1477 	read_unlock(&tasklist_lock);
1478 
1479 	return ret;
1480 }
1481 EXPORT_SYMBOL(kill_pgrp);
1482 
1483 int kill_pid(struct pid *pid, int sig, int priv)
1484 {
1485 	return kill_pid_info(sig, __si_special(priv), pid);
1486 }
1487 EXPORT_SYMBOL(kill_pid);
1488 
1489 /*
1490  * These functions support sending signals using preallocated sigqueue
1491  * structures.  This is needed "because realtime applications cannot
1492  * afford to lose notifications of asynchronous events, like timer
1493  * expirations or I/O completions".  In the case of POSIX Timers
1494  * we allocate the sigqueue structure from the timer_create.  If this
1495  * allocation fails we are able to report the failure to the application
1496  * with an EAGAIN error.
1497  */
1498 struct sigqueue *sigqueue_alloc(void)
1499 {
1500 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1501 
1502 	if (q)
1503 		q->flags |= SIGQUEUE_PREALLOC;
1504 
1505 	return q;
1506 }
1507 
1508 void sigqueue_free(struct sigqueue *q)
1509 {
1510 	unsigned long flags;
1511 	spinlock_t *lock = &current->sighand->siglock;
1512 
1513 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1514 	/*
1515 	 * We must hold ->siglock while testing q->list
1516 	 * to serialize with collect_signal() or with
1517 	 * __exit_signal()->flush_sigqueue().
1518 	 */
1519 	spin_lock_irqsave(lock, flags);
1520 	q->flags &= ~SIGQUEUE_PREALLOC;
1521 	/*
1522 	 * If it is queued it will be freed when dequeued,
1523 	 * like the "regular" sigqueue.
1524 	 */
1525 	if (!list_empty(&q->list))
1526 		q = NULL;
1527 	spin_unlock_irqrestore(lock, flags);
1528 
1529 	if (q)
1530 		__sigqueue_free(q);
1531 }
1532 
1533 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1534 {
1535 	int sig = q->info.si_signo;
1536 	struct sigpending *pending;
1537 	unsigned long flags;
1538 	int ret, result;
1539 
1540 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1541 
1542 	ret = -1;
1543 	if (!likely(lock_task_sighand(t, &flags)))
1544 		goto ret;
1545 
1546 	ret = 1; /* the signal is ignored */
1547 	result = TRACE_SIGNAL_IGNORED;
1548 	if (!prepare_signal(sig, t, false))
1549 		goto out;
1550 
1551 	ret = 0;
1552 	if (unlikely(!list_empty(&q->list))) {
1553 		/*
1554 		 * If an SI_TIMER entry is already queue just increment
1555 		 * the overrun count.
1556 		 */
1557 		BUG_ON(q->info.si_code != SI_TIMER);
1558 		q->info.si_overrun++;
1559 		result = TRACE_SIGNAL_ALREADY_PENDING;
1560 		goto out;
1561 	}
1562 	q->info.si_overrun = 0;
1563 
1564 	signalfd_notify(t, sig);
1565 	pending = group ? &t->signal->shared_pending : &t->pending;
1566 	list_add_tail(&q->list, &pending->list);
1567 	sigaddset(&pending->signal, sig);
1568 	complete_signal(sig, t, group);
1569 	result = TRACE_SIGNAL_DELIVERED;
1570 out:
1571 	trace_signal_generate(sig, &q->info, t, group, result);
1572 	unlock_task_sighand(t, &flags);
1573 ret:
1574 	return ret;
1575 }
1576 
1577 /*
1578  * Let a parent know about the death of a child.
1579  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1580  *
1581  * Returns true if our parent ignored us and so we've switched to
1582  * self-reaping.
1583  */
1584 bool do_notify_parent(struct task_struct *tsk, int sig)
1585 {
1586 	struct siginfo info;
1587 	unsigned long flags;
1588 	struct sighand_struct *psig;
1589 	bool autoreap = false;
1590 	u64 utime, stime;
1591 
1592 	BUG_ON(sig == -1);
1593 
1594  	/* do_notify_parent_cldstop should have been called instead.  */
1595  	BUG_ON(task_is_stopped_or_traced(tsk));
1596 
1597 	BUG_ON(!tsk->ptrace &&
1598 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1599 
1600 	if (sig != SIGCHLD) {
1601 		/*
1602 		 * This is only possible if parent == real_parent.
1603 		 * Check if it has changed security domain.
1604 		 */
1605 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1606 			sig = SIGCHLD;
1607 	}
1608 
1609 	info.si_signo = sig;
1610 	info.si_errno = 0;
1611 	/*
1612 	 * We are under tasklist_lock here so our parent is tied to
1613 	 * us and cannot change.
1614 	 *
1615 	 * task_active_pid_ns will always return the same pid namespace
1616 	 * until a task passes through release_task.
1617 	 *
1618 	 * write_lock() currently calls preempt_disable() which is the
1619 	 * same as rcu_read_lock(), but according to Oleg, this is not
1620 	 * correct to rely on this
1621 	 */
1622 	rcu_read_lock();
1623 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1624 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1625 				       task_uid(tsk));
1626 	rcu_read_unlock();
1627 
1628 	task_cputime(tsk, &utime, &stime);
1629 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1630 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1631 
1632 	info.si_status = tsk->exit_code & 0x7f;
1633 	if (tsk->exit_code & 0x80)
1634 		info.si_code = CLD_DUMPED;
1635 	else if (tsk->exit_code & 0x7f)
1636 		info.si_code = CLD_KILLED;
1637 	else {
1638 		info.si_code = CLD_EXITED;
1639 		info.si_status = tsk->exit_code >> 8;
1640 	}
1641 
1642 	psig = tsk->parent->sighand;
1643 	spin_lock_irqsave(&psig->siglock, flags);
1644 	if (!tsk->ptrace && sig == SIGCHLD &&
1645 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1646 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1647 		/*
1648 		 * We are exiting and our parent doesn't care.  POSIX.1
1649 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1650 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1651 		 * automatically and not left for our parent's wait4 call.
1652 		 * Rather than having the parent do it as a magic kind of
1653 		 * signal handler, we just set this to tell do_exit that we
1654 		 * can be cleaned up without becoming a zombie.  Note that
1655 		 * we still call __wake_up_parent in this case, because a
1656 		 * blocked sys_wait4 might now return -ECHILD.
1657 		 *
1658 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1659 		 * is implementation-defined: we do (if you don't want
1660 		 * it, just use SIG_IGN instead).
1661 		 */
1662 		autoreap = true;
1663 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1664 			sig = 0;
1665 	}
1666 	if (valid_signal(sig) && sig)
1667 		__group_send_sig_info(sig, &info, tsk->parent);
1668 	__wake_up_parent(tsk, tsk->parent);
1669 	spin_unlock_irqrestore(&psig->siglock, flags);
1670 
1671 	return autoreap;
1672 }
1673 
1674 /**
1675  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1676  * @tsk: task reporting the state change
1677  * @for_ptracer: the notification is for ptracer
1678  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1679  *
1680  * Notify @tsk's parent that the stopped/continued state has changed.  If
1681  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1682  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1683  *
1684  * CONTEXT:
1685  * Must be called with tasklist_lock at least read locked.
1686  */
1687 static void do_notify_parent_cldstop(struct task_struct *tsk,
1688 				     bool for_ptracer, int why)
1689 {
1690 	struct siginfo info;
1691 	unsigned long flags;
1692 	struct task_struct *parent;
1693 	struct sighand_struct *sighand;
1694 	u64 utime, stime;
1695 
1696 	if (for_ptracer) {
1697 		parent = tsk->parent;
1698 	} else {
1699 		tsk = tsk->group_leader;
1700 		parent = tsk->real_parent;
1701 	}
1702 
1703 	info.si_signo = SIGCHLD;
1704 	info.si_errno = 0;
1705 	/*
1706 	 * see comment in do_notify_parent() about the following 4 lines
1707 	 */
1708 	rcu_read_lock();
1709 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1710 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1711 	rcu_read_unlock();
1712 
1713 	task_cputime(tsk, &utime, &stime);
1714 	info.si_utime = nsec_to_clock_t(utime);
1715 	info.si_stime = nsec_to_clock_t(stime);
1716 
1717  	info.si_code = why;
1718  	switch (why) {
1719  	case CLD_CONTINUED:
1720  		info.si_status = SIGCONT;
1721  		break;
1722  	case CLD_STOPPED:
1723  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1724  		break;
1725  	case CLD_TRAPPED:
1726  		info.si_status = tsk->exit_code & 0x7f;
1727  		break;
1728  	default:
1729  		BUG();
1730  	}
1731 
1732 	sighand = parent->sighand;
1733 	spin_lock_irqsave(&sighand->siglock, flags);
1734 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1735 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1736 		__group_send_sig_info(SIGCHLD, &info, parent);
1737 	/*
1738 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1739 	 */
1740 	__wake_up_parent(tsk, parent);
1741 	spin_unlock_irqrestore(&sighand->siglock, flags);
1742 }
1743 
1744 static inline int may_ptrace_stop(void)
1745 {
1746 	if (!likely(current->ptrace))
1747 		return 0;
1748 	/*
1749 	 * Are we in the middle of do_coredump?
1750 	 * If so and our tracer is also part of the coredump stopping
1751 	 * is a deadlock situation, and pointless because our tracer
1752 	 * is dead so don't allow us to stop.
1753 	 * If SIGKILL was already sent before the caller unlocked
1754 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1755 	 * is safe to enter schedule().
1756 	 *
1757 	 * This is almost outdated, a task with the pending SIGKILL can't
1758 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1759 	 * after SIGKILL was already dequeued.
1760 	 */
1761 	if (unlikely(current->mm->core_state) &&
1762 	    unlikely(current->mm == current->parent->mm))
1763 		return 0;
1764 
1765 	return 1;
1766 }
1767 
1768 /*
1769  * Return non-zero if there is a SIGKILL that should be waking us up.
1770  * Called with the siglock held.
1771  */
1772 static int sigkill_pending(struct task_struct *tsk)
1773 {
1774 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1775 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1776 }
1777 
1778 /*
1779  * This must be called with current->sighand->siglock held.
1780  *
1781  * This should be the path for all ptrace stops.
1782  * We always set current->last_siginfo while stopped here.
1783  * That makes it a way to test a stopped process for
1784  * being ptrace-stopped vs being job-control-stopped.
1785  *
1786  * If we actually decide not to stop at all because the tracer
1787  * is gone, we keep current->exit_code unless clear_code.
1788  */
1789 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1790 	__releases(&current->sighand->siglock)
1791 	__acquires(&current->sighand->siglock)
1792 {
1793 	bool gstop_done = false;
1794 
1795 	if (arch_ptrace_stop_needed(exit_code, info)) {
1796 		/*
1797 		 * The arch code has something special to do before a
1798 		 * ptrace stop.  This is allowed to block, e.g. for faults
1799 		 * on user stack pages.  We can't keep the siglock while
1800 		 * calling arch_ptrace_stop, so we must release it now.
1801 		 * To preserve proper semantics, we must do this before
1802 		 * any signal bookkeeping like checking group_stop_count.
1803 		 * Meanwhile, a SIGKILL could come in before we retake the
1804 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1805 		 * So after regaining the lock, we must check for SIGKILL.
1806 		 */
1807 		spin_unlock_irq(&current->sighand->siglock);
1808 		arch_ptrace_stop(exit_code, info);
1809 		spin_lock_irq(&current->sighand->siglock);
1810 		if (sigkill_pending(current))
1811 			return;
1812 	}
1813 
1814 	/*
1815 	 * We're committing to trapping.  TRACED should be visible before
1816 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1817 	 * Also, transition to TRACED and updates to ->jobctl should be
1818 	 * atomic with respect to siglock and should be done after the arch
1819 	 * hook as siglock is released and regrabbed across it.
1820 	 */
1821 	set_current_state(TASK_TRACED);
1822 
1823 	current->last_siginfo = info;
1824 	current->exit_code = exit_code;
1825 
1826 	/*
1827 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1828 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1829 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1830 	 * could be clear now.  We act as if SIGCONT is received after
1831 	 * TASK_TRACED is entered - ignore it.
1832 	 */
1833 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1834 		gstop_done = task_participate_group_stop(current);
1835 
1836 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1837 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1838 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1839 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1840 
1841 	/* entering a trap, clear TRAPPING */
1842 	task_clear_jobctl_trapping(current);
1843 
1844 	spin_unlock_irq(&current->sighand->siglock);
1845 	read_lock(&tasklist_lock);
1846 	if (may_ptrace_stop()) {
1847 		/*
1848 		 * Notify parents of the stop.
1849 		 *
1850 		 * While ptraced, there are two parents - the ptracer and
1851 		 * the real_parent of the group_leader.  The ptracer should
1852 		 * know about every stop while the real parent is only
1853 		 * interested in the completion of group stop.  The states
1854 		 * for the two don't interact with each other.  Notify
1855 		 * separately unless they're gonna be duplicates.
1856 		 */
1857 		do_notify_parent_cldstop(current, true, why);
1858 		if (gstop_done && ptrace_reparented(current))
1859 			do_notify_parent_cldstop(current, false, why);
1860 
1861 		/*
1862 		 * Don't want to allow preemption here, because
1863 		 * sys_ptrace() needs this task to be inactive.
1864 		 *
1865 		 * XXX: implement read_unlock_no_resched().
1866 		 */
1867 		preempt_disable();
1868 		read_unlock(&tasklist_lock);
1869 		preempt_enable_no_resched();
1870 		freezable_schedule();
1871 	} else {
1872 		/*
1873 		 * By the time we got the lock, our tracer went away.
1874 		 * Don't drop the lock yet, another tracer may come.
1875 		 *
1876 		 * If @gstop_done, the ptracer went away between group stop
1877 		 * completion and here.  During detach, it would have set
1878 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1879 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1880 		 * the real parent of the group stop completion is enough.
1881 		 */
1882 		if (gstop_done)
1883 			do_notify_parent_cldstop(current, false, why);
1884 
1885 		/* tasklist protects us from ptrace_freeze_traced() */
1886 		__set_current_state(TASK_RUNNING);
1887 		if (clear_code)
1888 			current->exit_code = 0;
1889 		read_unlock(&tasklist_lock);
1890 	}
1891 
1892 	/*
1893 	 * We are back.  Now reacquire the siglock before touching
1894 	 * last_siginfo, so that we are sure to have synchronized with
1895 	 * any signal-sending on another CPU that wants to examine it.
1896 	 */
1897 	spin_lock_irq(&current->sighand->siglock);
1898 	current->last_siginfo = NULL;
1899 
1900 	/* LISTENING can be set only during STOP traps, clear it */
1901 	current->jobctl &= ~JOBCTL_LISTENING;
1902 
1903 	/*
1904 	 * Queued signals ignored us while we were stopped for tracing.
1905 	 * So check for any that we should take before resuming user mode.
1906 	 * This sets TIF_SIGPENDING, but never clears it.
1907 	 */
1908 	recalc_sigpending_tsk(current);
1909 }
1910 
1911 static void ptrace_do_notify(int signr, int exit_code, int why)
1912 {
1913 	siginfo_t info;
1914 
1915 	memset(&info, 0, sizeof info);
1916 	info.si_signo = signr;
1917 	info.si_code = exit_code;
1918 	info.si_pid = task_pid_vnr(current);
1919 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1920 
1921 	/* Let the debugger run.  */
1922 	ptrace_stop(exit_code, why, 1, &info);
1923 }
1924 
1925 void ptrace_notify(int exit_code)
1926 {
1927 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1928 	if (unlikely(current->task_works))
1929 		task_work_run();
1930 
1931 	spin_lock_irq(&current->sighand->siglock);
1932 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1933 	spin_unlock_irq(&current->sighand->siglock);
1934 }
1935 
1936 /**
1937  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1938  * @signr: signr causing group stop if initiating
1939  *
1940  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1941  * and participate in it.  If already set, participate in the existing
1942  * group stop.  If participated in a group stop (and thus slept), %true is
1943  * returned with siglock released.
1944  *
1945  * If ptraced, this function doesn't handle stop itself.  Instead,
1946  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1947  * untouched.  The caller must ensure that INTERRUPT trap handling takes
1948  * places afterwards.
1949  *
1950  * CONTEXT:
1951  * Must be called with @current->sighand->siglock held, which is released
1952  * on %true return.
1953  *
1954  * RETURNS:
1955  * %false if group stop is already cancelled or ptrace trap is scheduled.
1956  * %true if participated in group stop.
1957  */
1958 static bool do_signal_stop(int signr)
1959 	__releases(&current->sighand->siglock)
1960 {
1961 	struct signal_struct *sig = current->signal;
1962 
1963 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1964 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1965 		struct task_struct *t;
1966 
1967 		/* signr will be recorded in task->jobctl for retries */
1968 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1969 
1970 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1971 		    unlikely(signal_group_exit(sig)))
1972 			return false;
1973 		/*
1974 		 * There is no group stop already in progress.  We must
1975 		 * initiate one now.
1976 		 *
1977 		 * While ptraced, a task may be resumed while group stop is
1978 		 * still in effect and then receive a stop signal and
1979 		 * initiate another group stop.  This deviates from the
1980 		 * usual behavior as two consecutive stop signals can't
1981 		 * cause two group stops when !ptraced.  That is why we
1982 		 * also check !task_is_stopped(t) below.
1983 		 *
1984 		 * The condition can be distinguished by testing whether
1985 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
1986 		 * group_exit_code in such case.
1987 		 *
1988 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
1989 		 * an intervening stop signal is required to cause two
1990 		 * continued events regardless of ptrace.
1991 		 */
1992 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
1993 			sig->group_exit_code = signr;
1994 
1995 		sig->group_stop_count = 0;
1996 
1997 		if (task_set_jobctl_pending(current, signr | gstop))
1998 			sig->group_stop_count++;
1999 
2000 		t = current;
2001 		while_each_thread(current, t) {
2002 			/*
2003 			 * Setting state to TASK_STOPPED for a group
2004 			 * stop is always done with the siglock held,
2005 			 * so this check has no races.
2006 			 */
2007 			if (!task_is_stopped(t) &&
2008 			    task_set_jobctl_pending(t, signr | gstop)) {
2009 				sig->group_stop_count++;
2010 				if (likely(!(t->ptrace & PT_SEIZED)))
2011 					signal_wake_up(t, 0);
2012 				else
2013 					ptrace_trap_notify(t);
2014 			}
2015 		}
2016 	}
2017 
2018 	if (likely(!current->ptrace)) {
2019 		int notify = 0;
2020 
2021 		/*
2022 		 * If there are no other threads in the group, or if there
2023 		 * is a group stop in progress and we are the last to stop,
2024 		 * report to the parent.
2025 		 */
2026 		if (task_participate_group_stop(current))
2027 			notify = CLD_STOPPED;
2028 
2029 		__set_current_state(TASK_STOPPED);
2030 		spin_unlock_irq(&current->sighand->siglock);
2031 
2032 		/*
2033 		 * Notify the parent of the group stop completion.  Because
2034 		 * we're not holding either the siglock or tasklist_lock
2035 		 * here, ptracer may attach inbetween; however, this is for
2036 		 * group stop and should always be delivered to the real
2037 		 * parent of the group leader.  The new ptracer will get
2038 		 * its notification when this task transitions into
2039 		 * TASK_TRACED.
2040 		 */
2041 		if (notify) {
2042 			read_lock(&tasklist_lock);
2043 			do_notify_parent_cldstop(current, false, notify);
2044 			read_unlock(&tasklist_lock);
2045 		}
2046 
2047 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2048 		freezable_schedule();
2049 		return true;
2050 	} else {
2051 		/*
2052 		 * While ptraced, group stop is handled by STOP trap.
2053 		 * Schedule it and let the caller deal with it.
2054 		 */
2055 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2056 		return false;
2057 	}
2058 }
2059 
2060 /**
2061  * do_jobctl_trap - take care of ptrace jobctl traps
2062  *
2063  * When PT_SEIZED, it's used for both group stop and explicit
2064  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2065  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2066  * the stop signal; otherwise, %SIGTRAP.
2067  *
2068  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2069  * number as exit_code and no siginfo.
2070  *
2071  * CONTEXT:
2072  * Must be called with @current->sighand->siglock held, which may be
2073  * released and re-acquired before returning with intervening sleep.
2074  */
2075 static void do_jobctl_trap(void)
2076 {
2077 	struct signal_struct *signal = current->signal;
2078 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2079 
2080 	if (current->ptrace & PT_SEIZED) {
2081 		if (!signal->group_stop_count &&
2082 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2083 			signr = SIGTRAP;
2084 		WARN_ON_ONCE(!signr);
2085 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2086 				 CLD_STOPPED);
2087 	} else {
2088 		WARN_ON_ONCE(!signr);
2089 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2090 		current->exit_code = 0;
2091 	}
2092 }
2093 
2094 static int ptrace_signal(int signr, siginfo_t *info)
2095 {
2096 	ptrace_signal_deliver();
2097 	/*
2098 	 * We do not check sig_kernel_stop(signr) but set this marker
2099 	 * unconditionally because we do not know whether debugger will
2100 	 * change signr. This flag has no meaning unless we are going
2101 	 * to stop after return from ptrace_stop(). In this case it will
2102 	 * be checked in do_signal_stop(), we should only stop if it was
2103 	 * not cleared by SIGCONT while we were sleeping. See also the
2104 	 * comment in dequeue_signal().
2105 	 */
2106 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2107 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2108 
2109 	/* We're back.  Did the debugger cancel the sig?  */
2110 	signr = current->exit_code;
2111 	if (signr == 0)
2112 		return signr;
2113 
2114 	current->exit_code = 0;
2115 
2116 	/*
2117 	 * Update the siginfo structure if the signal has
2118 	 * changed.  If the debugger wanted something
2119 	 * specific in the siginfo structure then it should
2120 	 * have updated *info via PTRACE_SETSIGINFO.
2121 	 */
2122 	if (signr != info->si_signo) {
2123 		info->si_signo = signr;
2124 		info->si_errno = 0;
2125 		info->si_code = SI_USER;
2126 		rcu_read_lock();
2127 		info->si_pid = task_pid_vnr(current->parent);
2128 		info->si_uid = from_kuid_munged(current_user_ns(),
2129 						task_uid(current->parent));
2130 		rcu_read_unlock();
2131 	}
2132 
2133 	/* If the (new) signal is now blocked, requeue it.  */
2134 	if (sigismember(&current->blocked, signr)) {
2135 		specific_send_sig_info(signr, info, current);
2136 		signr = 0;
2137 	}
2138 
2139 	return signr;
2140 }
2141 
2142 int get_signal(struct ksignal *ksig)
2143 {
2144 	struct sighand_struct *sighand = current->sighand;
2145 	struct signal_struct *signal = current->signal;
2146 	int signr;
2147 
2148 	if (unlikely(current->task_works))
2149 		task_work_run();
2150 
2151 	if (unlikely(uprobe_deny_signal()))
2152 		return 0;
2153 
2154 	/*
2155 	 * Do this once, we can't return to user-mode if freezing() == T.
2156 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2157 	 * thus do not need another check after return.
2158 	 */
2159 	try_to_freeze();
2160 
2161 relock:
2162 	spin_lock_irq(&sighand->siglock);
2163 	/*
2164 	 * Every stopped thread goes here after wakeup. Check to see if
2165 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2166 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2167 	 */
2168 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2169 		int why;
2170 
2171 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2172 			why = CLD_CONTINUED;
2173 		else
2174 			why = CLD_STOPPED;
2175 
2176 		signal->flags &= ~SIGNAL_CLD_MASK;
2177 
2178 		spin_unlock_irq(&sighand->siglock);
2179 
2180 		/*
2181 		 * Notify the parent that we're continuing.  This event is
2182 		 * always per-process and doesn't make whole lot of sense
2183 		 * for ptracers, who shouldn't consume the state via
2184 		 * wait(2) either, but, for backward compatibility, notify
2185 		 * the ptracer of the group leader too unless it's gonna be
2186 		 * a duplicate.
2187 		 */
2188 		read_lock(&tasklist_lock);
2189 		do_notify_parent_cldstop(current, false, why);
2190 
2191 		if (ptrace_reparented(current->group_leader))
2192 			do_notify_parent_cldstop(current->group_leader,
2193 						true, why);
2194 		read_unlock(&tasklist_lock);
2195 
2196 		goto relock;
2197 	}
2198 
2199 	for (;;) {
2200 		struct k_sigaction *ka;
2201 
2202 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2203 		    do_signal_stop(0))
2204 			goto relock;
2205 
2206 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2207 			do_jobctl_trap();
2208 			spin_unlock_irq(&sighand->siglock);
2209 			goto relock;
2210 		}
2211 
2212 		signr = dequeue_signal(current, &current->blocked, &ksig->info);
2213 
2214 		if (!signr)
2215 			break; /* will return 0 */
2216 
2217 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2218 			signr = ptrace_signal(signr, &ksig->info);
2219 			if (!signr)
2220 				continue;
2221 		}
2222 
2223 		ka = &sighand->action[signr-1];
2224 
2225 		/* Trace actually delivered signals. */
2226 		trace_signal_deliver(signr, &ksig->info, ka);
2227 
2228 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2229 			continue;
2230 		if (ka->sa.sa_handler != SIG_DFL) {
2231 			/* Run the handler.  */
2232 			ksig->ka = *ka;
2233 
2234 			if (ka->sa.sa_flags & SA_ONESHOT)
2235 				ka->sa.sa_handler = SIG_DFL;
2236 
2237 			break; /* will return non-zero "signr" value */
2238 		}
2239 
2240 		/*
2241 		 * Now we are doing the default action for this signal.
2242 		 */
2243 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2244 			continue;
2245 
2246 		/*
2247 		 * Global init gets no signals it doesn't want.
2248 		 * Container-init gets no signals it doesn't want from same
2249 		 * container.
2250 		 *
2251 		 * Note that if global/container-init sees a sig_kernel_only()
2252 		 * signal here, the signal must have been generated internally
2253 		 * or must have come from an ancestor namespace. In either
2254 		 * case, the signal cannot be dropped.
2255 		 */
2256 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2257 				!sig_kernel_only(signr))
2258 			continue;
2259 
2260 		if (sig_kernel_stop(signr)) {
2261 			/*
2262 			 * The default action is to stop all threads in
2263 			 * the thread group.  The job control signals
2264 			 * do nothing in an orphaned pgrp, but SIGSTOP
2265 			 * always works.  Note that siglock needs to be
2266 			 * dropped during the call to is_orphaned_pgrp()
2267 			 * because of lock ordering with tasklist_lock.
2268 			 * This allows an intervening SIGCONT to be posted.
2269 			 * We need to check for that and bail out if necessary.
2270 			 */
2271 			if (signr != SIGSTOP) {
2272 				spin_unlock_irq(&sighand->siglock);
2273 
2274 				/* signals can be posted during this window */
2275 
2276 				if (is_current_pgrp_orphaned())
2277 					goto relock;
2278 
2279 				spin_lock_irq(&sighand->siglock);
2280 			}
2281 
2282 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2283 				/* It released the siglock.  */
2284 				goto relock;
2285 			}
2286 
2287 			/*
2288 			 * We didn't actually stop, due to a race
2289 			 * with SIGCONT or something like that.
2290 			 */
2291 			continue;
2292 		}
2293 
2294 		spin_unlock_irq(&sighand->siglock);
2295 
2296 		/*
2297 		 * Anything else is fatal, maybe with a core dump.
2298 		 */
2299 		current->flags |= PF_SIGNALED;
2300 
2301 		if (sig_kernel_coredump(signr)) {
2302 			if (print_fatal_signals)
2303 				print_fatal_signal(ksig->info.si_signo);
2304 			proc_coredump_connector(current);
2305 			/*
2306 			 * If it was able to dump core, this kills all
2307 			 * other threads in the group and synchronizes with
2308 			 * their demise.  If we lost the race with another
2309 			 * thread getting here, it set group_exit_code
2310 			 * first and our do_group_exit call below will use
2311 			 * that value and ignore the one we pass it.
2312 			 */
2313 			do_coredump(&ksig->info);
2314 		}
2315 
2316 		/*
2317 		 * Death signals, no core dump.
2318 		 */
2319 		do_group_exit(ksig->info.si_signo);
2320 		/* NOTREACHED */
2321 	}
2322 	spin_unlock_irq(&sighand->siglock);
2323 
2324 	ksig->sig = signr;
2325 	return ksig->sig > 0;
2326 }
2327 
2328 /**
2329  * signal_delivered -
2330  * @ksig:		kernel signal struct
2331  * @stepping:		nonzero if debugger single-step or block-step in use
2332  *
2333  * This function should be called when a signal has successfully been
2334  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2335  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2336  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2337  */
2338 static void signal_delivered(struct ksignal *ksig, int stepping)
2339 {
2340 	sigset_t blocked;
2341 
2342 	/* A signal was successfully delivered, and the
2343 	   saved sigmask was stored on the signal frame,
2344 	   and will be restored by sigreturn.  So we can
2345 	   simply clear the restore sigmask flag.  */
2346 	clear_restore_sigmask();
2347 
2348 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2349 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2350 		sigaddset(&blocked, ksig->sig);
2351 	set_current_blocked(&blocked);
2352 	tracehook_signal_handler(stepping);
2353 }
2354 
2355 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2356 {
2357 	if (failed)
2358 		force_sigsegv(ksig->sig, current);
2359 	else
2360 		signal_delivered(ksig, stepping);
2361 }
2362 
2363 /*
2364  * It could be that complete_signal() picked us to notify about the
2365  * group-wide signal. Other threads should be notified now to take
2366  * the shared signals in @which since we will not.
2367  */
2368 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2369 {
2370 	sigset_t retarget;
2371 	struct task_struct *t;
2372 
2373 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2374 	if (sigisemptyset(&retarget))
2375 		return;
2376 
2377 	t = tsk;
2378 	while_each_thread(tsk, t) {
2379 		if (t->flags & PF_EXITING)
2380 			continue;
2381 
2382 		if (!has_pending_signals(&retarget, &t->blocked))
2383 			continue;
2384 		/* Remove the signals this thread can handle. */
2385 		sigandsets(&retarget, &retarget, &t->blocked);
2386 
2387 		if (!signal_pending(t))
2388 			signal_wake_up(t, 0);
2389 
2390 		if (sigisemptyset(&retarget))
2391 			break;
2392 	}
2393 }
2394 
2395 void exit_signals(struct task_struct *tsk)
2396 {
2397 	int group_stop = 0;
2398 	sigset_t unblocked;
2399 
2400 	/*
2401 	 * @tsk is about to have PF_EXITING set - lock out users which
2402 	 * expect stable threadgroup.
2403 	 */
2404 	cgroup_threadgroup_change_begin(tsk);
2405 
2406 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2407 		tsk->flags |= PF_EXITING;
2408 		cgroup_threadgroup_change_end(tsk);
2409 		return;
2410 	}
2411 
2412 	spin_lock_irq(&tsk->sighand->siglock);
2413 	/*
2414 	 * From now this task is not visible for group-wide signals,
2415 	 * see wants_signal(), do_signal_stop().
2416 	 */
2417 	tsk->flags |= PF_EXITING;
2418 
2419 	cgroup_threadgroup_change_end(tsk);
2420 
2421 	if (!signal_pending(tsk))
2422 		goto out;
2423 
2424 	unblocked = tsk->blocked;
2425 	signotset(&unblocked);
2426 	retarget_shared_pending(tsk, &unblocked);
2427 
2428 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2429 	    task_participate_group_stop(tsk))
2430 		group_stop = CLD_STOPPED;
2431 out:
2432 	spin_unlock_irq(&tsk->sighand->siglock);
2433 
2434 	/*
2435 	 * If group stop has completed, deliver the notification.  This
2436 	 * should always go to the real parent of the group leader.
2437 	 */
2438 	if (unlikely(group_stop)) {
2439 		read_lock(&tasklist_lock);
2440 		do_notify_parent_cldstop(tsk, false, group_stop);
2441 		read_unlock(&tasklist_lock);
2442 	}
2443 }
2444 
2445 EXPORT_SYMBOL(recalc_sigpending);
2446 EXPORT_SYMBOL_GPL(dequeue_signal);
2447 EXPORT_SYMBOL(flush_signals);
2448 EXPORT_SYMBOL(force_sig);
2449 EXPORT_SYMBOL(send_sig);
2450 EXPORT_SYMBOL(send_sig_info);
2451 EXPORT_SYMBOL(sigprocmask);
2452 
2453 /*
2454  * System call entry points.
2455  */
2456 
2457 /**
2458  *  sys_restart_syscall - restart a system call
2459  */
2460 SYSCALL_DEFINE0(restart_syscall)
2461 {
2462 	struct restart_block *restart = &current->restart_block;
2463 	return restart->fn(restart);
2464 }
2465 
2466 long do_no_restart_syscall(struct restart_block *param)
2467 {
2468 	return -EINTR;
2469 }
2470 
2471 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2472 {
2473 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2474 		sigset_t newblocked;
2475 		/* A set of now blocked but previously unblocked signals. */
2476 		sigandnsets(&newblocked, newset, &current->blocked);
2477 		retarget_shared_pending(tsk, &newblocked);
2478 	}
2479 	tsk->blocked = *newset;
2480 	recalc_sigpending();
2481 }
2482 
2483 /**
2484  * set_current_blocked - change current->blocked mask
2485  * @newset: new mask
2486  *
2487  * It is wrong to change ->blocked directly, this helper should be used
2488  * to ensure the process can't miss a shared signal we are going to block.
2489  */
2490 void set_current_blocked(sigset_t *newset)
2491 {
2492 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2493 	__set_current_blocked(newset);
2494 }
2495 
2496 void __set_current_blocked(const sigset_t *newset)
2497 {
2498 	struct task_struct *tsk = current;
2499 
2500 	/*
2501 	 * In case the signal mask hasn't changed, there is nothing we need
2502 	 * to do. The current->blocked shouldn't be modified by other task.
2503 	 */
2504 	if (sigequalsets(&tsk->blocked, newset))
2505 		return;
2506 
2507 	spin_lock_irq(&tsk->sighand->siglock);
2508 	__set_task_blocked(tsk, newset);
2509 	spin_unlock_irq(&tsk->sighand->siglock);
2510 }
2511 
2512 /*
2513  * This is also useful for kernel threads that want to temporarily
2514  * (or permanently) block certain signals.
2515  *
2516  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2517  * interface happily blocks "unblockable" signals like SIGKILL
2518  * and friends.
2519  */
2520 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2521 {
2522 	struct task_struct *tsk = current;
2523 	sigset_t newset;
2524 
2525 	/* Lockless, only current can change ->blocked, never from irq */
2526 	if (oldset)
2527 		*oldset = tsk->blocked;
2528 
2529 	switch (how) {
2530 	case SIG_BLOCK:
2531 		sigorsets(&newset, &tsk->blocked, set);
2532 		break;
2533 	case SIG_UNBLOCK:
2534 		sigandnsets(&newset, &tsk->blocked, set);
2535 		break;
2536 	case SIG_SETMASK:
2537 		newset = *set;
2538 		break;
2539 	default:
2540 		return -EINVAL;
2541 	}
2542 
2543 	__set_current_blocked(&newset);
2544 	return 0;
2545 }
2546 
2547 /**
2548  *  sys_rt_sigprocmask - change the list of currently blocked signals
2549  *  @how: whether to add, remove, or set signals
2550  *  @nset: stores pending signals
2551  *  @oset: previous value of signal mask if non-null
2552  *  @sigsetsize: size of sigset_t type
2553  */
2554 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2555 		sigset_t __user *, oset, size_t, sigsetsize)
2556 {
2557 	sigset_t old_set, new_set;
2558 	int error;
2559 
2560 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2561 	if (sigsetsize != sizeof(sigset_t))
2562 		return -EINVAL;
2563 
2564 	old_set = current->blocked;
2565 
2566 	if (nset) {
2567 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2568 			return -EFAULT;
2569 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2570 
2571 		error = sigprocmask(how, &new_set, NULL);
2572 		if (error)
2573 			return error;
2574 	}
2575 
2576 	if (oset) {
2577 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2578 			return -EFAULT;
2579 	}
2580 
2581 	return 0;
2582 }
2583 
2584 #ifdef CONFIG_COMPAT
2585 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2586 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2587 {
2588 #ifdef __BIG_ENDIAN
2589 	sigset_t old_set = current->blocked;
2590 
2591 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2592 	if (sigsetsize != sizeof(sigset_t))
2593 		return -EINVAL;
2594 
2595 	if (nset) {
2596 		compat_sigset_t new32;
2597 		sigset_t new_set;
2598 		int error;
2599 		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2600 			return -EFAULT;
2601 
2602 		sigset_from_compat(&new_set, &new32);
2603 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2604 
2605 		error = sigprocmask(how, &new_set, NULL);
2606 		if (error)
2607 			return error;
2608 	}
2609 	if (oset) {
2610 		compat_sigset_t old32;
2611 		sigset_to_compat(&old32, &old_set);
2612 		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2613 			return -EFAULT;
2614 	}
2615 	return 0;
2616 #else
2617 	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2618 				  (sigset_t __user *)oset, sigsetsize);
2619 #endif
2620 }
2621 #endif
2622 
2623 static int do_sigpending(void *set, unsigned long sigsetsize)
2624 {
2625 	if (sigsetsize > sizeof(sigset_t))
2626 		return -EINVAL;
2627 
2628 	spin_lock_irq(&current->sighand->siglock);
2629 	sigorsets(set, &current->pending.signal,
2630 		  &current->signal->shared_pending.signal);
2631 	spin_unlock_irq(&current->sighand->siglock);
2632 
2633 	/* Outside the lock because only this thread touches it.  */
2634 	sigandsets(set, &current->blocked, set);
2635 	return 0;
2636 }
2637 
2638 /**
2639  *  sys_rt_sigpending - examine a pending signal that has been raised
2640  *			while blocked
2641  *  @uset: stores pending signals
2642  *  @sigsetsize: size of sigset_t type or larger
2643  */
2644 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2645 {
2646 	sigset_t set;
2647 	int err = do_sigpending(&set, sigsetsize);
2648 	if (!err && copy_to_user(uset, &set, sigsetsize))
2649 		err = -EFAULT;
2650 	return err;
2651 }
2652 
2653 #ifdef CONFIG_COMPAT
2654 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2655 		compat_size_t, sigsetsize)
2656 {
2657 #ifdef __BIG_ENDIAN
2658 	sigset_t set;
2659 	int err = do_sigpending(&set, sigsetsize);
2660 	if (!err) {
2661 		compat_sigset_t set32;
2662 		sigset_to_compat(&set32, &set);
2663 		/* we can get here only if sigsetsize <= sizeof(set) */
2664 		if (copy_to_user(uset, &set32, sigsetsize))
2665 			err = -EFAULT;
2666 	}
2667 	return err;
2668 #else
2669 	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2670 #endif
2671 }
2672 #endif
2673 
2674 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2675 
2676 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2677 {
2678 	int err;
2679 
2680 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2681 		return -EFAULT;
2682 	if (from->si_code < 0)
2683 		return __copy_to_user(to, from, sizeof(siginfo_t))
2684 			? -EFAULT : 0;
2685 	/*
2686 	 * If you change siginfo_t structure, please be sure
2687 	 * this code is fixed accordingly.
2688 	 * Please remember to update the signalfd_copyinfo() function
2689 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2690 	 * It should never copy any pad contained in the structure
2691 	 * to avoid security leaks, but must copy the generic
2692 	 * 3 ints plus the relevant union member.
2693 	 */
2694 	err = __put_user(from->si_signo, &to->si_signo);
2695 	err |= __put_user(from->si_errno, &to->si_errno);
2696 	err |= __put_user((short)from->si_code, &to->si_code);
2697 	switch (from->si_code & __SI_MASK) {
2698 	case __SI_KILL:
2699 		err |= __put_user(from->si_pid, &to->si_pid);
2700 		err |= __put_user(from->si_uid, &to->si_uid);
2701 		break;
2702 	case __SI_TIMER:
2703 		 err |= __put_user(from->si_tid, &to->si_tid);
2704 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2705 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2706 		break;
2707 	case __SI_POLL:
2708 		err |= __put_user(from->si_band, &to->si_band);
2709 		err |= __put_user(from->si_fd, &to->si_fd);
2710 		break;
2711 	case __SI_FAULT:
2712 		err |= __put_user(from->si_addr, &to->si_addr);
2713 #ifdef __ARCH_SI_TRAPNO
2714 		err |= __put_user(from->si_trapno, &to->si_trapno);
2715 #endif
2716 #ifdef BUS_MCEERR_AO
2717 		/*
2718 		 * Other callers might not initialize the si_lsb field,
2719 		 * so check explicitly for the right codes here.
2720 		 */
2721 		if (from->si_signo == SIGBUS &&
2722 		    (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2723 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2724 #endif
2725 #ifdef SEGV_BNDERR
2726 		if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2727 			err |= __put_user(from->si_lower, &to->si_lower);
2728 			err |= __put_user(from->si_upper, &to->si_upper);
2729 		}
2730 #endif
2731 #ifdef SEGV_PKUERR
2732 		if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2733 			err |= __put_user(from->si_pkey, &to->si_pkey);
2734 #endif
2735 		break;
2736 	case __SI_CHLD:
2737 		err |= __put_user(from->si_pid, &to->si_pid);
2738 		err |= __put_user(from->si_uid, &to->si_uid);
2739 		err |= __put_user(from->si_status, &to->si_status);
2740 		err |= __put_user(from->si_utime, &to->si_utime);
2741 		err |= __put_user(from->si_stime, &to->si_stime);
2742 		break;
2743 	case __SI_RT: /* This is not generated by the kernel as of now. */
2744 	case __SI_MESGQ: /* But this is */
2745 		err |= __put_user(from->si_pid, &to->si_pid);
2746 		err |= __put_user(from->si_uid, &to->si_uid);
2747 		err |= __put_user(from->si_ptr, &to->si_ptr);
2748 		break;
2749 #ifdef __ARCH_SIGSYS
2750 	case __SI_SYS:
2751 		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2752 		err |= __put_user(from->si_syscall, &to->si_syscall);
2753 		err |= __put_user(from->si_arch, &to->si_arch);
2754 		break;
2755 #endif
2756 	default: /* this is just in case for now ... */
2757 		err |= __put_user(from->si_pid, &to->si_pid);
2758 		err |= __put_user(from->si_uid, &to->si_uid);
2759 		break;
2760 	}
2761 	return err;
2762 }
2763 
2764 #endif
2765 
2766 /**
2767  *  do_sigtimedwait - wait for queued signals specified in @which
2768  *  @which: queued signals to wait for
2769  *  @info: if non-null, the signal's siginfo is returned here
2770  *  @ts: upper bound on process time suspension
2771  */
2772 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2773 		    const struct timespec *ts)
2774 {
2775 	ktime_t *to = NULL, timeout = KTIME_MAX;
2776 	struct task_struct *tsk = current;
2777 	sigset_t mask = *which;
2778 	int sig, ret = 0;
2779 
2780 	if (ts) {
2781 		if (!timespec_valid(ts))
2782 			return -EINVAL;
2783 		timeout = timespec_to_ktime(*ts);
2784 		to = &timeout;
2785 	}
2786 
2787 	/*
2788 	 * Invert the set of allowed signals to get those we want to block.
2789 	 */
2790 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2791 	signotset(&mask);
2792 
2793 	spin_lock_irq(&tsk->sighand->siglock);
2794 	sig = dequeue_signal(tsk, &mask, info);
2795 	if (!sig && timeout) {
2796 		/*
2797 		 * None ready, temporarily unblock those we're interested
2798 		 * while we are sleeping in so that we'll be awakened when
2799 		 * they arrive. Unblocking is always fine, we can avoid
2800 		 * set_current_blocked().
2801 		 */
2802 		tsk->real_blocked = tsk->blocked;
2803 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2804 		recalc_sigpending();
2805 		spin_unlock_irq(&tsk->sighand->siglock);
2806 
2807 		__set_current_state(TASK_INTERRUPTIBLE);
2808 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
2809 							 HRTIMER_MODE_REL);
2810 		spin_lock_irq(&tsk->sighand->siglock);
2811 		__set_task_blocked(tsk, &tsk->real_blocked);
2812 		sigemptyset(&tsk->real_blocked);
2813 		sig = dequeue_signal(tsk, &mask, info);
2814 	}
2815 	spin_unlock_irq(&tsk->sighand->siglock);
2816 
2817 	if (sig)
2818 		return sig;
2819 	return ret ? -EINTR : -EAGAIN;
2820 }
2821 
2822 /**
2823  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2824  *			in @uthese
2825  *  @uthese: queued signals to wait for
2826  *  @uinfo: if non-null, the signal's siginfo is returned here
2827  *  @uts: upper bound on process time suspension
2828  *  @sigsetsize: size of sigset_t type
2829  */
2830 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2831 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2832 		size_t, sigsetsize)
2833 {
2834 	sigset_t these;
2835 	struct timespec ts;
2836 	siginfo_t info;
2837 	int ret;
2838 
2839 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2840 	if (sigsetsize != sizeof(sigset_t))
2841 		return -EINVAL;
2842 
2843 	if (copy_from_user(&these, uthese, sizeof(these)))
2844 		return -EFAULT;
2845 
2846 	if (uts) {
2847 		if (copy_from_user(&ts, uts, sizeof(ts)))
2848 			return -EFAULT;
2849 	}
2850 
2851 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2852 
2853 	if (ret > 0 && uinfo) {
2854 		if (copy_siginfo_to_user(uinfo, &info))
2855 			ret = -EFAULT;
2856 	}
2857 
2858 	return ret;
2859 }
2860 
2861 /**
2862  *  sys_kill - send a signal to a process
2863  *  @pid: the PID of the process
2864  *  @sig: signal to be sent
2865  */
2866 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2867 {
2868 	struct siginfo info;
2869 
2870 	info.si_signo = sig;
2871 	info.si_errno = 0;
2872 	info.si_code = SI_USER;
2873 	info.si_pid = task_tgid_vnr(current);
2874 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2875 
2876 	return kill_something_info(sig, &info, pid);
2877 }
2878 
2879 static int
2880 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2881 {
2882 	struct task_struct *p;
2883 	int error = -ESRCH;
2884 
2885 	rcu_read_lock();
2886 	p = find_task_by_vpid(pid);
2887 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2888 		error = check_kill_permission(sig, info, p);
2889 		/*
2890 		 * The null signal is a permissions and process existence
2891 		 * probe.  No signal is actually delivered.
2892 		 */
2893 		if (!error && sig) {
2894 			error = do_send_sig_info(sig, info, p, false);
2895 			/*
2896 			 * If lock_task_sighand() failed we pretend the task
2897 			 * dies after receiving the signal. The window is tiny,
2898 			 * and the signal is private anyway.
2899 			 */
2900 			if (unlikely(error == -ESRCH))
2901 				error = 0;
2902 		}
2903 	}
2904 	rcu_read_unlock();
2905 
2906 	return error;
2907 }
2908 
2909 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2910 {
2911 	struct siginfo info = {};
2912 
2913 	info.si_signo = sig;
2914 	info.si_errno = 0;
2915 	info.si_code = SI_TKILL;
2916 	info.si_pid = task_tgid_vnr(current);
2917 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2918 
2919 	return do_send_specific(tgid, pid, sig, &info);
2920 }
2921 
2922 /**
2923  *  sys_tgkill - send signal to one specific thread
2924  *  @tgid: the thread group ID of the thread
2925  *  @pid: the PID of the thread
2926  *  @sig: signal to be sent
2927  *
2928  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2929  *  exists but it's not belonging to the target process anymore. This
2930  *  method solves the problem of threads exiting and PIDs getting reused.
2931  */
2932 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2933 {
2934 	/* This is only valid for single tasks */
2935 	if (pid <= 0 || tgid <= 0)
2936 		return -EINVAL;
2937 
2938 	return do_tkill(tgid, pid, sig);
2939 }
2940 
2941 /**
2942  *  sys_tkill - send signal to one specific task
2943  *  @pid: the PID of the task
2944  *  @sig: signal to be sent
2945  *
2946  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2947  */
2948 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2949 {
2950 	/* This is only valid for single tasks */
2951 	if (pid <= 0)
2952 		return -EINVAL;
2953 
2954 	return do_tkill(0, pid, sig);
2955 }
2956 
2957 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2958 {
2959 	/* Not even root can pretend to send signals from the kernel.
2960 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2961 	 */
2962 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2963 	    (task_pid_vnr(current) != pid))
2964 		return -EPERM;
2965 
2966 	info->si_signo = sig;
2967 
2968 	/* POSIX.1b doesn't mention process groups.  */
2969 	return kill_proc_info(sig, info, pid);
2970 }
2971 
2972 /**
2973  *  sys_rt_sigqueueinfo - send signal information to a signal
2974  *  @pid: the PID of the thread
2975  *  @sig: signal to be sent
2976  *  @uinfo: signal info to be sent
2977  */
2978 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2979 		siginfo_t __user *, uinfo)
2980 {
2981 	siginfo_t info;
2982 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2983 		return -EFAULT;
2984 	return do_rt_sigqueueinfo(pid, sig, &info);
2985 }
2986 
2987 #ifdef CONFIG_COMPAT
2988 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
2989 			compat_pid_t, pid,
2990 			int, sig,
2991 			struct compat_siginfo __user *, uinfo)
2992 {
2993 	siginfo_t info = {};
2994 	int ret = copy_siginfo_from_user32(&info, uinfo);
2995 	if (unlikely(ret))
2996 		return ret;
2997 	return do_rt_sigqueueinfo(pid, sig, &info);
2998 }
2999 #endif
3000 
3001 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3002 {
3003 	/* This is only valid for single tasks */
3004 	if (pid <= 0 || tgid <= 0)
3005 		return -EINVAL;
3006 
3007 	/* Not even root can pretend to send signals from the kernel.
3008 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3009 	 */
3010 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3011 	    (task_pid_vnr(current) != pid))
3012 		return -EPERM;
3013 
3014 	info->si_signo = sig;
3015 
3016 	return do_send_specific(tgid, pid, sig, info);
3017 }
3018 
3019 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3020 		siginfo_t __user *, uinfo)
3021 {
3022 	siginfo_t info;
3023 
3024 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3025 		return -EFAULT;
3026 
3027 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3028 }
3029 
3030 #ifdef CONFIG_COMPAT
3031 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3032 			compat_pid_t, tgid,
3033 			compat_pid_t, pid,
3034 			int, sig,
3035 			struct compat_siginfo __user *, uinfo)
3036 {
3037 	siginfo_t info = {};
3038 
3039 	if (copy_siginfo_from_user32(&info, uinfo))
3040 		return -EFAULT;
3041 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3042 }
3043 #endif
3044 
3045 /*
3046  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3047  */
3048 void kernel_sigaction(int sig, __sighandler_t action)
3049 {
3050 	spin_lock_irq(&current->sighand->siglock);
3051 	current->sighand->action[sig - 1].sa.sa_handler = action;
3052 	if (action == SIG_IGN) {
3053 		sigset_t mask;
3054 
3055 		sigemptyset(&mask);
3056 		sigaddset(&mask, sig);
3057 
3058 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3059 		flush_sigqueue_mask(&mask, &current->pending);
3060 		recalc_sigpending();
3061 	}
3062 	spin_unlock_irq(&current->sighand->siglock);
3063 }
3064 EXPORT_SYMBOL(kernel_sigaction);
3065 
3066 void __weak sigaction_compat_abi(struct k_sigaction *act,
3067 		struct k_sigaction *oact)
3068 {
3069 }
3070 
3071 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3072 {
3073 	struct task_struct *p = current, *t;
3074 	struct k_sigaction *k;
3075 	sigset_t mask;
3076 
3077 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3078 		return -EINVAL;
3079 
3080 	k = &p->sighand->action[sig-1];
3081 
3082 	spin_lock_irq(&p->sighand->siglock);
3083 	if (oact)
3084 		*oact = *k;
3085 
3086 	sigaction_compat_abi(act, oact);
3087 
3088 	if (act) {
3089 		sigdelsetmask(&act->sa.sa_mask,
3090 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3091 		*k = *act;
3092 		/*
3093 		 * POSIX 3.3.1.3:
3094 		 *  "Setting a signal action to SIG_IGN for a signal that is
3095 		 *   pending shall cause the pending signal to be discarded,
3096 		 *   whether or not it is blocked."
3097 		 *
3098 		 *  "Setting a signal action to SIG_DFL for a signal that is
3099 		 *   pending and whose default action is to ignore the signal
3100 		 *   (for example, SIGCHLD), shall cause the pending signal to
3101 		 *   be discarded, whether or not it is blocked"
3102 		 */
3103 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3104 			sigemptyset(&mask);
3105 			sigaddset(&mask, sig);
3106 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3107 			for_each_thread(p, t)
3108 				flush_sigqueue_mask(&mask, &t->pending);
3109 		}
3110 	}
3111 
3112 	spin_unlock_irq(&p->sighand->siglock);
3113 	return 0;
3114 }
3115 
3116 static int
3117 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3118 {
3119 	stack_t oss;
3120 	int error;
3121 
3122 	oss.ss_sp = (void __user *) current->sas_ss_sp;
3123 	oss.ss_size = current->sas_ss_size;
3124 	oss.ss_flags = sas_ss_flags(sp) |
3125 		(current->sas_ss_flags & SS_FLAG_BITS);
3126 
3127 	if (uss) {
3128 		void __user *ss_sp;
3129 		size_t ss_size;
3130 		unsigned ss_flags;
3131 		int ss_mode;
3132 
3133 		error = -EFAULT;
3134 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3135 			goto out;
3136 		error = __get_user(ss_sp, &uss->ss_sp) |
3137 			__get_user(ss_flags, &uss->ss_flags) |
3138 			__get_user(ss_size, &uss->ss_size);
3139 		if (error)
3140 			goto out;
3141 
3142 		error = -EPERM;
3143 		if (on_sig_stack(sp))
3144 			goto out;
3145 
3146 		ss_mode = ss_flags & ~SS_FLAG_BITS;
3147 		error = -EINVAL;
3148 		if (ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3149 				ss_mode != 0)
3150 			goto out;
3151 
3152 		if (ss_mode == SS_DISABLE) {
3153 			ss_size = 0;
3154 			ss_sp = NULL;
3155 		} else {
3156 			error = -ENOMEM;
3157 			if (ss_size < MINSIGSTKSZ)
3158 				goto out;
3159 		}
3160 
3161 		current->sas_ss_sp = (unsigned long) ss_sp;
3162 		current->sas_ss_size = ss_size;
3163 		current->sas_ss_flags = ss_flags;
3164 	}
3165 
3166 	error = 0;
3167 	if (uoss) {
3168 		error = -EFAULT;
3169 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3170 			goto out;
3171 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3172 			__put_user(oss.ss_size, &uoss->ss_size) |
3173 			__put_user(oss.ss_flags, &uoss->ss_flags);
3174 	}
3175 
3176 out:
3177 	return error;
3178 }
3179 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3180 {
3181 	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3182 }
3183 
3184 int restore_altstack(const stack_t __user *uss)
3185 {
3186 	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3187 	/* squash all but EFAULT for now */
3188 	return err == -EFAULT ? err : 0;
3189 }
3190 
3191 int __save_altstack(stack_t __user *uss, unsigned long sp)
3192 {
3193 	struct task_struct *t = current;
3194 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3195 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3196 		__put_user(t->sas_ss_size, &uss->ss_size);
3197 	if (err)
3198 		return err;
3199 	if (t->sas_ss_flags & SS_AUTODISARM)
3200 		sas_ss_reset(t);
3201 	return 0;
3202 }
3203 
3204 #ifdef CONFIG_COMPAT
3205 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3206 			const compat_stack_t __user *, uss_ptr,
3207 			compat_stack_t __user *, uoss_ptr)
3208 {
3209 	stack_t uss, uoss;
3210 	int ret;
3211 	mm_segment_t seg;
3212 
3213 	if (uss_ptr) {
3214 		compat_stack_t uss32;
3215 
3216 		memset(&uss, 0, sizeof(stack_t));
3217 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3218 			return -EFAULT;
3219 		uss.ss_sp = compat_ptr(uss32.ss_sp);
3220 		uss.ss_flags = uss32.ss_flags;
3221 		uss.ss_size = uss32.ss_size;
3222 	}
3223 	seg = get_fs();
3224 	set_fs(KERNEL_DS);
3225 	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3226 			     (stack_t __force __user *) &uoss,
3227 			     compat_user_stack_pointer());
3228 	set_fs(seg);
3229 	if (ret >= 0 && uoss_ptr)  {
3230 		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3231 		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3232 		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3233 		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3234 			ret = -EFAULT;
3235 	}
3236 	return ret;
3237 }
3238 
3239 int compat_restore_altstack(const compat_stack_t __user *uss)
3240 {
3241 	int err = compat_sys_sigaltstack(uss, NULL);
3242 	/* squash all but -EFAULT for now */
3243 	return err == -EFAULT ? err : 0;
3244 }
3245 
3246 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3247 {
3248 	int err;
3249 	struct task_struct *t = current;
3250 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3251 			 &uss->ss_sp) |
3252 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3253 		__put_user(t->sas_ss_size, &uss->ss_size);
3254 	if (err)
3255 		return err;
3256 	if (t->sas_ss_flags & SS_AUTODISARM)
3257 		sas_ss_reset(t);
3258 	return 0;
3259 }
3260 #endif
3261 
3262 #ifdef __ARCH_WANT_SYS_SIGPENDING
3263 
3264 /**
3265  *  sys_sigpending - examine pending signals
3266  *  @set: where mask of pending signal is returned
3267  */
3268 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3269 {
3270 	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3271 }
3272 
3273 #endif
3274 
3275 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3276 /**
3277  *  sys_sigprocmask - examine and change blocked signals
3278  *  @how: whether to add, remove, or set signals
3279  *  @nset: signals to add or remove (if non-null)
3280  *  @oset: previous value of signal mask if non-null
3281  *
3282  * Some platforms have their own version with special arguments;
3283  * others support only sys_rt_sigprocmask.
3284  */
3285 
3286 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3287 		old_sigset_t __user *, oset)
3288 {
3289 	old_sigset_t old_set, new_set;
3290 	sigset_t new_blocked;
3291 
3292 	old_set = current->blocked.sig[0];
3293 
3294 	if (nset) {
3295 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3296 			return -EFAULT;
3297 
3298 		new_blocked = current->blocked;
3299 
3300 		switch (how) {
3301 		case SIG_BLOCK:
3302 			sigaddsetmask(&new_blocked, new_set);
3303 			break;
3304 		case SIG_UNBLOCK:
3305 			sigdelsetmask(&new_blocked, new_set);
3306 			break;
3307 		case SIG_SETMASK:
3308 			new_blocked.sig[0] = new_set;
3309 			break;
3310 		default:
3311 			return -EINVAL;
3312 		}
3313 
3314 		set_current_blocked(&new_blocked);
3315 	}
3316 
3317 	if (oset) {
3318 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3319 			return -EFAULT;
3320 	}
3321 
3322 	return 0;
3323 }
3324 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3325 
3326 #ifndef CONFIG_ODD_RT_SIGACTION
3327 /**
3328  *  sys_rt_sigaction - alter an action taken by a process
3329  *  @sig: signal to be sent
3330  *  @act: new sigaction
3331  *  @oact: used to save the previous sigaction
3332  *  @sigsetsize: size of sigset_t type
3333  */
3334 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3335 		const struct sigaction __user *, act,
3336 		struct sigaction __user *, oact,
3337 		size_t, sigsetsize)
3338 {
3339 	struct k_sigaction new_sa, old_sa;
3340 	int ret = -EINVAL;
3341 
3342 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3343 	if (sigsetsize != sizeof(sigset_t))
3344 		goto out;
3345 
3346 	if (act) {
3347 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3348 			return -EFAULT;
3349 	}
3350 
3351 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3352 
3353 	if (!ret && oact) {
3354 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3355 			return -EFAULT;
3356 	}
3357 out:
3358 	return ret;
3359 }
3360 #ifdef CONFIG_COMPAT
3361 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3362 		const struct compat_sigaction __user *, act,
3363 		struct compat_sigaction __user *, oact,
3364 		compat_size_t, sigsetsize)
3365 {
3366 	struct k_sigaction new_ka, old_ka;
3367 	compat_sigset_t mask;
3368 #ifdef __ARCH_HAS_SA_RESTORER
3369 	compat_uptr_t restorer;
3370 #endif
3371 	int ret;
3372 
3373 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3374 	if (sigsetsize != sizeof(compat_sigset_t))
3375 		return -EINVAL;
3376 
3377 	if (act) {
3378 		compat_uptr_t handler;
3379 		ret = get_user(handler, &act->sa_handler);
3380 		new_ka.sa.sa_handler = compat_ptr(handler);
3381 #ifdef __ARCH_HAS_SA_RESTORER
3382 		ret |= get_user(restorer, &act->sa_restorer);
3383 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3384 #endif
3385 		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3386 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3387 		if (ret)
3388 			return -EFAULT;
3389 		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3390 	}
3391 
3392 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3393 	if (!ret && oact) {
3394 		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3395 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3396 			       &oact->sa_handler);
3397 		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3398 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3399 #ifdef __ARCH_HAS_SA_RESTORER
3400 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3401 				&oact->sa_restorer);
3402 #endif
3403 	}
3404 	return ret;
3405 }
3406 #endif
3407 #endif /* !CONFIG_ODD_RT_SIGACTION */
3408 
3409 #ifdef CONFIG_OLD_SIGACTION
3410 SYSCALL_DEFINE3(sigaction, int, sig,
3411 		const struct old_sigaction __user *, act,
3412 	        struct old_sigaction __user *, oact)
3413 {
3414 	struct k_sigaction new_ka, old_ka;
3415 	int ret;
3416 
3417 	if (act) {
3418 		old_sigset_t mask;
3419 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3420 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3421 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3422 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3423 		    __get_user(mask, &act->sa_mask))
3424 			return -EFAULT;
3425 #ifdef __ARCH_HAS_KA_RESTORER
3426 		new_ka.ka_restorer = NULL;
3427 #endif
3428 		siginitset(&new_ka.sa.sa_mask, mask);
3429 	}
3430 
3431 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3432 
3433 	if (!ret && oact) {
3434 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3435 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3436 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3437 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3438 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3439 			return -EFAULT;
3440 	}
3441 
3442 	return ret;
3443 }
3444 #endif
3445 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3446 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3447 		const struct compat_old_sigaction __user *, act,
3448 	        struct compat_old_sigaction __user *, oact)
3449 {
3450 	struct k_sigaction new_ka, old_ka;
3451 	int ret;
3452 	compat_old_sigset_t mask;
3453 	compat_uptr_t handler, restorer;
3454 
3455 	if (act) {
3456 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3457 		    __get_user(handler, &act->sa_handler) ||
3458 		    __get_user(restorer, &act->sa_restorer) ||
3459 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3460 		    __get_user(mask, &act->sa_mask))
3461 			return -EFAULT;
3462 
3463 #ifdef __ARCH_HAS_KA_RESTORER
3464 		new_ka.ka_restorer = NULL;
3465 #endif
3466 		new_ka.sa.sa_handler = compat_ptr(handler);
3467 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3468 		siginitset(&new_ka.sa.sa_mask, mask);
3469 	}
3470 
3471 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3472 
3473 	if (!ret && oact) {
3474 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3475 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3476 			       &oact->sa_handler) ||
3477 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3478 			       &oact->sa_restorer) ||
3479 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3480 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3481 			return -EFAULT;
3482 	}
3483 	return ret;
3484 }
3485 #endif
3486 
3487 #ifdef CONFIG_SGETMASK_SYSCALL
3488 
3489 /*
3490  * For backwards compatibility.  Functionality superseded by sigprocmask.
3491  */
3492 SYSCALL_DEFINE0(sgetmask)
3493 {
3494 	/* SMP safe */
3495 	return current->blocked.sig[0];
3496 }
3497 
3498 SYSCALL_DEFINE1(ssetmask, int, newmask)
3499 {
3500 	int old = current->blocked.sig[0];
3501 	sigset_t newset;
3502 
3503 	siginitset(&newset, newmask);
3504 	set_current_blocked(&newset);
3505 
3506 	return old;
3507 }
3508 #endif /* CONFIG_SGETMASK_SYSCALL */
3509 
3510 #ifdef __ARCH_WANT_SYS_SIGNAL
3511 /*
3512  * For backwards compatibility.  Functionality superseded by sigaction.
3513  */
3514 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3515 {
3516 	struct k_sigaction new_sa, old_sa;
3517 	int ret;
3518 
3519 	new_sa.sa.sa_handler = handler;
3520 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3521 	sigemptyset(&new_sa.sa.sa_mask);
3522 
3523 	ret = do_sigaction(sig, &new_sa, &old_sa);
3524 
3525 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3526 }
3527 #endif /* __ARCH_WANT_SYS_SIGNAL */
3528 
3529 #ifdef __ARCH_WANT_SYS_PAUSE
3530 
3531 SYSCALL_DEFINE0(pause)
3532 {
3533 	while (!signal_pending(current)) {
3534 		__set_current_state(TASK_INTERRUPTIBLE);
3535 		schedule();
3536 	}
3537 	return -ERESTARTNOHAND;
3538 }
3539 
3540 #endif
3541 
3542 static int sigsuspend(sigset_t *set)
3543 {
3544 	current->saved_sigmask = current->blocked;
3545 	set_current_blocked(set);
3546 
3547 	while (!signal_pending(current)) {
3548 		__set_current_state(TASK_INTERRUPTIBLE);
3549 		schedule();
3550 	}
3551 	set_restore_sigmask();
3552 	return -ERESTARTNOHAND;
3553 }
3554 
3555 /**
3556  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3557  *	@unewset value until a signal is received
3558  *  @unewset: new signal mask value
3559  *  @sigsetsize: size of sigset_t type
3560  */
3561 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3562 {
3563 	sigset_t newset;
3564 
3565 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3566 	if (sigsetsize != sizeof(sigset_t))
3567 		return -EINVAL;
3568 
3569 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3570 		return -EFAULT;
3571 	return sigsuspend(&newset);
3572 }
3573 
3574 #ifdef CONFIG_COMPAT
3575 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3576 {
3577 #ifdef __BIG_ENDIAN
3578 	sigset_t newset;
3579 	compat_sigset_t newset32;
3580 
3581 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3582 	if (sigsetsize != sizeof(sigset_t))
3583 		return -EINVAL;
3584 
3585 	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3586 		return -EFAULT;
3587 	sigset_from_compat(&newset, &newset32);
3588 	return sigsuspend(&newset);
3589 #else
3590 	/* on little-endian bitmaps don't care about granularity */
3591 	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3592 #endif
3593 }
3594 #endif
3595 
3596 #ifdef CONFIG_OLD_SIGSUSPEND
3597 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3598 {
3599 	sigset_t blocked;
3600 	siginitset(&blocked, mask);
3601 	return sigsuspend(&blocked);
3602 }
3603 #endif
3604 #ifdef CONFIG_OLD_SIGSUSPEND3
3605 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3606 {
3607 	sigset_t blocked;
3608 	siginitset(&blocked, mask);
3609 	return sigsuspend(&blocked);
3610 }
3611 #endif
3612 
3613 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3614 {
3615 	return NULL;
3616 }
3617 
3618 void __init signals_init(void)
3619 {
3620 	/* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3621 	BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3622 		!= offsetof(struct siginfo, _sifields._pad));
3623 
3624 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3625 }
3626 
3627 #ifdef CONFIG_KGDB_KDB
3628 #include <linux/kdb.h>
3629 /*
3630  * kdb_send_sig_info - Allows kdb to send signals without exposing
3631  * signal internals.  This function checks if the required locks are
3632  * available before calling the main signal code, to avoid kdb
3633  * deadlocks.
3634  */
3635 void
3636 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3637 {
3638 	static struct task_struct *kdb_prev_t;
3639 	int sig, new_t;
3640 	if (!spin_trylock(&t->sighand->siglock)) {
3641 		kdb_printf("Can't do kill command now.\n"
3642 			   "The sigmask lock is held somewhere else in "
3643 			   "kernel, try again later\n");
3644 		return;
3645 	}
3646 	spin_unlock(&t->sighand->siglock);
3647 	new_t = kdb_prev_t != t;
3648 	kdb_prev_t = t;
3649 	if (t->state != TASK_RUNNING && new_t) {
3650 		kdb_printf("Process is not RUNNING, sending a signal from "
3651 			   "kdb risks deadlock\n"
3652 			   "on the run queue locks. "
3653 			   "The signal has _not_ been sent.\n"
3654 			   "Reissue the kill command if you want to risk "
3655 			   "the deadlock.\n");
3656 		return;
3657 	}
3658 	sig = info->si_signo;
3659 	if (send_sig_info(sig, info, t))
3660 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3661 			   sig, t->pid);
3662 	else
3663 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3664 }
3665 #endif	/* CONFIG_KGDB_KDB */
3666