1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/user.h> 18 #include <linux/sched/debug.h> 19 #include <linux/sched/task.h> 20 #include <linux/sched/task_stack.h> 21 #include <linux/sched/cputime.h> 22 #include <linux/fs.h> 23 #include <linux/tty.h> 24 #include <linux/binfmts.h> 25 #include <linux/coredump.h> 26 #include <linux/security.h> 27 #include <linux/syscalls.h> 28 #include <linux/ptrace.h> 29 #include <linux/signal.h> 30 #include <linux/signalfd.h> 31 #include <linux/ratelimit.h> 32 #include <linux/tracehook.h> 33 #include <linux/capability.h> 34 #include <linux/freezer.h> 35 #include <linux/pid_namespace.h> 36 #include <linux/nsproxy.h> 37 #include <linux/user_namespace.h> 38 #include <linux/uprobes.h> 39 #include <linux/compat.h> 40 #include <linux/cn_proc.h> 41 #include <linux/compiler.h> 42 #include <linux/posix-timers.h> 43 44 #define CREATE_TRACE_POINTS 45 #include <trace/events/signal.h> 46 47 #include <asm/param.h> 48 #include <linux/uaccess.h> 49 #include <asm/unistd.h> 50 #include <asm/siginfo.h> 51 #include <asm/cacheflush.h> 52 #include "audit.h" /* audit_signal_info() */ 53 54 /* 55 * SLAB caches for signal bits. 56 */ 57 58 static struct kmem_cache *sigqueue_cachep; 59 60 int print_fatal_signals __read_mostly; 61 62 static void __user *sig_handler(struct task_struct *t, int sig) 63 { 64 return t->sighand->action[sig - 1].sa.sa_handler; 65 } 66 67 static int sig_handler_ignored(void __user *handler, int sig) 68 { 69 /* Is it explicitly or implicitly ignored? */ 70 return handler == SIG_IGN || 71 (handler == SIG_DFL && sig_kernel_ignore(sig)); 72 } 73 74 static int sig_task_ignored(struct task_struct *t, int sig, bool force) 75 { 76 void __user *handler; 77 78 handler = sig_handler(t, sig); 79 80 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 81 handler == SIG_DFL && !force) 82 return 1; 83 84 return sig_handler_ignored(handler, sig); 85 } 86 87 static int sig_ignored(struct task_struct *t, int sig, bool force) 88 { 89 /* 90 * Blocked signals are never ignored, since the 91 * signal handler may change by the time it is 92 * unblocked. 93 */ 94 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 95 return 0; 96 97 if (!sig_task_ignored(t, sig, force)) 98 return 0; 99 100 /* 101 * Tracers may want to know about even ignored signals. 102 */ 103 return !t->ptrace; 104 } 105 106 /* 107 * Re-calculate pending state from the set of locally pending 108 * signals, globally pending signals, and blocked signals. 109 */ 110 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 111 { 112 unsigned long ready; 113 long i; 114 115 switch (_NSIG_WORDS) { 116 default: 117 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 118 ready |= signal->sig[i] &~ blocked->sig[i]; 119 break; 120 121 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 122 ready |= signal->sig[2] &~ blocked->sig[2]; 123 ready |= signal->sig[1] &~ blocked->sig[1]; 124 ready |= signal->sig[0] &~ blocked->sig[0]; 125 break; 126 127 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 128 ready |= signal->sig[0] &~ blocked->sig[0]; 129 break; 130 131 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 132 } 133 return ready != 0; 134 } 135 136 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 137 138 static int recalc_sigpending_tsk(struct task_struct *t) 139 { 140 if ((t->jobctl & JOBCTL_PENDING_MASK) || 141 PENDING(&t->pending, &t->blocked) || 142 PENDING(&t->signal->shared_pending, &t->blocked)) { 143 set_tsk_thread_flag(t, TIF_SIGPENDING); 144 return 1; 145 } 146 /* 147 * We must never clear the flag in another thread, or in current 148 * when it's possible the current syscall is returning -ERESTART*. 149 * So we don't clear it here, and only callers who know they should do. 150 */ 151 return 0; 152 } 153 154 /* 155 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 156 * This is superfluous when called on current, the wakeup is a harmless no-op. 157 */ 158 void recalc_sigpending_and_wake(struct task_struct *t) 159 { 160 if (recalc_sigpending_tsk(t)) 161 signal_wake_up(t, 0); 162 } 163 164 void recalc_sigpending(void) 165 { 166 if (!recalc_sigpending_tsk(current) && !freezing(current)) 167 clear_thread_flag(TIF_SIGPENDING); 168 169 } 170 171 /* Given the mask, find the first available signal that should be serviced. */ 172 173 #define SYNCHRONOUS_MASK \ 174 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 175 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 176 177 int next_signal(struct sigpending *pending, sigset_t *mask) 178 { 179 unsigned long i, *s, *m, x; 180 int sig = 0; 181 182 s = pending->signal.sig; 183 m = mask->sig; 184 185 /* 186 * Handle the first word specially: it contains the 187 * synchronous signals that need to be dequeued first. 188 */ 189 x = *s &~ *m; 190 if (x) { 191 if (x & SYNCHRONOUS_MASK) 192 x &= SYNCHRONOUS_MASK; 193 sig = ffz(~x) + 1; 194 return sig; 195 } 196 197 switch (_NSIG_WORDS) { 198 default: 199 for (i = 1; i < _NSIG_WORDS; ++i) { 200 x = *++s &~ *++m; 201 if (!x) 202 continue; 203 sig = ffz(~x) + i*_NSIG_BPW + 1; 204 break; 205 } 206 break; 207 208 case 2: 209 x = s[1] &~ m[1]; 210 if (!x) 211 break; 212 sig = ffz(~x) + _NSIG_BPW + 1; 213 break; 214 215 case 1: 216 /* Nothing to do */ 217 break; 218 } 219 220 return sig; 221 } 222 223 static inline void print_dropped_signal(int sig) 224 { 225 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 226 227 if (!print_fatal_signals) 228 return; 229 230 if (!__ratelimit(&ratelimit_state)) 231 return; 232 233 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 234 current->comm, current->pid, sig); 235 } 236 237 /** 238 * task_set_jobctl_pending - set jobctl pending bits 239 * @task: target task 240 * @mask: pending bits to set 241 * 242 * Clear @mask from @task->jobctl. @mask must be subset of 243 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 244 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 245 * cleared. If @task is already being killed or exiting, this function 246 * becomes noop. 247 * 248 * CONTEXT: 249 * Must be called with @task->sighand->siglock held. 250 * 251 * RETURNS: 252 * %true if @mask is set, %false if made noop because @task was dying. 253 */ 254 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 255 { 256 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 257 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 258 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 259 260 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 261 return false; 262 263 if (mask & JOBCTL_STOP_SIGMASK) 264 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 265 266 task->jobctl |= mask; 267 return true; 268 } 269 270 /** 271 * task_clear_jobctl_trapping - clear jobctl trapping bit 272 * @task: target task 273 * 274 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 275 * Clear it and wake up the ptracer. Note that we don't need any further 276 * locking. @task->siglock guarantees that @task->parent points to the 277 * ptracer. 278 * 279 * CONTEXT: 280 * Must be called with @task->sighand->siglock held. 281 */ 282 void task_clear_jobctl_trapping(struct task_struct *task) 283 { 284 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 285 task->jobctl &= ~JOBCTL_TRAPPING; 286 smp_mb(); /* advised by wake_up_bit() */ 287 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 288 } 289 } 290 291 /** 292 * task_clear_jobctl_pending - clear jobctl pending bits 293 * @task: target task 294 * @mask: pending bits to clear 295 * 296 * Clear @mask from @task->jobctl. @mask must be subset of 297 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 298 * STOP bits are cleared together. 299 * 300 * If clearing of @mask leaves no stop or trap pending, this function calls 301 * task_clear_jobctl_trapping(). 302 * 303 * CONTEXT: 304 * Must be called with @task->sighand->siglock held. 305 */ 306 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 307 { 308 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 309 310 if (mask & JOBCTL_STOP_PENDING) 311 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 312 313 task->jobctl &= ~mask; 314 315 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 316 task_clear_jobctl_trapping(task); 317 } 318 319 /** 320 * task_participate_group_stop - participate in a group stop 321 * @task: task participating in a group stop 322 * 323 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 324 * Group stop states are cleared and the group stop count is consumed if 325 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 326 * stop, the appropriate %SIGNAL_* flags are set. 327 * 328 * CONTEXT: 329 * Must be called with @task->sighand->siglock held. 330 * 331 * RETURNS: 332 * %true if group stop completion should be notified to the parent, %false 333 * otherwise. 334 */ 335 static bool task_participate_group_stop(struct task_struct *task) 336 { 337 struct signal_struct *sig = task->signal; 338 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 339 340 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 341 342 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 343 344 if (!consume) 345 return false; 346 347 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 348 sig->group_stop_count--; 349 350 /* 351 * Tell the caller to notify completion iff we are entering into a 352 * fresh group stop. Read comment in do_signal_stop() for details. 353 */ 354 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 355 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 356 return true; 357 } 358 return false; 359 } 360 361 /* 362 * allocate a new signal queue record 363 * - this may be called without locks if and only if t == current, otherwise an 364 * appropriate lock must be held to stop the target task from exiting 365 */ 366 static struct sigqueue * 367 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 368 { 369 struct sigqueue *q = NULL; 370 struct user_struct *user; 371 372 /* 373 * Protect access to @t credentials. This can go away when all 374 * callers hold rcu read lock. 375 */ 376 rcu_read_lock(); 377 user = get_uid(__task_cred(t)->user); 378 atomic_inc(&user->sigpending); 379 rcu_read_unlock(); 380 381 if (override_rlimit || 382 atomic_read(&user->sigpending) <= 383 task_rlimit(t, RLIMIT_SIGPENDING)) { 384 q = kmem_cache_alloc(sigqueue_cachep, flags); 385 } else { 386 print_dropped_signal(sig); 387 } 388 389 if (unlikely(q == NULL)) { 390 atomic_dec(&user->sigpending); 391 free_uid(user); 392 } else { 393 INIT_LIST_HEAD(&q->list); 394 q->flags = 0; 395 q->user = user; 396 } 397 398 return q; 399 } 400 401 static void __sigqueue_free(struct sigqueue *q) 402 { 403 if (q->flags & SIGQUEUE_PREALLOC) 404 return; 405 atomic_dec(&q->user->sigpending); 406 free_uid(q->user); 407 kmem_cache_free(sigqueue_cachep, q); 408 } 409 410 void flush_sigqueue(struct sigpending *queue) 411 { 412 struct sigqueue *q; 413 414 sigemptyset(&queue->signal); 415 while (!list_empty(&queue->list)) { 416 q = list_entry(queue->list.next, struct sigqueue , list); 417 list_del_init(&q->list); 418 __sigqueue_free(q); 419 } 420 } 421 422 /* 423 * Flush all pending signals for this kthread. 424 */ 425 void flush_signals(struct task_struct *t) 426 { 427 unsigned long flags; 428 429 spin_lock_irqsave(&t->sighand->siglock, flags); 430 clear_tsk_thread_flag(t, TIF_SIGPENDING); 431 flush_sigqueue(&t->pending); 432 flush_sigqueue(&t->signal->shared_pending); 433 spin_unlock_irqrestore(&t->sighand->siglock, flags); 434 } 435 436 #ifdef CONFIG_POSIX_TIMERS 437 static void __flush_itimer_signals(struct sigpending *pending) 438 { 439 sigset_t signal, retain; 440 struct sigqueue *q, *n; 441 442 signal = pending->signal; 443 sigemptyset(&retain); 444 445 list_for_each_entry_safe(q, n, &pending->list, list) { 446 int sig = q->info.si_signo; 447 448 if (likely(q->info.si_code != SI_TIMER)) { 449 sigaddset(&retain, sig); 450 } else { 451 sigdelset(&signal, sig); 452 list_del_init(&q->list); 453 __sigqueue_free(q); 454 } 455 } 456 457 sigorsets(&pending->signal, &signal, &retain); 458 } 459 460 void flush_itimer_signals(void) 461 { 462 struct task_struct *tsk = current; 463 unsigned long flags; 464 465 spin_lock_irqsave(&tsk->sighand->siglock, flags); 466 __flush_itimer_signals(&tsk->pending); 467 __flush_itimer_signals(&tsk->signal->shared_pending); 468 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 469 } 470 #endif 471 472 void ignore_signals(struct task_struct *t) 473 { 474 int i; 475 476 for (i = 0; i < _NSIG; ++i) 477 t->sighand->action[i].sa.sa_handler = SIG_IGN; 478 479 flush_signals(t); 480 } 481 482 /* 483 * Flush all handlers for a task. 484 */ 485 486 void 487 flush_signal_handlers(struct task_struct *t, int force_default) 488 { 489 int i; 490 struct k_sigaction *ka = &t->sighand->action[0]; 491 for (i = _NSIG ; i != 0 ; i--) { 492 if (force_default || ka->sa.sa_handler != SIG_IGN) 493 ka->sa.sa_handler = SIG_DFL; 494 ka->sa.sa_flags = 0; 495 #ifdef __ARCH_HAS_SA_RESTORER 496 ka->sa.sa_restorer = NULL; 497 #endif 498 sigemptyset(&ka->sa.sa_mask); 499 ka++; 500 } 501 } 502 503 int unhandled_signal(struct task_struct *tsk, int sig) 504 { 505 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 506 if (is_global_init(tsk)) 507 return 1; 508 if (handler != SIG_IGN && handler != SIG_DFL) 509 return 0; 510 /* if ptraced, let the tracer determine */ 511 return !tsk->ptrace; 512 } 513 514 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) 515 { 516 struct sigqueue *q, *first = NULL; 517 518 /* 519 * Collect the siginfo appropriate to this signal. Check if 520 * there is another siginfo for the same signal. 521 */ 522 list_for_each_entry(q, &list->list, list) { 523 if (q->info.si_signo == sig) { 524 if (first) 525 goto still_pending; 526 first = q; 527 } 528 } 529 530 sigdelset(&list->signal, sig); 531 532 if (first) { 533 still_pending: 534 list_del_init(&first->list); 535 copy_siginfo(info, &first->info); 536 __sigqueue_free(first); 537 } else { 538 /* 539 * Ok, it wasn't in the queue. This must be 540 * a fast-pathed signal or we must have been 541 * out of queue space. So zero out the info. 542 */ 543 info->si_signo = sig; 544 info->si_errno = 0; 545 info->si_code = SI_USER; 546 info->si_pid = 0; 547 info->si_uid = 0; 548 } 549 } 550 551 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 552 siginfo_t *info) 553 { 554 int sig = next_signal(pending, mask); 555 556 if (sig) 557 collect_signal(sig, pending, info); 558 return sig; 559 } 560 561 /* 562 * Dequeue a signal and return the element to the caller, which is 563 * expected to free it. 564 * 565 * All callers have to hold the siglock. 566 */ 567 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 568 { 569 int signr; 570 571 /* We only dequeue private signals from ourselves, we don't let 572 * signalfd steal them 573 */ 574 signr = __dequeue_signal(&tsk->pending, mask, info); 575 if (!signr) { 576 signr = __dequeue_signal(&tsk->signal->shared_pending, 577 mask, info); 578 #ifdef CONFIG_POSIX_TIMERS 579 /* 580 * itimer signal ? 581 * 582 * itimers are process shared and we restart periodic 583 * itimers in the signal delivery path to prevent DoS 584 * attacks in the high resolution timer case. This is 585 * compliant with the old way of self-restarting 586 * itimers, as the SIGALRM is a legacy signal and only 587 * queued once. Changing the restart behaviour to 588 * restart the timer in the signal dequeue path is 589 * reducing the timer noise on heavy loaded !highres 590 * systems too. 591 */ 592 if (unlikely(signr == SIGALRM)) { 593 struct hrtimer *tmr = &tsk->signal->real_timer; 594 595 if (!hrtimer_is_queued(tmr) && 596 tsk->signal->it_real_incr != 0) { 597 hrtimer_forward(tmr, tmr->base->get_time(), 598 tsk->signal->it_real_incr); 599 hrtimer_restart(tmr); 600 } 601 } 602 #endif 603 } 604 605 recalc_sigpending(); 606 if (!signr) 607 return 0; 608 609 if (unlikely(sig_kernel_stop(signr))) { 610 /* 611 * Set a marker that we have dequeued a stop signal. Our 612 * caller might release the siglock and then the pending 613 * stop signal it is about to process is no longer in the 614 * pending bitmasks, but must still be cleared by a SIGCONT 615 * (and overruled by a SIGKILL). So those cases clear this 616 * shared flag after we've set it. Note that this flag may 617 * remain set after the signal we return is ignored or 618 * handled. That doesn't matter because its only purpose 619 * is to alert stop-signal processing code when another 620 * processor has come along and cleared the flag. 621 */ 622 current->jobctl |= JOBCTL_STOP_DEQUEUED; 623 } 624 #ifdef CONFIG_POSIX_TIMERS 625 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { 626 /* 627 * Release the siglock to ensure proper locking order 628 * of timer locks outside of siglocks. Note, we leave 629 * irqs disabled here, since the posix-timers code is 630 * about to disable them again anyway. 631 */ 632 spin_unlock(&tsk->sighand->siglock); 633 posixtimer_rearm(info); 634 spin_lock(&tsk->sighand->siglock); 635 } 636 #endif 637 return signr; 638 } 639 640 /* 641 * Tell a process that it has a new active signal.. 642 * 643 * NOTE! we rely on the previous spin_lock to 644 * lock interrupts for us! We can only be called with 645 * "siglock" held, and the local interrupt must 646 * have been disabled when that got acquired! 647 * 648 * No need to set need_resched since signal event passing 649 * goes through ->blocked 650 */ 651 void signal_wake_up_state(struct task_struct *t, unsigned int state) 652 { 653 set_tsk_thread_flag(t, TIF_SIGPENDING); 654 /* 655 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 656 * case. We don't check t->state here because there is a race with it 657 * executing another processor and just now entering stopped state. 658 * By using wake_up_state, we ensure the process will wake up and 659 * handle its death signal. 660 */ 661 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 662 kick_process(t); 663 } 664 665 /* 666 * Remove signals in mask from the pending set and queue. 667 * Returns 1 if any signals were found. 668 * 669 * All callers must be holding the siglock. 670 */ 671 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 672 { 673 struct sigqueue *q, *n; 674 sigset_t m; 675 676 sigandsets(&m, mask, &s->signal); 677 if (sigisemptyset(&m)) 678 return 0; 679 680 sigandnsets(&s->signal, &s->signal, mask); 681 list_for_each_entry_safe(q, n, &s->list, list) { 682 if (sigismember(mask, q->info.si_signo)) { 683 list_del_init(&q->list); 684 __sigqueue_free(q); 685 } 686 } 687 return 1; 688 } 689 690 static inline int is_si_special(const struct siginfo *info) 691 { 692 return info <= SEND_SIG_FORCED; 693 } 694 695 static inline bool si_fromuser(const struct siginfo *info) 696 { 697 return info == SEND_SIG_NOINFO || 698 (!is_si_special(info) && SI_FROMUSER(info)); 699 } 700 701 /* 702 * called with RCU read lock from check_kill_permission() 703 */ 704 static int kill_ok_by_cred(struct task_struct *t) 705 { 706 const struct cred *cred = current_cred(); 707 const struct cred *tcred = __task_cred(t); 708 709 if (uid_eq(cred->euid, tcred->suid) || 710 uid_eq(cred->euid, tcred->uid) || 711 uid_eq(cred->uid, tcred->suid) || 712 uid_eq(cred->uid, tcred->uid)) 713 return 1; 714 715 if (ns_capable(tcred->user_ns, CAP_KILL)) 716 return 1; 717 718 return 0; 719 } 720 721 /* 722 * Bad permissions for sending the signal 723 * - the caller must hold the RCU read lock 724 */ 725 static int check_kill_permission(int sig, struct siginfo *info, 726 struct task_struct *t) 727 { 728 struct pid *sid; 729 int error; 730 731 if (!valid_signal(sig)) 732 return -EINVAL; 733 734 if (!si_fromuser(info)) 735 return 0; 736 737 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 738 if (error) 739 return error; 740 741 if (!same_thread_group(current, t) && 742 !kill_ok_by_cred(t)) { 743 switch (sig) { 744 case SIGCONT: 745 sid = task_session(t); 746 /* 747 * We don't return the error if sid == NULL. The 748 * task was unhashed, the caller must notice this. 749 */ 750 if (!sid || sid == task_session(current)) 751 break; 752 default: 753 return -EPERM; 754 } 755 } 756 757 return security_task_kill(t, info, sig, 0); 758 } 759 760 /** 761 * ptrace_trap_notify - schedule trap to notify ptracer 762 * @t: tracee wanting to notify tracer 763 * 764 * This function schedules sticky ptrace trap which is cleared on the next 765 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 766 * ptracer. 767 * 768 * If @t is running, STOP trap will be taken. If trapped for STOP and 769 * ptracer is listening for events, tracee is woken up so that it can 770 * re-trap for the new event. If trapped otherwise, STOP trap will be 771 * eventually taken without returning to userland after the existing traps 772 * are finished by PTRACE_CONT. 773 * 774 * CONTEXT: 775 * Must be called with @task->sighand->siglock held. 776 */ 777 static void ptrace_trap_notify(struct task_struct *t) 778 { 779 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 780 assert_spin_locked(&t->sighand->siglock); 781 782 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 783 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 784 } 785 786 /* 787 * Handle magic process-wide effects of stop/continue signals. Unlike 788 * the signal actions, these happen immediately at signal-generation 789 * time regardless of blocking, ignoring, or handling. This does the 790 * actual continuing for SIGCONT, but not the actual stopping for stop 791 * signals. The process stop is done as a signal action for SIG_DFL. 792 * 793 * Returns true if the signal should be actually delivered, otherwise 794 * it should be dropped. 795 */ 796 static bool prepare_signal(int sig, struct task_struct *p, bool force) 797 { 798 struct signal_struct *signal = p->signal; 799 struct task_struct *t; 800 sigset_t flush; 801 802 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 803 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 804 return sig == SIGKILL; 805 /* 806 * The process is in the middle of dying, nothing to do. 807 */ 808 } else if (sig_kernel_stop(sig)) { 809 /* 810 * This is a stop signal. Remove SIGCONT from all queues. 811 */ 812 siginitset(&flush, sigmask(SIGCONT)); 813 flush_sigqueue_mask(&flush, &signal->shared_pending); 814 for_each_thread(p, t) 815 flush_sigqueue_mask(&flush, &t->pending); 816 } else if (sig == SIGCONT) { 817 unsigned int why; 818 /* 819 * Remove all stop signals from all queues, wake all threads. 820 */ 821 siginitset(&flush, SIG_KERNEL_STOP_MASK); 822 flush_sigqueue_mask(&flush, &signal->shared_pending); 823 for_each_thread(p, t) { 824 flush_sigqueue_mask(&flush, &t->pending); 825 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 826 if (likely(!(t->ptrace & PT_SEIZED))) 827 wake_up_state(t, __TASK_STOPPED); 828 else 829 ptrace_trap_notify(t); 830 } 831 832 /* 833 * Notify the parent with CLD_CONTINUED if we were stopped. 834 * 835 * If we were in the middle of a group stop, we pretend it 836 * was already finished, and then continued. Since SIGCHLD 837 * doesn't queue we report only CLD_STOPPED, as if the next 838 * CLD_CONTINUED was dropped. 839 */ 840 why = 0; 841 if (signal->flags & SIGNAL_STOP_STOPPED) 842 why |= SIGNAL_CLD_CONTINUED; 843 else if (signal->group_stop_count) 844 why |= SIGNAL_CLD_STOPPED; 845 846 if (why) { 847 /* 848 * The first thread which returns from do_signal_stop() 849 * will take ->siglock, notice SIGNAL_CLD_MASK, and 850 * notify its parent. See get_signal_to_deliver(). 851 */ 852 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 853 signal->group_stop_count = 0; 854 signal->group_exit_code = 0; 855 } 856 } 857 858 return !sig_ignored(p, sig, force); 859 } 860 861 /* 862 * Test if P wants to take SIG. After we've checked all threads with this, 863 * it's equivalent to finding no threads not blocking SIG. Any threads not 864 * blocking SIG were ruled out because they are not running and already 865 * have pending signals. Such threads will dequeue from the shared queue 866 * as soon as they're available, so putting the signal on the shared queue 867 * will be equivalent to sending it to one such thread. 868 */ 869 static inline int wants_signal(int sig, struct task_struct *p) 870 { 871 if (sigismember(&p->blocked, sig)) 872 return 0; 873 if (p->flags & PF_EXITING) 874 return 0; 875 if (sig == SIGKILL) 876 return 1; 877 if (task_is_stopped_or_traced(p)) 878 return 0; 879 return task_curr(p) || !signal_pending(p); 880 } 881 882 static void complete_signal(int sig, struct task_struct *p, int group) 883 { 884 struct signal_struct *signal = p->signal; 885 struct task_struct *t; 886 887 /* 888 * Now find a thread we can wake up to take the signal off the queue. 889 * 890 * If the main thread wants the signal, it gets first crack. 891 * Probably the least surprising to the average bear. 892 */ 893 if (wants_signal(sig, p)) 894 t = p; 895 else if (!group || thread_group_empty(p)) 896 /* 897 * There is just one thread and it does not need to be woken. 898 * It will dequeue unblocked signals before it runs again. 899 */ 900 return; 901 else { 902 /* 903 * Otherwise try to find a suitable thread. 904 */ 905 t = signal->curr_target; 906 while (!wants_signal(sig, t)) { 907 t = next_thread(t); 908 if (t == signal->curr_target) 909 /* 910 * No thread needs to be woken. 911 * Any eligible threads will see 912 * the signal in the queue soon. 913 */ 914 return; 915 } 916 signal->curr_target = t; 917 } 918 919 /* 920 * Found a killable thread. If the signal will be fatal, 921 * then start taking the whole group down immediately. 922 */ 923 if (sig_fatal(p, sig) && 924 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 925 !sigismember(&t->real_blocked, sig) && 926 (sig == SIGKILL || !t->ptrace)) { 927 /* 928 * This signal will be fatal to the whole group. 929 */ 930 if (!sig_kernel_coredump(sig)) { 931 /* 932 * Start a group exit and wake everybody up. 933 * This way we don't have other threads 934 * running and doing things after a slower 935 * thread has the fatal signal pending. 936 */ 937 signal->flags = SIGNAL_GROUP_EXIT; 938 signal->group_exit_code = sig; 939 signal->group_stop_count = 0; 940 t = p; 941 do { 942 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 943 sigaddset(&t->pending.signal, SIGKILL); 944 signal_wake_up(t, 1); 945 } while_each_thread(p, t); 946 return; 947 } 948 } 949 950 /* 951 * The signal is already in the shared-pending queue. 952 * Tell the chosen thread to wake up and dequeue it. 953 */ 954 signal_wake_up(t, sig == SIGKILL); 955 return; 956 } 957 958 static inline int legacy_queue(struct sigpending *signals, int sig) 959 { 960 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 961 } 962 963 #ifdef CONFIG_USER_NS 964 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 965 { 966 if (current_user_ns() == task_cred_xxx(t, user_ns)) 967 return; 968 969 if (SI_FROMKERNEL(info)) 970 return; 971 972 rcu_read_lock(); 973 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), 974 make_kuid(current_user_ns(), info->si_uid)); 975 rcu_read_unlock(); 976 } 977 #else 978 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 979 { 980 return; 981 } 982 #endif 983 984 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 985 int group, int from_ancestor_ns) 986 { 987 struct sigpending *pending; 988 struct sigqueue *q; 989 int override_rlimit; 990 int ret = 0, result; 991 992 assert_spin_locked(&t->sighand->siglock); 993 994 result = TRACE_SIGNAL_IGNORED; 995 if (!prepare_signal(sig, t, 996 from_ancestor_ns || (info == SEND_SIG_FORCED))) 997 goto ret; 998 999 pending = group ? &t->signal->shared_pending : &t->pending; 1000 /* 1001 * Short-circuit ignored signals and support queuing 1002 * exactly one non-rt signal, so that we can get more 1003 * detailed information about the cause of the signal. 1004 */ 1005 result = TRACE_SIGNAL_ALREADY_PENDING; 1006 if (legacy_queue(pending, sig)) 1007 goto ret; 1008 1009 result = TRACE_SIGNAL_DELIVERED; 1010 /* 1011 * fast-pathed signals for kernel-internal things like SIGSTOP 1012 * or SIGKILL. 1013 */ 1014 if (info == SEND_SIG_FORCED) 1015 goto out_set; 1016 1017 /* 1018 * Real-time signals must be queued if sent by sigqueue, or 1019 * some other real-time mechanism. It is implementation 1020 * defined whether kill() does so. We attempt to do so, on 1021 * the principle of least surprise, but since kill is not 1022 * allowed to fail with EAGAIN when low on memory we just 1023 * make sure at least one signal gets delivered and don't 1024 * pass on the info struct. 1025 */ 1026 if (sig < SIGRTMIN) 1027 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1028 else 1029 override_rlimit = 0; 1030 1031 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, 1032 override_rlimit); 1033 if (q) { 1034 list_add_tail(&q->list, &pending->list); 1035 switch ((unsigned long) info) { 1036 case (unsigned long) SEND_SIG_NOINFO: 1037 q->info.si_signo = sig; 1038 q->info.si_errno = 0; 1039 q->info.si_code = SI_USER; 1040 q->info.si_pid = task_tgid_nr_ns(current, 1041 task_active_pid_ns(t)); 1042 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1043 break; 1044 case (unsigned long) SEND_SIG_PRIV: 1045 q->info.si_signo = sig; 1046 q->info.si_errno = 0; 1047 q->info.si_code = SI_KERNEL; 1048 q->info.si_pid = 0; 1049 q->info.si_uid = 0; 1050 break; 1051 default: 1052 copy_siginfo(&q->info, info); 1053 if (from_ancestor_ns) 1054 q->info.si_pid = 0; 1055 break; 1056 } 1057 1058 userns_fixup_signal_uid(&q->info, t); 1059 1060 } else if (!is_si_special(info)) { 1061 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1062 /* 1063 * Queue overflow, abort. We may abort if the 1064 * signal was rt and sent by user using something 1065 * other than kill(). 1066 */ 1067 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1068 ret = -EAGAIN; 1069 goto ret; 1070 } else { 1071 /* 1072 * This is a silent loss of information. We still 1073 * send the signal, but the *info bits are lost. 1074 */ 1075 result = TRACE_SIGNAL_LOSE_INFO; 1076 } 1077 } 1078 1079 out_set: 1080 signalfd_notify(t, sig); 1081 sigaddset(&pending->signal, sig); 1082 complete_signal(sig, t, group); 1083 ret: 1084 trace_signal_generate(sig, info, t, group, result); 1085 return ret; 1086 } 1087 1088 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 1089 int group) 1090 { 1091 int from_ancestor_ns = 0; 1092 1093 #ifdef CONFIG_PID_NS 1094 from_ancestor_ns = si_fromuser(info) && 1095 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1096 #endif 1097 1098 return __send_signal(sig, info, t, group, from_ancestor_ns); 1099 } 1100 1101 static void print_fatal_signal(int signr) 1102 { 1103 struct pt_regs *regs = signal_pt_regs(); 1104 pr_info("potentially unexpected fatal signal %d.\n", signr); 1105 1106 #if defined(__i386__) && !defined(__arch_um__) 1107 pr_info("code at %08lx: ", regs->ip); 1108 { 1109 int i; 1110 for (i = 0; i < 16; i++) { 1111 unsigned char insn; 1112 1113 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1114 break; 1115 pr_cont("%02x ", insn); 1116 } 1117 } 1118 pr_cont("\n"); 1119 #endif 1120 preempt_disable(); 1121 show_regs(regs); 1122 preempt_enable(); 1123 } 1124 1125 static int __init setup_print_fatal_signals(char *str) 1126 { 1127 get_option (&str, &print_fatal_signals); 1128 1129 return 1; 1130 } 1131 1132 __setup("print-fatal-signals=", setup_print_fatal_signals); 1133 1134 int 1135 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1136 { 1137 return send_signal(sig, info, p, 1); 1138 } 1139 1140 static int 1141 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1142 { 1143 return send_signal(sig, info, t, 0); 1144 } 1145 1146 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1147 bool group) 1148 { 1149 unsigned long flags; 1150 int ret = -ESRCH; 1151 1152 if (lock_task_sighand(p, &flags)) { 1153 ret = send_signal(sig, info, p, group); 1154 unlock_task_sighand(p, &flags); 1155 } 1156 1157 return ret; 1158 } 1159 1160 /* 1161 * Force a signal that the process can't ignore: if necessary 1162 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1163 * 1164 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1165 * since we do not want to have a signal handler that was blocked 1166 * be invoked when user space had explicitly blocked it. 1167 * 1168 * We don't want to have recursive SIGSEGV's etc, for example, 1169 * that is why we also clear SIGNAL_UNKILLABLE. 1170 */ 1171 int 1172 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1173 { 1174 unsigned long int flags; 1175 int ret, blocked, ignored; 1176 struct k_sigaction *action; 1177 1178 spin_lock_irqsave(&t->sighand->siglock, flags); 1179 action = &t->sighand->action[sig-1]; 1180 ignored = action->sa.sa_handler == SIG_IGN; 1181 blocked = sigismember(&t->blocked, sig); 1182 if (blocked || ignored) { 1183 action->sa.sa_handler = SIG_DFL; 1184 if (blocked) { 1185 sigdelset(&t->blocked, sig); 1186 recalc_sigpending_and_wake(t); 1187 } 1188 } 1189 if (action->sa.sa_handler == SIG_DFL) 1190 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1191 ret = specific_send_sig_info(sig, info, t); 1192 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1193 1194 return ret; 1195 } 1196 1197 /* 1198 * Nuke all other threads in the group. 1199 */ 1200 int zap_other_threads(struct task_struct *p) 1201 { 1202 struct task_struct *t = p; 1203 int count = 0; 1204 1205 p->signal->group_stop_count = 0; 1206 1207 while_each_thread(p, t) { 1208 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1209 count++; 1210 1211 /* Don't bother with already dead threads */ 1212 if (t->exit_state) 1213 continue; 1214 sigaddset(&t->pending.signal, SIGKILL); 1215 signal_wake_up(t, 1); 1216 } 1217 1218 return count; 1219 } 1220 1221 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1222 unsigned long *flags) 1223 { 1224 struct sighand_struct *sighand; 1225 1226 for (;;) { 1227 /* 1228 * Disable interrupts early to avoid deadlocks. 1229 * See rcu_read_unlock() comment header for details. 1230 */ 1231 local_irq_save(*flags); 1232 rcu_read_lock(); 1233 sighand = rcu_dereference(tsk->sighand); 1234 if (unlikely(sighand == NULL)) { 1235 rcu_read_unlock(); 1236 local_irq_restore(*flags); 1237 break; 1238 } 1239 /* 1240 * This sighand can be already freed and even reused, but 1241 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1242 * initializes ->siglock: this slab can't go away, it has 1243 * the same object type, ->siglock can't be reinitialized. 1244 * 1245 * We need to ensure that tsk->sighand is still the same 1246 * after we take the lock, we can race with de_thread() or 1247 * __exit_signal(). In the latter case the next iteration 1248 * must see ->sighand == NULL. 1249 */ 1250 spin_lock(&sighand->siglock); 1251 if (likely(sighand == tsk->sighand)) { 1252 rcu_read_unlock(); 1253 break; 1254 } 1255 spin_unlock(&sighand->siglock); 1256 rcu_read_unlock(); 1257 local_irq_restore(*flags); 1258 } 1259 1260 return sighand; 1261 } 1262 1263 /* 1264 * send signal info to all the members of a group 1265 */ 1266 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1267 { 1268 int ret; 1269 1270 rcu_read_lock(); 1271 ret = check_kill_permission(sig, info, p); 1272 rcu_read_unlock(); 1273 1274 if (!ret && sig) 1275 ret = do_send_sig_info(sig, info, p, true); 1276 1277 return ret; 1278 } 1279 1280 /* 1281 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1282 * control characters do (^C, ^Z etc) 1283 * - the caller must hold at least a readlock on tasklist_lock 1284 */ 1285 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1286 { 1287 struct task_struct *p = NULL; 1288 int retval, success; 1289 1290 success = 0; 1291 retval = -ESRCH; 1292 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1293 int err = group_send_sig_info(sig, info, p); 1294 success |= !err; 1295 retval = err; 1296 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1297 return success ? 0 : retval; 1298 } 1299 1300 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1301 { 1302 int error = -ESRCH; 1303 struct task_struct *p; 1304 1305 for (;;) { 1306 rcu_read_lock(); 1307 p = pid_task(pid, PIDTYPE_PID); 1308 if (p) 1309 error = group_send_sig_info(sig, info, p); 1310 rcu_read_unlock(); 1311 if (likely(!p || error != -ESRCH)) 1312 return error; 1313 1314 /* 1315 * The task was unhashed in between, try again. If it 1316 * is dead, pid_task() will return NULL, if we race with 1317 * de_thread() it will find the new leader. 1318 */ 1319 } 1320 } 1321 1322 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1323 { 1324 int error; 1325 rcu_read_lock(); 1326 error = kill_pid_info(sig, info, find_vpid(pid)); 1327 rcu_read_unlock(); 1328 return error; 1329 } 1330 1331 static int kill_as_cred_perm(const struct cred *cred, 1332 struct task_struct *target) 1333 { 1334 const struct cred *pcred = __task_cred(target); 1335 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) && 1336 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid)) 1337 return 0; 1338 return 1; 1339 } 1340 1341 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1342 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, 1343 const struct cred *cred, u32 secid) 1344 { 1345 int ret = -EINVAL; 1346 struct task_struct *p; 1347 unsigned long flags; 1348 1349 if (!valid_signal(sig)) 1350 return ret; 1351 1352 rcu_read_lock(); 1353 p = pid_task(pid, PIDTYPE_PID); 1354 if (!p) { 1355 ret = -ESRCH; 1356 goto out_unlock; 1357 } 1358 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1359 ret = -EPERM; 1360 goto out_unlock; 1361 } 1362 ret = security_task_kill(p, info, sig, secid); 1363 if (ret) 1364 goto out_unlock; 1365 1366 if (sig) { 1367 if (lock_task_sighand(p, &flags)) { 1368 ret = __send_signal(sig, info, p, 1, 0); 1369 unlock_task_sighand(p, &flags); 1370 } else 1371 ret = -ESRCH; 1372 } 1373 out_unlock: 1374 rcu_read_unlock(); 1375 return ret; 1376 } 1377 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1378 1379 /* 1380 * kill_something_info() interprets pid in interesting ways just like kill(2). 1381 * 1382 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1383 * is probably wrong. Should make it like BSD or SYSV. 1384 */ 1385 1386 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1387 { 1388 int ret; 1389 1390 if (pid > 0) { 1391 rcu_read_lock(); 1392 ret = kill_pid_info(sig, info, find_vpid(pid)); 1393 rcu_read_unlock(); 1394 return ret; 1395 } 1396 1397 read_lock(&tasklist_lock); 1398 if (pid != -1) { 1399 ret = __kill_pgrp_info(sig, info, 1400 pid ? find_vpid(-pid) : task_pgrp(current)); 1401 } else { 1402 int retval = 0, count = 0; 1403 struct task_struct * p; 1404 1405 for_each_process(p) { 1406 if (task_pid_vnr(p) > 1 && 1407 !same_thread_group(p, current)) { 1408 int err = group_send_sig_info(sig, info, p); 1409 ++count; 1410 if (err != -EPERM) 1411 retval = err; 1412 } 1413 } 1414 ret = count ? retval : -ESRCH; 1415 } 1416 read_unlock(&tasklist_lock); 1417 1418 return ret; 1419 } 1420 1421 /* 1422 * These are for backward compatibility with the rest of the kernel source. 1423 */ 1424 1425 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1426 { 1427 /* 1428 * Make sure legacy kernel users don't send in bad values 1429 * (normal paths check this in check_kill_permission). 1430 */ 1431 if (!valid_signal(sig)) 1432 return -EINVAL; 1433 1434 return do_send_sig_info(sig, info, p, false); 1435 } 1436 1437 #define __si_special(priv) \ 1438 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1439 1440 int 1441 send_sig(int sig, struct task_struct *p, int priv) 1442 { 1443 return send_sig_info(sig, __si_special(priv), p); 1444 } 1445 1446 void 1447 force_sig(int sig, struct task_struct *p) 1448 { 1449 force_sig_info(sig, SEND_SIG_PRIV, p); 1450 } 1451 1452 /* 1453 * When things go south during signal handling, we 1454 * will force a SIGSEGV. And if the signal that caused 1455 * the problem was already a SIGSEGV, we'll want to 1456 * make sure we don't even try to deliver the signal.. 1457 */ 1458 int 1459 force_sigsegv(int sig, struct task_struct *p) 1460 { 1461 if (sig == SIGSEGV) { 1462 unsigned long flags; 1463 spin_lock_irqsave(&p->sighand->siglock, flags); 1464 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1465 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1466 } 1467 force_sig(SIGSEGV, p); 1468 return 0; 1469 } 1470 1471 int kill_pgrp(struct pid *pid, int sig, int priv) 1472 { 1473 int ret; 1474 1475 read_lock(&tasklist_lock); 1476 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1477 read_unlock(&tasklist_lock); 1478 1479 return ret; 1480 } 1481 EXPORT_SYMBOL(kill_pgrp); 1482 1483 int kill_pid(struct pid *pid, int sig, int priv) 1484 { 1485 return kill_pid_info(sig, __si_special(priv), pid); 1486 } 1487 EXPORT_SYMBOL(kill_pid); 1488 1489 /* 1490 * These functions support sending signals using preallocated sigqueue 1491 * structures. This is needed "because realtime applications cannot 1492 * afford to lose notifications of asynchronous events, like timer 1493 * expirations or I/O completions". In the case of POSIX Timers 1494 * we allocate the sigqueue structure from the timer_create. If this 1495 * allocation fails we are able to report the failure to the application 1496 * with an EAGAIN error. 1497 */ 1498 struct sigqueue *sigqueue_alloc(void) 1499 { 1500 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1501 1502 if (q) 1503 q->flags |= SIGQUEUE_PREALLOC; 1504 1505 return q; 1506 } 1507 1508 void sigqueue_free(struct sigqueue *q) 1509 { 1510 unsigned long flags; 1511 spinlock_t *lock = ¤t->sighand->siglock; 1512 1513 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1514 /* 1515 * We must hold ->siglock while testing q->list 1516 * to serialize with collect_signal() or with 1517 * __exit_signal()->flush_sigqueue(). 1518 */ 1519 spin_lock_irqsave(lock, flags); 1520 q->flags &= ~SIGQUEUE_PREALLOC; 1521 /* 1522 * If it is queued it will be freed when dequeued, 1523 * like the "regular" sigqueue. 1524 */ 1525 if (!list_empty(&q->list)) 1526 q = NULL; 1527 spin_unlock_irqrestore(lock, flags); 1528 1529 if (q) 1530 __sigqueue_free(q); 1531 } 1532 1533 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1534 { 1535 int sig = q->info.si_signo; 1536 struct sigpending *pending; 1537 unsigned long flags; 1538 int ret, result; 1539 1540 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1541 1542 ret = -1; 1543 if (!likely(lock_task_sighand(t, &flags))) 1544 goto ret; 1545 1546 ret = 1; /* the signal is ignored */ 1547 result = TRACE_SIGNAL_IGNORED; 1548 if (!prepare_signal(sig, t, false)) 1549 goto out; 1550 1551 ret = 0; 1552 if (unlikely(!list_empty(&q->list))) { 1553 /* 1554 * If an SI_TIMER entry is already queue just increment 1555 * the overrun count. 1556 */ 1557 BUG_ON(q->info.si_code != SI_TIMER); 1558 q->info.si_overrun++; 1559 result = TRACE_SIGNAL_ALREADY_PENDING; 1560 goto out; 1561 } 1562 q->info.si_overrun = 0; 1563 1564 signalfd_notify(t, sig); 1565 pending = group ? &t->signal->shared_pending : &t->pending; 1566 list_add_tail(&q->list, &pending->list); 1567 sigaddset(&pending->signal, sig); 1568 complete_signal(sig, t, group); 1569 result = TRACE_SIGNAL_DELIVERED; 1570 out: 1571 trace_signal_generate(sig, &q->info, t, group, result); 1572 unlock_task_sighand(t, &flags); 1573 ret: 1574 return ret; 1575 } 1576 1577 /* 1578 * Let a parent know about the death of a child. 1579 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1580 * 1581 * Returns true if our parent ignored us and so we've switched to 1582 * self-reaping. 1583 */ 1584 bool do_notify_parent(struct task_struct *tsk, int sig) 1585 { 1586 struct siginfo info; 1587 unsigned long flags; 1588 struct sighand_struct *psig; 1589 bool autoreap = false; 1590 u64 utime, stime; 1591 1592 BUG_ON(sig == -1); 1593 1594 /* do_notify_parent_cldstop should have been called instead. */ 1595 BUG_ON(task_is_stopped_or_traced(tsk)); 1596 1597 BUG_ON(!tsk->ptrace && 1598 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1599 1600 if (sig != SIGCHLD) { 1601 /* 1602 * This is only possible if parent == real_parent. 1603 * Check if it has changed security domain. 1604 */ 1605 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1606 sig = SIGCHLD; 1607 } 1608 1609 info.si_signo = sig; 1610 info.si_errno = 0; 1611 /* 1612 * We are under tasklist_lock here so our parent is tied to 1613 * us and cannot change. 1614 * 1615 * task_active_pid_ns will always return the same pid namespace 1616 * until a task passes through release_task. 1617 * 1618 * write_lock() currently calls preempt_disable() which is the 1619 * same as rcu_read_lock(), but according to Oleg, this is not 1620 * correct to rely on this 1621 */ 1622 rcu_read_lock(); 1623 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1624 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1625 task_uid(tsk)); 1626 rcu_read_unlock(); 1627 1628 task_cputime(tsk, &utime, &stime); 1629 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 1630 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 1631 1632 info.si_status = tsk->exit_code & 0x7f; 1633 if (tsk->exit_code & 0x80) 1634 info.si_code = CLD_DUMPED; 1635 else if (tsk->exit_code & 0x7f) 1636 info.si_code = CLD_KILLED; 1637 else { 1638 info.si_code = CLD_EXITED; 1639 info.si_status = tsk->exit_code >> 8; 1640 } 1641 1642 psig = tsk->parent->sighand; 1643 spin_lock_irqsave(&psig->siglock, flags); 1644 if (!tsk->ptrace && sig == SIGCHLD && 1645 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1646 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1647 /* 1648 * We are exiting and our parent doesn't care. POSIX.1 1649 * defines special semantics for setting SIGCHLD to SIG_IGN 1650 * or setting the SA_NOCLDWAIT flag: we should be reaped 1651 * automatically and not left for our parent's wait4 call. 1652 * Rather than having the parent do it as a magic kind of 1653 * signal handler, we just set this to tell do_exit that we 1654 * can be cleaned up without becoming a zombie. Note that 1655 * we still call __wake_up_parent in this case, because a 1656 * blocked sys_wait4 might now return -ECHILD. 1657 * 1658 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1659 * is implementation-defined: we do (if you don't want 1660 * it, just use SIG_IGN instead). 1661 */ 1662 autoreap = true; 1663 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1664 sig = 0; 1665 } 1666 if (valid_signal(sig) && sig) 1667 __group_send_sig_info(sig, &info, tsk->parent); 1668 __wake_up_parent(tsk, tsk->parent); 1669 spin_unlock_irqrestore(&psig->siglock, flags); 1670 1671 return autoreap; 1672 } 1673 1674 /** 1675 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1676 * @tsk: task reporting the state change 1677 * @for_ptracer: the notification is for ptracer 1678 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1679 * 1680 * Notify @tsk's parent that the stopped/continued state has changed. If 1681 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1682 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1683 * 1684 * CONTEXT: 1685 * Must be called with tasklist_lock at least read locked. 1686 */ 1687 static void do_notify_parent_cldstop(struct task_struct *tsk, 1688 bool for_ptracer, int why) 1689 { 1690 struct siginfo info; 1691 unsigned long flags; 1692 struct task_struct *parent; 1693 struct sighand_struct *sighand; 1694 u64 utime, stime; 1695 1696 if (for_ptracer) { 1697 parent = tsk->parent; 1698 } else { 1699 tsk = tsk->group_leader; 1700 parent = tsk->real_parent; 1701 } 1702 1703 info.si_signo = SIGCHLD; 1704 info.si_errno = 0; 1705 /* 1706 * see comment in do_notify_parent() about the following 4 lines 1707 */ 1708 rcu_read_lock(); 1709 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 1710 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 1711 rcu_read_unlock(); 1712 1713 task_cputime(tsk, &utime, &stime); 1714 info.si_utime = nsec_to_clock_t(utime); 1715 info.si_stime = nsec_to_clock_t(stime); 1716 1717 info.si_code = why; 1718 switch (why) { 1719 case CLD_CONTINUED: 1720 info.si_status = SIGCONT; 1721 break; 1722 case CLD_STOPPED: 1723 info.si_status = tsk->signal->group_exit_code & 0x7f; 1724 break; 1725 case CLD_TRAPPED: 1726 info.si_status = tsk->exit_code & 0x7f; 1727 break; 1728 default: 1729 BUG(); 1730 } 1731 1732 sighand = parent->sighand; 1733 spin_lock_irqsave(&sighand->siglock, flags); 1734 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1735 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1736 __group_send_sig_info(SIGCHLD, &info, parent); 1737 /* 1738 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1739 */ 1740 __wake_up_parent(tsk, parent); 1741 spin_unlock_irqrestore(&sighand->siglock, flags); 1742 } 1743 1744 static inline int may_ptrace_stop(void) 1745 { 1746 if (!likely(current->ptrace)) 1747 return 0; 1748 /* 1749 * Are we in the middle of do_coredump? 1750 * If so and our tracer is also part of the coredump stopping 1751 * is a deadlock situation, and pointless because our tracer 1752 * is dead so don't allow us to stop. 1753 * If SIGKILL was already sent before the caller unlocked 1754 * ->siglock we must see ->core_state != NULL. Otherwise it 1755 * is safe to enter schedule(). 1756 * 1757 * This is almost outdated, a task with the pending SIGKILL can't 1758 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 1759 * after SIGKILL was already dequeued. 1760 */ 1761 if (unlikely(current->mm->core_state) && 1762 unlikely(current->mm == current->parent->mm)) 1763 return 0; 1764 1765 return 1; 1766 } 1767 1768 /* 1769 * Return non-zero if there is a SIGKILL that should be waking us up. 1770 * Called with the siglock held. 1771 */ 1772 static int sigkill_pending(struct task_struct *tsk) 1773 { 1774 return sigismember(&tsk->pending.signal, SIGKILL) || 1775 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1776 } 1777 1778 /* 1779 * This must be called with current->sighand->siglock held. 1780 * 1781 * This should be the path for all ptrace stops. 1782 * We always set current->last_siginfo while stopped here. 1783 * That makes it a way to test a stopped process for 1784 * being ptrace-stopped vs being job-control-stopped. 1785 * 1786 * If we actually decide not to stop at all because the tracer 1787 * is gone, we keep current->exit_code unless clear_code. 1788 */ 1789 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) 1790 __releases(¤t->sighand->siglock) 1791 __acquires(¤t->sighand->siglock) 1792 { 1793 bool gstop_done = false; 1794 1795 if (arch_ptrace_stop_needed(exit_code, info)) { 1796 /* 1797 * The arch code has something special to do before a 1798 * ptrace stop. This is allowed to block, e.g. for faults 1799 * on user stack pages. We can't keep the siglock while 1800 * calling arch_ptrace_stop, so we must release it now. 1801 * To preserve proper semantics, we must do this before 1802 * any signal bookkeeping like checking group_stop_count. 1803 * Meanwhile, a SIGKILL could come in before we retake the 1804 * siglock. That must prevent us from sleeping in TASK_TRACED. 1805 * So after regaining the lock, we must check for SIGKILL. 1806 */ 1807 spin_unlock_irq(¤t->sighand->siglock); 1808 arch_ptrace_stop(exit_code, info); 1809 spin_lock_irq(¤t->sighand->siglock); 1810 if (sigkill_pending(current)) 1811 return; 1812 } 1813 1814 /* 1815 * We're committing to trapping. TRACED should be visible before 1816 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 1817 * Also, transition to TRACED and updates to ->jobctl should be 1818 * atomic with respect to siglock and should be done after the arch 1819 * hook as siglock is released and regrabbed across it. 1820 */ 1821 set_current_state(TASK_TRACED); 1822 1823 current->last_siginfo = info; 1824 current->exit_code = exit_code; 1825 1826 /* 1827 * If @why is CLD_STOPPED, we're trapping to participate in a group 1828 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 1829 * across siglock relocks since INTERRUPT was scheduled, PENDING 1830 * could be clear now. We act as if SIGCONT is received after 1831 * TASK_TRACED is entered - ignore it. 1832 */ 1833 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 1834 gstop_done = task_participate_group_stop(current); 1835 1836 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 1837 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 1838 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 1839 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 1840 1841 /* entering a trap, clear TRAPPING */ 1842 task_clear_jobctl_trapping(current); 1843 1844 spin_unlock_irq(¤t->sighand->siglock); 1845 read_lock(&tasklist_lock); 1846 if (may_ptrace_stop()) { 1847 /* 1848 * Notify parents of the stop. 1849 * 1850 * While ptraced, there are two parents - the ptracer and 1851 * the real_parent of the group_leader. The ptracer should 1852 * know about every stop while the real parent is only 1853 * interested in the completion of group stop. The states 1854 * for the two don't interact with each other. Notify 1855 * separately unless they're gonna be duplicates. 1856 */ 1857 do_notify_parent_cldstop(current, true, why); 1858 if (gstop_done && ptrace_reparented(current)) 1859 do_notify_parent_cldstop(current, false, why); 1860 1861 /* 1862 * Don't want to allow preemption here, because 1863 * sys_ptrace() needs this task to be inactive. 1864 * 1865 * XXX: implement read_unlock_no_resched(). 1866 */ 1867 preempt_disable(); 1868 read_unlock(&tasklist_lock); 1869 preempt_enable_no_resched(); 1870 freezable_schedule(); 1871 } else { 1872 /* 1873 * By the time we got the lock, our tracer went away. 1874 * Don't drop the lock yet, another tracer may come. 1875 * 1876 * If @gstop_done, the ptracer went away between group stop 1877 * completion and here. During detach, it would have set 1878 * JOBCTL_STOP_PENDING on us and we'll re-enter 1879 * TASK_STOPPED in do_signal_stop() on return, so notifying 1880 * the real parent of the group stop completion is enough. 1881 */ 1882 if (gstop_done) 1883 do_notify_parent_cldstop(current, false, why); 1884 1885 /* tasklist protects us from ptrace_freeze_traced() */ 1886 __set_current_state(TASK_RUNNING); 1887 if (clear_code) 1888 current->exit_code = 0; 1889 read_unlock(&tasklist_lock); 1890 } 1891 1892 /* 1893 * We are back. Now reacquire the siglock before touching 1894 * last_siginfo, so that we are sure to have synchronized with 1895 * any signal-sending on another CPU that wants to examine it. 1896 */ 1897 spin_lock_irq(¤t->sighand->siglock); 1898 current->last_siginfo = NULL; 1899 1900 /* LISTENING can be set only during STOP traps, clear it */ 1901 current->jobctl &= ~JOBCTL_LISTENING; 1902 1903 /* 1904 * Queued signals ignored us while we were stopped for tracing. 1905 * So check for any that we should take before resuming user mode. 1906 * This sets TIF_SIGPENDING, but never clears it. 1907 */ 1908 recalc_sigpending_tsk(current); 1909 } 1910 1911 static void ptrace_do_notify(int signr, int exit_code, int why) 1912 { 1913 siginfo_t info; 1914 1915 memset(&info, 0, sizeof info); 1916 info.si_signo = signr; 1917 info.si_code = exit_code; 1918 info.si_pid = task_pid_vnr(current); 1919 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1920 1921 /* Let the debugger run. */ 1922 ptrace_stop(exit_code, why, 1, &info); 1923 } 1924 1925 void ptrace_notify(int exit_code) 1926 { 1927 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1928 if (unlikely(current->task_works)) 1929 task_work_run(); 1930 1931 spin_lock_irq(¤t->sighand->siglock); 1932 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 1933 spin_unlock_irq(¤t->sighand->siglock); 1934 } 1935 1936 /** 1937 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 1938 * @signr: signr causing group stop if initiating 1939 * 1940 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 1941 * and participate in it. If already set, participate in the existing 1942 * group stop. If participated in a group stop (and thus slept), %true is 1943 * returned with siglock released. 1944 * 1945 * If ptraced, this function doesn't handle stop itself. Instead, 1946 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 1947 * untouched. The caller must ensure that INTERRUPT trap handling takes 1948 * places afterwards. 1949 * 1950 * CONTEXT: 1951 * Must be called with @current->sighand->siglock held, which is released 1952 * on %true return. 1953 * 1954 * RETURNS: 1955 * %false if group stop is already cancelled or ptrace trap is scheduled. 1956 * %true if participated in group stop. 1957 */ 1958 static bool do_signal_stop(int signr) 1959 __releases(¤t->sighand->siglock) 1960 { 1961 struct signal_struct *sig = current->signal; 1962 1963 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 1964 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 1965 struct task_struct *t; 1966 1967 /* signr will be recorded in task->jobctl for retries */ 1968 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 1969 1970 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 1971 unlikely(signal_group_exit(sig))) 1972 return false; 1973 /* 1974 * There is no group stop already in progress. We must 1975 * initiate one now. 1976 * 1977 * While ptraced, a task may be resumed while group stop is 1978 * still in effect and then receive a stop signal and 1979 * initiate another group stop. This deviates from the 1980 * usual behavior as two consecutive stop signals can't 1981 * cause two group stops when !ptraced. That is why we 1982 * also check !task_is_stopped(t) below. 1983 * 1984 * The condition can be distinguished by testing whether 1985 * SIGNAL_STOP_STOPPED is already set. Don't generate 1986 * group_exit_code in such case. 1987 * 1988 * This is not necessary for SIGNAL_STOP_CONTINUED because 1989 * an intervening stop signal is required to cause two 1990 * continued events regardless of ptrace. 1991 */ 1992 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 1993 sig->group_exit_code = signr; 1994 1995 sig->group_stop_count = 0; 1996 1997 if (task_set_jobctl_pending(current, signr | gstop)) 1998 sig->group_stop_count++; 1999 2000 t = current; 2001 while_each_thread(current, t) { 2002 /* 2003 * Setting state to TASK_STOPPED for a group 2004 * stop is always done with the siglock held, 2005 * so this check has no races. 2006 */ 2007 if (!task_is_stopped(t) && 2008 task_set_jobctl_pending(t, signr | gstop)) { 2009 sig->group_stop_count++; 2010 if (likely(!(t->ptrace & PT_SEIZED))) 2011 signal_wake_up(t, 0); 2012 else 2013 ptrace_trap_notify(t); 2014 } 2015 } 2016 } 2017 2018 if (likely(!current->ptrace)) { 2019 int notify = 0; 2020 2021 /* 2022 * If there are no other threads in the group, or if there 2023 * is a group stop in progress and we are the last to stop, 2024 * report to the parent. 2025 */ 2026 if (task_participate_group_stop(current)) 2027 notify = CLD_STOPPED; 2028 2029 __set_current_state(TASK_STOPPED); 2030 spin_unlock_irq(¤t->sighand->siglock); 2031 2032 /* 2033 * Notify the parent of the group stop completion. Because 2034 * we're not holding either the siglock or tasklist_lock 2035 * here, ptracer may attach inbetween; however, this is for 2036 * group stop and should always be delivered to the real 2037 * parent of the group leader. The new ptracer will get 2038 * its notification when this task transitions into 2039 * TASK_TRACED. 2040 */ 2041 if (notify) { 2042 read_lock(&tasklist_lock); 2043 do_notify_parent_cldstop(current, false, notify); 2044 read_unlock(&tasklist_lock); 2045 } 2046 2047 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2048 freezable_schedule(); 2049 return true; 2050 } else { 2051 /* 2052 * While ptraced, group stop is handled by STOP trap. 2053 * Schedule it and let the caller deal with it. 2054 */ 2055 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2056 return false; 2057 } 2058 } 2059 2060 /** 2061 * do_jobctl_trap - take care of ptrace jobctl traps 2062 * 2063 * When PT_SEIZED, it's used for both group stop and explicit 2064 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2065 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2066 * the stop signal; otherwise, %SIGTRAP. 2067 * 2068 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2069 * number as exit_code and no siginfo. 2070 * 2071 * CONTEXT: 2072 * Must be called with @current->sighand->siglock held, which may be 2073 * released and re-acquired before returning with intervening sleep. 2074 */ 2075 static void do_jobctl_trap(void) 2076 { 2077 struct signal_struct *signal = current->signal; 2078 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2079 2080 if (current->ptrace & PT_SEIZED) { 2081 if (!signal->group_stop_count && 2082 !(signal->flags & SIGNAL_STOP_STOPPED)) 2083 signr = SIGTRAP; 2084 WARN_ON_ONCE(!signr); 2085 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2086 CLD_STOPPED); 2087 } else { 2088 WARN_ON_ONCE(!signr); 2089 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2090 current->exit_code = 0; 2091 } 2092 } 2093 2094 static int ptrace_signal(int signr, siginfo_t *info) 2095 { 2096 ptrace_signal_deliver(); 2097 /* 2098 * We do not check sig_kernel_stop(signr) but set this marker 2099 * unconditionally because we do not know whether debugger will 2100 * change signr. This flag has no meaning unless we are going 2101 * to stop after return from ptrace_stop(). In this case it will 2102 * be checked in do_signal_stop(), we should only stop if it was 2103 * not cleared by SIGCONT while we were sleeping. See also the 2104 * comment in dequeue_signal(). 2105 */ 2106 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2107 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2108 2109 /* We're back. Did the debugger cancel the sig? */ 2110 signr = current->exit_code; 2111 if (signr == 0) 2112 return signr; 2113 2114 current->exit_code = 0; 2115 2116 /* 2117 * Update the siginfo structure if the signal has 2118 * changed. If the debugger wanted something 2119 * specific in the siginfo structure then it should 2120 * have updated *info via PTRACE_SETSIGINFO. 2121 */ 2122 if (signr != info->si_signo) { 2123 info->si_signo = signr; 2124 info->si_errno = 0; 2125 info->si_code = SI_USER; 2126 rcu_read_lock(); 2127 info->si_pid = task_pid_vnr(current->parent); 2128 info->si_uid = from_kuid_munged(current_user_ns(), 2129 task_uid(current->parent)); 2130 rcu_read_unlock(); 2131 } 2132 2133 /* If the (new) signal is now blocked, requeue it. */ 2134 if (sigismember(¤t->blocked, signr)) { 2135 specific_send_sig_info(signr, info, current); 2136 signr = 0; 2137 } 2138 2139 return signr; 2140 } 2141 2142 int get_signal(struct ksignal *ksig) 2143 { 2144 struct sighand_struct *sighand = current->sighand; 2145 struct signal_struct *signal = current->signal; 2146 int signr; 2147 2148 if (unlikely(current->task_works)) 2149 task_work_run(); 2150 2151 if (unlikely(uprobe_deny_signal())) 2152 return 0; 2153 2154 /* 2155 * Do this once, we can't return to user-mode if freezing() == T. 2156 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2157 * thus do not need another check after return. 2158 */ 2159 try_to_freeze(); 2160 2161 relock: 2162 spin_lock_irq(&sighand->siglock); 2163 /* 2164 * Every stopped thread goes here after wakeup. Check to see if 2165 * we should notify the parent, prepare_signal(SIGCONT) encodes 2166 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2167 */ 2168 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2169 int why; 2170 2171 if (signal->flags & SIGNAL_CLD_CONTINUED) 2172 why = CLD_CONTINUED; 2173 else 2174 why = CLD_STOPPED; 2175 2176 signal->flags &= ~SIGNAL_CLD_MASK; 2177 2178 spin_unlock_irq(&sighand->siglock); 2179 2180 /* 2181 * Notify the parent that we're continuing. This event is 2182 * always per-process and doesn't make whole lot of sense 2183 * for ptracers, who shouldn't consume the state via 2184 * wait(2) either, but, for backward compatibility, notify 2185 * the ptracer of the group leader too unless it's gonna be 2186 * a duplicate. 2187 */ 2188 read_lock(&tasklist_lock); 2189 do_notify_parent_cldstop(current, false, why); 2190 2191 if (ptrace_reparented(current->group_leader)) 2192 do_notify_parent_cldstop(current->group_leader, 2193 true, why); 2194 read_unlock(&tasklist_lock); 2195 2196 goto relock; 2197 } 2198 2199 for (;;) { 2200 struct k_sigaction *ka; 2201 2202 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2203 do_signal_stop(0)) 2204 goto relock; 2205 2206 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2207 do_jobctl_trap(); 2208 spin_unlock_irq(&sighand->siglock); 2209 goto relock; 2210 } 2211 2212 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2213 2214 if (!signr) 2215 break; /* will return 0 */ 2216 2217 if (unlikely(current->ptrace) && signr != SIGKILL) { 2218 signr = ptrace_signal(signr, &ksig->info); 2219 if (!signr) 2220 continue; 2221 } 2222 2223 ka = &sighand->action[signr-1]; 2224 2225 /* Trace actually delivered signals. */ 2226 trace_signal_deliver(signr, &ksig->info, ka); 2227 2228 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2229 continue; 2230 if (ka->sa.sa_handler != SIG_DFL) { 2231 /* Run the handler. */ 2232 ksig->ka = *ka; 2233 2234 if (ka->sa.sa_flags & SA_ONESHOT) 2235 ka->sa.sa_handler = SIG_DFL; 2236 2237 break; /* will return non-zero "signr" value */ 2238 } 2239 2240 /* 2241 * Now we are doing the default action for this signal. 2242 */ 2243 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2244 continue; 2245 2246 /* 2247 * Global init gets no signals it doesn't want. 2248 * Container-init gets no signals it doesn't want from same 2249 * container. 2250 * 2251 * Note that if global/container-init sees a sig_kernel_only() 2252 * signal here, the signal must have been generated internally 2253 * or must have come from an ancestor namespace. In either 2254 * case, the signal cannot be dropped. 2255 */ 2256 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2257 !sig_kernel_only(signr)) 2258 continue; 2259 2260 if (sig_kernel_stop(signr)) { 2261 /* 2262 * The default action is to stop all threads in 2263 * the thread group. The job control signals 2264 * do nothing in an orphaned pgrp, but SIGSTOP 2265 * always works. Note that siglock needs to be 2266 * dropped during the call to is_orphaned_pgrp() 2267 * because of lock ordering with tasklist_lock. 2268 * This allows an intervening SIGCONT to be posted. 2269 * We need to check for that and bail out if necessary. 2270 */ 2271 if (signr != SIGSTOP) { 2272 spin_unlock_irq(&sighand->siglock); 2273 2274 /* signals can be posted during this window */ 2275 2276 if (is_current_pgrp_orphaned()) 2277 goto relock; 2278 2279 spin_lock_irq(&sighand->siglock); 2280 } 2281 2282 if (likely(do_signal_stop(ksig->info.si_signo))) { 2283 /* It released the siglock. */ 2284 goto relock; 2285 } 2286 2287 /* 2288 * We didn't actually stop, due to a race 2289 * with SIGCONT or something like that. 2290 */ 2291 continue; 2292 } 2293 2294 spin_unlock_irq(&sighand->siglock); 2295 2296 /* 2297 * Anything else is fatal, maybe with a core dump. 2298 */ 2299 current->flags |= PF_SIGNALED; 2300 2301 if (sig_kernel_coredump(signr)) { 2302 if (print_fatal_signals) 2303 print_fatal_signal(ksig->info.si_signo); 2304 proc_coredump_connector(current); 2305 /* 2306 * If it was able to dump core, this kills all 2307 * other threads in the group and synchronizes with 2308 * their demise. If we lost the race with another 2309 * thread getting here, it set group_exit_code 2310 * first and our do_group_exit call below will use 2311 * that value and ignore the one we pass it. 2312 */ 2313 do_coredump(&ksig->info); 2314 } 2315 2316 /* 2317 * Death signals, no core dump. 2318 */ 2319 do_group_exit(ksig->info.si_signo); 2320 /* NOTREACHED */ 2321 } 2322 spin_unlock_irq(&sighand->siglock); 2323 2324 ksig->sig = signr; 2325 return ksig->sig > 0; 2326 } 2327 2328 /** 2329 * signal_delivered - 2330 * @ksig: kernel signal struct 2331 * @stepping: nonzero if debugger single-step or block-step in use 2332 * 2333 * This function should be called when a signal has successfully been 2334 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2335 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2336 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2337 */ 2338 static void signal_delivered(struct ksignal *ksig, int stepping) 2339 { 2340 sigset_t blocked; 2341 2342 /* A signal was successfully delivered, and the 2343 saved sigmask was stored on the signal frame, 2344 and will be restored by sigreturn. So we can 2345 simply clear the restore sigmask flag. */ 2346 clear_restore_sigmask(); 2347 2348 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2349 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2350 sigaddset(&blocked, ksig->sig); 2351 set_current_blocked(&blocked); 2352 tracehook_signal_handler(stepping); 2353 } 2354 2355 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2356 { 2357 if (failed) 2358 force_sigsegv(ksig->sig, current); 2359 else 2360 signal_delivered(ksig, stepping); 2361 } 2362 2363 /* 2364 * It could be that complete_signal() picked us to notify about the 2365 * group-wide signal. Other threads should be notified now to take 2366 * the shared signals in @which since we will not. 2367 */ 2368 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2369 { 2370 sigset_t retarget; 2371 struct task_struct *t; 2372 2373 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2374 if (sigisemptyset(&retarget)) 2375 return; 2376 2377 t = tsk; 2378 while_each_thread(tsk, t) { 2379 if (t->flags & PF_EXITING) 2380 continue; 2381 2382 if (!has_pending_signals(&retarget, &t->blocked)) 2383 continue; 2384 /* Remove the signals this thread can handle. */ 2385 sigandsets(&retarget, &retarget, &t->blocked); 2386 2387 if (!signal_pending(t)) 2388 signal_wake_up(t, 0); 2389 2390 if (sigisemptyset(&retarget)) 2391 break; 2392 } 2393 } 2394 2395 void exit_signals(struct task_struct *tsk) 2396 { 2397 int group_stop = 0; 2398 sigset_t unblocked; 2399 2400 /* 2401 * @tsk is about to have PF_EXITING set - lock out users which 2402 * expect stable threadgroup. 2403 */ 2404 cgroup_threadgroup_change_begin(tsk); 2405 2406 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2407 tsk->flags |= PF_EXITING; 2408 cgroup_threadgroup_change_end(tsk); 2409 return; 2410 } 2411 2412 spin_lock_irq(&tsk->sighand->siglock); 2413 /* 2414 * From now this task is not visible for group-wide signals, 2415 * see wants_signal(), do_signal_stop(). 2416 */ 2417 tsk->flags |= PF_EXITING; 2418 2419 cgroup_threadgroup_change_end(tsk); 2420 2421 if (!signal_pending(tsk)) 2422 goto out; 2423 2424 unblocked = tsk->blocked; 2425 signotset(&unblocked); 2426 retarget_shared_pending(tsk, &unblocked); 2427 2428 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2429 task_participate_group_stop(tsk)) 2430 group_stop = CLD_STOPPED; 2431 out: 2432 spin_unlock_irq(&tsk->sighand->siglock); 2433 2434 /* 2435 * If group stop has completed, deliver the notification. This 2436 * should always go to the real parent of the group leader. 2437 */ 2438 if (unlikely(group_stop)) { 2439 read_lock(&tasklist_lock); 2440 do_notify_parent_cldstop(tsk, false, group_stop); 2441 read_unlock(&tasklist_lock); 2442 } 2443 } 2444 2445 EXPORT_SYMBOL(recalc_sigpending); 2446 EXPORT_SYMBOL_GPL(dequeue_signal); 2447 EXPORT_SYMBOL(flush_signals); 2448 EXPORT_SYMBOL(force_sig); 2449 EXPORT_SYMBOL(send_sig); 2450 EXPORT_SYMBOL(send_sig_info); 2451 EXPORT_SYMBOL(sigprocmask); 2452 2453 /* 2454 * System call entry points. 2455 */ 2456 2457 /** 2458 * sys_restart_syscall - restart a system call 2459 */ 2460 SYSCALL_DEFINE0(restart_syscall) 2461 { 2462 struct restart_block *restart = ¤t->restart_block; 2463 return restart->fn(restart); 2464 } 2465 2466 long do_no_restart_syscall(struct restart_block *param) 2467 { 2468 return -EINTR; 2469 } 2470 2471 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2472 { 2473 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2474 sigset_t newblocked; 2475 /* A set of now blocked but previously unblocked signals. */ 2476 sigandnsets(&newblocked, newset, ¤t->blocked); 2477 retarget_shared_pending(tsk, &newblocked); 2478 } 2479 tsk->blocked = *newset; 2480 recalc_sigpending(); 2481 } 2482 2483 /** 2484 * set_current_blocked - change current->blocked mask 2485 * @newset: new mask 2486 * 2487 * It is wrong to change ->blocked directly, this helper should be used 2488 * to ensure the process can't miss a shared signal we are going to block. 2489 */ 2490 void set_current_blocked(sigset_t *newset) 2491 { 2492 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2493 __set_current_blocked(newset); 2494 } 2495 2496 void __set_current_blocked(const sigset_t *newset) 2497 { 2498 struct task_struct *tsk = current; 2499 2500 /* 2501 * In case the signal mask hasn't changed, there is nothing we need 2502 * to do. The current->blocked shouldn't be modified by other task. 2503 */ 2504 if (sigequalsets(&tsk->blocked, newset)) 2505 return; 2506 2507 spin_lock_irq(&tsk->sighand->siglock); 2508 __set_task_blocked(tsk, newset); 2509 spin_unlock_irq(&tsk->sighand->siglock); 2510 } 2511 2512 /* 2513 * This is also useful for kernel threads that want to temporarily 2514 * (or permanently) block certain signals. 2515 * 2516 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2517 * interface happily blocks "unblockable" signals like SIGKILL 2518 * and friends. 2519 */ 2520 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2521 { 2522 struct task_struct *tsk = current; 2523 sigset_t newset; 2524 2525 /* Lockless, only current can change ->blocked, never from irq */ 2526 if (oldset) 2527 *oldset = tsk->blocked; 2528 2529 switch (how) { 2530 case SIG_BLOCK: 2531 sigorsets(&newset, &tsk->blocked, set); 2532 break; 2533 case SIG_UNBLOCK: 2534 sigandnsets(&newset, &tsk->blocked, set); 2535 break; 2536 case SIG_SETMASK: 2537 newset = *set; 2538 break; 2539 default: 2540 return -EINVAL; 2541 } 2542 2543 __set_current_blocked(&newset); 2544 return 0; 2545 } 2546 2547 /** 2548 * sys_rt_sigprocmask - change the list of currently blocked signals 2549 * @how: whether to add, remove, or set signals 2550 * @nset: stores pending signals 2551 * @oset: previous value of signal mask if non-null 2552 * @sigsetsize: size of sigset_t type 2553 */ 2554 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2555 sigset_t __user *, oset, size_t, sigsetsize) 2556 { 2557 sigset_t old_set, new_set; 2558 int error; 2559 2560 /* XXX: Don't preclude handling different sized sigset_t's. */ 2561 if (sigsetsize != sizeof(sigset_t)) 2562 return -EINVAL; 2563 2564 old_set = current->blocked; 2565 2566 if (nset) { 2567 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2568 return -EFAULT; 2569 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2570 2571 error = sigprocmask(how, &new_set, NULL); 2572 if (error) 2573 return error; 2574 } 2575 2576 if (oset) { 2577 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2578 return -EFAULT; 2579 } 2580 2581 return 0; 2582 } 2583 2584 #ifdef CONFIG_COMPAT 2585 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 2586 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 2587 { 2588 #ifdef __BIG_ENDIAN 2589 sigset_t old_set = current->blocked; 2590 2591 /* XXX: Don't preclude handling different sized sigset_t's. */ 2592 if (sigsetsize != sizeof(sigset_t)) 2593 return -EINVAL; 2594 2595 if (nset) { 2596 compat_sigset_t new32; 2597 sigset_t new_set; 2598 int error; 2599 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t))) 2600 return -EFAULT; 2601 2602 sigset_from_compat(&new_set, &new32); 2603 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2604 2605 error = sigprocmask(how, &new_set, NULL); 2606 if (error) 2607 return error; 2608 } 2609 if (oset) { 2610 compat_sigset_t old32; 2611 sigset_to_compat(&old32, &old_set); 2612 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t))) 2613 return -EFAULT; 2614 } 2615 return 0; 2616 #else 2617 return sys_rt_sigprocmask(how, (sigset_t __user *)nset, 2618 (sigset_t __user *)oset, sigsetsize); 2619 #endif 2620 } 2621 #endif 2622 2623 static int do_sigpending(void *set, unsigned long sigsetsize) 2624 { 2625 if (sigsetsize > sizeof(sigset_t)) 2626 return -EINVAL; 2627 2628 spin_lock_irq(¤t->sighand->siglock); 2629 sigorsets(set, ¤t->pending.signal, 2630 ¤t->signal->shared_pending.signal); 2631 spin_unlock_irq(¤t->sighand->siglock); 2632 2633 /* Outside the lock because only this thread touches it. */ 2634 sigandsets(set, ¤t->blocked, set); 2635 return 0; 2636 } 2637 2638 /** 2639 * sys_rt_sigpending - examine a pending signal that has been raised 2640 * while blocked 2641 * @uset: stores pending signals 2642 * @sigsetsize: size of sigset_t type or larger 2643 */ 2644 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 2645 { 2646 sigset_t set; 2647 int err = do_sigpending(&set, sigsetsize); 2648 if (!err && copy_to_user(uset, &set, sigsetsize)) 2649 err = -EFAULT; 2650 return err; 2651 } 2652 2653 #ifdef CONFIG_COMPAT 2654 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 2655 compat_size_t, sigsetsize) 2656 { 2657 #ifdef __BIG_ENDIAN 2658 sigset_t set; 2659 int err = do_sigpending(&set, sigsetsize); 2660 if (!err) { 2661 compat_sigset_t set32; 2662 sigset_to_compat(&set32, &set); 2663 /* we can get here only if sigsetsize <= sizeof(set) */ 2664 if (copy_to_user(uset, &set32, sigsetsize)) 2665 err = -EFAULT; 2666 } 2667 return err; 2668 #else 2669 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize); 2670 #endif 2671 } 2672 #endif 2673 2674 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2675 2676 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from) 2677 { 2678 int err; 2679 2680 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2681 return -EFAULT; 2682 if (from->si_code < 0) 2683 return __copy_to_user(to, from, sizeof(siginfo_t)) 2684 ? -EFAULT : 0; 2685 /* 2686 * If you change siginfo_t structure, please be sure 2687 * this code is fixed accordingly. 2688 * Please remember to update the signalfd_copyinfo() function 2689 * inside fs/signalfd.c too, in case siginfo_t changes. 2690 * It should never copy any pad contained in the structure 2691 * to avoid security leaks, but must copy the generic 2692 * 3 ints plus the relevant union member. 2693 */ 2694 err = __put_user(from->si_signo, &to->si_signo); 2695 err |= __put_user(from->si_errno, &to->si_errno); 2696 err |= __put_user((short)from->si_code, &to->si_code); 2697 switch (from->si_code & __SI_MASK) { 2698 case __SI_KILL: 2699 err |= __put_user(from->si_pid, &to->si_pid); 2700 err |= __put_user(from->si_uid, &to->si_uid); 2701 break; 2702 case __SI_TIMER: 2703 err |= __put_user(from->si_tid, &to->si_tid); 2704 err |= __put_user(from->si_overrun, &to->si_overrun); 2705 err |= __put_user(from->si_ptr, &to->si_ptr); 2706 break; 2707 case __SI_POLL: 2708 err |= __put_user(from->si_band, &to->si_band); 2709 err |= __put_user(from->si_fd, &to->si_fd); 2710 break; 2711 case __SI_FAULT: 2712 err |= __put_user(from->si_addr, &to->si_addr); 2713 #ifdef __ARCH_SI_TRAPNO 2714 err |= __put_user(from->si_trapno, &to->si_trapno); 2715 #endif 2716 #ifdef BUS_MCEERR_AO 2717 /* 2718 * Other callers might not initialize the si_lsb field, 2719 * so check explicitly for the right codes here. 2720 */ 2721 if (from->si_signo == SIGBUS && 2722 (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)) 2723 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); 2724 #endif 2725 #ifdef SEGV_BNDERR 2726 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) { 2727 err |= __put_user(from->si_lower, &to->si_lower); 2728 err |= __put_user(from->si_upper, &to->si_upper); 2729 } 2730 #endif 2731 #ifdef SEGV_PKUERR 2732 if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR) 2733 err |= __put_user(from->si_pkey, &to->si_pkey); 2734 #endif 2735 break; 2736 case __SI_CHLD: 2737 err |= __put_user(from->si_pid, &to->si_pid); 2738 err |= __put_user(from->si_uid, &to->si_uid); 2739 err |= __put_user(from->si_status, &to->si_status); 2740 err |= __put_user(from->si_utime, &to->si_utime); 2741 err |= __put_user(from->si_stime, &to->si_stime); 2742 break; 2743 case __SI_RT: /* This is not generated by the kernel as of now. */ 2744 case __SI_MESGQ: /* But this is */ 2745 err |= __put_user(from->si_pid, &to->si_pid); 2746 err |= __put_user(from->si_uid, &to->si_uid); 2747 err |= __put_user(from->si_ptr, &to->si_ptr); 2748 break; 2749 #ifdef __ARCH_SIGSYS 2750 case __SI_SYS: 2751 err |= __put_user(from->si_call_addr, &to->si_call_addr); 2752 err |= __put_user(from->si_syscall, &to->si_syscall); 2753 err |= __put_user(from->si_arch, &to->si_arch); 2754 break; 2755 #endif 2756 default: /* this is just in case for now ... */ 2757 err |= __put_user(from->si_pid, &to->si_pid); 2758 err |= __put_user(from->si_uid, &to->si_uid); 2759 break; 2760 } 2761 return err; 2762 } 2763 2764 #endif 2765 2766 /** 2767 * do_sigtimedwait - wait for queued signals specified in @which 2768 * @which: queued signals to wait for 2769 * @info: if non-null, the signal's siginfo is returned here 2770 * @ts: upper bound on process time suspension 2771 */ 2772 int do_sigtimedwait(const sigset_t *which, siginfo_t *info, 2773 const struct timespec *ts) 2774 { 2775 ktime_t *to = NULL, timeout = KTIME_MAX; 2776 struct task_struct *tsk = current; 2777 sigset_t mask = *which; 2778 int sig, ret = 0; 2779 2780 if (ts) { 2781 if (!timespec_valid(ts)) 2782 return -EINVAL; 2783 timeout = timespec_to_ktime(*ts); 2784 to = &timeout; 2785 } 2786 2787 /* 2788 * Invert the set of allowed signals to get those we want to block. 2789 */ 2790 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2791 signotset(&mask); 2792 2793 spin_lock_irq(&tsk->sighand->siglock); 2794 sig = dequeue_signal(tsk, &mask, info); 2795 if (!sig && timeout) { 2796 /* 2797 * None ready, temporarily unblock those we're interested 2798 * while we are sleeping in so that we'll be awakened when 2799 * they arrive. Unblocking is always fine, we can avoid 2800 * set_current_blocked(). 2801 */ 2802 tsk->real_blocked = tsk->blocked; 2803 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 2804 recalc_sigpending(); 2805 spin_unlock_irq(&tsk->sighand->siglock); 2806 2807 __set_current_state(TASK_INTERRUPTIBLE); 2808 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 2809 HRTIMER_MODE_REL); 2810 spin_lock_irq(&tsk->sighand->siglock); 2811 __set_task_blocked(tsk, &tsk->real_blocked); 2812 sigemptyset(&tsk->real_blocked); 2813 sig = dequeue_signal(tsk, &mask, info); 2814 } 2815 spin_unlock_irq(&tsk->sighand->siglock); 2816 2817 if (sig) 2818 return sig; 2819 return ret ? -EINTR : -EAGAIN; 2820 } 2821 2822 /** 2823 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 2824 * in @uthese 2825 * @uthese: queued signals to wait for 2826 * @uinfo: if non-null, the signal's siginfo is returned here 2827 * @uts: upper bound on process time suspension 2828 * @sigsetsize: size of sigset_t type 2829 */ 2830 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 2831 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 2832 size_t, sigsetsize) 2833 { 2834 sigset_t these; 2835 struct timespec ts; 2836 siginfo_t info; 2837 int ret; 2838 2839 /* XXX: Don't preclude handling different sized sigset_t's. */ 2840 if (sigsetsize != sizeof(sigset_t)) 2841 return -EINVAL; 2842 2843 if (copy_from_user(&these, uthese, sizeof(these))) 2844 return -EFAULT; 2845 2846 if (uts) { 2847 if (copy_from_user(&ts, uts, sizeof(ts))) 2848 return -EFAULT; 2849 } 2850 2851 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 2852 2853 if (ret > 0 && uinfo) { 2854 if (copy_siginfo_to_user(uinfo, &info)) 2855 ret = -EFAULT; 2856 } 2857 2858 return ret; 2859 } 2860 2861 /** 2862 * sys_kill - send a signal to a process 2863 * @pid: the PID of the process 2864 * @sig: signal to be sent 2865 */ 2866 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 2867 { 2868 struct siginfo info; 2869 2870 info.si_signo = sig; 2871 info.si_errno = 0; 2872 info.si_code = SI_USER; 2873 info.si_pid = task_tgid_vnr(current); 2874 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2875 2876 return kill_something_info(sig, &info, pid); 2877 } 2878 2879 static int 2880 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 2881 { 2882 struct task_struct *p; 2883 int error = -ESRCH; 2884 2885 rcu_read_lock(); 2886 p = find_task_by_vpid(pid); 2887 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2888 error = check_kill_permission(sig, info, p); 2889 /* 2890 * The null signal is a permissions and process existence 2891 * probe. No signal is actually delivered. 2892 */ 2893 if (!error && sig) { 2894 error = do_send_sig_info(sig, info, p, false); 2895 /* 2896 * If lock_task_sighand() failed we pretend the task 2897 * dies after receiving the signal. The window is tiny, 2898 * and the signal is private anyway. 2899 */ 2900 if (unlikely(error == -ESRCH)) 2901 error = 0; 2902 } 2903 } 2904 rcu_read_unlock(); 2905 2906 return error; 2907 } 2908 2909 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2910 { 2911 struct siginfo info = {}; 2912 2913 info.si_signo = sig; 2914 info.si_errno = 0; 2915 info.si_code = SI_TKILL; 2916 info.si_pid = task_tgid_vnr(current); 2917 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2918 2919 return do_send_specific(tgid, pid, sig, &info); 2920 } 2921 2922 /** 2923 * sys_tgkill - send signal to one specific thread 2924 * @tgid: the thread group ID of the thread 2925 * @pid: the PID of the thread 2926 * @sig: signal to be sent 2927 * 2928 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2929 * exists but it's not belonging to the target process anymore. This 2930 * method solves the problem of threads exiting and PIDs getting reused. 2931 */ 2932 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 2933 { 2934 /* This is only valid for single tasks */ 2935 if (pid <= 0 || tgid <= 0) 2936 return -EINVAL; 2937 2938 return do_tkill(tgid, pid, sig); 2939 } 2940 2941 /** 2942 * sys_tkill - send signal to one specific task 2943 * @pid: the PID of the task 2944 * @sig: signal to be sent 2945 * 2946 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2947 */ 2948 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 2949 { 2950 /* This is only valid for single tasks */ 2951 if (pid <= 0) 2952 return -EINVAL; 2953 2954 return do_tkill(0, pid, sig); 2955 } 2956 2957 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info) 2958 { 2959 /* Not even root can pretend to send signals from the kernel. 2960 * Nor can they impersonate a kill()/tgkill(), which adds source info. 2961 */ 2962 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 2963 (task_pid_vnr(current) != pid)) 2964 return -EPERM; 2965 2966 info->si_signo = sig; 2967 2968 /* POSIX.1b doesn't mention process groups. */ 2969 return kill_proc_info(sig, info, pid); 2970 } 2971 2972 /** 2973 * sys_rt_sigqueueinfo - send signal information to a signal 2974 * @pid: the PID of the thread 2975 * @sig: signal to be sent 2976 * @uinfo: signal info to be sent 2977 */ 2978 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 2979 siginfo_t __user *, uinfo) 2980 { 2981 siginfo_t info; 2982 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2983 return -EFAULT; 2984 return do_rt_sigqueueinfo(pid, sig, &info); 2985 } 2986 2987 #ifdef CONFIG_COMPAT 2988 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 2989 compat_pid_t, pid, 2990 int, sig, 2991 struct compat_siginfo __user *, uinfo) 2992 { 2993 siginfo_t info = {}; 2994 int ret = copy_siginfo_from_user32(&info, uinfo); 2995 if (unlikely(ret)) 2996 return ret; 2997 return do_rt_sigqueueinfo(pid, sig, &info); 2998 } 2999 #endif 3000 3001 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 3002 { 3003 /* This is only valid for single tasks */ 3004 if (pid <= 0 || tgid <= 0) 3005 return -EINVAL; 3006 3007 /* Not even root can pretend to send signals from the kernel. 3008 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3009 */ 3010 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3011 (task_pid_vnr(current) != pid)) 3012 return -EPERM; 3013 3014 info->si_signo = sig; 3015 3016 return do_send_specific(tgid, pid, sig, info); 3017 } 3018 3019 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3020 siginfo_t __user *, uinfo) 3021 { 3022 siginfo_t info; 3023 3024 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3025 return -EFAULT; 3026 3027 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3028 } 3029 3030 #ifdef CONFIG_COMPAT 3031 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3032 compat_pid_t, tgid, 3033 compat_pid_t, pid, 3034 int, sig, 3035 struct compat_siginfo __user *, uinfo) 3036 { 3037 siginfo_t info = {}; 3038 3039 if (copy_siginfo_from_user32(&info, uinfo)) 3040 return -EFAULT; 3041 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3042 } 3043 #endif 3044 3045 /* 3046 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 3047 */ 3048 void kernel_sigaction(int sig, __sighandler_t action) 3049 { 3050 spin_lock_irq(¤t->sighand->siglock); 3051 current->sighand->action[sig - 1].sa.sa_handler = action; 3052 if (action == SIG_IGN) { 3053 sigset_t mask; 3054 3055 sigemptyset(&mask); 3056 sigaddset(&mask, sig); 3057 3058 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 3059 flush_sigqueue_mask(&mask, ¤t->pending); 3060 recalc_sigpending(); 3061 } 3062 spin_unlock_irq(¤t->sighand->siglock); 3063 } 3064 EXPORT_SYMBOL(kernel_sigaction); 3065 3066 void __weak sigaction_compat_abi(struct k_sigaction *act, 3067 struct k_sigaction *oact) 3068 { 3069 } 3070 3071 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 3072 { 3073 struct task_struct *p = current, *t; 3074 struct k_sigaction *k; 3075 sigset_t mask; 3076 3077 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3078 return -EINVAL; 3079 3080 k = &p->sighand->action[sig-1]; 3081 3082 spin_lock_irq(&p->sighand->siglock); 3083 if (oact) 3084 *oact = *k; 3085 3086 sigaction_compat_abi(act, oact); 3087 3088 if (act) { 3089 sigdelsetmask(&act->sa.sa_mask, 3090 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3091 *k = *act; 3092 /* 3093 * POSIX 3.3.1.3: 3094 * "Setting a signal action to SIG_IGN for a signal that is 3095 * pending shall cause the pending signal to be discarded, 3096 * whether or not it is blocked." 3097 * 3098 * "Setting a signal action to SIG_DFL for a signal that is 3099 * pending and whose default action is to ignore the signal 3100 * (for example, SIGCHLD), shall cause the pending signal to 3101 * be discarded, whether or not it is blocked" 3102 */ 3103 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 3104 sigemptyset(&mask); 3105 sigaddset(&mask, sig); 3106 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 3107 for_each_thread(p, t) 3108 flush_sigqueue_mask(&mask, &t->pending); 3109 } 3110 } 3111 3112 spin_unlock_irq(&p->sighand->siglock); 3113 return 0; 3114 } 3115 3116 static int 3117 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 3118 { 3119 stack_t oss; 3120 int error; 3121 3122 oss.ss_sp = (void __user *) current->sas_ss_sp; 3123 oss.ss_size = current->sas_ss_size; 3124 oss.ss_flags = sas_ss_flags(sp) | 3125 (current->sas_ss_flags & SS_FLAG_BITS); 3126 3127 if (uss) { 3128 void __user *ss_sp; 3129 size_t ss_size; 3130 unsigned ss_flags; 3131 int ss_mode; 3132 3133 error = -EFAULT; 3134 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) 3135 goto out; 3136 error = __get_user(ss_sp, &uss->ss_sp) | 3137 __get_user(ss_flags, &uss->ss_flags) | 3138 __get_user(ss_size, &uss->ss_size); 3139 if (error) 3140 goto out; 3141 3142 error = -EPERM; 3143 if (on_sig_stack(sp)) 3144 goto out; 3145 3146 ss_mode = ss_flags & ~SS_FLAG_BITS; 3147 error = -EINVAL; 3148 if (ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 3149 ss_mode != 0) 3150 goto out; 3151 3152 if (ss_mode == SS_DISABLE) { 3153 ss_size = 0; 3154 ss_sp = NULL; 3155 } else { 3156 error = -ENOMEM; 3157 if (ss_size < MINSIGSTKSZ) 3158 goto out; 3159 } 3160 3161 current->sas_ss_sp = (unsigned long) ss_sp; 3162 current->sas_ss_size = ss_size; 3163 current->sas_ss_flags = ss_flags; 3164 } 3165 3166 error = 0; 3167 if (uoss) { 3168 error = -EFAULT; 3169 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) 3170 goto out; 3171 error = __put_user(oss.ss_sp, &uoss->ss_sp) | 3172 __put_user(oss.ss_size, &uoss->ss_size) | 3173 __put_user(oss.ss_flags, &uoss->ss_flags); 3174 } 3175 3176 out: 3177 return error; 3178 } 3179 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 3180 { 3181 return do_sigaltstack(uss, uoss, current_user_stack_pointer()); 3182 } 3183 3184 int restore_altstack(const stack_t __user *uss) 3185 { 3186 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer()); 3187 /* squash all but EFAULT for now */ 3188 return err == -EFAULT ? err : 0; 3189 } 3190 3191 int __save_altstack(stack_t __user *uss, unsigned long sp) 3192 { 3193 struct task_struct *t = current; 3194 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 3195 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3196 __put_user(t->sas_ss_size, &uss->ss_size); 3197 if (err) 3198 return err; 3199 if (t->sas_ss_flags & SS_AUTODISARM) 3200 sas_ss_reset(t); 3201 return 0; 3202 } 3203 3204 #ifdef CONFIG_COMPAT 3205 COMPAT_SYSCALL_DEFINE2(sigaltstack, 3206 const compat_stack_t __user *, uss_ptr, 3207 compat_stack_t __user *, uoss_ptr) 3208 { 3209 stack_t uss, uoss; 3210 int ret; 3211 mm_segment_t seg; 3212 3213 if (uss_ptr) { 3214 compat_stack_t uss32; 3215 3216 memset(&uss, 0, sizeof(stack_t)); 3217 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 3218 return -EFAULT; 3219 uss.ss_sp = compat_ptr(uss32.ss_sp); 3220 uss.ss_flags = uss32.ss_flags; 3221 uss.ss_size = uss32.ss_size; 3222 } 3223 seg = get_fs(); 3224 set_fs(KERNEL_DS); 3225 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL), 3226 (stack_t __force __user *) &uoss, 3227 compat_user_stack_pointer()); 3228 set_fs(seg); 3229 if (ret >= 0 && uoss_ptr) { 3230 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) || 3231 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) || 3232 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) || 3233 __put_user(uoss.ss_size, &uoss_ptr->ss_size)) 3234 ret = -EFAULT; 3235 } 3236 return ret; 3237 } 3238 3239 int compat_restore_altstack(const compat_stack_t __user *uss) 3240 { 3241 int err = compat_sys_sigaltstack(uss, NULL); 3242 /* squash all but -EFAULT for now */ 3243 return err == -EFAULT ? err : 0; 3244 } 3245 3246 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 3247 { 3248 int err; 3249 struct task_struct *t = current; 3250 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 3251 &uss->ss_sp) | 3252 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3253 __put_user(t->sas_ss_size, &uss->ss_size); 3254 if (err) 3255 return err; 3256 if (t->sas_ss_flags & SS_AUTODISARM) 3257 sas_ss_reset(t); 3258 return 0; 3259 } 3260 #endif 3261 3262 #ifdef __ARCH_WANT_SYS_SIGPENDING 3263 3264 /** 3265 * sys_sigpending - examine pending signals 3266 * @set: where mask of pending signal is returned 3267 */ 3268 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 3269 { 3270 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 3271 } 3272 3273 #endif 3274 3275 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 3276 /** 3277 * sys_sigprocmask - examine and change blocked signals 3278 * @how: whether to add, remove, or set signals 3279 * @nset: signals to add or remove (if non-null) 3280 * @oset: previous value of signal mask if non-null 3281 * 3282 * Some platforms have their own version with special arguments; 3283 * others support only sys_rt_sigprocmask. 3284 */ 3285 3286 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3287 old_sigset_t __user *, oset) 3288 { 3289 old_sigset_t old_set, new_set; 3290 sigset_t new_blocked; 3291 3292 old_set = current->blocked.sig[0]; 3293 3294 if (nset) { 3295 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3296 return -EFAULT; 3297 3298 new_blocked = current->blocked; 3299 3300 switch (how) { 3301 case SIG_BLOCK: 3302 sigaddsetmask(&new_blocked, new_set); 3303 break; 3304 case SIG_UNBLOCK: 3305 sigdelsetmask(&new_blocked, new_set); 3306 break; 3307 case SIG_SETMASK: 3308 new_blocked.sig[0] = new_set; 3309 break; 3310 default: 3311 return -EINVAL; 3312 } 3313 3314 set_current_blocked(&new_blocked); 3315 } 3316 3317 if (oset) { 3318 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3319 return -EFAULT; 3320 } 3321 3322 return 0; 3323 } 3324 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3325 3326 #ifndef CONFIG_ODD_RT_SIGACTION 3327 /** 3328 * sys_rt_sigaction - alter an action taken by a process 3329 * @sig: signal to be sent 3330 * @act: new sigaction 3331 * @oact: used to save the previous sigaction 3332 * @sigsetsize: size of sigset_t type 3333 */ 3334 SYSCALL_DEFINE4(rt_sigaction, int, sig, 3335 const struct sigaction __user *, act, 3336 struct sigaction __user *, oact, 3337 size_t, sigsetsize) 3338 { 3339 struct k_sigaction new_sa, old_sa; 3340 int ret = -EINVAL; 3341 3342 /* XXX: Don't preclude handling different sized sigset_t's. */ 3343 if (sigsetsize != sizeof(sigset_t)) 3344 goto out; 3345 3346 if (act) { 3347 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3348 return -EFAULT; 3349 } 3350 3351 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3352 3353 if (!ret && oact) { 3354 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3355 return -EFAULT; 3356 } 3357 out: 3358 return ret; 3359 } 3360 #ifdef CONFIG_COMPAT 3361 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 3362 const struct compat_sigaction __user *, act, 3363 struct compat_sigaction __user *, oact, 3364 compat_size_t, sigsetsize) 3365 { 3366 struct k_sigaction new_ka, old_ka; 3367 compat_sigset_t mask; 3368 #ifdef __ARCH_HAS_SA_RESTORER 3369 compat_uptr_t restorer; 3370 #endif 3371 int ret; 3372 3373 /* XXX: Don't preclude handling different sized sigset_t's. */ 3374 if (sigsetsize != sizeof(compat_sigset_t)) 3375 return -EINVAL; 3376 3377 if (act) { 3378 compat_uptr_t handler; 3379 ret = get_user(handler, &act->sa_handler); 3380 new_ka.sa.sa_handler = compat_ptr(handler); 3381 #ifdef __ARCH_HAS_SA_RESTORER 3382 ret |= get_user(restorer, &act->sa_restorer); 3383 new_ka.sa.sa_restorer = compat_ptr(restorer); 3384 #endif 3385 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask)); 3386 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 3387 if (ret) 3388 return -EFAULT; 3389 sigset_from_compat(&new_ka.sa.sa_mask, &mask); 3390 } 3391 3392 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3393 if (!ret && oact) { 3394 sigset_to_compat(&mask, &old_ka.sa.sa_mask); 3395 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 3396 &oact->sa_handler); 3397 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask)); 3398 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 3399 #ifdef __ARCH_HAS_SA_RESTORER 3400 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3401 &oact->sa_restorer); 3402 #endif 3403 } 3404 return ret; 3405 } 3406 #endif 3407 #endif /* !CONFIG_ODD_RT_SIGACTION */ 3408 3409 #ifdef CONFIG_OLD_SIGACTION 3410 SYSCALL_DEFINE3(sigaction, int, sig, 3411 const struct old_sigaction __user *, act, 3412 struct old_sigaction __user *, oact) 3413 { 3414 struct k_sigaction new_ka, old_ka; 3415 int ret; 3416 3417 if (act) { 3418 old_sigset_t mask; 3419 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3420 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 3421 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 3422 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3423 __get_user(mask, &act->sa_mask)) 3424 return -EFAULT; 3425 #ifdef __ARCH_HAS_KA_RESTORER 3426 new_ka.ka_restorer = NULL; 3427 #endif 3428 siginitset(&new_ka.sa.sa_mask, mask); 3429 } 3430 3431 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3432 3433 if (!ret && oact) { 3434 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3435 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 3436 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 3437 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3438 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3439 return -EFAULT; 3440 } 3441 3442 return ret; 3443 } 3444 #endif 3445 #ifdef CONFIG_COMPAT_OLD_SIGACTION 3446 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 3447 const struct compat_old_sigaction __user *, act, 3448 struct compat_old_sigaction __user *, oact) 3449 { 3450 struct k_sigaction new_ka, old_ka; 3451 int ret; 3452 compat_old_sigset_t mask; 3453 compat_uptr_t handler, restorer; 3454 3455 if (act) { 3456 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3457 __get_user(handler, &act->sa_handler) || 3458 __get_user(restorer, &act->sa_restorer) || 3459 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3460 __get_user(mask, &act->sa_mask)) 3461 return -EFAULT; 3462 3463 #ifdef __ARCH_HAS_KA_RESTORER 3464 new_ka.ka_restorer = NULL; 3465 #endif 3466 new_ka.sa.sa_handler = compat_ptr(handler); 3467 new_ka.sa.sa_restorer = compat_ptr(restorer); 3468 siginitset(&new_ka.sa.sa_mask, mask); 3469 } 3470 3471 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3472 3473 if (!ret && oact) { 3474 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3475 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 3476 &oact->sa_handler) || 3477 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3478 &oact->sa_restorer) || 3479 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3480 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3481 return -EFAULT; 3482 } 3483 return ret; 3484 } 3485 #endif 3486 3487 #ifdef CONFIG_SGETMASK_SYSCALL 3488 3489 /* 3490 * For backwards compatibility. Functionality superseded by sigprocmask. 3491 */ 3492 SYSCALL_DEFINE0(sgetmask) 3493 { 3494 /* SMP safe */ 3495 return current->blocked.sig[0]; 3496 } 3497 3498 SYSCALL_DEFINE1(ssetmask, int, newmask) 3499 { 3500 int old = current->blocked.sig[0]; 3501 sigset_t newset; 3502 3503 siginitset(&newset, newmask); 3504 set_current_blocked(&newset); 3505 3506 return old; 3507 } 3508 #endif /* CONFIG_SGETMASK_SYSCALL */ 3509 3510 #ifdef __ARCH_WANT_SYS_SIGNAL 3511 /* 3512 * For backwards compatibility. Functionality superseded by sigaction. 3513 */ 3514 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 3515 { 3516 struct k_sigaction new_sa, old_sa; 3517 int ret; 3518 3519 new_sa.sa.sa_handler = handler; 3520 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 3521 sigemptyset(&new_sa.sa.sa_mask); 3522 3523 ret = do_sigaction(sig, &new_sa, &old_sa); 3524 3525 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 3526 } 3527 #endif /* __ARCH_WANT_SYS_SIGNAL */ 3528 3529 #ifdef __ARCH_WANT_SYS_PAUSE 3530 3531 SYSCALL_DEFINE0(pause) 3532 { 3533 while (!signal_pending(current)) { 3534 __set_current_state(TASK_INTERRUPTIBLE); 3535 schedule(); 3536 } 3537 return -ERESTARTNOHAND; 3538 } 3539 3540 #endif 3541 3542 static int sigsuspend(sigset_t *set) 3543 { 3544 current->saved_sigmask = current->blocked; 3545 set_current_blocked(set); 3546 3547 while (!signal_pending(current)) { 3548 __set_current_state(TASK_INTERRUPTIBLE); 3549 schedule(); 3550 } 3551 set_restore_sigmask(); 3552 return -ERESTARTNOHAND; 3553 } 3554 3555 /** 3556 * sys_rt_sigsuspend - replace the signal mask for a value with the 3557 * @unewset value until a signal is received 3558 * @unewset: new signal mask value 3559 * @sigsetsize: size of sigset_t type 3560 */ 3561 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 3562 { 3563 sigset_t newset; 3564 3565 /* XXX: Don't preclude handling different sized sigset_t's. */ 3566 if (sigsetsize != sizeof(sigset_t)) 3567 return -EINVAL; 3568 3569 if (copy_from_user(&newset, unewset, sizeof(newset))) 3570 return -EFAULT; 3571 return sigsuspend(&newset); 3572 } 3573 3574 #ifdef CONFIG_COMPAT 3575 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 3576 { 3577 #ifdef __BIG_ENDIAN 3578 sigset_t newset; 3579 compat_sigset_t newset32; 3580 3581 /* XXX: Don't preclude handling different sized sigset_t's. */ 3582 if (sigsetsize != sizeof(sigset_t)) 3583 return -EINVAL; 3584 3585 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t))) 3586 return -EFAULT; 3587 sigset_from_compat(&newset, &newset32); 3588 return sigsuspend(&newset); 3589 #else 3590 /* on little-endian bitmaps don't care about granularity */ 3591 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize); 3592 #endif 3593 } 3594 #endif 3595 3596 #ifdef CONFIG_OLD_SIGSUSPEND 3597 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 3598 { 3599 sigset_t blocked; 3600 siginitset(&blocked, mask); 3601 return sigsuspend(&blocked); 3602 } 3603 #endif 3604 #ifdef CONFIG_OLD_SIGSUSPEND3 3605 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 3606 { 3607 sigset_t blocked; 3608 siginitset(&blocked, mask); 3609 return sigsuspend(&blocked); 3610 } 3611 #endif 3612 3613 __weak const char *arch_vma_name(struct vm_area_struct *vma) 3614 { 3615 return NULL; 3616 } 3617 3618 void __init signals_init(void) 3619 { 3620 /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */ 3621 BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE 3622 != offsetof(struct siginfo, _sifields._pad)); 3623 3624 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 3625 } 3626 3627 #ifdef CONFIG_KGDB_KDB 3628 #include <linux/kdb.h> 3629 /* 3630 * kdb_send_sig_info - Allows kdb to send signals without exposing 3631 * signal internals. This function checks if the required locks are 3632 * available before calling the main signal code, to avoid kdb 3633 * deadlocks. 3634 */ 3635 void 3636 kdb_send_sig_info(struct task_struct *t, struct siginfo *info) 3637 { 3638 static struct task_struct *kdb_prev_t; 3639 int sig, new_t; 3640 if (!spin_trylock(&t->sighand->siglock)) { 3641 kdb_printf("Can't do kill command now.\n" 3642 "The sigmask lock is held somewhere else in " 3643 "kernel, try again later\n"); 3644 return; 3645 } 3646 spin_unlock(&t->sighand->siglock); 3647 new_t = kdb_prev_t != t; 3648 kdb_prev_t = t; 3649 if (t->state != TASK_RUNNING && new_t) { 3650 kdb_printf("Process is not RUNNING, sending a signal from " 3651 "kdb risks deadlock\n" 3652 "on the run queue locks. " 3653 "The signal has _not_ been sent.\n" 3654 "Reissue the kill command if you want to risk " 3655 "the deadlock.\n"); 3656 return; 3657 } 3658 sig = info->si_signo; 3659 if (send_sig_info(sig, info, t)) 3660 kdb_printf("Fail to deliver Signal %d to process %d.\n", 3661 sig, t->pid); 3662 else 3663 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 3664 } 3665 #endif /* CONFIG_KGDB_KDB */ 3666