xref: /openbmc/linux/kernel/signal.c (revision ba61bb17496d1664bf7c5c2fd650d5fd78bd0a92)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/fs.h>
23 #include <linux/tty.h>
24 #include <linux/binfmts.h>
25 #include <linux/coredump.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/ptrace.h>
29 #include <linux/signal.h>
30 #include <linux/signalfd.h>
31 #include <linux/ratelimit.h>
32 #include <linux/tracehook.h>
33 #include <linux/capability.h>
34 #include <linux/freezer.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/nsproxy.h>
37 #include <linux/user_namespace.h>
38 #include <linux/uprobes.h>
39 #include <linux/compat.h>
40 #include <linux/cn_proc.h>
41 #include <linux/compiler.h>
42 #include <linux/posix-timers.h>
43 #include <linux/livepatch.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/signal.h>
47 
48 #include <asm/param.h>
49 #include <linux/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/siginfo.h>
52 #include <asm/cacheflush.h>
53 #include "audit.h"	/* audit_signal_info() */
54 
55 /*
56  * SLAB caches for signal bits.
57  */
58 
59 static struct kmem_cache *sigqueue_cachep;
60 
61 int print_fatal_signals __read_mostly;
62 
63 static void __user *sig_handler(struct task_struct *t, int sig)
64 {
65 	return t->sighand->action[sig - 1].sa.sa_handler;
66 }
67 
68 static int sig_handler_ignored(void __user *handler, int sig)
69 {
70 	/* Is it explicitly or implicitly ignored? */
71 	return handler == SIG_IGN ||
72 		(handler == SIG_DFL && sig_kernel_ignore(sig));
73 }
74 
75 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
76 {
77 	void __user *handler;
78 
79 	handler = sig_handler(t, sig);
80 
81 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
82 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
83 		return 1;
84 
85 	return sig_handler_ignored(handler, sig);
86 }
87 
88 static int sig_ignored(struct task_struct *t, int sig, bool force)
89 {
90 	/*
91 	 * Blocked signals are never ignored, since the
92 	 * signal handler may change by the time it is
93 	 * unblocked.
94 	 */
95 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
96 		return 0;
97 
98 	/*
99 	 * Tracers may want to know about even ignored signal unless it
100 	 * is SIGKILL which can't be reported anyway but can be ignored
101 	 * by SIGNAL_UNKILLABLE task.
102 	 */
103 	if (t->ptrace && sig != SIGKILL)
104 		return 0;
105 
106 	return sig_task_ignored(t, sig, force);
107 }
108 
109 /*
110  * Re-calculate pending state from the set of locally pending
111  * signals, globally pending signals, and blocked signals.
112  */
113 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
114 {
115 	unsigned long ready;
116 	long i;
117 
118 	switch (_NSIG_WORDS) {
119 	default:
120 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
121 			ready |= signal->sig[i] &~ blocked->sig[i];
122 		break;
123 
124 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
125 		ready |= signal->sig[2] &~ blocked->sig[2];
126 		ready |= signal->sig[1] &~ blocked->sig[1];
127 		ready |= signal->sig[0] &~ blocked->sig[0];
128 		break;
129 
130 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
131 		ready |= signal->sig[0] &~ blocked->sig[0];
132 		break;
133 
134 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
135 	}
136 	return ready !=	0;
137 }
138 
139 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
140 
141 static int recalc_sigpending_tsk(struct task_struct *t)
142 {
143 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
144 	    PENDING(&t->pending, &t->blocked) ||
145 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
146 		set_tsk_thread_flag(t, TIF_SIGPENDING);
147 		return 1;
148 	}
149 	/*
150 	 * We must never clear the flag in another thread, or in current
151 	 * when it's possible the current syscall is returning -ERESTART*.
152 	 * So we don't clear it here, and only callers who know they should do.
153 	 */
154 	return 0;
155 }
156 
157 /*
158  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
159  * This is superfluous when called on current, the wakeup is a harmless no-op.
160  */
161 void recalc_sigpending_and_wake(struct task_struct *t)
162 {
163 	if (recalc_sigpending_tsk(t))
164 		signal_wake_up(t, 0);
165 }
166 
167 void recalc_sigpending(void)
168 {
169 	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
170 	    !klp_patch_pending(current))
171 		clear_thread_flag(TIF_SIGPENDING);
172 
173 }
174 
175 /* Given the mask, find the first available signal that should be serviced. */
176 
177 #define SYNCHRONOUS_MASK \
178 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
179 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
180 
181 int next_signal(struct sigpending *pending, sigset_t *mask)
182 {
183 	unsigned long i, *s, *m, x;
184 	int sig = 0;
185 
186 	s = pending->signal.sig;
187 	m = mask->sig;
188 
189 	/*
190 	 * Handle the first word specially: it contains the
191 	 * synchronous signals that need to be dequeued first.
192 	 */
193 	x = *s &~ *m;
194 	if (x) {
195 		if (x & SYNCHRONOUS_MASK)
196 			x &= SYNCHRONOUS_MASK;
197 		sig = ffz(~x) + 1;
198 		return sig;
199 	}
200 
201 	switch (_NSIG_WORDS) {
202 	default:
203 		for (i = 1; i < _NSIG_WORDS; ++i) {
204 			x = *++s &~ *++m;
205 			if (!x)
206 				continue;
207 			sig = ffz(~x) + i*_NSIG_BPW + 1;
208 			break;
209 		}
210 		break;
211 
212 	case 2:
213 		x = s[1] &~ m[1];
214 		if (!x)
215 			break;
216 		sig = ffz(~x) + _NSIG_BPW + 1;
217 		break;
218 
219 	case 1:
220 		/* Nothing to do */
221 		break;
222 	}
223 
224 	return sig;
225 }
226 
227 static inline void print_dropped_signal(int sig)
228 {
229 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
230 
231 	if (!print_fatal_signals)
232 		return;
233 
234 	if (!__ratelimit(&ratelimit_state))
235 		return;
236 
237 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
238 				current->comm, current->pid, sig);
239 }
240 
241 /**
242  * task_set_jobctl_pending - set jobctl pending bits
243  * @task: target task
244  * @mask: pending bits to set
245  *
246  * Clear @mask from @task->jobctl.  @mask must be subset of
247  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
248  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
249  * cleared.  If @task is already being killed or exiting, this function
250  * becomes noop.
251  *
252  * CONTEXT:
253  * Must be called with @task->sighand->siglock held.
254  *
255  * RETURNS:
256  * %true if @mask is set, %false if made noop because @task was dying.
257  */
258 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
259 {
260 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
261 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
262 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
263 
264 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
265 		return false;
266 
267 	if (mask & JOBCTL_STOP_SIGMASK)
268 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
269 
270 	task->jobctl |= mask;
271 	return true;
272 }
273 
274 /**
275  * task_clear_jobctl_trapping - clear jobctl trapping bit
276  * @task: target task
277  *
278  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
279  * Clear it and wake up the ptracer.  Note that we don't need any further
280  * locking.  @task->siglock guarantees that @task->parent points to the
281  * ptracer.
282  *
283  * CONTEXT:
284  * Must be called with @task->sighand->siglock held.
285  */
286 void task_clear_jobctl_trapping(struct task_struct *task)
287 {
288 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
289 		task->jobctl &= ~JOBCTL_TRAPPING;
290 		smp_mb();	/* advised by wake_up_bit() */
291 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
292 	}
293 }
294 
295 /**
296  * task_clear_jobctl_pending - clear jobctl pending bits
297  * @task: target task
298  * @mask: pending bits to clear
299  *
300  * Clear @mask from @task->jobctl.  @mask must be subset of
301  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
302  * STOP bits are cleared together.
303  *
304  * If clearing of @mask leaves no stop or trap pending, this function calls
305  * task_clear_jobctl_trapping().
306  *
307  * CONTEXT:
308  * Must be called with @task->sighand->siglock held.
309  */
310 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
311 {
312 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
313 
314 	if (mask & JOBCTL_STOP_PENDING)
315 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
316 
317 	task->jobctl &= ~mask;
318 
319 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
320 		task_clear_jobctl_trapping(task);
321 }
322 
323 /**
324  * task_participate_group_stop - participate in a group stop
325  * @task: task participating in a group stop
326  *
327  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
328  * Group stop states are cleared and the group stop count is consumed if
329  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
330  * stop, the appropriate %SIGNAL_* flags are set.
331  *
332  * CONTEXT:
333  * Must be called with @task->sighand->siglock held.
334  *
335  * RETURNS:
336  * %true if group stop completion should be notified to the parent, %false
337  * otherwise.
338  */
339 static bool task_participate_group_stop(struct task_struct *task)
340 {
341 	struct signal_struct *sig = task->signal;
342 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
343 
344 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
345 
346 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
347 
348 	if (!consume)
349 		return false;
350 
351 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
352 		sig->group_stop_count--;
353 
354 	/*
355 	 * Tell the caller to notify completion iff we are entering into a
356 	 * fresh group stop.  Read comment in do_signal_stop() for details.
357 	 */
358 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
359 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
360 		return true;
361 	}
362 	return false;
363 }
364 
365 /*
366  * allocate a new signal queue record
367  * - this may be called without locks if and only if t == current, otherwise an
368  *   appropriate lock must be held to stop the target task from exiting
369  */
370 static struct sigqueue *
371 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
372 {
373 	struct sigqueue *q = NULL;
374 	struct user_struct *user;
375 
376 	/*
377 	 * Protect access to @t credentials. This can go away when all
378 	 * callers hold rcu read lock.
379 	 */
380 	rcu_read_lock();
381 	user = get_uid(__task_cred(t)->user);
382 	atomic_inc(&user->sigpending);
383 	rcu_read_unlock();
384 
385 	if (override_rlimit ||
386 	    atomic_read(&user->sigpending) <=
387 			task_rlimit(t, RLIMIT_SIGPENDING)) {
388 		q = kmem_cache_alloc(sigqueue_cachep, flags);
389 	} else {
390 		print_dropped_signal(sig);
391 	}
392 
393 	if (unlikely(q == NULL)) {
394 		atomic_dec(&user->sigpending);
395 		free_uid(user);
396 	} else {
397 		INIT_LIST_HEAD(&q->list);
398 		q->flags = 0;
399 		q->user = user;
400 	}
401 
402 	return q;
403 }
404 
405 static void __sigqueue_free(struct sigqueue *q)
406 {
407 	if (q->flags & SIGQUEUE_PREALLOC)
408 		return;
409 	atomic_dec(&q->user->sigpending);
410 	free_uid(q->user);
411 	kmem_cache_free(sigqueue_cachep, q);
412 }
413 
414 void flush_sigqueue(struct sigpending *queue)
415 {
416 	struct sigqueue *q;
417 
418 	sigemptyset(&queue->signal);
419 	while (!list_empty(&queue->list)) {
420 		q = list_entry(queue->list.next, struct sigqueue , list);
421 		list_del_init(&q->list);
422 		__sigqueue_free(q);
423 	}
424 }
425 
426 /*
427  * Flush all pending signals for this kthread.
428  */
429 void flush_signals(struct task_struct *t)
430 {
431 	unsigned long flags;
432 
433 	spin_lock_irqsave(&t->sighand->siglock, flags);
434 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
435 	flush_sigqueue(&t->pending);
436 	flush_sigqueue(&t->signal->shared_pending);
437 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
438 }
439 
440 #ifdef CONFIG_POSIX_TIMERS
441 static void __flush_itimer_signals(struct sigpending *pending)
442 {
443 	sigset_t signal, retain;
444 	struct sigqueue *q, *n;
445 
446 	signal = pending->signal;
447 	sigemptyset(&retain);
448 
449 	list_for_each_entry_safe(q, n, &pending->list, list) {
450 		int sig = q->info.si_signo;
451 
452 		if (likely(q->info.si_code != SI_TIMER)) {
453 			sigaddset(&retain, sig);
454 		} else {
455 			sigdelset(&signal, sig);
456 			list_del_init(&q->list);
457 			__sigqueue_free(q);
458 		}
459 	}
460 
461 	sigorsets(&pending->signal, &signal, &retain);
462 }
463 
464 void flush_itimer_signals(void)
465 {
466 	struct task_struct *tsk = current;
467 	unsigned long flags;
468 
469 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
470 	__flush_itimer_signals(&tsk->pending);
471 	__flush_itimer_signals(&tsk->signal->shared_pending);
472 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
473 }
474 #endif
475 
476 void ignore_signals(struct task_struct *t)
477 {
478 	int i;
479 
480 	for (i = 0; i < _NSIG; ++i)
481 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
482 
483 	flush_signals(t);
484 }
485 
486 /*
487  * Flush all handlers for a task.
488  */
489 
490 void
491 flush_signal_handlers(struct task_struct *t, int force_default)
492 {
493 	int i;
494 	struct k_sigaction *ka = &t->sighand->action[0];
495 	for (i = _NSIG ; i != 0 ; i--) {
496 		if (force_default || ka->sa.sa_handler != SIG_IGN)
497 			ka->sa.sa_handler = SIG_DFL;
498 		ka->sa.sa_flags = 0;
499 #ifdef __ARCH_HAS_SA_RESTORER
500 		ka->sa.sa_restorer = NULL;
501 #endif
502 		sigemptyset(&ka->sa.sa_mask);
503 		ka++;
504 	}
505 }
506 
507 int unhandled_signal(struct task_struct *tsk, int sig)
508 {
509 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
510 	if (is_global_init(tsk))
511 		return 1;
512 	if (handler != SIG_IGN && handler != SIG_DFL)
513 		return 0;
514 	/* if ptraced, let the tracer determine */
515 	return !tsk->ptrace;
516 }
517 
518 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
519 			   bool *resched_timer)
520 {
521 	struct sigqueue *q, *first = NULL;
522 
523 	/*
524 	 * Collect the siginfo appropriate to this signal.  Check if
525 	 * there is another siginfo for the same signal.
526 	*/
527 	list_for_each_entry(q, &list->list, list) {
528 		if (q->info.si_signo == sig) {
529 			if (first)
530 				goto still_pending;
531 			first = q;
532 		}
533 	}
534 
535 	sigdelset(&list->signal, sig);
536 
537 	if (first) {
538 still_pending:
539 		list_del_init(&first->list);
540 		copy_siginfo(info, &first->info);
541 
542 		*resched_timer =
543 			(first->flags & SIGQUEUE_PREALLOC) &&
544 			(info->si_code == SI_TIMER) &&
545 			(info->si_sys_private);
546 
547 		__sigqueue_free(first);
548 	} else {
549 		/*
550 		 * Ok, it wasn't in the queue.  This must be
551 		 * a fast-pathed signal or we must have been
552 		 * out of queue space.  So zero out the info.
553 		 */
554 		clear_siginfo(info);
555 		info->si_signo = sig;
556 		info->si_errno = 0;
557 		info->si_code = SI_USER;
558 		info->si_pid = 0;
559 		info->si_uid = 0;
560 	}
561 }
562 
563 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
564 			siginfo_t *info, bool *resched_timer)
565 {
566 	int sig = next_signal(pending, mask);
567 
568 	if (sig)
569 		collect_signal(sig, pending, info, resched_timer);
570 	return sig;
571 }
572 
573 /*
574  * Dequeue a signal and return the element to the caller, which is
575  * expected to free it.
576  *
577  * All callers have to hold the siglock.
578  */
579 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
580 {
581 	bool resched_timer = false;
582 	int signr;
583 
584 	/* We only dequeue private signals from ourselves, we don't let
585 	 * signalfd steal them
586 	 */
587 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
588 	if (!signr) {
589 		signr = __dequeue_signal(&tsk->signal->shared_pending,
590 					 mask, info, &resched_timer);
591 #ifdef CONFIG_POSIX_TIMERS
592 		/*
593 		 * itimer signal ?
594 		 *
595 		 * itimers are process shared and we restart periodic
596 		 * itimers in the signal delivery path to prevent DoS
597 		 * attacks in the high resolution timer case. This is
598 		 * compliant with the old way of self-restarting
599 		 * itimers, as the SIGALRM is a legacy signal and only
600 		 * queued once. Changing the restart behaviour to
601 		 * restart the timer in the signal dequeue path is
602 		 * reducing the timer noise on heavy loaded !highres
603 		 * systems too.
604 		 */
605 		if (unlikely(signr == SIGALRM)) {
606 			struct hrtimer *tmr = &tsk->signal->real_timer;
607 
608 			if (!hrtimer_is_queued(tmr) &&
609 			    tsk->signal->it_real_incr != 0) {
610 				hrtimer_forward(tmr, tmr->base->get_time(),
611 						tsk->signal->it_real_incr);
612 				hrtimer_restart(tmr);
613 			}
614 		}
615 #endif
616 	}
617 
618 	recalc_sigpending();
619 	if (!signr)
620 		return 0;
621 
622 	if (unlikely(sig_kernel_stop(signr))) {
623 		/*
624 		 * Set a marker that we have dequeued a stop signal.  Our
625 		 * caller might release the siglock and then the pending
626 		 * stop signal it is about to process is no longer in the
627 		 * pending bitmasks, but must still be cleared by a SIGCONT
628 		 * (and overruled by a SIGKILL).  So those cases clear this
629 		 * shared flag after we've set it.  Note that this flag may
630 		 * remain set after the signal we return is ignored or
631 		 * handled.  That doesn't matter because its only purpose
632 		 * is to alert stop-signal processing code when another
633 		 * processor has come along and cleared the flag.
634 		 */
635 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
636 	}
637 #ifdef CONFIG_POSIX_TIMERS
638 	if (resched_timer) {
639 		/*
640 		 * Release the siglock to ensure proper locking order
641 		 * of timer locks outside of siglocks.  Note, we leave
642 		 * irqs disabled here, since the posix-timers code is
643 		 * about to disable them again anyway.
644 		 */
645 		spin_unlock(&tsk->sighand->siglock);
646 		posixtimer_rearm(info);
647 		spin_lock(&tsk->sighand->siglock);
648 
649 		/* Don't expose the si_sys_private value to userspace */
650 		info->si_sys_private = 0;
651 	}
652 #endif
653 	return signr;
654 }
655 
656 /*
657  * Tell a process that it has a new active signal..
658  *
659  * NOTE! we rely on the previous spin_lock to
660  * lock interrupts for us! We can only be called with
661  * "siglock" held, and the local interrupt must
662  * have been disabled when that got acquired!
663  *
664  * No need to set need_resched since signal event passing
665  * goes through ->blocked
666  */
667 void signal_wake_up_state(struct task_struct *t, unsigned int state)
668 {
669 	set_tsk_thread_flag(t, TIF_SIGPENDING);
670 	/*
671 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
672 	 * case. We don't check t->state here because there is a race with it
673 	 * executing another processor and just now entering stopped state.
674 	 * By using wake_up_state, we ensure the process will wake up and
675 	 * handle its death signal.
676 	 */
677 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
678 		kick_process(t);
679 }
680 
681 /*
682  * Remove signals in mask from the pending set and queue.
683  * Returns 1 if any signals were found.
684  *
685  * All callers must be holding the siglock.
686  */
687 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
688 {
689 	struct sigqueue *q, *n;
690 	sigset_t m;
691 
692 	sigandsets(&m, mask, &s->signal);
693 	if (sigisemptyset(&m))
694 		return 0;
695 
696 	sigandnsets(&s->signal, &s->signal, mask);
697 	list_for_each_entry_safe(q, n, &s->list, list) {
698 		if (sigismember(mask, q->info.si_signo)) {
699 			list_del_init(&q->list);
700 			__sigqueue_free(q);
701 		}
702 	}
703 	return 1;
704 }
705 
706 static inline int is_si_special(const struct siginfo *info)
707 {
708 	return info <= SEND_SIG_FORCED;
709 }
710 
711 static inline bool si_fromuser(const struct siginfo *info)
712 {
713 	return info == SEND_SIG_NOINFO ||
714 		(!is_si_special(info) && SI_FROMUSER(info));
715 }
716 
717 /*
718  * called with RCU read lock from check_kill_permission()
719  */
720 static int kill_ok_by_cred(struct task_struct *t)
721 {
722 	const struct cred *cred = current_cred();
723 	const struct cred *tcred = __task_cred(t);
724 
725 	if (uid_eq(cred->euid, tcred->suid) ||
726 	    uid_eq(cred->euid, tcred->uid)  ||
727 	    uid_eq(cred->uid,  tcred->suid) ||
728 	    uid_eq(cred->uid,  tcred->uid))
729 		return 1;
730 
731 	if (ns_capable(tcred->user_ns, CAP_KILL))
732 		return 1;
733 
734 	return 0;
735 }
736 
737 /*
738  * Bad permissions for sending the signal
739  * - the caller must hold the RCU read lock
740  */
741 static int check_kill_permission(int sig, struct siginfo *info,
742 				 struct task_struct *t)
743 {
744 	struct pid *sid;
745 	int error;
746 
747 	if (!valid_signal(sig))
748 		return -EINVAL;
749 
750 	if (!si_fromuser(info))
751 		return 0;
752 
753 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
754 	if (error)
755 		return error;
756 
757 	if (!same_thread_group(current, t) &&
758 	    !kill_ok_by_cred(t)) {
759 		switch (sig) {
760 		case SIGCONT:
761 			sid = task_session(t);
762 			/*
763 			 * We don't return the error if sid == NULL. The
764 			 * task was unhashed, the caller must notice this.
765 			 */
766 			if (!sid || sid == task_session(current))
767 				break;
768 		default:
769 			return -EPERM;
770 		}
771 	}
772 
773 	return security_task_kill(t, info, sig, NULL);
774 }
775 
776 /**
777  * ptrace_trap_notify - schedule trap to notify ptracer
778  * @t: tracee wanting to notify tracer
779  *
780  * This function schedules sticky ptrace trap which is cleared on the next
781  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
782  * ptracer.
783  *
784  * If @t is running, STOP trap will be taken.  If trapped for STOP and
785  * ptracer is listening for events, tracee is woken up so that it can
786  * re-trap for the new event.  If trapped otherwise, STOP trap will be
787  * eventually taken without returning to userland after the existing traps
788  * are finished by PTRACE_CONT.
789  *
790  * CONTEXT:
791  * Must be called with @task->sighand->siglock held.
792  */
793 static void ptrace_trap_notify(struct task_struct *t)
794 {
795 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
796 	assert_spin_locked(&t->sighand->siglock);
797 
798 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
799 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
800 }
801 
802 /*
803  * Handle magic process-wide effects of stop/continue signals. Unlike
804  * the signal actions, these happen immediately at signal-generation
805  * time regardless of blocking, ignoring, or handling.  This does the
806  * actual continuing for SIGCONT, but not the actual stopping for stop
807  * signals. The process stop is done as a signal action for SIG_DFL.
808  *
809  * Returns true if the signal should be actually delivered, otherwise
810  * it should be dropped.
811  */
812 static bool prepare_signal(int sig, struct task_struct *p, bool force)
813 {
814 	struct signal_struct *signal = p->signal;
815 	struct task_struct *t;
816 	sigset_t flush;
817 
818 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
819 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
820 			return sig == SIGKILL;
821 		/*
822 		 * The process is in the middle of dying, nothing to do.
823 		 */
824 	} else if (sig_kernel_stop(sig)) {
825 		/*
826 		 * This is a stop signal.  Remove SIGCONT from all queues.
827 		 */
828 		siginitset(&flush, sigmask(SIGCONT));
829 		flush_sigqueue_mask(&flush, &signal->shared_pending);
830 		for_each_thread(p, t)
831 			flush_sigqueue_mask(&flush, &t->pending);
832 	} else if (sig == SIGCONT) {
833 		unsigned int why;
834 		/*
835 		 * Remove all stop signals from all queues, wake all threads.
836 		 */
837 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
838 		flush_sigqueue_mask(&flush, &signal->shared_pending);
839 		for_each_thread(p, t) {
840 			flush_sigqueue_mask(&flush, &t->pending);
841 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
842 			if (likely(!(t->ptrace & PT_SEIZED)))
843 				wake_up_state(t, __TASK_STOPPED);
844 			else
845 				ptrace_trap_notify(t);
846 		}
847 
848 		/*
849 		 * Notify the parent with CLD_CONTINUED if we were stopped.
850 		 *
851 		 * If we were in the middle of a group stop, we pretend it
852 		 * was already finished, and then continued. Since SIGCHLD
853 		 * doesn't queue we report only CLD_STOPPED, as if the next
854 		 * CLD_CONTINUED was dropped.
855 		 */
856 		why = 0;
857 		if (signal->flags & SIGNAL_STOP_STOPPED)
858 			why |= SIGNAL_CLD_CONTINUED;
859 		else if (signal->group_stop_count)
860 			why |= SIGNAL_CLD_STOPPED;
861 
862 		if (why) {
863 			/*
864 			 * The first thread which returns from do_signal_stop()
865 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
866 			 * notify its parent. See get_signal_to_deliver().
867 			 */
868 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
869 			signal->group_stop_count = 0;
870 			signal->group_exit_code = 0;
871 		}
872 	}
873 
874 	return !sig_ignored(p, sig, force);
875 }
876 
877 /*
878  * Test if P wants to take SIG.  After we've checked all threads with this,
879  * it's equivalent to finding no threads not blocking SIG.  Any threads not
880  * blocking SIG were ruled out because they are not running and already
881  * have pending signals.  Such threads will dequeue from the shared queue
882  * as soon as they're available, so putting the signal on the shared queue
883  * will be equivalent to sending it to one such thread.
884  */
885 static inline int wants_signal(int sig, struct task_struct *p)
886 {
887 	if (sigismember(&p->blocked, sig))
888 		return 0;
889 	if (p->flags & PF_EXITING)
890 		return 0;
891 	if (sig == SIGKILL)
892 		return 1;
893 	if (task_is_stopped_or_traced(p))
894 		return 0;
895 	return task_curr(p) || !signal_pending(p);
896 }
897 
898 static void complete_signal(int sig, struct task_struct *p, int group)
899 {
900 	struct signal_struct *signal = p->signal;
901 	struct task_struct *t;
902 
903 	/*
904 	 * Now find a thread we can wake up to take the signal off the queue.
905 	 *
906 	 * If the main thread wants the signal, it gets first crack.
907 	 * Probably the least surprising to the average bear.
908 	 */
909 	if (wants_signal(sig, p))
910 		t = p;
911 	else if (!group || thread_group_empty(p))
912 		/*
913 		 * There is just one thread and it does not need to be woken.
914 		 * It will dequeue unblocked signals before it runs again.
915 		 */
916 		return;
917 	else {
918 		/*
919 		 * Otherwise try to find a suitable thread.
920 		 */
921 		t = signal->curr_target;
922 		while (!wants_signal(sig, t)) {
923 			t = next_thread(t);
924 			if (t == signal->curr_target)
925 				/*
926 				 * No thread needs to be woken.
927 				 * Any eligible threads will see
928 				 * the signal in the queue soon.
929 				 */
930 				return;
931 		}
932 		signal->curr_target = t;
933 	}
934 
935 	/*
936 	 * Found a killable thread.  If the signal will be fatal,
937 	 * then start taking the whole group down immediately.
938 	 */
939 	if (sig_fatal(p, sig) &&
940 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
941 	    !sigismember(&t->real_blocked, sig) &&
942 	    (sig == SIGKILL || !p->ptrace)) {
943 		/*
944 		 * This signal will be fatal to the whole group.
945 		 */
946 		if (!sig_kernel_coredump(sig)) {
947 			/*
948 			 * Start a group exit and wake everybody up.
949 			 * This way we don't have other threads
950 			 * running and doing things after a slower
951 			 * thread has the fatal signal pending.
952 			 */
953 			signal->flags = SIGNAL_GROUP_EXIT;
954 			signal->group_exit_code = sig;
955 			signal->group_stop_count = 0;
956 			t = p;
957 			do {
958 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
959 				sigaddset(&t->pending.signal, SIGKILL);
960 				signal_wake_up(t, 1);
961 			} while_each_thread(p, t);
962 			return;
963 		}
964 	}
965 
966 	/*
967 	 * The signal is already in the shared-pending queue.
968 	 * Tell the chosen thread to wake up and dequeue it.
969 	 */
970 	signal_wake_up(t, sig == SIGKILL);
971 	return;
972 }
973 
974 static inline int legacy_queue(struct sigpending *signals, int sig)
975 {
976 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
977 }
978 
979 #ifdef CONFIG_USER_NS
980 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
981 {
982 	if (current_user_ns() == task_cred_xxx(t, user_ns))
983 		return;
984 
985 	if (SI_FROMKERNEL(info))
986 		return;
987 
988 	rcu_read_lock();
989 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
990 					make_kuid(current_user_ns(), info->si_uid));
991 	rcu_read_unlock();
992 }
993 #else
994 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
995 {
996 	return;
997 }
998 #endif
999 
1000 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1001 			int group, int from_ancestor_ns)
1002 {
1003 	struct sigpending *pending;
1004 	struct sigqueue *q;
1005 	int override_rlimit;
1006 	int ret = 0, result;
1007 
1008 	assert_spin_locked(&t->sighand->siglock);
1009 
1010 	result = TRACE_SIGNAL_IGNORED;
1011 	if (!prepare_signal(sig, t,
1012 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1013 		goto ret;
1014 
1015 	pending = group ? &t->signal->shared_pending : &t->pending;
1016 	/*
1017 	 * Short-circuit ignored signals and support queuing
1018 	 * exactly one non-rt signal, so that we can get more
1019 	 * detailed information about the cause of the signal.
1020 	 */
1021 	result = TRACE_SIGNAL_ALREADY_PENDING;
1022 	if (legacy_queue(pending, sig))
1023 		goto ret;
1024 
1025 	result = TRACE_SIGNAL_DELIVERED;
1026 	/*
1027 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1028 	 * or SIGKILL.
1029 	 */
1030 	if (info == SEND_SIG_FORCED)
1031 		goto out_set;
1032 
1033 	/*
1034 	 * Real-time signals must be queued if sent by sigqueue, or
1035 	 * some other real-time mechanism.  It is implementation
1036 	 * defined whether kill() does so.  We attempt to do so, on
1037 	 * the principle of least surprise, but since kill is not
1038 	 * allowed to fail with EAGAIN when low on memory we just
1039 	 * make sure at least one signal gets delivered and don't
1040 	 * pass on the info struct.
1041 	 */
1042 	if (sig < SIGRTMIN)
1043 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1044 	else
1045 		override_rlimit = 0;
1046 
1047 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1048 	if (q) {
1049 		list_add_tail(&q->list, &pending->list);
1050 		switch ((unsigned long) info) {
1051 		case (unsigned long) SEND_SIG_NOINFO:
1052 			clear_siginfo(&q->info);
1053 			q->info.si_signo = sig;
1054 			q->info.si_errno = 0;
1055 			q->info.si_code = SI_USER;
1056 			q->info.si_pid = task_tgid_nr_ns(current,
1057 							task_active_pid_ns(t));
1058 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1059 			break;
1060 		case (unsigned long) SEND_SIG_PRIV:
1061 			clear_siginfo(&q->info);
1062 			q->info.si_signo = sig;
1063 			q->info.si_errno = 0;
1064 			q->info.si_code = SI_KERNEL;
1065 			q->info.si_pid = 0;
1066 			q->info.si_uid = 0;
1067 			break;
1068 		default:
1069 			copy_siginfo(&q->info, info);
1070 			if (from_ancestor_ns)
1071 				q->info.si_pid = 0;
1072 			break;
1073 		}
1074 
1075 		userns_fixup_signal_uid(&q->info, t);
1076 
1077 	} else if (!is_si_special(info)) {
1078 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1079 			/*
1080 			 * Queue overflow, abort.  We may abort if the
1081 			 * signal was rt and sent by user using something
1082 			 * other than kill().
1083 			 */
1084 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1085 			ret = -EAGAIN;
1086 			goto ret;
1087 		} else {
1088 			/*
1089 			 * This is a silent loss of information.  We still
1090 			 * send the signal, but the *info bits are lost.
1091 			 */
1092 			result = TRACE_SIGNAL_LOSE_INFO;
1093 		}
1094 	}
1095 
1096 out_set:
1097 	signalfd_notify(t, sig);
1098 	sigaddset(&pending->signal, sig);
1099 	complete_signal(sig, t, group);
1100 ret:
1101 	trace_signal_generate(sig, info, t, group, result);
1102 	return ret;
1103 }
1104 
1105 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1106 			int group)
1107 {
1108 	int from_ancestor_ns = 0;
1109 
1110 #ifdef CONFIG_PID_NS
1111 	from_ancestor_ns = si_fromuser(info) &&
1112 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1113 #endif
1114 
1115 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1116 }
1117 
1118 static void print_fatal_signal(int signr)
1119 {
1120 	struct pt_regs *regs = signal_pt_regs();
1121 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1122 
1123 #if defined(__i386__) && !defined(__arch_um__)
1124 	pr_info("code at %08lx: ", regs->ip);
1125 	{
1126 		int i;
1127 		for (i = 0; i < 16; i++) {
1128 			unsigned char insn;
1129 
1130 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1131 				break;
1132 			pr_cont("%02x ", insn);
1133 		}
1134 	}
1135 	pr_cont("\n");
1136 #endif
1137 	preempt_disable();
1138 	show_regs(regs);
1139 	preempt_enable();
1140 }
1141 
1142 static int __init setup_print_fatal_signals(char *str)
1143 {
1144 	get_option (&str, &print_fatal_signals);
1145 
1146 	return 1;
1147 }
1148 
1149 __setup("print-fatal-signals=", setup_print_fatal_signals);
1150 
1151 int
1152 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1153 {
1154 	return send_signal(sig, info, p, 1);
1155 }
1156 
1157 static int
1158 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1159 {
1160 	return send_signal(sig, info, t, 0);
1161 }
1162 
1163 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1164 			bool group)
1165 {
1166 	unsigned long flags;
1167 	int ret = -ESRCH;
1168 
1169 	if (lock_task_sighand(p, &flags)) {
1170 		ret = send_signal(sig, info, p, group);
1171 		unlock_task_sighand(p, &flags);
1172 	}
1173 
1174 	return ret;
1175 }
1176 
1177 /*
1178  * Force a signal that the process can't ignore: if necessary
1179  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1180  *
1181  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1182  * since we do not want to have a signal handler that was blocked
1183  * be invoked when user space had explicitly blocked it.
1184  *
1185  * We don't want to have recursive SIGSEGV's etc, for example,
1186  * that is why we also clear SIGNAL_UNKILLABLE.
1187  */
1188 int
1189 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1190 {
1191 	unsigned long int flags;
1192 	int ret, blocked, ignored;
1193 	struct k_sigaction *action;
1194 
1195 	spin_lock_irqsave(&t->sighand->siglock, flags);
1196 	action = &t->sighand->action[sig-1];
1197 	ignored = action->sa.sa_handler == SIG_IGN;
1198 	blocked = sigismember(&t->blocked, sig);
1199 	if (blocked || ignored) {
1200 		action->sa.sa_handler = SIG_DFL;
1201 		if (blocked) {
1202 			sigdelset(&t->blocked, sig);
1203 			recalc_sigpending_and_wake(t);
1204 		}
1205 	}
1206 	/*
1207 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1208 	 * debugging to leave init killable.
1209 	 */
1210 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1211 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1212 	ret = specific_send_sig_info(sig, info, t);
1213 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1214 
1215 	return ret;
1216 }
1217 
1218 /*
1219  * Nuke all other threads in the group.
1220  */
1221 int zap_other_threads(struct task_struct *p)
1222 {
1223 	struct task_struct *t = p;
1224 	int count = 0;
1225 
1226 	p->signal->group_stop_count = 0;
1227 
1228 	while_each_thread(p, t) {
1229 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1230 		count++;
1231 
1232 		/* Don't bother with already dead threads */
1233 		if (t->exit_state)
1234 			continue;
1235 		sigaddset(&t->pending.signal, SIGKILL);
1236 		signal_wake_up(t, 1);
1237 	}
1238 
1239 	return count;
1240 }
1241 
1242 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1243 					   unsigned long *flags)
1244 {
1245 	struct sighand_struct *sighand;
1246 
1247 	rcu_read_lock();
1248 	for (;;) {
1249 		sighand = rcu_dereference(tsk->sighand);
1250 		if (unlikely(sighand == NULL))
1251 			break;
1252 
1253 		/*
1254 		 * This sighand can be already freed and even reused, but
1255 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1256 		 * initializes ->siglock: this slab can't go away, it has
1257 		 * the same object type, ->siglock can't be reinitialized.
1258 		 *
1259 		 * We need to ensure that tsk->sighand is still the same
1260 		 * after we take the lock, we can race with de_thread() or
1261 		 * __exit_signal(). In the latter case the next iteration
1262 		 * must see ->sighand == NULL.
1263 		 */
1264 		spin_lock_irqsave(&sighand->siglock, *flags);
1265 		if (likely(sighand == tsk->sighand))
1266 			break;
1267 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1268 	}
1269 	rcu_read_unlock();
1270 
1271 	return sighand;
1272 }
1273 
1274 /*
1275  * send signal info to all the members of a group
1276  */
1277 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1278 {
1279 	int ret;
1280 
1281 	rcu_read_lock();
1282 	ret = check_kill_permission(sig, info, p);
1283 	rcu_read_unlock();
1284 
1285 	if (!ret && sig)
1286 		ret = do_send_sig_info(sig, info, p, true);
1287 
1288 	return ret;
1289 }
1290 
1291 /*
1292  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1293  * control characters do (^C, ^Z etc)
1294  * - the caller must hold at least a readlock on tasklist_lock
1295  */
1296 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1297 {
1298 	struct task_struct *p = NULL;
1299 	int retval, success;
1300 
1301 	success = 0;
1302 	retval = -ESRCH;
1303 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1304 		int err = group_send_sig_info(sig, info, p);
1305 		success |= !err;
1306 		retval = err;
1307 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1308 	return success ? 0 : retval;
1309 }
1310 
1311 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1312 {
1313 	int error = -ESRCH;
1314 	struct task_struct *p;
1315 
1316 	for (;;) {
1317 		rcu_read_lock();
1318 		p = pid_task(pid, PIDTYPE_PID);
1319 		if (p)
1320 			error = group_send_sig_info(sig, info, p);
1321 		rcu_read_unlock();
1322 		if (likely(!p || error != -ESRCH))
1323 			return error;
1324 
1325 		/*
1326 		 * The task was unhashed in between, try again.  If it
1327 		 * is dead, pid_task() will return NULL, if we race with
1328 		 * de_thread() it will find the new leader.
1329 		 */
1330 	}
1331 }
1332 
1333 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1334 {
1335 	int error;
1336 	rcu_read_lock();
1337 	error = kill_pid_info(sig, info, find_vpid(pid));
1338 	rcu_read_unlock();
1339 	return error;
1340 }
1341 
1342 static int kill_as_cred_perm(const struct cred *cred,
1343 			     struct task_struct *target)
1344 {
1345 	const struct cred *pcred = __task_cred(target);
1346 	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1347 	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1348 		return 0;
1349 	return 1;
1350 }
1351 
1352 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1353 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1354 			 const struct cred *cred)
1355 {
1356 	int ret = -EINVAL;
1357 	struct task_struct *p;
1358 	unsigned long flags;
1359 
1360 	if (!valid_signal(sig))
1361 		return ret;
1362 
1363 	rcu_read_lock();
1364 	p = pid_task(pid, PIDTYPE_PID);
1365 	if (!p) {
1366 		ret = -ESRCH;
1367 		goto out_unlock;
1368 	}
1369 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1370 		ret = -EPERM;
1371 		goto out_unlock;
1372 	}
1373 	ret = security_task_kill(p, info, sig, cred);
1374 	if (ret)
1375 		goto out_unlock;
1376 
1377 	if (sig) {
1378 		if (lock_task_sighand(p, &flags)) {
1379 			ret = __send_signal(sig, info, p, 1, 0);
1380 			unlock_task_sighand(p, &flags);
1381 		} else
1382 			ret = -ESRCH;
1383 	}
1384 out_unlock:
1385 	rcu_read_unlock();
1386 	return ret;
1387 }
1388 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1389 
1390 /*
1391  * kill_something_info() interprets pid in interesting ways just like kill(2).
1392  *
1393  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1394  * is probably wrong.  Should make it like BSD or SYSV.
1395  */
1396 
1397 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1398 {
1399 	int ret;
1400 
1401 	if (pid > 0) {
1402 		rcu_read_lock();
1403 		ret = kill_pid_info(sig, info, find_vpid(pid));
1404 		rcu_read_unlock();
1405 		return ret;
1406 	}
1407 
1408 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1409 	if (pid == INT_MIN)
1410 		return -ESRCH;
1411 
1412 	read_lock(&tasklist_lock);
1413 	if (pid != -1) {
1414 		ret = __kill_pgrp_info(sig, info,
1415 				pid ? find_vpid(-pid) : task_pgrp(current));
1416 	} else {
1417 		int retval = 0, count = 0;
1418 		struct task_struct * p;
1419 
1420 		for_each_process(p) {
1421 			if (task_pid_vnr(p) > 1 &&
1422 					!same_thread_group(p, current)) {
1423 				int err = group_send_sig_info(sig, info, p);
1424 				++count;
1425 				if (err != -EPERM)
1426 					retval = err;
1427 			}
1428 		}
1429 		ret = count ? retval : -ESRCH;
1430 	}
1431 	read_unlock(&tasklist_lock);
1432 
1433 	return ret;
1434 }
1435 
1436 /*
1437  * These are for backward compatibility with the rest of the kernel source.
1438  */
1439 
1440 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1441 {
1442 	/*
1443 	 * Make sure legacy kernel users don't send in bad values
1444 	 * (normal paths check this in check_kill_permission).
1445 	 */
1446 	if (!valid_signal(sig))
1447 		return -EINVAL;
1448 
1449 	return do_send_sig_info(sig, info, p, false);
1450 }
1451 
1452 #define __si_special(priv) \
1453 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1454 
1455 int
1456 send_sig(int sig, struct task_struct *p, int priv)
1457 {
1458 	return send_sig_info(sig, __si_special(priv), p);
1459 }
1460 
1461 void
1462 force_sig(int sig, struct task_struct *p)
1463 {
1464 	force_sig_info(sig, SEND_SIG_PRIV, p);
1465 }
1466 
1467 /*
1468  * When things go south during signal handling, we
1469  * will force a SIGSEGV. And if the signal that caused
1470  * the problem was already a SIGSEGV, we'll want to
1471  * make sure we don't even try to deliver the signal..
1472  */
1473 int
1474 force_sigsegv(int sig, struct task_struct *p)
1475 {
1476 	if (sig == SIGSEGV) {
1477 		unsigned long flags;
1478 		spin_lock_irqsave(&p->sighand->siglock, flags);
1479 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1480 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1481 	}
1482 	force_sig(SIGSEGV, p);
1483 	return 0;
1484 }
1485 
1486 int force_sig_fault(int sig, int code, void __user *addr
1487 	___ARCH_SI_TRAPNO(int trapno)
1488 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1489 	, struct task_struct *t)
1490 {
1491 	struct siginfo info;
1492 
1493 	clear_siginfo(&info);
1494 	info.si_signo = sig;
1495 	info.si_errno = 0;
1496 	info.si_code  = code;
1497 	info.si_addr  = addr;
1498 #ifdef __ARCH_SI_TRAPNO
1499 	info.si_trapno = trapno;
1500 #endif
1501 #ifdef __ia64__
1502 	info.si_imm = imm;
1503 	info.si_flags = flags;
1504 	info.si_isr = isr;
1505 #endif
1506 	return force_sig_info(info.si_signo, &info, t);
1507 }
1508 
1509 int send_sig_fault(int sig, int code, void __user *addr
1510 	___ARCH_SI_TRAPNO(int trapno)
1511 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1512 	, struct task_struct *t)
1513 {
1514 	struct siginfo info;
1515 
1516 	clear_siginfo(&info);
1517 	info.si_signo = sig;
1518 	info.si_errno = 0;
1519 	info.si_code  = code;
1520 	info.si_addr  = addr;
1521 #ifdef __ARCH_SI_TRAPNO
1522 	info.si_trapno = trapno;
1523 #endif
1524 #ifdef __ia64__
1525 	info.si_imm = imm;
1526 	info.si_flags = flags;
1527 	info.si_isr = isr;
1528 #endif
1529 	return send_sig_info(info.si_signo, &info, t);
1530 }
1531 
1532 int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1533 {
1534 	struct siginfo info;
1535 
1536 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1537 	clear_siginfo(&info);
1538 	info.si_signo = SIGBUS;
1539 	info.si_errno = 0;
1540 	info.si_code = code;
1541 	info.si_addr = addr;
1542 	info.si_addr_lsb = lsb;
1543 	return force_sig_info(info.si_signo, &info, t);
1544 }
1545 
1546 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1547 {
1548 	struct siginfo info;
1549 
1550 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1551 	clear_siginfo(&info);
1552 	info.si_signo = SIGBUS;
1553 	info.si_errno = 0;
1554 	info.si_code = code;
1555 	info.si_addr = addr;
1556 	info.si_addr_lsb = lsb;
1557 	return send_sig_info(info.si_signo, &info, t);
1558 }
1559 EXPORT_SYMBOL(send_sig_mceerr);
1560 
1561 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1562 {
1563 	struct siginfo info;
1564 
1565 	clear_siginfo(&info);
1566 	info.si_signo = SIGSEGV;
1567 	info.si_errno = 0;
1568 	info.si_code  = SEGV_BNDERR;
1569 	info.si_addr  = addr;
1570 	info.si_lower = lower;
1571 	info.si_upper = upper;
1572 	return force_sig_info(info.si_signo, &info, current);
1573 }
1574 
1575 #ifdef SEGV_PKUERR
1576 int force_sig_pkuerr(void __user *addr, u32 pkey)
1577 {
1578 	struct siginfo info;
1579 
1580 	clear_siginfo(&info);
1581 	info.si_signo = SIGSEGV;
1582 	info.si_errno = 0;
1583 	info.si_code  = SEGV_PKUERR;
1584 	info.si_addr  = addr;
1585 	info.si_pkey  = pkey;
1586 	return force_sig_info(info.si_signo, &info, current);
1587 }
1588 #endif
1589 
1590 /* For the crazy architectures that include trap information in
1591  * the errno field, instead of an actual errno value.
1592  */
1593 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1594 {
1595 	struct siginfo info;
1596 
1597 	clear_siginfo(&info);
1598 	info.si_signo = SIGTRAP;
1599 	info.si_errno = errno;
1600 	info.si_code  = TRAP_HWBKPT;
1601 	info.si_addr  = addr;
1602 	return force_sig_info(info.si_signo, &info, current);
1603 }
1604 
1605 int kill_pgrp(struct pid *pid, int sig, int priv)
1606 {
1607 	int ret;
1608 
1609 	read_lock(&tasklist_lock);
1610 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1611 	read_unlock(&tasklist_lock);
1612 
1613 	return ret;
1614 }
1615 EXPORT_SYMBOL(kill_pgrp);
1616 
1617 int kill_pid(struct pid *pid, int sig, int priv)
1618 {
1619 	return kill_pid_info(sig, __si_special(priv), pid);
1620 }
1621 EXPORT_SYMBOL(kill_pid);
1622 
1623 /*
1624  * These functions support sending signals using preallocated sigqueue
1625  * structures.  This is needed "because realtime applications cannot
1626  * afford to lose notifications of asynchronous events, like timer
1627  * expirations or I/O completions".  In the case of POSIX Timers
1628  * we allocate the sigqueue structure from the timer_create.  If this
1629  * allocation fails we are able to report the failure to the application
1630  * with an EAGAIN error.
1631  */
1632 struct sigqueue *sigqueue_alloc(void)
1633 {
1634 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1635 
1636 	if (q)
1637 		q->flags |= SIGQUEUE_PREALLOC;
1638 
1639 	return q;
1640 }
1641 
1642 void sigqueue_free(struct sigqueue *q)
1643 {
1644 	unsigned long flags;
1645 	spinlock_t *lock = &current->sighand->siglock;
1646 
1647 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1648 	/*
1649 	 * We must hold ->siglock while testing q->list
1650 	 * to serialize with collect_signal() or with
1651 	 * __exit_signal()->flush_sigqueue().
1652 	 */
1653 	spin_lock_irqsave(lock, flags);
1654 	q->flags &= ~SIGQUEUE_PREALLOC;
1655 	/*
1656 	 * If it is queued it will be freed when dequeued,
1657 	 * like the "regular" sigqueue.
1658 	 */
1659 	if (!list_empty(&q->list))
1660 		q = NULL;
1661 	spin_unlock_irqrestore(lock, flags);
1662 
1663 	if (q)
1664 		__sigqueue_free(q);
1665 }
1666 
1667 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1668 {
1669 	int sig = q->info.si_signo;
1670 	struct sigpending *pending;
1671 	unsigned long flags;
1672 	int ret, result;
1673 
1674 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1675 
1676 	ret = -1;
1677 	if (!likely(lock_task_sighand(t, &flags)))
1678 		goto ret;
1679 
1680 	ret = 1; /* the signal is ignored */
1681 	result = TRACE_SIGNAL_IGNORED;
1682 	if (!prepare_signal(sig, t, false))
1683 		goto out;
1684 
1685 	ret = 0;
1686 	if (unlikely(!list_empty(&q->list))) {
1687 		/*
1688 		 * If an SI_TIMER entry is already queue just increment
1689 		 * the overrun count.
1690 		 */
1691 		BUG_ON(q->info.si_code != SI_TIMER);
1692 		q->info.si_overrun++;
1693 		result = TRACE_SIGNAL_ALREADY_PENDING;
1694 		goto out;
1695 	}
1696 	q->info.si_overrun = 0;
1697 
1698 	signalfd_notify(t, sig);
1699 	pending = group ? &t->signal->shared_pending : &t->pending;
1700 	list_add_tail(&q->list, &pending->list);
1701 	sigaddset(&pending->signal, sig);
1702 	complete_signal(sig, t, group);
1703 	result = TRACE_SIGNAL_DELIVERED;
1704 out:
1705 	trace_signal_generate(sig, &q->info, t, group, result);
1706 	unlock_task_sighand(t, &flags);
1707 ret:
1708 	return ret;
1709 }
1710 
1711 /*
1712  * Let a parent know about the death of a child.
1713  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1714  *
1715  * Returns true if our parent ignored us and so we've switched to
1716  * self-reaping.
1717  */
1718 bool do_notify_parent(struct task_struct *tsk, int sig)
1719 {
1720 	struct siginfo info;
1721 	unsigned long flags;
1722 	struct sighand_struct *psig;
1723 	bool autoreap = false;
1724 	u64 utime, stime;
1725 
1726 	BUG_ON(sig == -1);
1727 
1728  	/* do_notify_parent_cldstop should have been called instead.  */
1729  	BUG_ON(task_is_stopped_or_traced(tsk));
1730 
1731 	BUG_ON(!tsk->ptrace &&
1732 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1733 
1734 	if (sig != SIGCHLD) {
1735 		/*
1736 		 * This is only possible if parent == real_parent.
1737 		 * Check if it has changed security domain.
1738 		 */
1739 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1740 			sig = SIGCHLD;
1741 	}
1742 
1743 	clear_siginfo(&info);
1744 	info.si_signo = sig;
1745 	info.si_errno = 0;
1746 	/*
1747 	 * We are under tasklist_lock here so our parent is tied to
1748 	 * us and cannot change.
1749 	 *
1750 	 * task_active_pid_ns will always return the same pid namespace
1751 	 * until a task passes through release_task.
1752 	 *
1753 	 * write_lock() currently calls preempt_disable() which is the
1754 	 * same as rcu_read_lock(), but according to Oleg, this is not
1755 	 * correct to rely on this
1756 	 */
1757 	rcu_read_lock();
1758 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1759 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1760 				       task_uid(tsk));
1761 	rcu_read_unlock();
1762 
1763 	task_cputime(tsk, &utime, &stime);
1764 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1765 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1766 
1767 	info.si_status = tsk->exit_code & 0x7f;
1768 	if (tsk->exit_code & 0x80)
1769 		info.si_code = CLD_DUMPED;
1770 	else if (tsk->exit_code & 0x7f)
1771 		info.si_code = CLD_KILLED;
1772 	else {
1773 		info.si_code = CLD_EXITED;
1774 		info.si_status = tsk->exit_code >> 8;
1775 	}
1776 
1777 	psig = tsk->parent->sighand;
1778 	spin_lock_irqsave(&psig->siglock, flags);
1779 	if (!tsk->ptrace && sig == SIGCHLD &&
1780 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1781 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1782 		/*
1783 		 * We are exiting and our parent doesn't care.  POSIX.1
1784 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1785 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1786 		 * automatically and not left for our parent's wait4 call.
1787 		 * Rather than having the parent do it as a magic kind of
1788 		 * signal handler, we just set this to tell do_exit that we
1789 		 * can be cleaned up without becoming a zombie.  Note that
1790 		 * we still call __wake_up_parent in this case, because a
1791 		 * blocked sys_wait4 might now return -ECHILD.
1792 		 *
1793 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1794 		 * is implementation-defined: we do (if you don't want
1795 		 * it, just use SIG_IGN instead).
1796 		 */
1797 		autoreap = true;
1798 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1799 			sig = 0;
1800 	}
1801 	if (valid_signal(sig) && sig)
1802 		__group_send_sig_info(sig, &info, tsk->parent);
1803 	__wake_up_parent(tsk, tsk->parent);
1804 	spin_unlock_irqrestore(&psig->siglock, flags);
1805 
1806 	return autoreap;
1807 }
1808 
1809 /**
1810  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1811  * @tsk: task reporting the state change
1812  * @for_ptracer: the notification is for ptracer
1813  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1814  *
1815  * Notify @tsk's parent that the stopped/continued state has changed.  If
1816  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1817  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1818  *
1819  * CONTEXT:
1820  * Must be called with tasklist_lock at least read locked.
1821  */
1822 static void do_notify_parent_cldstop(struct task_struct *tsk,
1823 				     bool for_ptracer, int why)
1824 {
1825 	struct siginfo info;
1826 	unsigned long flags;
1827 	struct task_struct *parent;
1828 	struct sighand_struct *sighand;
1829 	u64 utime, stime;
1830 
1831 	if (for_ptracer) {
1832 		parent = tsk->parent;
1833 	} else {
1834 		tsk = tsk->group_leader;
1835 		parent = tsk->real_parent;
1836 	}
1837 
1838 	clear_siginfo(&info);
1839 	info.si_signo = SIGCHLD;
1840 	info.si_errno = 0;
1841 	/*
1842 	 * see comment in do_notify_parent() about the following 4 lines
1843 	 */
1844 	rcu_read_lock();
1845 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1846 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1847 	rcu_read_unlock();
1848 
1849 	task_cputime(tsk, &utime, &stime);
1850 	info.si_utime = nsec_to_clock_t(utime);
1851 	info.si_stime = nsec_to_clock_t(stime);
1852 
1853  	info.si_code = why;
1854  	switch (why) {
1855  	case CLD_CONTINUED:
1856  		info.si_status = SIGCONT;
1857  		break;
1858  	case CLD_STOPPED:
1859  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1860  		break;
1861  	case CLD_TRAPPED:
1862  		info.si_status = tsk->exit_code & 0x7f;
1863  		break;
1864  	default:
1865  		BUG();
1866  	}
1867 
1868 	sighand = parent->sighand;
1869 	spin_lock_irqsave(&sighand->siglock, flags);
1870 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1871 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1872 		__group_send_sig_info(SIGCHLD, &info, parent);
1873 	/*
1874 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1875 	 */
1876 	__wake_up_parent(tsk, parent);
1877 	spin_unlock_irqrestore(&sighand->siglock, flags);
1878 }
1879 
1880 static inline int may_ptrace_stop(void)
1881 {
1882 	if (!likely(current->ptrace))
1883 		return 0;
1884 	/*
1885 	 * Are we in the middle of do_coredump?
1886 	 * If so and our tracer is also part of the coredump stopping
1887 	 * is a deadlock situation, and pointless because our tracer
1888 	 * is dead so don't allow us to stop.
1889 	 * If SIGKILL was already sent before the caller unlocked
1890 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1891 	 * is safe to enter schedule().
1892 	 *
1893 	 * This is almost outdated, a task with the pending SIGKILL can't
1894 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1895 	 * after SIGKILL was already dequeued.
1896 	 */
1897 	if (unlikely(current->mm->core_state) &&
1898 	    unlikely(current->mm == current->parent->mm))
1899 		return 0;
1900 
1901 	return 1;
1902 }
1903 
1904 /*
1905  * Return non-zero if there is a SIGKILL that should be waking us up.
1906  * Called with the siglock held.
1907  */
1908 static int sigkill_pending(struct task_struct *tsk)
1909 {
1910 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1911 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1912 }
1913 
1914 /*
1915  * This must be called with current->sighand->siglock held.
1916  *
1917  * This should be the path for all ptrace stops.
1918  * We always set current->last_siginfo while stopped here.
1919  * That makes it a way to test a stopped process for
1920  * being ptrace-stopped vs being job-control-stopped.
1921  *
1922  * If we actually decide not to stop at all because the tracer
1923  * is gone, we keep current->exit_code unless clear_code.
1924  */
1925 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1926 	__releases(&current->sighand->siglock)
1927 	__acquires(&current->sighand->siglock)
1928 {
1929 	bool gstop_done = false;
1930 
1931 	if (arch_ptrace_stop_needed(exit_code, info)) {
1932 		/*
1933 		 * The arch code has something special to do before a
1934 		 * ptrace stop.  This is allowed to block, e.g. for faults
1935 		 * on user stack pages.  We can't keep the siglock while
1936 		 * calling arch_ptrace_stop, so we must release it now.
1937 		 * To preserve proper semantics, we must do this before
1938 		 * any signal bookkeeping like checking group_stop_count.
1939 		 * Meanwhile, a SIGKILL could come in before we retake the
1940 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1941 		 * So after regaining the lock, we must check for SIGKILL.
1942 		 */
1943 		spin_unlock_irq(&current->sighand->siglock);
1944 		arch_ptrace_stop(exit_code, info);
1945 		spin_lock_irq(&current->sighand->siglock);
1946 		if (sigkill_pending(current))
1947 			return;
1948 	}
1949 
1950 	set_special_state(TASK_TRACED);
1951 
1952 	/*
1953 	 * We're committing to trapping.  TRACED should be visible before
1954 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1955 	 * Also, transition to TRACED and updates to ->jobctl should be
1956 	 * atomic with respect to siglock and should be done after the arch
1957 	 * hook as siglock is released and regrabbed across it.
1958 	 *
1959 	 *     TRACER				    TRACEE
1960 	 *
1961 	 *     ptrace_attach()
1962 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
1963 	 *     do_wait()
1964 	 *       set_current_state()                smp_wmb();
1965 	 *       ptrace_do_wait()
1966 	 *         wait_task_stopped()
1967 	 *           task_stopped_code()
1968 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
1969 	 */
1970 	smp_wmb();
1971 
1972 	current->last_siginfo = info;
1973 	current->exit_code = exit_code;
1974 
1975 	/*
1976 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1977 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1978 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1979 	 * could be clear now.  We act as if SIGCONT is received after
1980 	 * TASK_TRACED is entered - ignore it.
1981 	 */
1982 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1983 		gstop_done = task_participate_group_stop(current);
1984 
1985 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1986 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1987 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1988 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1989 
1990 	/* entering a trap, clear TRAPPING */
1991 	task_clear_jobctl_trapping(current);
1992 
1993 	spin_unlock_irq(&current->sighand->siglock);
1994 	read_lock(&tasklist_lock);
1995 	if (may_ptrace_stop()) {
1996 		/*
1997 		 * Notify parents of the stop.
1998 		 *
1999 		 * While ptraced, there are two parents - the ptracer and
2000 		 * the real_parent of the group_leader.  The ptracer should
2001 		 * know about every stop while the real parent is only
2002 		 * interested in the completion of group stop.  The states
2003 		 * for the two don't interact with each other.  Notify
2004 		 * separately unless they're gonna be duplicates.
2005 		 */
2006 		do_notify_parent_cldstop(current, true, why);
2007 		if (gstop_done && ptrace_reparented(current))
2008 			do_notify_parent_cldstop(current, false, why);
2009 
2010 		/*
2011 		 * Don't want to allow preemption here, because
2012 		 * sys_ptrace() needs this task to be inactive.
2013 		 *
2014 		 * XXX: implement read_unlock_no_resched().
2015 		 */
2016 		preempt_disable();
2017 		read_unlock(&tasklist_lock);
2018 		preempt_enable_no_resched();
2019 		freezable_schedule();
2020 	} else {
2021 		/*
2022 		 * By the time we got the lock, our tracer went away.
2023 		 * Don't drop the lock yet, another tracer may come.
2024 		 *
2025 		 * If @gstop_done, the ptracer went away between group stop
2026 		 * completion and here.  During detach, it would have set
2027 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2028 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2029 		 * the real parent of the group stop completion is enough.
2030 		 */
2031 		if (gstop_done)
2032 			do_notify_parent_cldstop(current, false, why);
2033 
2034 		/* tasklist protects us from ptrace_freeze_traced() */
2035 		__set_current_state(TASK_RUNNING);
2036 		if (clear_code)
2037 			current->exit_code = 0;
2038 		read_unlock(&tasklist_lock);
2039 	}
2040 
2041 	/*
2042 	 * We are back.  Now reacquire the siglock before touching
2043 	 * last_siginfo, so that we are sure to have synchronized with
2044 	 * any signal-sending on another CPU that wants to examine it.
2045 	 */
2046 	spin_lock_irq(&current->sighand->siglock);
2047 	current->last_siginfo = NULL;
2048 
2049 	/* LISTENING can be set only during STOP traps, clear it */
2050 	current->jobctl &= ~JOBCTL_LISTENING;
2051 
2052 	/*
2053 	 * Queued signals ignored us while we were stopped for tracing.
2054 	 * So check for any that we should take before resuming user mode.
2055 	 * This sets TIF_SIGPENDING, but never clears it.
2056 	 */
2057 	recalc_sigpending_tsk(current);
2058 }
2059 
2060 static void ptrace_do_notify(int signr, int exit_code, int why)
2061 {
2062 	siginfo_t info;
2063 
2064 	clear_siginfo(&info);
2065 	info.si_signo = signr;
2066 	info.si_code = exit_code;
2067 	info.si_pid = task_pid_vnr(current);
2068 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2069 
2070 	/* Let the debugger run.  */
2071 	ptrace_stop(exit_code, why, 1, &info);
2072 }
2073 
2074 void ptrace_notify(int exit_code)
2075 {
2076 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2077 	if (unlikely(current->task_works))
2078 		task_work_run();
2079 
2080 	spin_lock_irq(&current->sighand->siglock);
2081 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2082 	spin_unlock_irq(&current->sighand->siglock);
2083 }
2084 
2085 /**
2086  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2087  * @signr: signr causing group stop if initiating
2088  *
2089  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2090  * and participate in it.  If already set, participate in the existing
2091  * group stop.  If participated in a group stop (and thus slept), %true is
2092  * returned with siglock released.
2093  *
2094  * If ptraced, this function doesn't handle stop itself.  Instead,
2095  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2096  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2097  * places afterwards.
2098  *
2099  * CONTEXT:
2100  * Must be called with @current->sighand->siglock held, which is released
2101  * on %true return.
2102  *
2103  * RETURNS:
2104  * %false if group stop is already cancelled or ptrace trap is scheduled.
2105  * %true if participated in group stop.
2106  */
2107 static bool do_signal_stop(int signr)
2108 	__releases(&current->sighand->siglock)
2109 {
2110 	struct signal_struct *sig = current->signal;
2111 
2112 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2113 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2114 		struct task_struct *t;
2115 
2116 		/* signr will be recorded in task->jobctl for retries */
2117 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2118 
2119 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2120 		    unlikely(signal_group_exit(sig)))
2121 			return false;
2122 		/*
2123 		 * There is no group stop already in progress.  We must
2124 		 * initiate one now.
2125 		 *
2126 		 * While ptraced, a task may be resumed while group stop is
2127 		 * still in effect and then receive a stop signal and
2128 		 * initiate another group stop.  This deviates from the
2129 		 * usual behavior as two consecutive stop signals can't
2130 		 * cause two group stops when !ptraced.  That is why we
2131 		 * also check !task_is_stopped(t) below.
2132 		 *
2133 		 * The condition can be distinguished by testing whether
2134 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2135 		 * group_exit_code in such case.
2136 		 *
2137 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2138 		 * an intervening stop signal is required to cause two
2139 		 * continued events regardless of ptrace.
2140 		 */
2141 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2142 			sig->group_exit_code = signr;
2143 
2144 		sig->group_stop_count = 0;
2145 
2146 		if (task_set_jobctl_pending(current, signr | gstop))
2147 			sig->group_stop_count++;
2148 
2149 		t = current;
2150 		while_each_thread(current, t) {
2151 			/*
2152 			 * Setting state to TASK_STOPPED for a group
2153 			 * stop is always done with the siglock held,
2154 			 * so this check has no races.
2155 			 */
2156 			if (!task_is_stopped(t) &&
2157 			    task_set_jobctl_pending(t, signr | gstop)) {
2158 				sig->group_stop_count++;
2159 				if (likely(!(t->ptrace & PT_SEIZED)))
2160 					signal_wake_up(t, 0);
2161 				else
2162 					ptrace_trap_notify(t);
2163 			}
2164 		}
2165 	}
2166 
2167 	if (likely(!current->ptrace)) {
2168 		int notify = 0;
2169 
2170 		/*
2171 		 * If there are no other threads in the group, or if there
2172 		 * is a group stop in progress and we are the last to stop,
2173 		 * report to the parent.
2174 		 */
2175 		if (task_participate_group_stop(current))
2176 			notify = CLD_STOPPED;
2177 
2178 		set_special_state(TASK_STOPPED);
2179 		spin_unlock_irq(&current->sighand->siglock);
2180 
2181 		/*
2182 		 * Notify the parent of the group stop completion.  Because
2183 		 * we're not holding either the siglock or tasklist_lock
2184 		 * here, ptracer may attach inbetween; however, this is for
2185 		 * group stop and should always be delivered to the real
2186 		 * parent of the group leader.  The new ptracer will get
2187 		 * its notification when this task transitions into
2188 		 * TASK_TRACED.
2189 		 */
2190 		if (notify) {
2191 			read_lock(&tasklist_lock);
2192 			do_notify_parent_cldstop(current, false, notify);
2193 			read_unlock(&tasklist_lock);
2194 		}
2195 
2196 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2197 		freezable_schedule();
2198 		return true;
2199 	} else {
2200 		/*
2201 		 * While ptraced, group stop is handled by STOP trap.
2202 		 * Schedule it and let the caller deal with it.
2203 		 */
2204 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2205 		return false;
2206 	}
2207 }
2208 
2209 /**
2210  * do_jobctl_trap - take care of ptrace jobctl traps
2211  *
2212  * When PT_SEIZED, it's used for both group stop and explicit
2213  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2214  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2215  * the stop signal; otherwise, %SIGTRAP.
2216  *
2217  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2218  * number as exit_code and no siginfo.
2219  *
2220  * CONTEXT:
2221  * Must be called with @current->sighand->siglock held, which may be
2222  * released and re-acquired before returning with intervening sleep.
2223  */
2224 static void do_jobctl_trap(void)
2225 {
2226 	struct signal_struct *signal = current->signal;
2227 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2228 
2229 	if (current->ptrace & PT_SEIZED) {
2230 		if (!signal->group_stop_count &&
2231 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2232 			signr = SIGTRAP;
2233 		WARN_ON_ONCE(!signr);
2234 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2235 				 CLD_STOPPED);
2236 	} else {
2237 		WARN_ON_ONCE(!signr);
2238 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2239 		current->exit_code = 0;
2240 	}
2241 }
2242 
2243 static int ptrace_signal(int signr, siginfo_t *info)
2244 {
2245 	/*
2246 	 * We do not check sig_kernel_stop(signr) but set this marker
2247 	 * unconditionally because we do not know whether debugger will
2248 	 * change signr. This flag has no meaning unless we are going
2249 	 * to stop after return from ptrace_stop(). In this case it will
2250 	 * be checked in do_signal_stop(), we should only stop if it was
2251 	 * not cleared by SIGCONT while we were sleeping. See also the
2252 	 * comment in dequeue_signal().
2253 	 */
2254 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2255 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2256 
2257 	/* We're back.  Did the debugger cancel the sig?  */
2258 	signr = current->exit_code;
2259 	if (signr == 0)
2260 		return signr;
2261 
2262 	current->exit_code = 0;
2263 
2264 	/*
2265 	 * Update the siginfo structure if the signal has
2266 	 * changed.  If the debugger wanted something
2267 	 * specific in the siginfo structure then it should
2268 	 * have updated *info via PTRACE_SETSIGINFO.
2269 	 */
2270 	if (signr != info->si_signo) {
2271 		clear_siginfo(info);
2272 		info->si_signo = signr;
2273 		info->si_errno = 0;
2274 		info->si_code = SI_USER;
2275 		rcu_read_lock();
2276 		info->si_pid = task_pid_vnr(current->parent);
2277 		info->si_uid = from_kuid_munged(current_user_ns(),
2278 						task_uid(current->parent));
2279 		rcu_read_unlock();
2280 	}
2281 
2282 	/* If the (new) signal is now blocked, requeue it.  */
2283 	if (sigismember(&current->blocked, signr)) {
2284 		specific_send_sig_info(signr, info, current);
2285 		signr = 0;
2286 	}
2287 
2288 	return signr;
2289 }
2290 
2291 int get_signal(struct ksignal *ksig)
2292 {
2293 	struct sighand_struct *sighand = current->sighand;
2294 	struct signal_struct *signal = current->signal;
2295 	int signr;
2296 
2297 	if (unlikely(current->task_works))
2298 		task_work_run();
2299 
2300 	if (unlikely(uprobe_deny_signal()))
2301 		return 0;
2302 
2303 	/*
2304 	 * Do this once, we can't return to user-mode if freezing() == T.
2305 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2306 	 * thus do not need another check after return.
2307 	 */
2308 	try_to_freeze();
2309 
2310 relock:
2311 	spin_lock_irq(&sighand->siglock);
2312 	/*
2313 	 * Every stopped thread goes here after wakeup. Check to see if
2314 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2315 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2316 	 */
2317 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2318 		int why;
2319 
2320 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2321 			why = CLD_CONTINUED;
2322 		else
2323 			why = CLD_STOPPED;
2324 
2325 		signal->flags &= ~SIGNAL_CLD_MASK;
2326 
2327 		spin_unlock_irq(&sighand->siglock);
2328 
2329 		/*
2330 		 * Notify the parent that we're continuing.  This event is
2331 		 * always per-process and doesn't make whole lot of sense
2332 		 * for ptracers, who shouldn't consume the state via
2333 		 * wait(2) either, but, for backward compatibility, notify
2334 		 * the ptracer of the group leader too unless it's gonna be
2335 		 * a duplicate.
2336 		 */
2337 		read_lock(&tasklist_lock);
2338 		do_notify_parent_cldstop(current, false, why);
2339 
2340 		if (ptrace_reparented(current->group_leader))
2341 			do_notify_parent_cldstop(current->group_leader,
2342 						true, why);
2343 		read_unlock(&tasklist_lock);
2344 
2345 		goto relock;
2346 	}
2347 
2348 	for (;;) {
2349 		struct k_sigaction *ka;
2350 
2351 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2352 		    do_signal_stop(0))
2353 			goto relock;
2354 
2355 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2356 			do_jobctl_trap();
2357 			spin_unlock_irq(&sighand->siglock);
2358 			goto relock;
2359 		}
2360 
2361 		signr = dequeue_signal(current, &current->blocked, &ksig->info);
2362 
2363 		if (!signr)
2364 			break; /* will return 0 */
2365 
2366 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2367 			signr = ptrace_signal(signr, &ksig->info);
2368 			if (!signr)
2369 				continue;
2370 		}
2371 
2372 		ka = &sighand->action[signr-1];
2373 
2374 		/* Trace actually delivered signals. */
2375 		trace_signal_deliver(signr, &ksig->info, ka);
2376 
2377 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2378 			continue;
2379 		if (ka->sa.sa_handler != SIG_DFL) {
2380 			/* Run the handler.  */
2381 			ksig->ka = *ka;
2382 
2383 			if (ka->sa.sa_flags & SA_ONESHOT)
2384 				ka->sa.sa_handler = SIG_DFL;
2385 
2386 			break; /* will return non-zero "signr" value */
2387 		}
2388 
2389 		/*
2390 		 * Now we are doing the default action for this signal.
2391 		 */
2392 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2393 			continue;
2394 
2395 		/*
2396 		 * Global init gets no signals it doesn't want.
2397 		 * Container-init gets no signals it doesn't want from same
2398 		 * container.
2399 		 *
2400 		 * Note that if global/container-init sees a sig_kernel_only()
2401 		 * signal here, the signal must have been generated internally
2402 		 * or must have come from an ancestor namespace. In either
2403 		 * case, the signal cannot be dropped.
2404 		 */
2405 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2406 				!sig_kernel_only(signr))
2407 			continue;
2408 
2409 		if (sig_kernel_stop(signr)) {
2410 			/*
2411 			 * The default action is to stop all threads in
2412 			 * the thread group.  The job control signals
2413 			 * do nothing in an orphaned pgrp, but SIGSTOP
2414 			 * always works.  Note that siglock needs to be
2415 			 * dropped during the call to is_orphaned_pgrp()
2416 			 * because of lock ordering with tasklist_lock.
2417 			 * This allows an intervening SIGCONT to be posted.
2418 			 * We need to check for that and bail out if necessary.
2419 			 */
2420 			if (signr != SIGSTOP) {
2421 				spin_unlock_irq(&sighand->siglock);
2422 
2423 				/* signals can be posted during this window */
2424 
2425 				if (is_current_pgrp_orphaned())
2426 					goto relock;
2427 
2428 				spin_lock_irq(&sighand->siglock);
2429 			}
2430 
2431 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2432 				/* It released the siglock.  */
2433 				goto relock;
2434 			}
2435 
2436 			/*
2437 			 * We didn't actually stop, due to a race
2438 			 * with SIGCONT or something like that.
2439 			 */
2440 			continue;
2441 		}
2442 
2443 		spin_unlock_irq(&sighand->siglock);
2444 
2445 		/*
2446 		 * Anything else is fatal, maybe with a core dump.
2447 		 */
2448 		current->flags |= PF_SIGNALED;
2449 
2450 		if (sig_kernel_coredump(signr)) {
2451 			if (print_fatal_signals)
2452 				print_fatal_signal(ksig->info.si_signo);
2453 			proc_coredump_connector(current);
2454 			/*
2455 			 * If it was able to dump core, this kills all
2456 			 * other threads in the group and synchronizes with
2457 			 * their demise.  If we lost the race with another
2458 			 * thread getting here, it set group_exit_code
2459 			 * first and our do_group_exit call below will use
2460 			 * that value and ignore the one we pass it.
2461 			 */
2462 			do_coredump(&ksig->info);
2463 		}
2464 
2465 		/*
2466 		 * Death signals, no core dump.
2467 		 */
2468 		do_group_exit(ksig->info.si_signo);
2469 		/* NOTREACHED */
2470 	}
2471 	spin_unlock_irq(&sighand->siglock);
2472 
2473 	ksig->sig = signr;
2474 	return ksig->sig > 0;
2475 }
2476 
2477 /**
2478  * signal_delivered -
2479  * @ksig:		kernel signal struct
2480  * @stepping:		nonzero if debugger single-step or block-step in use
2481  *
2482  * This function should be called when a signal has successfully been
2483  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2484  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2485  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2486  */
2487 static void signal_delivered(struct ksignal *ksig, int stepping)
2488 {
2489 	sigset_t blocked;
2490 
2491 	/* A signal was successfully delivered, and the
2492 	   saved sigmask was stored on the signal frame,
2493 	   and will be restored by sigreturn.  So we can
2494 	   simply clear the restore sigmask flag.  */
2495 	clear_restore_sigmask();
2496 
2497 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2498 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2499 		sigaddset(&blocked, ksig->sig);
2500 	set_current_blocked(&blocked);
2501 	tracehook_signal_handler(stepping);
2502 }
2503 
2504 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2505 {
2506 	if (failed)
2507 		force_sigsegv(ksig->sig, current);
2508 	else
2509 		signal_delivered(ksig, stepping);
2510 }
2511 
2512 /*
2513  * It could be that complete_signal() picked us to notify about the
2514  * group-wide signal. Other threads should be notified now to take
2515  * the shared signals in @which since we will not.
2516  */
2517 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2518 {
2519 	sigset_t retarget;
2520 	struct task_struct *t;
2521 
2522 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2523 	if (sigisemptyset(&retarget))
2524 		return;
2525 
2526 	t = tsk;
2527 	while_each_thread(tsk, t) {
2528 		if (t->flags & PF_EXITING)
2529 			continue;
2530 
2531 		if (!has_pending_signals(&retarget, &t->blocked))
2532 			continue;
2533 		/* Remove the signals this thread can handle. */
2534 		sigandsets(&retarget, &retarget, &t->blocked);
2535 
2536 		if (!signal_pending(t))
2537 			signal_wake_up(t, 0);
2538 
2539 		if (sigisemptyset(&retarget))
2540 			break;
2541 	}
2542 }
2543 
2544 void exit_signals(struct task_struct *tsk)
2545 {
2546 	int group_stop = 0;
2547 	sigset_t unblocked;
2548 
2549 	/*
2550 	 * @tsk is about to have PF_EXITING set - lock out users which
2551 	 * expect stable threadgroup.
2552 	 */
2553 	cgroup_threadgroup_change_begin(tsk);
2554 
2555 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2556 		tsk->flags |= PF_EXITING;
2557 		cgroup_threadgroup_change_end(tsk);
2558 		return;
2559 	}
2560 
2561 	spin_lock_irq(&tsk->sighand->siglock);
2562 	/*
2563 	 * From now this task is not visible for group-wide signals,
2564 	 * see wants_signal(), do_signal_stop().
2565 	 */
2566 	tsk->flags |= PF_EXITING;
2567 
2568 	cgroup_threadgroup_change_end(tsk);
2569 
2570 	if (!signal_pending(tsk))
2571 		goto out;
2572 
2573 	unblocked = tsk->blocked;
2574 	signotset(&unblocked);
2575 	retarget_shared_pending(tsk, &unblocked);
2576 
2577 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2578 	    task_participate_group_stop(tsk))
2579 		group_stop = CLD_STOPPED;
2580 out:
2581 	spin_unlock_irq(&tsk->sighand->siglock);
2582 
2583 	/*
2584 	 * If group stop has completed, deliver the notification.  This
2585 	 * should always go to the real parent of the group leader.
2586 	 */
2587 	if (unlikely(group_stop)) {
2588 		read_lock(&tasklist_lock);
2589 		do_notify_parent_cldstop(tsk, false, group_stop);
2590 		read_unlock(&tasklist_lock);
2591 	}
2592 }
2593 
2594 EXPORT_SYMBOL(recalc_sigpending);
2595 EXPORT_SYMBOL_GPL(dequeue_signal);
2596 EXPORT_SYMBOL(flush_signals);
2597 EXPORT_SYMBOL(force_sig);
2598 EXPORT_SYMBOL(send_sig);
2599 EXPORT_SYMBOL(send_sig_info);
2600 EXPORT_SYMBOL(sigprocmask);
2601 
2602 /*
2603  * System call entry points.
2604  */
2605 
2606 /**
2607  *  sys_restart_syscall - restart a system call
2608  */
2609 SYSCALL_DEFINE0(restart_syscall)
2610 {
2611 	struct restart_block *restart = &current->restart_block;
2612 	return restart->fn(restart);
2613 }
2614 
2615 long do_no_restart_syscall(struct restart_block *param)
2616 {
2617 	return -EINTR;
2618 }
2619 
2620 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2621 {
2622 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2623 		sigset_t newblocked;
2624 		/* A set of now blocked but previously unblocked signals. */
2625 		sigandnsets(&newblocked, newset, &current->blocked);
2626 		retarget_shared_pending(tsk, &newblocked);
2627 	}
2628 	tsk->blocked = *newset;
2629 	recalc_sigpending();
2630 }
2631 
2632 /**
2633  * set_current_blocked - change current->blocked mask
2634  * @newset: new mask
2635  *
2636  * It is wrong to change ->blocked directly, this helper should be used
2637  * to ensure the process can't miss a shared signal we are going to block.
2638  */
2639 void set_current_blocked(sigset_t *newset)
2640 {
2641 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2642 	__set_current_blocked(newset);
2643 }
2644 
2645 void __set_current_blocked(const sigset_t *newset)
2646 {
2647 	struct task_struct *tsk = current;
2648 
2649 	/*
2650 	 * In case the signal mask hasn't changed, there is nothing we need
2651 	 * to do. The current->blocked shouldn't be modified by other task.
2652 	 */
2653 	if (sigequalsets(&tsk->blocked, newset))
2654 		return;
2655 
2656 	spin_lock_irq(&tsk->sighand->siglock);
2657 	__set_task_blocked(tsk, newset);
2658 	spin_unlock_irq(&tsk->sighand->siglock);
2659 }
2660 
2661 /*
2662  * This is also useful for kernel threads that want to temporarily
2663  * (or permanently) block certain signals.
2664  *
2665  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2666  * interface happily blocks "unblockable" signals like SIGKILL
2667  * and friends.
2668  */
2669 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2670 {
2671 	struct task_struct *tsk = current;
2672 	sigset_t newset;
2673 
2674 	/* Lockless, only current can change ->blocked, never from irq */
2675 	if (oldset)
2676 		*oldset = tsk->blocked;
2677 
2678 	switch (how) {
2679 	case SIG_BLOCK:
2680 		sigorsets(&newset, &tsk->blocked, set);
2681 		break;
2682 	case SIG_UNBLOCK:
2683 		sigandnsets(&newset, &tsk->blocked, set);
2684 		break;
2685 	case SIG_SETMASK:
2686 		newset = *set;
2687 		break;
2688 	default:
2689 		return -EINVAL;
2690 	}
2691 
2692 	__set_current_blocked(&newset);
2693 	return 0;
2694 }
2695 
2696 /**
2697  *  sys_rt_sigprocmask - change the list of currently blocked signals
2698  *  @how: whether to add, remove, or set signals
2699  *  @nset: stores pending signals
2700  *  @oset: previous value of signal mask if non-null
2701  *  @sigsetsize: size of sigset_t type
2702  */
2703 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2704 		sigset_t __user *, oset, size_t, sigsetsize)
2705 {
2706 	sigset_t old_set, new_set;
2707 	int error;
2708 
2709 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2710 	if (sigsetsize != sizeof(sigset_t))
2711 		return -EINVAL;
2712 
2713 	old_set = current->blocked;
2714 
2715 	if (nset) {
2716 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2717 			return -EFAULT;
2718 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2719 
2720 		error = sigprocmask(how, &new_set, NULL);
2721 		if (error)
2722 			return error;
2723 	}
2724 
2725 	if (oset) {
2726 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2727 			return -EFAULT;
2728 	}
2729 
2730 	return 0;
2731 }
2732 
2733 #ifdef CONFIG_COMPAT
2734 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2735 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2736 {
2737 	sigset_t old_set = current->blocked;
2738 
2739 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2740 	if (sigsetsize != sizeof(sigset_t))
2741 		return -EINVAL;
2742 
2743 	if (nset) {
2744 		sigset_t new_set;
2745 		int error;
2746 		if (get_compat_sigset(&new_set, nset))
2747 			return -EFAULT;
2748 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2749 
2750 		error = sigprocmask(how, &new_set, NULL);
2751 		if (error)
2752 			return error;
2753 	}
2754 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2755 }
2756 #endif
2757 
2758 static int do_sigpending(sigset_t *set)
2759 {
2760 	spin_lock_irq(&current->sighand->siglock);
2761 	sigorsets(set, &current->pending.signal,
2762 		  &current->signal->shared_pending.signal);
2763 	spin_unlock_irq(&current->sighand->siglock);
2764 
2765 	/* Outside the lock because only this thread touches it.  */
2766 	sigandsets(set, &current->blocked, set);
2767 	return 0;
2768 }
2769 
2770 /**
2771  *  sys_rt_sigpending - examine a pending signal that has been raised
2772  *			while blocked
2773  *  @uset: stores pending signals
2774  *  @sigsetsize: size of sigset_t type or larger
2775  */
2776 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2777 {
2778 	sigset_t set;
2779 	int err;
2780 
2781 	if (sigsetsize > sizeof(*uset))
2782 		return -EINVAL;
2783 
2784 	err = do_sigpending(&set);
2785 	if (!err && copy_to_user(uset, &set, sigsetsize))
2786 		err = -EFAULT;
2787 	return err;
2788 }
2789 
2790 #ifdef CONFIG_COMPAT
2791 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2792 		compat_size_t, sigsetsize)
2793 {
2794 	sigset_t set;
2795 	int err;
2796 
2797 	if (sigsetsize > sizeof(*uset))
2798 		return -EINVAL;
2799 
2800 	err = do_sigpending(&set);
2801 	if (!err)
2802 		err = put_compat_sigset(uset, &set, sigsetsize);
2803 	return err;
2804 }
2805 #endif
2806 
2807 enum siginfo_layout siginfo_layout(int sig, int si_code)
2808 {
2809 	enum siginfo_layout layout = SIL_KILL;
2810 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
2811 		static const struct {
2812 			unsigned char limit, layout;
2813 		} filter[] = {
2814 			[SIGILL]  = { NSIGILL,  SIL_FAULT },
2815 			[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
2816 			[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2817 			[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
2818 			[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2819 #if defined(SIGEMT) && defined(NSIGEMT)
2820 			[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
2821 #endif
2822 			[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2823 			[SIGPOLL] = { NSIGPOLL, SIL_POLL },
2824 			[SIGSYS]  = { NSIGSYS,  SIL_SYS },
2825 		};
2826 		if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit)) {
2827 			layout = filter[sig].layout;
2828 			/* Handle the exceptions */
2829 			if ((sig == SIGBUS) &&
2830 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
2831 				layout = SIL_FAULT_MCEERR;
2832 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
2833 				layout = SIL_FAULT_BNDERR;
2834 #ifdef SEGV_PKUERR
2835 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
2836 				layout = SIL_FAULT_PKUERR;
2837 #endif
2838 		}
2839 		else if (si_code <= NSIGPOLL)
2840 			layout = SIL_POLL;
2841 	} else {
2842 		if (si_code == SI_TIMER)
2843 			layout = SIL_TIMER;
2844 		else if (si_code == SI_SIGIO)
2845 			layout = SIL_POLL;
2846 		else if (si_code < 0)
2847 			layout = SIL_RT;
2848 	}
2849 	return layout;
2850 }
2851 
2852 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2853 {
2854 	if (copy_to_user(to, from , sizeof(struct siginfo)))
2855 		return -EFAULT;
2856 	return 0;
2857 }
2858 
2859 #ifdef CONFIG_COMPAT
2860 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
2861 			   const struct siginfo *from)
2862 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
2863 {
2864 	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
2865 }
2866 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
2867 			     const struct siginfo *from, bool x32_ABI)
2868 #endif
2869 {
2870 	struct compat_siginfo new;
2871 	memset(&new, 0, sizeof(new));
2872 
2873 	new.si_signo = from->si_signo;
2874 	new.si_errno = from->si_errno;
2875 	new.si_code  = from->si_code;
2876 	switch(siginfo_layout(from->si_signo, from->si_code)) {
2877 	case SIL_KILL:
2878 		new.si_pid = from->si_pid;
2879 		new.si_uid = from->si_uid;
2880 		break;
2881 	case SIL_TIMER:
2882 		new.si_tid     = from->si_tid;
2883 		new.si_overrun = from->si_overrun;
2884 		new.si_int     = from->si_int;
2885 		break;
2886 	case SIL_POLL:
2887 		new.si_band = from->si_band;
2888 		new.si_fd   = from->si_fd;
2889 		break;
2890 	case SIL_FAULT:
2891 		new.si_addr = ptr_to_compat(from->si_addr);
2892 #ifdef __ARCH_SI_TRAPNO
2893 		new.si_trapno = from->si_trapno;
2894 #endif
2895 		break;
2896 	case SIL_FAULT_MCEERR:
2897 		new.si_addr = ptr_to_compat(from->si_addr);
2898 #ifdef __ARCH_SI_TRAPNO
2899 		new.si_trapno = from->si_trapno;
2900 #endif
2901 		new.si_addr_lsb = from->si_addr_lsb;
2902 		break;
2903 	case SIL_FAULT_BNDERR:
2904 		new.si_addr = ptr_to_compat(from->si_addr);
2905 #ifdef __ARCH_SI_TRAPNO
2906 		new.si_trapno = from->si_trapno;
2907 #endif
2908 		new.si_lower = ptr_to_compat(from->si_lower);
2909 		new.si_upper = ptr_to_compat(from->si_upper);
2910 		break;
2911 	case SIL_FAULT_PKUERR:
2912 		new.si_addr = ptr_to_compat(from->si_addr);
2913 #ifdef __ARCH_SI_TRAPNO
2914 		new.si_trapno = from->si_trapno;
2915 #endif
2916 		new.si_pkey = from->si_pkey;
2917 		break;
2918 	case SIL_CHLD:
2919 		new.si_pid    = from->si_pid;
2920 		new.si_uid    = from->si_uid;
2921 		new.si_status = from->si_status;
2922 #ifdef CONFIG_X86_X32_ABI
2923 		if (x32_ABI) {
2924 			new._sifields._sigchld_x32._utime = from->si_utime;
2925 			new._sifields._sigchld_x32._stime = from->si_stime;
2926 		} else
2927 #endif
2928 		{
2929 			new.si_utime = from->si_utime;
2930 			new.si_stime = from->si_stime;
2931 		}
2932 		break;
2933 	case SIL_RT:
2934 		new.si_pid = from->si_pid;
2935 		new.si_uid = from->si_uid;
2936 		new.si_int = from->si_int;
2937 		break;
2938 	case SIL_SYS:
2939 		new.si_call_addr = ptr_to_compat(from->si_call_addr);
2940 		new.si_syscall   = from->si_syscall;
2941 		new.si_arch      = from->si_arch;
2942 		break;
2943 	}
2944 
2945 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
2946 		return -EFAULT;
2947 
2948 	return 0;
2949 }
2950 
2951 int copy_siginfo_from_user32(struct siginfo *to,
2952 			     const struct compat_siginfo __user *ufrom)
2953 {
2954 	struct compat_siginfo from;
2955 
2956 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
2957 		return -EFAULT;
2958 
2959 	clear_siginfo(to);
2960 	to->si_signo = from.si_signo;
2961 	to->si_errno = from.si_errno;
2962 	to->si_code  = from.si_code;
2963 	switch(siginfo_layout(from.si_signo, from.si_code)) {
2964 	case SIL_KILL:
2965 		to->si_pid = from.si_pid;
2966 		to->si_uid = from.si_uid;
2967 		break;
2968 	case SIL_TIMER:
2969 		to->si_tid     = from.si_tid;
2970 		to->si_overrun = from.si_overrun;
2971 		to->si_int     = from.si_int;
2972 		break;
2973 	case SIL_POLL:
2974 		to->si_band = from.si_band;
2975 		to->si_fd   = from.si_fd;
2976 		break;
2977 	case SIL_FAULT:
2978 		to->si_addr = compat_ptr(from.si_addr);
2979 #ifdef __ARCH_SI_TRAPNO
2980 		to->si_trapno = from.si_trapno;
2981 #endif
2982 		break;
2983 	case SIL_FAULT_MCEERR:
2984 		to->si_addr = compat_ptr(from.si_addr);
2985 #ifdef __ARCH_SI_TRAPNO
2986 		to->si_trapno = from.si_trapno;
2987 #endif
2988 		to->si_addr_lsb = from.si_addr_lsb;
2989 		break;
2990 	case SIL_FAULT_BNDERR:
2991 		to->si_addr = compat_ptr(from.si_addr);
2992 #ifdef __ARCH_SI_TRAPNO
2993 		to->si_trapno = from.si_trapno;
2994 #endif
2995 		to->si_lower = compat_ptr(from.si_lower);
2996 		to->si_upper = compat_ptr(from.si_upper);
2997 		break;
2998 	case SIL_FAULT_PKUERR:
2999 		to->si_addr = compat_ptr(from.si_addr);
3000 #ifdef __ARCH_SI_TRAPNO
3001 		to->si_trapno = from.si_trapno;
3002 #endif
3003 		to->si_pkey = from.si_pkey;
3004 		break;
3005 	case SIL_CHLD:
3006 		to->si_pid    = from.si_pid;
3007 		to->si_uid    = from.si_uid;
3008 		to->si_status = from.si_status;
3009 #ifdef CONFIG_X86_X32_ABI
3010 		if (in_x32_syscall()) {
3011 			to->si_utime = from._sifields._sigchld_x32._utime;
3012 			to->si_stime = from._sifields._sigchld_x32._stime;
3013 		} else
3014 #endif
3015 		{
3016 			to->si_utime = from.si_utime;
3017 			to->si_stime = from.si_stime;
3018 		}
3019 		break;
3020 	case SIL_RT:
3021 		to->si_pid = from.si_pid;
3022 		to->si_uid = from.si_uid;
3023 		to->si_int = from.si_int;
3024 		break;
3025 	case SIL_SYS:
3026 		to->si_call_addr = compat_ptr(from.si_call_addr);
3027 		to->si_syscall   = from.si_syscall;
3028 		to->si_arch      = from.si_arch;
3029 		break;
3030 	}
3031 	return 0;
3032 }
3033 #endif /* CONFIG_COMPAT */
3034 
3035 /**
3036  *  do_sigtimedwait - wait for queued signals specified in @which
3037  *  @which: queued signals to wait for
3038  *  @info: if non-null, the signal's siginfo is returned here
3039  *  @ts: upper bound on process time suspension
3040  */
3041 static int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
3042 		    const struct timespec *ts)
3043 {
3044 	ktime_t *to = NULL, timeout = KTIME_MAX;
3045 	struct task_struct *tsk = current;
3046 	sigset_t mask = *which;
3047 	int sig, ret = 0;
3048 
3049 	if (ts) {
3050 		if (!timespec_valid(ts))
3051 			return -EINVAL;
3052 		timeout = timespec_to_ktime(*ts);
3053 		to = &timeout;
3054 	}
3055 
3056 	/*
3057 	 * Invert the set of allowed signals to get those we want to block.
3058 	 */
3059 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3060 	signotset(&mask);
3061 
3062 	spin_lock_irq(&tsk->sighand->siglock);
3063 	sig = dequeue_signal(tsk, &mask, info);
3064 	if (!sig && timeout) {
3065 		/*
3066 		 * None ready, temporarily unblock those we're interested
3067 		 * while we are sleeping in so that we'll be awakened when
3068 		 * they arrive. Unblocking is always fine, we can avoid
3069 		 * set_current_blocked().
3070 		 */
3071 		tsk->real_blocked = tsk->blocked;
3072 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3073 		recalc_sigpending();
3074 		spin_unlock_irq(&tsk->sighand->siglock);
3075 
3076 		__set_current_state(TASK_INTERRUPTIBLE);
3077 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3078 							 HRTIMER_MODE_REL);
3079 		spin_lock_irq(&tsk->sighand->siglock);
3080 		__set_task_blocked(tsk, &tsk->real_blocked);
3081 		sigemptyset(&tsk->real_blocked);
3082 		sig = dequeue_signal(tsk, &mask, info);
3083 	}
3084 	spin_unlock_irq(&tsk->sighand->siglock);
3085 
3086 	if (sig)
3087 		return sig;
3088 	return ret ? -EINTR : -EAGAIN;
3089 }
3090 
3091 /**
3092  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3093  *			in @uthese
3094  *  @uthese: queued signals to wait for
3095  *  @uinfo: if non-null, the signal's siginfo is returned here
3096  *  @uts: upper bound on process time suspension
3097  *  @sigsetsize: size of sigset_t type
3098  */
3099 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3100 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
3101 		size_t, sigsetsize)
3102 {
3103 	sigset_t these;
3104 	struct timespec ts;
3105 	siginfo_t info;
3106 	int ret;
3107 
3108 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3109 	if (sigsetsize != sizeof(sigset_t))
3110 		return -EINVAL;
3111 
3112 	if (copy_from_user(&these, uthese, sizeof(these)))
3113 		return -EFAULT;
3114 
3115 	if (uts) {
3116 		if (copy_from_user(&ts, uts, sizeof(ts)))
3117 			return -EFAULT;
3118 	}
3119 
3120 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3121 
3122 	if (ret > 0 && uinfo) {
3123 		if (copy_siginfo_to_user(uinfo, &info))
3124 			ret = -EFAULT;
3125 	}
3126 
3127 	return ret;
3128 }
3129 
3130 #ifdef CONFIG_COMPAT
3131 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
3132 		struct compat_siginfo __user *, uinfo,
3133 		struct compat_timespec __user *, uts, compat_size_t, sigsetsize)
3134 {
3135 	sigset_t s;
3136 	struct timespec t;
3137 	siginfo_t info;
3138 	long ret;
3139 
3140 	if (sigsetsize != sizeof(sigset_t))
3141 		return -EINVAL;
3142 
3143 	if (get_compat_sigset(&s, uthese))
3144 		return -EFAULT;
3145 
3146 	if (uts) {
3147 		if (compat_get_timespec(&t, uts))
3148 			return -EFAULT;
3149 	}
3150 
3151 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3152 
3153 	if (ret > 0 && uinfo) {
3154 		if (copy_siginfo_to_user32(uinfo, &info))
3155 			ret = -EFAULT;
3156 	}
3157 
3158 	return ret;
3159 }
3160 #endif
3161 
3162 /**
3163  *  sys_kill - send a signal to a process
3164  *  @pid: the PID of the process
3165  *  @sig: signal to be sent
3166  */
3167 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3168 {
3169 	struct siginfo info;
3170 
3171 	clear_siginfo(&info);
3172 	info.si_signo = sig;
3173 	info.si_errno = 0;
3174 	info.si_code = SI_USER;
3175 	info.si_pid = task_tgid_vnr(current);
3176 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3177 
3178 	return kill_something_info(sig, &info, pid);
3179 }
3180 
3181 static int
3182 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
3183 {
3184 	struct task_struct *p;
3185 	int error = -ESRCH;
3186 
3187 	rcu_read_lock();
3188 	p = find_task_by_vpid(pid);
3189 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3190 		error = check_kill_permission(sig, info, p);
3191 		/*
3192 		 * The null signal is a permissions and process existence
3193 		 * probe.  No signal is actually delivered.
3194 		 */
3195 		if (!error && sig) {
3196 			error = do_send_sig_info(sig, info, p, false);
3197 			/*
3198 			 * If lock_task_sighand() failed we pretend the task
3199 			 * dies after receiving the signal. The window is tiny,
3200 			 * and the signal is private anyway.
3201 			 */
3202 			if (unlikely(error == -ESRCH))
3203 				error = 0;
3204 		}
3205 	}
3206 	rcu_read_unlock();
3207 
3208 	return error;
3209 }
3210 
3211 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3212 {
3213 	struct siginfo info;
3214 
3215 	clear_siginfo(&info);
3216 	info.si_signo = sig;
3217 	info.si_errno = 0;
3218 	info.si_code = SI_TKILL;
3219 	info.si_pid = task_tgid_vnr(current);
3220 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3221 
3222 	return do_send_specific(tgid, pid, sig, &info);
3223 }
3224 
3225 /**
3226  *  sys_tgkill - send signal to one specific thread
3227  *  @tgid: the thread group ID of the thread
3228  *  @pid: the PID of the thread
3229  *  @sig: signal to be sent
3230  *
3231  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3232  *  exists but it's not belonging to the target process anymore. This
3233  *  method solves the problem of threads exiting and PIDs getting reused.
3234  */
3235 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3236 {
3237 	/* This is only valid for single tasks */
3238 	if (pid <= 0 || tgid <= 0)
3239 		return -EINVAL;
3240 
3241 	return do_tkill(tgid, pid, sig);
3242 }
3243 
3244 /**
3245  *  sys_tkill - send signal to one specific task
3246  *  @pid: the PID of the task
3247  *  @sig: signal to be sent
3248  *
3249  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3250  */
3251 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3252 {
3253 	/* This is only valid for single tasks */
3254 	if (pid <= 0)
3255 		return -EINVAL;
3256 
3257 	return do_tkill(0, pid, sig);
3258 }
3259 
3260 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3261 {
3262 	/* Not even root can pretend to send signals from the kernel.
3263 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3264 	 */
3265 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3266 	    (task_pid_vnr(current) != pid))
3267 		return -EPERM;
3268 
3269 	info->si_signo = sig;
3270 
3271 	/* POSIX.1b doesn't mention process groups.  */
3272 	return kill_proc_info(sig, info, pid);
3273 }
3274 
3275 /**
3276  *  sys_rt_sigqueueinfo - send signal information to a signal
3277  *  @pid: the PID of the thread
3278  *  @sig: signal to be sent
3279  *  @uinfo: signal info to be sent
3280  */
3281 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3282 		siginfo_t __user *, uinfo)
3283 {
3284 	siginfo_t info;
3285 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3286 		return -EFAULT;
3287 	return do_rt_sigqueueinfo(pid, sig, &info);
3288 }
3289 
3290 #ifdef CONFIG_COMPAT
3291 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3292 			compat_pid_t, pid,
3293 			int, sig,
3294 			struct compat_siginfo __user *, uinfo)
3295 {
3296 	siginfo_t info;
3297 	int ret = copy_siginfo_from_user32(&info, uinfo);
3298 	if (unlikely(ret))
3299 		return ret;
3300 	return do_rt_sigqueueinfo(pid, sig, &info);
3301 }
3302 #endif
3303 
3304 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3305 {
3306 	/* This is only valid for single tasks */
3307 	if (pid <= 0 || tgid <= 0)
3308 		return -EINVAL;
3309 
3310 	/* Not even root can pretend to send signals from the kernel.
3311 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3312 	 */
3313 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3314 	    (task_pid_vnr(current) != pid))
3315 		return -EPERM;
3316 
3317 	info->si_signo = sig;
3318 
3319 	return do_send_specific(tgid, pid, sig, info);
3320 }
3321 
3322 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3323 		siginfo_t __user *, uinfo)
3324 {
3325 	siginfo_t info;
3326 
3327 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3328 		return -EFAULT;
3329 
3330 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3331 }
3332 
3333 #ifdef CONFIG_COMPAT
3334 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3335 			compat_pid_t, tgid,
3336 			compat_pid_t, pid,
3337 			int, sig,
3338 			struct compat_siginfo __user *, uinfo)
3339 {
3340 	siginfo_t info;
3341 
3342 	if (copy_siginfo_from_user32(&info, uinfo))
3343 		return -EFAULT;
3344 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3345 }
3346 #endif
3347 
3348 /*
3349  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3350  */
3351 void kernel_sigaction(int sig, __sighandler_t action)
3352 {
3353 	spin_lock_irq(&current->sighand->siglock);
3354 	current->sighand->action[sig - 1].sa.sa_handler = action;
3355 	if (action == SIG_IGN) {
3356 		sigset_t mask;
3357 
3358 		sigemptyset(&mask);
3359 		sigaddset(&mask, sig);
3360 
3361 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3362 		flush_sigqueue_mask(&mask, &current->pending);
3363 		recalc_sigpending();
3364 	}
3365 	spin_unlock_irq(&current->sighand->siglock);
3366 }
3367 EXPORT_SYMBOL(kernel_sigaction);
3368 
3369 void __weak sigaction_compat_abi(struct k_sigaction *act,
3370 		struct k_sigaction *oact)
3371 {
3372 }
3373 
3374 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3375 {
3376 	struct task_struct *p = current, *t;
3377 	struct k_sigaction *k;
3378 	sigset_t mask;
3379 
3380 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3381 		return -EINVAL;
3382 
3383 	k = &p->sighand->action[sig-1];
3384 
3385 	spin_lock_irq(&p->sighand->siglock);
3386 	if (oact)
3387 		*oact = *k;
3388 
3389 	sigaction_compat_abi(act, oact);
3390 
3391 	if (act) {
3392 		sigdelsetmask(&act->sa.sa_mask,
3393 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3394 		*k = *act;
3395 		/*
3396 		 * POSIX 3.3.1.3:
3397 		 *  "Setting a signal action to SIG_IGN for a signal that is
3398 		 *   pending shall cause the pending signal to be discarded,
3399 		 *   whether or not it is blocked."
3400 		 *
3401 		 *  "Setting a signal action to SIG_DFL for a signal that is
3402 		 *   pending and whose default action is to ignore the signal
3403 		 *   (for example, SIGCHLD), shall cause the pending signal to
3404 		 *   be discarded, whether or not it is blocked"
3405 		 */
3406 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3407 			sigemptyset(&mask);
3408 			sigaddset(&mask, sig);
3409 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3410 			for_each_thread(p, t)
3411 				flush_sigqueue_mask(&mask, &t->pending);
3412 		}
3413 	}
3414 
3415 	spin_unlock_irq(&p->sighand->siglock);
3416 	return 0;
3417 }
3418 
3419 static int
3420 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp)
3421 {
3422 	struct task_struct *t = current;
3423 
3424 	if (oss) {
3425 		memset(oss, 0, sizeof(stack_t));
3426 		oss->ss_sp = (void __user *) t->sas_ss_sp;
3427 		oss->ss_size = t->sas_ss_size;
3428 		oss->ss_flags = sas_ss_flags(sp) |
3429 			(current->sas_ss_flags & SS_FLAG_BITS);
3430 	}
3431 
3432 	if (ss) {
3433 		void __user *ss_sp = ss->ss_sp;
3434 		size_t ss_size = ss->ss_size;
3435 		unsigned ss_flags = ss->ss_flags;
3436 		int ss_mode;
3437 
3438 		if (unlikely(on_sig_stack(sp)))
3439 			return -EPERM;
3440 
3441 		ss_mode = ss_flags & ~SS_FLAG_BITS;
3442 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3443 				ss_mode != 0))
3444 			return -EINVAL;
3445 
3446 		if (ss_mode == SS_DISABLE) {
3447 			ss_size = 0;
3448 			ss_sp = NULL;
3449 		} else {
3450 			if (unlikely(ss_size < MINSIGSTKSZ))
3451 				return -ENOMEM;
3452 		}
3453 
3454 		t->sas_ss_sp = (unsigned long) ss_sp;
3455 		t->sas_ss_size = ss_size;
3456 		t->sas_ss_flags = ss_flags;
3457 	}
3458 	return 0;
3459 }
3460 
3461 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3462 {
3463 	stack_t new, old;
3464 	int err;
3465 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3466 		return -EFAULT;
3467 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3468 			      current_user_stack_pointer());
3469 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3470 		err = -EFAULT;
3471 	return err;
3472 }
3473 
3474 int restore_altstack(const stack_t __user *uss)
3475 {
3476 	stack_t new;
3477 	if (copy_from_user(&new, uss, sizeof(stack_t)))
3478 		return -EFAULT;
3479 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer());
3480 	/* squash all but EFAULT for now */
3481 	return 0;
3482 }
3483 
3484 int __save_altstack(stack_t __user *uss, unsigned long sp)
3485 {
3486 	struct task_struct *t = current;
3487 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3488 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3489 		__put_user(t->sas_ss_size, &uss->ss_size);
3490 	if (err)
3491 		return err;
3492 	if (t->sas_ss_flags & SS_AUTODISARM)
3493 		sas_ss_reset(t);
3494 	return 0;
3495 }
3496 
3497 #ifdef CONFIG_COMPAT
3498 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
3499 				 compat_stack_t __user *uoss_ptr)
3500 {
3501 	stack_t uss, uoss;
3502 	int ret;
3503 
3504 	if (uss_ptr) {
3505 		compat_stack_t uss32;
3506 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3507 			return -EFAULT;
3508 		uss.ss_sp = compat_ptr(uss32.ss_sp);
3509 		uss.ss_flags = uss32.ss_flags;
3510 		uss.ss_size = uss32.ss_size;
3511 	}
3512 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3513 			     compat_user_stack_pointer());
3514 	if (ret >= 0 && uoss_ptr)  {
3515 		compat_stack_t old;
3516 		memset(&old, 0, sizeof(old));
3517 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
3518 		old.ss_flags = uoss.ss_flags;
3519 		old.ss_size = uoss.ss_size;
3520 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3521 			ret = -EFAULT;
3522 	}
3523 	return ret;
3524 }
3525 
3526 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3527 			const compat_stack_t __user *, uss_ptr,
3528 			compat_stack_t __user *, uoss_ptr)
3529 {
3530 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
3531 }
3532 
3533 int compat_restore_altstack(const compat_stack_t __user *uss)
3534 {
3535 	int err = do_compat_sigaltstack(uss, NULL);
3536 	/* squash all but -EFAULT for now */
3537 	return err == -EFAULT ? err : 0;
3538 }
3539 
3540 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3541 {
3542 	int err;
3543 	struct task_struct *t = current;
3544 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3545 			 &uss->ss_sp) |
3546 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3547 		__put_user(t->sas_ss_size, &uss->ss_size);
3548 	if (err)
3549 		return err;
3550 	if (t->sas_ss_flags & SS_AUTODISARM)
3551 		sas_ss_reset(t);
3552 	return 0;
3553 }
3554 #endif
3555 
3556 #ifdef __ARCH_WANT_SYS_SIGPENDING
3557 
3558 /**
3559  *  sys_sigpending - examine pending signals
3560  *  @uset: where mask of pending signal is returned
3561  */
3562 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
3563 {
3564 	sigset_t set;
3565 	int err;
3566 
3567 	if (sizeof(old_sigset_t) > sizeof(*uset))
3568 		return -EINVAL;
3569 
3570 	err = do_sigpending(&set);
3571 	if (!err && copy_to_user(uset, &set, sizeof(old_sigset_t)))
3572 		err = -EFAULT;
3573 	return err;
3574 }
3575 
3576 #ifdef CONFIG_COMPAT
3577 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3578 {
3579 	sigset_t set;
3580 	int err = do_sigpending(&set);
3581 	if (!err)
3582 		err = put_user(set.sig[0], set32);
3583 	return err;
3584 }
3585 #endif
3586 
3587 #endif
3588 
3589 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3590 /**
3591  *  sys_sigprocmask - examine and change blocked signals
3592  *  @how: whether to add, remove, or set signals
3593  *  @nset: signals to add or remove (if non-null)
3594  *  @oset: previous value of signal mask if non-null
3595  *
3596  * Some platforms have their own version with special arguments;
3597  * others support only sys_rt_sigprocmask.
3598  */
3599 
3600 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3601 		old_sigset_t __user *, oset)
3602 {
3603 	old_sigset_t old_set, new_set;
3604 	sigset_t new_blocked;
3605 
3606 	old_set = current->blocked.sig[0];
3607 
3608 	if (nset) {
3609 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3610 			return -EFAULT;
3611 
3612 		new_blocked = current->blocked;
3613 
3614 		switch (how) {
3615 		case SIG_BLOCK:
3616 			sigaddsetmask(&new_blocked, new_set);
3617 			break;
3618 		case SIG_UNBLOCK:
3619 			sigdelsetmask(&new_blocked, new_set);
3620 			break;
3621 		case SIG_SETMASK:
3622 			new_blocked.sig[0] = new_set;
3623 			break;
3624 		default:
3625 			return -EINVAL;
3626 		}
3627 
3628 		set_current_blocked(&new_blocked);
3629 	}
3630 
3631 	if (oset) {
3632 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3633 			return -EFAULT;
3634 	}
3635 
3636 	return 0;
3637 }
3638 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3639 
3640 #ifndef CONFIG_ODD_RT_SIGACTION
3641 /**
3642  *  sys_rt_sigaction - alter an action taken by a process
3643  *  @sig: signal to be sent
3644  *  @act: new sigaction
3645  *  @oact: used to save the previous sigaction
3646  *  @sigsetsize: size of sigset_t type
3647  */
3648 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3649 		const struct sigaction __user *, act,
3650 		struct sigaction __user *, oact,
3651 		size_t, sigsetsize)
3652 {
3653 	struct k_sigaction new_sa, old_sa;
3654 	int ret = -EINVAL;
3655 
3656 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3657 	if (sigsetsize != sizeof(sigset_t))
3658 		goto out;
3659 
3660 	if (act) {
3661 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3662 			return -EFAULT;
3663 	}
3664 
3665 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3666 
3667 	if (!ret && oact) {
3668 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3669 			return -EFAULT;
3670 	}
3671 out:
3672 	return ret;
3673 }
3674 #ifdef CONFIG_COMPAT
3675 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3676 		const struct compat_sigaction __user *, act,
3677 		struct compat_sigaction __user *, oact,
3678 		compat_size_t, sigsetsize)
3679 {
3680 	struct k_sigaction new_ka, old_ka;
3681 #ifdef __ARCH_HAS_SA_RESTORER
3682 	compat_uptr_t restorer;
3683 #endif
3684 	int ret;
3685 
3686 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3687 	if (sigsetsize != sizeof(compat_sigset_t))
3688 		return -EINVAL;
3689 
3690 	if (act) {
3691 		compat_uptr_t handler;
3692 		ret = get_user(handler, &act->sa_handler);
3693 		new_ka.sa.sa_handler = compat_ptr(handler);
3694 #ifdef __ARCH_HAS_SA_RESTORER
3695 		ret |= get_user(restorer, &act->sa_restorer);
3696 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3697 #endif
3698 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
3699 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3700 		if (ret)
3701 			return -EFAULT;
3702 	}
3703 
3704 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3705 	if (!ret && oact) {
3706 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3707 			       &oact->sa_handler);
3708 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
3709 					 sizeof(oact->sa_mask));
3710 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3711 #ifdef __ARCH_HAS_SA_RESTORER
3712 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3713 				&oact->sa_restorer);
3714 #endif
3715 	}
3716 	return ret;
3717 }
3718 #endif
3719 #endif /* !CONFIG_ODD_RT_SIGACTION */
3720 
3721 #ifdef CONFIG_OLD_SIGACTION
3722 SYSCALL_DEFINE3(sigaction, int, sig,
3723 		const struct old_sigaction __user *, act,
3724 	        struct old_sigaction __user *, oact)
3725 {
3726 	struct k_sigaction new_ka, old_ka;
3727 	int ret;
3728 
3729 	if (act) {
3730 		old_sigset_t mask;
3731 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3732 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3733 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3734 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3735 		    __get_user(mask, &act->sa_mask))
3736 			return -EFAULT;
3737 #ifdef __ARCH_HAS_KA_RESTORER
3738 		new_ka.ka_restorer = NULL;
3739 #endif
3740 		siginitset(&new_ka.sa.sa_mask, mask);
3741 	}
3742 
3743 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3744 
3745 	if (!ret && oact) {
3746 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3747 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3748 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3749 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3750 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3751 			return -EFAULT;
3752 	}
3753 
3754 	return ret;
3755 }
3756 #endif
3757 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3758 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3759 		const struct compat_old_sigaction __user *, act,
3760 	        struct compat_old_sigaction __user *, oact)
3761 {
3762 	struct k_sigaction new_ka, old_ka;
3763 	int ret;
3764 	compat_old_sigset_t mask;
3765 	compat_uptr_t handler, restorer;
3766 
3767 	if (act) {
3768 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3769 		    __get_user(handler, &act->sa_handler) ||
3770 		    __get_user(restorer, &act->sa_restorer) ||
3771 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3772 		    __get_user(mask, &act->sa_mask))
3773 			return -EFAULT;
3774 
3775 #ifdef __ARCH_HAS_KA_RESTORER
3776 		new_ka.ka_restorer = NULL;
3777 #endif
3778 		new_ka.sa.sa_handler = compat_ptr(handler);
3779 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3780 		siginitset(&new_ka.sa.sa_mask, mask);
3781 	}
3782 
3783 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3784 
3785 	if (!ret && oact) {
3786 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3787 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3788 			       &oact->sa_handler) ||
3789 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3790 			       &oact->sa_restorer) ||
3791 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3792 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3793 			return -EFAULT;
3794 	}
3795 	return ret;
3796 }
3797 #endif
3798 
3799 #ifdef CONFIG_SGETMASK_SYSCALL
3800 
3801 /*
3802  * For backwards compatibility.  Functionality superseded by sigprocmask.
3803  */
3804 SYSCALL_DEFINE0(sgetmask)
3805 {
3806 	/* SMP safe */
3807 	return current->blocked.sig[0];
3808 }
3809 
3810 SYSCALL_DEFINE1(ssetmask, int, newmask)
3811 {
3812 	int old = current->blocked.sig[0];
3813 	sigset_t newset;
3814 
3815 	siginitset(&newset, newmask);
3816 	set_current_blocked(&newset);
3817 
3818 	return old;
3819 }
3820 #endif /* CONFIG_SGETMASK_SYSCALL */
3821 
3822 #ifdef __ARCH_WANT_SYS_SIGNAL
3823 /*
3824  * For backwards compatibility.  Functionality superseded by sigaction.
3825  */
3826 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3827 {
3828 	struct k_sigaction new_sa, old_sa;
3829 	int ret;
3830 
3831 	new_sa.sa.sa_handler = handler;
3832 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3833 	sigemptyset(&new_sa.sa.sa_mask);
3834 
3835 	ret = do_sigaction(sig, &new_sa, &old_sa);
3836 
3837 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3838 }
3839 #endif /* __ARCH_WANT_SYS_SIGNAL */
3840 
3841 #ifdef __ARCH_WANT_SYS_PAUSE
3842 
3843 SYSCALL_DEFINE0(pause)
3844 {
3845 	while (!signal_pending(current)) {
3846 		__set_current_state(TASK_INTERRUPTIBLE);
3847 		schedule();
3848 	}
3849 	return -ERESTARTNOHAND;
3850 }
3851 
3852 #endif
3853 
3854 static int sigsuspend(sigset_t *set)
3855 {
3856 	current->saved_sigmask = current->blocked;
3857 	set_current_blocked(set);
3858 
3859 	while (!signal_pending(current)) {
3860 		__set_current_state(TASK_INTERRUPTIBLE);
3861 		schedule();
3862 	}
3863 	set_restore_sigmask();
3864 	return -ERESTARTNOHAND;
3865 }
3866 
3867 /**
3868  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3869  *	@unewset value until a signal is received
3870  *  @unewset: new signal mask value
3871  *  @sigsetsize: size of sigset_t type
3872  */
3873 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3874 {
3875 	sigset_t newset;
3876 
3877 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3878 	if (sigsetsize != sizeof(sigset_t))
3879 		return -EINVAL;
3880 
3881 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3882 		return -EFAULT;
3883 	return sigsuspend(&newset);
3884 }
3885 
3886 #ifdef CONFIG_COMPAT
3887 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3888 {
3889 	sigset_t newset;
3890 
3891 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3892 	if (sigsetsize != sizeof(sigset_t))
3893 		return -EINVAL;
3894 
3895 	if (get_compat_sigset(&newset, unewset))
3896 		return -EFAULT;
3897 	return sigsuspend(&newset);
3898 }
3899 #endif
3900 
3901 #ifdef CONFIG_OLD_SIGSUSPEND
3902 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3903 {
3904 	sigset_t blocked;
3905 	siginitset(&blocked, mask);
3906 	return sigsuspend(&blocked);
3907 }
3908 #endif
3909 #ifdef CONFIG_OLD_SIGSUSPEND3
3910 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3911 {
3912 	sigset_t blocked;
3913 	siginitset(&blocked, mask);
3914 	return sigsuspend(&blocked);
3915 }
3916 #endif
3917 
3918 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3919 {
3920 	return NULL;
3921 }
3922 
3923 void __init signals_init(void)
3924 {
3925 	/* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3926 	BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3927 		!= offsetof(struct siginfo, _sifields._pad));
3928 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
3929 
3930 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3931 }
3932 
3933 #ifdef CONFIG_KGDB_KDB
3934 #include <linux/kdb.h>
3935 /*
3936  * kdb_send_sig - Allows kdb to send signals without exposing
3937  * signal internals.  This function checks if the required locks are
3938  * available before calling the main signal code, to avoid kdb
3939  * deadlocks.
3940  */
3941 void kdb_send_sig(struct task_struct *t, int sig)
3942 {
3943 	static struct task_struct *kdb_prev_t;
3944 	int new_t, ret;
3945 	if (!spin_trylock(&t->sighand->siglock)) {
3946 		kdb_printf("Can't do kill command now.\n"
3947 			   "The sigmask lock is held somewhere else in "
3948 			   "kernel, try again later\n");
3949 		return;
3950 	}
3951 	new_t = kdb_prev_t != t;
3952 	kdb_prev_t = t;
3953 	if (t->state != TASK_RUNNING && new_t) {
3954 		spin_unlock(&t->sighand->siglock);
3955 		kdb_printf("Process is not RUNNING, sending a signal from "
3956 			   "kdb risks deadlock\n"
3957 			   "on the run queue locks. "
3958 			   "The signal has _not_ been sent.\n"
3959 			   "Reissue the kill command if you want to risk "
3960 			   "the deadlock.\n");
3961 		return;
3962 	}
3963 	ret = send_signal(sig, SEND_SIG_PRIV, t, false);
3964 	spin_unlock(&t->sighand->siglock);
3965 	if (ret)
3966 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3967 			   sig, t->pid);
3968 	else
3969 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3970 }
3971 #endif	/* CONFIG_KGDB_KDB */
3972