xref: /openbmc/linux/kernel/signal.c (revision b830f94f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/livepatch.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/signal.h>
52 
53 #include <asm/param.h>
54 #include <linux/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/siginfo.h>
57 #include <asm/cacheflush.h>
58 
59 /*
60  * SLAB caches for signal bits.
61  */
62 
63 static struct kmem_cache *sigqueue_cachep;
64 
65 int print_fatal_signals __read_mostly;
66 
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 	return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71 
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 	/* Is it explicitly or implicitly ignored? */
75 	return handler == SIG_IGN ||
76 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78 
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 	void __user *handler;
82 
83 	handler = sig_handler(t, sig);
84 
85 	/* SIGKILL and SIGSTOP may not be sent to the global init */
86 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 		return true;
88 
89 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 		return true;
92 
93 	return sig_handler_ignored(handler, sig);
94 }
95 
96 static bool sig_ignored(struct task_struct *t, int sig, bool force)
97 {
98 	/*
99 	 * Blocked signals are never ignored, since the
100 	 * signal handler may change by the time it is
101 	 * unblocked.
102 	 */
103 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
104 		return false;
105 
106 	/*
107 	 * Tracers may want to know about even ignored signal unless it
108 	 * is SIGKILL which can't be reported anyway but can be ignored
109 	 * by SIGNAL_UNKILLABLE task.
110 	 */
111 	if (t->ptrace && sig != SIGKILL)
112 		return false;
113 
114 	return sig_task_ignored(t, sig, force);
115 }
116 
117 /*
118  * Re-calculate pending state from the set of locally pending
119  * signals, globally pending signals, and blocked signals.
120  */
121 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
122 {
123 	unsigned long ready;
124 	long i;
125 
126 	switch (_NSIG_WORDS) {
127 	default:
128 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
129 			ready |= signal->sig[i] &~ blocked->sig[i];
130 		break;
131 
132 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
133 		ready |= signal->sig[2] &~ blocked->sig[2];
134 		ready |= signal->sig[1] &~ blocked->sig[1];
135 		ready |= signal->sig[0] &~ blocked->sig[0];
136 		break;
137 
138 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
139 		ready |= signal->sig[0] &~ blocked->sig[0];
140 		break;
141 
142 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
143 	}
144 	return ready !=	0;
145 }
146 
147 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
148 
149 static bool recalc_sigpending_tsk(struct task_struct *t)
150 {
151 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
152 	    PENDING(&t->pending, &t->blocked) ||
153 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
154 	    cgroup_task_frozen(t)) {
155 		set_tsk_thread_flag(t, TIF_SIGPENDING);
156 		return true;
157 	}
158 
159 	/*
160 	 * We must never clear the flag in another thread, or in current
161 	 * when it's possible the current syscall is returning -ERESTART*.
162 	 * So we don't clear it here, and only callers who know they should do.
163 	 */
164 	return false;
165 }
166 
167 /*
168  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
169  * This is superfluous when called on current, the wakeup is a harmless no-op.
170  */
171 void recalc_sigpending_and_wake(struct task_struct *t)
172 {
173 	if (recalc_sigpending_tsk(t))
174 		signal_wake_up(t, 0);
175 }
176 
177 void recalc_sigpending(void)
178 {
179 	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
180 	    !klp_patch_pending(current))
181 		clear_thread_flag(TIF_SIGPENDING);
182 
183 }
184 EXPORT_SYMBOL(recalc_sigpending);
185 
186 void calculate_sigpending(void)
187 {
188 	/* Have any signals or users of TIF_SIGPENDING been delayed
189 	 * until after fork?
190 	 */
191 	spin_lock_irq(&current->sighand->siglock);
192 	set_tsk_thread_flag(current, TIF_SIGPENDING);
193 	recalc_sigpending();
194 	spin_unlock_irq(&current->sighand->siglock);
195 }
196 
197 /* Given the mask, find the first available signal that should be serviced. */
198 
199 #define SYNCHRONOUS_MASK \
200 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
201 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
202 
203 int next_signal(struct sigpending *pending, sigset_t *mask)
204 {
205 	unsigned long i, *s, *m, x;
206 	int sig = 0;
207 
208 	s = pending->signal.sig;
209 	m = mask->sig;
210 
211 	/*
212 	 * Handle the first word specially: it contains the
213 	 * synchronous signals that need to be dequeued first.
214 	 */
215 	x = *s &~ *m;
216 	if (x) {
217 		if (x & SYNCHRONOUS_MASK)
218 			x &= SYNCHRONOUS_MASK;
219 		sig = ffz(~x) + 1;
220 		return sig;
221 	}
222 
223 	switch (_NSIG_WORDS) {
224 	default:
225 		for (i = 1; i < _NSIG_WORDS; ++i) {
226 			x = *++s &~ *++m;
227 			if (!x)
228 				continue;
229 			sig = ffz(~x) + i*_NSIG_BPW + 1;
230 			break;
231 		}
232 		break;
233 
234 	case 2:
235 		x = s[1] &~ m[1];
236 		if (!x)
237 			break;
238 		sig = ffz(~x) + _NSIG_BPW + 1;
239 		break;
240 
241 	case 1:
242 		/* Nothing to do */
243 		break;
244 	}
245 
246 	return sig;
247 }
248 
249 static inline void print_dropped_signal(int sig)
250 {
251 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
252 
253 	if (!print_fatal_signals)
254 		return;
255 
256 	if (!__ratelimit(&ratelimit_state))
257 		return;
258 
259 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
260 				current->comm, current->pid, sig);
261 }
262 
263 /**
264  * task_set_jobctl_pending - set jobctl pending bits
265  * @task: target task
266  * @mask: pending bits to set
267  *
268  * Clear @mask from @task->jobctl.  @mask must be subset of
269  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
270  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
271  * cleared.  If @task is already being killed or exiting, this function
272  * becomes noop.
273  *
274  * CONTEXT:
275  * Must be called with @task->sighand->siglock held.
276  *
277  * RETURNS:
278  * %true if @mask is set, %false if made noop because @task was dying.
279  */
280 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
281 {
282 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
283 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
284 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
285 
286 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
287 		return false;
288 
289 	if (mask & JOBCTL_STOP_SIGMASK)
290 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
291 
292 	task->jobctl |= mask;
293 	return true;
294 }
295 
296 /**
297  * task_clear_jobctl_trapping - clear jobctl trapping bit
298  * @task: target task
299  *
300  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
301  * Clear it and wake up the ptracer.  Note that we don't need any further
302  * locking.  @task->siglock guarantees that @task->parent points to the
303  * ptracer.
304  *
305  * CONTEXT:
306  * Must be called with @task->sighand->siglock held.
307  */
308 void task_clear_jobctl_trapping(struct task_struct *task)
309 {
310 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
311 		task->jobctl &= ~JOBCTL_TRAPPING;
312 		smp_mb();	/* advised by wake_up_bit() */
313 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
314 	}
315 }
316 
317 /**
318  * task_clear_jobctl_pending - clear jobctl pending bits
319  * @task: target task
320  * @mask: pending bits to clear
321  *
322  * Clear @mask from @task->jobctl.  @mask must be subset of
323  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
324  * STOP bits are cleared together.
325  *
326  * If clearing of @mask leaves no stop or trap pending, this function calls
327  * task_clear_jobctl_trapping().
328  *
329  * CONTEXT:
330  * Must be called with @task->sighand->siglock held.
331  */
332 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
333 {
334 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
335 
336 	if (mask & JOBCTL_STOP_PENDING)
337 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
338 
339 	task->jobctl &= ~mask;
340 
341 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
342 		task_clear_jobctl_trapping(task);
343 }
344 
345 /**
346  * task_participate_group_stop - participate in a group stop
347  * @task: task participating in a group stop
348  *
349  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
350  * Group stop states are cleared and the group stop count is consumed if
351  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
352  * stop, the appropriate %SIGNAL_* flags are set.
353  *
354  * CONTEXT:
355  * Must be called with @task->sighand->siglock held.
356  *
357  * RETURNS:
358  * %true if group stop completion should be notified to the parent, %false
359  * otherwise.
360  */
361 static bool task_participate_group_stop(struct task_struct *task)
362 {
363 	struct signal_struct *sig = task->signal;
364 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
365 
366 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
367 
368 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
369 
370 	if (!consume)
371 		return false;
372 
373 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
374 		sig->group_stop_count--;
375 
376 	/*
377 	 * Tell the caller to notify completion iff we are entering into a
378 	 * fresh group stop.  Read comment in do_signal_stop() for details.
379 	 */
380 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
381 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
382 		return true;
383 	}
384 	return false;
385 }
386 
387 void task_join_group_stop(struct task_struct *task)
388 {
389 	/* Have the new thread join an on-going signal group stop */
390 	unsigned long jobctl = current->jobctl;
391 	if (jobctl & JOBCTL_STOP_PENDING) {
392 		struct signal_struct *sig = current->signal;
393 		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
394 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
395 		if (task_set_jobctl_pending(task, signr | gstop)) {
396 			sig->group_stop_count++;
397 		}
398 	}
399 }
400 
401 /*
402  * allocate a new signal queue record
403  * - this may be called without locks if and only if t == current, otherwise an
404  *   appropriate lock must be held to stop the target task from exiting
405  */
406 static struct sigqueue *
407 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
408 {
409 	struct sigqueue *q = NULL;
410 	struct user_struct *user;
411 
412 	/*
413 	 * Protect access to @t credentials. This can go away when all
414 	 * callers hold rcu read lock.
415 	 */
416 	rcu_read_lock();
417 	user = get_uid(__task_cred(t)->user);
418 	atomic_inc(&user->sigpending);
419 	rcu_read_unlock();
420 
421 	if (override_rlimit ||
422 	    atomic_read(&user->sigpending) <=
423 			task_rlimit(t, RLIMIT_SIGPENDING)) {
424 		q = kmem_cache_alloc(sigqueue_cachep, flags);
425 	} else {
426 		print_dropped_signal(sig);
427 	}
428 
429 	if (unlikely(q == NULL)) {
430 		atomic_dec(&user->sigpending);
431 		free_uid(user);
432 	} else {
433 		INIT_LIST_HEAD(&q->list);
434 		q->flags = 0;
435 		q->user = user;
436 	}
437 
438 	return q;
439 }
440 
441 static void __sigqueue_free(struct sigqueue *q)
442 {
443 	if (q->flags & SIGQUEUE_PREALLOC)
444 		return;
445 	atomic_dec(&q->user->sigpending);
446 	free_uid(q->user);
447 	kmem_cache_free(sigqueue_cachep, q);
448 }
449 
450 void flush_sigqueue(struct sigpending *queue)
451 {
452 	struct sigqueue *q;
453 
454 	sigemptyset(&queue->signal);
455 	while (!list_empty(&queue->list)) {
456 		q = list_entry(queue->list.next, struct sigqueue , list);
457 		list_del_init(&q->list);
458 		__sigqueue_free(q);
459 	}
460 }
461 
462 /*
463  * Flush all pending signals for this kthread.
464  */
465 void flush_signals(struct task_struct *t)
466 {
467 	unsigned long flags;
468 
469 	spin_lock_irqsave(&t->sighand->siglock, flags);
470 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
471 	flush_sigqueue(&t->pending);
472 	flush_sigqueue(&t->signal->shared_pending);
473 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
474 }
475 EXPORT_SYMBOL(flush_signals);
476 
477 #ifdef CONFIG_POSIX_TIMERS
478 static void __flush_itimer_signals(struct sigpending *pending)
479 {
480 	sigset_t signal, retain;
481 	struct sigqueue *q, *n;
482 
483 	signal = pending->signal;
484 	sigemptyset(&retain);
485 
486 	list_for_each_entry_safe(q, n, &pending->list, list) {
487 		int sig = q->info.si_signo;
488 
489 		if (likely(q->info.si_code != SI_TIMER)) {
490 			sigaddset(&retain, sig);
491 		} else {
492 			sigdelset(&signal, sig);
493 			list_del_init(&q->list);
494 			__sigqueue_free(q);
495 		}
496 	}
497 
498 	sigorsets(&pending->signal, &signal, &retain);
499 }
500 
501 void flush_itimer_signals(void)
502 {
503 	struct task_struct *tsk = current;
504 	unsigned long flags;
505 
506 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
507 	__flush_itimer_signals(&tsk->pending);
508 	__flush_itimer_signals(&tsk->signal->shared_pending);
509 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
510 }
511 #endif
512 
513 void ignore_signals(struct task_struct *t)
514 {
515 	int i;
516 
517 	for (i = 0; i < _NSIG; ++i)
518 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
519 
520 	flush_signals(t);
521 }
522 
523 /*
524  * Flush all handlers for a task.
525  */
526 
527 void
528 flush_signal_handlers(struct task_struct *t, int force_default)
529 {
530 	int i;
531 	struct k_sigaction *ka = &t->sighand->action[0];
532 	for (i = _NSIG ; i != 0 ; i--) {
533 		if (force_default || ka->sa.sa_handler != SIG_IGN)
534 			ka->sa.sa_handler = SIG_DFL;
535 		ka->sa.sa_flags = 0;
536 #ifdef __ARCH_HAS_SA_RESTORER
537 		ka->sa.sa_restorer = NULL;
538 #endif
539 		sigemptyset(&ka->sa.sa_mask);
540 		ka++;
541 	}
542 }
543 
544 bool unhandled_signal(struct task_struct *tsk, int sig)
545 {
546 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
547 	if (is_global_init(tsk))
548 		return true;
549 
550 	if (handler != SIG_IGN && handler != SIG_DFL)
551 		return false;
552 
553 	/* if ptraced, let the tracer determine */
554 	return !tsk->ptrace;
555 }
556 
557 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
558 			   bool *resched_timer)
559 {
560 	struct sigqueue *q, *first = NULL;
561 
562 	/*
563 	 * Collect the siginfo appropriate to this signal.  Check if
564 	 * there is another siginfo for the same signal.
565 	*/
566 	list_for_each_entry(q, &list->list, list) {
567 		if (q->info.si_signo == sig) {
568 			if (first)
569 				goto still_pending;
570 			first = q;
571 		}
572 	}
573 
574 	sigdelset(&list->signal, sig);
575 
576 	if (first) {
577 still_pending:
578 		list_del_init(&first->list);
579 		copy_siginfo(info, &first->info);
580 
581 		*resched_timer =
582 			(first->flags & SIGQUEUE_PREALLOC) &&
583 			(info->si_code == SI_TIMER) &&
584 			(info->si_sys_private);
585 
586 		__sigqueue_free(first);
587 	} else {
588 		/*
589 		 * Ok, it wasn't in the queue.  This must be
590 		 * a fast-pathed signal or we must have been
591 		 * out of queue space.  So zero out the info.
592 		 */
593 		clear_siginfo(info);
594 		info->si_signo = sig;
595 		info->si_errno = 0;
596 		info->si_code = SI_USER;
597 		info->si_pid = 0;
598 		info->si_uid = 0;
599 	}
600 }
601 
602 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
603 			kernel_siginfo_t *info, bool *resched_timer)
604 {
605 	int sig = next_signal(pending, mask);
606 
607 	if (sig)
608 		collect_signal(sig, pending, info, resched_timer);
609 	return sig;
610 }
611 
612 /*
613  * Dequeue a signal and return the element to the caller, which is
614  * expected to free it.
615  *
616  * All callers have to hold the siglock.
617  */
618 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
619 {
620 	bool resched_timer = false;
621 	int signr;
622 
623 	/* We only dequeue private signals from ourselves, we don't let
624 	 * signalfd steal them
625 	 */
626 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
627 	if (!signr) {
628 		signr = __dequeue_signal(&tsk->signal->shared_pending,
629 					 mask, info, &resched_timer);
630 #ifdef CONFIG_POSIX_TIMERS
631 		/*
632 		 * itimer signal ?
633 		 *
634 		 * itimers are process shared and we restart periodic
635 		 * itimers in the signal delivery path to prevent DoS
636 		 * attacks in the high resolution timer case. This is
637 		 * compliant with the old way of self-restarting
638 		 * itimers, as the SIGALRM is a legacy signal and only
639 		 * queued once. Changing the restart behaviour to
640 		 * restart the timer in the signal dequeue path is
641 		 * reducing the timer noise on heavy loaded !highres
642 		 * systems too.
643 		 */
644 		if (unlikely(signr == SIGALRM)) {
645 			struct hrtimer *tmr = &tsk->signal->real_timer;
646 
647 			if (!hrtimer_is_queued(tmr) &&
648 			    tsk->signal->it_real_incr != 0) {
649 				hrtimer_forward(tmr, tmr->base->get_time(),
650 						tsk->signal->it_real_incr);
651 				hrtimer_restart(tmr);
652 			}
653 		}
654 #endif
655 	}
656 
657 	recalc_sigpending();
658 	if (!signr)
659 		return 0;
660 
661 	if (unlikely(sig_kernel_stop(signr))) {
662 		/*
663 		 * Set a marker that we have dequeued a stop signal.  Our
664 		 * caller might release the siglock and then the pending
665 		 * stop signal it is about to process is no longer in the
666 		 * pending bitmasks, but must still be cleared by a SIGCONT
667 		 * (and overruled by a SIGKILL).  So those cases clear this
668 		 * shared flag after we've set it.  Note that this flag may
669 		 * remain set after the signal we return is ignored or
670 		 * handled.  That doesn't matter because its only purpose
671 		 * is to alert stop-signal processing code when another
672 		 * processor has come along and cleared the flag.
673 		 */
674 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
675 	}
676 #ifdef CONFIG_POSIX_TIMERS
677 	if (resched_timer) {
678 		/*
679 		 * Release the siglock to ensure proper locking order
680 		 * of timer locks outside of siglocks.  Note, we leave
681 		 * irqs disabled here, since the posix-timers code is
682 		 * about to disable them again anyway.
683 		 */
684 		spin_unlock(&tsk->sighand->siglock);
685 		posixtimer_rearm(info);
686 		spin_lock(&tsk->sighand->siglock);
687 
688 		/* Don't expose the si_sys_private value to userspace */
689 		info->si_sys_private = 0;
690 	}
691 #endif
692 	return signr;
693 }
694 EXPORT_SYMBOL_GPL(dequeue_signal);
695 
696 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
697 {
698 	struct task_struct *tsk = current;
699 	struct sigpending *pending = &tsk->pending;
700 	struct sigqueue *q, *sync = NULL;
701 
702 	/*
703 	 * Might a synchronous signal be in the queue?
704 	 */
705 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
706 		return 0;
707 
708 	/*
709 	 * Return the first synchronous signal in the queue.
710 	 */
711 	list_for_each_entry(q, &pending->list, list) {
712 		/* Synchronous signals have a postive si_code */
713 		if ((q->info.si_code > SI_USER) &&
714 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
715 			sync = q;
716 			goto next;
717 		}
718 	}
719 	return 0;
720 next:
721 	/*
722 	 * Check if there is another siginfo for the same signal.
723 	 */
724 	list_for_each_entry_continue(q, &pending->list, list) {
725 		if (q->info.si_signo == sync->info.si_signo)
726 			goto still_pending;
727 	}
728 
729 	sigdelset(&pending->signal, sync->info.si_signo);
730 	recalc_sigpending();
731 still_pending:
732 	list_del_init(&sync->list);
733 	copy_siginfo(info, &sync->info);
734 	__sigqueue_free(sync);
735 	return info->si_signo;
736 }
737 
738 /*
739  * Tell a process that it has a new active signal..
740  *
741  * NOTE! we rely on the previous spin_lock to
742  * lock interrupts for us! We can only be called with
743  * "siglock" held, and the local interrupt must
744  * have been disabled when that got acquired!
745  *
746  * No need to set need_resched since signal event passing
747  * goes through ->blocked
748  */
749 void signal_wake_up_state(struct task_struct *t, unsigned int state)
750 {
751 	set_tsk_thread_flag(t, TIF_SIGPENDING);
752 	/*
753 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
754 	 * case. We don't check t->state here because there is a race with it
755 	 * executing another processor and just now entering stopped state.
756 	 * By using wake_up_state, we ensure the process will wake up and
757 	 * handle its death signal.
758 	 */
759 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
760 		kick_process(t);
761 }
762 
763 /*
764  * Remove signals in mask from the pending set and queue.
765  * Returns 1 if any signals were found.
766  *
767  * All callers must be holding the siglock.
768  */
769 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
770 {
771 	struct sigqueue *q, *n;
772 	sigset_t m;
773 
774 	sigandsets(&m, mask, &s->signal);
775 	if (sigisemptyset(&m))
776 		return;
777 
778 	sigandnsets(&s->signal, &s->signal, mask);
779 	list_for_each_entry_safe(q, n, &s->list, list) {
780 		if (sigismember(mask, q->info.si_signo)) {
781 			list_del_init(&q->list);
782 			__sigqueue_free(q);
783 		}
784 	}
785 }
786 
787 static inline int is_si_special(const struct kernel_siginfo *info)
788 {
789 	return info <= SEND_SIG_PRIV;
790 }
791 
792 static inline bool si_fromuser(const struct kernel_siginfo *info)
793 {
794 	return info == SEND_SIG_NOINFO ||
795 		(!is_si_special(info) && SI_FROMUSER(info));
796 }
797 
798 /*
799  * called with RCU read lock from check_kill_permission()
800  */
801 static bool kill_ok_by_cred(struct task_struct *t)
802 {
803 	const struct cred *cred = current_cred();
804 	const struct cred *tcred = __task_cred(t);
805 
806 	return uid_eq(cred->euid, tcred->suid) ||
807 	       uid_eq(cred->euid, tcred->uid) ||
808 	       uid_eq(cred->uid, tcred->suid) ||
809 	       uid_eq(cred->uid, tcred->uid) ||
810 	       ns_capable(tcred->user_ns, CAP_KILL);
811 }
812 
813 /*
814  * Bad permissions for sending the signal
815  * - the caller must hold the RCU read lock
816  */
817 static int check_kill_permission(int sig, struct kernel_siginfo *info,
818 				 struct task_struct *t)
819 {
820 	struct pid *sid;
821 	int error;
822 
823 	if (!valid_signal(sig))
824 		return -EINVAL;
825 
826 	if (!si_fromuser(info))
827 		return 0;
828 
829 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
830 	if (error)
831 		return error;
832 
833 	if (!same_thread_group(current, t) &&
834 	    !kill_ok_by_cred(t)) {
835 		switch (sig) {
836 		case SIGCONT:
837 			sid = task_session(t);
838 			/*
839 			 * We don't return the error if sid == NULL. The
840 			 * task was unhashed, the caller must notice this.
841 			 */
842 			if (!sid || sid == task_session(current))
843 				break;
844 			/* fall through */
845 		default:
846 			return -EPERM;
847 		}
848 	}
849 
850 	return security_task_kill(t, info, sig, NULL);
851 }
852 
853 /**
854  * ptrace_trap_notify - schedule trap to notify ptracer
855  * @t: tracee wanting to notify tracer
856  *
857  * This function schedules sticky ptrace trap which is cleared on the next
858  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
859  * ptracer.
860  *
861  * If @t is running, STOP trap will be taken.  If trapped for STOP and
862  * ptracer is listening for events, tracee is woken up so that it can
863  * re-trap for the new event.  If trapped otherwise, STOP trap will be
864  * eventually taken without returning to userland after the existing traps
865  * are finished by PTRACE_CONT.
866  *
867  * CONTEXT:
868  * Must be called with @task->sighand->siglock held.
869  */
870 static void ptrace_trap_notify(struct task_struct *t)
871 {
872 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
873 	assert_spin_locked(&t->sighand->siglock);
874 
875 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
876 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
877 }
878 
879 /*
880  * Handle magic process-wide effects of stop/continue signals. Unlike
881  * the signal actions, these happen immediately at signal-generation
882  * time regardless of blocking, ignoring, or handling.  This does the
883  * actual continuing for SIGCONT, but not the actual stopping for stop
884  * signals. The process stop is done as a signal action for SIG_DFL.
885  *
886  * Returns true if the signal should be actually delivered, otherwise
887  * it should be dropped.
888  */
889 static bool prepare_signal(int sig, struct task_struct *p, bool force)
890 {
891 	struct signal_struct *signal = p->signal;
892 	struct task_struct *t;
893 	sigset_t flush;
894 
895 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
896 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
897 			return sig == SIGKILL;
898 		/*
899 		 * The process is in the middle of dying, nothing to do.
900 		 */
901 	} else if (sig_kernel_stop(sig)) {
902 		/*
903 		 * This is a stop signal.  Remove SIGCONT from all queues.
904 		 */
905 		siginitset(&flush, sigmask(SIGCONT));
906 		flush_sigqueue_mask(&flush, &signal->shared_pending);
907 		for_each_thread(p, t)
908 			flush_sigqueue_mask(&flush, &t->pending);
909 	} else if (sig == SIGCONT) {
910 		unsigned int why;
911 		/*
912 		 * Remove all stop signals from all queues, wake all threads.
913 		 */
914 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
915 		flush_sigqueue_mask(&flush, &signal->shared_pending);
916 		for_each_thread(p, t) {
917 			flush_sigqueue_mask(&flush, &t->pending);
918 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
919 			if (likely(!(t->ptrace & PT_SEIZED)))
920 				wake_up_state(t, __TASK_STOPPED);
921 			else
922 				ptrace_trap_notify(t);
923 		}
924 
925 		/*
926 		 * Notify the parent with CLD_CONTINUED if we were stopped.
927 		 *
928 		 * If we were in the middle of a group stop, we pretend it
929 		 * was already finished, and then continued. Since SIGCHLD
930 		 * doesn't queue we report only CLD_STOPPED, as if the next
931 		 * CLD_CONTINUED was dropped.
932 		 */
933 		why = 0;
934 		if (signal->flags & SIGNAL_STOP_STOPPED)
935 			why |= SIGNAL_CLD_CONTINUED;
936 		else if (signal->group_stop_count)
937 			why |= SIGNAL_CLD_STOPPED;
938 
939 		if (why) {
940 			/*
941 			 * The first thread which returns from do_signal_stop()
942 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
943 			 * notify its parent. See get_signal().
944 			 */
945 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
946 			signal->group_stop_count = 0;
947 			signal->group_exit_code = 0;
948 		}
949 	}
950 
951 	return !sig_ignored(p, sig, force);
952 }
953 
954 /*
955  * Test if P wants to take SIG.  After we've checked all threads with this,
956  * it's equivalent to finding no threads not blocking SIG.  Any threads not
957  * blocking SIG were ruled out because they are not running and already
958  * have pending signals.  Such threads will dequeue from the shared queue
959  * as soon as they're available, so putting the signal on the shared queue
960  * will be equivalent to sending it to one such thread.
961  */
962 static inline bool wants_signal(int sig, struct task_struct *p)
963 {
964 	if (sigismember(&p->blocked, sig))
965 		return false;
966 
967 	if (p->flags & PF_EXITING)
968 		return false;
969 
970 	if (sig == SIGKILL)
971 		return true;
972 
973 	if (task_is_stopped_or_traced(p))
974 		return false;
975 
976 	return task_curr(p) || !signal_pending(p);
977 }
978 
979 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
980 {
981 	struct signal_struct *signal = p->signal;
982 	struct task_struct *t;
983 
984 	/*
985 	 * Now find a thread we can wake up to take the signal off the queue.
986 	 *
987 	 * If the main thread wants the signal, it gets first crack.
988 	 * Probably the least surprising to the average bear.
989 	 */
990 	if (wants_signal(sig, p))
991 		t = p;
992 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
993 		/*
994 		 * There is just one thread and it does not need to be woken.
995 		 * It will dequeue unblocked signals before it runs again.
996 		 */
997 		return;
998 	else {
999 		/*
1000 		 * Otherwise try to find a suitable thread.
1001 		 */
1002 		t = signal->curr_target;
1003 		while (!wants_signal(sig, t)) {
1004 			t = next_thread(t);
1005 			if (t == signal->curr_target)
1006 				/*
1007 				 * No thread needs to be woken.
1008 				 * Any eligible threads will see
1009 				 * the signal in the queue soon.
1010 				 */
1011 				return;
1012 		}
1013 		signal->curr_target = t;
1014 	}
1015 
1016 	/*
1017 	 * Found a killable thread.  If the signal will be fatal,
1018 	 * then start taking the whole group down immediately.
1019 	 */
1020 	if (sig_fatal(p, sig) &&
1021 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1022 	    !sigismember(&t->real_blocked, sig) &&
1023 	    (sig == SIGKILL || !p->ptrace)) {
1024 		/*
1025 		 * This signal will be fatal to the whole group.
1026 		 */
1027 		if (!sig_kernel_coredump(sig)) {
1028 			/*
1029 			 * Start a group exit and wake everybody up.
1030 			 * This way we don't have other threads
1031 			 * running and doing things after a slower
1032 			 * thread has the fatal signal pending.
1033 			 */
1034 			signal->flags = SIGNAL_GROUP_EXIT;
1035 			signal->group_exit_code = sig;
1036 			signal->group_stop_count = 0;
1037 			t = p;
1038 			do {
1039 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1040 				sigaddset(&t->pending.signal, SIGKILL);
1041 				signal_wake_up(t, 1);
1042 			} while_each_thread(p, t);
1043 			return;
1044 		}
1045 	}
1046 
1047 	/*
1048 	 * The signal is already in the shared-pending queue.
1049 	 * Tell the chosen thread to wake up and dequeue it.
1050 	 */
1051 	signal_wake_up(t, sig == SIGKILL);
1052 	return;
1053 }
1054 
1055 static inline bool legacy_queue(struct sigpending *signals, int sig)
1056 {
1057 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1058 }
1059 
1060 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1061 			enum pid_type type, bool force)
1062 {
1063 	struct sigpending *pending;
1064 	struct sigqueue *q;
1065 	int override_rlimit;
1066 	int ret = 0, result;
1067 
1068 	assert_spin_locked(&t->sighand->siglock);
1069 
1070 	result = TRACE_SIGNAL_IGNORED;
1071 	if (!prepare_signal(sig, t, force))
1072 		goto ret;
1073 
1074 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1075 	/*
1076 	 * Short-circuit ignored signals and support queuing
1077 	 * exactly one non-rt signal, so that we can get more
1078 	 * detailed information about the cause of the signal.
1079 	 */
1080 	result = TRACE_SIGNAL_ALREADY_PENDING;
1081 	if (legacy_queue(pending, sig))
1082 		goto ret;
1083 
1084 	result = TRACE_SIGNAL_DELIVERED;
1085 	/*
1086 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1087 	 */
1088 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1089 		goto out_set;
1090 
1091 	/*
1092 	 * Real-time signals must be queued if sent by sigqueue, or
1093 	 * some other real-time mechanism.  It is implementation
1094 	 * defined whether kill() does so.  We attempt to do so, on
1095 	 * the principle of least surprise, but since kill is not
1096 	 * allowed to fail with EAGAIN when low on memory we just
1097 	 * make sure at least one signal gets delivered and don't
1098 	 * pass on the info struct.
1099 	 */
1100 	if (sig < SIGRTMIN)
1101 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1102 	else
1103 		override_rlimit = 0;
1104 
1105 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1106 	if (q) {
1107 		list_add_tail(&q->list, &pending->list);
1108 		switch ((unsigned long) info) {
1109 		case (unsigned long) SEND_SIG_NOINFO:
1110 			clear_siginfo(&q->info);
1111 			q->info.si_signo = sig;
1112 			q->info.si_errno = 0;
1113 			q->info.si_code = SI_USER;
1114 			q->info.si_pid = task_tgid_nr_ns(current,
1115 							task_active_pid_ns(t));
1116 			rcu_read_lock();
1117 			q->info.si_uid =
1118 				from_kuid_munged(task_cred_xxx(t, user_ns),
1119 						 current_uid());
1120 			rcu_read_unlock();
1121 			break;
1122 		case (unsigned long) SEND_SIG_PRIV:
1123 			clear_siginfo(&q->info);
1124 			q->info.si_signo = sig;
1125 			q->info.si_errno = 0;
1126 			q->info.si_code = SI_KERNEL;
1127 			q->info.si_pid = 0;
1128 			q->info.si_uid = 0;
1129 			break;
1130 		default:
1131 			copy_siginfo(&q->info, info);
1132 			break;
1133 		}
1134 	} else if (!is_si_special(info) &&
1135 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1136 		/*
1137 		 * Queue overflow, abort.  We may abort if the
1138 		 * signal was rt and sent by user using something
1139 		 * other than kill().
1140 		 */
1141 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1142 		ret = -EAGAIN;
1143 		goto ret;
1144 	} else {
1145 		/*
1146 		 * This is a silent loss of information.  We still
1147 		 * send the signal, but the *info bits are lost.
1148 		 */
1149 		result = TRACE_SIGNAL_LOSE_INFO;
1150 	}
1151 
1152 out_set:
1153 	signalfd_notify(t, sig);
1154 	sigaddset(&pending->signal, sig);
1155 
1156 	/* Let multiprocess signals appear after on-going forks */
1157 	if (type > PIDTYPE_TGID) {
1158 		struct multiprocess_signals *delayed;
1159 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1160 			sigset_t *signal = &delayed->signal;
1161 			/* Can't queue both a stop and a continue signal */
1162 			if (sig == SIGCONT)
1163 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1164 			else if (sig_kernel_stop(sig))
1165 				sigdelset(signal, SIGCONT);
1166 			sigaddset(signal, sig);
1167 		}
1168 	}
1169 
1170 	complete_signal(sig, t, type);
1171 ret:
1172 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1173 	return ret;
1174 }
1175 
1176 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1177 {
1178 	bool ret = false;
1179 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1180 	case SIL_KILL:
1181 	case SIL_CHLD:
1182 	case SIL_RT:
1183 		ret = true;
1184 		break;
1185 	case SIL_TIMER:
1186 	case SIL_POLL:
1187 	case SIL_FAULT:
1188 	case SIL_FAULT_MCEERR:
1189 	case SIL_FAULT_BNDERR:
1190 	case SIL_FAULT_PKUERR:
1191 	case SIL_SYS:
1192 		ret = false;
1193 		break;
1194 	}
1195 	return ret;
1196 }
1197 
1198 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1199 			enum pid_type type)
1200 {
1201 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1202 	bool force = false;
1203 
1204 	if (info == SEND_SIG_NOINFO) {
1205 		/* Force if sent from an ancestor pid namespace */
1206 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1207 	} else if (info == SEND_SIG_PRIV) {
1208 		/* Don't ignore kernel generated signals */
1209 		force = true;
1210 	} else if (has_si_pid_and_uid(info)) {
1211 		/* SIGKILL and SIGSTOP is special or has ids */
1212 		struct user_namespace *t_user_ns;
1213 
1214 		rcu_read_lock();
1215 		t_user_ns = task_cred_xxx(t, user_ns);
1216 		if (current_user_ns() != t_user_ns) {
1217 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1218 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1219 		}
1220 		rcu_read_unlock();
1221 
1222 		/* A kernel generated signal? */
1223 		force = (info->si_code == SI_KERNEL);
1224 
1225 		/* From an ancestor pid namespace? */
1226 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1227 			info->si_pid = 0;
1228 			force = true;
1229 		}
1230 	}
1231 	return __send_signal(sig, info, t, type, force);
1232 }
1233 
1234 static void print_fatal_signal(int signr)
1235 {
1236 	struct pt_regs *regs = signal_pt_regs();
1237 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1238 
1239 #if defined(__i386__) && !defined(__arch_um__)
1240 	pr_info("code at %08lx: ", regs->ip);
1241 	{
1242 		int i;
1243 		for (i = 0; i < 16; i++) {
1244 			unsigned char insn;
1245 
1246 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1247 				break;
1248 			pr_cont("%02x ", insn);
1249 		}
1250 	}
1251 	pr_cont("\n");
1252 #endif
1253 	preempt_disable();
1254 	show_regs(regs);
1255 	preempt_enable();
1256 }
1257 
1258 static int __init setup_print_fatal_signals(char *str)
1259 {
1260 	get_option (&str, &print_fatal_signals);
1261 
1262 	return 1;
1263 }
1264 
1265 __setup("print-fatal-signals=", setup_print_fatal_signals);
1266 
1267 int
1268 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1269 {
1270 	return send_signal(sig, info, p, PIDTYPE_TGID);
1271 }
1272 
1273 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1274 			enum pid_type type)
1275 {
1276 	unsigned long flags;
1277 	int ret = -ESRCH;
1278 
1279 	if (lock_task_sighand(p, &flags)) {
1280 		ret = send_signal(sig, info, p, type);
1281 		unlock_task_sighand(p, &flags);
1282 	}
1283 
1284 	return ret;
1285 }
1286 
1287 /*
1288  * Force a signal that the process can't ignore: if necessary
1289  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1290  *
1291  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1292  * since we do not want to have a signal handler that was blocked
1293  * be invoked when user space had explicitly blocked it.
1294  *
1295  * We don't want to have recursive SIGSEGV's etc, for example,
1296  * that is why we also clear SIGNAL_UNKILLABLE.
1297  */
1298 static int
1299 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1300 {
1301 	unsigned long int flags;
1302 	int ret, blocked, ignored;
1303 	struct k_sigaction *action;
1304 	int sig = info->si_signo;
1305 
1306 	spin_lock_irqsave(&t->sighand->siglock, flags);
1307 	action = &t->sighand->action[sig-1];
1308 	ignored = action->sa.sa_handler == SIG_IGN;
1309 	blocked = sigismember(&t->blocked, sig);
1310 	if (blocked || ignored) {
1311 		action->sa.sa_handler = SIG_DFL;
1312 		if (blocked) {
1313 			sigdelset(&t->blocked, sig);
1314 			recalc_sigpending_and_wake(t);
1315 		}
1316 	}
1317 	/*
1318 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1319 	 * debugging to leave init killable.
1320 	 */
1321 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1322 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1323 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1324 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1325 
1326 	return ret;
1327 }
1328 
1329 int force_sig_info(struct kernel_siginfo *info)
1330 {
1331 	return force_sig_info_to_task(info, current);
1332 }
1333 
1334 /*
1335  * Nuke all other threads in the group.
1336  */
1337 int zap_other_threads(struct task_struct *p)
1338 {
1339 	struct task_struct *t = p;
1340 	int count = 0;
1341 
1342 	p->signal->group_stop_count = 0;
1343 
1344 	while_each_thread(p, t) {
1345 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1346 		count++;
1347 
1348 		/* Don't bother with already dead threads */
1349 		if (t->exit_state)
1350 			continue;
1351 		sigaddset(&t->pending.signal, SIGKILL);
1352 		signal_wake_up(t, 1);
1353 	}
1354 
1355 	return count;
1356 }
1357 
1358 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1359 					   unsigned long *flags)
1360 {
1361 	struct sighand_struct *sighand;
1362 
1363 	rcu_read_lock();
1364 	for (;;) {
1365 		sighand = rcu_dereference(tsk->sighand);
1366 		if (unlikely(sighand == NULL))
1367 			break;
1368 
1369 		/*
1370 		 * This sighand can be already freed and even reused, but
1371 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1372 		 * initializes ->siglock: this slab can't go away, it has
1373 		 * the same object type, ->siglock can't be reinitialized.
1374 		 *
1375 		 * We need to ensure that tsk->sighand is still the same
1376 		 * after we take the lock, we can race with de_thread() or
1377 		 * __exit_signal(). In the latter case the next iteration
1378 		 * must see ->sighand == NULL.
1379 		 */
1380 		spin_lock_irqsave(&sighand->siglock, *flags);
1381 		if (likely(sighand == tsk->sighand))
1382 			break;
1383 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1384 	}
1385 	rcu_read_unlock();
1386 
1387 	return sighand;
1388 }
1389 
1390 /*
1391  * send signal info to all the members of a group
1392  */
1393 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1394 			struct task_struct *p, enum pid_type type)
1395 {
1396 	int ret;
1397 
1398 	rcu_read_lock();
1399 	ret = check_kill_permission(sig, info, p);
1400 	rcu_read_unlock();
1401 
1402 	if (!ret && sig)
1403 		ret = do_send_sig_info(sig, info, p, type);
1404 
1405 	return ret;
1406 }
1407 
1408 /*
1409  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1410  * control characters do (^C, ^Z etc)
1411  * - the caller must hold at least a readlock on tasklist_lock
1412  */
1413 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1414 {
1415 	struct task_struct *p = NULL;
1416 	int retval, success;
1417 
1418 	success = 0;
1419 	retval = -ESRCH;
1420 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1421 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1422 		success |= !err;
1423 		retval = err;
1424 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1425 	return success ? 0 : retval;
1426 }
1427 
1428 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1429 {
1430 	int error = -ESRCH;
1431 	struct task_struct *p;
1432 
1433 	for (;;) {
1434 		rcu_read_lock();
1435 		p = pid_task(pid, PIDTYPE_PID);
1436 		if (p)
1437 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1438 		rcu_read_unlock();
1439 		if (likely(!p || error != -ESRCH))
1440 			return error;
1441 
1442 		/*
1443 		 * The task was unhashed in between, try again.  If it
1444 		 * is dead, pid_task() will return NULL, if we race with
1445 		 * de_thread() it will find the new leader.
1446 		 */
1447 	}
1448 }
1449 
1450 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1451 {
1452 	int error;
1453 	rcu_read_lock();
1454 	error = kill_pid_info(sig, info, find_vpid(pid));
1455 	rcu_read_unlock();
1456 	return error;
1457 }
1458 
1459 static inline bool kill_as_cred_perm(const struct cred *cred,
1460 				     struct task_struct *target)
1461 {
1462 	const struct cred *pcred = __task_cred(target);
1463 
1464 	return uid_eq(cred->euid, pcred->suid) ||
1465 	       uid_eq(cred->euid, pcred->uid) ||
1466 	       uid_eq(cred->uid, pcred->suid) ||
1467 	       uid_eq(cred->uid, pcred->uid);
1468 }
1469 
1470 /*
1471  * The usb asyncio usage of siginfo is wrong.  The glibc support
1472  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1473  * AKA after the generic fields:
1474  *	kernel_pid_t	si_pid;
1475  *	kernel_uid32_t	si_uid;
1476  *	sigval_t	si_value;
1477  *
1478  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1479  * after the generic fields is:
1480  *	void __user 	*si_addr;
1481  *
1482  * This is a practical problem when there is a 64bit big endian kernel
1483  * and a 32bit userspace.  As the 32bit address will encoded in the low
1484  * 32bits of the pointer.  Those low 32bits will be stored at higher
1485  * address than appear in a 32 bit pointer.  So userspace will not
1486  * see the address it was expecting for it's completions.
1487  *
1488  * There is nothing in the encoding that can allow
1489  * copy_siginfo_to_user32 to detect this confusion of formats, so
1490  * handle this by requiring the caller of kill_pid_usb_asyncio to
1491  * notice when this situration takes place and to store the 32bit
1492  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1493  * parameter.
1494  */
1495 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1496 			 struct pid *pid, const struct cred *cred)
1497 {
1498 	struct kernel_siginfo info;
1499 	struct task_struct *p;
1500 	unsigned long flags;
1501 	int ret = -EINVAL;
1502 
1503 	clear_siginfo(&info);
1504 	info.si_signo = sig;
1505 	info.si_errno = errno;
1506 	info.si_code = SI_ASYNCIO;
1507 	*((sigval_t *)&info.si_pid) = addr;
1508 
1509 	if (!valid_signal(sig))
1510 		return ret;
1511 
1512 	rcu_read_lock();
1513 	p = pid_task(pid, PIDTYPE_PID);
1514 	if (!p) {
1515 		ret = -ESRCH;
1516 		goto out_unlock;
1517 	}
1518 	if (!kill_as_cred_perm(cred, p)) {
1519 		ret = -EPERM;
1520 		goto out_unlock;
1521 	}
1522 	ret = security_task_kill(p, &info, sig, cred);
1523 	if (ret)
1524 		goto out_unlock;
1525 
1526 	if (sig) {
1527 		if (lock_task_sighand(p, &flags)) {
1528 			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1529 			unlock_task_sighand(p, &flags);
1530 		} else
1531 			ret = -ESRCH;
1532 	}
1533 out_unlock:
1534 	rcu_read_unlock();
1535 	return ret;
1536 }
1537 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1538 
1539 /*
1540  * kill_something_info() interprets pid in interesting ways just like kill(2).
1541  *
1542  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1543  * is probably wrong.  Should make it like BSD or SYSV.
1544  */
1545 
1546 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1547 {
1548 	int ret;
1549 
1550 	if (pid > 0) {
1551 		rcu_read_lock();
1552 		ret = kill_pid_info(sig, info, find_vpid(pid));
1553 		rcu_read_unlock();
1554 		return ret;
1555 	}
1556 
1557 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1558 	if (pid == INT_MIN)
1559 		return -ESRCH;
1560 
1561 	read_lock(&tasklist_lock);
1562 	if (pid != -1) {
1563 		ret = __kill_pgrp_info(sig, info,
1564 				pid ? find_vpid(-pid) : task_pgrp(current));
1565 	} else {
1566 		int retval = 0, count = 0;
1567 		struct task_struct * p;
1568 
1569 		for_each_process(p) {
1570 			if (task_pid_vnr(p) > 1 &&
1571 					!same_thread_group(p, current)) {
1572 				int err = group_send_sig_info(sig, info, p,
1573 							      PIDTYPE_MAX);
1574 				++count;
1575 				if (err != -EPERM)
1576 					retval = err;
1577 			}
1578 		}
1579 		ret = count ? retval : -ESRCH;
1580 	}
1581 	read_unlock(&tasklist_lock);
1582 
1583 	return ret;
1584 }
1585 
1586 /*
1587  * These are for backward compatibility with the rest of the kernel source.
1588  */
1589 
1590 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1591 {
1592 	/*
1593 	 * Make sure legacy kernel users don't send in bad values
1594 	 * (normal paths check this in check_kill_permission).
1595 	 */
1596 	if (!valid_signal(sig))
1597 		return -EINVAL;
1598 
1599 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1600 }
1601 EXPORT_SYMBOL(send_sig_info);
1602 
1603 #define __si_special(priv) \
1604 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1605 
1606 int
1607 send_sig(int sig, struct task_struct *p, int priv)
1608 {
1609 	return send_sig_info(sig, __si_special(priv), p);
1610 }
1611 EXPORT_SYMBOL(send_sig);
1612 
1613 void force_sig(int sig)
1614 {
1615 	struct kernel_siginfo info;
1616 
1617 	clear_siginfo(&info);
1618 	info.si_signo = sig;
1619 	info.si_errno = 0;
1620 	info.si_code = SI_KERNEL;
1621 	info.si_pid = 0;
1622 	info.si_uid = 0;
1623 	force_sig_info(&info);
1624 }
1625 EXPORT_SYMBOL(force_sig);
1626 
1627 /*
1628  * When things go south during signal handling, we
1629  * will force a SIGSEGV. And if the signal that caused
1630  * the problem was already a SIGSEGV, we'll want to
1631  * make sure we don't even try to deliver the signal..
1632  */
1633 void force_sigsegv(int sig)
1634 {
1635 	struct task_struct *p = current;
1636 
1637 	if (sig == SIGSEGV) {
1638 		unsigned long flags;
1639 		spin_lock_irqsave(&p->sighand->siglock, flags);
1640 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1641 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1642 	}
1643 	force_sig(SIGSEGV);
1644 }
1645 
1646 int force_sig_fault_to_task(int sig, int code, void __user *addr
1647 	___ARCH_SI_TRAPNO(int trapno)
1648 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1649 	, struct task_struct *t)
1650 {
1651 	struct kernel_siginfo info;
1652 
1653 	clear_siginfo(&info);
1654 	info.si_signo = sig;
1655 	info.si_errno = 0;
1656 	info.si_code  = code;
1657 	info.si_addr  = addr;
1658 #ifdef __ARCH_SI_TRAPNO
1659 	info.si_trapno = trapno;
1660 #endif
1661 #ifdef __ia64__
1662 	info.si_imm = imm;
1663 	info.si_flags = flags;
1664 	info.si_isr = isr;
1665 #endif
1666 	return force_sig_info_to_task(&info, t);
1667 }
1668 
1669 int force_sig_fault(int sig, int code, void __user *addr
1670 	___ARCH_SI_TRAPNO(int trapno)
1671 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1672 {
1673 	return force_sig_fault_to_task(sig, code, addr
1674 				       ___ARCH_SI_TRAPNO(trapno)
1675 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1676 }
1677 
1678 int send_sig_fault(int sig, int code, void __user *addr
1679 	___ARCH_SI_TRAPNO(int trapno)
1680 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1681 	, struct task_struct *t)
1682 {
1683 	struct kernel_siginfo info;
1684 
1685 	clear_siginfo(&info);
1686 	info.si_signo = sig;
1687 	info.si_errno = 0;
1688 	info.si_code  = code;
1689 	info.si_addr  = addr;
1690 #ifdef __ARCH_SI_TRAPNO
1691 	info.si_trapno = trapno;
1692 #endif
1693 #ifdef __ia64__
1694 	info.si_imm = imm;
1695 	info.si_flags = flags;
1696 	info.si_isr = isr;
1697 #endif
1698 	return send_sig_info(info.si_signo, &info, t);
1699 }
1700 
1701 int force_sig_mceerr(int code, void __user *addr, short lsb)
1702 {
1703 	struct kernel_siginfo info;
1704 
1705 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1706 	clear_siginfo(&info);
1707 	info.si_signo = SIGBUS;
1708 	info.si_errno = 0;
1709 	info.si_code = code;
1710 	info.si_addr = addr;
1711 	info.si_addr_lsb = lsb;
1712 	return force_sig_info(&info);
1713 }
1714 
1715 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1716 {
1717 	struct kernel_siginfo info;
1718 
1719 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1720 	clear_siginfo(&info);
1721 	info.si_signo = SIGBUS;
1722 	info.si_errno = 0;
1723 	info.si_code = code;
1724 	info.si_addr = addr;
1725 	info.si_addr_lsb = lsb;
1726 	return send_sig_info(info.si_signo, &info, t);
1727 }
1728 EXPORT_SYMBOL(send_sig_mceerr);
1729 
1730 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1731 {
1732 	struct kernel_siginfo info;
1733 
1734 	clear_siginfo(&info);
1735 	info.si_signo = SIGSEGV;
1736 	info.si_errno = 0;
1737 	info.si_code  = SEGV_BNDERR;
1738 	info.si_addr  = addr;
1739 	info.si_lower = lower;
1740 	info.si_upper = upper;
1741 	return force_sig_info(&info);
1742 }
1743 
1744 #ifdef SEGV_PKUERR
1745 int force_sig_pkuerr(void __user *addr, u32 pkey)
1746 {
1747 	struct kernel_siginfo info;
1748 
1749 	clear_siginfo(&info);
1750 	info.si_signo = SIGSEGV;
1751 	info.si_errno = 0;
1752 	info.si_code  = SEGV_PKUERR;
1753 	info.si_addr  = addr;
1754 	info.si_pkey  = pkey;
1755 	return force_sig_info(&info);
1756 }
1757 #endif
1758 
1759 /* For the crazy architectures that include trap information in
1760  * the errno field, instead of an actual errno value.
1761  */
1762 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1763 {
1764 	struct kernel_siginfo info;
1765 
1766 	clear_siginfo(&info);
1767 	info.si_signo = SIGTRAP;
1768 	info.si_errno = errno;
1769 	info.si_code  = TRAP_HWBKPT;
1770 	info.si_addr  = addr;
1771 	return force_sig_info(&info);
1772 }
1773 
1774 int kill_pgrp(struct pid *pid, int sig, int priv)
1775 {
1776 	int ret;
1777 
1778 	read_lock(&tasklist_lock);
1779 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1780 	read_unlock(&tasklist_lock);
1781 
1782 	return ret;
1783 }
1784 EXPORT_SYMBOL(kill_pgrp);
1785 
1786 int kill_pid(struct pid *pid, int sig, int priv)
1787 {
1788 	return kill_pid_info(sig, __si_special(priv), pid);
1789 }
1790 EXPORT_SYMBOL(kill_pid);
1791 
1792 /*
1793  * These functions support sending signals using preallocated sigqueue
1794  * structures.  This is needed "because realtime applications cannot
1795  * afford to lose notifications of asynchronous events, like timer
1796  * expirations or I/O completions".  In the case of POSIX Timers
1797  * we allocate the sigqueue structure from the timer_create.  If this
1798  * allocation fails we are able to report the failure to the application
1799  * with an EAGAIN error.
1800  */
1801 struct sigqueue *sigqueue_alloc(void)
1802 {
1803 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1804 
1805 	if (q)
1806 		q->flags |= SIGQUEUE_PREALLOC;
1807 
1808 	return q;
1809 }
1810 
1811 void sigqueue_free(struct sigqueue *q)
1812 {
1813 	unsigned long flags;
1814 	spinlock_t *lock = &current->sighand->siglock;
1815 
1816 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1817 	/*
1818 	 * We must hold ->siglock while testing q->list
1819 	 * to serialize with collect_signal() or with
1820 	 * __exit_signal()->flush_sigqueue().
1821 	 */
1822 	spin_lock_irqsave(lock, flags);
1823 	q->flags &= ~SIGQUEUE_PREALLOC;
1824 	/*
1825 	 * If it is queued it will be freed when dequeued,
1826 	 * like the "regular" sigqueue.
1827 	 */
1828 	if (!list_empty(&q->list))
1829 		q = NULL;
1830 	spin_unlock_irqrestore(lock, flags);
1831 
1832 	if (q)
1833 		__sigqueue_free(q);
1834 }
1835 
1836 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1837 {
1838 	int sig = q->info.si_signo;
1839 	struct sigpending *pending;
1840 	struct task_struct *t;
1841 	unsigned long flags;
1842 	int ret, result;
1843 
1844 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1845 
1846 	ret = -1;
1847 	rcu_read_lock();
1848 	t = pid_task(pid, type);
1849 	if (!t || !likely(lock_task_sighand(t, &flags)))
1850 		goto ret;
1851 
1852 	ret = 1; /* the signal is ignored */
1853 	result = TRACE_SIGNAL_IGNORED;
1854 	if (!prepare_signal(sig, t, false))
1855 		goto out;
1856 
1857 	ret = 0;
1858 	if (unlikely(!list_empty(&q->list))) {
1859 		/*
1860 		 * If an SI_TIMER entry is already queue just increment
1861 		 * the overrun count.
1862 		 */
1863 		BUG_ON(q->info.si_code != SI_TIMER);
1864 		q->info.si_overrun++;
1865 		result = TRACE_SIGNAL_ALREADY_PENDING;
1866 		goto out;
1867 	}
1868 	q->info.si_overrun = 0;
1869 
1870 	signalfd_notify(t, sig);
1871 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1872 	list_add_tail(&q->list, &pending->list);
1873 	sigaddset(&pending->signal, sig);
1874 	complete_signal(sig, t, type);
1875 	result = TRACE_SIGNAL_DELIVERED;
1876 out:
1877 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1878 	unlock_task_sighand(t, &flags);
1879 ret:
1880 	rcu_read_unlock();
1881 	return ret;
1882 }
1883 
1884 static void do_notify_pidfd(struct task_struct *task)
1885 {
1886 	struct pid *pid;
1887 
1888 	pid = task_pid(task);
1889 	wake_up_all(&pid->wait_pidfd);
1890 }
1891 
1892 /*
1893  * Let a parent know about the death of a child.
1894  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1895  *
1896  * Returns true if our parent ignored us and so we've switched to
1897  * self-reaping.
1898  */
1899 bool do_notify_parent(struct task_struct *tsk, int sig)
1900 {
1901 	struct kernel_siginfo info;
1902 	unsigned long flags;
1903 	struct sighand_struct *psig;
1904 	bool autoreap = false;
1905 	u64 utime, stime;
1906 
1907 	BUG_ON(sig == -1);
1908 
1909  	/* do_notify_parent_cldstop should have been called instead.  */
1910  	BUG_ON(task_is_stopped_or_traced(tsk));
1911 
1912 	BUG_ON(!tsk->ptrace &&
1913 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1914 
1915 	/* Wake up all pidfd waiters */
1916 	do_notify_pidfd(tsk);
1917 
1918 	if (sig != SIGCHLD) {
1919 		/*
1920 		 * This is only possible if parent == real_parent.
1921 		 * Check if it has changed security domain.
1922 		 */
1923 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1924 			sig = SIGCHLD;
1925 	}
1926 
1927 	clear_siginfo(&info);
1928 	info.si_signo = sig;
1929 	info.si_errno = 0;
1930 	/*
1931 	 * We are under tasklist_lock here so our parent is tied to
1932 	 * us and cannot change.
1933 	 *
1934 	 * task_active_pid_ns will always return the same pid namespace
1935 	 * until a task passes through release_task.
1936 	 *
1937 	 * write_lock() currently calls preempt_disable() which is the
1938 	 * same as rcu_read_lock(), but according to Oleg, this is not
1939 	 * correct to rely on this
1940 	 */
1941 	rcu_read_lock();
1942 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1943 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1944 				       task_uid(tsk));
1945 	rcu_read_unlock();
1946 
1947 	task_cputime(tsk, &utime, &stime);
1948 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1949 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1950 
1951 	info.si_status = tsk->exit_code & 0x7f;
1952 	if (tsk->exit_code & 0x80)
1953 		info.si_code = CLD_DUMPED;
1954 	else if (tsk->exit_code & 0x7f)
1955 		info.si_code = CLD_KILLED;
1956 	else {
1957 		info.si_code = CLD_EXITED;
1958 		info.si_status = tsk->exit_code >> 8;
1959 	}
1960 
1961 	psig = tsk->parent->sighand;
1962 	spin_lock_irqsave(&psig->siglock, flags);
1963 	if (!tsk->ptrace && sig == SIGCHLD &&
1964 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1965 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1966 		/*
1967 		 * We are exiting and our parent doesn't care.  POSIX.1
1968 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1969 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1970 		 * automatically and not left for our parent's wait4 call.
1971 		 * Rather than having the parent do it as a magic kind of
1972 		 * signal handler, we just set this to tell do_exit that we
1973 		 * can be cleaned up without becoming a zombie.  Note that
1974 		 * we still call __wake_up_parent in this case, because a
1975 		 * blocked sys_wait4 might now return -ECHILD.
1976 		 *
1977 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1978 		 * is implementation-defined: we do (if you don't want
1979 		 * it, just use SIG_IGN instead).
1980 		 */
1981 		autoreap = true;
1982 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1983 			sig = 0;
1984 	}
1985 	if (valid_signal(sig) && sig)
1986 		__group_send_sig_info(sig, &info, tsk->parent);
1987 	__wake_up_parent(tsk, tsk->parent);
1988 	spin_unlock_irqrestore(&psig->siglock, flags);
1989 
1990 	return autoreap;
1991 }
1992 
1993 /**
1994  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1995  * @tsk: task reporting the state change
1996  * @for_ptracer: the notification is for ptracer
1997  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1998  *
1999  * Notify @tsk's parent that the stopped/continued state has changed.  If
2000  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2001  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2002  *
2003  * CONTEXT:
2004  * Must be called with tasklist_lock at least read locked.
2005  */
2006 static void do_notify_parent_cldstop(struct task_struct *tsk,
2007 				     bool for_ptracer, int why)
2008 {
2009 	struct kernel_siginfo info;
2010 	unsigned long flags;
2011 	struct task_struct *parent;
2012 	struct sighand_struct *sighand;
2013 	u64 utime, stime;
2014 
2015 	if (for_ptracer) {
2016 		parent = tsk->parent;
2017 	} else {
2018 		tsk = tsk->group_leader;
2019 		parent = tsk->real_parent;
2020 	}
2021 
2022 	clear_siginfo(&info);
2023 	info.si_signo = SIGCHLD;
2024 	info.si_errno = 0;
2025 	/*
2026 	 * see comment in do_notify_parent() about the following 4 lines
2027 	 */
2028 	rcu_read_lock();
2029 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2030 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2031 	rcu_read_unlock();
2032 
2033 	task_cputime(tsk, &utime, &stime);
2034 	info.si_utime = nsec_to_clock_t(utime);
2035 	info.si_stime = nsec_to_clock_t(stime);
2036 
2037  	info.si_code = why;
2038  	switch (why) {
2039  	case CLD_CONTINUED:
2040  		info.si_status = SIGCONT;
2041  		break;
2042  	case CLD_STOPPED:
2043  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2044  		break;
2045  	case CLD_TRAPPED:
2046  		info.si_status = tsk->exit_code & 0x7f;
2047  		break;
2048  	default:
2049  		BUG();
2050  	}
2051 
2052 	sighand = parent->sighand;
2053 	spin_lock_irqsave(&sighand->siglock, flags);
2054 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2055 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2056 		__group_send_sig_info(SIGCHLD, &info, parent);
2057 	/*
2058 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2059 	 */
2060 	__wake_up_parent(tsk, parent);
2061 	spin_unlock_irqrestore(&sighand->siglock, flags);
2062 }
2063 
2064 static inline bool may_ptrace_stop(void)
2065 {
2066 	if (!likely(current->ptrace))
2067 		return false;
2068 	/*
2069 	 * Are we in the middle of do_coredump?
2070 	 * If so and our tracer is also part of the coredump stopping
2071 	 * is a deadlock situation, and pointless because our tracer
2072 	 * is dead so don't allow us to stop.
2073 	 * If SIGKILL was already sent before the caller unlocked
2074 	 * ->siglock we must see ->core_state != NULL. Otherwise it
2075 	 * is safe to enter schedule().
2076 	 *
2077 	 * This is almost outdated, a task with the pending SIGKILL can't
2078 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2079 	 * after SIGKILL was already dequeued.
2080 	 */
2081 	if (unlikely(current->mm->core_state) &&
2082 	    unlikely(current->mm == current->parent->mm))
2083 		return false;
2084 
2085 	return true;
2086 }
2087 
2088 /*
2089  * Return non-zero if there is a SIGKILL that should be waking us up.
2090  * Called with the siglock held.
2091  */
2092 static bool sigkill_pending(struct task_struct *tsk)
2093 {
2094 	return sigismember(&tsk->pending.signal, SIGKILL) ||
2095 	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2096 }
2097 
2098 /*
2099  * This must be called with current->sighand->siglock held.
2100  *
2101  * This should be the path for all ptrace stops.
2102  * We always set current->last_siginfo while stopped here.
2103  * That makes it a way to test a stopped process for
2104  * being ptrace-stopped vs being job-control-stopped.
2105  *
2106  * If we actually decide not to stop at all because the tracer
2107  * is gone, we keep current->exit_code unless clear_code.
2108  */
2109 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2110 	__releases(&current->sighand->siglock)
2111 	__acquires(&current->sighand->siglock)
2112 {
2113 	bool gstop_done = false;
2114 
2115 	if (arch_ptrace_stop_needed(exit_code, info)) {
2116 		/*
2117 		 * The arch code has something special to do before a
2118 		 * ptrace stop.  This is allowed to block, e.g. for faults
2119 		 * on user stack pages.  We can't keep the siglock while
2120 		 * calling arch_ptrace_stop, so we must release it now.
2121 		 * To preserve proper semantics, we must do this before
2122 		 * any signal bookkeeping like checking group_stop_count.
2123 		 * Meanwhile, a SIGKILL could come in before we retake the
2124 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2125 		 * So after regaining the lock, we must check for SIGKILL.
2126 		 */
2127 		spin_unlock_irq(&current->sighand->siglock);
2128 		arch_ptrace_stop(exit_code, info);
2129 		spin_lock_irq(&current->sighand->siglock);
2130 		if (sigkill_pending(current))
2131 			return;
2132 	}
2133 
2134 	set_special_state(TASK_TRACED);
2135 
2136 	/*
2137 	 * We're committing to trapping.  TRACED should be visible before
2138 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2139 	 * Also, transition to TRACED and updates to ->jobctl should be
2140 	 * atomic with respect to siglock and should be done after the arch
2141 	 * hook as siglock is released and regrabbed across it.
2142 	 *
2143 	 *     TRACER				    TRACEE
2144 	 *
2145 	 *     ptrace_attach()
2146 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2147 	 *     do_wait()
2148 	 *       set_current_state()                smp_wmb();
2149 	 *       ptrace_do_wait()
2150 	 *         wait_task_stopped()
2151 	 *           task_stopped_code()
2152 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2153 	 */
2154 	smp_wmb();
2155 
2156 	current->last_siginfo = info;
2157 	current->exit_code = exit_code;
2158 
2159 	/*
2160 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2161 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2162 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2163 	 * could be clear now.  We act as if SIGCONT is received after
2164 	 * TASK_TRACED is entered - ignore it.
2165 	 */
2166 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2167 		gstop_done = task_participate_group_stop(current);
2168 
2169 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2170 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2171 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2172 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2173 
2174 	/* entering a trap, clear TRAPPING */
2175 	task_clear_jobctl_trapping(current);
2176 
2177 	spin_unlock_irq(&current->sighand->siglock);
2178 	read_lock(&tasklist_lock);
2179 	if (may_ptrace_stop()) {
2180 		/*
2181 		 * Notify parents of the stop.
2182 		 *
2183 		 * While ptraced, there are two parents - the ptracer and
2184 		 * the real_parent of the group_leader.  The ptracer should
2185 		 * know about every stop while the real parent is only
2186 		 * interested in the completion of group stop.  The states
2187 		 * for the two don't interact with each other.  Notify
2188 		 * separately unless they're gonna be duplicates.
2189 		 */
2190 		do_notify_parent_cldstop(current, true, why);
2191 		if (gstop_done && ptrace_reparented(current))
2192 			do_notify_parent_cldstop(current, false, why);
2193 
2194 		/*
2195 		 * Don't want to allow preemption here, because
2196 		 * sys_ptrace() needs this task to be inactive.
2197 		 *
2198 		 * XXX: implement read_unlock_no_resched().
2199 		 */
2200 		preempt_disable();
2201 		read_unlock(&tasklist_lock);
2202 		preempt_enable_no_resched();
2203 		cgroup_enter_frozen();
2204 		freezable_schedule();
2205 		cgroup_leave_frozen(true);
2206 	} else {
2207 		/*
2208 		 * By the time we got the lock, our tracer went away.
2209 		 * Don't drop the lock yet, another tracer may come.
2210 		 *
2211 		 * If @gstop_done, the ptracer went away between group stop
2212 		 * completion and here.  During detach, it would have set
2213 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2214 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2215 		 * the real parent of the group stop completion is enough.
2216 		 */
2217 		if (gstop_done)
2218 			do_notify_parent_cldstop(current, false, why);
2219 
2220 		/* tasklist protects us from ptrace_freeze_traced() */
2221 		__set_current_state(TASK_RUNNING);
2222 		if (clear_code)
2223 			current->exit_code = 0;
2224 		read_unlock(&tasklist_lock);
2225 	}
2226 
2227 	/*
2228 	 * We are back.  Now reacquire the siglock before touching
2229 	 * last_siginfo, so that we are sure to have synchronized with
2230 	 * any signal-sending on another CPU that wants to examine it.
2231 	 */
2232 	spin_lock_irq(&current->sighand->siglock);
2233 	current->last_siginfo = NULL;
2234 
2235 	/* LISTENING can be set only during STOP traps, clear it */
2236 	current->jobctl &= ~JOBCTL_LISTENING;
2237 
2238 	/*
2239 	 * Queued signals ignored us while we were stopped for tracing.
2240 	 * So check for any that we should take before resuming user mode.
2241 	 * This sets TIF_SIGPENDING, but never clears it.
2242 	 */
2243 	recalc_sigpending_tsk(current);
2244 }
2245 
2246 static void ptrace_do_notify(int signr, int exit_code, int why)
2247 {
2248 	kernel_siginfo_t info;
2249 
2250 	clear_siginfo(&info);
2251 	info.si_signo = signr;
2252 	info.si_code = exit_code;
2253 	info.si_pid = task_pid_vnr(current);
2254 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2255 
2256 	/* Let the debugger run.  */
2257 	ptrace_stop(exit_code, why, 1, &info);
2258 }
2259 
2260 void ptrace_notify(int exit_code)
2261 {
2262 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2263 	if (unlikely(current->task_works))
2264 		task_work_run();
2265 
2266 	spin_lock_irq(&current->sighand->siglock);
2267 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2268 	spin_unlock_irq(&current->sighand->siglock);
2269 }
2270 
2271 /**
2272  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2273  * @signr: signr causing group stop if initiating
2274  *
2275  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2276  * and participate in it.  If already set, participate in the existing
2277  * group stop.  If participated in a group stop (and thus slept), %true is
2278  * returned with siglock released.
2279  *
2280  * If ptraced, this function doesn't handle stop itself.  Instead,
2281  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2282  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2283  * places afterwards.
2284  *
2285  * CONTEXT:
2286  * Must be called with @current->sighand->siglock held, which is released
2287  * on %true return.
2288  *
2289  * RETURNS:
2290  * %false if group stop is already cancelled or ptrace trap is scheduled.
2291  * %true if participated in group stop.
2292  */
2293 static bool do_signal_stop(int signr)
2294 	__releases(&current->sighand->siglock)
2295 {
2296 	struct signal_struct *sig = current->signal;
2297 
2298 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2299 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2300 		struct task_struct *t;
2301 
2302 		/* signr will be recorded in task->jobctl for retries */
2303 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2304 
2305 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2306 		    unlikely(signal_group_exit(sig)))
2307 			return false;
2308 		/*
2309 		 * There is no group stop already in progress.  We must
2310 		 * initiate one now.
2311 		 *
2312 		 * While ptraced, a task may be resumed while group stop is
2313 		 * still in effect and then receive a stop signal and
2314 		 * initiate another group stop.  This deviates from the
2315 		 * usual behavior as two consecutive stop signals can't
2316 		 * cause two group stops when !ptraced.  That is why we
2317 		 * also check !task_is_stopped(t) below.
2318 		 *
2319 		 * The condition can be distinguished by testing whether
2320 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2321 		 * group_exit_code in such case.
2322 		 *
2323 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2324 		 * an intervening stop signal is required to cause two
2325 		 * continued events regardless of ptrace.
2326 		 */
2327 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2328 			sig->group_exit_code = signr;
2329 
2330 		sig->group_stop_count = 0;
2331 
2332 		if (task_set_jobctl_pending(current, signr | gstop))
2333 			sig->group_stop_count++;
2334 
2335 		t = current;
2336 		while_each_thread(current, t) {
2337 			/*
2338 			 * Setting state to TASK_STOPPED for a group
2339 			 * stop is always done with the siglock held,
2340 			 * so this check has no races.
2341 			 */
2342 			if (!task_is_stopped(t) &&
2343 			    task_set_jobctl_pending(t, signr | gstop)) {
2344 				sig->group_stop_count++;
2345 				if (likely(!(t->ptrace & PT_SEIZED)))
2346 					signal_wake_up(t, 0);
2347 				else
2348 					ptrace_trap_notify(t);
2349 			}
2350 		}
2351 	}
2352 
2353 	if (likely(!current->ptrace)) {
2354 		int notify = 0;
2355 
2356 		/*
2357 		 * If there are no other threads in the group, or if there
2358 		 * is a group stop in progress and we are the last to stop,
2359 		 * report to the parent.
2360 		 */
2361 		if (task_participate_group_stop(current))
2362 			notify = CLD_STOPPED;
2363 
2364 		set_special_state(TASK_STOPPED);
2365 		spin_unlock_irq(&current->sighand->siglock);
2366 
2367 		/*
2368 		 * Notify the parent of the group stop completion.  Because
2369 		 * we're not holding either the siglock or tasklist_lock
2370 		 * here, ptracer may attach inbetween; however, this is for
2371 		 * group stop and should always be delivered to the real
2372 		 * parent of the group leader.  The new ptracer will get
2373 		 * its notification when this task transitions into
2374 		 * TASK_TRACED.
2375 		 */
2376 		if (notify) {
2377 			read_lock(&tasklist_lock);
2378 			do_notify_parent_cldstop(current, false, notify);
2379 			read_unlock(&tasklist_lock);
2380 		}
2381 
2382 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2383 		cgroup_enter_frozen();
2384 		freezable_schedule();
2385 		return true;
2386 	} else {
2387 		/*
2388 		 * While ptraced, group stop is handled by STOP trap.
2389 		 * Schedule it and let the caller deal with it.
2390 		 */
2391 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2392 		return false;
2393 	}
2394 }
2395 
2396 /**
2397  * do_jobctl_trap - take care of ptrace jobctl traps
2398  *
2399  * When PT_SEIZED, it's used for both group stop and explicit
2400  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2401  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2402  * the stop signal; otherwise, %SIGTRAP.
2403  *
2404  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2405  * number as exit_code and no siginfo.
2406  *
2407  * CONTEXT:
2408  * Must be called with @current->sighand->siglock held, which may be
2409  * released and re-acquired before returning with intervening sleep.
2410  */
2411 static void do_jobctl_trap(void)
2412 {
2413 	struct signal_struct *signal = current->signal;
2414 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2415 
2416 	if (current->ptrace & PT_SEIZED) {
2417 		if (!signal->group_stop_count &&
2418 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2419 			signr = SIGTRAP;
2420 		WARN_ON_ONCE(!signr);
2421 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2422 				 CLD_STOPPED);
2423 	} else {
2424 		WARN_ON_ONCE(!signr);
2425 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2426 		current->exit_code = 0;
2427 	}
2428 }
2429 
2430 /**
2431  * do_freezer_trap - handle the freezer jobctl trap
2432  *
2433  * Puts the task into frozen state, if only the task is not about to quit.
2434  * In this case it drops JOBCTL_TRAP_FREEZE.
2435  *
2436  * CONTEXT:
2437  * Must be called with @current->sighand->siglock held,
2438  * which is always released before returning.
2439  */
2440 static void do_freezer_trap(void)
2441 	__releases(&current->sighand->siglock)
2442 {
2443 	/*
2444 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2445 	 * let's make another loop to give it a chance to be handled.
2446 	 * In any case, we'll return back.
2447 	 */
2448 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2449 	     JOBCTL_TRAP_FREEZE) {
2450 		spin_unlock_irq(&current->sighand->siglock);
2451 		return;
2452 	}
2453 
2454 	/*
2455 	 * Now we're sure that there is no pending fatal signal and no
2456 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2457 	 * immediately (if there is a non-fatal signal pending), and
2458 	 * put the task into sleep.
2459 	 */
2460 	__set_current_state(TASK_INTERRUPTIBLE);
2461 	clear_thread_flag(TIF_SIGPENDING);
2462 	spin_unlock_irq(&current->sighand->siglock);
2463 	cgroup_enter_frozen();
2464 	freezable_schedule();
2465 }
2466 
2467 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2468 {
2469 	/*
2470 	 * We do not check sig_kernel_stop(signr) but set this marker
2471 	 * unconditionally because we do not know whether debugger will
2472 	 * change signr. This flag has no meaning unless we are going
2473 	 * to stop after return from ptrace_stop(). In this case it will
2474 	 * be checked in do_signal_stop(), we should only stop if it was
2475 	 * not cleared by SIGCONT while we were sleeping. See also the
2476 	 * comment in dequeue_signal().
2477 	 */
2478 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2479 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2480 
2481 	/* We're back.  Did the debugger cancel the sig?  */
2482 	signr = current->exit_code;
2483 	if (signr == 0)
2484 		return signr;
2485 
2486 	current->exit_code = 0;
2487 
2488 	/*
2489 	 * Update the siginfo structure if the signal has
2490 	 * changed.  If the debugger wanted something
2491 	 * specific in the siginfo structure then it should
2492 	 * have updated *info via PTRACE_SETSIGINFO.
2493 	 */
2494 	if (signr != info->si_signo) {
2495 		clear_siginfo(info);
2496 		info->si_signo = signr;
2497 		info->si_errno = 0;
2498 		info->si_code = SI_USER;
2499 		rcu_read_lock();
2500 		info->si_pid = task_pid_vnr(current->parent);
2501 		info->si_uid = from_kuid_munged(current_user_ns(),
2502 						task_uid(current->parent));
2503 		rcu_read_unlock();
2504 	}
2505 
2506 	/* If the (new) signal is now blocked, requeue it.  */
2507 	if (sigismember(&current->blocked, signr)) {
2508 		send_signal(signr, info, current, PIDTYPE_PID);
2509 		signr = 0;
2510 	}
2511 
2512 	return signr;
2513 }
2514 
2515 bool get_signal(struct ksignal *ksig)
2516 {
2517 	struct sighand_struct *sighand = current->sighand;
2518 	struct signal_struct *signal = current->signal;
2519 	int signr;
2520 
2521 	if (unlikely(current->task_works))
2522 		task_work_run();
2523 
2524 	if (unlikely(uprobe_deny_signal()))
2525 		return false;
2526 
2527 	/*
2528 	 * Do this once, we can't return to user-mode if freezing() == T.
2529 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2530 	 * thus do not need another check after return.
2531 	 */
2532 	try_to_freeze();
2533 
2534 relock:
2535 	spin_lock_irq(&sighand->siglock);
2536 	/*
2537 	 * Every stopped thread goes here after wakeup. Check to see if
2538 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2539 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2540 	 */
2541 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2542 		int why;
2543 
2544 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2545 			why = CLD_CONTINUED;
2546 		else
2547 			why = CLD_STOPPED;
2548 
2549 		signal->flags &= ~SIGNAL_CLD_MASK;
2550 
2551 		spin_unlock_irq(&sighand->siglock);
2552 
2553 		/*
2554 		 * Notify the parent that we're continuing.  This event is
2555 		 * always per-process and doesn't make whole lot of sense
2556 		 * for ptracers, who shouldn't consume the state via
2557 		 * wait(2) either, but, for backward compatibility, notify
2558 		 * the ptracer of the group leader too unless it's gonna be
2559 		 * a duplicate.
2560 		 */
2561 		read_lock(&tasklist_lock);
2562 		do_notify_parent_cldstop(current, false, why);
2563 
2564 		if (ptrace_reparented(current->group_leader))
2565 			do_notify_parent_cldstop(current->group_leader,
2566 						true, why);
2567 		read_unlock(&tasklist_lock);
2568 
2569 		goto relock;
2570 	}
2571 
2572 	/* Has this task already been marked for death? */
2573 	if (signal_group_exit(signal)) {
2574 		ksig->info.si_signo = signr = SIGKILL;
2575 		sigdelset(&current->pending.signal, SIGKILL);
2576 		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2577 				&sighand->action[SIGKILL - 1]);
2578 		recalc_sigpending();
2579 		goto fatal;
2580 	}
2581 
2582 	for (;;) {
2583 		struct k_sigaction *ka;
2584 
2585 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2586 		    do_signal_stop(0))
2587 			goto relock;
2588 
2589 		if (unlikely(current->jobctl &
2590 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2591 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2592 				do_jobctl_trap();
2593 				spin_unlock_irq(&sighand->siglock);
2594 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2595 				do_freezer_trap();
2596 
2597 			goto relock;
2598 		}
2599 
2600 		/*
2601 		 * If the task is leaving the frozen state, let's update
2602 		 * cgroup counters and reset the frozen bit.
2603 		 */
2604 		if (unlikely(cgroup_task_frozen(current))) {
2605 			spin_unlock_irq(&sighand->siglock);
2606 			cgroup_leave_frozen(false);
2607 			goto relock;
2608 		}
2609 
2610 		/*
2611 		 * Signals generated by the execution of an instruction
2612 		 * need to be delivered before any other pending signals
2613 		 * so that the instruction pointer in the signal stack
2614 		 * frame points to the faulting instruction.
2615 		 */
2616 		signr = dequeue_synchronous_signal(&ksig->info);
2617 		if (!signr)
2618 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2619 
2620 		if (!signr)
2621 			break; /* will return 0 */
2622 
2623 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2624 			signr = ptrace_signal(signr, &ksig->info);
2625 			if (!signr)
2626 				continue;
2627 		}
2628 
2629 		ka = &sighand->action[signr-1];
2630 
2631 		/* Trace actually delivered signals. */
2632 		trace_signal_deliver(signr, &ksig->info, ka);
2633 
2634 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2635 			continue;
2636 		if (ka->sa.sa_handler != SIG_DFL) {
2637 			/* Run the handler.  */
2638 			ksig->ka = *ka;
2639 
2640 			if (ka->sa.sa_flags & SA_ONESHOT)
2641 				ka->sa.sa_handler = SIG_DFL;
2642 
2643 			break; /* will return non-zero "signr" value */
2644 		}
2645 
2646 		/*
2647 		 * Now we are doing the default action for this signal.
2648 		 */
2649 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2650 			continue;
2651 
2652 		/*
2653 		 * Global init gets no signals it doesn't want.
2654 		 * Container-init gets no signals it doesn't want from same
2655 		 * container.
2656 		 *
2657 		 * Note that if global/container-init sees a sig_kernel_only()
2658 		 * signal here, the signal must have been generated internally
2659 		 * or must have come from an ancestor namespace. In either
2660 		 * case, the signal cannot be dropped.
2661 		 */
2662 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2663 				!sig_kernel_only(signr))
2664 			continue;
2665 
2666 		if (sig_kernel_stop(signr)) {
2667 			/*
2668 			 * The default action is to stop all threads in
2669 			 * the thread group.  The job control signals
2670 			 * do nothing in an orphaned pgrp, but SIGSTOP
2671 			 * always works.  Note that siglock needs to be
2672 			 * dropped during the call to is_orphaned_pgrp()
2673 			 * because of lock ordering with tasklist_lock.
2674 			 * This allows an intervening SIGCONT to be posted.
2675 			 * We need to check for that and bail out if necessary.
2676 			 */
2677 			if (signr != SIGSTOP) {
2678 				spin_unlock_irq(&sighand->siglock);
2679 
2680 				/* signals can be posted during this window */
2681 
2682 				if (is_current_pgrp_orphaned())
2683 					goto relock;
2684 
2685 				spin_lock_irq(&sighand->siglock);
2686 			}
2687 
2688 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2689 				/* It released the siglock.  */
2690 				goto relock;
2691 			}
2692 
2693 			/*
2694 			 * We didn't actually stop, due to a race
2695 			 * with SIGCONT or something like that.
2696 			 */
2697 			continue;
2698 		}
2699 
2700 	fatal:
2701 		spin_unlock_irq(&sighand->siglock);
2702 		if (unlikely(cgroup_task_frozen(current)))
2703 			cgroup_leave_frozen(true);
2704 
2705 		/*
2706 		 * Anything else is fatal, maybe with a core dump.
2707 		 */
2708 		current->flags |= PF_SIGNALED;
2709 
2710 		if (sig_kernel_coredump(signr)) {
2711 			if (print_fatal_signals)
2712 				print_fatal_signal(ksig->info.si_signo);
2713 			proc_coredump_connector(current);
2714 			/*
2715 			 * If it was able to dump core, this kills all
2716 			 * other threads in the group and synchronizes with
2717 			 * their demise.  If we lost the race with another
2718 			 * thread getting here, it set group_exit_code
2719 			 * first and our do_group_exit call below will use
2720 			 * that value and ignore the one we pass it.
2721 			 */
2722 			do_coredump(&ksig->info);
2723 		}
2724 
2725 		/*
2726 		 * Death signals, no core dump.
2727 		 */
2728 		do_group_exit(ksig->info.si_signo);
2729 		/* NOTREACHED */
2730 	}
2731 	spin_unlock_irq(&sighand->siglock);
2732 
2733 	ksig->sig = signr;
2734 	return ksig->sig > 0;
2735 }
2736 
2737 /**
2738  * signal_delivered -
2739  * @ksig:		kernel signal struct
2740  * @stepping:		nonzero if debugger single-step or block-step in use
2741  *
2742  * This function should be called when a signal has successfully been
2743  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2744  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2745  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2746  */
2747 static void signal_delivered(struct ksignal *ksig, int stepping)
2748 {
2749 	sigset_t blocked;
2750 
2751 	/* A signal was successfully delivered, and the
2752 	   saved sigmask was stored on the signal frame,
2753 	   and will be restored by sigreturn.  So we can
2754 	   simply clear the restore sigmask flag.  */
2755 	clear_restore_sigmask();
2756 
2757 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2758 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2759 		sigaddset(&blocked, ksig->sig);
2760 	set_current_blocked(&blocked);
2761 	tracehook_signal_handler(stepping);
2762 }
2763 
2764 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2765 {
2766 	if (failed)
2767 		force_sigsegv(ksig->sig);
2768 	else
2769 		signal_delivered(ksig, stepping);
2770 }
2771 
2772 /*
2773  * It could be that complete_signal() picked us to notify about the
2774  * group-wide signal. Other threads should be notified now to take
2775  * the shared signals in @which since we will not.
2776  */
2777 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2778 {
2779 	sigset_t retarget;
2780 	struct task_struct *t;
2781 
2782 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2783 	if (sigisemptyset(&retarget))
2784 		return;
2785 
2786 	t = tsk;
2787 	while_each_thread(tsk, t) {
2788 		if (t->flags & PF_EXITING)
2789 			continue;
2790 
2791 		if (!has_pending_signals(&retarget, &t->blocked))
2792 			continue;
2793 		/* Remove the signals this thread can handle. */
2794 		sigandsets(&retarget, &retarget, &t->blocked);
2795 
2796 		if (!signal_pending(t))
2797 			signal_wake_up(t, 0);
2798 
2799 		if (sigisemptyset(&retarget))
2800 			break;
2801 	}
2802 }
2803 
2804 void exit_signals(struct task_struct *tsk)
2805 {
2806 	int group_stop = 0;
2807 	sigset_t unblocked;
2808 
2809 	/*
2810 	 * @tsk is about to have PF_EXITING set - lock out users which
2811 	 * expect stable threadgroup.
2812 	 */
2813 	cgroup_threadgroup_change_begin(tsk);
2814 
2815 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2816 		tsk->flags |= PF_EXITING;
2817 		cgroup_threadgroup_change_end(tsk);
2818 		return;
2819 	}
2820 
2821 	spin_lock_irq(&tsk->sighand->siglock);
2822 	/*
2823 	 * From now this task is not visible for group-wide signals,
2824 	 * see wants_signal(), do_signal_stop().
2825 	 */
2826 	tsk->flags |= PF_EXITING;
2827 
2828 	cgroup_threadgroup_change_end(tsk);
2829 
2830 	if (!signal_pending(tsk))
2831 		goto out;
2832 
2833 	unblocked = tsk->blocked;
2834 	signotset(&unblocked);
2835 	retarget_shared_pending(tsk, &unblocked);
2836 
2837 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2838 	    task_participate_group_stop(tsk))
2839 		group_stop = CLD_STOPPED;
2840 out:
2841 	spin_unlock_irq(&tsk->sighand->siglock);
2842 
2843 	/*
2844 	 * If group stop has completed, deliver the notification.  This
2845 	 * should always go to the real parent of the group leader.
2846 	 */
2847 	if (unlikely(group_stop)) {
2848 		read_lock(&tasklist_lock);
2849 		do_notify_parent_cldstop(tsk, false, group_stop);
2850 		read_unlock(&tasklist_lock);
2851 	}
2852 }
2853 
2854 /*
2855  * System call entry points.
2856  */
2857 
2858 /**
2859  *  sys_restart_syscall - restart a system call
2860  */
2861 SYSCALL_DEFINE0(restart_syscall)
2862 {
2863 	struct restart_block *restart = &current->restart_block;
2864 	return restart->fn(restart);
2865 }
2866 
2867 long do_no_restart_syscall(struct restart_block *param)
2868 {
2869 	return -EINTR;
2870 }
2871 
2872 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2873 {
2874 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2875 		sigset_t newblocked;
2876 		/* A set of now blocked but previously unblocked signals. */
2877 		sigandnsets(&newblocked, newset, &current->blocked);
2878 		retarget_shared_pending(tsk, &newblocked);
2879 	}
2880 	tsk->blocked = *newset;
2881 	recalc_sigpending();
2882 }
2883 
2884 /**
2885  * set_current_blocked - change current->blocked mask
2886  * @newset: new mask
2887  *
2888  * It is wrong to change ->blocked directly, this helper should be used
2889  * to ensure the process can't miss a shared signal we are going to block.
2890  */
2891 void set_current_blocked(sigset_t *newset)
2892 {
2893 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2894 	__set_current_blocked(newset);
2895 }
2896 
2897 void __set_current_blocked(const sigset_t *newset)
2898 {
2899 	struct task_struct *tsk = current;
2900 
2901 	/*
2902 	 * In case the signal mask hasn't changed, there is nothing we need
2903 	 * to do. The current->blocked shouldn't be modified by other task.
2904 	 */
2905 	if (sigequalsets(&tsk->blocked, newset))
2906 		return;
2907 
2908 	spin_lock_irq(&tsk->sighand->siglock);
2909 	__set_task_blocked(tsk, newset);
2910 	spin_unlock_irq(&tsk->sighand->siglock);
2911 }
2912 
2913 /*
2914  * This is also useful for kernel threads that want to temporarily
2915  * (or permanently) block certain signals.
2916  *
2917  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2918  * interface happily blocks "unblockable" signals like SIGKILL
2919  * and friends.
2920  */
2921 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2922 {
2923 	struct task_struct *tsk = current;
2924 	sigset_t newset;
2925 
2926 	/* Lockless, only current can change ->blocked, never from irq */
2927 	if (oldset)
2928 		*oldset = tsk->blocked;
2929 
2930 	switch (how) {
2931 	case SIG_BLOCK:
2932 		sigorsets(&newset, &tsk->blocked, set);
2933 		break;
2934 	case SIG_UNBLOCK:
2935 		sigandnsets(&newset, &tsk->blocked, set);
2936 		break;
2937 	case SIG_SETMASK:
2938 		newset = *set;
2939 		break;
2940 	default:
2941 		return -EINVAL;
2942 	}
2943 
2944 	__set_current_blocked(&newset);
2945 	return 0;
2946 }
2947 EXPORT_SYMBOL(sigprocmask);
2948 
2949 /*
2950  * The api helps set app-provided sigmasks.
2951  *
2952  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2953  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2954  *
2955  * Note that it does set_restore_sigmask() in advance, so it must be always
2956  * paired with restore_saved_sigmask_unless() before return from syscall.
2957  */
2958 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2959 {
2960 	sigset_t kmask;
2961 
2962 	if (!umask)
2963 		return 0;
2964 	if (sigsetsize != sizeof(sigset_t))
2965 		return -EINVAL;
2966 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2967 		return -EFAULT;
2968 
2969 	set_restore_sigmask();
2970 	current->saved_sigmask = current->blocked;
2971 	set_current_blocked(&kmask);
2972 
2973 	return 0;
2974 }
2975 
2976 #ifdef CONFIG_COMPAT
2977 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
2978 			    size_t sigsetsize)
2979 {
2980 	sigset_t kmask;
2981 
2982 	if (!umask)
2983 		return 0;
2984 	if (sigsetsize != sizeof(compat_sigset_t))
2985 		return -EINVAL;
2986 	if (get_compat_sigset(&kmask, umask))
2987 		return -EFAULT;
2988 
2989 	set_restore_sigmask();
2990 	current->saved_sigmask = current->blocked;
2991 	set_current_blocked(&kmask);
2992 
2993 	return 0;
2994 }
2995 #endif
2996 
2997 /**
2998  *  sys_rt_sigprocmask - change the list of currently blocked signals
2999  *  @how: whether to add, remove, or set signals
3000  *  @nset: stores pending signals
3001  *  @oset: previous value of signal mask if non-null
3002  *  @sigsetsize: size of sigset_t type
3003  */
3004 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3005 		sigset_t __user *, oset, size_t, sigsetsize)
3006 {
3007 	sigset_t old_set, new_set;
3008 	int error;
3009 
3010 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3011 	if (sigsetsize != sizeof(sigset_t))
3012 		return -EINVAL;
3013 
3014 	old_set = current->blocked;
3015 
3016 	if (nset) {
3017 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3018 			return -EFAULT;
3019 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3020 
3021 		error = sigprocmask(how, &new_set, NULL);
3022 		if (error)
3023 			return error;
3024 	}
3025 
3026 	if (oset) {
3027 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3028 			return -EFAULT;
3029 	}
3030 
3031 	return 0;
3032 }
3033 
3034 #ifdef CONFIG_COMPAT
3035 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3036 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3037 {
3038 	sigset_t old_set = current->blocked;
3039 
3040 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3041 	if (sigsetsize != sizeof(sigset_t))
3042 		return -EINVAL;
3043 
3044 	if (nset) {
3045 		sigset_t new_set;
3046 		int error;
3047 		if (get_compat_sigset(&new_set, nset))
3048 			return -EFAULT;
3049 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3050 
3051 		error = sigprocmask(how, &new_set, NULL);
3052 		if (error)
3053 			return error;
3054 	}
3055 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3056 }
3057 #endif
3058 
3059 static void do_sigpending(sigset_t *set)
3060 {
3061 	spin_lock_irq(&current->sighand->siglock);
3062 	sigorsets(set, &current->pending.signal,
3063 		  &current->signal->shared_pending.signal);
3064 	spin_unlock_irq(&current->sighand->siglock);
3065 
3066 	/* Outside the lock because only this thread touches it.  */
3067 	sigandsets(set, &current->blocked, set);
3068 }
3069 
3070 /**
3071  *  sys_rt_sigpending - examine a pending signal that has been raised
3072  *			while blocked
3073  *  @uset: stores pending signals
3074  *  @sigsetsize: size of sigset_t type or larger
3075  */
3076 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3077 {
3078 	sigset_t set;
3079 
3080 	if (sigsetsize > sizeof(*uset))
3081 		return -EINVAL;
3082 
3083 	do_sigpending(&set);
3084 
3085 	if (copy_to_user(uset, &set, sigsetsize))
3086 		return -EFAULT;
3087 
3088 	return 0;
3089 }
3090 
3091 #ifdef CONFIG_COMPAT
3092 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3093 		compat_size_t, sigsetsize)
3094 {
3095 	sigset_t set;
3096 
3097 	if (sigsetsize > sizeof(*uset))
3098 		return -EINVAL;
3099 
3100 	do_sigpending(&set);
3101 
3102 	return put_compat_sigset(uset, &set, sigsetsize);
3103 }
3104 #endif
3105 
3106 static const struct {
3107 	unsigned char limit, layout;
3108 } sig_sicodes[] = {
3109 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3110 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3111 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3112 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3113 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3114 #if defined(SIGEMT)
3115 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3116 #endif
3117 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3118 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3119 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3120 };
3121 
3122 static bool known_siginfo_layout(unsigned sig, int si_code)
3123 {
3124 	if (si_code == SI_KERNEL)
3125 		return true;
3126 	else if ((si_code > SI_USER)) {
3127 		if (sig_specific_sicodes(sig)) {
3128 			if (si_code <= sig_sicodes[sig].limit)
3129 				return true;
3130 		}
3131 		else if (si_code <= NSIGPOLL)
3132 			return true;
3133 	}
3134 	else if (si_code >= SI_DETHREAD)
3135 		return true;
3136 	else if (si_code == SI_ASYNCNL)
3137 		return true;
3138 	return false;
3139 }
3140 
3141 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3142 {
3143 	enum siginfo_layout layout = SIL_KILL;
3144 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3145 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3146 		    (si_code <= sig_sicodes[sig].limit)) {
3147 			layout = sig_sicodes[sig].layout;
3148 			/* Handle the exceptions */
3149 			if ((sig == SIGBUS) &&
3150 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3151 				layout = SIL_FAULT_MCEERR;
3152 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3153 				layout = SIL_FAULT_BNDERR;
3154 #ifdef SEGV_PKUERR
3155 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3156 				layout = SIL_FAULT_PKUERR;
3157 #endif
3158 		}
3159 		else if (si_code <= NSIGPOLL)
3160 			layout = SIL_POLL;
3161 	} else {
3162 		if (si_code == SI_TIMER)
3163 			layout = SIL_TIMER;
3164 		else if (si_code == SI_SIGIO)
3165 			layout = SIL_POLL;
3166 		else if (si_code < 0)
3167 			layout = SIL_RT;
3168 	}
3169 	return layout;
3170 }
3171 
3172 static inline char __user *si_expansion(const siginfo_t __user *info)
3173 {
3174 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3175 }
3176 
3177 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3178 {
3179 	char __user *expansion = si_expansion(to);
3180 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3181 		return -EFAULT;
3182 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3183 		return -EFAULT;
3184 	return 0;
3185 }
3186 
3187 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3188 				       const siginfo_t __user *from)
3189 {
3190 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3191 		char __user *expansion = si_expansion(from);
3192 		char buf[SI_EXPANSION_SIZE];
3193 		int i;
3194 		/*
3195 		 * An unknown si_code might need more than
3196 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3197 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3198 		 * will return this data to userspace exactly.
3199 		 */
3200 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3201 			return -EFAULT;
3202 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3203 			if (buf[i] != 0)
3204 				return -E2BIG;
3205 		}
3206 	}
3207 	return 0;
3208 }
3209 
3210 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3211 				    const siginfo_t __user *from)
3212 {
3213 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3214 		return -EFAULT;
3215 	to->si_signo = signo;
3216 	return post_copy_siginfo_from_user(to, from);
3217 }
3218 
3219 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3220 {
3221 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3222 		return -EFAULT;
3223 	return post_copy_siginfo_from_user(to, from);
3224 }
3225 
3226 #ifdef CONFIG_COMPAT
3227 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3228 			   const struct kernel_siginfo *from)
3229 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3230 {
3231 	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3232 }
3233 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3234 			     const struct kernel_siginfo *from, bool x32_ABI)
3235 #endif
3236 {
3237 	struct compat_siginfo new;
3238 	memset(&new, 0, sizeof(new));
3239 
3240 	new.si_signo = from->si_signo;
3241 	new.si_errno = from->si_errno;
3242 	new.si_code  = from->si_code;
3243 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3244 	case SIL_KILL:
3245 		new.si_pid = from->si_pid;
3246 		new.si_uid = from->si_uid;
3247 		break;
3248 	case SIL_TIMER:
3249 		new.si_tid     = from->si_tid;
3250 		new.si_overrun = from->si_overrun;
3251 		new.si_int     = from->si_int;
3252 		break;
3253 	case SIL_POLL:
3254 		new.si_band = from->si_band;
3255 		new.si_fd   = from->si_fd;
3256 		break;
3257 	case SIL_FAULT:
3258 		new.si_addr = ptr_to_compat(from->si_addr);
3259 #ifdef __ARCH_SI_TRAPNO
3260 		new.si_trapno = from->si_trapno;
3261 #endif
3262 		break;
3263 	case SIL_FAULT_MCEERR:
3264 		new.si_addr = ptr_to_compat(from->si_addr);
3265 #ifdef __ARCH_SI_TRAPNO
3266 		new.si_trapno = from->si_trapno;
3267 #endif
3268 		new.si_addr_lsb = from->si_addr_lsb;
3269 		break;
3270 	case SIL_FAULT_BNDERR:
3271 		new.si_addr = ptr_to_compat(from->si_addr);
3272 #ifdef __ARCH_SI_TRAPNO
3273 		new.si_trapno = from->si_trapno;
3274 #endif
3275 		new.si_lower = ptr_to_compat(from->si_lower);
3276 		new.si_upper = ptr_to_compat(from->si_upper);
3277 		break;
3278 	case SIL_FAULT_PKUERR:
3279 		new.si_addr = ptr_to_compat(from->si_addr);
3280 #ifdef __ARCH_SI_TRAPNO
3281 		new.si_trapno = from->si_trapno;
3282 #endif
3283 		new.si_pkey = from->si_pkey;
3284 		break;
3285 	case SIL_CHLD:
3286 		new.si_pid    = from->si_pid;
3287 		new.si_uid    = from->si_uid;
3288 		new.si_status = from->si_status;
3289 #ifdef CONFIG_X86_X32_ABI
3290 		if (x32_ABI) {
3291 			new._sifields._sigchld_x32._utime = from->si_utime;
3292 			new._sifields._sigchld_x32._stime = from->si_stime;
3293 		} else
3294 #endif
3295 		{
3296 			new.si_utime = from->si_utime;
3297 			new.si_stime = from->si_stime;
3298 		}
3299 		break;
3300 	case SIL_RT:
3301 		new.si_pid = from->si_pid;
3302 		new.si_uid = from->si_uid;
3303 		new.si_int = from->si_int;
3304 		break;
3305 	case SIL_SYS:
3306 		new.si_call_addr = ptr_to_compat(from->si_call_addr);
3307 		new.si_syscall   = from->si_syscall;
3308 		new.si_arch      = from->si_arch;
3309 		break;
3310 	}
3311 
3312 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3313 		return -EFAULT;
3314 
3315 	return 0;
3316 }
3317 
3318 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3319 					 const struct compat_siginfo *from)
3320 {
3321 	clear_siginfo(to);
3322 	to->si_signo = from->si_signo;
3323 	to->si_errno = from->si_errno;
3324 	to->si_code  = from->si_code;
3325 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3326 	case SIL_KILL:
3327 		to->si_pid = from->si_pid;
3328 		to->si_uid = from->si_uid;
3329 		break;
3330 	case SIL_TIMER:
3331 		to->si_tid     = from->si_tid;
3332 		to->si_overrun = from->si_overrun;
3333 		to->si_int     = from->si_int;
3334 		break;
3335 	case SIL_POLL:
3336 		to->si_band = from->si_band;
3337 		to->si_fd   = from->si_fd;
3338 		break;
3339 	case SIL_FAULT:
3340 		to->si_addr = compat_ptr(from->si_addr);
3341 #ifdef __ARCH_SI_TRAPNO
3342 		to->si_trapno = from->si_trapno;
3343 #endif
3344 		break;
3345 	case SIL_FAULT_MCEERR:
3346 		to->si_addr = compat_ptr(from->si_addr);
3347 #ifdef __ARCH_SI_TRAPNO
3348 		to->si_trapno = from->si_trapno;
3349 #endif
3350 		to->si_addr_lsb = from->si_addr_lsb;
3351 		break;
3352 	case SIL_FAULT_BNDERR:
3353 		to->si_addr = compat_ptr(from->si_addr);
3354 #ifdef __ARCH_SI_TRAPNO
3355 		to->si_trapno = from->si_trapno;
3356 #endif
3357 		to->si_lower = compat_ptr(from->si_lower);
3358 		to->si_upper = compat_ptr(from->si_upper);
3359 		break;
3360 	case SIL_FAULT_PKUERR:
3361 		to->si_addr = compat_ptr(from->si_addr);
3362 #ifdef __ARCH_SI_TRAPNO
3363 		to->si_trapno = from->si_trapno;
3364 #endif
3365 		to->si_pkey = from->si_pkey;
3366 		break;
3367 	case SIL_CHLD:
3368 		to->si_pid    = from->si_pid;
3369 		to->si_uid    = from->si_uid;
3370 		to->si_status = from->si_status;
3371 #ifdef CONFIG_X86_X32_ABI
3372 		if (in_x32_syscall()) {
3373 			to->si_utime = from->_sifields._sigchld_x32._utime;
3374 			to->si_stime = from->_sifields._sigchld_x32._stime;
3375 		} else
3376 #endif
3377 		{
3378 			to->si_utime = from->si_utime;
3379 			to->si_stime = from->si_stime;
3380 		}
3381 		break;
3382 	case SIL_RT:
3383 		to->si_pid = from->si_pid;
3384 		to->si_uid = from->si_uid;
3385 		to->si_int = from->si_int;
3386 		break;
3387 	case SIL_SYS:
3388 		to->si_call_addr = compat_ptr(from->si_call_addr);
3389 		to->si_syscall   = from->si_syscall;
3390 		to->si_arch      = from->si_arch;
3391 		break;
3392 	}
3393 	return 0;
3394 }
3395 
3396 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3397 				      const struct compat_siginfo __user *ufrom)
3398 {
3399 	struct compat_siginfo from;
3400 
3401 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3402 		return -EFAULT;
3403 
3404 	from.si_signo = signo;
3405 	return post_copy_siginfo_from_user32(to, &from);
3406 }
3407 
3408 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3409 			     const struct compat_siginfo __user *ufrom)
3410 {
3411 	struct compat_siginfo from;
3412 
3413 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3414 		return -EFAULT;
3415 
3416 	return post_copy_siginfo_from_user32(to, &from);
3417 }
3418 #endif /* CONFIG_COMPAT */
3419 
3420 /**
3421  *  do_sigtimedwait - wait for queued signals specified in @which
3422  *  @which: queued signals to wait for
3423  *  @info: if non-null, the signal's siginfo is returned here
3424  *  @ts: upper bound on process time suspension
3425  */
3426 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3427 		    const struct timespec64 *ts)
3428 {
3429 	ktime_t *to = NULL, timeout = KTIME_MAX;
3430 	struct task_struct *tsk = current;
3431 	sigset_t mask = *which;
3432 	int sig, ret = 0;
3433 
3434 	if (ts) {
3435 		if (!timespec64_valid(ts))
3436 			return -EINVAL;
3437 		timeout = timespec64_to_ktime(*ts);
3438 		to = &timeout;
3439 	}
3440 
3441 	/*
3442 	 * Invert the set of allowed signals to get those we want to block.
3443 	 */
3444 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3445 	signotset(&mask);
3446 
3447 	spin_lock_irq(&tsk->sighand->siglock);
3448 	sig = dequeue_signal(tsk, &mask, info);
3449 	if (!sig && timeout) {
3450 		/*
3451 		 * None ready, temporarily unblock those we're interested
3452 		 * while we are sleeping in so that we'll be awakened when
3453 		 * they arrive. Unblocking is always fine, we can avoid
3454 		 * set_current_blocked().
3455 		 */
3456 		tsk->real_blocked = tsk->blocked;
3457 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3458 		recalc_sigpending();
3459 		spin_unlock_irq(&tsk->sighand->siglock);
3460 
3461 		__set_current_state(TASK_INTERRUPTIBLE);
3462 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3463 							 HRTIMER_MODE_REL);
3464 		spin_lock_irq(&tsk->sighand->siglock);
3465 		__set_task_blocked(tsk, &tsk->real_blocked);
3466 		sigemptyset(&tsk->real_blocked);
3467 		sig = dequeue_signal(tsk, &mask, info);
3468 	}
3469 	spin_unlock_irq(&tsk->sighand->siglock);
3470 
3471 	if (sig)
3472 		return sig;
3473 	return ret ? -EINTR : -EAGAIN;
3474 }
3475 
3476 /**
3477  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3478  *			in @uthese
3479  *  @uthese: queued signals to wait for
3480  *  @uinfo: if non-null, the signal's siginfo is returned here
3481  *  @uts: upper bound on process time suspension
3482  *  @sigsetsize: size of sigset_t type
3483  */
3484 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3485 		siginfo_t __user *, uinfo,
3486 		const struct __kernel_timespec __user *, uts,
3487 		size_t, sigsetsize)
3488 {
3489 	sigset_t these;
3490 	struct timespec64 ts;
3491 	kernel_siginfo_t info;
3492 	int ret;
3493 
3494 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3495 	if (sigsetsize != sizeof(sigset_t))
3496 		return -EINVAL;
3497 
3498 	if (copy_from_user(&these, uthese, sizeof(these)))
3499 		return -EFAULT;
3500 
3501 	if (uts) {
3502 		if (get_timespec64(&ts, uts))
3503 			return -EFAULT;
3504 	}
3505 
3506 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3507 
3508 	if (ret > 0 && uinfo) {
3509 		if (copy_siginfo_to_user(uinfo, &info))
3510 			ret = -EFAULT;
3511 	}
3512 
3513 	return ret;
3514 }
3515 
3516 #ifdef CONFIG_COMPAT_32BIT_TIME
3517 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3518 		siginfo_t __user *, uinfo,
3519 		const struct old_timespec32 __user *, uts,
3520 		size_t, sigsetsize)
3521 {
3522 	sigset_t these;
3523 	struct timespec64 ts;
3524 	kernel_siginfo_t info;
3525 	int ret;
3526 
3527 	if (sigsetsize != sizeof(sigset_t))
3528 		return -EINVAL;
3529 
3530 	if (copy_from_user(&these, uthese, sizeof(these)))
3531 		return -EFAULT;
3532 
3533 	if (uts) {
3534 		if (get_old_timespec32(&ts, uts))
3535 			return -EFAULT;
3536 	}
3537 
3538 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3539 
3540 	if (ret > 0 && uinfo) {
3541 		if (copy_siginfo_to_user(uinfo, &info))
3542 			ret = -EFAULT;
3543 	}
3544 
3545 	return ret;
3546 }
3547 #endif
3548 
3549 #ifdef CONFIG_COMPAT
3550 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3551 		struct compat_siginfo __user *, uinfo,
3552 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3553 {
3554 	sigset_t s;
3555 	struct timespec64 t;
3556 	kernel_siginfo_t info;
3557 	long ret;
3558 
3559 	if (sigsetsize != sizeof(sigset_t))
3560 		return -EINVAL;
3561 
3562 	if (get_compat_sigset(&s, uthese))
3563 		return -EFAULT;
3564 
3565 	if (uts) {
3566 		if (get_timespec64(&t, uts))
3567 			return -EFAULT;
3568 	}
3569 
3570 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3571 
3572 	if (ret > 0 && uinfo) {
3573 		if (copy_siginfo_to_user32(uinfo, &info))
3574 			ret = -EFAULT;
3575 	}
3576 
3577 	return ret;
3578 }
3579 
3580 #ifdef CONFIG_COMPAT_32BIT_TIME
3581 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3582 		struct compat_siginfo __user *, uinfo,
3583 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3584 {
3585 	sigset_t s;
3586 	struct timespec64 t;
3587 	kernel_siginfo_t info;
3588 	long ret;
3589 
3590 	if (sigsetsize != sizeof(sigset_t))
3591 		return -EINVAL;
3592 
3593 	if (get_compat_sigset(&s, uthese))
3594 		return -EFAULT;
3595 
3596 	if (uts) {
3597 		if (get_old_timespec32(&t, uts))
3598 			return -EFAULT;
3599 	}
3600 
3601 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3602 
3603 	if (ret > 0 && uinfo) {
3604 		if (copy_siginfo_to_user32(uinfo, &info))
3605 			ret = -EFAULT;
3606 	}
3607 
3608 	return ret;
3609 }
3610 #endif
3611 #endif
3612 
3613 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3614 {
3615 	clear_siginfo(info);
3616 	info->si_signo = sig;
3617 	info->si_errno = 0;
3618 	info->si_code = SI_USER;
3619 	info->si_pid = task_tgid_vnr(current);
3620 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3621 }
3622 
3623 /**
3624  *  sys_kill - send a signal to a process
3625  *  @pid: the PID of the process
3626  *  @sig: signal to be sent
3627  */
3628 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3629 {
3630 	struct kernel_siginfo info;
3631 
3632 	prepare_kill_siginfo(sig, &info);
3633 
3634 	return kill_something_info(sig, &info, pid);
3635 }
3636 
3637 /*
3638  * Verify that the signaler and signalee either are in the same pid namespace
3639  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3640  * namespace.
3641  */
3642 static bool access_pidfd_pidns(struct pid *pid)
3643 {
3644 	struct pid_namespace *active = task_active_pid_ns(current);
3645 	struct pid_namespace *p = ns_of_pid(pid);
3646 
3647 	for (;;) {
3648 		if (!p)
3649 			return false;
3650 		if (p == active)
3651 			break;
3652 		p = p->parent;
3653 	}
3654 
3655 	return true;
3656 }
3657 
3658 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3659 {
3660 #ifdef CONFIG_COMPAT
3661 	/*
3662 	 * Avoid hooking up compat syscalls and instead handle necessary
3663 	 * conversions here. Note, this is a stop-gap measure and should not be
3664 	 * considered a generic solution.
3665 	 */
3666 	if (in_compat_syscall())
3667 		return copy_siginfo_from_user32(
3668 			kinfo, (struct compat_siginfo __user *)info);
3669 #endif
3670 	return copy_siginfo_from_user(kinfo, info);
3671 }
3672 
3673 static struct pid *pidfd_to_pid(const struct file *file)
3674 {
3675 	if (file->f_op == &pidfd_fops)
3676 		return file->private_data;
3677 
3678 	return tgid_pidfd_to_pid(file);
3679 }
3680 
3681 /**
3682  * sys_pidfd_send_signal - Signal a process through a pidfd
3683  * @pidfd:  file descriptor of the process
3684  * @sig:    signal to send
3685  * @info:   signal info
3686  * @flags:  future flags
3687  *
3688  * The syscall currently only signals via PIDTYPE_PID which covers
3689  * kill(<positive-pid>, <signal>. It does not signal threads or process
3690  * groups.
3691  * In order to extend the syscall to threads and process groups the @flags
3692  * argument should be used. In essence, the @flags argument will determine
3693  * what is signaled and not the file descriptor itself. Put in other words,
3694  * grouping is a property of the flags argument not a property of the file
3695  * descriptor.
3696  *
3697  * Return: 0 on success, negative errno on failure
3698  */
3699 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3700 		siginfo_t __user *, info, unsigned int, flags)
3701 {
3702 	int ret;
3703 	struct fd f;
3704 	struct pid *pid;
3705 	kernel_siginfo_t kinfo;
3706 
3707 	/* Enforce flags be set to 0 until we add an extension. */
3708 	if (flags)
3709 		return -EINVAL;
3710 
3711 	f = fdget(pidfd);
3712 	if (!f.file)
3713 		return -EBADF;
3714 
3715 	/* Is this a pidfd? */
3716 	pid = pidfd_to_pid(f.file);
3717 	if (IS_ERR(pid)) {
3718 		ret = PTR_ERR(pid);
3719 		goto err;
3720 	}
3721 
3722 	ret = -EINVAL;
3723 	if (!access_pidfd_pidns(pid))
3724 		goto err;
3725 
3726 	if (info) {
3727 		ret = copy_siginfo_from_user_any(&kinfo, info);
3728 		if (unlikely(ret))
3729 			goto err;
3730 
3731 		ret = -EINVAL;
3732 		if (unlikely(sig != kinfo.si_signo))
3733 			goto err;
3734 
3735 		/* Only allow sending arbitrary signals to yourself. */
3736 		ret = -EPERM;
3737 		if ((task_pid(current) != pid) &&
3738 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3739 			goto err;
3740 	} else {
3741 		prepare_kill_siginfo(sig, &kinfo);
3742 	}
3743 
3744 	ret = kill_pid_info(sig, &kinfo, pid);
3745 
3746 err:
3747 	fdput(f);
3748 	return ret;
3749 }
3750 
3751 static int
3752 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3753 {
3754 	struct task_struct *p;
3755 	int error = -ESRCH;
3756 
3757 	rcu_read_lock();
3758 	p = find_task_by_vpid(pid);
3759 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3760 		error = check_kill_permission(sig, info, p);
3761 		/*
3762 		 * The null signal is a permissions and process existence
3763 		 * probe.  No signal is actually delivered.
3764 		 */
3765 		if (!error && sig) {
3766 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3767 			/*
3768 			 * If lock_task_sighand() failed we pretend the task
3769 			 * dies after receiving the signal. The window is tiny,
3770 			 * and the signal is private anyway.
3771 			 */
3772 			if (unlikely(error == -ESRCH))
3773 				error = 0;
3774 		}
3775 	}
3776 	rcu_read_unlock();
3777 
3778 	return error;
3779 }
3780 
3781 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3782 {
3783 	struct kernel_siginfo info;
3784 
3785 	clear_siginfo(&info);
3786 	info.si_signo = sig;
3787 	info.si_errno = 0;
3788 	info.si_code = SI_TKILL;
3789 	info.si_pid = task_tgid_vnr(current);
3790 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3791 
3792 	return do_send_specific(tgid, pid, sig, &info);
3793 }
3794 
3795 /**
3796  *  sys_tgkill - send signal to one specific thread
3797  *  @tgid: the thread group ID of the thread
3798  *  @pid: the PID of the thread
3799  *  @sig: signal to be sent
3800  *
3801  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3802  *  exists but it's not belonging to the target process anymore. This
3803  *  method solves the problem of threads exiting and PIDs getting reused.
3804  */
3805 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3806 {
3807 	/* This is only valid for single tasks */
3808 	if (pid <= 0 || tgid <= 0)
3809 		return -EINVAL;
3810 
3811 	return do_tkill(tgid, pid, sig);
3812 }
3813 
3814 /**
3815  *  sys_tkill - send signal to one specific task
3816  *  @pid: the PID of the task
3817  *  @sig: signal to be sent
3818  *
3819  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3820  */
3821 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3822 {
3823 	/* This is only valid for single tasks */
3824 	if (pid <= 0)
3825 		return -EINVAL;
3826 
3827 	return do_tkill(0, pid, sig);
3828 }
3829 
3830 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3831 {
3832 	/* Not even root can pretend to send signals from the kernel.
3833 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3834 	 */
3835 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3836 	    (task_pid_vnr(current) != pid))
3837 		return -EPERM;
3838 
3839 	/* POSIX.1b doesn't mention process groups.  */
3840 	return kill_proc_info(sig, info, pid);
3841 }
3842 
3843 /**
3844  *  sys_rt_sigqueueinfo - send signal information to a signal
3845  *  @pid: the PID of the thread
3846  *  @sig: signal to be sent
3847  *  @uinfo: signal info to be sent
3848  */
3849 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3850 		siginfo_t __user *, uinfo)
3851 {
3852 	kernel_siginfo_t info;
3853 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3854 	if (unlikely(ret))
3855 		return ret;
3856 	return do_rt_sigqueueinfo(pid, sig, &info);
3857 }
3858 
3859 #ifdef CONFIG_COMPAT
3860 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3861 			compat_pid_t, pid,
3862 			int, sig,
3863 			struct compat_siginfo __user *, uinfo)
3864 {
3865 	kernel_siginfo_t info;
3866 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3867 	if (unlikely(ret))
3868 		return ret;
3869 	return do_rt_sigqueueinfo(pid, sig, &info);
3870 }
3871 #endif
3872 
3873 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3874 {
3875 	/* This is only valid for single tasks */
3876 	if (pid <= 0 || tgid <= 0)
3877 		return -EINVAL;
3878 
3879 	/* Not even root can pretend to send signals from the kernel.
3880 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3881 	 */
3882 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3883 	    (task_pid_vnr(current) != pid))
3884 		return -EPERM;
3885 
3886 	return do_send_specific(tgid, pid, sig, info);
3887 }
3888 
3889 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3890 		siginfo_t __user *, uinfo)
3891 {
3892 	kernel_siginfo_t info;
3893 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3894 	if (unlikely(ret))
3895 		return ret;
3896 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3897 }
3898 
3899 #ifdef CONFIG_COMPAT
3900 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3901 			compat_pid_t, tgid,
3902 			compat_pid_t, pid,
3903 			int, sig,
3904 			struct compat_siginfo __user *, uinfo)
3905 {
3906 	kernel_siginfo_t info;
3907 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3908 	if (unlikely(ret))
3909 		return ret;
3910 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3911 }
3912 #endif
3913 
3914 /*
3915  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3916  */
3917 void kernel_sigaction(int sig, __sighandler_t action)
3918 {
3919 	spin_lock_irq(&current->sighand->siglock);
3920 	current->sighand->action[sig - 1].sa.sa_handler = action;
3921 	if (action == SIG_IGN) {
3922 		sigset_t mask;
3923 
3924 		sigemptyset(&mask);
3925 		sigaddset(&mask, sig);
3926 
3927 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3928 		flush_sigqueue_mask(&mask, &current->pending);
3929 		recalc_sigpending();
3930 	}
3931 	spin_unlock_irq(&current->sighand->siglock);
3932 }
3933 EXPORT_SYMBOL(kernel_sigaction);
3934 
3935 void __weak sigaction_compat_abi(struct k_sigaction *act,
3936 		struct k_sigaction *oact)
3937 {
3938 }
3939 
3940 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3941 {
3942 	struct task_struct *p = current, *t;
3943 	struct k_sigaction *k;
3944 	sigset_t mask;
3945 
3946 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3947 		return -EINVAL;
3948 
3949 	k = &p->sighand->action[sig-1];
3950 
3951 	spin_lock_irq(&p->sighand->siglock);
3952 	if (oact)
3953 		*oact = *k;
3954 
3955 	sigaction_compat_abi(act, oact);
3956 
3957 	if (act) {
3958 		sigdelsetmask(&act->sa.sa_mask,
3959 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3960 		*k = *act;
3961 		/*
3962 		 * POSIX 3.3.1.3:
3963 		 *  "Setting a signal action to SIG_IGN for a signal that is
3964 		 *   pending shall cause the pending signal to be discarded,
3965 		 *   whether or not it is blocked."
3966 		 *
3967 		 *  "Setting a signal action to SIG_DFL for a signal that is
3968 		 *   pending and whose default action is to ignore the signal
3969 		 *   (for example, SIGCHLD), shall cause the pending signal to
3970 		 *   be discarded, whether or not it is blocked"
3971 		 */
3972 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3973 			sigemptyset(&mask);
3974 			sigaddset(&mask, sig);
3975 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3976 			for_each_thread(p, t)
3977 				flush_sigqueue_mask(&mask, &t->pending);
3978 		}
3979 	}
3980 
3981 	spin_unlock_irq(&p->sighand->siglock);
3982 	return 0;
3983 }
3984 
3985 static int
3986 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3987 		size_t min_ss_size)
3988 {
3989 	struct task_struct *t = current;
3990 
3991 	if (oss) {
3992 		memset(oss, 0, sizeof(stack_t));
3993 		oss->ss_sp = (void __user *) t->sas_ss_sp;
3994 		oss->ss_size = t->sas_ss_size;
3995 		oss->ss_flags = sas_ss_flags(sp) |
3996 			(current->sas_ss_flags & SS_FLAG_BITS);
3997 	}
3998 
3999 	if (ss) {
4000 		void __user *ss_sp = ss->ss_sp;
4001 		size_t ss_size = ss->ss_size;
4002 		unsigned ss_flags = ss->ss_flags;
4003 		int ss_mode;
4004 
4005 		if (unlikely(on_sig_stack(sp)))
4006 			return -EPERM;
4007 
4008 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4009 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4010 				ss_mode != 0))
4011 			return -EINVAL;
4012 
4013 		if (ss_mode == SS_DISABLE) {
4014 			ss_size = 0;
4015 			ss_sp = NULL;
4016 		} else {
4017 			if (unlikely(ss_size < min_ss_size))
4018 				return -ENOMEM;
4019 		}
4020 
4021 		t->sas_ss_sp = (unsigned long) ss_sp;
4022 		t->sas_ss_size = ss_size;
4023 		t->sas_ss_flags = ss_flags;
4024 	}
4025 	return 0;
4026 }
4027 
4028 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4029 {
4030 	stack_t new, old;
4031 	int err;
4032 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4033 		return -EFAULT;
4034 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4035 			      current_user_stack_pointer(),
4036 			      MINSIGSTKSZ);
4037 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4038 		err = -EFAULT;
4039 	return err;
4040 }
4041 
4042 int restore_altstack(const stack_t __user *uss)
4043 {
4044 	stack_t new;
4045 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4046 		return -EFAULT;
4047 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4048 			     MINSIGSTKSZ);
4049 	/* squash all but EFAULT for now */
4050 	return 0;
4051 }
4052 
4053 int __save_altstack(stack_t __user *uss, unsigned long sp)
4054 {
4055 	struct task_struct *t = current;
4056 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4057 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4058 		__put_user(t->sas_ss_size, &uss->ss_size);
4059 	if (err)
4060 		return err;
4061 	if (t->sas_ss_flags & SS_AUTODISARM)
4062 		sas_ss_reset(t);
4063 	return 0;
4064 }
4065 
4066 #ifdef CONFIG_COMPAT
4067 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4068 				 compat_stack_t __user *uoss_ptr)
4069 {
4070 	stack_t uss, uoss;
4071 	int ret;
4072 
4073 	if (uss_ptr) {
4074 		compat_stack_t uss32;
4075 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4076 			return -EFAULT;
4077 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4078 		uss.ss_flags = uss32.ss_flags;
4079 		uss.ss_size = uss32.ss_size;
4080 	}
4081 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4082 			     compat_user_stack_pointer(),
4083 			     COMPAT_MINSIGSTKSZ);
4084 	if (ret >= 0 && uoss_ptr)  {
4085 		compat_stack_t old;
4086 		memset(&old, 0, sizeof(old));
4087 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4088 		old.ss_flags = uoss.ss_flags;
4089 		old.ss_size = uoss.ss_size;
4090 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4091 			ret = -EFAULT;
4092 	}
4093 	return ret;
4094 }
4095 
4096 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4097 			const compat_stack_t __user *, uss_ptr,
4098 			compat_stack_t __user *, uoss_ptr)
4099 {
4100 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4101 }
4102 
4103 int compat_restore_altstack(const compat_stack_t __user *uss)
4104 {
4105 	int err = do_compat_sigaltstack(uss, NULL);
4106 	/* squash all but -EFAULT for now */
4107 	return err == -EFAULT ? err : 0;
4108 }
4109 
4110 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4111 {
4112 	int err;
4113 	struct task_struct *t = current;
4114 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4115 			 &uss->ss_sp) |
4116 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4117 		__put_user(t->sas_ss_size, &uss->ss_size);
4118 	if (err)
4119 		return err;
4120 	if (t->sas_ss_flags & SS_AUTODISARM)
4121 		sas_ss_reset(t);
4122 	return 0;
4123 }
4124 #endif
4125 
4126 #ifdef __ARCH_WANT_SYS_SIGPENDING
4127 
4128 /**
4129  *  sys_sigpending - examine pending signals
4130  *  @uset: where mask of pending signal is returned
4131  */
4132 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4133 {
4134 	sigset_t set;
4135 
4136 	if (sizeof(old_sigset_t) > sizeof(*uset))
4137 		return -EINVAL;
4138 
4139 	do_sigpending(&set);
4140 
4141 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4142 		return -EFAULT;
4143 
4144 	return 0;
4145 }
4146 
4147 #ifdef CONFIG_COMPAT
4148 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4149 {
4150 	sigset_t set;
4151 
4152 	do_sigpending(&set);
4153 
4154 	return put_user(set.sig[0], set32);
4155 }
4156 #endif
4157 
4158 #endif
4159 
4160 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4161 /**
4162  *  sys_sigprocmask - examine and change blocked signals
4163  *  @how: whether to add, remove, or set signals
4164  *  @nset: signals to add or remove (if non-null)
4165  *  @oset: previous value of signal mask if non-null
4166  *
4167  * Some platforms have their own version with special arguments;
4168  * others support only sys_rt_sigprocmask.
4169  */
4170 
4171 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4172 		old_sigset_t __user *, oset)
4173 {
4174 	old_sigset_t old_set, new_set;
4175 	sigset_t new_blocked;
4176 
4177 	old_set = current->blocked.sig[0];
4178 
4179 	if (nset) {
4180 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4181 			return -EFAULT;
4182 
4183 		new_blocked = current->blocked;
4184 
4185 		switch (how) {
4186 		case SIG_BLOCK:
4187 			sigaddsetmask(&new_blocked, new_set);
4188 			break;
4189 		case SIG_UNBLOCK:
4190 			sigdelsetmask(&new_blocked, new_set);
4191 			break;
4192 		case SIG_SETMASK:
4193 			new_blocked.sig[0] = new_set;
4194 			break;
4195 		default:
4196 			return -EINVAL;
4197 		}
4198 
4199 		set_current_blocked(&new_blocked);
4200 	}
4201 
4202 	if (oset) {
4203 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4204 			return -EFAULT;
4205 	}
4206 
4207 	return 0;
4208 }
4209 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4210 
4211 #ifndef CONFIG_ODD_RT_SIGACTION
4212 /**
4213  *  sys_rt_sigaction - alter an action taken by a process
4214  *  @sig: signal to be sent
4215  *  @act: new sigaction
4216  *  @oact: used to save the previous sigaction
4217  *  @sigsetsize: size of sigset_t type
4218  */
4219 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4220 		const struct sigaction __user *, act,
4221 		struct sigaction __user *, oact,
4222 		size_t, sigsetsize)
4223 {
4224 	struct k_sigaction new_sa, old_sa;
4225 	int ret;
4226 
4227 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4228 	if (sigsetsize != sizeof(sigset_t))
4229 		return -EINVAL;
4230 
4231 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4232 		return -EFAULT;
4233 
4234 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4235 	if (ret)
4236 		return ret;
4237 
4238 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4239 		return -EFAULT;
4240 
4241 	return 0;
4242 }
4243 #ifdef CONFIG_COMPAT
4244 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4245 		const struct compat_sigaction __user *, act,
4246 		struct compat_sigaction __user *, oact,
4247 		compat_size_t, sigsetsize)
4248 {
4249 	struct k_sigaction new_ka, old_ka;
4250 #ifdef __ARCH_HAS_SA_RESTORER
4251 	compat_uptr_t restorer;
4252 #endif
4253 	int ret;
4254 
4255 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4256 	if (sigsetsize != sizeof(compat_sigset_t))
4257 		return -EINVAL;
4258 
4259 	if (act) {
4260 		compat_uptr_t handler;
4261 		ret = get_user(handler, &act->sa_handler);
4262 		new_ka.sa.sa_handler = compat_ptr(handler);
4263 #ifdef __ARCH_HAS_SA_RESTORER
4264 		ret |= get_user(restorer, &act->sa_restorer);
4265 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4266 #endif
4267 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4268 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4269 		if (ret)
4270 			return -EFAULT;
4271 	}
4272 
4273 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4274 	if (!ret && oact) {
4275 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4276 			       &oact->sa_handler);
4277 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4278 					 sizeof(oact->sa_mask));
4279 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4280 #ifdef __ARCH_HAS_SA_RESTORER
4281 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4282 				&oact->sa_restorer);
4283 #endif
4284 	}
4285 	return ret;
4286 }
4287 #endif
4288 #endif /* !CONFIG_ODD_RT_SIGACTION */
4289 
4290 #ifdef CONFIG_OLD_SIGACTION
4291 SYSCALL_DEFINE3(sigaction, int, sig,
4292 		const struct old_sigaction __user *, act,
4293 	        struct old_sigaction __user *, oact)
4294 {
4295 	struct k_sigaction new_ka, old_ka;
4296 	int ret;
4297 
4298 	if (act) {
4299 		old_sigset_t mask;
4300 		if (!access_ok(act, sizeof(*act)) ||
4301 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4302 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4303 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4304 		    __get_user(mask, &act->sa_mask))
4305 			return -EFAULT;
4306 #ifdef __ARCH_HAS_KA_RESTORER
4307 		new_ka.ka_restorer = NULL;
4308 #endif
4309 		siginitset(&new_ka.sa.sa_mask, mask);
4310 	}
4311 
4312 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4313 
4314 	if (!ret && oact) {
4315 		if (!access_ok(oact, sizeof(*oact)) ||
4316 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4317 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4318 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4319 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4320 			return -EFAULT;
4321 	}
4322 
4323 	return ret;
4324 }
4325 #endif
4326 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4327 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4328 		const struct compat_old_sigaction __user *, act,
4329 	        struct compat_old_sigaction __user *, oact)
4330 {
4331 	struct k_sigaction new_ka, old_ka;
4332 	int ret;
4333 	compat_old_sigset_t mask;
4334 	compat_uptr_t handler, restorer;
4335 
4336 	if (act) {
4337 		if (!access_ok(act, sizeof(*act)) ||
4338 		    __get_user(handler, &act->sa_handler) ||
4339 		    __get_user(restorer, &act->sa_restorer) ||
4340 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4341 		    __get_user(mask, &act->sa_mask))
4342 			return -EFAULT;
4343 
4344 #ifdef __ARCH_HAS_KA_RESTORER
4345 		new_ka.ka_restorer = NULL;
4346 #endif
4347 		new_ka.sa.sa_handler = compat_ptr(handler);
4348 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4349 		siginitset(&new_ka.sa.sa_mask, mask);
4350 	}
4351 
4352 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4353 
4354 	if (!ret && oact) {
4355 		if (!access_ok(oact, sizeof(*oact)) ||
4356 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4357 			       &oact->sa_handler) ||
4358 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4359 			       &oact->sa_restorer) ||
4360 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4361 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4362 			return -EFAULT;
4363 	}
4364 	return ret;
4365 }
4366 #endif
4367 
4368 #ifdef CONFIG_SGETMASK_SYSCALL
4369 
4370 /*
4371  * For backwards compatibility.  Functionality superseded by sigprocmask.
4372  */
4373 SYSCALL_DEFINE0(sgetmask)
4374 {
4375 	/* SMP safe */
4376 	return current->blocked.sig[0];
4377 }
4378 
4379 SYSCALL_DEFINE1(ssetmask, int, newmask)
4380 {
4381 	int old = current->blocked.sig[0];
4382 	sigset_t newset;
4383 
4384 	siginitset(&newset, newmask);
4385 	set_current_blocked(&newset);
4386 
4387 	return old;
4388 }
4389 #endif /* CONFIG_SGETMASK_SYSCALL */
4390 
4391 #ifdef __ARCH_WANT_SYS_SIGNAL
4392 /*
4393  * For backwards compatibility.  Functionality superseded by sigaction.
4394  */
4395 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4396 {
4397 	struct k_sigaction new_sa, old_sa;
4398 	int ret;
4399 
4400 	new_sa.sa.sa_handler = handler;
4401 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4402 	sigemptyset(&new_sa.sa.sa_mask);
4403 
4404 	ret = do_sigaction(sig, &new_sa, &old_sa);
4405 
4406 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4407 }
4408 #endif /* __ARCH_WANT_SYS_SIGNAL */
4409 
4410 #ifdef __ARCH_WANT_SYS_PAUSE
4411 
4412 SYSCALL_DEFINE0(pause)
4413 {
4414 	while (!signal_pending(current)) {
4415 		__set_current_state(TASK_INTERRUPTIBLE);
4416 		schedule();
4417 	}
4418 	return -ERESTARTNOHAND;
4419 }
4420 
4421 #endif
4422 
4423 static int sigsuspend(sigset_t *set)
4424 {
4425 	current->saved_sigmask = current->blocked;
4426 	set_current_blocked(set);
4427 
4428 	while (!signal_pending(current)) {
4429 		__set_current_state(TASK_INTERRUPTIBLE);
4430 		schedule();
4431 	}
4432 	set_restore_sigmask();
4433 	return -ERESTARTNOHAND;
4434 }
4435 
4436 /**
4437  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4438  *	@unewset value until a signal is received
4439  *  @unewset: new signal mask value
4440  *  @sigsetsize: size of sigset_t type
4441  */
4442 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4443 {
4444 	sigset_t newset;
4445 
4446 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4447 	if (sigsetsize != sizeof(sigset_t))
4448 		return -EINVAL;
4449 
4450 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4451 		return -EFAULT;
4452 	return sigsuspend(&newset);
4453 }
4454 
4455 #ifdef CONFIG_COMPAT
4456 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4457 {
4458 	sigset_t newset;
4459 
4460 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4461 	if (sigsetsize != sizeof(sigset_t))
4462 		return -EINVAL;
4463 
4464 	if (get_compat_sigset(&newset, unewset))
4465 		return -EFAULT;
4466 	return sigsuspend(&newset);
4467 }
4468 #endif
4469 
4470 #ifdef CONFIG_OLD_SIGSUSPEND
4471 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4472 {
4473 	sigset_t blocked;
4474 	siginitset(&blocked, mask);
4475 	return sigsuspend(&blocked);
4476 }
4477 #endif
4478 #ifdef CONFIG_OLD_SIGSUSPEND3
4479 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4480 {
4481 	sigset_t blocked;
4482 	siginitset(&blocked, mask);
4483 	return sigsuspend(&blocked);
4484 }
4485 #endif
4486 
4487 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4488 {
4489 	return NULL;
4490 }
4491 
4492 static inline void siginfo_buildtime_checks(void)
4493 {
4494 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4495 
4496 	/* Verify the offsets in the two siginfos match */
4497 #define CHECK_OFFSET(field) \
4498 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4499 
4500 	/* kill */
4501 	CHECK_OFFSET(si_pid);
4502 	CHECK_OFFSET(si_uid);
4503 
4504 	/* timer */
4505 	CHECK_OFFSET(si_tid);
4506 	CHECK_OFFSET(si_overrun);
4507 	CHECK_OFFSET(si_value);
4508 
4509 	/* rt */
4510 	CHECK_OFFSET(si_pid);
4511 	CHECK_OFFSET(si_uid);
4512 	CHECK_OFFSET(si_value);
4513 
4514 	/* sigchld */
4515 	CHECK_OFFSET(si_pid);
4516 	CHECK_OFFSET(si_uid);
4517 	CHECK_OFFSET(si_status);
4518 	CHECK_OFFSET(si_utime);
4519 	CHECK_OFFSET(si_stime);
4520 
4521 	/* sigfault */
4522 	CHECK_OFFSET(si_addr);
4523 	CHECK_OFFSET(si_addr_lsb);
4524 	CHECK_OFFSET(si_lower);
4525 	CHECK_OFFSET(si_upper);
4526 	CHECK_OFFSET(si_pkey);
4527 
4528 	/* sigpoll */
4529 	CHECK_OFFSET(si_band);
4530 	CHECK_OFFSET(si_fd);
4531 
4532 	/* sigsys */
4533 	CHECK_OFFSET(si_call_addr);
4534 	CHECK_OFFSET(si_syscall);
4535 	CHECK_OFFSET(si_arch);
4536 #undef CHECK_OFFSET
4537 
4538 	/* usb asyncio */
4539 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4540 		     offsetof(struct siginfo, si_addr));
4541 	if (sizeof(int) == sizeof(void __user *)) {
4542 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4543 			     sizeof(void __user *));
4544 	} else {
4545 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4546 			      sizeof_field(struct siginfo, si_uid)) !=
4547 			     sizeof(void __user *));
4548 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4549 			     offsetof(struct siginfo, si_uid));
4550 	}
4551 #ifdef CONFIG_COMPAT
4552 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4553 		     offsetof(struct compat_siginfo, si_addr));
4554 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4555 		     sizeof(compat_uptr_t));
4556 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4557 		     sizeof_field(struct siginfo, si_pid));
4558 #endif
4559 }
4560 
4561 void __init signals_init(void)
4562 {
4563 	siginfo_buildtime_checks();
4564 
4565 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4566 }
4567 
4568 #ifdef CONFIG_KGDB_KDB
4569 #include <linux/kdb.h>
4570 /*
4571  * kdb_send_sig - Allows kdb to send signals without exposing
4572  * signal internals.  This function checks if the required locks are
4573  * available before calling the main signal code, to avoid kdb
4574  * deadlocks.
4575  */
4576 void kdb_send_sig(struct task_struct *t, int sig)
4577 {
4578 	static struct task_struct *kdb_prev_t;
4579 	int new_t, ret;
4580 	if (!spin_trylock(&t->sighand->siglock)) {
4581 		kdb_printf("Can't do kill command now.\n"
4582 			   "The sigmask lock is held somewhere else in "
4583 			   "kernel, try again later\n");
4584 		return;
4585 	}
4586 	new_t = kdb_prev_t != t;
4587 	kdb_prev_t = t;
4588 	if (t->state != TASK_RUNNING && new_t) {
4589 		spin_unlock(&t->sighand->siglock);
4590 		kdb_printf("Process is not RUNNING, sending a signal from "
4591 			   "kdb risks deadlock\n"
4592 			   "on the run queue locks. "
4593 			   "The signal has _not_ been sent.\n"
4594 			   "Reissue the kill command if you want to risk "
4595 			   "the deadlock.\n");
4596 		return;
4597 	}
4598 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4599 	spin_unlock(&t->sighand->siglock);
4600 	if (ret)
4601 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4602 			   sig, t->pid);
4603 	else
4604 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4605 }
4606 #endif	/* CONFIG_KGDB_KDB */
4607