xref: /openbmc/linux/kernel/signal.c (revision b4bc93bd76d4da32600795cd323c971f00a2e788)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
51 
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
57 #include <asm/syscall.h>	/* for syscall_get_* */
58 
59 /*
60  * SLAB caches for signal bits.
61  */
62 
63 static struct kmem_cache *sigqueue_cachep;
64 
65 int print_fatal_signals __read_mostly;
66 
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 	return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71 
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 	/* Is it explicitly or implicitly ignored? */
75 	return handler == SIG_IGN ||
76 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78 
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 	void __user *handler;
82 
83 	handler = sig_handler(t, sig);
84 
85 	/* SIGKILL and SIGSTOP may not be sent to the global init */
86 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 		return true;
88 
89 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 		return true;
92 
93 	/* Only allow kernel generated signals to this kthread */
94 	if (unlikely((t->flags & PF_KTHREAD) &&
95 		     (handler == SIG_KTHREAD_KERNEL) && !force))
96 		return true;
97 
98 	return sig_handler_ignored(handler, sig);
99 }
100 
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103 	/*
104 	 * Blocked signals are never ignored, since the
105 	 * signal handler may change by the time it is
106 	 * unblocked.
107 	 */
108 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 		return false;
110 
111 	/*
112 	 * Tracers may want to know about even ignored signal unless it
113 	 * is SIGKILL which can't be reported anyway but can be ignored
114 	 * by SIGNAL_UNKILLABLE task.
115 	 */
116 	if (t->ptrace && sig != SIGKILL)
117 		return false;
118 
119 	return sig_task_ignored(t, sig, force);
120 }
121 
122 /*
123  * Re-calculate pending state from the set of locally pending
124  * signals, globally pending signals, and blocked signals.
125  */
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128 	unsigned long ready;
129 	long i;
130 
131 	switch (_NSIG_WORDS) {
132 	default:
133 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 			ready |= signal->sig[i] &~ blocked->sig[i];
135 		break;
136 
137 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
138 		ready |= signal->sig[2] &~ blocked->sig[2];
139 		ready |= signal->sig[1] &~ blocked->sig[1];
140 		ready |= signal->sig[0] &~ blocked->sig[0];
141 		break;
142 
143 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
144 		ready |= signal->sig[0] &~ blocked->sig[0];
145 		break;
146 
147 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
148 	}
149 	return ready !=	0;
150 }
151 
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153 
154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 	    PENDING(&t->pending, &t->blocked) ||
158 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
159 	    cgroup_task_frozen(t)) {
160 		set_tsk_thread_flag(t, TIF_SIGPENDING);
161 		return true;
162 	}
163 
164 	/*
165 	 * We must never clear the flag in another thread, or in current
166 	 * when it's possible the current syscall is returning -ERESTART*.
167 	 * So we don't clear it here, and only callers who know they should do.
168 	 */
169 	return false;
170 }
171 
172 /*
173  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174  * This is superfluous when called on current, the wakeup is a harmless no-op.
175  */
176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178 	if (recalc_sigpending_tsk(t))
179 		signal_wake_up(t, 0);
180 }
181 
182 void recalc_sigpending(void)
183 {
184 	if (!recalc_sigpending_tsk(current) && !freezing(current))
185 		clear_thread_flag(TIF_SIGPENDING);
186 
187 }
188 EXPORT_SYMBOL(recalc_sigpending);
189 
190 void calculate_sigpending(void)
191 {
192 	/* Have any signals or users of TIF_SIGPENDING been delayed
193 	 * until after fork?
194 	 */
195 	spin_lock_irq(&current->sighand->siglock);
196 	set_tsk_thread_flag(current, TIF_SIGPENDING);
197 	recalc_sigpending();
198 	spin_unlock_irq(&current->sighand->siglock);
199 }
200 
201 /* Given the mask, find the first available signal that should be serviced. */
202 
203 #define SYNCHRONOUS_MASK \
204 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
205 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
206 
207 int next_signal(struct sigpending *pending, sigset_t *mask)
208 {
209 	unsigned long i, *s, *m, x;
210 	int sig = 0;
211 
212 	s = pending->signal.sig;
213 	m = mask->sig;
214 
215 	/*
216 	 * Handle the first word specially: it contains the
217 	 * synchronous signals that need to be dequeued first.
218 	 */
219 	x = *s &~ *m;
220 	if (x) {
221 		if (x & SYNCHRONOUS_MASK)
222 			x &= SYNCHRONOUS_MASK;
223 		sig = ffz(~x) + 1;
224 		return sig;
225 	}
226 
227 	switch (_NSIG_WORDS) {
228 	default:
229 		for (i = 1; i < _NSIG_WORDS; ++i) {
230 			x = *++s &~ *++m;
231 			if (!x)
232 				continue;
233 			sig = ffz(~x) + i*_NSIG_BPW + 1;
234 			break;
235 		}
236 		break;
237 
238 	case 2:
239 		x = s[1] &~ m[1];
240 		if (!x)
241 			break;
242 		sig = ffz(~x) + _NSIG_BPW + 1;
243 		break;
244 
245 	case 1:
246 		/* Nothing to do */
247 		break;
248 	}
249 
250 	return sig;
251 }
252 
253 static inline void print_dropped_signal(int sig)
254 {
255 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
256 
257 	if (!print_fatal_signals)
258 		return;
259 
260 	if (!__ratelimit(&ratelimit_state))
261 		return;
262 
263 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
264 				current->comm, current->pid, sig);
265 }
266 
267 /**
268  * task_set_jobctl_pending - set jobctl pending bits
269  * @task: target task
270  * @mask: pending bits to set
271  *
272  * Clear @mask from @task->jobctl.  @mask must be subset of
273  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
274  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
275  * cleared.  If @task is already being killed or exiting, this function
276  * becomes noop.
277  *
278  * CONTEXT:
279  * Must be called with @task->sighand->siglock held.
280  *
281  * RETURNS:
282  * %true if @mask is set, %false if made noop because @task was dying.
283  */
284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
285 {
286 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
287 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
288 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
289 
290 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
291 		return false;
292 
293 	if (mask & JOBCTL_STOP_SIGMASK)
294 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
295 
296 	task->jobctl |= mask;
297 	return true;
298 }
299 
300 /**
301  * task_clear_jobctl_trapping - clear jobctl trapping bit
302  * @task: target task
303  *
304  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
305  * Clear it and wake up the ptracer.  Note that we don't need any further
306  * locking.  @task->siglock guarantees that @task->parent points to the
307  * ptracer.
308  *
309  * CONTEXT:
310  * Must be called with @task->sighand->siglock held.
311  */
312 void task_clear_jobctl_trapping(struct task_struct *task)
313 {
314 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
315 		task->jobctl &= ~JOBCTL_TRAPPING;
316 		smp_mb();	/* advised by wake_up_bit() */
317 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
318 	}
319 }
320 
321 /**
322  * task_clear_jobctl_pending - clear jobctl pending bits
323  * @task: target task
324  * @mask: pending bits to clear
325  *
326  * Clear @mask from @task->jobctl.  @mask must be subset of
327  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
328  * STOP bits are cleared together.
329  *
330  * If clearing of @mask leaves no stop or trap pending, this function calls
331  * task_clear_jobctl_trapping().
332  *
333  * CONTEXT:
334  * Must be called with @task->sighand->siglock held.
335  */
336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
337 {
338 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
339 
340 	if (mask & JOBCTL_STOP_PENDING)
341 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
342 
343 	task->jobctl &= ~mask;
344 
345 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
346 		task_clear_jobctl_trapping(task);
347 }
348 
349 /**
350  * task_participate_group_stop - participate in a group stop
351  * @task: task participating in a group stop
352  *
353  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
354  * Group stop states are cleared and the group stop count is consumed if
355  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
356  * stop, the appropriate `SIGNAL_*` flags are set.
357  *
358  * CONTEXT:
359  * Must be called with @task->sighand->siglock held.
360  *
361  * RETURNS:
362  * %true if group stop completion should be notified to the parent, %false
363  * otherwise.
364  */
365 static bool task_participate_group_stop(struct task_struct *task)
366 {
367 	struct signal_struct *sig = task->signal;
368 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
369 
370 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
371 
372 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
373 
374 	if (!consume)
375 		return false;
376 
377 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
378 		sig->group_stop_count--;
379 
380 	/*
381 	 * Tell the caller to notify completion iff we are entering into a
382 	 * fresh group stop.  Read comment in do_signal_stop() for details.
383 	 */
384 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
385 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
386 		return true;
387 	}
388 	return false;
389 }
390 
391 void task_join_group_stop(struct task_struct *task)
392 {
393 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
394 	struct signal_struct *sig = current->signal;
395 
396 	if (sig->group_stop_count) {
397 		sig->group_stop_count++;
398 		mask |= JOBCTL_STOP_CONSUME;
399 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
400 		return;
401 
402 	/* Have the new thread join an on-going signal group stop */
403 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
404 }
405 
406 /*
407  * allocate a new signal queue record
408  * - this may be called without locks if and only if t == current, otherwise an
409  *   appropriate lock must be held to stop the target task from exiting
410  */
411 static struct sigqueue *
412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
413 		 int override_rlimit, const unsigned int sigqueue_flags)
414 {
415 	struct sigqueue *q = NULL;
416 	struct ucounts *ucounts = NULL;
417 	long sigpending;
418 
419 	/*
420 	 * Protect access to @t credentials. This can go away when all
421 	 * callers hold rcu read lock.
422 	 *
423 	 * NOTE! A pending signal will hold on to the user refcount,
424 	 * and we get/put the refcount only when the sigpending count
425 	 * changes from/to zero.
426 	 */
427 	rcu_read_lock();
428 	ucounts = task_ucounts(t);
429 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
430 	rcu_read_unlock();
431 	if (!sigpending)
432 		return NULL;
433 
434 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
435 		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
436 	} else {
437 		print_dropped_signal(sig);
438 	}
439 
440 	if (unlikely(q == NULL)) {
441 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
442 	} else {
443 		INIT_LIST_HEAD(&q->list);
444 		q->flags = sigqueue_flags;
445 		q->ucounts = ucounts;
446 	}
447 	return q;
448 }
449 
450 static void __sigqueue_free(struct sigqueue *q)
451 {
452 	if (q->flags & SIGQUEUE_PREALLOC)
453 		return;
454 	if (q->ucounts) {
455 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
456 		q->ucounts = NULL;
457 	}
458 	kmem_cache_free(sigqueue_cachep, q);
459 }
460 
461 void flush_sigqueue(struct sigpending *queue)
462 {
463 	struct sigqueue *q;
464 
465 	sigemptyset(&queue->signal);
466 	while (!list_empty(&queue->list)) {
467 		q = list_entry(queue->list.next, struct sigqueue , list);
468 		list_del_init(&q->list);
469 		__sigqueue_free(q);
470 	}
471 }
472 
473 /*
474  * Flush all pending signals for this kthread.
475  */
476 void flush_signals(struct task_struct *t)
477 {
478 	unsigned long flags;
479 
480 	spin_lock_irqsave(&t->sighand->siglock, flags);
481 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
482 	flush_sigqueue(&t->pending);
483 	flush_sigqueue(&t->signal->shared_pending);
484 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
485 }
486 EXPORT_SYMBOL(flush_signals);
487 
488 #ifdef CONFIG_POSIX_TIMERS
489 static void __flush_itimer_signals(struct sigpending *pending)
490 {
491 	sigset_t signal, retain;
492 	struct sigqueue *q, *n;
493 
494 	signal = pending->signal;
495 	sigemptyset(&retain);
496 
497 	list_for_each_entry_safe(q, n, &pending->list, list) {
498 		int sig = q->info.si_signo;
499 
500 		if (likely(q->info.si_code != SI_TIMER)) {
501 			sigaddset(&retain, sig);
502 		} else {
503 			sigdelset(&signal, sig);
504 			list_del_init(&q->list);
505 			__sigqueue_free(q);
506 		}
507 	}
508 
509 	sigorsets(&pending->signal, &signal, &retain);
510 }
511 
512 void flush_itimer_signals(void)
513 {
514 	struct task_struct *tsk = current;
515 	unsigned long flags;
516 
517 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
518 	__flush_itimer_signals(&tsk->pending);
519 	__flush_itimer_signals(&tsk->signal->shared_pending);
520 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
521 }
522 #endif
523 
524 void ignore_signals(struct task_struct *t)
525 {
526 	int i;
527 
528 	for (i = 0; i < _NSIG; ++i)
529 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
530 
531 	flush_signals(t);
532 }
533 
534 /*
535  * Flush all handlers for a task.
536  */
537 
538 void
539 flush_signal_handlers(struct task_struct *t, int force_default)
540 {
541 	int i;
542 	struct k_sigaction *ka = &t->sighand->action[0];
543 	for (i = _NSIG ; i != 0 ; i--) {
544 		if (force_default || ka->sa.sa_handler != SIG_IGN)
545 			ka->sa.sa_handler = SIG_DFL;
546 		ka->sa.sa_flags = 0;
547 #ifdef __ARCH_HAS_SA_RESTORER
548 		ka->sa.sa_restorer = NULL;
549 #endif
550 		sigemptyset(&ka->sa.sa_mask);
551 		ka++;
552 	}
553 }
554 
555 bool unhandled_signal(struct task_struct *tsk, int sig)
556 {
557 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
558 	if (is_global_init(tsk))
559 		return true;
560 
561 	if (handler != SIG_IGN && handler != SIG_DFL)
562 		return false;
563 
564 	/* if ptraced, let the tracer determine */
565 	return !tsk->ptrace;
566 }
567 
568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
569 			   bool *resched_timer)
570 {
571 	struct sigqueue *q, *first = NULL;
572 
573 	/*
574 	 * Collect the siginfo appropriate to this signal.  Check if
575 	 * there is another siginfo for the same signal.
576 	*/
577 	list_for_each_entry(q, &list->list, list) {
578 		if (q->info.si_signo == sig) {
579 			if (first)
580 				goto still_pending;
581 			first = q;
582 		}
583 	}
584 
585 	sigdelset(&list->signal, sig);
586 
587 	if (first) {
588 still_pending:
589 		list_del_init(&first->list);
590 		copy_siginfo(info, &first->info);
591 
592 		*resched_timer =
593 			(first->flags & SIGQUEUE_PREALLOC) &&
594 			(info->si_code == SI_TIMER) &&
595 			(info->si_sys_private);
596 
597 		__sigqueue_free(first);
598 	} else {
599 		/*
600 		 * Ok, it wasn't in the queue.  This must be
601 		 * a fast-pathed signal or we must have been
602 		 * out of queue space.  So zero out the info.
603 		 */
604 		clear_siginfo(info);
605 		info->si_signo = sig;
606 		info->si_errno = 0;
607 		info->si_code = SI_USER;
608 		info->si_pid = 0;
609 		info->si_uid = 0;
610 	}
611 }
612 
613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
614 			kernel_siginfo_t *info, bool *resched_timer)
615 {
616 	int sig = next_signal(pending, mask);
617 
618 	if (sig)
619 		collect_signal(sig, pending, info, resched_timer);
620 	return sig;
621 }
622 
623 /*
624  * Dequeue a signal and return the element to the caller, which is
625  * expected to free it.
626  *
627  * All callers have to hold the siglock.
628  */
629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
630 		   kernel_siginfo_t *info, enum pid_type *type)
631 {
632 	bool resched_timer = false;
633 	int signr;
634 
635 	/* We only dequeue private signals from ourselves, we don't let
636 	 * signalfd steal them
637 	 */
638 	*type = PIDTYPE_PID;
639 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
640 	if (!signr) {
641 		*type = PIDTYPE_TGID;
642 		signr = __dequeue_signal(&tsk->signal->shared_pending,
643 					 mask, info, &resched_timer);
644 #ifdef CONFIG_POSIX_TIMERS
645 		/*
646 		 * itimer signal ?
647 		 *
648 		 * itimers are process shared and we restart periodic
649 		 * itimers in the signal delivery path to prevent DoS
650 		 * attacks in the high resolution timer case. This is
651 		 * compliant with the old way of self-restarting
652 		 * itimers, as the SIGALRM is a legacy signal and only
653 		 * queued once. Changing the restart behaviour to
654 		 * restart the timer in the signal dequeue path is
655 		 * reducing the timer noise on heavy loaded !highres
656 		 * systems too.
657 		 */
658 		if (unlikely(signr == SIGALRM)) {
659 			struct hrtimer *tmr = &tsk->signal->real_timer;
660 
661 			if (!hrtimer_is_queued(tmr) &&
662 			    tsk->signal->it_real_incr != 0) {
663 				hrtimer_forward(tmr, tmr->base->get_time(),
664 						tsk->signal->it_real_incr);
665 				hrtimer_restart(tmr);
666 			}
667 		}
668 #endif
669 	}
670 
671 	recalc_sigpending();
672 	if (!signr)
673 		return 0;
674 
675 	if (unlikely(sig_kernel_stop(signr))) {
676 		/*
677 		 * Set a marker that we have dequeued a stop signal.  Our
678 		 * caller might release the siglock and then the pending
679 		 * stop signal it is about to process is no longer in the
680 		 * pending bitmasks, but must still be cleared by a SIGCONT
681 		 * (and overruled by a SIGKILL).  So those cases clear this
682 		 * shared flag after we've set it.  Note that this flag may
683 		 * remain set after the signal we return is ignored or
684 		 * handled.  That doesn't matter because its only purpose
685 		 * is to alert stop-signal processing code when another
686 		 * processor has come along and cleared the flag.
687 		 */
688 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
689 	}
690 #ifdef CONFIG_POSIX_TIMERS
691 	if (resched_timer) {
692 		/*
693 		 * Release the siglock to ensure proper locking order
694 		 * of timer locks outside of siglocks.  Note, we leave
695 		 * irqs disabled here, since the posix-timers code is
696 		 * about to disable them again anyway.
697 		 */
698 		spin_unlock(&tsk->sighand->siglock);
699 		posixtimer_rearm(info);
700 		spin_lock(&tsk->sighand->siglock);
701 
702 		/* Don't expose the si_sys_private value to userspace */
703 		info->si_sys_private = 0;
704 	}
705 #endif
706 	return signr;
707 }
708 EXPORT_SYMBOL_GPL(dequeue_signal);
709 
710 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
711 {
712 	struct task_struct *tsk = current;
713 	struct sigpending *pending = &tsk->pending;
714 	struct sigqueue *q, *sync = NULL;
715 
716 	/*
717 	 * Might a synchronous signal be in the queue?
718 	 */
719 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
720 		return 0;
721 
722 	/*
723 	 * Return the first synchronous signal in the queue.
724 	 */
725 	list_for_each_entry(q, &pending->list, list) {
726 		/* Synchronous signals have a positive si_code */
727 		if ((q->info.si_code > SI_USER) &&
728 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
729 			sync = q;
730 			goto next;
731 		}
732 	}
733 	return 0;
734 next:
735 	/*
736 	 * Check if there is another siginfo for the same signal.
737 	 */
738 	list_for_each_entry_continue(q, &pending->list, list) {
739 		if (q->info.si_signo == sync->info.si_signo)
740 			goto still_pending;
741 	}
742 
743 	sigdelset(&pending->signal, sync->info.si_signo);
744 	recalc_sigpending();
745 still_pending:
746 	list_del_init(&sync->list);
747 	copy_siginfo(info, &sync->info);
748 	__sigqueue_free(sync);
749 	return info->si_signo;
750 }
751 
752 /*
753  * Tell a process that it has a new active signal..
754  *
755  * NOTE! we rely on the previous spin_lock to
756  * lock interrupts for us! We can only be called with
757  * "siglock" held, and the local interrupt must
758  * have been disabled when that got acquired!
759  *
760  * No need to set need_resched since signal event passing
761  * goes through ->blocked
762  */
763 void signal_wake_up_state(struct task_struct *t, unsigned int state)
764 {
765 	set_tsk_thread_flag(t, TIF_SIGPENDING);
766 	/*
767 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
768 	 * case. We don't check t->state here because there is a race with it
769 	 * executing another processor and just now entering stopped state.
770 	 * By using wake_up_state, we ensure the process will wake up and
771 	 * handle its death signal.
772 	 */
773 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
774 		kick_process(t);
775 }
776 
777 /*
778  * Remove signals in mask from the pending set and queue.
779  * Returns 1 if any signals were found.
780  *
781  * All callers must be holding the siglock.
782  */
783 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
784 {
785 	struct sigqueue *q, *n;
786 	sigset_t m;
787 
788 	sigandsets(&m, mask, &s->signal);
789 	if (sigisemptyset(&m))
790 		return;
791 
792 	sigandnsets(&s->signal, &s->signal, mask);
793 	list_for_each_entry_safe(q, n, &s->list, list) {
794 		if (sigismember(mask, q->info.si_signo)) {
795 			list_del_init(&q->list);
796 			__sigqueue_free(q);
797 		}
798 	}
799 }
800 
801 static inline int is_si_special(const struct kernel_siginfo *info)
802 {
803 	return info <= SEND_SIG_PRIV;
804 }
805 
806 static inline bool si_fromuser(const struct kernel_siginfo *info)
807 {
808 	return info == SEND_SIG_NOINFO ||
809 		(!is_si_special(info) && SI_FROMUSER(info));
810 }
811 
812 /*
813  * called with RCU read lock from check_kill_permission()
814  */
815 static bool kill_ok_by_cred(struct task_struct *t)
816 {
817 	const struct cred *cred = current_cred();
818 	const struct cred *tcred = __task_cred(t);
819 
820 	return uid_eq(cred->euid, tcred->suid) ||
821 	       uid_eq(cred->euid, tcred->uid) ||
822 	       uid_eq(cred->uid, tcred->suid) ||
823 	       uid_eq(cred->uid, tcred->uid) ||
824 	       ns_capable(tcred->user_ns, CAP_KILL);
825 }
826 
827 /*
828  * Bad permissions for sending the signal
829  * - the caller must hold the RCU read lock
830  */
831 static int check_kill_permission(int sig, struct kernel_siginfo *info,
832 				 struct task_struct *t)
833 {
834 	struct pid *sid;
835 	int error;
836 
837 	if (!valid_signal(sig))
838 		return -EINVAL;
839 
840 	if (!si_fromuser(info))
841 		return 0;
842 
843 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
844 	if (error)
845 		return error;
846 
847 	if (!same_thread_group(current, t) &&
848 	    !kill_ok_by_cred(t)) {
849 		switch (sig) {
850 		case SIGCONT:
851 			sid = task_session(t);
852 			/*
853 			 * We don't return the error if sid == NULL. The
854 			 * task was unhashed, the caller must notice this.
855 			 */
856 			if (!sid || sid == task_session(current))
857 				break;
858 			fallthrough;
859 		default:
860 			return -EPERM;
861 		}
862 	}
863 
864 	return security_task_kill(t, info, sig, NULL);
865 }
866 
867 /**
868  * ptrace_trap_notify - schedule trap to notify ptracer
869  * @t: tracee wanting to notify tracer
870  *
871  * This function schedules sticky ptrace trap which is cleared on the next
872  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
873  * ptracer.
874  *
875  * If @t is running, STOP trap will be taken.  If trapped for STOP and
876  * ptracer is listening for events, tracee is woken up so that it can
877  * re-trap for the new event.  If trapped otherwise, STOP trap will be
878  * eventually taken without returning to userland after the existing traps
879  * are finished by PTRACE_CONT.
880  *
881  * CONTEXT:
882  * Must be called with @task->sighand->siglock held.
883  */
884 static void ptrace_trap_notify(struct task_struct *t)
885 {
886 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
887 	assert_spin_locked(&t->sighand->siglock);
888 
889 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
890 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
891 }
892 
893 /*
894  * Handle magic process-wide effects of stop/continue signals. Unlike
895  * the signal actions, these happen immediately at signal-generation
896  * time regardless of blocking, ignoring, or handling.  This does the
897  * actual continuing for SIGCONT, but not the actual stopping for stop
898  * signals. The process stop is done as a signal action for SIG_DFL.
899  *
900  * Returns true if the signal should be actually delivered, otherwise
901  * it should be dropped.
902  */
903 static bool prepare_signal(int sig, struct task_struct *p, bool force)
904 {
905 	struct signal_struct *signal = p->signal;
906 	struct task_struct *t;
907 	sigset_t flush;
908 
909 	if (signal->flags & SIGNAL_GROUP_EXIT) {
910 		if (signal->core_state)
911 			return sig == SIGKILL;
912 		/*
913 		 * The process is in the middle of dying, nothing to do.
914 		 */
915 	} else if (sig_kernel_stop(sig)) {
916 		/*
917 		 * This is a stop signal.  Remove SIGCONT from all queues.
918 		 */
919 		siginitset(&flush, sigmask(SIGCONT));
920 		flush_sigqueue_mask(&flush, &signal->shared_pending);
921 		for_each_thread(p, t)
922 			flush_sigqueue_mask(&flush, &t->pending);
923 	} else if (sig == SIGCONT) {
924 		unsigned int why;
925 		/*
926 		 * Remove all stop signals from all queues, wake all threads.
927 		 */
928 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
929 		flush_sigqueue_mask(&flush, &signal->shared_pending);
930 		for_each_thread(p, t) {
931 			flush_sigqueue_mask(&flush, &t->pending);
932 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
933 			if (likely(!(t->ptrace & PT_SEIZED)))
934 				wake_up_state(t, __TASK_STOPPED);
935 			else
936 				ptrace_trap_notify(t);
937 		}
938 
939 		/*
940 		 * Notify the parent with CLD_CONTINUED if we were stopped.
941 		 *
942 		 * If we were in the middle of a group stop, we pretend it
943 		 * was already finished, and then continued. Since SIGCHLD
944 		 * doesn't queue we report only CLD_STOPPED, as if the next
945 		 * CLD_CONTINUED was dropped.
946 		 */
947 		why = 0;
948 		if (signal->flags & SIGNAL_STOP_STOPPED)
949 			why |= SIGNAL_CLD_CONTINUED;
950 		else if (signal->group_stop_count)
951 			why |= SIGNAL_CLD_STOPPED;
952 
953 		if (why) {
954 			/*
955 			 * The first thread which returns from do_signal_stop()
956 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
957 			 * notify its parent. See get_signal().
958 			 */
959 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
960 			signal->group_stop_count = 0;
961 			signal->group_exit_code = 0;
962 		}
963 	}
964 
965 	return !sig_ignored(p, sig, force);
966 }
967 
968 /*
969  * Test if P wants to take SIG.  After we've checked all threads with this,
970  * it's equivalent to finding no threads not blocking SIG.  Any threads not
971  * blocking SIG were ruled out because they are not running and already
972  * have pending signals.  Such threads will dequeue from the shared queue
973  * as soon as they're available, so putting the signal on the shared queue
974  * will be equivalent to sending it to one such thread.
975  */
976 static inline bool wants_signal(int sig, struct task_struct *p)
977 {
978 	if (sigismember(&p->blocked, sig))
979 		return false;
980 
981 	if (p->flags & PF_EXITING)
982 		return false;
983 
984 	if (sig == SIGKILL)
985 		return true;
986 
987 	if (task_is_stopped_or_traced(p))
988 		return false;
989 
990 	return task_curr(p) || !task_sigpending(p);
991 }
992 
993 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
994 {
995 	struct signal_struct *signal = p->signal;
996 	struct task_struct *t;
997 
998 	/*
999 	 * Now find a thread we can wake up to take the signal off the queue.
1000 	 *
1001 	 * If the main thread wants the signal, it gets first crack.
1002 	 * Probably the least surprising to the average bear.
1003 	 */
1004 	if (wants_signal(sig, p))
1005 		t = p;
1006 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1007 		/*
1008 		 * There is just one thread and it does not need to be woken.
1009 		 * It will dequeue unblocked signals before it runs again.
1010 		 */
1011 		return;
1012 	else {
1013 		/*
1014 		 * Otherwise try to find a suitable thread.
1015 		 */
1016 		t = signal->curr_target;
1017 		while (!wants_signal(sig, t)) {
1018 			t = next_thread(t);
1019 			if (t == signal->curr_target)
1020 				/*
1021 				 * No thread needs to be woken.
1022 				 * Any eligible threads will see
1023 				 * the signal in the queue soon.
1024 				 */
1025 				return;
1026 		}
1027 		signal->curr_target = t;
1028 	}
1029 
1030 	/*
1031 	 * Found a killable thread.  If the signal will be fatal,
1032 	 * then start taking the whole group down immediately.
1033 	 */
1034 	if (sig_fatal(p, sig) &&
1035 	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1036 	    !sigismember(&t->real_blocked, sig) &&
1037 	    (sig == SIGKILL || !p->ptrace)) {
1038 		/*
1039 		 * This signal will be fatal to the whole group.
1040 		 */
1041 		if (!sig_kernel_coredump(sig)) {
1042 			/*
1043 			 * Start a group exit and wake everybody up.
1044 			 * This way we don't have other threads
1045 			 * running and doing things after a slower
1046 			 * thread has the fatal signal pending.
1047 			 */
1048 			signal->flags = SIGNAL_GROUP_EXIT;
1049 			signal->group_exit_code = sig;
1050 			signal->group_stop_count = 0;
1051 			t = p;
1052 			do {
1053 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1054 				sigaddset(&t->pending.signal, SIGKILL);
1055 				signal_wake_up(t, 1);
1056 			} while_each_thread(p, t);
1057 			return;
1058 		}
1059 	}
1060 
1061 	/*
1062 	 * The signal is already in the shared-pending queue.
1063 	 * Tell the chosen thread to wake up and dequeue it.
1064 	 */
1065 	signal_wake_up(t, sig == SIGKILL);
1066 	return;
1067 }
1068 
1069 static inline bool legacy_queue(struct sigpending *signals, int sig)
1070 {
1071 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1072 }
1073 
1074 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1075 			enum pid_type type, bool force)
1076 {
1077 	struct sigpending *pending;
1078 	struct sigqueue *q;
1079 	int override_rlimit;
1080 	int ret = 0, result;
1081 
1082 	assert_spin_locked(&t->sighand->siglock);
1083 
1084 	result = TRACE_SIGNAL_IGNORED;
1085 	if (!prepare_signal(sig, t, force))
1086 		goto ret;
1087 
1088 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1089 	/*
1090 	 * Short-circuit ignored signals and support queuing
1091 	 * exactly one non-rt signal, so that we can get more
1092 	 * detailed information about the cause of the signal.
1093 	 */
1094 	result = TRACE_SIGNAL_ALREADY_PENDING;
1095 	if (legacy_queue(pending, sig))
1096 		goto ret;
1097 
1098 	result = TRACE_SIGNAL_DELIVERED;
1099 	/*
1100 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1101 	 */
1102 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1103 		goto out_set;
1104 
1105 	/*
1106 	 * Real-time signals must be queued if sent by sigqueue, or
1107 	 * some other real-time mechanism.  It is implementation
1108 	 * defined whether kill() does so.  We attempt to do so, on
1109 	 * the principle of least surprise, but since kill is not
1110 	 * allowed to fail with EAGAIN when low on memory we just
1111 	 * make sure at least one signal gets delivered and don't
1112 	 * pass on the info struct.
1113 	 */
1114 	if (sig < SIGRTMIN)
1115 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1116 	else
1117 		override_rlimit = 0;
1118 
1119 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1120 
1121 	if (q) {
1122 		list_add_tail(&q->list, &pending->list);
1123 		switch ((unsigned long) info) {
1124 		case (unsigned long) SEND_SIG_NOINFO:
1125 			clear_siginfo(&q->info);
1126 			q->info.si_signo = sig;
1127 			q->info.si_errno = 0;
1128 			q->info.si_code = SI_USER;
1129 			q->info.si_pid = task_tgid_nr_ns(current,
1130 							task_active_pid_ns(t));
1131 			rcu_read_lock();
1132 			q->info.si_uid =
1133 				from_kuid_munged(task_cred_xxx(t, user_ns),
1134 						 current_uid());
1135 			rcu_read_unlock();
1136 			break;
1137 		case (unsigned long) SEND_SIG_PRIV:
1138 			clear_siginfo(&q->info);
1139 			q->info.si_signo = sig;
1140 			q->info.si_errno = 0;
1141 			q->info.si_code = SI_KERNEL;
1142 			q->info.si_pid = 0;
1143 			q->info.si_uid = 0;
1144 			break;
1145 		default:
1146 			copy_siginfo(&q->info, info);
1147 			break;
1148 		}
1149 	} else if (!is_si_special(info) &&
1150 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1151 		/*
1152 		 * Queue overflow, abort.  We may abort if the
1153 		 * signal was rt and sent by user using something
1154 		 * other than kill().
1155 		 */
1156 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1157 		ret = -EAGAIN;
1158 		goto ret;
1159 	} else {
1160 		/*
1161 		 * This is a silent loss of information.  We still
1162 		 * send the signal, but the *info bits are lost.
1163 		 */
1164 		result = TRACE_SIGNAL_LOSE_INFO;
1165 	}
1166 
1167 out_set:
1168 	signalfd_notify(t, sig);
1169 	sigaddset(&pending->signal, sig);
1170 
1171 	/* Let multiprocess signals appear after on-going forks */
1172 	if (type > PIDTYPE_TGID) {
1173 		struct multiprocess_signals *delayed;
1174 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1175 			sigset_t *signal = &delayed->signal;
1176 			/* Can't queue both a stop and a continue signal */
1177 			if (sig == SIGCONT)
1178 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1179 			else if (sig_kernel_stop(sig))
1180 				sigdelset(signal, SIGCONT);
1181 			sigaddset(signal, sig);
1182 		}
1183 	}
1184 
1185 	complete_signal(sig, t, type);
1186 ret:
1187 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1188 	return ret;
1189 }
1190 
1191 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1192 {
1193 	bool ret = false;
1194 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1195 	case SIL_KILL:
1196 	case SIL_CHLD:
1197 	case SIL_RT:
1198 		ret = true;
1199 		break;
1200 	case SIL_TIMER:
1201 	case SIL_POLL:
1202 	case SIL_FAULT:
1203 	case SIL_FAULT_TRAPNO:
1204 	case SIL_FAULT_MCEERR:
1205 	case SIL_FAULT_BNDERR:
1206 	case SIL_FAULT_PKUERR:
1207 	case SIL_FAULT_PERF_EVENT:
1208 	case SIL_SYS:
1209 		ret = false;
1210 		break;
1211 	}
1212 	return ret;
1213 }
1214 
1215 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1216 			enum pid_type type)
1217 {
1218 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1219 	bool force = false;
1220 
1221 	if (info == SEND_SIG_NOINFO) {
1222 		/* Force if sent from an ancestor pid namespace */
1223 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1224 	} else if (info == SEND_SIG_PRIV) {
1225 		/* Don't ignore kernel generated signals */
1226 		force = true;
1227 	} else if (has_si_pid_and_uid(info)) {
1228 		/* SIGKILL and SIGSTOP is special or has ids */
1229 		struct user_namespace *t_user_ns;
1230 
1231 		rcu_read_lock();
1232 		t_user_ns = task_cred_xxx(t, user_ns);
1233 		if (current_user_ns() != t_user_ns) {
1234 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1235 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1236 		}
1237 		rcu_read_unlock();
1238 
1239 		/* A kernel generated signal? */
1240 		force = (info->si_code == SI_KERNEL);
1241 
1242 		/* From an ancestor pid namespace? */
1243 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1244 			info->si_pid = 0;
1245 			force = true;
1246 		}
1247 	}
1248 	return __send_signal(sig, info, t, type, force);
1249 }
1250 
1251 static void print_fatal_signal(int signr)
1252 {
1253 	struct pt_regs *regs = signal_pt_regs();
1254 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1255 
1256 #if defined(__i386__) && !defined(__arch_um__)
1257 	pr_info("code at %08lx: ", regs->ip);
1258 	{
1259 		int i;
1260 		for (i = 0; i < 16; i++) {
1261 			unsigned char insn;
1262 
1263 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1264 				break;
1265 			pr_cont("%02x ", insn);
1266 		}
1267 	}
1268 	pr_cont("\n");
1269 #endif
1270 	preempt_disable();
1271 	show_regs(regs);
1272 	preempt_enable();
1273 }
1274 
1275 static int __init setup_print_fatal_signals(char *str)
1276 {
1277 	get_option (&str, &print_fatal_signals);
1278 
1279 	return 1;
1280 }
1281 
1282 __setup("print-fatal-signals=", setup_print_fatal_signals);
1283 
1284 int
1285 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1286 {
1287 	return send_signal(sig, info, p, PIDTYPE_TGID);
1288 }
1289 
1290 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1291 			enum pid_type type)
1292 {
1293 	unsigned long flags;
1294 	int ret = -ESRCH;
1295 
1296 	if (lock_task_sighand(p, &flags)) {
1297 		ret = send_signal(sig, info, p, type);
1298 		unlock_task_sighand(p, &flags);
1299 	}
1300 
1301 	return ret;
1302 }
1303 
1304 enum sig_handler {
1305 	HANDLER_CURRENT, /* If reachable use the current handler */
1306 	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1307 	HANDLER_EXIT,	 /* Only visible as the process exit code */
1308 };
1309 
1310 /*
1311  * On some archictectures, PREEMPT_RT has to delay sending a signal from a
1312  * trap since it cannot enable preemption, and the signal code's
1313  * spin_locks turn into mutexes. Instead, it must set TIF_NOTIFY_RESUME
1314  * which will send the signal on exit of the trap.
1315  */
1316 #ifdef CONFIG_RT_DELAYED_SIGNALS
1317 static inline bool force_sig_delayed(struct kernel_siginfo *info,
1318 				     struct task_struct *t)
1319 {
1320 	if (!in_atomic())
1321 		return false;
1322 
1323 	if (WARN_ON_ONCE(t->forced_info.si_signo))
1324 		return true;
1325 
1326 	if (is_si_special(info)) {
1327 		WARN_ON_ONCE(info != SEND_SIG_PRIV);
1328 		t->forced_info.si_signo = info->si_signo;
1329 		t->forced_info.si_errno = 0;
1330 		t->forced_info.si_code = SI_KERNEL;
1331 		t->forced_info.si_pid = 0;
1332 		t->forced_info.si_uid = 0;
1333 	} else {
1334 		t->forced_info = *info;
1335 	}
1336 	set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1337 	return true;
1338 }
1339 #else
1340 static inline bool force_sig_delayed(struct kernel_siginfo *info,
1341 				     struct task_struct *t)
1342 {
1343 	return false;
1344 }
1345 #endif
1346 
1347 /*
1348  * Force a signal that the process can't ignore: if necessary
1349  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1350  *
1351  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1352  * since we do not want to have a signal handler that was blocked
1353  * be invoked when user space had explicitly blocked it.
1354  *
1355  * We don't want to have recursive SIGSEGV's etc, for example,
1356  * that is why we also clear SIGNAL_UNKILLABLE.
1357  */
1358 static int
1359 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1360 	enum sig_handler handler)
1361 {
1362 	unsigned long int flags;
1363 	int ret, blocked, ignored;
1364 	struct k_sigaction *action;
1365 	int sig = info->si_signo;
1366 
1367 	if (force_sig_delayed(info, t))
1368 		return 0;
1369 
1370 	spin_lock_irqsave(&t->sighand->siglock, flags);
1371 	action = &t->sighand->action[sig-1];
1372 	ignored = action->sa.sa_handler == SIG_IGN;
1373 	blocked = sigismember(&t->blocked, sig);
1374 	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1375 		action->sa.sa_handler = SIG_DFL;
1376 		if (handler == HANDLER_EXIT)
1377 			action->sa.sa_flags |= SA_IMMUTABLE;
1378 		if (blocked) {
1379 			sigdelset(&t->blocked, sig);
1380 			recalc_sigpending_and_wake(t);
1381 		}
1382 	}
1383 	/*
1384 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1385 	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1386 	 */
1387 	if (action->sa.sa_handler == SIG_DFL &&
1388 	    (!t->ptrace || (handler == HANDLER_EXIT)))
1389 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1390 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1391 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1392 
1393 	return ret;
1394 }
1395 
1396 int force_sig_info(struct kernel_siginfo *info)
1397 {
1398 	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1399 }
1400 
1401 /*
1402  * Nuke all other threads in the group.
1403  */
1404 int zap_other_threads(struct task_struct *p)
1405 {
1406 	struct task_struct *t = p;
1407 	int count = 0;
1408 
1409 	p->signal->group_stop_count = 0;
1410 
1411 	while_each_thread(p, t) {
1412 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1413 		count++;
1414 
1415 		/* Don't bother with already dead threads */
1416 		if (t->exit_state)
1417 			continue;
1418 		sigaddset(&t->pending.signal, SIGKILL);
1419 		signal_wake_up(t, 1);
1420 	}
1421 
1422 	return count;
1423 }
1424 
1425 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1426 					   unsigned long *flags)
1427 {
1428 	struct sighand_struct *sighand;
1429 
1430 	rcu_read_lock();
1431 	for (;;) {
1432 		sighand = rcu_dereference(tsk->sighand);
1433 		if (unlikely(sighand == NULL))
1434 			break;
1435 
1436 		/*
1437 		 * This sighand can be already freed and even reused, but
1438 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1439 		 * initializes ->siglock: this slab can't go away, it has
1440 		 * the same object type, ->siglock can't be reinitialized.
1441 		 *
1442 		 * We need to ensure that tsk->sighand is still the same
1443 		 * after we take the lock, we can race with de_thread() or
1444 		 * __exit_signal(). In the latter case the next iteration
1445 		 * must see ->sighand == NULL.
1446 		 */
1447 		spin_lock_irqsave(&sighand->siglock, *flags);
1448 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1449 			break;
1450 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1451 	}
1452 	rcu_read_unlock();
1453 
1454 	return sighand;
1455 }
1456 
1457 #ifdef CONFIG_LOCKDEP
1458 void lockdep_assert_task_sighand_held(struct task_struct *task)
1459 {
1460 	struct sighand_struct *sighand;
1461 
1462 	rcu_read_lock();
1463 	sighand = rcu_dereference(task->sighand);
1464 	if (sighand)
1465 		lockdep_assert_held(&sighand->siglock);
1466 	else
1467 		WARN_ON_ONCE(1);
1468 	rcu_read_unlock();
1469 }
1470 #endif
1471 
1472 /*
1473  * send signal info to all the members of a group
1474  */
1475 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1476 			struct task_struct *p, enum pid_type type)
1477 {
1478 	int ret;
1479 
1480 	rcu_read_lock();
1481 	ret = check_kill_permission(sig, info, p);
1482 	rcu_read_unlock();
1483 
1484 	if (!ret && sig)
1485 		ret = do_send_sig_info(sig, info, p, type);
1486 
1487 	return ret;
1488 }
1489 
1490 /*
1491  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1492  * control characters do (^C, ^Z etc)
1493  * - the caller must hold at least a readlock on tasklist_lock
1494  */
1495 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1496 {
1497 	struct task_struct *p = NULL;
1498 	int retval, success;
1499 
1500 	success = 0;
1501 	retval = -ESRCH;
1502 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1503 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1504 		success |= !err;
1505 		retval = err;
1506 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1507 	return success ? 0 : retval;
1508 }
1509 
1510 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1511 {
1512 	int error = -ESRCH;
1513 	struct task_struct *p;
1514 
1515 	for (;;) {
1516 		rcu_read_lock();
1517 		p = pid_task(pid, PIDTYPE_PID);
1518 		if (p)
1519 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1520 		rcu_read_unlock();
1521 		if (likely(!p || error != -ESRCH))
1522 			return error;
1523 
1524 		/*
1525 		 * The task was unhashed in between, try again.  If it
1526 		 * is dead, pid_task() will return NULL, if we race with
1527 		 * de_thread() it will find the new leader.
1528 		 */
1529 	}
1530 }
1531 
1532 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1533 {
1534 	int error;
1535 	rcu_read_lock();
1536 	error = kill_pid_info(sig, info, find_vpid(pid));
1537 	rcu_read_unlock();
1538 	return error;
1539 }
1540 
1541 static inline bool kill_as_cred_perm(const struct cred *cred,
1542 				     struct task_struct *target)
1543 {
1544 	const struct cred *pcred = __task_cred(target);
1545 
1546 	return uid_eq(cred->euid, pcred->suid) ||
1547 	       uid_eq(cred->euid, pcred->uid) ||
1548 	       uid_eq(cred->uid, pcred->suid) ||
1549 	       uid_eq(cred->uid, pcred->uid);
1550 }
1551 
1552 /*
1553  * The usb asyncio usage of siginfo is wrong.  The glibc support
1554  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1555  * AKA after the generic fields:
1556  *	kernel_pid_t	si_pid;
1557  *	kernel_uid32_t	si_uid;
1558  *	sigval_t	si_value;
1559  *
1560  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1561  * after the generic fields is:
1562  *	void __user 	*si_addr;
1563  *
1564  * This is a practical problem when there is a 64bit big endian kernel
1565  * and a 32bit userspace.  As the 32bit address will encoded in the low
1566  * 32bits of the pointer.  Those low 32bits will be stored at higher
1567  * address than appear in a 32 bit pointer.  So userspace will not
1568  * see the address it was expecting for it's completions.
1569  *
1570  * There is nothing in the encoding that can allow
1571  * copy_siginfo_to_user32 to detect this confusion of formats, so
1572  * handle this by requiring the caller of kill_pid_usb_asyncio to
1573  * notice when this situration takes place and to store the 32bit
1574  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1575  * parameter.
1576  */
1577 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1578 			 struct pid *pid, const struct cred *cred)
1579 {
1580 	struct kernel_siginfo info;
1581 	struct task_struct *p;
1582 	unsigned long flags;
1583 	int ret = -EINVAL;
1584 
1585 	if (!valid_signal(sig))
1586 		return ret;
1587 
1588 	clear_siginfo(&info);
1589 	info.si_signo = sig;
1590 	info.si_errno = errno;
1591 	info.si_code = SI_ASYNCIO;
1592 	*((sigval_t *)&info.si_pid) = addr;
1593 
1594 	rcu_read_lock();
1595 	p = pid_task(pid, PIDTYPE_PID);
1596 	if (!p) {
1597 		ret = -ESRCH;
1598 		goto out_unlock;
1599 	}
1600 	if (!kill_as_cred_perm(cred, p)) {
1601 		ret = -EPERM;
1602 		goto out_unlock;
1603 	}
1604 	ret = security_task_kill(p, &info, sig, cred);
1605 	if (ret)
1606 		goto out_unlock;
1607 
1608 	if (sig) {
1609 		if (lock_task_sighand(p, &flags)) {
1610 			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1611 			unlock_task_sighand(p, &flags);
1612 		} else
1613 			ret = -ESRCH;
1614 	}
1615 out_unlock:
1616 	rcu_read_unlock();
1617 	return ret;
1618 }
1619 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1620 
1621 /*
1622  * kill_something_info() interprets pid in interesting ways just like kill(2).
1623  *
1624  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1625  * is probably wrong.  Should make it like BSD or SYSV.
1626  */
1627 
1628 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1629 {
1630 	int ret;
1631 
1632 	if (pid > 0)
1633 		return kill_proc_info(sig, info, pid);
1634 
1635 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1636 	if (pid == INT_MIN)
1637 		return -ESRCH;
1638 
1639 	read_lock(&tasklist_lock);
1640 	if (pid != -1) {
1641 		ret = __kill_pgrp_info(sig, info,
1642 				pid ? find_vpid(-pid) : task_pgrp(current));
1643 	} else {
1644 		int retval = 0, count = 0;
1645 		struct task_struct * p;
1646 
1647 		for_each_process(p) {
1648 			if (task_pid_vnr(p) > 1 &&
1649 					!same_thread_group(p, current)) {
1650 				int err = group_send_sig_info(sig, info, p,
1651 							      PIDTYPE_MAX);
1652 				++count;
1653 				if (err != -EPERM)
1654 					retval = err;
1655 			}
1656 		}
1657 		ret = count ? retval : -ESRCH;
1658 	}
1659 	read_unlock(&tasklist_lock);
1660 
1661 	return ret;
1662 }
1663 
1664 /*
1665  * These are for backward compatibility with the rest of the kernel source.
1666  */
1667 
1668 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1669 {
1670 	/*
1671 	 * Make sure legacy kernel users don't send in bad values
1672 	 * (normal paths check this in check_kill_permission).
1673 	 */
1674 	if (!valid_signal(sig))
1675 		return -EINVAL;
1676 
1677 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1678 }
1679 EXPORT_SYMBOL(send_sig_info);
1680 
1681 #define __si_special(priv) \
1682 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1683 
1684 int
1685 send_sig(int sig, struct task_struct *p, int priv)
1686 {
1687 	return send_sig_info(sig, __si_special(priv), p);
1688 }
1689 EXPORT_SYMBOL(send_sig);
1690 
1691 void force_sig(int sig)
1692 {
1693 	struct kernel_siginfo info;
1694 
1695 	clear_siginfo(&info);
1696 	info.si_signo = sig;
1697 	info.si_errno = 0;
1698 	info.si_code = SI_KERNEL;
1699 	info.si_pid = 0;
1700 	info.si_uid = 0;
1701 	force_sig_info(&info);
1702 }
1703 EXPORT_SYMBOL(force_sig);
1704 
1705 void force_fatal_sig(int sig)
1706 {
1707 	struct kernel_siginfo info;
1708 
1709 	clear_siginfo(&info);
1710 	info.si_signo = sig;
1711 	info.si_errno = 0;
1712 	info.si_code = SI_KERNEL;
1713 	info.si_pid = 0;
1714 	info.si_uid = 0;
1715 	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1716 }
1717 
1718 void force_exit_sig(int sig)
1719 {
1720 	struct kernel_siginfo info;
1721 
1722 	clear_siginfo(&info);
1723 	info.si_signo = sig;
1724 	info.si_errno = 0;
1725 	info.si_code = SI_KERNEL;
1726 	info.si_pid = 0;
1727 	info.si_uid = 0;
1728 	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1729 }
1730 
1731 /*
1732  * When things go south during signal handling, we
1733  * will force a SIGSEGV. And if the signal that caused
1734  * the problem was already a SIGSEGV, we'll want to
1735  * make sure we don't even try to deliver the signal..
1736  */
1737 void force_sigsegv(int sig)
1738 {
1739 	if (sig == SIGSEGV)
1740 		force_fatal_sig(SIGSEGV);
1741 	else
1742 		force_sig(SIGSEGV);
1743 }
1744 
1745 int force_sig_fault_to_task(int sig, int code, void __user *addr
1746 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1747 	, struct task_struct *t)
1748 {
1749 	struct kernel_siginfo info;
1750 
1751 	clear_siginfo(&info);
1752 	info.si_signo = sig;
1753 	info.si_errno = 0;
1754 	info.si_code  = code;
1755 	info.si_addr  = addr;
1756 #ifdef __ia64__
1757 	info.si_imm = imm;
1758 	info.si_flags = flags;
1759 	info.si_isr = isr;
1760 #endif
1761 	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1762 }
1763 
1764 int force_sig_fault(int sig, int code, void __user *addr
1765 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1766 {
1767 	return force_sig_fault_to_task(sig, code, addr
1768 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1769 }
1770 
1771 int send_sig_fault(int sig, int code, void __user *addr
1772 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1773 	, struct task_struct *t)
1774 {
1775 	struct kernel_siginfo info;
1776 
1777 	clear_siginfo(&info);
1778 	info.si_signo = sig;
1779 	info.si_errno = 0;
1780 	info.si_code  = code;
1781 	info.si_addr  = addr;
1782 #ifdef __ia64__
1783 	info.si_imm = imm;
1784 	info.si_flags = flags;
1785 	info.si_isr = isr;
1786 #endif
1787 	return send_sig_info(info.si_signo, &info, t);
1788 }
1789 
1790 int force_sig_mceerr(int code, void __user *addr, short lsb)
1791 {
1792 	struct kernel_siginfo info;
1793 
1794 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1795 	clear_siginfo(&info);
1796 	info.si_signo = SIGBUS;
1797 	info.si_errno = 0;
1798 	info.si_code = code;
1799 	info.si_addr = addr;
1800 	info.si_addr_lsb = lsb;
1801 	return force_sig_info(&info);
1802 }
1803 
1804 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1805 {
1806 	struct kernel_siginfo info;
1807 
1808 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1809 	clear_siginfo(&info);
1810 	info.si_signo = SIGBUS;
1811 	info.si_errno = 0;
1812 	info.si_code = code;
1813 	info.si_addr = addr;
1814 	info.si_addr_lsb = lsb;
1815 	return send_sig_info(info.si_signo, &info, t);
1816 }
1817 EXPORT_SYMBOL(send_sig_mceerr);
1818 
1819 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1820 {
1821 	struct kernel_siginfo info;
1822 
1823 	clear_siginfo(&info);
1824 	info.si_signo = SIGSEGV;
1825 	info.si_errno = 0;
1826 	info.si_code  = SEGV_BNDERR;
1827 	info.si_addr  = addr;
1828 	info.si_lower = lower;
1829 	info.si_upper = upper;
1830 	return force_sig_info(&info);
1831 }
1832 
1833 #ifdef SEGV_PKUERR
1834 int force_sig_pkuerr(void __user *addr, u32 pkey)
1835 {
1836 	struct kernel_siginfo info;
1837 
1838 	clear_siginfo(&info);
1839 	info.si_signo = SIGSEGV;
1840 	info.si_errno = 0;
1841 	info.si_code  = SEGV_PKUERR;
1842 	info.si_addr  = addr;
1843 	info.si_pkey  = pkey;
1844 	return force_sig_info(&info);
1845 }
1846 #endif
1847 
1848 int force_sig_perf(void __user *addr, u32 type, u64 sig_data)
1849 {
1850 	struct kernel_siginfo info;
1851 
1852 	clear_siginfo(&info);
1853 	info.si_signo     = SIGTRAP;
1854 	info.si_errno     = 0;
1855 	info.si_code      = TRAP_PERF;
1856 	info.si_addr      = addr;
1857 	info.si_perf_data = sig_data;
1858 	info.si_perf_type = type;
1859 
1860 	return force_sig_info(&info);
1861 }
1862 
1863 /**
1864  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1865  * @syscall: syscall number to send to userland
1866  * @reason: filter-supplied reason code to send to userland (via si_errno)
1867  * @force_coredump: true to trigger a coredump
1868  *
1869  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1870  */
1871 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1872 {
1873 	struct kernel_siginfo info;
1874 
1875 	clear_siginfo(&info);
1876 	info.si_signo = SIGSYS;
1877 	info.si_code = SYS_SECCOMP;
1878 	info.si_call_addr = (void __user *)KSTK_EIP(current);
1879 	info.si_errno = reason;
1880 	info.si_arch = syscall_get_arch(current);
1881 	info.si_syscall = syscall;
1882 	return force_sig_info_to_task(&info, current,
1883 		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1884 }
1885 
1886 /* For the crazy architectures that include trap information in
1887  * the errno field, instead of an actual errno value.
1888  */
1889 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1890 {
1891 	struct kernel_siginfo info;
1892 
1893 	clear_siginfo(&info);
1894 	info.si_signo = SIGTRAP;
1895 	info.si_errno = errno;
1896 	info.si_code  = TRAP_HWBKPT;
1897 	info.si_addr  = addr;
1898 	return force_sig_info(&info);
1899 }
1900 
1901 /* For the rare architectures that include trap information using
1902  * si_trapno.
1903  */
1904 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1905 {
1906 	struct kernel_siginfo info;
1907 
1908 	clear_siginfo(&info);
1909 	info.si_signo = sig;
1910 	info.si_errno = 0;
1911 	info.si_code  = code;
1912 	info.si_addr  = addr;
1913 	info.si_trapno = trapno;
1914 	return force_sig_info(&info);
1915 }
1916 
1917 /* For the rare architectures that include trap information using
1918  * si_trapno.
1919  */
1920 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1921 			  struct task_struct *t)
1922 {
1923 	struct kernel_siginfo info;
1924 
1925 	clear_siginfo(&info);
1926 	info.si_signo = sig;
1927 	info.si_errno = 0;
1928 	info.si_code  = code;
1929 	info.si_addr  = addr;
1930 	info.si_trapno = trapno;
1931 	return send_sig_info(info.si_signo, &info, t);
1932 }
1933 
1934 int kill_pgrp(struct pid *pid, int sig, int priv)
1935 {
1936 	int ret;
1937 
1938 	read_lock(&tasklist_lock);
1939 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1940 	read_unlock(&tasklist_lock);
1941 
1942 	return ret;
1943 }
1944 EXPORT_SYMBOL(kill_pgrp);
1945 
1946 int kill_pid(struct pid *pid, int sig, int priv)
1947 {
1948 	return kill_pid_info(sig, __si_special(priv), pid);
1949 }
1950 EXPORT_SYMBOL(kill_pid);
1951 
1952 /*
1953  * These functions support sending signals using preallocated sigqueue
1954  * structures.  This is needed "because realtime applications cannot
1955  * afford to lose notifications of asynchronous events, like timer
1956  * expirations or I/O completions".  In the case of POSIX Timers
1957  * we allocate the sigqueue structure from the timer_create.  If this
1958  * allocation fails we are able to report the failure to the application
1959  * with an EAGAIN error.
1960  */
1961 struct sigqueue *sigqueue_alloc(void)
1962 {
1963 	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1964 }
1965 
1966 void sigqueue_free(struct sigqueue *q)
1967 {
1968 	unsigned long flags;
1969 	spinlock_t *lock = &current->sighand->siglock;
1970 
1971 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1972 	/*
1973 	 * We must hold ->siglock while testing q->list
1974 	 * to serialize with collect_signal() or with
1975 	 * __exit_signal()->flush_sigqueue().
1976 	 */
1977 	spin_lock_irqsave(lock, flags);
1978 	q->flags &= ~SIGQUEUE_PREALLOC;
1979 	/*
1980 	 * If it is queued it will be freed when dequeued,
1981 	 * like the "regular" sigqueue.
1982 	 */
1983 	if (!list_empty(&q->list))
1984 		q = NULL;
1985 	spin_unlock_irqrestore(lock, flags);
1986 
1987 	if (q)
1988 		__sigqueue_free(q);
1989 }
1990 
1991 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1992 {
1993 	int sig = q->info.si_signo;
1994 	struct sigpending *pending;
1995 	struct task_struct *t;
1996 	unsigned long flags;
1997 	int ret, result;
1998 
1999 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
2000 
2001 	ret = -1;
2002 	rcu_read_lock();
2003 	t = pid_task(pid, type);
2004 	if (!t || !likely(lock_task_sighand(t, &flags)))
2005 		goto ret;
2006 
2007 	ret = 1; /* the signal is ignored */
2008 	result = TRACE_SIGNAL_IGNORED;
2009 	if (!prepare_signal(sig, t, false))
2010 		goto out;
2011 
2012 	ret = 0;
2013 	if (unlikely(!list_empty(&q->list))) {
2014 		/*
2015 		 * If an SI_TIMER entry is already queue just increment
2016 		 * the overrun count.
2017 		 */
2018 		BUG_ON(q->info.si_code != SI_TIMER);
2019 		q->info.si_overrun++;
2020 		result = TRACE_SIGNAL_ALREADY_PENDING;
2021 		goto out;
2022 	}
2023 	q->info.si_overrun = 0;
2024 
2025 	signalfd_notify(t, sig);
2026 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2027 	list_add_tail(&q->list, &pending->list);
2028 	sigaddset(&pending->signal, sig);
2029 	complete_signal(sig, t, type);
2030 	result = TRACE_SIGNAL_DELIVERED;
2031 out:
2032 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2033 	unlock_task_sighand(t, &flags);
2034 ret:
2035 	rcu_read_unlock();
2036 	return ret;
2037 }
2038 
2039 static void do_notify_pidfd(struct task_struct *task)
2040 {
2041 	struct pid *pid;
2042 
2043 	WARN_ON(task->exit_state == 0);
2044 	pid = task_pid(task);
2045 	wake_up_all(&pid->wait_pidfd);
2046 }
2047 
2048 /*
2049  * Let a parent know about the death of a child.
2050  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2051  *
2052  * Returns true if our parent ignored us and so we've switched to
2053  * self-reaping.
2054  */
2055 bool do_notify_parent(struct task_struct *tsk, int sig)
2056 {
2057 	struct kernel_siginfo info;
2058 	unsigned long flags;
2059 	struct sighand_struct *psig;
2060 	bool autoreap = false;
2061 	u64 utime, stime;
2062 
2063 	BUG_ON(sig == -1);
2064 
2065  	/* do_notify_parent_cldstop should have been called instead.  */
2066  	BUG_ON(task_is_stopped_or_traced(tsk));
2067 
2068 	BUG_ON(!tsk->ptrace &&
2069 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2070 
2071 	/* Wake up all pidfd waiters */
2072 	do_notify_pidfd(tsk);
2073 
2074 	if (sig != SIGCHLD) {
2075 		/*
2076 		 * This is only possible if parent == real_parent.
2077 		 * Check if it has changed security domain.
2078 		 */
2079 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2080 			sig = SIGCHLD;
2081 	}
2082 
2083 	clear_siginfo(&info);
2084 	info.si_signo = sig;
2085 	info.si_errno = 0;
2086 	/*
2087 	 * We are under tasklist_lock here so our parent is tied to
2088 	 * us and cannot change.
2089 	 *
2090 	 * task_active_pid_ns will always return the same pid namespace
2091 	 * until a task passes through release_task.
2092 	 *
2093 	 * write_lock() currently calls preempt_disable() which is the
2094 	 * same as rcu_read_lock(), but according to Oleg, this is not
2095 	 * correct to rely on this
2096 	 */
2097 	rcu_read_lock();
2098 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2099 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2100 				       task_uid(tsk));
2101 	rcu_read_unlock();
2102 
2103 	task_cputime(tsk, &utime, &stime);
2104 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2105 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2106 
2107 	info.si_status = tsk->exit_code & 0x7f;
2108 	if (tsk->exit_code & 0x80)
2109 		info.si_code = CLD_DUMPED;
2110 	else if (tsk->exit_code & 0x7f)
2111 		info.si_code = CLD_KILLED;
2112 	else {
2113 		info.si_code = CLD_EXITED;
2114 		info.si_status = tsk->exit_code >> 8;
2115 	}
2116 
2117 	psig = tsk->parent->sighand;
2118 	spin_lock_irqsave(&psig->siglock, flags);
2119 	if (!tsk->ptrace && sig == SIGCHLD &&
2120 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2121 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2122 		/*
2123 		 * We are exiting and our parent doesn't care.  POSIX.1
2124 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2125 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2126 		 * automatically and not left for our parent's wait4 call.
2127 		 * Rather than having the parent do it as a magic kind of
2128 		 * signal handler, we just set this to tell do_exit that we
2129 		 * can be cleaned up without becoming a zombie.  Note that
2130 		 * we still call __wake_up_parent in this case, because a
2131 		 * blocked sys_wait4 might now return -ECHILD.
2132 		 *
2133 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2134 		 * is implementation-defined: we do (if you don't want
2135 		 * it, just use SIG_IGN instead).
2136 		 */
2137 		autoreap = true;
2138 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2139 			sig = 0;
2140 	}
2141 	/*
2142 	 * Send with __send_signal as si_pid and si_uid are in the
2143 	 * parent's namespaces.
2144 	 */
2145 	if (valid_signal(sig) && sig)
2146 		__send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2147 	__wake_up_parent(tsk, tsk->parent);
2148 	spin_unlock_irqrestore(&psig->siglock, flags);
2149 
2150 	return autoreap;
2151 }
2152 
2153 /**
2154  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2155  * @tsk: task reporting the state change
2156  * @for_ptracer: the notification is for ptracer
2157  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2158  *
2159  * Notify @tsk's parent that the stopped/continued state has changed.  If
2160  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2161  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2162  *
2163  * CONTEXT:
2164  * Must be called with tasklist_lock at least read locked.
2165  */
2166 static void do_notify_parent_cldstop(struct task_struct *tsk,
2167 				     bool for_ptracer, int why)
2168 {
2169 	struct kernel_siginfo info;
2170 	unsigned long flags;
2171 	struct task_struct *parent;
2172 	struct sighand_struct *sighand;
2173 	u64 utime, stime;
2174 
2175 	if (for_ptracer) {
2176 		parent = tsk->parent;
2177 	} else {
2178 		tsk = tsk->group_leader;
2179 		parent = tsk->real_parent;
2180 	}
2181 
2182 	clear_siginfo(&info);
2183 	info.si_signo = SIGCHLD;
2184 	info.si_errno = 0;
2185 	/*
2186 	 * see comment in do_notify_parent() about the following 4 lines
2187 	 */
2188 	rcu_read_lock();
2189 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2190 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2191 	rcu_read_unlock();
2192 
2193 	task_cputime(tsk, &utime, &stime);
2194 	info.si_utime = nsec_to_clock_t(utime);
2195 	info.si_stime = nsec_to_clock_t(stime);
2196 
2197  	info.si_code = why;
2198  	switch (why) {
2199  	case CLD_CONTINUED:
2200  		info.si_status = SIGCONT;
2201  		break;
2202  	case CLD_STOPPED:
2203  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2204  		break;
2205  	case CLD_TRAPPED:
2206  		info.si_status = tsk->exit_code & 0x7f;
2207  		break;
2208  	default:
2209  		BUG();
2210  	}
2211 
2212 	sighand = parent->sighand;
2213 	spin_lock_irqsave(&sighand->siglock, flags);
2214 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2215 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2216 		__group_send_sig_info(SIGCHLD, &info, parent);
2217 	/*
2218 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2219 	 */
2220 	__wake_up_parent(tsk, parent);
2221 	spin_unlock_irqrestore(&sighand->siglock, flags);
2222 }
2223 
2224 /*
2225  * This must be called with current->sighand->siglock held.
2226  *
2227  * This should be the path for all ptrace stops.
2228  * We always set current->last_siginfo while stopped here.
2229  * That makes it a way to test a stopped process for
2230  * being ptrace-stopped vs being job-control-stopped.
2231  *
2232  * If we actually decide not to stop at all because the tracer
2233  * is gone, we keep current->exit_code unless clear_code.
2234  */
2235 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2236 	__releases(&current->sighand->siglock)
2237 	__acquires(&current->sighand->siglock)
2238 {
2239 	bool gstop_done = false;
2240 
2241 	if (arch_ptrace_stop_needed()) {
2242 		/*
2243 		 * The arch code has something special to do before a
2244 		 * ptrace stop.  This is allowed to block, e.g. for faults
2245 		 * on user stack pages.  We can't keep the siglock while
2246 		 * calling arch_ptrace_stop, so we must release it now.
2247 		 * To preserve proper semantics, we must do this before
2248 		 * any signal bookkeeping like checking group_stop_count.
2249 		 */
2250 		spin_unlock_irq(&current->sighand->siglock);
2251 		arch_ptrace_stop();
2252 		spin_lock_irq(&current->sighand->siglock);
2253 	}
2254 
2255 	/*
2256 	 * schedule() will not sleep if there is a pending signal that
2257 	 * can awaken the task.
2258 	 */
2259 	set_special_state(TASK_TRACED);
2260 
2261 	/*
2262 	 * We're committing to trapping.  TRACED should be visible before
2263 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2264 	 * Also, transition to TRACED and updates to ->jobctl should be
2265 	 * atomic with respect to siglock and should be done after the arch
2266 	 * hook as siglock is released and regrabbed across it.
2267 	 *
2268 	 *     TRACER				    TRACEE
2269 	 *
2270 	 *     ptrace_attach()
2271 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2272 	 *     do_wait()
2273 	 *       set_current_state()                smp_wmb();
2274 	 *       ptrace_do_wait()
2275 	 *         wait_task_stopped()
2276 	 *           task_stopped_code()
2277 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2278 	 */
2279 	smp_wmb();
2280 
2281 	current->last_siginfo = info;
2282 	current->exit_code = exit_code;
2283 
2284 	/*
2285 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2286 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2287 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2288 	 * could be clear now.  We act as if SIGCONT is received after
2289 	 * TASK_TRACED is entered - ignore it.
2290 	 */
2291 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2292 		gstop_done = task_participate_group_stop(current);
2293 
2294 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2295 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2296 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2297 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2298 
2299 	/* entering a trap, clear TRAPPING */
2300 	task_clear_jobctl_trapping(current);
2301 
2302 	spin_unlock_irq(&current->sighand->siglock);
2303 	read_lock(&tasklist_lock);
2304 	if (likely(current->ptrace)) {
2305 		/*
2306 		 * Notify parents of the stop.
2307 		 *
2308 		 * While ptraced, there are two parents - the ptracer and
2309 		 * the real_parent of the group_leader.  The ptracer should
2310 		 * know about every stop while the real parent is only
2311 		 * interested in the completion of group stop.  The states
2312 		 * for the two don't interact with each other.  Notify
2313 		 * separately unless they're gonna be duplicates.
2314 		 */
2315 		do_notify_parent_cldstop(current, true, why);
2316 		if (gstop_done && ptrace_reparented(current))
2317 			do_notify_parent_cldstop(current, false, why);
2318 
2319 		/*
2320 		 * Don't want to allow preemption here, because
2321 		 * sys_ptrace() needs this task to be inactive.
2322 		 *
2323 		 * XXX: implement read_unlock_no_resched().
2324 		 */
2325 		preempt_disable();
2326 		read_unlock(&tasklist_lock);
2327 		cgroup_enter_frozen();
2328 		preempt_enable_no_resched();
2329 		freezable_schedule();
2330 		cgroup_leave_frozen(true);
2331 	} else {
2332 		/*
2333 		 * By the time we got the lock, our tracer went away.
2334 		 * Don't drop the lock yet, another tracer may come.
2335 		 *
2336 		 * If @gstop_done, the ptracer went away between group stop
2337 		 * completion and here.  During detach, it would have set
2338 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2339 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2340 		 * the real parent of the group stop completion is enough.
2341 		 */
2342 		if (gstop_done)
2343 			do_notify_parent_cldstop(current, false, why);
2344 
2345 		/* tasklist protects us from ptrace_freeze_traced() */
2346 		__set_current_state(TASK_RUNNING);
2347 		if (clear_code)
2348 			current->exit_code = 0;
2349 		read_unlock(&tasklist_lock);
2350 	}
2351 
2352 	/*
2353 	 * We are back.  Now reacquire the siglock before touching
2354 	 * last_siginfo, so that we are sure to have synchronized with
2355 	 * any signal-sending on another CPU that wants to examine it.
2356 	 */
2357 	spin_lock_irq(&current->sighand->siglock);
2358 	current->last_siginfo = NULL;
2359 
2360 	/* LISTENING can be set only during STOP traps, clear it */
2361 	current->jobctl &= ~JOBCTL_LISTENING;
2362 
2363 	/*
2364 	 * Queued signals ignored us while we were stopped for tracing.
2365 	 * So check for any that we should take before resuming user mode.
2366 	 * This sets TIF_SIGPENDING, but never clears it.
2367 	 */
2368 	recalc_sigpending_tsk(current);
2369 }
2370 
2371 static void ptrace_do_notify(int signr, int exit_code, int why)
2372 {
2373 	kernel_siginfo_t info;
2374 
2375 	clear_siginfo(&info);
2376 	info.si_signo = signr;
2377 	info.si_code = exit_code;
2378 	info.si_pid = task_pid_vnr(current);
2379 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2380 
2381 	/* Let the debugger run.  */
2382 	ptrace_stop(exit_code, why, 1, &info);
2383 }
2384 
2385 void ptrace_notify(int exit_code)
2386 {
2387 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2388 	if (unlikely(current->task_works))
2389 		task_work_run();
2390 
2391 	spin_lock_irq(&current->sighand->siglock);
2392 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2393 	spin_unlock_irq(&current->sighand->siglock);
2394 }
2395 
2396 /**
2397  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2398  * @signr: signr causing group stop if initiating
2399  *
2400  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2401  * and participate in it.  If already set, participate in the existing
2402  * group stop.  If participated in a group stop (and thus slept), %true is
2403  * returned with siglock released.
2404  *
2405  * If ptraced, this function doesn't handle stop itself.  Instead,
2406  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2407  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2408  * places afterwards.
2409  *
2410  * CONTEXT:
2411  * Must be called with @current->sighand->siglock held, which is released
2412  * on %true return.
2413  *
2414  * RETURNS:
2415  * %false if group stop is already cancelled or ptrace trap is scheduled.
2416  * %true if participated in group stop.
2417  */
2418 static bool do_signal_stop(int signr)
2419 	__releases(&current->sighand->siglock)
2420 {
2421 	struct signal_struct *sig = current->signal;
2422 
2423 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2424 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2425 		struct task_struct *t;
2426 
2427 		/* signr will be recorded in task->jobctl for retries */
2428 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2429 
2430 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2431 		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2432 		    unlikely(sig->group_exec_task))
2433 			return false;
2434 		/*
2435 		 * There is no group stop already in progress.  We must
2436 		 * initiate one now.
2437 		 *
2438 		 * While ptraced, a task may be resumed while group stop is
2439 		 * still in effect and then receive a stop signal and
2440 		 * initiate another group stop.  This deviates from the
2441 		 * usual behavior as two consecutive stop signals can't
2442 		 * cause two group stops when !ptraced.  That is why we
2443 		 * also check !task_is_stopped(t) below.
2444 		 *
2445 		 * The condition can be distinguished by testing whether
2446 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2447 		 * group_exit_code in such case.
2448 		 *
2449 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2450 		 * an intervening stop signal is required to cause two
2451 		 * continued events regardless of ptrace.
2452 		 */
2453 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2454 			sig->group_exit_code = signr;
2455 
2456 		sig->group_stop_count = 0;
2457 
2458 		if (task_set_jobctl_pending(current, signr | gstop))
2459 			sig->group_stop_count++;
2460 
2461 		t = current;
2462 		while_each_thread(current, t) {
2463 			/*
2464 			 * Setting state to TASK_STOPPED for a group
2465 			 * stop is always done with the siglock held,
2466 			 * so this check has no races.
2467 			 */
2468 			if (!task_is_stopped(t) &&
2469 			    task_set_jobctl_pending(t, signr | gstop)) {
2470 				sig->group_stop_count++;
2471 				if (likely(!(t->ptrace & PT_SEIZED)))
2472 					signal_wake_up(t, 0);
2473 				else
2474 					ptrace_trap_notify(t);
2475 			}
2476 		}
2477 	}
2478 
2479 	if (likely(!current->ptrace)) {
2480 		int notify = 0;
2481 
2482 		/*
2483 		 * If there are no other threads in the group, or if there
2484 		 * is a group stop in progress and we are the last to stop,
2485 		 * report to the parent.
2486 		 */
2487 		if (task_participate_group_stop(current))
2488 			notify = CLD_STOPPED;
2489 
2490 		set_special_state(TASK_STOPPED);
2491 		spin_unlock_irq(&current->sighand->siglock);
2492 
2493 		/*
2494 		 * Notify the parent of the group stop completion.  Because
2495 		 * we're not holding either the siglock or tasklist_lock
2496 		 * here, ptracer may attach inbetween; however, this is for
2497 		 * group stop and should always be delivered to the real
2498 		 * parent of the group leader.  The new ptracer will get
2499 		 * its notification when this task transitions into
2500 		 * TASK_TRACED.
2501 		 */
2502 		if (notify) {
2503 			read_lock(&tasklist_lock);
2504 			do_notify_parent_cldstop(current, false, notify);
2505 			read_unlock(&tasklist_lock);
2506 		}
2507 
2508 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2509 		cgroup_enter_frozen();
2510 		freezable_schedule();
2511 		return true;
2512 	} else {
2513 		/*
2514 		 * While ptraced, group stop is handled by STOP trap.
2515 		 * Schedule it and let the caller deal with it.
2516 		 */
2517 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2518 		return false;
2519 	}
2520 }
2521 
2522 /**
2523  * do_jobctl_trap - take care of ptrace jobctl traps
2524  *
2525  * When PT_SEIZED, it's used for both group stop and explicit
2526  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2527  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2528  * the stop signal; otherwise, %SIGTRAP.
2529  *
2530  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2531  * number as exit_code and no siginfo.
2532  *
2533  * CONTEXT:
2534  * Must be called with @current->sighand->siglock held, which may be
2535  * released and re-acquired before returning with intervening sleep.
2536  */
2537 static void do_jobctl_trap(void)
2538 {
2539 	struct signal_struct *signal = current->signal;
2540 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2541 
2542 	if (current->ptrace & PT_SEIZED) {
2543 		if (!signal->group_stop_count &&
2544 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2545 			signr = SIGTRAP;
2546 		WARN_ON_ONCE(!signr);
2547 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2548 				 CLD_STOPPED);
2549 	} else {
2550 		WARN_ON_ONCE(!signr);
2551 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2552 		current->exit_code = 0;
2553 	}
2554 }
2555 
2556 /**
2557  * do_freezer_trap - handle the freezer jobctl trap
2558  *
2559  * Puts the task into frozen state, if only the task is not about to quit.
2560  * In this case it drops JOBCTL_TRAP_FREEZE.
2561  *
2562  * CONTEXT:
2563  * Must be called with @current->sighand->siglock held,
2564  * which is always released before returning.
2565  */
2566 static void do_freezer_trap(void)
2567 	__releases(&current->sighand->siglock)
2568 {
2569 	/*
2570 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2571 	 * let's make another loop to give it a chance to be handled.
2572 	 * In any case, we'll return back.
2573 	 */
2574 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2575 	     JOBCTL_TRAP_FREEZE) {
2576 		spin_unlock_irq(&current->sighand->siglock);
2577 		return;
2578 	}
2579 
2580 	/*
2581 	 * Now we're sure that there is no pending fatal signal and no
2582 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2583 	 * immediately (if there is a non-fatal signal pending), and
2584 	 * put the task into sleep.
2585 	 */
2586 	__set_current_state(TASK_INTERRUPTIBLE);
2587 	clear_thread_flag(TIF_SIGPENDING);
2588 	spin_unlock_irq(&current->sighand->siglock);
2589 	cgroup_enter_frozen();
2590 	freezable_schedule();
2591 }
2592 
2593 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2594 {
2595 	/*
2596 	 * We do not check sig_kernel_stop(signr) but set this marker
2597 	 * unconditionally because we do not know whether debugger will
2598 	 * change signr. This flag has no meaning unless we are going
2599 	 * to stop after return from ptrace_stop(). In this case it will
2600 	 * be checked in do_signal_stop(), we should only stop if it was
2601 	 * not cleared by SIGCONT while we were sleeping. See also the
2602 	 * comment in dequeue_signal().
2603 	 */
2604 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2605 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2606 
2607 	/* We're back.  Did the debugger cancel the sig?  */
2608 	signr = current->exit_code;
2609 	if (signr == 0)
2610 		return signr;
2611 
2612 	current->exit_code = 0;
2613 
2614 	/*
2615 	 * Update the siginfo structure if the signal has
2616 	 * changed.  If the debugger wanted something
2617 	 * specific in the siginfo structure then it should
2618 	 * have updated *info via PTRACE_SETSIGINFO.
2619 	 */
2620 	if (signr != info->si_signo) {
2621 		clear_siginfo(info);
2622 		info->si_signo = signr;
2623 		info->si_errno = 0;
2624 		info->si_code = SI_USER;
2625 		rcu_read_lock();
2626 		info->si_pid = task_pid_vnr(current->parent);
2627 		info->si_uid = from_kuid_munged(current_user_ns(),
2628 						task_uid(current->parent));
2629 		rcu_read_unlock();
2630 	}
2631 
2632 	/* If the (new) signal is now blocked, requeue it.  */
2633 	if (sigismember(&current->blocked, signr) ||
2634 	    fatal_signal_pending(current)) {
2635 		send_signal(signr, info, current, type);
2636 		signr = 0;
2637 	}
2638 
2639 	return signr;
2640 }
2641 
2642 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2643 {
2644 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2645 	case SIL_FAULT:
2646 	case SIL_FAULT_TRAPNO:
2647 	case SIL_FAULT_MCEERR:
2648 	case SIL_FAULT_BNDERR:
2649 	case SIL_FAULT_PKUERR:
2650 	case SIL_FAULT_PERF_EVENT:
2651 		ksig->info.si_addr = arch_untagged_si_addr(
2652 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2653 		break;
2654 	case SIL_KILL:
2655 	case SIL_TIMER:
2656 	case SIL_POLL:
2657 	case SIL_CHLD:
2658 	case SIL_RT:
2659 	case SIL_SYS:
2660 		break;
2661 	}
2662 }
2663 
2664 bool get_signal(struct ksignal *ksig)
2665 {
2666 	struct sighand_struct *sighand = current->sighand;
2667 	struct signal_struct *signal = current->signal;
2668 	int signr;
2669 
2670 	if (unlikely(current->task_works))
2671 		task_work_run();
2672 
2673 	/*
2674 	 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2675 	 * that the arch handlers don't all have to do it. If we get here
2676 	 * without TIF_SIGPENDING, just exit after running signal work.
2677 	 */
2678 	if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2679 		if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2680 			tracehook_notify_signal();
2681 		if (!task_sigpending(current))
2682 			return false;
2683 	}
2684 
2685 	if (unlikely(uprobe_deny_signal()))
2686 		return false;
2687 
2688 	/*
2689 	 * Do this once, we can't return to user-mode if freezing() == T.
2690 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2691 	 * thus do not need another check after return.
2692 	 */
2693 	try_to_freeze();
2694 
2695 relock:
2696 	spin_lock_irq(&sighand->siglock);
2697 
2698 	/*
2699 	 * Every stopped thread goes here after wakeup. Check to see if
2700 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2701 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2702 	 */
2703 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2704 		int why;
2705 
2706 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2707 			why = CLD_CONTINUED;
2708 		else
2709 			why = CLD_STOPPED;
2710 
2711 		signal->flags &= ~SIGNAL_CLD_MASK;
2712 
2713 		spin_unlock_irq(&sighand->siglock);
2714 
2715 		/*
2716 		 * Notify the parent that we're continuing.  This event is
2717 		 * always per-process and doesn't make whole lot of sense
2718 		 * for ptracers, who shouldn't consume the state via
2719 		 * wait(2) either, but, for backward compatibility, notify
2720 		 * the ptracer of the group leader too unless it's gonna be
2721 		 * a duplicate.
2722 		 */
2723 		read_lock(&tasklist_lock);
2724 		do_notify_parent_cldstop(current, false, why);
2725 
2726 		if (ptrace_reparented(current->group_leader))
2727 			do_notify_parent_cldstop(current->group_leader,
2728 						true, why);
2729 		read_unlock(&tasklist_lock);
2730 
2731 		goto relock;
2732 	}
2733 
2734 	for (;;) {
2735 		struct k_sigaction *ka;
2736 		enum pid_type type;
2737 
2738 		/* Has this task already been marked for death? */
2739 		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2740 		     signal->group_exec_task) {
2741 			ksig->info.si_signo = signr = SIGKILL;
2742 			sigdelset(&current->pending.signal, SIGKILL);
2743 			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2744 				&sighand->action[SIGKILL - 1]);
2745 			recalc_sigpending();
2746 			goto fatal;
2747 		}
2748 
2749 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2750 		    do_signal_stop(0))
2751 			goto relock;
2752 
2753 		if (unlikely(current->jobctl &
2754 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2755 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2756 				do_jobctl_trap();
2757 				spin_unlock_irq(&sighand->siglock);
2758 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2759 				do_freezer_trap();
2760 
2761 			goto relock;
2762 		}
2763 
2764 		/*
2765 		 * If the task is leaving the frozen state, let's update
2766 		 * cgroup counters and reset the frozen bit.
2767 		 */
2768 		if (unlikely(cgroup_task_frozen(current))) {
2769 			spin_unlock_irq(&sighand->siglock);
2770 			cgroup_leave_frozen(false);
2771 			goto relock;
2772 		}
2773 
2774 		/*
2775 		 * Signals generated by the execution of an instruction
2776 		 * need to be delivered before any other pending signals
2777 		 * so that the instruction pointer in the signal stack
2778 		 * frame points to the faulting instruction.
2779 		 */
2780 		type = PIDTYPE_PID;
2781 		signr = dequeue_synchronous_signal(&ksig->info);
2782 		if (!signr)
2783 			signr = dequeue_signal(current, &current->blocked,
2784 					       &ksig->info, &type);
2785 
2786 		if (!signr)
2787 			break; /* will return 0 */
2788 
2789 		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2790 		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2791 			signr = ptrace_signal(signr, &ksig->info, type);
2792 			if (!signr)
2793 				continue;
2794 		}
2795 
2796 		ka = &sighand->action[signr-1];
2797 
2798 		/* Trace actually delivered signals. */
2799 		trace_signal_deliver(signr, &ksig->info, ka);
2800 
2801 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2802 			continue;
2803 		if (ka->sa.sa_handler != SIG_DFL) {
2804 			/* Run the handler.  */
2805 			ksig->ka = *ka;
2806 
2807 			if (ka->sa.sa_flags & SA_ONESHOT)
2808 				ka->sa.sa_handler = SIG_DFL;
2809 
2810 			break; /* will return non-zero "signr" value */
2811 		}
2812 
2813 		/*
2814 		 * Now we are doing the default action for this signal.
2815 		 */
2816 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2817 			continue;
2818 
2819 		/*
2820 		 * Global init gets no signals it doesn't want.
2821 		 * Container-init gets no signals it doesn't want from same
2822 		 * container.
2823 		 *
2824 		 * Note that if global/container-init sees a sig_kernel_only()
2825 		 * signal here, the signal must have been generated internally
2826 		 * or must have come from an ancestor namespace. In either
2827 		 * case, the signal cannot be dropped.
2828 		 */
2829 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2830 				!sig_kernel_only(signr))
2831 			continue;
2832 
2833 		if (sig_kernel_stop(signr)) {
2834 			/*
2835 			 * The default action is to stop all threads in
2836 			 * the thread group.  The job control signals
2837 			 * do nothing in an orphaned pgrp, but SIGSTOP
2838 			 * always works.  Note that siglock needs to be
2839 			 * dropped during the call to is_orphaned_pgrp()
2840 			 * because of lock ordering with tasklist_lock.
2841 			 * This allows an intervening SIGCONT to be posted.
2842 			 * We need to check for that and bail out if necessary.
2843 			 */
2844 			if (signr != SIGSTOP) {
2845 				spin_unlock_irq(&sighand->siglock);
2846 
2847 				/* signals can be posted during this window */
2848 
2849 				if (is_current_pgrp_orphaned())
2850 					goto relock;
2851 
2852 				spin_lock_irq(&sighand->siglock);
2853 			}
2854 
2855 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2856 				/* It released the siglock.  */
2857 				goto relock;
2858 			}
2859 
2860 			/*
2861 			 * We didn't actually stop, due to a race
2862 			 * with SIGCONT or something like that.
2863 			 */
2864 			continue;
2865 		}
2866 
2867 	fatal:
2868 		spin_unlock_irq(&sighand->siglock);
2869 		if (unlikely(cgroup_task_frozen(current)))
2870 			cgroup_leave_frozen(true);
2871 
2872 		/*
2873 		 * Anything else is fatal, maybe with a core dump.
2874 		 */
2875 		current->flags |= PF_SIGNALED;
2876 
2877 		if (sig_kernel_coredump(signr)) {
2878 			if (print_fatal_signals)
2879 				print_fatal_signal(ksig->info.si_signo);
2880 			proc_coredump_connector(current);
2881 			/*
2882 			 * If it was able to dump core, this kills all
2883 			 * other threads in the group and synchronizes with
2884 			 * their demise.  If we lost the race with another
2885 			 * thread getting here, it set group_exit_code
2886 			 * first and our do_group_exit call below will use
2887 			 * that value and ignore the one we pass it.
2888 			 */
2889 			do_coredump(&ksig->info);
2890 		}
2891 
2892 		/*
2893 		 * PF_IO_WORKER threads will catch and exit on fatal signals
2894 		 * themselves. They have cleanup that must be performed, so
2895 		 * we cannot call do_exit() on their behalf.
2896 		 */
2897 		if (current->flags & PF_IO_WORKER)
2898 			goto out;
2899 
2900 		/*
2901 		 * Death signals, no core dump.
2902 		 */
2903 		do_group_exit(ksig->info.si_signo);
2904 		/* NOTREACHED */
2905 	}
2906 	spin_unlock_irq(&sighand->siglock);
2907 out:
2908 	ksig->sig = signr;
2909 
2910 	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2911 		hide_si_addr_tag_bits(ksig);
2912 
2913 	return ksig->sig > 0;
2914 }
2915 
2916 /**
2917  * signal_delivered - called after signal delivery to update blocked signals
2918  * @ksig:		kernel signal struct
2919  * @stepping:		nonzero if debugger single-step or block-step in use
2920  *
2921  * This function should be called when a signal has successfully been
2922  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2923  * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2924  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2925  */
2926 static void signal_delivered(struct ksignal *ksig, int stepping)
2927 {
2928 	sigset_t blocked;
2929 
2930 	/* A signal was successfully delivered, and the
2931 	   saved sigmask was stored on the signal frame,
2932 	   and will be restored by sigreturn.  So we can
2933 	   simply clear the restore sigmask flag.  */
2934 	clear_restore_sigmask();
2935 
2936 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2937 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2938 		sigaddset(&blocked, ksig->sig);
2939 	set_current_blocked(&blocked);
2940 	if (current->sas_ss_flags & SS_AUTODISARM)
2941 		sas_ss_reset(current);
2942 	tracehook_signal_handler(stepping);
2943 }
2944 
2945 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2946 {
2947 	if (failed)
2948 		force_sigsegv(ksig->sig);
2949 	else
2950 		signal_delivered(ksig, stepping);
2951 }
2952 
2953 /*
2954  * It could be that complete_signal() picked us to notify about the
2955  * group-wide signal. Other threads should be notified now to take
2956  * the shared signals in @which since we will not.
2957  */
2958 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2959 {
2960 	sigset_t retarget;
2961 	struct task_struct *t;
2962 
2963 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2964 	if (sigisemptyset(&retarget))
2965 		return;
2966 
2967 	t = tsk;
2968 	while_each_thread(tsk, t) {
2969 		if (t->flags & PF_EXITING)
2970 			continue;
2971 
2972 		if (!has_pending_signals(&retarget, &t->blocked))
2973 			continue;
2974 		/* Remove the signals this thread can handle. */
2975 		sigandsets(&retarget, &retarget, &t->blocked);
2976 
2977 		if (!task_sigpending(t))
2978 			signal_wake_up(t, 0);
2979 
2980 		if (sigisemptyset(&retarget))
2981 			break;
2982 	}
2983 }
2984 
2985 void exit_signals(struct task_struct *tsk)
2986 {
2987 	int group_stop = 0;
2988 	sigset_t unblocked;
2989 
2990 	/*
2991 	 * @tsk is about to have PF_EXITING set - lock out users which
2992 	 * expect stable threadgroup.
2993 	 */
2994 	cgroup_threadgroup_change_begin(tsk);
2995 
2996 	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2997 		tsk->flags |= PF_EXITING;
2998 		cgroup_threadgroup_change_end(tsk);
2999 		return;
3000 	}
3001 
3002 	spin_lock_irq(&tsk->sighand->siglock);
3003 	/*
3004 	 * From now this task is not visible for group-wide signals,
3005 	 * see wants_signal(), do_signal_stop().
3006 	 */
3007 	tsk->flags |= PF_EXITING;
3008 
3009 	cgroup_threadgroup_change_end(tsk);
3010 
3011 	if (!task_sigpending(tsk))
3012 		goto out;
3013 
3014 	unblocked = tsk->blocked;
3015 	signotset(&unblocked);
3016 	retarget_shared_pending(tsk, &unblocked);
3017 
3018 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3019 	    task_participate_group_stop(tsk))
3020 		group_stop = CLD_STOPPED;
3021 out:
3022 	spin_unlock_irq(&tsk->sighand->siglock);
3023 
3024 	/*
3025 	 * If group stop has completed, deliver the notification.  This
3026 	 * should always go to the real parent of the group leader.
3027 	 */
3028 	if (unlikely(group_stop)) {
3029 		read_lock(&tasklist_lock);
3030 		do_notify_parent_cldstop(tsk, false, group_stop);
3031 		read_unlock(&tasklist_lock);
3032 	}
3033 }
3034 
3035 /*
3036  * System call entry points.
3037  */
3038 
3039 /**
3040  *  sys_restart_syscall - restart a system call
3041  */
3042 SYSCALL_DEFINE0(restart_syscall)
3043 {
3044 	struct restart_block *restart = &current->restart_block;
3045 	return restart->fn(restart);
3046 }
3047 
3048 long do_no_restart_syscall(struct restart_block *param)
3049 {
3050 	return -EINTR;
3051 }
3052 
3053 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3054 {
3055 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3056 		sigset_t newblocked;
3057 		/* A set of now blocked but previously unblocked signals. */
3058 		sigandnsets(&newblocked, newset, &current->blocked);
3059 		retarget_shared_pending(tsk, &newblocked);
3060 	}
3061 	tsk->blocked = *newset;
3062 	recalc_sigpending();
3063 }
3064 
3065 /**
3066  * set_current_blocked - change current->blocked mask
3067  * @newset: new mask
3068  *
3069  * It is wrong to change ->blocked directly, this helper should be used
3070  * to ensure the process can't miss a shared signal we are going to block.
3071  */
3072 void set_current_blocked(sigset_t *newset)
3073 {
3074 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3075 	__set_current_blocked(newset);
3076 }
3077 
3078 void __set_current_blocked(const sigset_t *newset)
3079 {
3080 	struct task_struct *tsk = current;
3081 
3082 	/*
3083 	 * In case the signal mask hasn't changed, there is nothing we need
3084 	 * to do. The current->blocked shouldn't be modified by other task.
3085 	 */
3086 	if (sigequalsets(&tsk->blocked, newset))
3087 		return;
3088 
3089 	spin_lock_irq(&tsk->sighand->siglock);
3090 	__set_task_blocked(tsk, newset);
3091 	spin_unlock_irq(&tsk->sighand->siglock);
3092 }
3093 
3094 /*
3095  * This is also useful for kernel threads that want to temporarily
3096  * (or permanently) block certain signals.
3097  *
3098  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3099  * interface happily blocks "unblockable" signals like SIGKILL
3100  * and friends.
3101  */
3102 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3103 {
3104 	struct task_struct *tsk = current;
3105 	sigset_t newset;
3106 
3107 	/* Lockless, only current can change ->blocked, never from irq */
3108 	if (oldset)
3109 		*oldset = tsk->blocked;
3110 
3111 	switch (how) {
3112 	case SIG_BLOCK:
3113 		sigorsets(&newset, &tsk->blocked, set);
3114 		break;
3115 	case SIG_UNBLOCK:
3116 		sigandnsets(&newset, &tsk->blocked, set);
3117 		break;
3118 	case SIG_SETMASK:
3119 		newset = *set;
3120 		break;
3121 	default:
3122 		return -EINVAL;
3123 	}
3124 
3125 	__set_current_blocked(&newset);
3126 	return 0;
3127 }
3128 EXPORT_SYMBOL(sigprocmask);
3129 
3130 /*
3131  * The api helps set app-provided sigmasks.
3132  *
3133  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3134  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3135  *
3136  * Note that it does set_restore_sigmask() in advance, so it must be always
3137  * paired with restore_saved_sigmask_unless() before return from syscall.
3138  */
3139 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3140 {
3141 	sigset_t kmask;
3142 
3143 	if (!umask)
3144 		return 0;
3145 	if (sigsetsize != sizeof(sigset_t))
3146 		return -EINVAL;
3147 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3148 		return -EFAULT;
3149 
3150 	set_restore_sigmask();
3151 	current->saved_sigmask = current->blocked;
3152 	set_current_blocked(&kmask);
3153 
3154 	return 0;
3155 }
3156 
3157 #ifdef CONFIG_COMPAT
3158 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3159 			    size_t sigsetsize)
3160 {
3161 	sigset_t kmask;
3162 
3163 	if (!umask)
3164 		return 0;
3165 	if (sigsetsize != sizeof(compat_sigset_t))
3166 		return -EINVAL;
3167 	if (get_compat_sigset(&kmask, umask))
3168 		return -EFAULT;
3169 
3170 	set_restore_sigmask();
3171 	current->saved_sigmask = current->blocked;
3172 	set_current_blocked(&kmask);
3173 
3174 	return 0;
3175 }
3176 #endif
3177 
3178 /**
3179  *  sys_rt_sigprocmask - change the list of currently blocked signals
3180  *  @how: whether to add, remove, or set signals
3181  *  @nset: stores pending signals
3182  *  @oset: previous value of signal mask if non-null
3183  *  @sigsetsize: size of sigset_t type
3184  */
3185 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3186 		sigset_t __user *, oset, size_t, sigsetsize)
3187 {
3188 	sigset_t old_set, new_set;
3189 	int error;
3190 
3191 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3192 	if (sigsetsize != sizeof(sigset_t))
3193 		return -EINVAL;
3194 
3195 	old_set = current->blocked;
3196 
3197 	if (nset) {
3198 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3199 			return -EFAULT;
3200 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3201 
3202 		error = sigprocmask(how, &new_set, NULL);
3203 		if (error)
3204 			return error;
3205 	}
3206 
3207 	if (oset) {
3208 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3209 			return -EFAULT;
3210 	}
3211 
3212 	return 0;
3213 }
3214 
3215 #ifdef CONFIG_COMPAT
3216 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3217 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3218 {
3219 	sigset_t old_set = current->blocked;
3220 
3221 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3222 	if (sigsetsize != sizeof(sigset_t))
3223 		return -EINVAL;
3224 
3225 	if (nset) {
3226 		sigset_t new_set;
3227 		int error;
3228 		if (get_compat_sigset(&new_set, nset))
3229 			return -EFAULT;
3230 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3231 
3232 		error = sigprocmask(how, &new_set, NULL);
3233 		if (error)
3234 			return error;
3235 	}
3236 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3237 }
3238 #endif
3239 
3240 static void do_sigpending(sigset_t *set)
3241 {
3242 	spin_lock_irq(&current->sighand->siglock);
3243 	sigorsets(set, &current->pending.signal,
3244 		  &current->signal->shared_pending.signal);
3245 	spin_unlock_irq(&current->sighand->siglock);
3246 
3247 	/* Outside the lock because only this thread touches it.  */
3248 	sigandsets(set, &current->blocked, set);
3249 }
3250 
3251 /**
3252  *  sys_rt_sigpending - examine a pending signal that has been raised
3253  *			while blocked
3254  *  @uset: stores pending signals
3255  *  @sigsetsize: size of sigset_t type or larger
3256  */
3257 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3258 {
3259 	sigset_t set;
3260 
3261 	if (sigsetsize > sizeof(*uset))
3262 		return -EINVAL;
3263 
3264 	do_sigpending(&set);
3265 
3266 	if (copy_to_user(uset, &set, sigsetsize))
3267 		return -EFAULT;
3268 
3269 	return 0;
3270 }
3271 
3272 #ifdef CONFIG_COMPAT
3273 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3274 		compat_size_t, sigsetsize)
3275 {
3276 	sigset_t set;
3277 
3278 	if (sigsetsize > sizeof(*uset))
3279 		return -EINVAL;
3280 
3281 	do_sigpending(&set);
3282 
3283 	return put_compat_sigset(uset, &set, sigsetsize);
3284 }
3285 #endif
3286 
3287 static const struct {
3288 	unsigned char limit, layout;
3289 } sig_sicodes[] = {
3290 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3291 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3292 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3293 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3294 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3295 #if defined(SIGEMT)
3296 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3297 #endif
3298 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3299 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3300 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3301 };
3302 
3303 static bool known_siginfo_layout(unsigned sig, int si_code)
3304 {
3305 	if (si_code == SI_KERNEL)
3306 		return true;
3307 	else if ((si_code > SI_USER)) {
3308 		if (sig_specific_sicodes(sig)) {
3309 			if (si_code <= sig_sicodes[sig].limit)
3310 				return true;
3311 		}
3312 		else if (si_code <= NSIGPOLL)
3313 			return true;
3314 	}
3315 	else if (si_code >= SI_DETHREAD)
3316 		return true;
3317 	else if (si_code == SI_ASYNCNL)
3318 		return true;
3319 	return false;
3320 }
3321 
3322 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3323 {
3324 	enum siginfo_layout layout = SIL_KILL;
3325 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3326 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3327 		    (si_code <= sig_sicodes[sig].limit)) {
3328 			layout = sig_sicodes[sig].layout;
3329 			/* Handle the exceptions */
3330 			if ((sig == SIGBUS) &&
3331 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3332 				layout = SIL_FAULT_MCEERR;
3333 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3334 				layout = SIL_FAULT_BNDERR;
3335 #ifdef SEGV_PKUERR
3336 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3337 				layout = SIL_FAULT_PKUERR;
3338 #endif
3339 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3340 				layout = SIL_FAULT_PERF_EVENT;
3341 			else if (IS_ENABLED(CONFIG_SPARC) &&
3342 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3343 				layout = SIL_FAULT_TRAPNO;
3344 			else if (IS_ENABLED(CONFIG_ALPHA) &&
3345 				 ((sig == SIGFPE) ||
3346 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3347 				layout = SIL_FAULT_TRAPNO;
3348 		}
3349 		else if (si_code <= NSIGPOLL)
3350 			layout = SIL_POLL;
3351 	} else {
3352 		if (si_code == SI_TIMER)
3353 			layout = SIL_TIMER;
3354 		else if (si_code == SI_SIGIO)
3355 			layout = SIL_POLL;
3356 		else if (si_code < 0)
3357 			layout = SIL_RT;
3358 	}
3359 	return layout;
3360 }
3361 
3362 static inline char __user *si_expansion(const siginfo_t __user *info)
3363 {
3364 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3365 }
3366 
3367 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3368 {
3369 	char __user *expansion = si_expansion(to);
3370 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3371 		return -EFAULT;
3372 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3373 		return -EFAULT;
3374 	return 0;
3375 }
3376 
3377 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3378 				       const siginfo_t __user *from)
3379 {
3380 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3381 		char __user *expansion = si_expansion(from);
3382 		char buf[SI_EXPANSION_SIZE];
3383 		int i;
3384 		/*
3385 		 * An unknown si_code might need more than
3386 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3387 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3388 		 * will return this data to userspace exactly.
3389 		 */
3390 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3391 			return -EFAULT;
3392 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3393 			if (buf[i] != 0)
3394 				return -E2BIG;
3395 		}
3396 	}
3397 	return 0;
3398 }
3399 
3400 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3401 				    const siginfo_t __user *from)
3402 {
3403 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3404 		return -EFAULT;
3405 	to->si_signo = signo;
3406 	return post_copy_siginfo_from_user(to, from);
3407 }
3408 
3409 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3410 {
3411 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3412 		return -EFAULT;
3413 	return post_copy_siginfo_from_user(to, from);
3414 }
3415 
3416 #ifdef CONFIG_COMPAT
3417 /**
3418  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3419  * @to: compat siginfo destination
3420  * @from: kernel siginfo source
3421  *
3422  * Note: This function does not work properly for the SIGCHLD on x32, but
3423  * fortunately it doesn't have to.  The only valid callers for this function are
3424  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3425  * The latter does not care because SIGCHLD will never cause a coredump.
3426  */
3427 void copy_siginfo_to_external32(struct compat_siginfo *to,
3428 		const struct kernel_siginfo *from)
3429 {
3430 	memset(to, 0, sizeof(*to));
3431 
3432 	to->si_signo = from->si_signo;
3433 	to->si_errno = from->si_errno;
3434 	to->si_code  = from->si_code;
3435 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3436 	case SIL_KILL:
3437 		to->si_pid = from->si_pid;
3438 		to->si_uid = from->si_uid;
3439 		break;
3440 	case SIL_TIMER:
3441 		to->si_tid     = from->si_tid;
3442 		to->si_overrun = from->si_overrun;
3443 		to->si_int     = from->si_int;
3444 		break;
3445 	case SIL_POLL:
3446 		to->si_band = from->si_band;
3447 		to->si_fd   = from->si_fd;
3448 		break;
3449 	case SIL_FAULT:
3450 		to->si_addr = ptr_to_compat(from->si_addr);
3451 		break;
3452 	case SIL_FAULT_TRAPNO:
3453 		to->si_addr = ptr_to_compat(from->si_addr);
3454 		to->si_trapno = from->si_trapno;
3455 		break;
3456 	case SIL_FAULT_MCEERR:
3457 		to->si_addr = ptr_to_compat(from->si_addr);
3458 		to->si_addr_lsb = from->si_addr_lsb;
3459 		break;
3460 	case SIL_FAULT_BNDERR:
3461 		to->si_addr = ptr_to_compat(from->si_addr);
3462 		to->si_lower = ptr_to_compat(from->si_lower);
3463 		to->si_upper = ptr_to_compat(from->si_upper);
3464 		break;
3465 	case SIL_FAULT_PKUERR:
3466 		to->si_addr = ptr_to_compat(from->si_addr);
3467 		to->si_pkey = from->si_pkey;
3468 		break;
3469 	case SIL_FAULT_PERF_EVENT:
3470 		to->si_addr = ptr_to_compat(from->si_addr);
3471 		to->si_perf_data = from->si_perf_data;
3472 		to->si_perf_type = from->si_perf_type;
3473 		break;
3474 	case SIL_CHLD:
3475 		to->si_pid = from->si_pid;
3476 		to->si_uid = from->si_uid;
3477 		to->si_status = from->si_status;
3478 		to->si_utime = from->si_utime;
3479 		to->si_stime = from->si_stime;
3480 		break;
3481 	case SIL_RT:
3482 		to->si_pid = from->si_pid;
3483 		to->si_uid = from->si_uid;
3484 		to->si_int = from->si_int;
3485 		break;
3486 	case SIL_SYS:
3487 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3488 		to->si_syscall   = from->si_syscall;
3489 		to->si_arch      = from->si_arch;
3490 		break;
3491 	}
3492 }
3493 
3494 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3495 			   const struct kernel_siginfo *from)
3496 {
3497 	struct compat_siginfo new;
3498 
3499 	copy_siginfo_to_external32(&new, from);
3500 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3501 		return -EFAULT;
3502 	return 0;
3503 }
3504 
3505 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3506 					 const struct compat_siginfo *from)
3507 {
3508 	clear_siginfo(to);
3509 	to->si_signo = from->si_signo;
3510 	to->si_errno = from->si_errno;
3511 	to->si_code  = from->si_code;
3512 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3513 	case SIL_KILL:
3514 		to->si_pid = from->si_pid;
3515 		to->si_uid = from->si_uid;
3516 		break;
3517 	case SIL_TIMER:
3518 		to->si_tid     = from->si_tid;
3519 		to->si_overrun = from->si_overrun;
3520 		to->si_int     = from->si_int;
3521 		break;
3522 	case SIL_POLL:
3523 		to->si_band = from->si_band;
3524 		to->si_fd   = from->si_fd;
3525 		break;
3526 	case SIL_FAULT:
3527 		to->si_addr = compat_ptr(from->si_addr);
3528 		break;
3529 	case SIL_FAULT_TRAPNO:
3530 		to->si_addr = compat_ptr(from->si_addr);
3531 		to->si_trapno = from->si_trapno;
3532 		break;
3533 	case SIL_FAULT_MCEERR:
3534 		to->si_addr = compat_ptr(from->si_addr);
3535 		to->si_addr_lsb = from->si_addr_lsb;
3536 		break;
3537 	case SIL_FAULT_BNDERR:
3538 		to->si_addr = compat_ptr(from->si_addr);
3539 		to->si_lower = compat_ptr(from->si_lower);
3540 		to->si_upper = compat_ptr(from->si_upper);
3541 		break;
3542 	case SIL_FAULT_PKUERR:
3543 		to->si_addr = compat_ptr(from->si_addr);
3544 		to->si_pkey = from->si_pkey;
3545 		break;
3546 	case SIL_FAULT_PERF_EVENT:
3547 		to->si_addr = compat_ptr(from->si_addr);
3548 		to->si_perf_data = from->si_perf_data;
3549 		to->si_perf_type = from->si_perf_type;
3550 		break;
3551 	case SIL_CHLD:
3552 		to->si_pid    = from->si_pid;
3553 		to->si_uid    = from->si_uid;
3554 		to->si_status = from->si_status;
3555 #ifdef CONFIG_X86_X32_ABI
3556 		if (in_x32_syscall()) {
3557 			to->si_utime = from->_sifields._sigchld_x32._utime;
3558 			to->si_stime = from->_sifields._sigchld_x32._stime;
3559 		} else
3560 #endif
3561 		{
3562 			to->si_utime = from->si_utime;
3563 			to->si_stime = from->si_stime;
3564 		}
3565 		break;
3566 	case SIL_RT:
3567 		to->si_pid = from->si_pid;
3568 		to->si_uid = from->si_uid;
3569 		to->si_int = from->si_int;
3570 		break;
3571 	case SIL_SYS:
3572 		to->si_call_addr = compat_ptr(from->si_call_addr);
3573 		to->si_syscall   = from->si_syscall;
3574 		to->si_arch      = from->si_arch;
3575 		break;
3576 	}
3577 	return 0;
3578 }
3579 
3580 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3581 				      const struct compat_siginfo __user *ufrom)
3582 {
3583 	struct compat_siginfo from;
3584 
3585 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3586 		return -EFAULT;
3587 
3588 	from.si_signo = signo;
3589 	return post_copy_siginfo_from_user32(to, &from);
3590 }
3591 
3592 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3593 			     const struct compat_siginfo __user *ufrom)
3594 {
3595 	struct compat_siginfo from;
3596 
3597 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3598 		return -EFAULT;
3599 
3600 	return post_copy_siginfo_from_user32(to, &from);
3601 }
3602 #endif /* CONFIG_COMPAT */
3603 
3604 /**
3605  *  do_sigtimedwait - wait for queued signals specified in @which
3606  *  @which: queued signals to wait for
3607  *  @info: if non-null, the signal's siginfo is returned here
3608  *  @ts: upper bound on process time suspension
3609  */
3610 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3611 		    const struct timespec64 *ts)
3612 {
3613 	ktime_t *to = NULL, timeout = KTIME_MAX;
3614 	struct task_struct *tsk = current;
3615 	sigset_t mask = *which;
3616 	enum pid_type type;
3617 	int sig, ret = 0;
3618 
3619 	if (ts) {
3620 		if (!timespec64_valid(ts))
3621 			return -EINVAL;
3622 		timeout = timespec64_to_ktime(*ts);
3623 		to = &timeout;
3624 	}
3625 
3626 	/*
3627 	 * Invert the set of allowed signals to get those we want to block.
3628 	 */
3629 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3630 	signotset(&mask);
3631 
3632 	spin_lock_irq(&tsk->sighand->siglock);
3633 	sig = dequeue_signal(tsk, &mask, info, &type);
3634 	if (!sig && timeout) {
3635 		/*
3636 		 * None ready, temporarily unblock those we're interested
3637 		 * while we are sleeping in so that we'll be awakened when
3638 		 * they arrive. Unblocking is always fine, we can avoid
3639 		 * set_current_blocked().
3640 		 */
3641 		tsk->real_blocked = tsk->blocked;
3642 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3643 		recalc_sigpending();
3644 		spin_unlock_irq(&tsk->sighand->siglock);
3645 
3646 		__set_current_state(TASK_INTERRUPTIBLE);
3647 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3648 							 HRTIMER_MODE_REL);
3649 		spin_lock_irq(&tsk->sighand->siglock);
3650 		__set_task_blocked(tsk, &tsk->real_blocked);
3651 		sigemptyset(&tsk->real_blocked);
3652 		sig = dequeue_signal(tsk, &mask, info, &type);
3653 	}
3654 	spin_unlock_irq(&tsk->sighand->siglock);
3655 
3656 	if (sig)
3657 		return sig;
3658 	return ret ? -EINTR : -EAGAIN;
3659 }
3660 
3661 /**
3662  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3663  *			in @uthese
3664  *  @uthese: queued signals to wait for
3665  *  @uinfo: if non-null, the signal's siginfo is returned here
3666  *  @uts: upper bound on process time suspension
3667  *  @sigsetsize: size of sigset_t type
3668  */
3669 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3670 		siginfo_t __user *, uinfo,
3671 		const struct __kernel_timespec __user *, uts,
3672 		size_t, sigsetsize)
3673 {
3674 	sigset_t these;
3675 	struct timespec64 ts;
3676 	kernel_siginfo_t info;
3677 	int ret;
3678 
3679 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3680 	if (sigsetsize != sizeof(sigset_t))
3681 		return -EINVAL;
3682 
3683 	if (copy_from_user(&these, uthese, sizeof(these)))
3684 		return -EFAULT;
3685 
3686 	if (uts) {
3687 		if (get_timespec64(&ts, uts))
3688 			return -EFAULT;
3689 	}
3690 
3691 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3692 
3693 	if (ret > 0 && uinfo) {
3694 		if (copy_siginfo_to_user(uinfo, &info))
3695 			ret = -EFAULT;
3696 	}
3697 
3698 	return ret;
3699 }
3700 
3701 #ifdef CONFIG_COMPAT_32BIT_TIME
3702 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3703 		siginfo_t __user *, uinfo,
3704 		const struct old_timespec32 __user *, uts,
3705 		size_t, sigsetsize)
3706 {
3707 	sigset_t these;
3708 	struct timespec64 ts;
3709 	kernel_siginfo_t info;
3710 	int ret;
3711 
3712 	if (sigsetsize != sizeof(sigset_t))
3713 		return -EINVAL;
3714 
3715 	if (copy_from_user(&these, uthese, sizeof(these)))
3716 		return -EFAULT;
3717 
3718 	if (uts) {
3719 		if (get_old_timespec32(&ts, uts))
3720 			return -EFAULT;
3721 	}
3722 
3723 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3724 
3725 	if (ret > 0 && uinfo) {
3726 		if (copy_siginfo_to_user(uinfo, &info))
3727 			ret = -EFAULT;
3728 	}
3729 
3730 	return ret;
3731 }
3732 #endif
3733 
3734 #ifdef CONFIG_COMPAT
3735 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3736 		struct compat_siginfo __user *, uinfo,
3737 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3738 {
3739 	sigset_t s;
3740 	struct timespec64 t;
3741 	kernel_siginfo_t info;
3742 	long ret;
3743 
3744 	if (sigsetsize != sizeof(sigset_t))
3745 		return -EINVAL;
3746 
3747 	if (get_compat_sigset(&s, uthese))
3748 		return -EFAULT;
3749 
3750 	if (uts) {
3751 		if (get_timespec64(&t, uts))
3752 			return -EFAULT;
3753 	}
3754 
3755 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3756 
3757 	if (ret > 0 && uinfo) {
3758 		if (copy_siginfo_to_user32(uinfo, &info))
3759 			ret = -EFAULT;
3760 	}
3761 
3762 	return ret;
3763 }
3764 
3765 #ifdef CONFIG_COMPAT_32BIT_TIME
3766 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3767 		struct compat_siginfo __user *, uinfo,
3768 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3769 {
3770 	sigset_t s;
3771 	struct timespec64 t;
3772 	kernel_siginfo_t info;
3773 	long ret;
3774 
3775 	if (sigsetsize != sizeof(sigset_t))
3776 		return -EINVAL;
3777 
3778 	if (get_compat_sigset(&s, uthese))
3779 		return -EFAULT;
3780 
3781 	if (uts) {
3782 		if (get_old_timespec32(&t, uts))
3783 			return -EFAULT;
3784 	}
3785 
3786 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3787 
3788 	if (ret > 0 && uinfo) {
3789 		if (copy_siginfo_to_user32(uinfo, &info))
3790 			ret = -EFAULT;
3791 	}
3792 
3793 	return ret;
3794 }
3795 #endif
3796 #endif
3797 
3798 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3799 {
3800 	clear_siginfo(info);
3801 	info->si_signo = sig;
3802 	info->si_errno = 0;
3803 	info->si_code = SI_USER;
3804 	info->si_pid = task_tgid_vnr(current);
3805 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3806 }
3807 
3808 /**
3809  *  sys_kill - send a signal to a process
3810  *  @pid: the PID of the process
3811  *  @sig: signal to be sent
3812  */
3813 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3814 {
3815 	struct kernel_siginfo info;
3816 
3817 	prepare_kill_siginfo(sig, &info);
3818 
3819 	return kill_something_info(sig, &info, pid);
3820 }
3821 
3822 /*
3823  * Verify that the signaler and signalee either are in the same pid namespace
3824  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3825  * namespace.
3826  */
3827 static bool access_pidfd_pidns(struct pid *pid)
3828 {
3829 	struct pid_namespace *active = task_active_pid_ns(current);
3830 	struct pid_namespace *p = ns_of_pid(pid);
3831 
3832 	for (;;) {
3833 		if (!p)
3834 			return false;
3835 		if (p == active)
3836 			break;
3837 		p = p->parent;
3838 	}
3839 
3840 	return true;
3841 }
3842 
3843 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3844 		siginfo_t __user *info)
3845 {
3846 #ifdef CONFIG_COMPAT
3847 	/*
3848 	 * Avoid hooking up compat syscalls and instead handle necessary
3849 	 * conversions here. Note, this is a stop-gap measure and should not be
3850 	 * considered a generic solution.
3851 	 */
3852 	if (in_compat_syscall())
3853 		return copy_siginfo_from_user32(
3854 			kinfo, (struct compat_siginfo __user *)info);
3855 #endif
3856 	return copy_siginfo_from_user(kinfo, info);
3857 }
3858 
3859 static struct pid *pidfd_to_pid(const struct file *file)
3860 {
3861 	struct pid *pid;
3862 
3863 	pid = pidfd_pid(file);
3864 	if (!IS_ERR(pid))
3865 		return pid;
3866 
3867 	return tgid_pidfd_to_pid(file);
3868 }
3869 
3870 /**
3871  * sys_pidfd_send_signal - Signal a process through a pidfd
3872  * @pidfd:  file descriptor of the process
3873  * @sig:    signal to send
3874  * @info:   signal info
3875  * @flags:  future flags
3876  *
3877  * The syscall currently only signals via PIDTYPE_PID which covers
3878  * kill(<positive-pid>, <signal>. It does not signal threads or process
3879  * groups.
3880  * In order to extend the syscall to threads and process groups the @flags
3881  * argument should be used. In essence, the @flags argument will determine
3882  * what is signaled and not the file descriptor itself. Put in other words,
3883  * grouping is a property of the flags argument not a property of the file
3884  * descriptor.
3885  *
3886  * Return: 0 on success, negative errno on failure
3887  */
3888 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3889 		siginfo_t __user *, info, unsigned int, flags)
3890 {
3891 	int ret;
3892 	struct fd f;
3893 	struct pid *pid;
3894 	kernel_siginfo_t kinfo;
3895 
3896 	/* Enforce flags be set to 0 until we add an extension. */
3897 	if (flags)
3898 		return -EINVAL;
3899 
3900 	f = fdget(pidfd);
3901 	if (!f.file)
3902 		return -EBADF;
3903 
3904 	/* Is this a pidfd? */
3905 	pid = pidfd_to_pid(f.file);
3906 	if (IS_ERR(pid)) {
3907 		ret = PTR_ERR(pid);
3908 		goto err;
3909 	}
3910 
3911 	ret = -EINVAL;
3912 	if (!access_pidfd_pidns(pid))
3913 		goto err;
3914 
3915 	if (info) {
3916 		ret = copy_siginfo_from_user_any(&kinfo, info);
3917 		if (unlikely(ret))
3918 			goto err;
3919 
3920 		ret = -EINVAL;
3921 		if (unlikely(sig != kinfo.si_signo))
3922 			goto err;
3923 
3924 		/* Only allow sending arbitrary signals to yourself. */
3925 		ret = -EPERM;
3926 		if ((task_pid(current) != pid) &&
3927 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3928 			goto err;
3929 	} else {
3930 		prepare_kill_siginfo(sig, &kinfo);
3931 	}
3932 
3933 	ret = kill_pid_info(sig, &kinfo, pid);
3934 
3935 err:
3936 	fdput(f);
3937 	return ret;
3938 }
3939 
3940 static int
3941 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3942 {
3943 	struct task_struct *p;
3944 	int error = -ESRCH;
3945 
3946 	rcu_read_lock();
3947 	p = find_task_by_vpid(pid);
3948 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3949 		error = check_kill_permission(sig, info, p);
3950 		/*
3951 		 * The null signal is a permissions and process existence
3952 		 * probe.  No signal is actually delivered.
3953 		 */
3954 		if (!error && sig) {
3955 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3956 			/*
3957 			 * If lock_task_sighand() failed we pretend the task
3958 			 * dies after receiving the signal. The window is tiny,
3959 			 * and the signal is private anyway.
3960 			 */
3961 			if (unlikely(error == -ESRCH))
3962 				error = 0;
3963 		}
3964 	}
3965 	rcu_read_unlock();
3966 
3967 	return error;
3968 }
3969 
3970 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3971 {
3972 	struct kernel_siginfo info;
3973 
3974 	clear_siginfo(&info);
3975 	info.si_signo = sig;
3976 	info.si_errno = 0;
3977 	info.si_code = SI_TKILL;
3978 	info.si_pid = task_tgid_vnr(current);
3979 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3980 
3981 	return do_send_specific(tgid, pid, sig, &info);
3982 }
3983 
3984 /**
3985  *  sys_tgkill - send signal to one specific thread
3986  *  @tgid: the thread group ID of the thread
3987  *  @pid: the PID of the thread
3988  *  @sig: signal to be sent
3989  *
3990  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3991  *  exists but it's not belonging to the target process anymore. This
3992  *  method solves the problem of threads exiting and PIDs getting reused.
3993  */
3994 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3995 {
3996 	/* This is only valid for single tasks */
3997 	if (pid <= 0 || tgid <= 0)
3998 		return -EINVAL;
3999 
4000 	return do_tkill(tgid, pid, sig);
4001 }
4002 
4003 /**
4004  *  sys_tkill - send signal to one specific task
4005  *  @pid: the PID of the task
4006  *  @sig: signal to be sent
4007  *
4008  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4009  */
4010 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4011 {
4012 	/* This is only valid for single tasks */
4013 	if (pid <= 0)
4014 		return -EINVAL;
4015 
4016 	return do_tkill(0, pid, sig);
4017 }
4018 
4019 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4020 {
4021 	/* Not even root can pretend to send signals from the kernel.
4022 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4023 	 */
4024 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4025 	    (task_pid_vnr(current) != pid))
4026 		return -EPERM;
4027 
4028 	/* POSIX.1b doesn't mention process groups.  */
4029 	return kill_proc_info(sig, info, pid);
4030 }
4031 
4032 /**
4033  *  sys_rt_sigqueueinfo - send signal information to a signal
4034  *  @pid: the PID of the thread
4035  *  @sig: signal to be sent
4036  *  @uinfo: signal info to be sent
4037  */
4038 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4039 		siginfo_t __user *, uinfo)
4040 {
4041 	kernel_siginfo_t info;
4042 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4043 	if (unlikely(ret))
4044 		return ret;
4045 	return do_rt_sigqueueinfo(pid, sig, &info);
4046 }
4047 
4048 #ifdef CONFIG_COMPAT
4049 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4050 			compat_pid_t, pid,
4051 			int, sig,
4052 			struct compat_siginfo __user *, uinfo)
4053 {
4054 	kernel_siginfo_t info;
4055 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4056 	if (unlikely(ret))
4057 		return ret;
4058 	return do_rt_sigqueueinfo(pid, sig, &info);
4059 }
4060 #endif
4061 
4062 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4063 {
4064 	/* This is only valid for single tasks */
4065 	if (pid <= 0 || tgid <= 0)
4066 		return -EINVAL;
4067 
4068 	/* Not even root can pretend to send signals from the kernel.
4069 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4070 	 */
4071 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4072 	    (task_pid_vnr(current) != pid))
4073 		return -EPERM;
4074 
4075 	return do_send_specific(tgid, pid, sig, info);
4076 }
4077 
4078 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4079 		siginfo_t __user *, uinfo)
4080 {
4081 	kernel_siginfo_t info;
4082 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4083 	if (unlikely(ret))
4084 		return ret;
4085 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4086 }
4087 
4088 #ifdef CONFIG_COMPAT
4089 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4090 			compat_pid_t, tgid,
4091 			compat_pid_t, pid,
4092 			int, sig,
4093 			struct compat_siginfo __user *, uinfo)
4094 {
4095 	kernel_siginfo_t info;
4096 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4097 	if (unlikely(ret))
4098 		return ret;
4099 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4100 }
4101 #endif
4102 
4103 /*
4104  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4105  */
4106 void kernel_sigaction(int sig, __sighandler_t action)
4107 {
4108 	spin_lock_irq(&current->sighand->siglock);
4109 	current->sighand->action[sig - 1].sa.sa_handler = action;
4110 	if (action == SIG_IGN) {
4111 		sigset_t mask;
4112 
4113 		sigemptyset(&mask);
4114 		sigaddset(&mask, sig);
4115 
4116 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4117 		flush_sigqueue_mask(&mask, &current->pending);
4118 		recalc_sigpending();
4119 	}
4120 	spin_unlock_irq(&current->sighand->siglock);
4121 }
4122 EXPORT_SYMBOL(kernel_sigaction);
4123 
4124 void __weak sigaction_compat_abi(struct k_sigaction *act,
4125 		struct k_sigaction *oact)
4126 {
4127 }
4128 
4129 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4130 {
4131 	struct task_struct *p = current, *t;
4132 	struct k_sigaction *k;
4133 	sigset_t mask;
4134 
4135 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4136 		return -EINVAL;
4137 
4138 	k = &p->sighand->action[sig-1];
4139 
4140 	spin_lock_irq(&p->sighand->siglock);
4141 	if (k->sa.sa_flags & SA_IMMUTABLE) {
4142 		spin_unlock_irq(&p->sighand->siglock);
4143 		return -EINVAL;
4144 	}
4145 	if (oact)
4146 		*oact = *k;
4147 
4148 	/*
4149 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4150 	 * e.g. by having an architecture use the bit in their uapi.
4151 	 */
4152 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4153 
4154 	/*
4155 	 * Clear unknown flag bits in order to allow userspace to detect missing
4156 	 * support for flag bits and to allow the kernel to use non-uapi bits
4157 	 * internally.
4158 	 */
4159 	if (act)
4160 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4161 	if (oact)
4162 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4163 
4164 	sigaction_compat_abi(act, oact);
4165 
4166 	if (act) {
4167 		sigdelsetmask(&act->sa.sa_mask,
4168 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4169 		*k = *act;
4170 		/*
4171 		 * POSIX 3.3.1.3:
4172 		 *  "Setting a signal action to SIG_IGN for a signal that is
4173 		 *   pending shall cause the pending signal to be discarded,
4174 		 *   whether or not it is blocked."
4175 		 *
4176 		 *  "Setting a signal action to SIG_DFL for a signal that is
4177 		 *   pending and whose default action is to ignore the signal
4178 		 *   (for example, SIGCHLD), shall cause the pending signal to
4179 		 *   be discarded, whether or not it is blocked"
4180 		 */
4181 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4182 			sigemptyset(&mask);
4183 			sigaddset(&mask, sig);
4184 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4185 			for_each_thread(p, t)
4186 				flush_sigqueue_mask(&mask, &t->pending);
4187 		}
4188 	}
4189 
4190 	spin_unlock_irq(&p->sighand->siglock);
4191 	return 0;
4192 }
4193 
4194 #ifdef CONFIG_DYNAMIC_SIGFRAME
4195 static inline void sigaltstack_lock(void)
4196 	__acquires(&current->sighand->siglock)
4197 {
4198 	spin_lock_irq(&current->sighand->siglock);
4199 }
4200 
4201 static inline void sigaltstack_unlock(void)
4202 	__releases(&current->sighand->siglock)
4203 {
4204 	spin_unlock_irq(&current->sighand->siglock);
4205 }
4206 #else
4207 static inline void sigaltstack_lock(void) { }
4208 static inline void sigaltstack_unlock(void) { }
4209 #endif
4210 
4211 static int
4212 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4213 		size_t min_ss_size)
4214 {
4215 	struct task_struct *t = current;
4216 	int ret = 0;
4217 
4218 	if (oss) {
4219 		memset(oss, 0, sizeof(stack_t));
4220 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4221 		oss->ss_size = t->sas_ss_size;
4222 		oss->ss_flags = sas_ss_flags(sp) |
4223 			(current->sas_ss_flags & SS_FLAG_BITS);
4224 	}
4225 
4226 	if (ss) {
4227 		void __user *ss_sp = ss->ss_sp;
4228 		size_t ss_size = ss->ss_size;
4229 		unsigned ss_flags = ss->ss_flags;
4230 		int ss_mode;
4231 
4232 		if (unlikely(on_sig_stack(sp)))
4233 			return -EPERM;
4234 
4235 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4236 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4237 				ss_mode != 0))
4238 			return -EINVAL;
4239 
4240 		/*
4241 		 * Return before taking any locks if no actual
4242 		 * sigaltstack changes were requested.
4243 		 */
4244 		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4245 		    t->sas_ss_size == ss_size &&
4246 		    t->sas_ss_flags == ss_flags)
4247 			return 0;
4248 
4249 		sigaltstack_lock();
4250 		if (ss_mode == SS_DISABLE) {
4251 			ss_size = 0;
4252 			ss_sp = NULL;
4253 		} else {
4254 			if (unlikely(ss_size < min_ss_size))
4255 				ret = -ENOMEM;
4256 			if (!sigaltstack_size_valid(ss_size))
4257 				ret = -ENOMEM;
4258 		}
4259 		if (!ret) {
4260 			t->sas_ss_sp = (unsigned long) ss_sp;
4261 			t->sas_ss_size = ss_size;
4262 			t->sas_ss_flags = ss_flags;
4263 		}
4264 		sigaltstack_unlock();
4265 	}
4266 	return ret;
4267 }
4268 
4269 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4270 {
4271 	stack_t new, old;
4272 	int err;
4273 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4274 		return -EFAULT;
4275 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4276 			      current_user_stack_pointer(),
4277 			      MINSIGSTKSZ);
4278 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4279 		err = -EFAULT;
4280 	return err;
4281 }
4282 
4283 int restore_altstack(const stack_t __user *uss)
4284 {
4285 	stack_t new;
4286 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4287 		return -EFAULT;
4288 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4289 			     MINSIGSTKSZ);
4290 	/* squash all but EFAULT for now */
4291 	return 0;
4292 }
4293 
4294 int __save_altstack(stack_t __user *uss, unsigned long sp)
4295 {
4296 	struct task_struct *t = current;
4297 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4298 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4299 		__put_user(t->sas_ss_size, &uss->ss_size);
4300 	return err;
4301 }
4302 
4303 #ifdef CONFIG_COMPAT
4304 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4305 				 compat_stack_t __user *uoss_ptr)
4306 {
4307 	stack_t uss, uoss;
4308 	int ret;
4309 
4310 	if (uss_ptr) {
4311 		compat_stack_t uss32;
4312 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4313 			return -EFAULT;
4314 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4315 		uss.ss_flags = uss32.ss_flags;
4316 		uss.ss_size = uss32.ss_size;
4317 	}
4318 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4319 			     compat_user_stack_pointer(),
4320 			     COMPAT_MINSIGSTKSZ);
4321 	if (ret >= 0 && uoss_ptr)  {
4322 		compat_stack_t old;
4323 		memset(&old, 0, sizeof(old));
4324 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4325 		old.ss_flags = uoss.ss_flags;
4326 		old.ss_size = uoss.ss_size;
4327 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4328 			ret = -EFAULT;
4329 	}
4330 	return ret;
4331 }
4332 
4333 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4334 			const compat_stack_t __user *, uss_ptr,
4335 			compat_stack_t __user *, uoss_ptr)
4336 {
4337 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4338 }
4339 
4340 int compat_restore_altstack(const compat_stack_t __user *uss)
4341 {
4342 	int err = do_compat_sigaltstack(uss, NULL);
4343 	/* squash all but -EFAULT for now */
4344 	return err == -EFAULT ? err : 0;
4345 }
4346 
4347 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4348 {
4349 	int err;
4350 	struct task_struct *t = current;
4351 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4352 			 &uss->ss_sp) |
4353 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4354 		__put_user(t->sas_ss_size, &uss->ss_size);
4355 	return err;
4356 }
4357 #endif
4358 
4359 #ifdef __ARCH_WANT_SYS_SIGPENDING
4360 
4361 /**
4362  *  sys_sigpending - examine pending signals
4363  *  @uset: where mask of pending signal is returned
4364  */
4365 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4366 {
4367 	sigset_t set;
4368 
4369 	if (sizeof(old_sigset_t) > sizeof(*uset))
4370 		return -EINVAL;
4371 
4372 	do_sigpending(&set);
4373 
4374 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4375 		return -EFAULT;
4376 
4377 	return 0;
4378 }
4379 
4380 #ifdef CONFIG_COMPAT
4381 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4382 {
4383 	sigset_t set;
4384 
4385 	do_sigpending(&set);
4386 
4387 	return put_user(set.sig[0], set32);
4388 }
4389 #endif
4390 
4391 #endif
4392 
4393 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4394 /**
4395  *  sys_sigprocmask - examine and change blocked signals
4396  *  @how: whether to add, remove, or set signals
4397  *  @nset: signals to add or remove (if non-null)
4398  *  @oset: previous value of signal mask if non-null
4399  *
4400  * Some platforms have their own version with special arguments;
4401  * others support only sys_rt_sigprocmask.
4402  */
4403 
4404 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4405 		old_sigset_t __user *, oset)
4406 {
4407 	old_sigset_t old_set, new_set;
4408 	sigset_t new_blocked;
4409 
4410 	old_set = current->blocked.sig[0];
4411 
4412 	if (nset) {
4413 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4414 			return -EFAULT;
4415 
4416 		new_blocked = current->blocked;
4417 
4418 		switch (how) {
4419 		case SIG_BLOCK:
4420 			sigaddsetmask(&new_blocked, new_set);
4421 			break;
4422 		case SIG_UNBLOCK:
4423 			sigdelsetmask(&new_blocked, new_set);
4424 			break;
4425 		case SIG_SETMASK:
4426 			new_blocked.sig[0] = new_set;
4427 			break;
4428 		default:
4429 			return -EINVAL;
4430 		}
4431 
4432 		set_current_blocked(&new_blocked);
4433 	}
4434 
4435 	if (oset) {
4436 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4437 			return -EFAULT;
4438 	}
4439 
4440 	return 0;
4441 }
4442 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4443 
4444 #ifndef CONFIG_ODD_RT_SIGACTION
4445 /**
4446  *  sys_rt_sigaction - alter an action taken by a process
4447  *  @sig: signal to be sent
4448  *  @act: new sigaction
4449  *  @oact: used to save the previous sigaction
4450  *  @sigsetsize: size of sigset_t type
4451  */
4452 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4453 		const struct sigaction __user *, act,
4454 		struct sigaction __user *, oact,
4455 		size_t, sigsetsize)
4456 {
4457 	struct k_sigaction new_sa, old_sa;
4458 	int ret;
4459 
4460 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4461 	if (sigsetsize != sizeof(sigset_t))
4462 		return -EINVAL;
4463 
4464 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4465 		return -EFAULT;
4466 
4467 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4468 	if (ret)
4469 		return ret;
4470 
4471 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4472 		return -EFAULT;
4473 
4474 	return 0;
4475 }
4476 #ifdef CONFIG_COMPAT
4477 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4478 		const struct compat_sigaction __user *, act,
4479 		struct compat_sigaction __user *, oact,
4480 		compat_size_t, sigsetsize)
4481 {
4482 	struct k_sigaction new_ka, old_ka;
4483 #ifdef __ARCH_HAS_SA_RESTORER
4484 	compat_uptr_t restorer;
4485 #endif
4486 	int ret;
4487 
4488 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4489 	if (sigsetsize != sizeof(compat_sigset_t))
4490 		return -EINVAL;
4491 
4492 	if (act) {
4493 		compat_uptr_t handler;
4494 		ret = get_user(handler, &act->sa_handler);
4495 		new_ka.sa.sa_handler = compat_ptr(handler);
4496 #ifdef __ARCH_HAS_SA_RESTORER
4497 		ret |= get_user(restorer, &act->sa_restorer);
4498 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4499 #endif
4500 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4501 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4502 		if (ret)
4503 			return -EFAULT;
4504 	}
4505 
4506 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4507 	if (!ret && oact) {
4508 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4509 			       &oact->sa_handler);
4510 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4511 					 sizeof(oact->sa_mask));
4512 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4513 #ifdef __ARCH_HAS_SA_RESTORER
4514 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4515 				&oact->sa_restorer);
4516 #endif
4517 	}
4518 	return ret;
4519 }
4520 #endif
4521 #endif /* !CONFIG_ODD_RT_SIGACTION */
4522 
4523 #ifdef CONFIG_OLD_SIGACTION
4524 SYSCALL_DEFINE3(sigaction, int, sig,
4525 		const struct old_sigaction __user *, act,
4526 	        struct old_sigaction __user *, oact)
4527 {
4528 	struct k_sigaction new_ka, old_ka;
4529 	int ret;
4530 
4531 	if (act) {
4532 		old_sigset_t mask;
4533 		if (!access_ok(act, sizeof(*act)) ||
4534 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4535 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4536 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4537 		    __get_user(mask, &act->sa_mask))
4538 			return -EFAULT;
4539 #ifdef __ARCH_HAS_KA_RESTORER
4540 		new_ka.ka_restorer = NULL;
4541 #endif
4542 		siginitset(&new_ka.sa.sa_mask, mask);
4543 	}
4544 
4545 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4546 
4547 	if (!ret && oact) {
4548 		if (!access_ok(oact, sizeof(*oact)) ||
4549 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4550 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4551 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4552 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4553 			return -EFAULT;
4554 	}
4555 
4556 	return ret;
4557 }
4558 #endif
4559 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4560 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4561 		const struct compat_old_sigaction __user *, act,
4562 	        struct compat_old_sigaction __user *, oact)
4563 {
4564 	struct k_sigaction new_ka, old_ka;
4565 	int ret;
4566 	compat_old_sigset_t mask;
4567 	compat_uptr_t handler, restorer;
4568 
4569 	if (act) {
4570 		if (!access_ok(act, sizeof(*act)) ||
4571 		    __get_user(handler, &act->sa_handler) ||
4572 		    __get_user(restorer, &act->sa_restorer) ||
4573 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4574 		    __get_user(mask, &act->sa_mask))
4575 			return -EFAULT;
4576 
4577 #ifdef __ARCH_HAS_KA_RESTORER
4578 		new_ka.ka_restorer = NULL;
4579 #endif
4580 		new_ka.sa.sa_handler = compat_ptr(handler);
4581 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4582 		siginitset(&new_ka.sa.sa_mask, mask);
4583 	}
4584 
4585 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4586 
4587 	if (!ret && oact) {
4588 		if (!access_ok(oact, sizeof(*oact)) ||
4589 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4590 			       &oact->sa_handler) ||
4591 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4592 			       &oact->sa_restorer) ||
4593 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4594 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4595 			return -EFAULT;
4596 	}
4597 	return ret;
4598 }
4599 #endif
4600 
4601 #ifdef CONFIG_SGETMASK_SYSCALL
4602 
4603 /*
4604  * For backwards compatibility.  Functionality superseded by sigprocmask.
4605  */
4606 SYSCALL_DEFINE0(sgetmask)
4607 {
4608 	/* SMP safe */
4609 	return current->blocked.sig[0];
4610 }
4611 
4612 SYSCALL_DEFINE1(ssetmask, int, newmask)
4613 {
4614 	int old = current->blocked.sig[0];
4615 	sigset_t newset;
4616 
4617 	siginitset(&newset, newmask);
4618 	set_current_blocked(&newset);
4619 
4620 	return old;
4621 }
4622 #endif /* CONFIG_SGETMASK_SYSCALL */
4623 
4624 #ifdef __ARCH_WANT_SYS_SIGNAL
4625 /*
4626  * For backwards compatibility.  Functionality superseded by sigaction.
4627  */
4628 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4629 {
4630 	struct k_sigaction new_sa, old_sa;
4631 	int ret;
4632 
4633 	new_sa.sa.sa_handler = handler;
4634 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4635 	sigemptyset(&new_sa.sa.sa_mask);
4636 
4637 	ret = do_sigaction(sig, &new_sa, &old_sa);
4638 
4639 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4640 }
4641 #endif /* __ARCH_WANT_SYS_SIGNAL */
4642 
4643 #ifdef __ARCH_WANT_SYS_PAUSE
4644 
4645 SYSCALL_DEFINE0(pause)
4646 {
4647 	while (!signal_pending(current)) {
4648 		__set_current_state(TASK_INTERRUPTIBLE);
4649 		schedule();
4650 	}
4651 	return -ERESTARTNOHAND;
4652 }
4653 
4654 #endif
4655 
4656 static int sigsuspend(sigset_t *set)
4657 {
4658 	current->saved_sigmask = current->blocked;
4659 	set_current_blocked(set);
4660 
4661 	while (!signal_pending(current)) {
4662 		__set_current_state(TASK_INTERRUPTIBLE);
4663 		schedule();
4664 	}
4665 	set_restore_sigmask();
4666 	return -ERESTARTNOHAND;
4667 }
4668 
4669 /**
4670  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4671  *	@unewset value until a signal is received
4672  *  @unewset: new signal mask value
4673  *  @sigsetsize: size of sigset_t type
4674  */
4675 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4676 {
4677 	sigset_t newset;
4678 
4679 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4680 	if (sigsetsize != sizeof(sigset_t))
4681 		return -EINVAL;
4682 
4683 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4684 		return -EFAULT;
4685 	return sigsuspend(&newset);
4686 }
4687 
4688 #ifdef CONFIG_COMPAT
4689 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4690 {
4691 	sigset_t newset;
4692 
4693 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4694 	if (sigsetsize != sizeof(sigset_t))
4695 		return -EINVAL;
4696 
4697 	if (get_compat_sigset(&newset, unewset))
4698 		return -EFAULT;
4699 	return sigsuspend(&newset);
4700 }
4701 #endif
4702 
4703 #ifdef CONFIG_OLD_SIGSUSPEND
4704 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4705 {
4706 	sigset_t blocked;
4707 	siginitset(&blocked, mask);
4708 	return sigsuspend(&blocked);
4709 }
4710 #endif
4711 #ifdef CONFIG_OLD_SIGSUSPEND3
4712 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4713 {
4714 	sigset_t blocked;
4715 	siginitset(&blocked, mask);
4716 	return sigsuspend(&blocked);
4717 }
4718 #endif
4719 
4720 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4721 {
4722 	return NULL;
4723 }
4724 
4725 static inline void siginfo_buildtime_checks(void)
4726 {
4727 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4728 
4729 	/* Verify the offsets in the two siginfos match */
4730 #define CHECK_OFFSET(field) \
4731 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4732 
4733 	/* kill */
4734 	CHECK_OFFSET(si_pid);
4735 	CHECK_OFFSET(si_uid);
4736 
4737 	/* timer */
4738 	CHECK_OFFSET(si_tid);
4739 	CHECK_OFFSET(si_overrun);
4740 	CHECK_OFFSET(si_value);
4741 
4742 	/* rt */
4743 	CHECK_OFFSET(si_pid);
4744 	CHECK_OFFSET(si_uid);
4745 	CHECK_OFFSET(si_value);
4746 
4747 	/* sigchld */
4748 	CHECK_OFFSET(si_pid);
4749 	CHECK_OFFSET(si_uid);
4750 	CHECK_OFFSET(si_status);
4751 	CHECK_OFFSET(si_utime);
4752 	CHECK_OFFSET(si_stime);
4753 
4754 	/* sigfault */
4755 	CHECK_OFFSET(si_addr);
4756 	CHECK_OFFSET(si_trapno);
4757 	CHECK_OFFSET(si_addr_lsb);
4758 	CHECK_OFFSET(si_lower);
4759 	CHECK_OFFSET(si_upper);
4760 	CHECK_OFFSET(si_pkey);
4761 	CHECK_OFFSET(si_perf_data);
4762 	CHECK_OFFSET(si_perf_type);
4763 
4764 	/* sigpoll */
4765 	CHECK_OFFSET(si_band);
4766 	CHECK_OFFSET(si_fd);
4767 
4768 	/* sigsys */
4769 	CHECK_OFFSET(si_call_addr);
4770 	CHECK_OFFSET(si_syscall);
4771 	CHECK_OFFSET(si_arch);
4772 #undef CHECK_OFFSET
4773 
4774 	/* usb asyncio */
4775 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4776 		     offsetof(struct siginfo, si_addr));
4777 	if (sizeof(int) == sizeof(void __user *)) {
4778 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4779 			     sizeof(void __user *));
4780 	} else {
4781 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4782 			      sizeof_field(struct siginfo, si_uid)) !=
4783 			     sizeof(void __user *));
4784 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4785 			     offsetof(struct siginfo, si_uid));
4786 	}
4787 #ifdef CONFIG_COMPAT
4788 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4789 		     offsetof(struct compat_siginfo, si_addr));
4790 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4791 		     sizeof(compat_uptr_t));
4792 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4793 		     sizeof_field(struct siginfo, si_pid));
4794 #endif
4795 }
4796 
4797 void __init signals_init(void)
4798 {
4799 	siginfo_buildtime_checks();
4800 
4801 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4802 }
4803 
4804 #ifdef CONFIG_KGDB_KDB
4805 #include <linux/kdb.h>
4806 /*
4807  * kdb_send_sig - Allows kdb to send signals without exposing
4808  * signal internals.  This function checks if the required locks are
4809  * available before calling the main signal code, to avoid kdb
4810  * deadlocks.
4811  */
4812 void kdb_send_sig(struct task_struct *t, int sig)
4813 {
4814 	static struct task_struct *kdb_prev_t;
4815 	int new_t, ret;
4816 	if (!spin_trylock(&t->sighand->siglock)) {
4817 		kdb_printf("Can't do kill command now.\n"
4818 			   "The sigmask lock is held somewhere else in "
4819 			   "kernel, try again later\n");
4820 		return;
4821 	}
4822 	new_t = kdb_prev_t != t;
4823 	kdb_prev_t = t;
4824 	if (!task_is_running(t) && new_t) {
4825 		spin_unlock(&t->sighand->siglock);
4826 		kdb_printf("Process is not RUNNING, sending a signal from "
4827 			   "kdb risks deadlock\n"
4828 			   "on the run queue locks. "
4829 			   "The signal has _not_ been sent.\n"
4830 			   "Reissue the kill command if you want to risk "
4831 			   "the deadlock.\n");
4832 		return;
4833 	}
4834 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4835 	spin_unlock(&t->sighand->siglock);
4836 	if (ret)
4837 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4838 			   sig, t->pid);
4839 	else
4840 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4841 }
4842 #endif	/* CONFIG_KGDB_KDB */
4843