1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/proc_fs.h> 26 #include <linux/tty.h> 27 #include <linux/binfmts.h> 28 #include <linux/coredump.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/ptrace.h> 32 #include <linux/signal.h> 33 #include <linux/signalfd.h> 34 #include <linux/ratelimit.h> 35 #include <linux/tracehook.h> 36 #include <linux/capability.h> 37 #include <linux/freezer.h> 38 #include <linux/pid_namespace.h> 39 #include <linux/nsproxy.h> 40 #include <linux/user_namespace.h> 41 #include <linux/uprobes.h> 42 #include <linux/compat.h> 43 #include <linux/cn_proc.h> 44 #include <linux/compiler.h> 45 #include <linux/posix-timers.h> 46 #include <linux/cgroup.h> 47 #include <linux/audit.h> 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/signal.h> 51 52 #include <asm/param.h> 53 #include <linux/uaccess.h> 54 #include <asm/unistd.h> 55 #include <asm/siginfo.h> 56 #include <asm/cacheflush.h> 57 #include <asm/syscall.h> /* for syscall_get_* */ 58 59 /* 60 * SLAB caches for signal bits. 61 */ 62 63 static struct kmem_cache *sigqueue_cachep; 64 65 int print_fatal_signals __read_mostly; 66 67 static void __user *sig_handler(struct task_struct *t, int sig) 68 { 69 return t->sighand->action[sig - 1].sa.sa_handler; 70 } 71 72 static inline bool sig_handler_ignored(void __user *handler, int sig) 73 { 74 /* Is it explicitly or implicitly ignored? */ 75 return handler == SIG_IGN || 76 (handler == SIG_DFL && sig_kernel_ignore(sig)); 77 } 78 79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 80 { 81 void __user *handler; 82 83 handler = sig_handler(t, sig); 84 85 /* SIGKILL and SIGSTOP may not be sent to the global init */ 86 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 87 return true; 88 89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 90 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 91 return true; 92 93 /* Only allow kernel generated signals to this kthread */ 94 if (unlikely((t->flags & PF_KTHREAD) && 95 (handler == SIG_KTHREAD_KERNEL) && !force)) 96 return true; 97 98 return sig_handler_ignored(handler, sig); 99 } 100 101 static bool sig_ignored(struct task_struct *t, int sig, bool force) 102 { 103 /* 104 * Blocked signals are never ignored, since the 105 * signal handler may change by the time it is 106 * unblocked. 107 */ 108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 109 return false; 110 111 /* 112 * Tracers may want to know about even ignored signal unless it 113 * is SIGKILL which can't be reported anyway but can be ignored 114 * by SIGNAL_UNKILLABLE task. 115 */ 116 if (t->ptrace && sig != SIGKILL) 117 return false; 118 119 return sig_task_ignored(t, sig, force); 120 } 121 122 /* 123 * Re-calculate pending state from the set of locally pending 124 * signals, globally pending signals, and blocked signals. 125 */ 126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 127 { 128 unsigned long ready; 129 long i; 130 131 switch (_NSIG_WORDS) { 132 default: 133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 134 ready |= signal->sig[i] &~ blocked->sig[i]; 135 break; 136 137 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 138 ready |= signal->sig[2] &~ blocked->sig[2]; 139 ready |= signal->sig[1] &~ blocked->sig[1]; 140 ready |= signal->sig[0] &~ blocked->sig[0]; 141 break; 142 143 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 144 ready |= signal->sig[0] &~ blocked->sig[0]; 145 break; 146 147 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 148 } 149 return ready != 0; 150 } 151 152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 153 154 static bool recalc_sigpending_tsk(struct task_struct *t) 155 { 156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 157 PENDING(&t->pending, &t->blocked) || 158 PENDING(&t->signal->shared_pending, &t->blocked) || 159 cgroup_task_frozen(t)) { 160 set_tsk_thread_flag(t, TIF_SIGPENDING); 161 return true; 162 } 163 164 /* 165 * We must never clear the flag in another thread, or in current 166 * when it's possible the current syscall is returning -ERESTART*. 167 * So we don't clear it here, and only callers who know they should do. 168 */ 169 return false; 170 } 171 172 /* 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 174 * This is superfluous when called on current, the wakeup is a harmless no-op. 175 */ 176 void recalc_sigpending_and_wake(struct task_struct *t) 177 { 178 if (recalc_sigpending_tsk(t)) 179 signal_wake_up(t, 0); 180 } 181 182 void recalc_sigpending(void) 183 { 184 if (!recalc_sigpending_tsk(current) && !freezing(current)) 185 clear_thread_flag(TIF_SIGPENDING); 186 187 } 188 EXPORT_SYMBOL(recalc_sigpending); 189 190 void calculate_sigpending(void) 191 { 192 /* Have any signals or users of TIF_SIGPENDING been delayed 193 * until after fork? 194 */ 195 spin_lock_irq(¤t->sighand->siglock); 196 set_tsk_thread_flag(current, TIF_SIGPENDING); 197 recalc_sigpending(); 198 spin_unlock_irq(¤t->sighand->siglock); 199 } 200 201 /* Given the mask, find the first available signal that should be serviced. */ 202 203 #define SYNCHRONOUS_MASK \ 204 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 205 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 206 207 int next_signal(struct sigpending *pending, sigset_t *mask) 208 { 209 unsigned long i, *s, *m, x; 210 int sig = 0; 211 212 s = pending->signal.sig; 213 m = mask->sig; 214 215 /* 216 * Handle the first word specially: it contains the 217 * synchronous signals that need to be dequeued first. 218 */ 219 x = *s &~ *m; 220 if (x) { 221 if (x & SYNCHRONOUS_MASK) 222 x &= SYNCHRONOUS_MASK; 223 sig = ffz(~x) + 1; 224 return sig; 225 } 226 227 switch (_NSIG_WORDS) { 228 default: 229 for (i = 1; i < _NSIG_WORDS; ++i) { 230 x = *++s &~ *++m; 231 if (!x) 232 continue; 233 sig = ffz(~x) + i*_NSIG_BPW + 1; 234 break; 235 } 236 break; 237 238 case 2: 239 x = s[1] &~ m[1]; 240 if (!x) 241 break; 242 sig = ffz(~x) + _NSIG_BPW + 1; 243 break; 244 245 case 1: 246 /* Nothing to do */ 247 break; 248 } 249 250 return sig; 251 } 252 253 static inline void print_dropped_signal(int sig) 254 { 255 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 256 257 if (!print_fatal_signals) 258 return; 259 260 if (!__ratelimit(&ratelimit_state)) 261 return; 262 263 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 264 current->comm, current->pid, sig); 265 } 266 267 /** 268 * task_set_jobctl_pending - set jobctl pending bits 269 * @task: target task 270 * @mask: pending bits to set 271 * 272 * Clear @mask from @task->jobctl. @mask must be subset of 273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 274 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 275 * cleared. If @task is already being killed or exiting, this function 276 * becomes noop. 277 * 278 * CONTEXT: 279 * Must be called with @task->sighand->siglock held. 280 * 281 * RETURNS: 282 * %true if @mask is set, %false if made noop because @task was dying. 283 */ 284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 285 { 286 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 287 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 288 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 289 290 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 291 return false; 292 293 if (mask & JOBCTL_STOP_SIGMASK) 294 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 295 296 task->jobctl |= mask; 297 return true; 298 } 299 300 /** 301 * task_clear_jobctl_trapping - clear jobctl trapping bit 302 * @task: target task 303 * 304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 305 * Clear it and wake up the ptracer. Note that we don't need any further 306 * locking. @task->siglock guarantees that @task->parent points to the 307 * ptracer. 308 * 309 * CONTEXT: 310 * Must be called with @task->sighand->siglock held. 311 */ 312 void task_clear_jobctl_trapping(struct task_struct *task) 313 { 314 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 315 task->jobctl &= ~JOBCTL_TRAPPING; 316 smp_mb(); /* advised by wake_up_bit() */ 317 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 318 } 319 } 320 321 /** 322 * task_clear_jobctl_pending - clear jobctl pending bits 323 * @task: target task 324 * @mask: pending bits to clear 325 * 326 * Clear @mask from @task->jobctl. @mask must be subset of 327 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 328 * STOP bits are cleared together. 329 * 330 * If clearing of @mask leaves no stop or trap pending, this function calls 331 * task_clear_jobctl_trapping(). 332 * 333 * CONTEXT: 334 * Must be called with @task->sighand->siglock held. 335 */ 336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 337 { 338 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 339 340 if (mask & JOBCTL_STOP_PENDING) 341 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 342 343 task->jobctl &= ~mask; 344 345 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 346 task_clear_jobctl_trapping(task); 347 } 348 349 /** 350 * task_participate_group_stop - participate in a group stop 351 * @task: task participating in a group stop 352 * 353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 354 * Group stop states are cleared and the group stop count is consumed if 355 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 356 * stop, the appropriate `SIGNAL_*` flags are set. 357 * 358 * CONTEXT: 359 * Must be called with @task->sighand->siglock held. 360 * 361 * RETURNS: 362 * %true if group stop completion should be notified to the parent, %false 363 * otherwise. 364 */ 365 static bool task_participate_group_stop(struct task_struct *task) 366 { 367 struct signal_struct *sig = task->signal; 368 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 369 370 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 371 372 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 373 374 if (!consume) 375 return false; 376 377 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 378 sig->group_stop_count--; 379 380 /* 381 * Tell the caller to notify completion iff we are entering into a 382 * fresh group stop. Read comment in do_signal_stop() for details. 383 */ 384 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 385 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 386 return true; 387 } 388 return false; 389 } 390 391 void task_join_group_stop(struct task_struct *task) 392 { 393 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 394 struct signal_struct *sig = current->signal; 395 396 if (sig->group_stop_count) { 397 sig->group_stop_count++; 398 mask |= JOBCTL_STOP_CONSUME; 399 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 400 return; 401 402 /* Have the new thread join an on-going signal group stop */ 403 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 404 } 405 406 /* 407 * allocate a new signal queue record 408 * - this may be called without locks if and only if t == current, otherwise an 409 * appropriate lock must be held to stop the target task from exiting 410 */ 411 static struct sigqueue * 412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 413 int override_rlimit, const unsigned int sigqueue_flags) 414 { 415 struct sigqueue *q = NULL; 416 struct ucounts *ucounts = NULL; 417 long sigpending; 418 419 /* 420 * Protect access to @t credentials. This can go away when all 421 * callers hold rcu read lock. 422 * 423 * NOTE! A pending signal will hold on to the user refcount, 424 * and we get/put the refcount only when the sigpending count 425 * changes from/to zero. 426 */ 427 rcu_read_lock(); 428 ucounts = task_ucounts(t); 429 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 430 rcu_read_unlock(); 431 if (!sigpending) 432 return NULL; 433 434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 435 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 436 } else { 437 print_dropped_signal(sig); 438 } 439 440 if (unlikely(q == NULL)) { 441 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 442 } else { 443 INIT_LIST_HEAD(&q->list); 444 q->flags = sigqueue_flags; 445 q->ucounts = ucounts; 446 } 447 return q; 448 } 449 450 static void __sigqueue_free(struct sigqueue *q) 451 { 452 if (q->flags & SIGQUEUE_PREALLOC) 453 return; 454 if (q->ucounts) { 455 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 456 q->ucounts = NULL; 457 } 458 kmem_cache_free(sigqueue_cachep, q); 459 } 460 461 void flush_sigqueue(struct sigpending *queue) 462 { 463 struct sigqueue *q; 464 465 sigemptyset(&queue->signal); 466 while (!list_empty(&queue->list)) { 467 q = list_entry(queue->list.next, struct sigqueue , list); 468 list_del_init(&q->list); 469 __sigqueue_free(q); 470 } 471 } 472 473 /* 474 * Flush all pending signals for this kthread. 475 */ 476 void flush_signals(struct task_struct *t) 477 { 478 unsigned long flags; 479 480 spin_lock_irqsave(&t->sighand->siglock, flags); 481 clear_tsk_thread_flag(t, TIF_SIGPENDING); 482 flush_sigqueue(&t->pending); 483 flush_sigqueue(&t->signal->shared_pending); 484 spin_unlock_irqrestore(&t->sighand->siglock, flags); 485 } 486 EXPORT_SYMBOL(flush_signals); 487 488 #ifdef CONFIG_POSIX_TIMERS 489 static void __flush_itimer_signals(struct sigpending *pending) 490 { 491 sigset_t signal, retain; 492 struct sigqueue *q, *n; 493 494 signal = pending->signal; 495 sigemptyset(&retain); 496 497 list_for_each_entry_safe(q, n, &pending->list, list) { 498 int sig = q->info.si_signo; 499 500 if (likely(q->info.si_code != SI_TIMER)) { 501 sigaddset(&retain, sig); 502 } else { 503 sigdelset(&signal, sig); 504 list_del_init(&q->list); 505 __sigqueue_free(q); 506 } 507 } 508 509 sigorsets(&pending->signal, &signal, &retain); 510 } 511 512 void flush_itimer_signals(void) 513 { 514 struct task_struct *tsk = current; 515 unsigned long flags; 516 517 spin_lock_irqsave(&tsk->sighand->siglock, flags); 518 __flush_itimer_signals(&tsk->pending); 519 __flush_itimer_signals(&tsk->signal->shared_pending); 520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 521 } 522 #endif 523 524 void ignore_signals(struct task_struct *t) 525 { 526 int i; 527 528 for (i = 0; i < _NSIG; ++i) 529 t->sighand->action[i].sa.sa_handler = SIG_IGN; 530 531 flush_signals(t); 532 } 533 534 /* 535 * Flush all handlers for a task. 536 */ 537 538 void 539 flush_signal_handlers(struct task_struct *t, int force_default) 540 { 541 int i; 542 struct k_sigaction *ka = &t->sighand->action[0]; 543 for (i = _NSIG ; i != 0 ; i--) { 544 if (force_default || ka->sa.sa_handler != SIG_IGN) 545 ka->sa.sa_handler = SIG_DFL; 546 ka->sa.sa_flags = 0; 547 #ifdef __ARCH_HAS_SA_RESTORER 548 ka->sa.sa_restorer = NULL; 549 #endif 550 sigemptyset(&ka->sa.sa_mask); 551 ka++; 552 } 553 } 554 555 bool unhandled_signal(struct task_struct *tsk, int sig) 556 { 557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 558 if (is_global_init(tsk)) 559 return true; 560 561 if (handler != SIG_IGN && handler != SIG_DFL) 562 return false; 563 564 /* if ptraced, let the tracer determine */ 565 return !tsk->ptrace; 566 } 567 568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 569 bool *resched_timer) 570 { 571 struct sigqueue *q, *first = NULL; 572 573 /* 574 * Collect the siginfo appropriate to this signal. Check if 575 * there is another siginfo for the same signal. 576 */ 577 list_for_each_entry(q, &list->list, list) { 578 if (q->info.si_signo == sig) { 579 if (first) 580 goto still_pending; 581 first = q; 582 } 583 } 584 585 sigdelset(&list->signal, sig); 586 587 if (first) { 588 still_pending: 589 list_del_init(&first->list); 590 copy_siginfo(info, &first->info); 591 592 *resched_timer = 593 (first->flags & SIGQUEUE_PREALLOC) && 594 (info->si_code == SI_TIMER) && 595 (info->si_sys_private); 596 597 __sigqueue_free(first); 598 } else { 599 /* 600 * Ok, it wasn't in the queue. This must be 601 * a fast-pathed signal or we must have been 602 * out of queue space. So zero out the info. 603 */ 604 clear_siginfo(info); 605 info->si_signo = sig; 606 info->si_errno = 0; 607 info->si_code = SI_USER; 608 info->si_pid = 0; 609 info->si_uid = 0; 610 } 611 } 612 613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 614 kernel_siginfo_t *info, bool *resched_timer) 615 { 616 int sig = next_signal(pending, mask); 617 618 if (sig) 619 collect_signal(sig, pending, info, resched_timer); 620 return sig; 621 } 622 623 /* 624 * Dequeue a signal and return the element to the caller, which is 625 * expected to free it. 626 * 627 * All callers have to hold the siglock. 628 */ 629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, 630 kernel_siginfo_t *info, enum pid_type *type) 631 { 632 bool resched_timer = false; 633 int signr; 634 635 /* We only dequeue private signals from ourselves, we don't let 636 * signalfd steal them 637 */ 638 *type = PIDTYPE_PID; 639 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 640 if (!signr) { 641 *type = PIDTYPE_TGID; 642 signr = __dequeue_signal(&tsk->signal->shared_pending, 643 mask, info, &resched_timer); 644 #ifdef CONFIG_POSIX_TIMERS 645 /* 646 * itimer signal ? 647 * 648 * itimers are process shared and we restart periodic 649 * itimers in the signal delivery path to prevent DoS 650 * attacks in the high resolution timer case. This is 651 * compliant with the old way of self-restarting 652 * itimers, as the SIGALRM is a legacy signal and only 653 * queued once. Changing the restart behaviour to 654 * restart the timer in the signal dequeue path is 655 * reducing the timer noise on heavy loaded !highres 656 * systems too. 657 */ 658 if (unlikely(signr == SIGALRM)) { 659 struct hrtimer *tmr = &tsk->signal->real_timer; 660 661 if (!hrtimer_is_queued(tmr) && 662 tsk->signal->it_real_incr != 0) { 663 hrtimer_forward(tmr, tmr->base->get_time(), 664 tsk->signal->it_real_incr); 665 hrtimer_restart(tmr); 666 } 667 } 668 #endif 669 } 670 671 recalc_sigpending(); 672 if (!signr) 673 return 0; 674 675 if (unlikely(sig_kernel_stop(signr))) { 676 /* 677 * Set a marker that we have dequeued a stop signal. Our 678 * caller might release the siglock and then the pending 679 * stop signal it is about to process is no longer in the 680 * pending bitmasks, but must still be cleared by a SIGCONT 681 * (and overruled by a SIGKILL). So those cases clear this 682 * shared flag after we've set it. Note that this flag may 683 * remain set after the signal we return is ignored or 684 * handled. That doesn't matter because its only purpose 685 * is to alert stop-signal processing code when another 686 * processor has come along and cleared the flag. 687 */ 688 current->jobctl |= JOBCTL_STOP_DEQUEUED; 689 } 690 #ifdef CONFIG_POSIX_TIMERS 691 if (resched_timer) { 692 /* 693 * Release the siglock to ensure proper locking order 694 * of timer locks outside of siglocks. Note, we leave 695 * irqs disabled here, since the posix-timers code is 696 * about to disable them again anyway. 697 */ 698 spin_unlock(&tsk->sighand->siglock); 699 posixtimer_rearm(info); 700 spin_lock(&tsk->sighand->siglock); 701 702 /* Don't expose the si_sys_private value to userspace */ 703 info->si_sys_private = 0; 704 } 705 #endif 706 return signr; 707 } 708 EXPORT_SYMBOL_GPL(dequeue_signal); 709 710 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 711 { 712 struct task_struct *tsk = current; 713 struct sigpending *pending = &tsk->pending; 714 struct sigqueue *q, *sync = NULL; 715 716 /* 717 * Might a synchronous signal be in the queue? 718 */ 719 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 720 return 0; 721 722 /* 723 * Return the first synchronous signal in the queue. 724 */ 725 list_for_each_entry(q, &pending->list, list) { 726 /* Synchronous signals have a positive si_code */ 727 if ((q->info.si_code > SI_USER) && 728 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 729 sync = q; 730 goto next; 731 } 732 } 733 return 0; 734 next: 735 /* 736 * Check if there is another siginfo for the same signal. 737 */ 738 list_for_each_entry_continue(q, &pending->list, list) { 739 if (q->info.si_signo == sync->info.si_signo) 740 goto still_pending; 741 } 742 743 sigdelset(&pending->signal, sync->info.si_signo); 744 recalc_sigpending(); 745 still_pending: 746 list_del_init(&sync->list); 747 copy_siginfo(info, &sync->info); 748 __sigqueue_free(sync); 749 return info->si_signo; 750 } 751 752 /* 753 * Tell a process that it has a new active signal.. 754 * 755 * NOTE! we rely on the previous spin_lock to 756 * lock interrupts for us! We can only be called with 757 * "siglock" held, and the local interrupt must 758 * have been disabled when that got acquired! 759 * 760 * No need to set need_resched since signal event passing 761 * goes through ->blocked 762 */ 763 void signal_wake_up_state(struct task_struct *t, unsigned int state) 764 { 765 set_tsk_thread_flag(t, TIF_SIGPENDING); 766 /* 767 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 768 * case. We don't check t->state here because there is a race with it 769 * executing another processor and just now entering stopped state. 770 * By using wake_up_state, we ensure the process will wake up and 771 * handle its death signal. 772 */ 773 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 774 kick_process(t); 775 } 776 777 /* 778 * Remove signals in mask from the pending set and queue. 779 * Returns 1 if any signals were found. 780 * 781 * All callers must be holding the siglock. 782 */ 783 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 784 { 785 struct sigqueue *q, *n; 786 sigset_t m; 787 788 sigandsets(&m, mask, &s->signal); 789 if (sigisemptyset(&m)) 790 return; 791 792 sigandnsets(&s->signal, &s->signal, mask); 793 list_for_each_entry_safe(q, n, &s->list, list) { 794 if (sigismember(mask, q->info.si_signo)) { 795 list_del_init(&q->list); 796 __sigqueue_free(q); 797 } 798 } 799 } 800 801 static inline int is_si_special(const struct kernel_siginfo *info) 802 { 803 return info <= SEND_SIG_PRIV; 804 } 805 806 static inline bool si_fromuser(const struct kernel_siginfo *info) 807 { 808 return info == SEND_SIG_NOINFO || 809 (!is_si_special(info) && SI_FROMUSER(info)); 810 } 811 812 /* 813 * called with RCU read lock from check_kill_permission() 814 */ 815 static bool kill_ok_by_cred(struct task_struct *t) 816 { 817 const struct cred *cred = current_cred(); 818 const struct cred *tcred = __task_cred(t); 819 820 return uid_eq(cred->euid, tcred->suid) || 821 uid_eq(cred->euid, tcred->uid) || 822 uid_eq(cred->uid, tcred->suid) || 823 uid_eq(cred->uid, tcred->uid) || 824 ns_capable(tcred->user_ns, CAP_KILL); 825 } 826 827 /* 828 * Bad permissions for sending the signal 829 * - the caller must hold the RCU read lock 830 */ 831 static int check_kill_permission(int sig, struct kernel_siginfo *info, 832 struct task_struct *t) 833 { 834 struct pid *sid; 835 int error; 836 837 if (!valid_signal(sig)) 838 return -EINVAL; 839 840 if (!si_fromuser(info)) 841 return 0; 842 843 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 844 if (error) 845 return error; 846 847 if (!same_thread_group(current, t) && 848 !kill_ok_by_cred(t)) { 849 switch (sig) { 850 case SIGCONT: 851 sid = task_session(t); 852 /* 853 * We don't return the error if sid == NULL. The 854 * task was unhashed, the caller must notice this. 855 */ 856 if (!sid || sid == task_session(current)) 857 break; 858 fallthrough; 859 default: 860 return -EPERM; 861 } 862 } 863 864 return security_task_kill(t, info, sig, NULL); 865 } 866 867 /** 868 * ptrace_trap_notify - schedule trap to notify ptracer 869 * @t: tracee wanting to notify tracer 870 * 871 * This function schedules sticky ptrace trap which is cleared on the next 872 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 873 * ptracer. 874 * 875 * If @t is running, STOP trap will be taken. If trapped for STOP and 876 * ptracer is listening for events, tracee is woken up so that it can 877 * re-trap for the new event. If trapped otherwise, STOP trap will be 878 * eventually taken without returning to userland after the existing traps 879 * are finished by PTRACE_CONT. 880 * 881 * CONTEXT: 882 * Must be called with @task->sighand->siglock held. 883 */ 884 static void ptrace_trap_notify(struct task_struct *t) 885 { 886 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 887 assert_spin_locked(&t->sighand->siglock); 888 889 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 890 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 891 } 892 893 /* 894 * Handle magic process-wide effects of stop/continue signals. Unlike 895 * the signal actions, these happen immediately at signal-generation 896 * time regardless of blocking, ignoring, or handling. This does the 897 * actual continuing for SIGCONT, but not the actual stopping for stop 898 * signals. The process stop is done as a signal action for SIG_DFL. 899 * 900 * Returns true if the signal should be actually delivered, otherwise 901 * it should be dropped. 902 */ 903 static bool prepare_signal(int sig, struct task_struct *p, bool force) 904 { 905 struct signal_struct *signal = p->signal; 906 struct task_struct *t; 907 sigset_t flush; 908 909 if (signal->flags & SIGNAL_GROUP_EXIT) { 910 if (signal->core_state) 911 return sig == SIGKILL; 912 /* 913 * The process is in the middle of dying, nothing to do. 914 */ 915 } else if (sig_kernel_stop(sig)) { 916 /* 917 * This is a stop signal. Remove SIGCONT from all queues. 918 */ 919 siginitset(&flush, sigmask(SIGCONT)); 920 flush_sigqueue_mask(&flush, &signal->shared_pending); 921 for_each_thread(p, t) 922 flush_sigqueue_mask(&flush, &t->pending); 923 } else if (sig == SIGCONT) { 924 unsigned int why; 925 /* 926 * Remove all stop signals from all queues, wake all threads. 927 */ 928 siginitset(&flush, SIG_KERNEL_STOP_MASK); 929 flush_sigqueue_mask(&flush, &signal->shared_pending); 930 for_each_thread(p, t) { 931 flush_sigqueue_mask(&flush, &t->pending); 932 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 933 if (likely(!(t->ptrace & PT_SEIZED))) 934 wake_up_state(t, __TASK_STOPPED); 935 else 936 ptrace_trap_notify(t); 937 } 938 939 /* 940 * Notify the parent with CLD_CONTINUED if we were stopped. 941 * 942 * If we were in the middle of a group stop, we pretend it 943 * was already finished, and then continued. Since SIGCHLD 944 * doesn't queue we report only CLD_STOPPED, as if the next 945 * CLD_CONTINUED was dropped. 946 */ 947 why = 0; 948 if (signal->flags & SIGNAL_STOP_STOPPED) 949 why |= SIGNAL_CLD_CONTINUED; 950 else if (signal->group_stop_count) 951 why |= SIGNAL_CLD_STOPPED; 952 953 if (why) { 954 /* 955 * The first thread which returns from do_signal_stop() 956 * will take ->siglock, notice SIGNAL_CLD_MASK, and 957 * notify its parent. See get_signal(). 958 */ 959 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 960 signal->group_stop_count = 0; 961 signal->group_exit_code = 0; 962 } 963 } 964 965 return !sig_ignored(p, sig, force); 966 } 967 968 /* 969 * Test if P wants to take SIG. After we've checked all threads with this, 970 * it's equivalent to finding no threads not blocking SIG. Any threads not 971 * blocking SIG were ruled out because they are not running and already 972 * have pending signals. Such threads will dequeue from the shared queue 973 * as soon as they're available, so putting the signal on the shared queue 974 * will be equivalent to sending it to one such thread. 975 */ 976 static inline bool wants_signal(int sig, struct task_struct *p) 977 { 978 if (sigismember(&p->blocked, sig)) 979 return false; 980 981 if (p->flags & PF_EXITING) 982 return false; 983 984 if (sig == SIGKILL) 985 return true; 986 987 if (task_is_stopped_or_traced(p)) 988 return false; 989 990 return task_curr(p) || !task_sigpending(p); 991 } 992 993 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 994 { 995 struct signal_struct *signal = p->signal; 996 struct task_struct *t; 997 998 /* 999 * Now find a thread we can wake up to take the signal off the queue. 1000 * 1001 * If the main thread wants the signal, it gets first crack. 1002 * Probably the least surprising to the average bear. 1003 */ 1004 if (wants_signal(sig, p)) 1005 t = p; 1006 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1007 /* 1008 * There is just one thread and it does not need to be woken. 1009 * It will dequeue unblocked signals before it runs again. 1010 */ 1011 return; 1012 else { 1013 /* 1014 * Otherwise try to find a suitable thread. 1015 */ 1016 t = signal->curr_target; 1017 while (!wants_signal(sig, t)) { 1018 t = next_thread(t); 1019 if (t == signal->curr_target) 1020 /* 1021 * No thread needs to be woken. 1022 * Any eligible threads will see 1023 * the signal in the queue soon. 1024 */ 1025 return; 1026 } 1027 signal->curr_target = t; 1028 } 1029 1030 /* 1031 * Found a killable thread. If the signal will be fatal, 1032 * then start taking the whole group down immediately. 1033 */ 1034 if (sig_fatal(p, sig) && 1035 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1036 !sigismember(&t->real_blocked, sig) && 1037 (sig == SIGKILL || !p->ptrace)) { 1038 /* 1039 * This signal will be fatal to the whole group. 1040 */ 1041 if (!sig_kernel_coredump(sig)) { 1042 /* 1043 * Start a group exit and wake everybody up. 1044 * This way we don't have other threads 1045 * running and doing things after a slower 1046 * thread has the fatal signal pending. 1047 */ 1048 signal->flags = SIGNAL_GROUP_EXIT; 1049 signal->group_exit_code = sig; 1050 signal->group_stop_count = 0; 1051 t = p; 1052 do { 1053 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1054 sigaddset(&t->pending.signal, SIGKILL); 1055 signal_wake_up(t, 1); 1056 } while_each_thread(p, t); 1057 return; 1058 } 1059 } 1060 1061 /* 1062 * The signal is already in the shared-pending queue. 1063 * Tell the chosen thread to wake up and dequeue it. 1064 */ 1065 signal_wake_up(t, sig == SIGKILL); 1066 return; 1067 } 1068 1069 static inline bool legacy_queue(struct sigpending *signals, int sig) 1070 { 1071 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1072 } 1073 1074 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1075 enum pid_type type, bool force) 1076 { 1077 struct sigpending *pending; 1078 struct sigqueue *q; 1079 int override_rlimit; 1080 int ret = 0, result; 1081 1082 assert_spin_locked(&t->sighand->siglock); 1083 1084 result = TRACE_SIGNAL_IGNORED; 1085 if (!prepare_signal(sig, t, force)) 1086 goto ret; 1087 1088 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1089 /* 1090 * Short-circuit ignored signals and support queuing 1091 * exactly one non-rt signal, so that we can get more 1092 * detailed information about the cause of the signal. 1093 */ 1094 result = TRACE_SIGNAL_ALREADY_PENDING; 1095 if (legacy_queue(pending, sig)) 1096 goto ret; 1097 1098 result = TRACE_SIGNAL_DELIVERED; 1099 /* 1100 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1101 */ 1102 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1103 goto out_set; 1104 1105 /* 1106 * Real-time signals must be queued if sent by sigqueue, or 1107 * some other real-time mechanism. It is implementation 1108 * defined whether kill() does so. We attempt to do so, on 1109 * the principle of least surprise, but since kill is not 1110 * allowed to fail with EAGAIN when low on memory we just 1111 * make sure at least one signal gets delivered and don't 1112 * pass on the info struct. 1113 */ 1114 if (sig < SIGRTMIN) 1115 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1116 else 1117 override_rlimit = 0; 1118 1119 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1120 1121 if (q) { 1122 list_add_tail(&q->list, &pending->list); 1123 switch ((unsigned long) info) { 1124 case (unsigned long) SEND_SIG_NOINFO: 1125 clear_siginfo(&q->info); 1126 q->info.si_signo = sig; 1127 q->info.si_errno = 0; 1128 q->info.si_code = SI_USER; 1129 q->info.si_pid = task_tgid_nr_ns(current, 1130 task_active_pid_ns(t)); 1131 rcu_read_lock(); 1132 q->info.si_uid = 1133 from_kuid_munged(task_cred_xxx(t, user_ns), 1134 current_uid()); 1135 rcu_read_unlock(); 1136 break; 1137 case (unsigned long) SEND_SIG_PRIV: 1138 clear_siginfo(&q->info); 1139 q->info.si_signo = sig; 1140 q->info.si_errno = 0; 1141 q->info.si_code = SI_KERNEL; 1142 q->info.si_pid = 0; 1143 q->info.si_uid = 0; 1144 break; 1145 default: 1146 copy_siginfo(&q->info, info); 1147 break; 1148 } 1149 } else if (!is_si_special(info) && 1150 sig >= SIGRTMIN && info->si_code != SI_USER) { 1151 /* 1152 * Queue overflow, abort. We may abort if the 1153 * signal was rt and sent by user using something 1154 * other than kill(). 1155 */ 1156 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1157 ret = -EAGAIN; 1158 goto ret; 1159 } else { 1160 /* 1161 * This is a silent loss of information. We still 1162 * send the signal, but the *info bits are lost. 1163 */ 1164 result = TRACE_SIGNAL_LOSE_INFO; 1165 } 1166 1167 out_set: 1168 signalfd_notify(t, sig); 1169 sigaddset(&pending->signal, sig); 1170 1171 /* Let multiprocess signals appear after on-going forks */ 1172 if (type > PIDTYPE_TGID) { 1173 struct multiprocess_signals *delayed; 1174 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1175 sigset_t *signal = &delayed->signal; 1176 /* Can't queue both a stop and a continue signal */ 1177 if (sig == SIGCONT) 1178 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1179 else if (sig_kernel_stop(sig)) 1180 sigdelset(signal, SIGCONT); 1181 sigaddset(signal, sig); 1182 } 1183 } 1184 1185 complete_signal(sig, t, type); 1186 ret: 1187 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1188 return ret; 1189 } 1190 1191 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1192 { 1193 bool ret = false; 1194 switch (siginfo_layout(info->si_signo, info->si_code)) { 1195 case SIL_KILL: 1196 case SIL_CHLD: 1197 case SIL_RT: 1198 ret = true; 1199 break; 1200 case SIL_TIMER: 1201 case SIL_POLL: 1202 case SIL_FAULT: 1203 case SIL_FAULT_TRAPNO: 1204 case SIL_FAULT_MCEERR: 1205 case SIL_FAULT_BNDERR: 1206 case SIL_FAULT_PKUERR: 1207 case SIL_FAULT_PERF_EVENT: 1208 case SIL_SYS: 1209 ret = false; 1210 break; 1211 } 1212 return ret; 1213 } 1214 1215 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1216 enum pid_type type) 1217 { 1218 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1219 bool force = false; 1220 1221 if (info == SEND_SIG_NOINFO) { 1222 /* Force if sent from an ancestor pid namespace */ 1223 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1224 } else if (info == SEND_SIG_PRIV) { 1225 /* Don't ignore kernel generated signals */ 1226 force = true; 1227 } else if (has_si_pid_and_uid(info)) { 1228 /* SIGKILL and SIGSTOP is special or has ids */ 1229 struct user_namespace *t_user_ns; 1230 1231 rcu_read_lock(); 1232 t_user_ns = task_cred_xxx(t, user_ns); 1233 if (current_user_ns() != t_user_ns) { 1234 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1235 info->si_uid = from_kuid_munged(t_user_ns, uid); 1236 } 1237 rcu_read_unlock(); 1238 1239 /* A kernel generated signal? */ 1240 force = (info->si_code == SI_KERNEL); 1241 1242 /* From an ancestor pid namespace? */ 1243 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1244 info->si_pid = 0; 1245 force = true; 1246 } 1247 } 1248 return __send_signal(sig, info, t, type, force); 1249 } 1250 1251 static void print_fatal_signal(int signr) 1252 { 1253 struct pt_regs *regs = signal_pt_regs(); 1254 pr_info("potentially unexpected fatal signal %d.\n", signr); 1255 1256 #if defined(__i386__) && !defined(__arch_um__) 1257 pr_info("code at %08lx: ", regs->ip); 1258 { 1259 int i; 1260 for (i = 0; i < 16; i++) { 1261 unsigned char insn; 1262 1263 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1264 break; 1265 pr_cont("%02x ", insn); 1266 } 1267 } 1268 pr_cont("\n"); 1269 #endif 1270 preempt_disable(); 1271 show_regs(regs); 1272 preempt_enable(); 1273 } 1274 1275 static int __init setup_print_fatal_signals(char *str) 1276 { 1277 get_option (&str, &print_fatal_signals); 1278 1279 return 1; 1280 } 1281 1282 __setup("print-fatal-signals=", setup_print_fatal_signals); 1283 1284 int 1285 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1286 { 1287 return send_signal(sig, info, p, PIDTYPE_TGID); 1288 } 1289 1290 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1291 enum pid_type type) 1292 { 1293 unsigned long flags; 1294 int ret = -ESRCH; 1295 1296 if (lock_task_sighand(p, &flags)) { 1297 ret = send_signal(sig, info, p, type); 1298 unlock_task_sighand(p, &flags); 1299 } 1300 1301 return ret; 1302 } 1303 1304 enum sig_handler { 1305 HANDLER_CURRENT, /* If reachable use the current handler */ 1306 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1307 HANDLER_EXIT, /* Only visible as the process exit code */ 1308 }; 1309 1310 /* 1311 * On some archictectures, PREEMPT_RT has to delay sending a signal from a 1312 * trap since it cannot enable preemption, and the signal code's 1313 * spin_locks turn into mutexes. Instead, it must set TIF_NOTIFY_RESUME 1314 * which will send the signal on exit of the trap. 1315 */ 1316 #ifdef CONFIG_RT_DELAYED_SIGNALS 1317 static inline bool force_sig_delayed(struct kernel_siginfo *info, 1318 struct task_struct *t) 1319 { 1320 if (!in_atomic()) 1321 return false; 1322 1323 if (WARN_ON_ONCE(t->forced_info.si_signo)) 1324 return true; 1325 1326 if (is_si_special(info)) { 1327 WARN_ON_ONCE(info != SEND_SIG_PRIV); 1328 t->forced_info.si_signo = info->si_signo; 1329 t->forced_info.si_errno = 0; 1330 t->forced_info.si_code = SI_KERNEL; 1331 t->forced_info.si_pid = 0; 1332 t->forced_info.si_uid = 0; 1333 } else { 1334 t->forced_info = *info; 1335 } 1336 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1337 return true; 1338 } 1339 #else 1340 static inline bool force_sig_delayed(struct kernel_siginfo *info, 1341 struct task_struct *t) 1342 { 1343 return false; 1344 } 1345 #endif 1346 1347 /* 1348 * Force a signal that the process can't ignore: if necessary 1349 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1350 * 1351 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1352 * since we do not want to have a signal handler that was blocked 1353 * be invoked when user space had explicitly blocked it. 1354 * 1355 * We don't want to have recursive SIGSEGV's etc, for example, 1356 * that is why we also clear SIGNAL_UNKILLABLE. 1357 */ 1358 static int 1359 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1360 enum sig_handler handler) 1361 { 1362 unsigned long int flags; 1363 int ret, blocked, ignored; 1364 struct k_sigaction *action; 1365 int sig = info->si_signo; 1366 1367 if (force_sig_delayed(info, t)) 1368 return 0; 1369 1370 spin_lock_irqsave(&t->sighand->siglock, flags); 1371 action = &t->sighand->action[sig-1]; 1372 ignored = action->sa.sa_handler == SIG_IGN; 1373 blocked = sigismember(&t->blocked, sig); 1374 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1375 action->sa.sa_handler = SIG_DFL; 1376 if (handler == HANDLER_EXIT) 1377 action->sa.sa_flags |= SA_IMMUTABLE; 1378 if (blocked) { 1379 sigdelset(&t->blocked, sig); 1380 recalc_sigpending_and_wake(t); 1381 } 1382 } 1383 /* 1384 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1385 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1386 */ 1387 if (action->sa.sa_handler == SIG_DFL && 1388 (!t->ptrace || (handler == HANDLER_EXIT))) 1389 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1390 ret = send_signal(sig, info, t, PIDTYPE_PID); 1391 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1392 1393 return ret; 1394 } 1395 1396 int force_sig_info(struct kernel_siginfo *info) 1397 { 1398 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1399 } 1400 1401 /* 1402 * Nuke all other threads in the group. 1403 */ 1404 int zap_other_threads(struct task_struct *p) 1405 { 1406 struct task_struct *t = p; 1407 int count = 0; 1408 1409 p->signal->group_stop_count = 0; 1410 1411 while_each_thread(p, t) { 1412 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1413 count++; 1414 1415 /* Don't bother with already dead threads */ 1416 if (t->exit_state) 1417 continue; 1418 sigaddset(&t->pending.signal, SIGKILL); 1419 signal_wake_up(t, 1); 1420 } 1421 1422 return count; 1423 } 1424 1425 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1426 unsigned long *flags) 1427 { 1428 struct sighand_struct *sighand; 1429 1430 rcu_read_lock(); 1431 for (;;) { 1432 sighand = rcu_dereference(tsk->sighand); 1433 if (unlikely(sighand == NULL)) 1434 break; 1435 1436 /* 1437 * This sighand can be already freed and even reused, but 1438 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1439 * initializes ->siglock: this slab can't go away, it has 1440 * the same object type, ->siglock can't be reinitialized. 1441 * 1442 * We need to ensure that tsk->sighand is still the same 1443 * after we take the lock, we can race with de_thread() or 1444 * __exit_signal(). In the latter case the next iteration 1445 * must see ->sighand == NULL. 1446 */ 1447 spin_lock_irqsave(&sighand->siglock, *flags); 1448 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1449 break; 1450 spin_unlock_irqrestore(&sighand->siglock, *flags); 1451 } 1452 rcu_read_unlock(); 1453 1454 return sighand; 1455 } 1456 1457 #ifdef CONFIG_LOCKDEP 1458 void lockdep_assert_task_sighand_held(struct task_struct *task) 1459 { 1460 struct sighand_struct *sighand; 1461 1462 rcu_read_lock(); 1463 sighand = rcu_dereference(task->sighand); 1464 if (sighand) 1465 lockdep_assert_held(&sighand->siglock); 1466 else 1467 WARN_ON_ONCE(1); 1468 rcu_read_unlock(); 1469 } 1470 #endif 1471 1472 /* 1473 * send signal info to all the members of a group 1474 */ 1475 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1476 struct task_struct *p, enum pid_type type) 1477 { 1478 int ret; 1479 1480 rcu_read_lock(); 1481 ret = check_kill_permission(sig, info, p); 1482 rcu_read_unlock(); 1483 1484 if (!ret && sig) 1485 ret = do_send_sig_info(sig, info, p, type); 1486 1487 return ret; 1488 } 1489 1490 /* 1491 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1492 * control characters do (^C, ^Z etc) 1493 * - the caller must hold at least a readlock on tasklist_lock 1494 */ 1495 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1496 { 1497 struct task_struct *p = NULL; 1498 int retval, success; 1499 1500 success = 0; 1501 retval = -ESRCH; 1502 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1503 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1504 success |= !err; 1505 retval = err; 1506 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1507 return success ? 0 : retval; 1508 } 1509 1510 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1511 { 1512 int error = -ESRCH; 1513 struct task_struct *p; 1514 1515 for (;;) { 1516 rcu_read_lock(); 1517 p = pid_task(pid, PIDTYPE_PID); 1518 if (p) 1519 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1520 rcu_read_unlock(); 1521 if (likely(!p || error != -ESRCH)) 1522 return error; 1523 1524 /* 1525 * The task was unhashed in between, try again. If it 1526 * is dead, pid_task() will return NULL, if we race with 1527 * de_thread() it will find the new leader. 1528 */ 1529 } 1530 } 1531 1532 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1533 { 1534 int error; 1535 rcu_read_lock(); 1536 error = kill_pid_info(sig, info, find_vpid(pid)); 1537 rcu_read_unlock(); 1538 return error; 1539 } 1540 1541 static inline bool kill_as_cred_perm(const struct cred *cred, 1542 struct task_struct *target) 1543 { 1544 const struct cred *pcred = __task_cred(target); 1545 1546 return uid_eq(cred->euid, pcred->suid) || 1547 uid_eq(cred->euid, pcred->uid) || 1548 uid_eq(cred->uid, pcred->suid) || 1549 uid_eq(cred->uid, pcred->uid); 1550 } 1551 1552 /* 1553 * The usb asyncio usage of siginfo is wrong. The glibc support 1554 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1555 * AKA after the generic fields: 1556 * kernel_pid_t si_pid; 1557 * kernel_uid32_t si_uid; 1558 * sigval_t si_value; 1559 * 1560 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1561 * after the generic fields is: 1562 * void __user *si_addr; 1563 * 1564 * This is a practical problem when there is a 64bit big endian kernel 1565 * and a 32bit userspace. As the 32bit address will encoded in the low 1566 * 32bits of the pointer. Those low 32bits will be stored at higher 1567 * address than appear in a 32 bit pointer. So userspace will not 1568 * see the address it was expecting for it's completions. 1569 * 1570 * There is nothing in the encoding that can allow 1571 * copy_siginfo_to_user32 to detect this confusion of formats, so 1572 * handle this by requiring the caller of kill_pid_usb_asyncio to 1573 * notice when this situration takes place and to store the 32bit 1574 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1575 * parameter. 1576 */ 1577 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1578 struct pid *pid, const struct cred *cred) 1579 { 1580 struct kernel_siginfo info; 1581 struct task_struct *p; 1582 unsigned long flags; 1583 int ret = -EINVAL; 1584 1585 if (!valid_signal(sig)) 1586 return ret; 1587 1588 clear_siginfo(&info); 1589 info.si_signo = sig; 1590 info.si_errno = errno; 1591 info.si_code = SI_ASYNCIO; 1592 *((sigval_t *)&info.si_pid) = addr; 1593 1594 rcu_read_lock(); 1595 p = pid_task(pid, PIDTYPE_PID); 1596 if (!p) { 1597 ret = -ESRCH; 1598 goto out_unlock; 1599 } 1600 if (!kill_as_cred_perm(cred, p)) { 1601 ret = -EPERM; 1602 goto out_unlock; 1603 } 1604 ret = security_task_kill(p, &info, sig, cred); 1605 if (ret) 1606 goto out_unlock; 1607 1608 if (sig) { 1609 if (lock_task_sighand(p, &flags)) { 1610 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false); 1611 unlock_task_sighand(p, &flags); 1612 } else 1613 ret = -ESRCH; 1614 } 1615 out_unlock: 1616 rcu_read_unlock(); 1617 return ret; 1618 } 1619 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1620 1621 /* 1622 * kill_something_info() interprets pid in interesting ways just like kill(2). 1623 * 1624 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1625 * is probably wrong. Should make it like BSD or SYSV. 1626 */ 1627 1628 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1629 { 1630 int ret; 1631 1632 if (pid > 0) 1633 return kill_proc_info(sig, info, pid); 1634 1635 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1636 if (pid == INT_MIN) 1637 return -ESRCH; 1638 1639 read_lock(&tasklist_lock); 1640 if (pid != -1) { 1641 ret = __kill_pgrp_info(sig, info, 1642 pid ? find_vpid(-pid) : task_pgrp(current)); 1643 } else { 1644 int retval = 0, count = 0; 1645 struct task_struct * p; 1646 1647 for_each_process(p) { 1648 if (task_pid_vnr(p) > 1 && 1649 !same_thread_group(p, current)) { 1650 int err = group_send_sig_info(sig, info, p, 1651 PIDTYPE_MAX); 1652 ++count; 1653 if (err != -EPERM) 1654 retval = err; 1655 } 1656 } 1657 ret = count ? retval : -ESRCH; 1658 } 1659 read_unlock(&tasklist_lock); 1660 1661 return ret; 1662 } 1663 1664 /* 1665 * These are for backward compatibility with the rest of the kernel source. 1666 */ 1667 1668 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1669 { 1670 /* 1671 * Make sure legacy kernel users don't send in bad values 1672 * (normal paths check this in check_kill_permission). 1673 */ 1674 if (!valid_signal(sig)) 1675 return -EINVAL; 1676 1677 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1678 } 1679 EXPORT_SYMBOL(send_sig_info); 1680 1681 #define __si_special(priv) \ 1682 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1683 1684 int 1685 send_sig(int sig, struct task_struct *p, int priv) 1686 { 1687 return send_sig_info(sig, __si_special(priv), p); 1688 } 1689 EXPORT_SYMBOL(send_sig); 1690 1691 void force_sig(int sig) 1692 { 1693 struct kernel_siginfo info; 1694 1695 clear_siginfo(&info); 1696 info.si_signo = sig; 1697 info.si_errno = 0; 1698 info.si_code = SI_KERNEL; 1699 info.si_pid = 0; 1700 info.si_uid = 0; 1701 force_sig_info(&info); 1702 } 1703 EXPORT_SYMBOL(force_sig); 1704 1705 void force_fatal_sig(int sig) 1706 { 1707 struct kernel_siginfo info; 1708 1709 clear_siginfo(&info); 1710 info.si_signo = sig; 1711 info.si_errno = 0; 1712 info.si_code = SI_KERNEL; 1713 info.si_pid = 0; 1714 info.si_uid = 0; 1715 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1716 } 1717 1718 void force_exit_sig(int sig) 1719 { 1720 struct kernel_siginfo info; 1721 1722 clear_siginfo(&info); 1723 info.si_signo = sig; 1724 info.si_errno = 0; 1725 info.si_code = SI_KERNEL; 1726 info.si_pid = 0; 1727 info.si_uid = 0; 1728 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1729 } 1730 1731 /* 1732 * When things go south during signal handling, we 1733 * will force a SIGSEGV. And if the signal that caused 1734 * the problem was already a SIGSEGV, we'll want to 1735 * make sure we don't even try to deliver the signal.. 1736 */ 1737 void force_sigsegv(int sig) 1738 { 1739 if (sig == SIGSEGV) 1740 force_fatal_sig(SIGSEGV); 1741 else 1742 force_sig(SIGSEGV); 1743 } 1744 1745 int force_sig_fault_to_task(int sig, int code, void __user *addr 1746 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1747 , struct task_struct *t) 1748 { 1749 struct kernel_siginfo info; 1750 1751 clear_siginfo(&info); 1752 info.si_signo = sig; 1753 info.si_errno = 0; 1754 info.si_code = code; 1755 info.si_addr = addr; 1756 #ifdef __ia64__ 1757 info.si_imm = imm; 1758 info.si_flags = flags; 1759 info.si_isr = isr; 1760 #endif 1761 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1762 } 1763 1764 int force_sig_fault(int sig, int code, void __user *addr 1765 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1766 { 1767 return force_sig_fault_to_task(sig, code, addr 1768 ___ARCH_SI_IA64(imm, flags, isr), current); 1769 } 1770 1771 int send_sig_fault(int sig, int code, void __user *addr 1772 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1773 , struct task_struct *t) 1774 { 1775 struct kernel_siginfo info; 1776 1777 clear_siginfo(&info); 1778 info.si_signo = sig; 1779 info.si_errno = 0; 1780 info.si_code = code; 1781 info.si_addr = addr; 1782 #ifdef __ia64__ 1783 info.si_imm = imm; 1784 info.si_flags = flags; 1785 info.si_isr = isr; 1786 #endif 1787 return send_sig_info(info.si_signo, &info, t); 1788 } 1789 1790 int force_sig_mceerr(int code, void __user *addr, short lsb) 1791 { 1792 struct kernel_siginfo info; 1793 1794 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1795 clear_siginfo(&info); 1796 info.si_signo = SIGBUS; 1797 info.si_errno = 0; 1798 info.si_code = code; 1799 info.si_addr = addr; 1800 info.si_addr_lsb = lsb; 1801 return force_sig_info(&info); 1802 } 1803 1804 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1805 { 1806 struct kernel_siginfo info; 1807 1808 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1809 clear_siginfo(&info); 1810 info.si_signo = SIGBUS; 1811 info.si_errno = 0; 1812 info.si_code = code; 1813 info.si_addr = addr; 1814 info.si_addr_lsb = lsb; 1815 return send_sig_info(info.si_signo, &info, t); 1816 } 1817 EXPORT_SYMBOL(send_sig_mceerr); 1818 1819 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1820 { 1821 struct kernel_siginfo info; 1822 1823 clear_siginfo(&info); 1824 info.si_signo = SIGSEGV; 1825 info.si_errno = 0; 1826 info.si_code = SEGV_BNDERR; 1827 info.si_addr = addr; 1828 info.si_lower = lower; 1829 info.si_upper = upper; 1830 return force_sig_info(&info); 1831 } 1832 1833 #ifdef SEGV_PKUERR 1834 int force_sig_pkuerr(void __user *addr, u32 pkey) 1835 { 1836 struct kernel_siginfo info; 1837 1838 clear_siginfo(&info); 1839 info.si_signo = SIGSEGV; 1840 info.si_errno = 0; 1841 info.si_code = SEGV_PKUERR; 1842 info.si_addr = addr; 1843 info.si_pkey = pkey; 1844 return force_sig_info(&info); 1845 } 1846 #endif 1847 1848 int force_sig_perf(void __user *addr, u32 type, u64 sig_data) 1849 { 1850 struct kernel_siginfo info; 1851 1852 clear_siginfo(&info); 1853 info.si_signo = SIGTRAP; 1854 info.si_errno = 0; 1855 info.si_code = TRAP_PERF; 1856 info.si_addr = addr; 1857 info.si_perf_data = sig_data; 1858 info.si_perf_type = type; 1859 1860 return force_sig_info(&info); 1861 } 1862 1863 /** 1864 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1865 * @syscall: syscall number to send to userland 1866 * @reason: filter-supplied reason code to send to userland (via si_errno) 1867 * @force_coredump: true to trigger a coredump 1868 * 1869 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1870 */ 1871 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1872 { 1873 struct kernel_siginfo info; 1874 1875 clear_siginfo(&info); 1876 info.si_signo = SIGSYS; 1877 info.si_code = SYS_SECCOMP; 1878 info.si_call_addr = (void __user *)KSTK_EIP(current); 1879 info.si_errno = reason; 1880 info.si_arch = syscall_get_arch(current); 1881 info.si_syscall = syscall; 1882 return force_sig_info_to_task(&info, current, 1883 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1884 } 1885 1886 /* For the crazy architectures that include trap information in 1887 * the errno field, instead of an actual errno value. 1888 */ 1889 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1890 { 1891 struct kernel_siginfo info; 1892 1893 clear_siginfo(&info); 1894 info.si_signo = SIGTRAP; 1895 info.si_errno = errno; 1896 info.si_code = TRAP_HWBKPT; 1897 info.si_addr = addr; 1898 return force_sig_info(&info); 1899 } 1900 1901 /* For the rare architectures that include trap information using 1902 * si_trapno. 1903 */ 1904 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1905 { 1906 struct kernel_siginfo info; 1907 1908 clear_siginfo(&info); 1909 info.si_signo = sig; 1910 info.si_errno = 0; 1911 info.si_code = code; 1912 info.si_addr = addr; 1913 info.si_trapno = trapno; 1914 return force_sig_info(&info); 1915 } 1916 1917 /* For the rare architectures that include trap information using 1918 * si_trapno. 1919 */ 1920 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1921 struct task_struct *t) 1922 { 1923 struct kernel_siginfo info; 1924 1925 clear_siginfo(&info); 1926 info.si_signo = sig; 1927 info.si_errno = 0; 1928 info.si_code = code; 1929 info.si_addr = addr; 1930 info.si_trapno = trapno; 1931 return send_sig_info(info.si_signo, &info, t); 1932 } 1933 1934 int kill_pgrp(struct pid *pid, int sig, int priv) 1935 { 1936 int ret; 1937 1938 read_lock(&tasklist_lock); 1939 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1940 read_unlock(&tasklist_lock); 1941 1942 return ret; 1943 } 1944 EXPORT_SYMBOL(kill_pgrp); 1945 1946 int kill_pid(struct pid *pid, int sig, int priv) 1947 { 1948 return kill_pid_info(sig, __si_special(priv), pid); 1949 } 1950 EXPORT_SYMBOL(kill_pid); 1951 1952 /* 1953 * These functions support sending signals using preallocated sigqueue 1954 * structures. This is needed "because realtime applications cannot 1955 * afford to lose notifications of asynchronous events, like timer 1956 * expirations or I/O completions". In the case of POSIX Timers 1957 * we allocate the sigqueue structure from the timer_create. If this 1958 * allocation fails we are able to report the failure to the application 1959 * with an EAGAIN error. 1960 */ 1961 struct sigqueue *sigqueue_alloc(void) 1962 { 1963 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1964 } 1965 1966 void sigqueue_free(struct sigqueue *q) 1967 { 1968 unsigned long flags; 1969 spinlock_t *lock = ¤t->sighand->siglock; 1970 1971 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1972 /* 1973 * We must hold ->siglock while testing q->list 1974 * to serialize with collect_signal() or with 1975 * __exit_signal()->flush_sigqueue(). 1976 */ 1977 spin_lock_irqsave(lock, flags); 1978 q->flags &= ~SIGQUEUE_PREALLOC; 1979 /* 1980 * If it is queued it will be freed when dequeued, 1981 * like the "regular" sigqueue. 1982 */ 1983 if (!list_empty(&q->list)) 1984 q = NULL; 1985 spin_unlock_irqrestore(lock, flags); 1986 1987 if (q) 1988 __sigqueue_free(q); 1989 } 1990 1991 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1992 { 1993 int sig = q->info.si_signo; 1994 struct sigpending *pending; 1995 struct task_struct *t; 1996 unsigned long flags; 1997 int ret, result; 1998 1999 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 2000 2001 ret = -1; 2002 rcu_read_lock(); 2003 t = pid_task(pid, type); 2004 if (!t || !likely(lock_task_sighand(t, &flags))) 2005 goto ret; 2006 2007 ret = 1; /* the signal is ignored */ 2008 result = TRACE_SIGNAL_IGNORED; 2009 if (!prepare_signal(sig, t, false)) 2010 goto out; 2011 2012 ret = 0; 2013 if (unlikely(!list_empty(&q->list))) { 2014 /* 2015 * If an SI_TIMER entry is already queue just increment 2016 * the overrun count. 2017 */ 2018 BUG_ON(q->info.si_code != SI_TIMER); 2019 q->info.si_overrun++; 2020 result = TRACE_SIGNAL_ALREADY_PENDING; 2021 goto out; 2022 } 2023 q->info.si_overrun = 0; 2024 2025 signalfd_notify(t, sig); 2026 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 2027 list_add_tail(&q->list, &pending->list); 2028 sigaddset(&pending->signal, sig); 2029 complete_signal(sig, t, type); 2030 result = TRACE_SIGNAL_DELIVERED; 2031 out: 2032 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 2033 unlock_task_sighand(t, &flags); 2034 ret: 2035 rcu_read_unlock(); 2036 return ret; 2037 } 2038 2039 static void do_notify_pidfd(struct task_struct *task) 2040 { 2041 struct pid *pid; 2042 2043 WARN_ON(task->exit_state == 0); 2044 pid = task_pid(task); 2045 wake_up_all(&pid->wait_pidfd); 2046 } 2047 2048 /* 2049 * Let a parent know about the death of a child. 2050 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2051 * 2052 * Returns true if our parent ignored us and so we've switched to 2053 * self-reaping. 2054 */ 2055 bool do_notify_parent(struct task_struct *tsk, int sig) 2056 { 2057 struct kernel_siginfo info; 2058 unsigned long flags; 2059 struct sighand_struct *psig; 2060 bool autoreap = false; 2061 u64 utime, stime; 2062 2063 BUG_ON(sig == -1); 2064 2065 /* do_notify_parent_cldstop should have been called instead. */ 2066 BUG_ON(task_is_stopped_or_traced(tsk)); 2067 2068 BUG_ON(!tsk->ptrace && 2069 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2070 2071 /* Wake up all pidfd waiters */ 2072 do_notify_pidfd(tsk); 2073 2074 if (sig != SIGCHLD) { 2075 /* 2076 * This is only possible if parent == real_parent. 2077 * Check if it has changed security domain. 2078 */ 2079 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2080 sig = SIGCHLD; 2081 } 2082 2083 clear_siginfo(&info); 2084 info.si_signo = sig; 2085 info.si_errno = 0; 2086 /* 2087 * We are under tasklist_lock here so our parent is tied to 2088 * us and cannot change. 2089 * 2090 * task_active_pid_ns will always return the same pid namespace 2091 * until a task passes through release_task. 2092 * 2093 * write_lock() currently calls preempt_disable() which is the 2094 * same as rcu_read_lock(), but according to Oleg, this is not 2095 * correct to rely on this 2096 */ 2097 rcu_read_lock(); 2098 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2099 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2100 task_uid(tsk)); 2101 rcu_read_unlock(); 2102 2103 task_cputime(tsk, &utime, &stime); 2104 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2105 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2106 2107 info.si_status = tsk->exit_code & 0x7f; 2108 if (tsk->exit_code & 0x80) 2109 info.si_code = CLD_DUMPED; 2110 else if (tsk->exit_code & 0x7f) 2111 info.si_code = CLD_KILLED; 2112 else { 2113 info.si_code = CLD_EXITED; 2114 info.si_status = tsk->exit_code >> 8; 2115 } 2116 2117 psig = tsk->parent->sighand; 2118 spin_lock_irqsave(&psig->siglock, flags); 2119 if (!tsk->ptrace && sig == SIGCHLD && 2120 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2121 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2122 /* 2123 * We are exiting and our parent doesn't care. POSIX.1 2124 * defines special semantics for setting SIGCHLD to SIG_IGN 2125 * or setting the SA_NOCLDWAIT flag: we should be reaped 2126 * automatically and not left for our parent's wait4 call. 2127 * Rather than having the parent do it as a magic kind of 2128 * signal handler, we just set this to tell do_exit that we 2129 * can be cleaned up without becoming a zombie. Note that 2130 * we still call __wake_up_parent in this case, because a 2131 * blocked sys_wait4 might now return -ECHILD. 2132 * 2133 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2134 * is implementation-defined: we do (if you don't want 2135 * it, just use SIG_IGN instead). 2136 */ 2137 autoreap = true; 2138 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2139 sig = 0; 2140 } 2141 /* 2142 * Send with __send_signal as si_pid and si_uid are in the 2143 * parent's namespaces. 2144 */ 2145 if (valid_signal(sig) && sig) 2146 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2147 __wake_up_parent(tsk, tsk->parent); 2148 spin_unlock_irqrestore(&psig->siglock, flags); 2149 2150 return autoreap; 2151 } 2152 2153 /** 2154 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2155 * @tsk: task reporting the state change 2156 * @for_ptracer: the notification is for ptracer 2157 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2158 * 2159 * Notify @tsk's parent that the stopped/continued state has changed. If 2160 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2161 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2162 * 2163 * CONTEXT: 2164 * Must be called with tasklist_lock at least read locked. 2165 */ 2166 static void do_notify_parent_cldstop(struct task_struct *tsk, 2167 bool for_ptracer, int why) 2168 { 2169 struct kernel_siginfo info; 2170 unsigned long flags; 2171 struct task_struct *parent; 2172 struct sighand_struct *sighand; 2173 u64 utime, stime; 2174 2175 if (for_ptracer) { 2176 parent = tsk->parent; 2177 } else { 2178 tsk = tsk->group_leader; 2179 parent = tsk->real_parent; 2180 } 2181 2182 clear_siginfo(&info); 2183 info.si_signo = SIGCHLD; 2184 info.si_errno = 0; 2185 /* 2186 * see comment in do_notify_parent() about the following 4 lines 2187 */ 2188 rcu_read_lock(); 2189 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2190 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2191 rcu_read_unlock(); 2192 2193 task_cputime(tsk, &utime, &stime); 2194 info.si_utime = nsec_to_clock_t(utime); 2195 info.si_stime = nsec_to_clock_t(stime); 2196 2197 info.si_code = why; 2198 switch (why) { 2199 case CLD_CONTINUED: 2200 info.si_status = SIGCONT; 2201 break; 2202 case CLD_STOPPED: 2203 info.si_status = tsk->signal->group_exit_code & 0x7f; 2204 break; 2205 case CLD_TRAPPED: 2206 info.si_status = tsk->exit_code & 0x7f; 2207 break; 2208 default: 2209 BUG(); 2210 } 2211 2212 sighand = parent->sighand; 2213 spin_lock_irqsave(&sighand->siglock, flags); 2214 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2215 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2216 __group_send_sig_info(SIGCHLD, &info, parent); 2217 /* 2218 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2219 */ 2220 __wake_up_parent(tsk, parent); 2221 spin_unlock_irqrestore(&sighand->siglock, flags); 2222 } 2223 2224 /* 2225 * This must be called with current->sighand->siglock held. 2226 * 2227 * This should be the path for all ptrace stops. 2228 * We always set current->last_siginfo while stopped here. 2229 * That makes it a way to test a stopped process for 2230 * being ptrace-stopped vs being job-control-stopped. 2231 * 2232 * If we actually decide not to stop at all because the tracer 2233 * is gone, we keep current->exit_code unless clear_code. 2234 */ 2235 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info) 2236 __releases(¤t->sighand->siglock) 2237 __acquires(¤t->sighand->siglock) 2238 { 2239 bool gstop_done = false; 2240 2241 if (arch_ptrace_stop_needed()) { 2242 /* 2243 * The arch code has something special to do before a 2244 * ptrace stop. This is allowed to block, e.g. for faults 2245 * on user stack pages. We can't keep the siglock while 2246 * calling arch_ptrace_stop, so we must release it now. 2247 * To preserve proper semantics, we must do this before 2248 * any signal bookkeeping like checking group_stop_count. 2249 */ 2250 spin_unlock_irq(¤t->sighand->siglock); 2251 arch_ptrace_stop(); 2252 spin_lock_irq(¤t->sighand->siglock); 2253 } 2254 2255 /* 2256 * schedule() will not sleep if there is a pending signal that 2257 * can awaken the task. 2258 */ 2259 set_special_state(TASK_TRACED); 2260 2261 /* 2262 * We're committing to trapping. TRACED should be visible before 2263 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2264 * Also, transition to TRACED and updates to ->jobctl should be 2265 * atomic with respect to siglock and should be done after the arch 2266 * hook as siglock is released and regrabbed across it. 2267 * 2268 * TRACER TRACEE 2269 * 2270 * ptrace_attach() 2271 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2272 * do_wait() 2273 * set_current_state() smp_wmb(); 2274 * ptrace_do_wait() 2275 * wait_task_stopped() 2276 * task_stopped_code() 2277 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2278 */ 2279 smp_wmb(); 2280 2281 current->last_siginfo = info; 2282 current->exit_code = exit_code; 2283 2284 /* 2285 * If @why is CLD_STOPPED, we're trapping to participate in a group 2286 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2287 * across siglock relocks since INTERRUPT was scheduled, PENDING 2288 * could be clear now. We act as if SIGCONT is received after 2289 * TASK_TRACED is entered - ignore it. 2290 */ 2291 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2292 gstop_done = task_participate_group_stop(current); 2293 2294 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2295 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2296 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2297 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2298 2299 /* entering a trap, clear TRAPPING */ 2300 task_clear_jobctl_trapping(current); 2301 2302 spin_unlock_irq(¤t->sighand->siglock); 2303 read_lock(&tasklist_lock); 2304 if (likely(current->ptrace)) { 2305 /* 2306 * Notify parents of the stop. 2307 * 2308 * While ptraced, there are two parents - the ptracer and 2309 * the real_parent of the group_leader. The ptracer should 2310 * know about every stop while the real parent is only 2311 * interested in the completion of group stop. The states 2312 * for the two don't interact with each other. Notify 2313 * separately unless they're gonna be duplicates. 2314 */ 2315 do_notify_parent_cldstop(current, true, why); 2316 if (gstop_done && ptrace_reparented(current)) 2317 do_notify_parent_cldstop(current, false, why); 2318 2319 /* 2320 * Don't want to allow preemption here, because 2321 * sys_ptrace() needs this task to be inactive. 2322 * 2323 * XXX: implement read_unlock_no_resched(). 2324 */ 2325 preempt_disable(); 2326 read_unlock(&tasklist_lock); 2327 cgroup_enter_frozen(); 2328 preempt_enable_no_resched(); 2329 freezable_schedule(); 2330 cgroup_leave_frozen(true); 2331 } else { 2332 /* 2333 * By the time we got the lock, our tracer went away. 2334 * Don't drop the lock yet, another tracer may come. 2335 * 2336 * If @gstop_done, the ptracer went away between group stop 2337 * completion and here. During detach, it would have set 2338 * JOBCTL_STOP_PENDING on us and we'll re-enter 2339 * TASK_STOPPED in do_signal_stop() on return, so notifying 2340 * the real parent of the group stop completion is enough. 2341 */ 2342 if (gstop_done) 2343 do_notify_parent_cldstop(current, false, why); 2344 2345 /* tasklist protects us from ptrace_freeze_traced() */ 2346 __set_current_state(TASK_RUNNING); 2347 if (clear_code) 2348 current->exit_code = 0; 2349 read_unlock(&tasklist_lock); 2350 } 2351 2352 /* 2353 * We are back. Now reacquire the siglock before touching 2354 * last_siginfo, so that we are sure to have synchronized with 2355 * any signal-sending on another CPU that wants to examine it. 2356 */ 2357 spin_lock_irq(¤t->sighand->siglock); 2358 current->last_siginfo = NULL; 2359 2360 /* LISTENING can be set only during STOP traps, clear it */ 2361 current->jobctl &= ~JOBCTL_LISTENING; 2362 2363 /* 2364 * Queued signals ignored us while we were stopped for tracing. 2365 * So check for any that we should take before resuming user mode. 2366 * This sets TIF_SIGPENDING, but never clears it. 2367 */ 2368 recalc_sigpending_tsk(current); 2369 } 2370 2371 static void ptrace_do_notify(int signr, int exit_code, int why) 2372 { 2373 kernel_siginfo_t info; 2374 2375 clear_siginfo(&info); 2376 info.si_signo = signr; 2377 info.si_code = exit_code; 2378 info.si_pid = task_pid_vnr(current); 2379 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2380 2381 /* Let the debugger run. */ 2382 ptrace_stop(exit_code, why, 1, &info); 2383 } 2384 2385 void ptrace_notify(int exit_code) 2386 { 2387 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2388 if (unlikely(current->task_works)) 2389 task_work_run(); 2390 2391 spin_lock_irq(¤t->sighand->siglock); 2392 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 2393 spin_unlock_irq(¤t->sighand->siglock); 2394 } 2395 2396 /** 2397 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2398 * @signr: signr causing group stop if initiating 2399 * 2400 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2401 * and participate in it. If already set, participate in the existing 2402 * group stop. If participated in a group stop (and thus slept), %true is 2403 * returned with siglock released. 2404 * 2405 * If ptraced, this function doesn't handle stop itself. Instead, 2406 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2407 * untouched. The caller must ensure that INTERRUPT trap handling takes 2408 * places afterwards. 2409 * 2410 * CONTEXT: 2411 * Must be called with @current->sighand->siglock held, which is released 2412 * on %true return. 2413 * 2414 * RETURNS: 2415 * %false if group stop is already cancelled or ptrace trap is scheduled. 2416 * %true if participated in group stop. 2417 */ 2418 static bool do_signal_stop(int signr) 2419 __releases(¤t->sighand->siglock) 2420 { 2421 struct signal_struct *sig = current->signal; 2422 2423 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2424 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2425 struct task_struct *t; 2426 2427 /* signr will be recorded in task->jobctl for retries */ 2428 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2429 2430 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2431 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2432 unlikely(sig->group_exec_task)) 2433 return false; 2434 /* 2435 * There is no group stop already in progress. We must 2436 * initiate one now. 2437 * 2438 * While ptraced, a task may be resumed while group stop is 2439 * still in effect and then receive a stop signal and 2440 * initiate another group stop. This deviates from the 2441 * usual behavior as two consecutive stop signals can't 2442 * cause two group stops when !ptraced. That is why we 2443 * also check !task_is_stopped(t) below. 2444 * 2445 * The condition can be distinguished by testing whether 2446 * SIGNAL_STOP_STOPPED is already set. Don't generate 2447 * group_exit_code in such case. 2448 * 2449 * This is not necessary for SIGNAL_STOP_CONTINUED because 2450 * an intervening stop signal is required to cause two 2451 * continued events regardless of ptrace. 2452 */ 2453 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2454 sig->group_exit_code = signr; 2455 2456 sig->group_stop_count = 0; 2457 2458 if (task_set_jobctl_pending(current, signr | gstop)) 2459 sig->group_stop_count++; 2460 2461 t = current; 2462 while_each_thread(current, t) { 2463 /* 2464 * Setting state to TASK_STOPPED for a group 2465 * stop is always done with the siglock held, 2466 * so this check has no races. 2467 */ 2468 if (!task_is_stopped(t) && 2469 task_set_jobctl_pending(t, signr | gstop)) { 2470 sig->group_stop_count++; 2471 if (likely(!(t->ptrace & PT_SEIZED))) 2472 signal_wake_up(t, 0); 2473 else 2474 ptrace_trap_notify(t); 2475 } 2476 } 2477 } 2478 2479 if (likely(!current->ptrace)) { 2480 int notify = 0; 2481 2482 /* 2483 * If there are no other threads in the group, or if there 2484 * is a group stop in progress and we are the last to stop, 2485 * report to the parent. 2486 */ 2487 if (task_participate_group_stop(current)) 2488 notify = CLD_STOPPED; 2489 2490 set_special_state(TASK_STOPPED); 2491 spin_unlock_irq(¤t->sighand->siglock); 2492 2493 /* 2494 * Notify the parent of the group stop completion. Because 2495 * we're not holding either the siglock or tasklist_lock 2496 * here, ptracer may attach inbetween; however, this is for 2497 * group stop and should always be delivered to the real 2498 * parent of the group leader. The new ptracer will get 2499 * its notification when this task transitions into 2500 * TASK_TRACED. 2501 */ 2502 if (notify) { 2503 read_lock(&tasklist_lock); 2504 do_notify_parent_cldstop(current, false, notify); 2505 read_unlock(&tasklist_lock); 2506 } 2507 2508 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2509 cgroup_enter_frozen(); 2510 freezable_schedule(); 2511 return true; 2512 } else { 2513 /* 2514 * While ptraced, group stop is handled by STOP trap. 2515 * Schedule it and let the caller deal with it. 2516 */ 2517 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2518 return false; 2519 } 2520 } 2521 2522 /** 2523 * do_jobctl_trap - take care of ptrace jobctl traps 2524 * 2525 * When PT_SEIZED, it's used for both group stop and explicit 2526 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2527 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2528 * the stop signal; otherwise, %SIGTRAP. 2529 * 2530 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2531 * number as exit_code and no siginfo. 2532 * 2533 * CONTEXT: 2534 * Must be called with @current->sighand->siglock held, which may be 2535 * released and re-acquired before returning with intervening sleep. 2536 */ 2537 static void do_jobctl_trap(void) 2538 { 2539 struct signal_struct *signal = current->signal; 2540 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2541 2542 if (current->ptrace & PT_SEIZED) { 2543 if (!signal->group_stop_count && 2544 !(signal->flags & SIGNAL_STOP_STOPPED)) 2545 signr = SIGTRAP; 2546 WARN_ON_ONCE(!signr); 2547 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2548 CLD_STOPPED); 2549 } else { 2550 WARN_ON_ONCE(!signr); 2551 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2552 current->exit_code = 0; 2553 } 2554 } 2555 2556 /** 2557 * do_freezer_trap - handle the freezer jobctl trap 2558 * 2559 * Puts the task into frozen state, if only the task is not about to quit. 2560 * In this case it drops JOBCTL_TRAP_FREEZE. 2561 * 2562 * CONTEXT: 2563 * Must be called with @current->sighand->siglock held, 2564 * which is always released before returning. 2565 */ 2566 static void do_freezer_trap(void) 2567 __releases(¤t->sighand->siglock) 2568 { 2569 /* 2570 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2571 * let's make another loop to give it a chance to be handled. 2572 * In any case, we'll return back. 2573 */ 2574 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2575 JOBCTL_TRAP_FREEZE) { 2576 spin_unlock_irq(¤t->sighand->siglock); 2577 return; 2578 } 2579 2580 /* 2581 * Now we're sure that there is no pending fatal signal and no 2582 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2583 * immediately (if there is a non-fatal signal pending), and 2584 * put the task into sleep. 2585 */ 2586 __set_current_state(TASK_INTERRUPTIBLE); 2587 clear_thread_flag(TIF_SIGPENDING); 2588 spin_unlock_irq(¤t->sighand->siglock); 2589 cgroup_enter_frozen(); 2590 freezable_schedule(); 2591 } 2592 2593 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2594 { 2595 /* 2596 * We do not check sig_kernel_stop(signr) but set this marker 2597 * unconditionally because we do not know whether debugger will 2598 * change signr. This flag has no meaning unless we are going 2599 * to stop after return from ptrace_stop(). In this case it will 2600 * be checked in do_signal_stop(), we should only stop if it was 2601 * not cleared by SIGCONT while we were sleeping. See also the 2602 * comment in dequeue_signal(). 2603 */ 2604 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2605 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2606 2607 /* We're back. Did the debugger cancel the sig? */ 2608 signr = current->exit_code; 2609 if (signr == 0) 2610 return signr; 2611 2612 current->exit_code = 0; 2613 2614 /* 2615 * Update the siginfo structure if the signal has 2616 * changed. If the debugger wanted something 2617 * specific in the siginfo structure then it should 2618 * have updated *info via PTRACE_SETSIGINFO. 2619 */ 2620 if (signr != info->si_signo) { 2621 clear_siginfo(info); 2622 info->si_signo = signr; 2623 info->si_errno = 0; 2624 info->si_code = SI_USER; 2625 rcu_read_lock(); 2626 info->si_pid = task_pid_vnr(current->parent); 2627 info->si_uid = from_kuid_munged(current_user_ns(), 2628 task_uid(current->parent)); 2629 rcu_read_unlock(); 2630 } 2631 2632 /* If the (new) signal is now blocked, requeue it. */ 2633 if (sigismember(¤t->blocked, signr) || 2634 fatal_signal_pending(current)) { 2635 send_signal(signr, info, current, type); 2636 signr = 0; 2637 } 2638 2639 return signr; 2640 } 2641 2642 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2643 { 2644 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2645 case SIL_FAULT: 2646 case SIL_FAULT_TRAPNO: 2647 case SIL_FAULT_MCEERR: 2648 case SIL_FAULT_BNDERR: 2649 case SIL_FAULT_PKUERR: 2650 case SIL_FAULT_PERF_EVENT: 2651 ksig->info.si_addr = arch_untagged_si_addr( 2652 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2653 break; 2654 case SIL_KILL: 2655 case SIL_TIMER: 2656 case SIL_POLL: 2657 case SIL_CHLD: 2658 case SIL_RT: 2659 case SIL_SYS: 2660 break; 2661 } 2662 } 2663 2664 bool get_signal(struct ksignal *ksig) 2665 { 2666 struct sighand_struct *sighand = current->sighand; 2667 struct signal_struct *signal = current->signal; 2668 int signr; 2669 2670 if (unlikely(current->task_works)) 2671 task_work_run(); 2672 2673 /* 2674 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so 2675 * that the arch handlers don't all have to do it. If we get here 2676 * without TIF_SIGPENDING, just exit after running signal work. 2677 */ 2678 if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) { 2679 if (test_thread_flag(TIF_NOTIFY_SIGNAL)) 2680 tracehook_notify_signal(); 2681 if (!task_sigpending(current)) 2682 return false; 2683 } 2684 2685 if (unlikely(uprobe_deny_signal())) 2686 return false; 2687 2688 /* 2689 * Do this once, we can't return to user-mode if freezing() == T. 2690 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2691 * thus do not need another check after return. 2692 */ 2693 try_to_freeze(); 2694 2695 relock: 2696 spin_lock_irq(&sighand->siglock); 2697 2698 /* 2699 * Every stopped thread goes here after wakeup. Check to see if 2700 * we should notify the parent, prepare_signal(SIGCONT) encodes 2701 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2702 */ 2703 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2704 int why; 2705 2706 if (signal->flags & SIGNAL_CLD_CONTINUED) 2707 why = CLD_CONTINUED; 2708 else 2709 why = CLD_STOPPED; 2710 2711 signal->flags &= ~SIGNAL_CLD_MASK; 2712 2713 spin_unlock_irq(&sighand->siglock); 2714 2715 /* 2716 * Notify the parent that we're continuing. This event is 2717 * always per-process and doesn't make whole lot of sense 2718 * for ptracers, who shouldn't consume the state via 2719 * wait(2) either, but, for backward compatibility, notify 2720 * the ptracer of the group leader too unless it's gonna be 2721 * a duplicate. 2722 */ 2723 read_lock(&tasklist_lock); 2724 do_notify_parent_cldstop(current, false, why); 2725 2726 if (ptrace_reparented(current->group_leader)) 2727 do_notify_parent_cldstop(current->group_leader, 2728 true, why); 2729 read_unlock(&tasklist_lock); 2730 2731 goto relock; 2732 } 2733 2734 for (;;) { 2735 struct k_sigaction *ka; 2736 enum pid_type type; 2737 2738 /* Has this task already been marked for death? */ 2739 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2740 signal->group_exec_task) { 2741 ksig->info.si_signo = signr = SIGKILL; 2742 sigdelset(¤t->pending.signal, SIGKILL); 2743 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2744 &sighand->action[SIGKILL - 1]); 2745 recalc_sigpending(); 2746 goto fatal; 2747 } 2748 2749 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2750 do_signal_stop(0)) 2751 goto relock; 2752 2753 if (unlikely(current->jobctl & 2754 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2755 if (current->jobctl & JOBCTL_TRAP_MASK) { 2756 do_jobctl_trap(); 2757 spin_unlock_irq(&sighand->siglock); 2758 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2759 do_freezer_trap(); 2760 2761 goto relock; 2762 } 2763 2764 /* 2765 * If the task is leaving the frozen state, let's update 2766 * cgroup counters and reset the frozen bit. 2767 */ 2768 if (unlikely(cgroup_task_frozen(current))) { 2769 spin_unlock_irq(&sighand->siglock); 2770 cgroup_leave_frozen(false); 2771 goto relock; 2772 } 2773 2774 /* 2775 * Signals generated by the execution of an instruction 2776 * need to be delivered before any other pending signals 2777 * so that the instruction pointer in the signal stack 2778 * frame points to the faulting instruction. 2779 */ 2780 type = PIDTYPE_PID; 2781 signr = dequeue_synchronous_signal(&ksig->info); 2782 if (!signr) 2783 signr = dequeue_signal(current, ¤t->blocked, 2784 &ksig->info, &type); 2785 2786 if (!signr) 2787 break; /* will return 0 */ 2788 2789 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2790 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2791 signr = ptrace_signal(signr, &ksig->info, type); 2792 if (!signr) 2793 continue; 2794 } 2795 2796 ka = &sighand->action[signr-1]; 2797 2798 /* Trace actually delivered signals. */ 2799 trace_signal_deliver(signr, &ksig->info, ka); 2800 2801 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2802 continue; 2803 if (ka->sa.sa_handler != SIG_DFL) { 2804 /* Run the handler. */ 2805 ksig->ka = *ka; 2806 2807 if (ka->sa.sa_flags & SA_ONESHOT) 2808 ka->sa.sa_handler = SIG_DFL; 2809 2810 break; /* will return non-zero "signr" value */ 2811 } 2812 2813 /* 2814 * Now we are doing the default action for this signal. 2815 */ 2816 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2817 continue; 2818 2819 /* 2820 * Global init gets no signals it doesn't want. 2821 * Container-init gets no signals it doesn't want from same 2822 * container. 2823 * 2824 * Note that if global/container-init sees a sig_kernel_only() 2825 * signal here, the signal must have been generated internally 2826 * or must have come from an ancestor namespace. In either 2827 * case, the signal cannot be dropped. 2828 */ 2829 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2830 !sig_kernel_only(signr)) 2831 continue; 2832 2833 if (sig_kernel_stop(signr)) { 2834 /* 2835 * The default action is to stop all threads in 2836 * the thread group. The job control signals 2837 * do nothing in an orphaned pgrp, but SIGSTOP 2838 * always works. Note that siglock needs to be 2839 * dropped during the call to is_orphaned_pgrp() 2840 * because of lock ordering with tasklist_lock. 2841 * This allows an intervening SIGCONT to be posted. 2842 * We need to check for that and bail out if necessary. 2843 */ 2844 if (signr != SIGSTOP) { 2845 spin_unlock_irq(&sighand->siglock); 2846 2847 /* signals can be posted during this window */ 2848 2849 if (is_current_pgrp_orphaned()) 2850 goto relock; 2851 2852 spin_lock_irq(&sighand->siglock); 2853 } 2854 2855 if (likely(do_signal_stop(ksig->info.si_signo))) { 2856 /* It released the siglock. */ 2857 goto relock; 2858 } 2859 2860 /* 2861 * We didn't actually stop, due to a race 2862 * with SIGCONT or something like that. 2863 */ 2864 continue; 2865 } 2866 2867 fatal: 2868 spin_unlock_irq(&sighand->siglock); 2869 if (unlikely(cgroup_task_frozen(current))) 2870 cgroup_leave_frozen(true); 2871 2872 /* 2873 * Anything else is fatal, maybe with a core dump. 2874 */ 2875 current->flags |= PF_SIGNALED; 2876 2877 if (sig_kernel_coredump(signr)) { 2878 if (print_fatal_signals) 2879 print_fatal_signal(ksig->info.si_signo); 2880 proc_coredump_connector(current); 2881 /* 2882 * If it was able to dump core, this kills all 2883 * other threads in the group and synchronizes with 2884 * their demise. If we lost the race with another 2885 * thread getting here, it set group_exit_code 2886 * first and our do_group_exit call below will use 2887 * that value and ignore the one we pass it. 2888 */ 2889 do_coredump(&ksig->info); 2890 } 2891 2892 /* 2893 * PF_IO_WORKER threads will catch and exit on fatal signals 2894 * themselves. They have cleanup that must be performed, so 2895 * we cannot call do_exit() on their behalf. 2896 */ 2897 if (current->flags & PF_IO_WORKER) 2898 goto out; 2899 2900 /* 2901 * Death signals, no core dump. 2902 */ 2903 do_group_exit(ksig->info.si_signo); 2904 /* NOTREACHED */ 2905 } 2906 spin_unlock_irq(&sighand->siglock); 2907 out: 2908 ksig->sig = signr; 2909 2910 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2911 hide_si_addr_tag_bits(ksig); 2912 2913 return ksig->sig > 0; 2914 } 2915 2916 /** 2917 * signal_delivered - called after signal delivery to update blocked signals 2918 * @ksig: kernel signal struct 2919 * @stepping: nonzero if debugger single-step or block-step in use 2920 * 2921 * This function should be called when a signal has successfully been 2922 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2923 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 2924 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2925 */ 2926 static void signal_delivered(struct ksignal *ksig, int stepping) 2927 { 2928 sigset_t blocked; 2929 2930 /* A signal was successfully delivered, and the 2931 saved sigmask was stored on the signal frame, 2932 and will be restored by sigreturn. So we can 2933 simply clear the restore sigmask flag. */ 2934 clear_restore_sigmask(); 2935 2936 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2937 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2938 sigaddset(&blocked, ksig->sig); 2939 set_current_blocked(&blocked); 2940 if (current->sas_ss_flags & SS_AUTODISARM) 2941 sas_ss_reset(current); 2942 tracehook_signal_handler(stepping); 2943 } 2944 2945 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2946 { 2947 if (failed) 2948 force_sigsegv(ksig->sig); 2949 else 2950 signal_delivered(ksig, stepping); 2951 } 2952 2953 /* 2954 * It could be that complete_signal() picked us to notify about the 2955 * group-wide signal. Other threads should be notified now to take 2956 * the shared signals in @which since we will not. 2957 */ 2958 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2959 { 2960 sigset_t retarget; 2961 struct task_struct *t; 2962 2963 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2964 if (sigisemptyset(&retarget)) 2965 return; 2966 2967 t = tsk; 2968 while_each_thread(tsk, t) { 2969 if (t->flags & PF_EXITING) 2970 continue; 2971 2972 if (!has_pending_signals(&retarget, &t->blocked)) 2973 continue; 2974 /* Remove the signals this thread can handle. */ 2975 sigandsets(&retarget, &retarget, &t->blocked); 2976 2977 if (!task_sigpending(t)) 2978 signal_wake_up(t, 0); 2979 2980 if (sigisemptyset(&retarget)) 2981 break; 2982 } 2983 } 2984 2985 void exit_signals(struct task_struct *tsk) 2986 { 2987 int group_stop = 0; 2988 sigset_t unblocked; 2989 2990 /* 2991 * @tsk is about to have PF_EXITING set - lock out users which 2992 * expect stable threadgroup. 2993 */ 2994 cgroup_threadgroup_change_begin(tsk); 2995 2996 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 2997 tsk->flags |= PF_EXITING; 2998 cgroup_threadgroup_change_end(tsk); 2999 return; 3000 } 3001 3002 spin_lock_irq(&tsk->sighand->siglock); 3003 /* 3004 * From now this task is not visible for group-wide signals, 3005 * see wants_signal(), do_signal_stop(). 3006 */ 3007 tsk->flags |= PF_EXITING; 3008 3009 cgroup_threadgroup_change_end(tsk); 3010 3011 if (!task_sigpending(tsk)) 3012 goto out; 3013 3014 unblocked = tsk->blocked; 3015 signotset(&unblocked); 3016 retarget_shared_pending(tsk, &unblocked); 3017 3018 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 3019 task_participate_group_stop(tsk)) 3020 group_stop = CLD_STOPPED; 3021 out: 3022 spin_unlock_irq(&tsk->sighand->siglock); 3023 3024 /* 3025 * If group stop has completed, deliver the notification. This 3026 * should always go to the real parent of the group leader. 3027 */ 3028 if (unlikely(group_stop)) { 3029 read_lock(&tasklist_lock); 3030 do_notify_parent_cldstop(tsk, false, group_stop); 3031 read_unlock(&tasklist_lock); 3032 } 3033 } 3034 3035 /* 3036 * System call entry points. 3037 */ 3038 3039 /** 3040 * sys_restart_syscall - restart a system call 3041 */ 3042 SYSCALL_DEFINE0(restart_syscall) 3043 { 3044 struct restart_block *restart = ¤t->restart_block; 3045 return restart->fn(restart); 3046 } 3047 3048 long do_no_restart_syscall(struct restart_block *param) 3049 { 3050 return -EINTR; 3051 } 3052 3053 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3054 { 3055 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3056 sigset_t newblocked; 3057 /* A set of now blocked but previously unblocked signals. */ 3058 sigandnsets(&newblocked, newset, ¤t->blocked); 3059 retarget_shared_pending(tsk, &newblocked); 3060 } 3061 tsk->blocked = *newset; 3062 recalc_sigpending(); 3063 } 3064 3065 /** 3066 * set_current_blocked - change current->blocked mask 3067 * @newset: new mask 3068 * 3069 * It is wrong to change ->blocked directly, this helper should be used 3070 * to ensure the process can't miss a shared signal we are going to block. 3071 */ 3072 void set_current_blocked(sigset_t *newset) 3073 { 3074 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3075 __set_current_blocked(newset); 3076 } 3077 3078 void __set_current_blocked(const sigset_t *newset) 3079 { 3080 struct task_struct *tsk = current; 3081 3082 /* 3083 * In case the signal mask hasn't changed, there is nothing we need 3084 * to do. The current->blocked shouldn't be modified by other task. 3085 */ 3086 if (sigequalsets(&tsk->blocked, newset)) 3087 return; 3088 3089 spin_lock_irq(&tsk->sighand->siglock); 3090 __set_task_blocked(tsk, newset); 3091 spin_unlock_irq(&tsk->sighand->siglock); 3092 } 3093 3094 /* 3095 * This is also useful for kernel threads that want to temporarily 3096 * (or permanently) block certain signals. 3097 * 3098 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3099 * interface happily blocks "unblockable" signals like SIGKILL 3100 * and friends. 3101 */ 3102 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3103 { 3104 struct task_struct *tsk = current; 3105 sigset_t newset; 3106 3107 /* Lockless, only current can change ->blocked, never from irq */ 3108 if (oldset) 3109 *oldset = tsk->blocked; 3110 3111 switch (how) { 3112 case SIG_BLOCK: 3113 sigorsets(&newset, &tsk->blocked, set); 3114 break; 3115 case SIG_UNBLOCK: 3116 sigandnsets(&newset, &tsk->blocked, set); 3117 break; 3118 case SIG_SETMASK: 3119 newset = *set; 3120 break; 3121 default: 3122 return -EINVAL; 3123 } 3124 3125 __set_current_blocked(&newset); 3126 return 0; 3127 } 3128 EXPORT_SYMBOL(sigprocmask); 3129 3130 /* 3131 * The api helps set app-provided sigmasks. 3132 * 3133 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3134 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3135 * 3136 * Note that it does set_restore_sigmask() in advance, so it must be always 3137 * paired with restore_saved_sigmask_unless() before return from syscall. 3138 */ 3139 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3140 { 3141 sigset_t kmask; 3142 3143 if (!umask) 3144 return 0; 3145 if (sigsetsize != sizeof(sigset_t)) 3146 return -EINVAL; 3147 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3148 return -EFAULT; 3149 3150 set_restore_sigmask(); 3151 current->saved_sigmask = current->blocked; 3152 set_current_blocked(&kmask); 3153 3154 return 0; 3155 } 3156 3157 #ifdef CONFIG_COMPAT 3158 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3159 size_t sigsetsize) 3160 { 3161 sigset_t kmask; 3162 3163 if (!umask) 3164 return 0; 3165 if (sigsetsize != sizeof(compat_sigset_t)) 3166 return -EINVAL; 3167 if (get_compat_sigset(&kmask, umask)) 3168 return -EFAULT; 3169 3170 set_restore_sigmask(); 3171 current->saved_sigmask = current->blocked; 3172 set_current_blocked(&kmask); 3173 3174 return 0; 3175 } 3176 #endif 3177 3178 /** 3179 * sys_rt_sigprocmask - change the list of currently blocked signals 3180 * @how: whether to add, remove, or set signals 3181 * @nset: stores pending signals 3182 * @oset: previous value of signal mask if non-null 3183 * @sigsetsize: size of sigset_t type 3184 */ 3185 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3186 sigset_t __user *, oset, size_t, sigsetsize) 3187 { 3188 sigset_t old_set, new_set; 3189 int error; 3190 3191 /* XXX: Don't preclude handling different sized sigset_t's. */ 3192 if (sigsetsize != sizeof(sigset_t)) 3193 return -EINVAL; 3194 3195 old_set = current->blocked; 3196 3197 if (nset) { 3198 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3199 return -EFAULT; 3200 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3201 3202 error = sigprocmask(how, &new_set, NULL); 3203 if (error) 3204 return error; 3205 } 3206 3207 if (oset) { 3208 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3209 return -EFAULT; 3210 } 3211 3212 return 0; 3213 } 3214 3215 #ifdef CONFIG_COMPAT 3216 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3217 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3218 { 3219 sigset_t old_set = current->blocked; 3220 3221 /* XXX: Don't preclude handling different sized sigset_t's. */ 3222 if (sigsetsize != sizeof(sigset_t)) 3223 return -EINVAL; 3224 3225 if (nset) { 3226 sigset_t new_set; 3227 int error; 3228 if (get_compat_sigset(&new_set, nset)) 3229 return -EFAULT; 3230 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3231 3232 error = sigprocmask(how, &new_set, NULL); 3233 if (error) 3234 return error; 3235 } 3236 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3237 } 3238 #endif 3239 3240 static void do_sigpending(sigset_t *set) 3241 { 3242 spin_lock_irq(¤t->sighand->siglock); 3243 sigorsets(set, ¤t->pending.signal, 3244 ¤t->signal->shared_pending.signal); 3245 spin_unlock_irq(¤t->sighand->siglock); 3246 3247 /* Outside the lock because only this thread touches it. */ 3248 sigandsets(set, ¤t->blocked, set); 3249 } 3250 3251 /** 3252 * sys_rt_sigpending - examine a pending signal that has been raised 3253 * while blocked 3254 * @uset: stores pending signals 3255 * @sigsetsize: size of sigset_t type or larger 3256 */ 3257 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3258 { 3259 sigset_t set; 3260 3261 if (sigsetsize > sizeof(*uset)) 3262 return -EINVAL; 3263 3264 do_sigpending(&set); 3265 3266 if (copy_to_user(uset, &set, sigsetsize)) 3267 return -EFAULT; 3268 3269 return 0; 3270 } 3271 3272 #ifdef CONFIG_COMPAT 3273 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3274 compat_size_t, sigsetsize) 3275 { 3276 sigset_t set; 3277 3278 if (sigsetsize > sizeof(*uset)) 3279 return -EINVAL; 3280 3281 do_sigpending(&set); 3282 3283 return put_compat_sigset(uset, &set, sigsetsize); 3284 } 3285 #endif 3286 3287 static const struct { 3288 unsigned char limit, layout; 3289 } sig_sicodes[] = { 3290 [SIGILL] = { NSIGILL, SIL_FAULT }, 3291 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3292 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3293 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3294 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3295 #if defined(SIGEMT) 3296 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3297 #endif 3298 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3299 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3300 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3301 }; 3302 3303 static bool known_siginfo_layout(unsigned sig, int si_code) 3304 { 3305 if (si_code == SI_KERNEL) 3306 return true; 3307 else if ((si_code > SI_USER)) { 3308 if (sig_specific_sicodes(sig)) { 3309 if (si_code <= sig_sicodes[sig].limit) 3310 return true; 3311 } 3312 else if (si_code <= NSIGPOLL) 3313 return true; 3314 } 3315 else if (si_code >= SI_DETHREAD) 3316 return true; 3317 else if (si_code == SI_ASYNCNL) 3318 return true; 3319 return false; 3320 } 3321 3322 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3323 { 3324 enum siginfo_layout layout = SIL_KILL; 3325 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3326 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3327 (si_code <= sig_sicodes[sig].limit)) { 3328 layout = sig_sicodes[sig].layout; 3329 /* Handle the exceptions */ 3330 if ((sig == SIGBUS) && 3331 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3332 layout = SIL_FAULT_MCEERR; 3333 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3334 layout = SIL_FAULT_BNDERR; 3335 #ifdef SEGV_PKUERR 3336 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3337 layout = SIL_FAULT_PKUERR; 3338 #endif 3339 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3340 layout = SIL_FAULT_PERF_EVENT; 3341 else if (IS_ENABLED(CONFIG_SPARC) && 3342 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3343 layout = SIL_FAULT_TRAPNO; 3344 else if (IS_ENABLED(CONFIG_ALPHA) && 3345 ((sig == SIGFPE) || 3346 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3347 layout = SIL_FAULT_TRAPNO; 3348 } 3349 else if (si_code <= NSIGPOLL) 3350 layout = SIL_POLL; 3351 } else { 3352 if (si_code == SI_TIMER) 3353 layout = SIL_TIMER; 3354 else if (si_code == SI_SIGIO) 3355 layout = SIL_POLL; 3356 else if (si_code < 0) 3357 layout = SIL_RT; 3358 } 3359 return layout; 3360 } 3361 3362 static inline char __user *si_expansion(const siginfo_t __user *info) 3363 { 3364 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3365 } 3366 3367 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3368 { 3369 char __user *expansion = si_expansion(to); 3370 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3371 return -EFAULT; 3372 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3373 return -EFAULT; 3374 return 0; 3375 } 3376 3377 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3378 const siginfo_t __user *from) 3379 { 3380 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3381 char __user *expansion = si_expansion(from); 3382 char buf[SI_EXPANSION_SIZE]; 3383 int i; 3384 /* 3385 * An unknown si_code might need more than 3386 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3387 * extra bytes are 0. This guarantees copy_siginfo_to_user 3388 * will return this data to userspace exactly. 3389 */ 3390 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3391 return -EFAULT; 3392 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3393 if (buf[i] != 0) 3394 return -E2BIG; 3395 } 3396 } 3397 return 0; 3398 } 3399 3400 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3401 const siginfo_t __user *from) 3402 { 3403 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3404 return -EFAULT; 3405 to->si_signo = signo; 3406 return post_copy_siginfo_from_user(to, from); 3407 } 3408 3409 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3410 { 3411 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3412 return -EFAULT; 3413 return post_copy_siginfo_from_user(to, from); 3414 } 3415 3416 #ifdef CONFIG_COMPAT 3417 /** 3418 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3419 * @to: compat siginfo destination 3420 * @from: kernel siginfo source 3421 * 3422 * Note: This function does not work properly for the SIGCHLD on x32, but 3423 * fortunately it doesn't have to. The only valid callers for this function are 3424 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3425 * The latter does not care because SIGCHLD will never cause a coredump. 3426 */ 3427 void copy_siginfo_to_external32(struct compat_siginfo *to, 3428 const struct kernel_siginfo *from) 3429 { 3430 memset(to, 0, sizeof(*to)); 3431 3432 to->si_signo = from->si_signo; 3433 to->si_errno = from->si_errno; 3434 to->si_code = from->si_code; 3435 switch(siginfo_layout(from->si_signo, from->si_code)) { 3436 case SIL_KILL: 3437 to->si_pid = from->si_pid; 3438 to->si_uid = from->si_uid; 3439 break; 3440 case SIL_TIMER: 3441 to->si_tid = from->si_tid; 3442 to->si_overrun = from->si_overrun; 3443 to->si_int = from->si_int; 3444 break; 3445 case SIL_POLL: 3446 to->si_band = from->si_band; 3447 to->si_fd = from->si_fd; 3448 break; 3449 case SIL_FAULT: 3450 to->si_addr = ptr_to_compat(from->si_addr); 3451 break; 3452 case SIL_FAULT_TRAPNO: 3453 to->si_addr = ptr_to_compat(from->si_addr); 3454 to->si_trapno = from->si_trapno; 3455 break; 3456 case SIL_FAULT_MCEERR: 3457 to->si_addr = ptr_to_compat(from->si_addr); 3458 to->si_addr_lsb = from->si_addr_lsb; 3459 break; 3460 case SIL_FAULT_BNDERR: 3461 to->si_addr = ptr_to_compat(from->si_addr); 3462 to->si_lower = ptr_to_compat(from->si_lower); 3463 to->si_upper = ptr_to_compat(from->si_upper); 3464 break; 3465 case SIL_FAULT_PKUERR: 3466 to->si_addr = ptr_to_compat(from->si_addr); 3467 to->si_pkey = from->si_pkey; 3468 break; 3469 case SIL_FAULT_PERF_EVENT: 3470 to->si_addr = ptr_to_compat(from->si_addr); 3471 to->si_perf_data = from->si_perf_data; 3472 to->si_perf_type = from->si_perf_type; 3473 break; 3474 case SIL_CHLD: 3475 to->si_pid = from->si_pid; 3476 to->si_uid = from->si_uid; 3477 to->si_status = from->si_status; 3478 to->si_utime = from->si_utime; 3479 to->si_stime = from->si_stime; 3480 break; 3481 case SIL_RT: 3482 to->si_pid = from->si_pid; 3483 to->si_uid = from->si_uid; 3484 to->si_int = from->si_int; 3485 break; 3486 case SIL_SYS: 3487 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3488 to->si_syscall = from->si_syscall; 3489 to->si_arch = from->si_arch; 3490 break; 3491 } 3492 } 3493 3494 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3495 const struct kernel_siginfo *from) 3496 { 3497 struct compat_siginfo new; 3498 3499 copy_siginfo_to_external32(&new, from); 3500 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3501 return -EFAULT; 3502 return 0; 3503 } 3504 3505 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3506 const struct compat_siginfo *from) 3507 { 3508 clear_siginfo(to); 3509 to->si_signo = from->si_signo; 3510 to->si_errno = from->si_errno; 3511 to->si_code = from->si_code; 3512 switch(siginfo_layout(from->si_signo, from->si_code)) { 3513 case SIL_KILL: 3514 to->si_pid = from->si_pid; 3515 to->si_uid = from->si_uid; 3516 break; 3517 case SIL_TIMER: 3518 to->si_tid = from->si_tid; 3519 to->si_overrun = from->si_overrun; 3520 to->si_int = from->si_int; 3521 break; 3522 case SIL_POLL: 3523 to->si_band = from->si_band; 3524 to->si_fd = from->si_fd; 3525 break; 3526 case SIL_FAULT: 3527 to->si_addr = compat_ptr(from->si_addr); 3528 break; 3529 case SIL_FAULT_TRAPNO: 3530 to->si_addr = compat_ptr(from->si_addr); 3531 to->si_trapno = from->si_trapno; 3532 break; 3533 case SIL_FAULT_MCEERR: 3534 to->si_addr = compat_ptr(from->si_addr); 3535 to->si_addr_lsb = from->si_addr_lsb; 3536 break; 3537 case SIL_FAULT_BNDERR: 3538 to->si_addr = compat_ptr(from->si_addr); 3539 to->si_lower = compat_ptr(from->si_lower); 3540 to->si_upper = compat_ptr(from->si_upper); 3541 break; 3542 case SIL_FAULT_PKUERR: 3543 to->si_addr = compat_ptr(from->si_addr); 3544 to->si_pkey = from->si_pkey; 3545 break; 3546 case SIL_FAULT_PERF_EVENT: 3547 to->si_addr = compat_ptr(from->si_addr); 3548 to->si_perf_data = from->si_perf_data; 3549 to->si_perf_type = from->si_perf_type; 3550 break; 3551 case SIL_CHLD: 3552 to->si_pid = from->si_pid; 3553 to->si_uid = from->si_uid; 3554 to->si_status = from->si_status; 3555 #ifdef CONFIG_X86_X32_ABI 3556 if (in_x32_syscall()) { 3557 to->si_utime = from->_sifields._sigchld_x32._utime; 3558 to->si_stime = from->_sifields._sigchld_x32._stime; 3559 } else 3560 #endif 3561 { 3562 to->si_utime = from->si_utime; 3563 to->si_stime = from->si_stime; 3564 } 3565 break; 3566 case SIL_RT: 3567 to->si_pid = from->si_pid; 3568 to->si_uid = from->si_uid; 3569 to->si_int = from->si_int; 3570 break; 3571 case SIL_SYS: 3572 to->si_call_addr = compat_ptr(from->si_call_addr); 3573 to->si_syscall = from->si_syscall; 3574 to->si_arch = from->si_arch; 3575 break; 3576 } 3577 return 0; 3578 } 3579 3580 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3581 const struct compat_siginfo __user *ufrom) 3582 { 3583 struct compat_siginfo from; 3584 3585 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3586 return -EFAULT; 3587 3588 from.si_signo = signo; 3589 return post_copy_siginfo_from_user32(to, &from); 3590 } 3591 3592 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3593 const struct compat_siginfo __user *ufrom) 3594 { 3595 struct compat_siginfo from; 3596 3597 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3598 return -EFAULT; 3599 3600 return post_copy_siginfo_from_user32(to, &from); 3601 } 3602 #endif /* CONFIG_COMPAT */ 3603 3604 /** 3605 * do_sigtimedwait - wait for queued signals specified in @which 3606 * @which: queued signals to wait for 3607 * @info: if non-null, the signal's siginfo is returned here 3608 * @ts: upper bound on process time suspension 3609 */ 3610 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3611 const struct timespec64 *ts) 3612 { 3613 ktime_t *to = NULL, timeout = KTIME_MAX; 3614 struct task_struct *tsk = current; 3615 sigset_t mask = *which; 3616 enum pid_type type; 3617 int sig, ret = 0; 3618 3619 if (ts) { 3620 if (!timespec64_valid(ts)) 3621 return -EINVAL; 3622 timeout = timespec64_to_ktime(*ts); 3623 to = &timeout; 3624 } 3625 3626 /* 3627 * Invert the set of allowed signals to get those we want to block. 3628 */ 3629 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3630 signotset(&mask); 3631 3632 spin_lock_irq(&tsk->sighand->siglock); 3633 sig = dequeue_signal(tsk, &mask, info, &type); 3634 if (!sig && timeout) { 3635 /* 3636 * None ready, temporarily unblock those we're interested 3637 * while we are sleeping in so that we'll be awakened when 3638 * they arrive. Unblocking is always fine, we can avoid 3639 * set_current_blocked(). 3640 */ 3641 tsk->real_blocked = tsk->blocked; 3642 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3643 recalc_sigpending(); 3644 spin_unlock_irq(&tsk->sighand->siglock); 3645 3646 __set_current_state(TASK_INTERRUPTIBLE); 3647 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3648 HRTIMER_MODE_REL); 3649 spin_lock_irq(&tsk->sighand->siglock); 3650 __set_task_blocked(tsk, &tsk->real_blocked); 3651 sigemptyset(&tsk->real_blocked); 3652 sig = dequeue_signal(tsk, &mask, info, &type); 3653 } 3654 spin_unlock_irq(&tsk->sighand->siglock); 3655 3656 if (sig) 3657 return sig; 3658 return ret ? -EINTR : -EAGAIN; 3659 } 3660 3661 /** 3662 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3663 * in @uthese 3664 * @uthese: queued signals to wait for 3665 * @uinfo: if non-null, the signal's siginfo is returned here 3666 * @uts: upper bound on process time suspension 3667 * @sigsetsize: size of sigset_t type 3668 */ 3669 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3670 siginfo_t __user *, uinfo, 3671 const struct __kernel_timespec __user *, uts, 3672 size_t, sigsetsize) 3673 { 3674 sigset_t these; 3675 struct timespec64 ts; 3676 kernel_siginfo_t info; 3677 int ret; 3678 3679 /* XXX: Don't preclude handling different sized sigset_t's. */ 3680 if (sigsetsize != sizeof(sigset_t)) 3681 return -EINVAL; 3682 3683 if (copy_from_user(&these, uthese, sizeof(these))) 3684 return -EFAULT; 3685 3686 if (uts) { 3687 if (get_timespec64(&ts, uts)) 3688 return -EFAULT; 3689 } 3690 3691 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3692 3693 if (ret > 0 && uinfo) { 3694 if (copy_siginfo_to_user(uinfo, &info)) 3695 ret = -EFAULT; 3696 } 3697 3698 return ret; 3699 } 3700 3701 #ifdef CONFIG_COMPAT_32BIT_TIME 3702 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3703 siginfo_t __user *, uinfo, 3704 const struct old_timespec32 __user *, uts, 3705 size_t, sigsetsize) 3706 { 3707 sigset_t these; 3708 struct timespec64 ts; 3709 kernel_siginfo_t info; 3710 int ret; 3711 3712 if (sigsetsize != sizeof(sigset_t)) 3713 return -EINVAL; 3714 3715 if (copy_from_user(&these, uthese, sizeof(these))) 3716 return -EFAULT; 3717 3718 if (uts) { 3719 if (get_old_timespec32(&ts, uts)) 3720 return -EFAULT; 3721 } 3722 3723 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3724 3725 if (ret > 0 && uinfo) { 3726 if (copy_siginfo_to_user(uinfo, &info)) 3727 ret = -EFAULT; 3728 } 3729 3730 return ret; 3731 } 3732 #endif 3733 3734 #ifdef CONFIG_COMPAT 3735 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3736 struct compat_siginfo __user *, uinfo, 3737 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3738 { 3739 sigset_t s; 3740 struct timespec64 t; 3741 kernel_siginfo_t info; 3742 long ret; 3743 3744 if (sigsetsize != sizeof(sigset_t)) 3745 return -EINVAL; 3746 3747 if (get_compat_sigset(&s, uthese)) 3748 return -EFAULT; 3749 3750 if (uts) { 3751 if (get_timespec64(&t, uts)) 3752 return -EFAULT; 3753 } 3754 3755 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3756 3757 if (ret > 0 && uinfo) { 3758 if (copy_siginfo_to_user32(uinfo, &info)) 3759 ret = -EFAULT; 3760 } 3761 3762 return ret; 3763 } 3764 3765 #ifdef CONFIG_COMPAT_32BIT_TIME 3766 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3767 struct compat_siginfo __user *, uinfo, 3768 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3769 { 3770 sigset_t s; 3771 struct timespec64 t; 3772 kernel_siginfo_t info; 3773 long ret; 3774 3775 if (sigsetsize != sizeof(sigset_t)) 3776 return -EINVAL; 3777 3778 if (get_compat_sigset(&s, uthese)) 3779 return -EFAULT; 3780 3781 if (uts) { 3782 if (get_old_timespec32(&t, uts)) 3783 return -EFAULT; 3784 } 3785 3786 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3787 3788 if (ret > 0 && uinfo) { 3789 if (copy_siginfo_to_user32(uinfo, &info)) 3790 ret = -EFAULT; 3791 } 3792 3793 return ret; 3794 } 3795 #endif 3796 #endif 3797 3798 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3799 { 3800 clear_siginfo(info); 3801 info->si_signo = sig; 3802 info->si_errno = 0; 3803 info->si_code = SI_USER; 3804 info->si_pid = task_tgid_vnr(current); 3805 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3806 } 3807 3808 /** 3809 * sys_kill - send a signal to a process 3810 * @pid: the PID of the process 3811 * @sig: signal to be sent 3812 */ 3813 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3814 { 3815 struct kernel_siginfo info; 3816 3817 prepare_kill_siginfo(sig, &info); 3818 3819 return kill_something_info(sig, &info, pid); 3820 } 3821 3822 /* 3823 * Verify that the signaler and signalee either are in the same pid namespace 3824 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3825 * namespace. 3826 */ 3827 static bool access_pidfd_pidns(struct pid *pid) 3828 { 3829 struct pid_namespace *active = task_active_pid_ns(current); 3830 struct pid_namespace *p = ns_of_pid(pid); 3831 3832 for (;;) { 3833 if (!p) 3834 return false; 3835 if (p == active) 3836 break; 3837 p = p->parent; 3838 } 3839 3840 return true; 3841 } 3842 3843 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3844 siginfo_t __user *info) 3845 { 3846 #ifdef CONFIG_COMPAT 3847 /* 3848 * Avoid hooking up compat syscalls and instead handle necessary 3849 * conversions here. Note, this is a stop-gap measure and should not be 3850 * considered a generic solution. 3851 */ 3852 if (in_compat_syscall()) 3853 return copy_siginfo_from_user32( 3854 kinfo, (struct compat_siginfo __user *)info); 3855 #endif 3856 return copy_siginfo_from_user(kinfo, info); 3857 } 3858 3859 static struct pid *pidfd_to_pid(const struct file *file) 3860 { 3861 struct pid *pid; 3862 3863 pid = pidfd_pid(file); 3864 if (!IS_ERR(pid)) 3865 return pid; 3866 3867 return tgid_pidfd_to_pid(file); 3868 } 3869 3870 /** 3871 * sys_pidfd_send_signal - Signal a process through a pidfd 3872 * @pidfd: file descriptor of the process 3873 * @sig: signal to send 3874 * @info: signal info 3875 * @flags: future flags 3876 * 3877 * The syscall currently only signals via PIDTYPE_PID which covers 3878 * kill(<positive-pid>, <signal>. It does not signal threads or process 3879 * groups. 3880 * In order to extend the syscall to threads and process groups the @flags 3881 * argument should be used. In essence, the @flags argument will determine 3882 * what is signaled and not the file descriptor itself. Put in other words, 3883 * grouping is a property of the flags argument not a property of the file 3884 * descriptor. 3885 * 3886 * Return: 0 on success, negative errno on failure 3887 */ 3888 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3889 siginfo_t __user *, info, unsigned int, flags) 3890 { 3891 int ret; 3892 struct fd f; 3893 struct pid *pid; 3894 kernel_siginfo_t kinfo; 3895 3896 /* Enforce flags be set to 0 until we add an extension. */ 3897 if (flags) 3898 return -EINVAL; 3899 3900 f = fdget(pidfd); 3901 if (!f.file) 3902 return -EBADF; 3903 3904 /* Is this a pidfd? */ 3905 pid = pidfd_to_pid(f.file); 3906 if (IS_ERR(pid)) { 3907 ret = PTR_ERR(pid); 3908 goto err; 3909 } 3910 3911 ret = -EINVAL; 3912 if (!access_pidfd_pidns(pid)) 3913 goto err; 3914 3915 if (info) { 3916 ret = copy_siginfo_from_user_any(&kinfo, info); 3917 if (unlikely(ret)) 3918 goto err; 3919 3920 ret = -EINVAL; 3921 if (unlikely(sig != kinfo.si_signo)) 3922 goto err; 3923 3924 /* Only allow sending arbitrary signals to yourself. */ 3925 ret = -EPERM; 3926 if ((task_pid(current) != pid) && 3927 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3928 goto err; 3929 } else { 3930 prepare_kill_siginfo(sig, &kinfo); 3931 } 3932 3933 ret = kill_pid_info(sig, &kinfo, pid); 3934 3935 err: 3936 fdput(f); 3937 return ret; 3938 } 3939 3940 static int 3941 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3942 { 3943 struct task_struct *p; 3944 int error = -ESRCH; 3945 3946 rcu_read_lock(); 3947 p = find_task_by_vpid(pid); 3948 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3949 error = check_kill_permission(sig, info, p); 3950 /* 3951 * The null signal is a permissions and process existence 3952 * probe. No signal is actually delivered. 3953 */ 3954 if (!error && sig) { 3955 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3956 /* 3957 * If lock_task_sighand() failed we pretend the task 3958 * dies after receiving the signal. The window is tiny, 3959 * and the signal is private anyway. 3960 */ 3961 if (unlikely(error == -ESRCH)) 3962 error = 0; 3963 } 3964 } 3965 rcu_read_unlock(); 3966 3967 return error; 3968 } 3969 3970 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3971 { 3972 struct kernel_siginfo info; 3973 3974 clear_siginfo(&info); 3975 info.si_signo = sig; 3976 info.si_errno = 0; 3977 info.si_code = SI_TKILL; 3978 info.si_pid = task_tgid_vnr(current); 3979 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3980 3981 return do_send_specific(tgid, pid, sig, &info); 3982 } 3983 3984 /** 3985 * sys_tgkill - send signal to one specific thread 3986 * @tgid: the thread group ID of the thread 3987 * @pid: the PID of the thread 3988 * @sig: signal to be sent 3989 * 3990 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3991 * exists but it's not belonging to the target process anymore. This 3992 * method solves the problem of threads exiting and PIDs getting reused. 3993 */ 3994 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3995 { 3996 /* This is only valid for single tasks */ 3997 if (pid <= 0 || tgid <= 0) 3998 return -EINVAL; 3999 4000 return do_tkill(tgid, pid, sig); 4001 } 4002 4003 /** 4004 * sys_tkill - send signal to one specific task 4005 * @pid: the PID of the task 4006 * @sig: signal to be sent 4007 * 4008 * Send a signal to only one task, even if it's a CLONE_THREAD task. 4009 */ 4010 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 4011 { 4012 /* This is only valid for single tasks */ 4013 if (pid <= 0) 4014 return -EINVAL; 4015 4016 return do_tkill(0, pid, sig); 4017 } 4018 4019 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 4020 { 4021 /* Not even root can pretend to send signals from the kernel. 4022 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4023 */ 4024 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4025 (task_pid_vnr(current) != pid)) 4026 return -EPERM; 4027 4028 /* POSIX.1b doesn't mention process groups. */ 4029 return kill_proc_info(sig, info, pid); 4030 } 4031 4032 /** 4033 * sys_rt_sigqueueinfo - send signal information to a signal 4034 * @pid: the PID of the thread 4035 * @sig: signal to be sent 4036 * @uinfo: signal info to be sent 4037 */ 4038 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 4039 siginfo_t __user *, uinfo) 4040 { 4041 kernel_siginfo_t info; 4042 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4043 if (unlikely(ret)) 4044 return ret; 4045 return do_rt_sigqueueinfo(pid, sig, &info); 4046 } 4047 4048 #ifdef CONFIG_COMPAT 4049 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4050 compat_pid_t, pid, 4051 int, sig, 4052 struct compat_siginfo __user *, uinfo) 4053 { 4054 kernel_siginfo_t info; 4055 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4056 if (unlikely(ret)) 4057 return ret; 4058 return do_rt_sigqueueinfo(pid, sig, &info); 4059 } 4060 #endif 4061 4062 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4063 { 4064 /* This is only valid for single tasks */ 4065 if (pid <= 0 || tgid <= 0) 4066 return -EINVAL; 4067 4068 /* Not even root can pretend to send signals from the kernel. 4069 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4070 */ 4071 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4072 (task_pid_vnr(current) != pid)) 4073 return -EPERM; 4074 4075 return do_send_specific(tgid, pid, sig, info); 4076 } 4077 4078 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4079 siginfo_t __user *, uinfo) 4080 { 4081 kernel_siginfo_t info; 4082 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4083 if (unlikely(ret)) 4084 return ret; 4085 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4086 } 4087 4088 #ifdef CONFIG_COMPAT 4089 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4090 compat_pid_t, tgid, 4091 compat_pid_t, pid, 4092 int, sig, 4093 struct compat_siginfo __user *, uinfo) 4094 { 4095 kernel_siginfo_t info; 4096 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4097 if (unlikely(ret)) 4098 return ret; 4099 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4100 } 4101 #endif 4102 4103 /* 4104 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4105 */ 4106 void kernel_sigaction(int sig, __sighandler_t action) 4107 { 4108 spin_lock_irq(¤t->sighand->siglock); 4109 current->sighand->action[sig - 1].sa.sa_handler = action; 4110 if (action == SIG_IGN) { 4111 sigset_t mask; 4112 4113 sigemptyset(&mask); 4114 sigaddset(&mask, sig); 4115 4116 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4117 flush_sigqueue_mask(&mask, ¤t->pending); 4118 recalc_sigpending(); 4119 } 4120 spin_unlock_irq(¤t->sighand->siglock); 4121 } 4122 EXPORT_SYMBOL(kernel_sigaction); 4123 4124 void __weak sigaction_compat_abi(struct k_sigaction *act, 4125 struct k_sigaction *oact) 4126 { 4127 } 4128 4129 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4130 { 4131 struct task_struct *p = current, *t; 4132 struct k_sigaction *k; 4133 sigset_t mask; 4134 4135 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4136 return -EINVAL; 4137 4138 k = &p->sighand->action[sig-1]; 4139 4140 spin_lock_irq(&p->sighand->siglock); 4141 if (k->sa.sa_flags & SA_IMMUTABLE) { 4142 spin_unlock_irq(&p->sighand->siglock); 4143 return -EINVAL; 4144 } 4145 if (oact) 4146 *oact = *k; 4147 4148 /* 4149 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4150 * e.g. by having an architecture use the bit in their uapi. 4151 */ 4152 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4153 4154 /* 4155 * Clear unknown flag bits in order to allow userspace to detect missing 4156 * support for flag bits and to allow the kernel to use non-uapi bits 4157 * internally. 4158 */ 4159 if (act) 4160 act->sa.sa_flags &= UAPI_SA_FLAGS; 4161 if (oact) 4162 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4163 4164 sigaction_compat_abi(act, oact); 4165 4166 if (act) { 4167 sigdelsetmask(&act->sa.sa_mask, 4168 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4169 *k = *act; 4170 /* 4171 * POSIX 3.3.1.3: 4172 * "Setting a signal action to SIG_IGN for a signal that is 4173 * pending shall cause the pending signal to be discarded, 4174 * whether or not it is blocked." 4175 * 4176 * "Setting a signal action to SIG_DFL for a signal that is 4177 * pending and whose default action is to ignore the signal 4178 * (for example, SIGCHLD), shall cause the pending signal to 4179 * be discarded, whether or not it is blocked" 4180 */ 4181 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4182 sigemptyset(&mask); 4183 sigaddset(&mask, sig); 4184 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4185 for_each_thread(p, t) 4186 flush_sigqueue_mask(&mask, &t->pending); 4187 } 4188 } 4189 4190 spin_unlock_irq(&p->sighand->siglock); 4191 return 0; 4192 } 4193 4194 #ifdef CONFIG_DYNAMIC_SIGFRAME 4195 static inline void sigaltstack_lock(void) 4196 __acquires(¤t->sighand->siglock) 4197 { 4198 spin_lock_irq(¤t->sighand->siglock); 4199 } 4200 4201 static inline void sigaltstack_unlock(void) 4202 __releases(¤t->sighand->siglock) 4203 { 4204 spin_unlock_irq(¤t->sighand->siglock); 4205 } 4206 #else 4207 static inline void sigaltstack_lock(void) { } 4208 static inline void sigaltstack_unlock(void) { } 4209 #endif 4210 4211 static int 4212 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4213 size_t min_ss_size) 4214 { 4215 struct task_struct *t = current; 4216 int ret = 0; 4217 4218 if (oss) { 4219 memset(oss, 0, sizeof(stack_t)); 4220 oss->ss_sp = (void __user *) t->sas_ss_sp; 4221 oss->ss_size = t->sas_ss_size; 4222 oss->ss_flags = sas_ss_flags(sp) | 4223 (current->sas_ss_flags & SS_FLAG_BITS); 4224 } 4225 4226 if (ss) { 4227 void __user *ss_sp = ss->ss_sp; 4228 size_t ss_size = ss->ss_size; 4229 unsigned ss_flags = ss->ss_flags; 4230 int ss_mode; 4231 4232 if (unlikely(on_sig_stack(sp))) 4233 return -EPERM; 4234 4235 ss_mode = ss_flags & ~SS_FLAG_BITS; 4236 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4237 ss_mode != 0)) 4238 return -EINVAL; 4239 4240 /* 4241 * Return before taking any locks if no actual 4242 * sigaltstack changes were requested. 4243 */ 4244 if (t->sas_ss_sp == (unsigned long)ss_sp && 4245 t->sas_ss_size == ss_size && 4246 t->sas_ss_flags == ss_flags) 4247 return 0; 4248 4249 sigaltstack_lock(); 4250 if (ss_mode == SS_DISABLE) { 4251 ss_size = 0; 4252 ss_sp = NULL; 4253 } else { 4254 if (unlikely(ss_size < min_ss_size)) 4255 ret = -ENOMEM; 4256 if (!sigaltstack_size_valid(ss_size)) 4257 ret = -ENOMEM; 4258 } 4259 if (!ret) { 4260 t->sas_ss_sp = (unsigned long) ss_sp; 4261 t->sas_ss_size = ss_size; 4262 t->sas_ss_flags = ss_flags; 4263 } 4264 sigaltstack_unlock(); 4265 } 4266 return ret; 4267 } 4268 4269 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4270 { 4271 stack_t new, old; 4272 int err; 4273 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4274 return -EFAULT; 4275 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4276 current_user_stack_pointer(), 4277 MINSIGSTKSZ); 4278 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4279 err = -EFAULT; 4280 return err; 4281 } 4282 4283 int restore_altstack(const stack_t __user *uss) 4284 { 4285 stack_t new; 4286 if (copy_from_user(&new, uss, sizeof(stack_t))) 4287 return -EFAULT; 4288 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4289 MINSIGSTKSZ); 4290 /* squash all but EFAULT for now */ 4291 return 0; 4292 } 4293 4294 int __save_altstack(stack_t __user *uss, unsigned long sp) 4295 { 4296 struct task_struct *t = current; 4297 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4298 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4299 __put_user(t->sas_ss_size, &uss->ss_size); 4300 return err; 4301 } 4302 4303 #ifdef CONFIG_COMPAT 4304 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4305 compat_stack_t __user *uoss_ptr) 4306 { 4307 stack_t uss, uoss; 4308 int ret; 4309 4310 if (uss_ptr) { 4311 compat_stack_t uss32; 4312 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4313 return -EFAULT; 4314 uss.ss_sp = compat_ptr(uss32.ss_sp); 4315 uss.ss_flags = uss32.ss_flags; 4316 uss.ss_size = uss32.ss_size; 4317 } 4318 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4319 compat_user_stack_pointer(), 4320 COMPAT_MINSIGSTKSZ); 4321 if (ret >= 0 && uoss_ptr) { 4322 compat_stack_t old; 4323 memset(&old, 0, sizeof(old)); 4324 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4325 old.ss_flags = uoss.ss_flags; 4326 old.ss_size = uoss.ss_size; 4327 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4328 ret = -EFAULT; 4329 } 4330 return ret; 4331 } 4332 4333 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4334 const compat_stack_t __user *, uss_ptr, 4335 compat_stack_t __user *, uoss_ptr) 4336 { 4337 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4338 } 4339 4340 int compat_restore_altstack(const compat_stack_t __user *uss) 4341 { 4342 int err = do_compat_sigaltstack(uss, NULL); 4343 /* squash all but -EFAULT for now */ 4344 return err == -EFAULT ? err : 0; 4345 } 4346 4347 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4348 { 4349 int err; 4350 struct task_struct *t = current; 4351 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4352 &uss->ss_sp) | 4353 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4354 __put_user(t->sas_ss_size, &uss->ss_size); 4355 return err; 4356 } 4357 #endif 4358 4359 #ifdef __ARCH_WANT_SYS_SIGPENDING 4360 4361 /** 4362 * sys_sigpending - examine pending signals 4363 * @uset: where mask of pending signal is returned 4364 */ 4365 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4366 { 4367 sigset_t set; 4368 4369 if (sizeof(old_sigset_t) > sizeof(*uset)) 4370 return -EINVAL; 4371 4372 do_sigpending(&set); 4373 4374 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4375 return -EFAULT; 4376 4377 return 0; 4378 } 4379 4380 #ifdef CONFIG_COMPAT 4381 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4382 { 4383 sigset_t set; 4384 4385 do_sigpending(&set); 4386 4387 return put_user(set.sig[0], set32); 4388 } 4389 #endif 4390 4391 #endif 4392 4393 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4394 /** 4395 * sys_sigprocmask - examine and change blocked signals 4396 * @how: whether to add, remove, or set signals 4397 * @nset: signals to add or remove (if non-null) 4398 * @oset: previous value of signal mask if non-null 4399 * 4400 * Some platforms have their own version with special arguments; 4401 * others support only sys_rt_sigprocmask. 4402 */ 4403 4404 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4405 old_sigset_t __user *, oset) 4406 { 4407 old_sigset_t old_set, new_set; 4408 sigset_t new_blocked; 4409 4410 old_set = current->blocked.sig[0]; 4411 4412 if (nset) { 4413 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4414 return -EFAULT; 4415 4416 new_blocked = current->blocked; 4417 4418 switch (how) { 4419 case SIG_BLOCK: 4420 sigaddsetmask(&new_blocked, new_set); 4421 break; 4422 case SIG_UNBLOCK: 4423 sigdelsetmask(&new_blocked, new_set); 4424 break; 4425 case SIG_SETMASK: 4426 new_blocked.sig[0] = new_set; 4427 break; 4428 default: 4429 return -EINVAL; 4430 } 4431 4432 set_current_blocked(&new_blocked); 4433 } 4434 4435 if (oset) { 4436 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4437 return -EFAULT; 4438 } 4439 4440 return 0; 4441 } 4442 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4443 4444 #ifndef CONFIG_ODD_RT_SIGACTION 4445 /** 4446 * sys_rt_sigaction - alter an action taken by a process 4447 * @sig: signal to be sent 4448 * @act: new sigaction 4449 * @oact: used to save the previous sigaction 4450 * @sigsetsize: size of sigset_t type 4451 */ 4452 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4453 const struct sigaction __user *, act, 4454 struct sigaction __user *, oact, 4455 size_t, sigsetsize) 4456 { 4457 struct k_sigaction new_sa, old_sa; 4458 int ret; 4459 4460 /* XXX: Don't preclude handling different sized sigset_t's. */ 4461 if (sigsetsize != sizeof(sigset_t)) 4462 return -EINVAL; 4463 4464 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4465 return -EFAULT; 4466 4467 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4468 if (ret) 4469 return ret; 4470 4471 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4472 return -EFAULT; 4473 4474 return 0; 4475 } 4476 #ifdef CONFIG_COMPAT 4477 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4478 const struct compat_sigaction __user *, act, 4479 struct compat_sigaction __user *, oact, 4480 compat_size_t, sigsetsize) 4481 { 4482 struct k_sigaction new_ka, old_ka; 4483 #ifdef __ARCH_HAS_SA_RESTORER 4484 compat_uptr_t restorer; 4485 #endif 4486 int ret; 4487 4488 /* XXX: Don't preclude handling different sized sigset_t's. */ 4489 if (sigsetsize != sizeof(compat_sigset_t)) 4490 return -EINVAL; 4491 4492 if (act) { 4493 compat_uptr_t handler; 4494 ret = get_user(handler, &act->sa_handler); 4495 new_ka.sa.sa_handler = compat_ptr(handler); 4496 #ifdef __ARCH_HAS_SA_RESTORER 4497 ret |= get_user(restorer, &act->sa_restorer); 4498 new_ka.sa.sa_restorer = compat_ptr(restorer); 4499 #endif 4500 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4501 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4502 if (ret) 4503 return -EFAULT; 4504 } 4505 4506 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4507 if (!ret && oact) { 4508 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4509 &oact->sa_handler); 4510 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4511 sizeof(oact->sa_mask)); 4512 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4513 #ifdef __ARCH_HAS_SA_RESTORER 4514 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4515 &oact->sa_restorer); 4516 #endif 4517 } 4518 return ret; 4519 } 4520 #endif 4521 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4522 4523 #ifdef CONFIG_OLD_SIGACTION 4524 SYSCALL_DEFINE3(sigaction, int, sig, 4525 const struct old_sigaction __user *, act, 4526 struct old_sigaction __user *, oact) 4527 { 4528 struct k_sigaction new_ka, old_ka; 4529 int ret; 4530 4531 if (act) { 4532 old_sigset_t mask; 4533 if (!access_ok(act, sizeof(*act)) || 4534 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4535 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4536 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4537 __get_user(mask, &act->sa_mask)) 4538 return -EFAULT; 4539 #ifdef __ARCH_HAS_KA_RESTORER 4540 new_ka.ka_restorer = NULL; 4541 #endif 4542 siginitset(&new_ka.sa.sa_mask, mask); 4543 } 4544 4545 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4546 4547 if (!ret && oact) { 4548 if (!access_ok(oact, sizeof(*oact)) || 4549 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4550 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4551 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4552 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4553 return -EFAULT; 4554 } 4555 4556 return ret; 4557 } 4558 #endif 4559 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4560 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4561 const struct compat_old_sigaction __user *, act, 4562 struct compat_old_sigaction __user *, oact) 4563 { 4564 struct k_sigaction new_ka, old_ka; 4565 int ret; 4566 compat_old_sigset_t mask; 4567 compat_uptr_t handler, restorer; 4568 4569 if (act) { 4570 if (!access_ok(act, sizeof(*act)) || 4571 __get_user(handler, &act->sa_handler) || 4572 __get_user(restorer, &act->sa_restorer) || 4573 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4574 __get_user(mask, &act->sa_mask)) 4575 return -EFAULT; 4576 4577 #ifdef __ARCH_HAS_KA_RESTORER 4578 new_ka.ka_restorer = NULL; 4579 #endif 4580 new_ka.sa.sa_handler = compat_ptr(handler); 4581 new_ka.sa.sa_restorer = compat_ptr(restorer); 4582 siginitset(&new_ka.sa.sa_mask, mask); 4583 } 4584 4585 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4586 4587 if (!ret && oact) { 4588 if (!access_ok(oact, sizeof(*oact)) || 4589 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4590 &oact->sa_handler) || 4591 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4592 &oact->sa_restorer) || 4593 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4594 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4595 return -EFAULT; 4596 } 4597 return ret; 4598 } 4599 #endif 4600 4601 #ifdef CONFIG_SGETMASK_SYSCALL 4602 4603 /* 4604 * For backwards compatibility. Functionality superseded by sigprocmask. 4605 */ 4606 SYSCALL_DEFINE0(sgetmask) 4607 { 4608 /* SMP safe */ 4609 return current->blocked.sig[0]; 4610 } 4611 4612 SYSCALL_DEFINE1(ssetmask, int, newmask) 4613 { 4614 int old = current->blocked.sig[0]; 4615 sigset_t newset; 4616 4617 siginitset(&newset, newmask); 4618 set_current_blocked(&newset); 4619 4620 return old; 4621 } 4622 #endif /* CONFIG_SGETMASK_SYSCALL */ 4623 4624 #ifdef __ARCH_WANT_SYS_SIGNAL 4625 /* 4626 * For backwards compatibility. Functionality superseded by sigaction. 4627 */ 4628 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4629 { 4630 struct k_sigaction new_sa, old_sa; 4631 int ret; 4632 4633 new_sa.sa.sa_handler = handler; 4634 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4635 sigemptyset(&new_sa.sa.sa_mask); 4636 4637 ret = do_sigaction(sig, &new_sa, &old_sa); 4638 4639 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4640 } 4641 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4642 4643 #ifdef __ARCH_WANT_SYS_PAUSE 4644 4645 SYSCALL_DEFINE0(pause) 4646 { 4647 while (!signal_pending(current)) { 4648 __set_current_state(TASK_INTERRUPTIBLE); 4649 schedule(); 4650 } 4651 return -ERESTARTNOHAND; 4652 } 4653 4654 #endif 4655 4656 static int sigsuspend(sigset_t *set) 4657 { 4658 current->saved_sigmask = current->blocked; 4659 set_current_blocked(set); 4660 4661 while (!signal_pending(current)) { 4662 __set_current_state(TASK_INTERRUPTIBLE); 4663 schedule(); 4664 } 4665 set_restore_sigmask(); 4666 return -ERESTARTNOHAND; 4667 } 4668 4669 /** 4670 * sys_rt_sigsuspend - replace the signal mask for a value with the 4671 * @unewset value until a signal is received 4672 * @unewset: new signal mask value 4673 * @sigsetsize: size of sigset_t type 4674 */ 4675 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4676 { 4677 sigset_t newset; 4678 4679 /* XXX: Don't preclude handling different sized sigset_t's. */ 4680 if (sigsetsize != sizeof(sigset_t)) 4681 return -EINVAL; 4682 4683 if (copy_from_user(&newset, unewset, sizeof(newset))) 4684 return -EFAULT; 4685 return sigsuspend(&newset); 4686 } 4687 4688 #ifdef CONFIG_COMPAT 4689 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4690 { 4691 sigset_t newset; 4692 4693 /* XXX: Don't preclude handling different sized sigset_t's. */ 4694 if (sigsetsize != sizeof(sigset_t)) 4695 return -EINVAL; 4696 4697 if (get_compat_sigset(&newset, unewset)) 4698 return -EFAULT; 4699 return sigsuspend(&newset); 4700 } 4701 #endif 4702 4703 #ifdef CONFIG_OLD_SIGSUSPEND 4704 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4705 { 4706 sigset_t blocked; 4707 siginitset(&blocked, mask); 4708 return sigsuspend(&blocked); 4709 } 4710 #endif 4711 #ifdef CONFIG_OLD_SIGSUSPEND3 4712 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4713 { 4714 sigset_t blocked; 4715 siginitset(&blocked, mask); 4716 return sigsuspend(&blocked); 4717 } 4718 #endif 4719 4720 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4721 { 4722 return NULL; 4723 } 4724 4725 static inline void siginfo_buildtime_checks(void) 4726 { 4727 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4728 4729 /* Verify the offsets in the two siginfos match */ 4730 #define CHECK_OFFSET(field) \ 4731 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4732 4733 /* kill */ 4734 CHECK_OFFSET(si_pid); 4735 CHECK_OFFSET(si_uid); 4736 4737 /* timer */ 4738 CHECK_OFFSET(si_tid); 4739 CHECK_OFFSET(si_overrun); 4740 CHECK_OFFSET(si_value); 4741 4742 /* rt */ 4743 CHECK_OFFSET(si_pid); 4744 CHECK_OFFSET(si_uid); 4745 CHECK_OFFSET(si_value); 4746 4747 /* sigchld */ 4748 CHECK_OFFSET(si_pid); 4749 CHECK_OFFSET(si_uid); 4750 CHECK_OFFSET(si_status); 4751 CHECK_OFFSET(si_utime); 4752 CHECK_OFFSET(si_stime); 4753 4754 /* sigfault */ 4755 CHECK_OFFSET(si_addr); 4756 CHECK_OFFSET(si_trapno); 4757 CHECK_OFFSET(si_addr_lsb); 4758 CHECK_OFFSET(si_lower); 4759 CHECK_OFFSET(si_upper); 4760 CHECK_OFFSET(si_pkey); 4761 CHECK_OFFSET(si_perf_data); 4762 CHECK_OFFSET(si_perf_type); 4763 4764 /* sigpoll */ 4765 CHECK_OFFSET(si_band); 4766 CHECK_OFFSET(si_fd); 4767 4768 /* sigsys */ 4769 CHECK_OFFSET(si_call_addr); 4770 CHECK_OFFSET(si_syscall); 4771 CHECK_OFFSET(si_arch); 4772 #undef CHECK_OFFSET 4773 4774 /* usb asyncio */ 4775 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4776 offsetof(struct siginfo, si_addr)); 4777 if (sizeof(int) == sizeof(void __user *)) { 4778 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4779 sizeof(void __user *)); 4780 } else { 4781 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4782 sizeof_field(struct siginfo, si_uid)) != 4783 sizeof(void __user *)); 4784 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4785 offsetof(struct siginfo, si_uid)); 4786 } 4787 #ifdef CONFIG_COMPAT 4788 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4789 offsetof(struct compat_siginfo, si_addr)); 4790 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4791 sizeof(compat_uptr_t)); 4792 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4793 sizeof_field(struct siginfo, si_pid)); 4794 #endif 4795 } 4796 4797 void __init signals_init(void) 4798 { 4799 siginfo_buildtime_checks(); 4800 4801 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4802 } 4803 4804 #ifdef CONFIG_KGDB_KDB 4805 #include <linux/kdb.h> 4806 /* 4807 * kdb_send_sig - Allows kdb to send signals without exposing 4808 * signal internals. This function checks if the required locks are 4809 * available before calling the main signal code, to avoid kdb 4810 * deadlocks. 4811 */ 4812 void kdb_send_sig(struct task_struct *t, int sig) 4813 { 4814 static struct task_struct *kdb_prev_t; 4815 int new_t, ret; 4816 if (!spin_trylock(&t->sighand->siglock)) { 4817 kdb_printf("Can't do kill command now.\n" 4818 "The sigmask lock is held somewhere else in " 4819 "kernel, try again later\n"); 4820 return; 4821 } 4822 new_t = kdb_prev_t != t; 4823 kdb_prev_t = t; 4824 if (!task_is_running(t) && new_t) { 4825 spin_unlock(&t->sighand->siglock); 4826 kdb_printf("Process is not RUNNING, sending a signal from " 4827 "kdb risks deadlock\n" 4828 "on the run queue locks. " 4829 "The signal has _not_ been sent.\n" 4830 "Reissue the kill command if you want to risk " 4831 "the deadlock.\n"); 4832 return; 4833 } 4834 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4835 spin_unlock(&t->sighand->siglock); 4836 if (ret) 4837 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4838 sig, t->pid); 4839 else 4840 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4841 } 4842 #endif /* CONFIG_KGDB_KDB */ 4843