xref: /openbmc/linux/kernel/signal.c (revision ac84bac4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/livepatch.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/signal.h>
52 
53 #include <asm/param.h>
54 #include <linux/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/siginfo.h>
57 #include <asm/cacheflush.h>
58 
59 /*
60  * SLAB caches for signal bits.
61  */
62 
63 static struct kmem_cache *sigqueue_cachep;
64 
65 int print_fatal_signals __read_mostly;
66 
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 	return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71 
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 	/* Is it explicitly or implicitly ignored? */
75 	return handler == SIG_IGN ||
76 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78 
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 	void __user *handler;
82 
83 	handler = sig_handler(t, sig);
84 
85 	/* SIGKILL and SIGSTOP may not be sent to the global init */
86 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 		return true;
88 
89 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 		return true;
92 
93 	/* Only allow kernel generated signals to this kthread */
94 	if (unlikely((t->flags & PF_KTHREAD) &&
95 		     (handler == SIG_KTHREAD_KERNEL) && !force))
96 		return true;
97 
98 	return sig_handler_ignored(handler, sig);
99 }
100 
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103 	/*
104 	 * Blocked signals are never ignored, since the
105 	 * signal handler may change by the time it is
106 	 * unblocked.
107 	 */
108 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 		return false;
110 
111 	/*
112 	 * Tracers may want to know about even ignored signal unless it
113 	 * is SIGKILL which can't be reported anyway but can be ignored
114 	 * by SIGNAL_UNKILLABLE task.
115 	 */
116 	if (t->ptrace && sig != SIGKILL)
117 		return false;
118 
119 	return sig_task_ignored(t, sig, force);
120 }
121 
122 /*
123  * Re-calculate pending state from the set of locally pending
124  * signals, globally pending signals, and blocked signals.
125  */
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128 	unsigned long ready;
129 	long i;
130 
131 	switch (_NSIG_WORDS) {
132 	default:
133 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 			ready |= signal->sig[i] &~ blocked->sig[i];
135 		break;
136 
137 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
138 		ready |= signal->sig[2] &~ blocked->sig[2];
139 		ready |= signal->sig[1] &~ blocked->sig[1];
140 		ready |= signal->sig[0] &~ blocked->sig[0];
141 		break;
142 
143 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
144 		ready |= signal->sig[0] &~ blocked->sig[0];
145 		break;
146 
147 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
148 	}
149 	return ready !=	0;
150 }
151 
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153 
154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 	    PENDING(&t->pending, &t->blocked) ||
158 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
159 	    cgroup_task_frozen(t)) {
160 		set_tsk_thread_flag(t, TIF_SIGPENDING);
161 		return true;
162 	}
163 
164 	/*
165 	 * We must never clear the flag in another thread, or in current
166 	 * when it's possible the current syscall is returning -ERESTART*.
167 	 * So we don't clear it here, and only callers who know they should do.
168 	 */
169 	return false;
170 }
171 
172 /*
173  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174  * This is superfluous when called on current, the wakeup is a harmless no-op.
175  */
176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178 	if (recalc_sigpending_tsk(t))
179 		signal_wake_up(t, 0);
180 }
181 
182 void recalc_sigpending(void)
183 {
184 	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
185 	    !klp_patch_pending(current))
186 		clear_thread_flag(TIF_SIGPENDING);
187 
188 }
189 EXPORT_SYMBOL(recalc_sigpending);
190 
191 void calculate_sigpending(void)
192 {
193 	/* Have any signals or users of TIF_SIGPENDING been delayed
194 	 * until after fork?
195 	 */
196 	spin_lock_irq(&current->sighand->siglock);
197 	set_tsk_thread_flag(current, TIF_SIGPENDING);
198 	recalc_sigpending();
199 	spin_unlock_irq(&current->sighand->siglock);
200 }
201 
202 /* Given the mask, find the first available signal that should be serviced. */
203 
204 #define SYNCHRONOUS_MASK \
205 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
206 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
207 
208 int next_signal(struct sigpending *pending, sigset_t *mask)
209 {
210 	unsigned long i, *s, *m, x;
211 	int sig = 0;
212 
213 	s = pending->signal.sig;
214 	m = mask->sig;
215 
216 	/*
217 	 * Handle the first word specially: it contains the
218 	 * synchronous signals that need to be dequeued first.
219 	 */
220 	x = *s &~ *m;
221 	if (x) {
222 		if (x & SYNCHRONOUS_MASK)
223 			x &= SYNCHRONOUS_MASK;
224 		sig = ffz(~x) + 1;
225 		return sig;
226 	}
227 
228 	switch (_NSIG_WORDS) {
229 	default:
230 		for (i = 1; i < _NSIG_WORDS; ++i) {
231 			x = *++s &~ *++m;
232 			if (!x)
233 				continue;
234 			sig = ffz(~x) + i*_NSIG_BPW + 1;
235 			break;
236 		}
237 		break;
238 
239 	case 2:
240 		x = s[1] &~ m[1];
241 		if (!x)
242 			break;
243 		sig = ffz(~x) + _NSIG_BPW + 1;
244 		break;
245 
246 	case 1:
247 		/* Nothing to do */
248 		break;
249 	}
250 
251 	return sig;
252 }
253 
254 static inline void print_dropped_signal(int sig)
255 {
256 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
257 
258 	if (!print_fatal_signals)
259 		return;
260 
261 	if (!__ratelimit(&ratelimit_state))
262 		return;
263 
264 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
265 				current->comm, current->pid, sig);
266 }
267 
268 /**
269  * task_set_jobctl_pending - set jobctl pending bits
270  * @task: target task
271  * @mask: pending bits to set
272  *
273  * Clear @mask from @task->jobctl.  @mask must be subset of
274  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
275  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
276  * cleared.  If @task is already being killed or exiting, this function
277  * becomes noop.
278  *
279  * CONTEXT:
280  * Must be called with @task->sighand->siglock held.
281  *
282  * RETURNS:
283  * %true if @mask is set, %false if made noop because @task was dying.
284  */
285 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
286 {
287 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
288 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
289 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
290 
291 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
292 		return false;
293 
294 	if (mask & JOBCTL_STOP_SIGMASK)
295 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
296 
297 	task->jobctl |= mask;
298 	return true;
299 }
300 
301 /**
302  * task_clear_jobctl_trapping - clear jobctl trapping bit
303  * @task: target task
304  *
305  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
306  * Clear it and wake up the ptracer.  Note that we don't need any further
307  * locking.  @task->siglock guarantees that @task->parent points to the
308  * ptracer.
309  *
310  * CONTEXT:
311  * Must be called with @task->sighand->siglock held.
312  */
313 void task_clear_jobctl_trapping(struct task_struct *task)
314 {
315 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
316 		task->jobctl &= ~JOBCTL_TRAPPING;
317 		smp_mb();	/* advised by wake_up_bit() */
318 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
319 	}
320 }
321 
322 /**
323  * task_clear_jobctl_pending - clear jobctl pending bits
324  * @task: target task
325  * @mask: pending bits to clear
326  *
327  * Clear @mask from @task->jobctl.  @mask must be subset of
328  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
329  * STOP bits are cleared together.
330  *
331  * If clearing of @mask leaves no stop or trap pending, this function calls
332  * task_clear_jobctl_trapping().
333  *
334  * CONTEXT:
335  * Must be called with @task->sighand->siglock held.
336  */
337 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
338 {
339 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
340 
341 	if (mask & JOBCTL_STOP_PENDING)
342 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
343 
344 	task->jobctl &= ~mask;
345 
346 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
347 		task_clear_jobctl_trapping(task);
348 }
349 
350 /**
351  * task_participate_group_stop - participate in a group stop
352  * @task: task participating in a group stop
353  *
354  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
355  * Group stop states are cleared and the group stop count is consumed if
356  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
357  * stop, the appropriate `SIGNAL_*` flags are set.
358  *
359  * CONTEXT:
360  * Must be called with @task->sighand->siglock held.
361  *
362  * RETURNS:
363  * %true if group stop completion should be notified to the parent, %false
364  * otherwise.
365  */
366 static bool task_participate_group_stop(struct task_struct *task)
367 {
368 	struct signal_struct *sig = task->signal;
369 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
370 
371 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
372 
373 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
374 
375 	if (!consume)
376 		return false;
377 
378 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
379 		sig->group_stop_count--;
380 
381 	/*
382 	 * Tell the caller to notify completion iff we are entering into a
383 	 * fresh group stop.  Read comment in do_signal_stop() for details.
384 	 */
385 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
386 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
387 		return true;
388 	}
389 	return false;
390 }
391 
392 void task_join_group_stop(struct task_struct *task)
393 {
394 	/* Have the new thread join an on-going signal group stop */
395 	unsigned long jobctl = current->jobctl;
396 	if (jobctl & JOBCTL_STOP_PENDING) {
397 		struct signal_struct *sig = current->signal;
398 		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
399 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
400 		if (task_set_jobctl_pending(task, signr | gstop)) {
401 			sig->group_stop_count++;
402 		}
403 	}
404 }
405 
406 /*
407  * allocate a new signal queue record
408  * - this may be called without locks if and only if t == current, otherwise an
409  *   appropriate lock must be held to stop the target task from exiting
410  */
411 static struct sigqueue *
412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
413 {
414 	struct sigqueue *q = NULL;
415 	struct user_struct *user;
416 	int sigpending;
417 
418 	/*
419 	 * Protect access to @t credentials. This can go away when all
420 	 * callers hold rcu read lock.
421 	 *
422 	 * NOTE! A pending signal will hold on to the user refcount,
423 	 * and we get/put the refcount only when the sigpending count
424 	 * changes from/to zero.
425 	 */
426 	rcu_read_lock();
427 	user = __task_cred(t)->user;
428 	sigpending = atomic_inc_return(&user->sigpending);
429 	if (sigpending == 1)
430 		get_uid(user);
431 	rcu_read_unlock();
432 
433 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
434 		q = kmem_cache_alloc(sigqueue_cachep, flags);
435 	} else {
436 		print_dropped_signal(sig);
437 	}
438 
439 	if (unlikely(q == NULL)) {
440 		if (atomic_dec_and_test(&user->sigpending))
441 			free_uid(user);
442 	} else {
443 		INIT_LIST_HEAD(&q->list);
444 		q->flags = 0;
445 		q->user = user;
446 	}
447 
448 	return q;
449 }
450 
451 static void __sigqueue_free(struct sigqueue *q)
452 {
453 	if (q->flags & SIGQUEUE_PREALLOC)
454 		return;
455 	if (atomic_dec_and_test(&q->user->sigpending))
456 		free_uid(q->user);
457 	kmem_cache_free(sigqueue_cachep, q);
458 }
459 
460 void flush_sigqueue(struct sigpending *queue)
461 {
462 	struct sigqueue *q;
463 
464 	sigemptyset(&queue->signal);
465 	while (!list_empty(&queue->list)) {
466 		q = list_entry(queue->list.next, struct sigqueue , list);
467 		list_del_init(&q->list);
468 		__sigqueue_free(q);
469 	}
470 }
471 
472 /*
473  * Flush all pending signals for this kthread.
474  */
475 void flush_signals(struct task_struct *t)
476 {
477 	unsigned long flags;
478 
479 	spin_lock_irqsave(&t->sighand->siglock, flags);
480 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
481 	flush_sigqueue(&t->pending);
482 	flush_sigqueue(&t->signal->shared_pending);
483 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
484 }
485 EXPORT_SYMBOL(flush_signals);
486 
487 #ifdef CONFIG_POSIX_TIMERS
488 static void __flush_itimer_signals(struct sigpending *pending)
489 {
490 	sigset_t signal, retain;
491 	struct sigqueue *q, *n;
492 
493 	signal = pending->signal;
494 	sigemptyset(&retain);
495 
496 	list_for_each_entry_safe(q, n, &pending->list, list) {
497 		int sig = q->info.si_signo;
498 
499 		if (likely(q->info.si_code != SI_TIMER)) {
500 			sigaddset(&retain, sig);
501 		} else {
502 			sigdelset(&signal, sig);
503 			list_del_init(&q->list);
504 			__sigqueue_free(q);
505 		}
506 	}
507 
508 	sigorsets(&pending->signal, &signal, &retain);
509 }
510 
511 void flush_itimer_signals(void)
512 {
513 	struct task_struct *tsk = current;
514 	unsigned long flags;
515 
516 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
517 	__flush_itimer_signals(&tsk->pending);
518 	__flush_itimer_signals(&tsk->signal->shared_pending);
519 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
520 }
521 #endif
522 
523 void ignore_signals(struct task_struct *t)
524 {
525 	int i;
526 
527 	for (i = 0; i < _NSIG; ++i)
528 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
529 
530 	flush_signals(t);
531 }
532 
533 /*
534  * Flush all handlers for a task.
535  */
536 
537 void
538 flush_signal_handlers(struct task_struct *t, int force_default)
539 {
540 	int i;
541 	struct k_sigaction *ka = &t->sighand->action[0];
542 	for (i = _NSIG ; i != 0 ; i--) {
543 		if (force_default || ka->sa.sa_handler != SIG_IGN)
544 			ka->sa.sa_handler = SIG_DFL;
545 		ka->sa.sa_flags = 0;
546 #ifdef __ARCH_HAS_SA_RESTORER
547 		ka->sa.sa_restorer = NULL;
548 #endif
549 		sigemptyset(&ka->sa.sa_mask);
550 		ka++;
551 	}
552 }
553 
554 bool unhandled_signal(struct task_struct *tsk, int sig)
555 {
556 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
557 	if (is_global_init(tsk))
558 		return true;
559 
560 	if (handler != SIG_IGN && handler != SIG_DFL)
561 		return false;
562 
563 	/* if ptraced, let the tracer determine */
564 	return !tsk->ptrace;
565 }
566 
567 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
568 			   bool *resched_timer)
569 {
570 	struct sigqueue *q, *first = NULL;
571 
572 	/*
573 	 * Collect the siginfo appropriate to this signal.  Check if
574 	 * there is another siginfo for the same signal.
575 	*/
576 	list_for_each_entry(q, &list->list, list) {
577 		if (q->info.si_signo == sig) {
578 			if (first)
579 				goto still_pending;
580 			first = q;
581 		}
582 	}
583 
584 	sigdelset(&list->signal, sig);
585 
586 	if (first) {
587 still_pending:
588 		list_del_init(&first->list);
589 		copy_siginfo(info, &first->info);
590 
591 		*resched_timer =
592 			(first->flags & SIGQUEUE_PREALLOC) &&
593 			(info->si_code == SI_TIMER) &&
594 			(info->si_sys_private);
595 
596 		__sigqueue_free(first);
597 	} else {
598 		/*
599 		 * Ok, it wasn't in the queue.  This must be
600 		 * a fast-pathed signal or we must have been
601 		 * out of queue space.  So zero out the info.
602 		 */
603 		clear_siginfo(info);
604 		info->si_signo = sig;
605 		info->si_errno = 0;
606 		info->si_code = SI_USER;
607 		info->si_pid = 0;
608 		info->si_uid = 0;
609 	}
610 }
611 
612 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
613 			kernel_siginfo_t *info, bool *resched_timer)
614 {
615 	int sig = next_signal(pending, mask);
616 
617 	if (sig)
618 		collect_signal(sig, pending, info, resched_timer);
619 	return sig;
620 }
621 
622 /*
623  * Dequeue a signal and return the element to the caller, which is
624  * expected to free it.
625  *
626  * All callers have to hold the siglock.
627  */
628 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
629 {
630 	bool resched_timer = false;
631 	int signr;
632 
633 	/* We only dequeue private signals from ourselves, we don't let
634 	 * signalfd steal them
635 	 */
636 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
637 	if (!signr) {
638 		signr = __dequeue_signal(&tsk->signal->shared_pending,
639 					 mask, info, &resched_timer);
640 #ifdef CONFIG_POSIX_TIMERS
641 		/*
642 		 * itimer signal ?
643 		 *
644 		 * itimers are process shared and we restart periodic
645 		 * itimers in the signal delivery path to prevent DoS
646 		 * attacks in the high resolution timer case. This is
647 		 * compliant with the old way of self-restarting
648 		 * itimers, as the SIGALRM is a legacy signal and only
649 		 * queued once. Changing the restart behaviour to
650 		 * restart the timer in the signal dequeue path is
651 		 * reducing the timer noise on heavy loaded !highres
652 		 * systems too.
653 		 */
654 		if (unlikely(signr == SIGALRM)) {
655 			struct hrtimer *tmr = &tsk->signal->real_timer;
656 
657 			if (!hrtimer_is_queued(tmr) &&
658 			    tsk->signal->it_real_incr != 0) {
659 				hrtimer_forward(tmr, tmr->base->get_time(),
660 						tsk->signal->it_real_incr);
661 				hrtimer_restart(tmr);
662 			}
663 		}
664 #endif
665 	}
666 
667 	recalc_sigpending();
668 	if (!signr)
669 		return 0;
670 
671 	if (unlikely(sig_kernel_stop(signr))) {
672 		/*
673 		 * Set a marker that we have dequeued a stop signal.  Our
674 		 * caller might release the siglock and then the pending
675 		 * stop signal it is about to process is no longer in the
676 		 * pending bitmasks, but must still be cleared by a SIGCONT
677 		 * (and overruled by a SIGKILL).  So those cases clear this
678 		 * shared flag after we've set it.  Note that this flag may
679 		 * remain set after the signal we return is ignored or
680 		 * handled.  That doesn't matter because its only purpose
681 		 * is to alert stop-signal processing code when another
682 		 * processor has come along and cleared the flag.
683 		 */
684 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
685 	}
686 #ifdef CONFIG_POSIX_TIMERS
687 	if (resched_timer) {
688 		/*
689 		 * Release the siglock to ensure proper locking order
690 		 * of timer locks outside of siglocks.  Note, we leave
691 		 * irqs disabled here, since the posix-timers code is
692 		 * about to disable them again anyway.
693 		 */
694 		spin_unlock(&tsk->sighand->siglock);
695 		posixtimer_rearm(info);
696 		spin_lock(&tsk->sighand->siglock);
697 
698 		/* Don't expose the si_sys_private value to userspace */
699 		info->si_sys_private = 0;
700 	}
701 #endif
702 	return signr;
703 }
704 EXPORT_SYMBOL_GPL(dequeue_signal);
705 
706 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
707 {
708 	struct task_struct *tsk = current;
709 	struct sigpending *pending = &tsk->pending;
710 	struct sigqueue *q, *sync = NULL;
711 
712 	/*
713 	 * Might a synchronous signal be in the queue?
714 	 */
715 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
716 		return 0;
717 
718 	/*
719 	 * Return the first synchronous signal in the queue.
720 	 */
721 	list_for_each_entry(q, &pending->list, list) {
722 		/* Synchronous signals have a postive si_code */
723 		if ((q->info.si_code > SI_USER) &&
724 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
725 			sync = q;
726 			goto next;
727 		}
728 	}
729 	return 0;
730 next:
731 	/*
732 	 * Check if there is another siginfo for the same signal.
733 	 */
734 	list_for_each_entry_continue(q, &pending->list, list) {
735 		if (q->info.si_signo == sync->info.si_signo)
736 			goto still_pending;
737 	}
738 
739 	sigdelset(&pending->signal, sync->info.si_signo);
740 	recalc_sigpending();
741 still_pending:
742 	list_del_init(&sync->list);
743 	copy_siginfo(info, &sync->info);
744 	__sigqueue_free(sync);
745 	return info->si_signo;
746 }
747 
748 /*
749  * Tell a process that it has a new active signal..
750  *
751  * NOTE! we rely on the previous spin_lock to
752  * lock interrupts for us! We can only be called with
753  * "siglock" held, and the local interrupt must
754  * have been disabled when that got acquired!
755  *
756  * No need to set need_resched since signal event passing
757  * goes through ->blocked
758  */
759 void signal_wake_up_state(struct task_struct *t, unsigned int state)
760 {
761 	set_tsk_thread_flag(t, TIF_SIGPENDING);
762 	/*
763 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
764 	 * case. We don't check t->state here because there is a race with it
765 	 * executing another processor and just now entering stopped state.
766 	 * By using wake_up_state, we ensure the process will wake up and
767 	 * handle its death signal.
768 	 */
769 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
770 		kick_process(t);
771 }
772 
773 /*
774  * Remove signals in mask from the pending set and queue.
775  * Returns 1 if any signals were found.
776  *
777  * All callers must be holding the siglock.
778  */
779 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
780 {
781 	struct sigqueue *q, *n;
782 	sigset_t m;
783 
784 	sigandsets(&m, mask, &s->signal);
785 	if (sigisemptyset(&m))
786 		return;
787 
788 	sigandnsets(&s->signal, &s->signal, mask);
789 	list_for_each_entry_safe(q, n, &s->list, list) {
790 		if (sigismember(mask, q->info.si_signo)) {
791 			list_del_init(&q->list);
792 			__sigqueue_free(q);
793 		}
794 	}
795 }
796 
797 static inline int is_si_special(const struct kernel_siginfo *info)
798 {
799 	return info <= SEND_SIG_PRIV;
800 }
801 
802 static inline bool si_fromuser(const struct kernel_siginfo *info)
803 {
804 	return info == SEND_SIG_NOINFO ||
805 		(!is_si_special(info) && SI_FROMUSER(info));
806 }
807 
808 /*
809  * called with RCU read lock from check_kill_permission()
810  */
811 static bool kill_ok_by_cred(struct task_struct *t)
812 {
813 	const struct cred *cred = current_cred();
814 	const struct cred *tcred = __task_cred(t);
815 
816 	return uid_eq(cred->euid, tcred->suid) ||
817 	       uid_eq(cred->euid, tcred->uid) ||
818 	       uid_eq(cred->uid, tcred->suid) ||
819 	       uid_eq(cred->uid, tcred->uid) ||
820 	       ns_capable(tcred->user_ns, CAP_KILL);
821 }
822 
823 /*
824  * Bad permissions for sending the signal
825  * - the caller must hold the RCU read lock
826  */
827 static int check_kill_permission(int sig, struct kernel_siginfo *info,
828 				 struct task_struct *t)
829 {
830 	struct pid *sid;
831 	int error;
832 
833 	if (!valid_signal(sig))
834 		return -EINVAL;
835 
836 	if (!si_fromuser(info))
837 		return 0;
838 
839 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
840 	if (error)
841 		return error;
842 
843 	if (!same_thread_group(current, t) &&
844 	    !kill_ok_by_cred(t)) {
845 		switch (sig) {
846 		case SIGCONT:
847 			sid = task_session(t);
848 			/*
849 			 * We don't return the error if sid == NULL. The
850 			 * task was unhashed, the caller must notice this.
851 			 */
852 			if (!sid || sid == task_session(current))
853 				break;
854 			/* fall through */
855 		default:
856 			return -EPERM;
857 		}
858 	}
859 
860 	return security_task_kill(t, info, sig, NULL);
861 }
862 
863 /**
864  * ptrace_trap_notify - schedule trap to notify ptracer
865  * @t: tracee wanting to notify tracer
866  *
867  * This function schedules sticky ptrace trap which is cleared on the next
868  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
869  * ptracer.
870  *
871  * If @t is running, STOP trap will be taken.  If trapped for STOP and
872  * ptracer is listening for events, tracee is woken up so that it can
873  * re-trap for the new event.  If trapped otherwise, STOP trap will be
874  * eventually taken without returning to userland after the existing traps
875  * are finished by PTRACE_CONT.
876  *
877  * CONTEXT:
878  * Must be called with @task->sighand->siglock held.
879  */
880 static void ptrace_trap_notify(struct task_struct *t)
881 {
882 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
883 	assert_spin_locked(&t->sighand->siglock);
884 
885 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
886 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
887 }
888 
889 /*
890  * Handle magic process-wide effects of stop/continue signals. Unlike
891  * the signal actions, these happen immediately at signal-generation
892  * time regardless of blocking, ignoring, or handling.  This does the
893  * actual continuing for SIGCONT, but not the actual stopping for stop
894  * signals. The process stop is done as a signal action for SIG_DFL.
895  *
896  * Returns true if the signal should be actually delivered, otherwise
897  * it should be dropped.
898  */
899 static bool prepare_signal(int sig, struct task_struct *p, bool force)
900 {
901 	struct signal_struct *signal = p->signal;
902 	struct task_struct *t;
903 	sigset_t flush;
904 
905 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
906 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
907 			return sig == SIGKILL;
908 		/*
909 		 * The process is in the middle of dying, nothing to do.
910 		 */
911 	} else if (sig_kernel_stop(sig)) {
912 		/*
913 		 * This is a stop signal.  Remove SIGCONT from all queues.
914 		 */
915 		siginitset(&flush, sigmask(SIGCONT));
916 		flush_sigqueue_mask(&flush, &signal->shared_pending);
917 		for_each_thread(p, t)
918 			flush_sigqueue_mask(&flush, &t->pending);
919 	} else if (sig == SIGCONT) {
920 		unsigned int why;
921 		/*
922 		 * Remove all stop signals from all queues, wake all threads.
923 		 */
924 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
925 		flush_sigqueue_mask(&flush, &signal->shared_pending);
926 		for_each_thread(p, t) {
927 			flush_sigqueue_mask(&flush, &t->pending);
928 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
929 			if (likely(!(t->ptrace & PT_SEIZED)))
930 				wake_up_state(t, __TASK_STOPPED);
931 			else
932 				ptrace_trap_notify(t);
933 		}
934 
935 		/*
936 		 * Notify the parent with CLD_CONTINUED if we were stopped.
937 		 *
938 		 * If we were in the middle of a group stop, we pretend it
939 		 * was already finished, and then continued. Since SIGCHLD
940 		 * doesn't queue we report only CLD_STOPPED, as if the next
941 		 * CLD_CONTINUED was dropped.
942 		 */
943 		why = 0;
944 		if (signal->flags & SIGNAL_STOP_STOPPED)
945 			why |= SIGNAL_CLD_CONTINUED;
946 		else if (signal->group_stop_count)
947 			why |= SIGNAL_CLD_STOPPED;
948 
949 		if (why) {
950 			/*
951 			 * The first thread which returns from do_signal_stop()
952 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
953 			 * notify its parent. See get_signal().
954 			 */
955 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
956 			signal->group_stop_count = 0;
957 			signal->group_exit_code = 0;
958 		}
959 	}
960 
961 	return !sig_ignored(p, sig, force);
962 }
963 
964 /*
965  * Test if P wants to take SIG.  After we've checked all threads with this,
966  * it's equivalent to finding no threads not blocking SIG.  Any threads not
967  * blocking SIG were ruled out because they are not running and already
968  * have pending signals.  Such threads will dequeue from the shared queue
969  * as soon as they're available, so putting the signal on the shared queue
970  * will be equivalent to sending it to one such thread.
971  */
972 static inline bool wants_signal(int sig, struct task_struct *p)
973 {
974 	if (sigismember(&p->blocked, sig))
975 		return false;
976 
977 	if (p->flags & PF_EXITING)
978 		return false;
979 
980 	if (sig == SIGKILL)
981 		return true;
982 
983 	if (task_is_stopped_or_traced(p))
984 		return false;
985 
986 	return task_curr(p) || !signal_pending(p);
987 }
988 
989 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
990 {
991 	struct signal_struct *signal = p->signal;
992 	struct task_struct *t;
993 
994 	/*
995 	 * Now find a thread we can wake up to take the signal off the queue.
996 	 *
997 	 * If the main thread wants the signal, it gets first crack.
998 	 * Probably the least surprising to the average bear.
999 	 */
1000 	if (wants_signal(sig, p))
1001 		t = p;
1002 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1003 		/*
1004 		 * There is just one thread and it does not need to be woken.
1005 		 * It will dequeue unblocked signals before it runs again.
1006 		 */
1007 		return;
1008 	else {
1009 		/*
1010 		 * Otherwise try to find a suitable thread.
1011 		 */
1012 		t = signal->curr_target;
1013 		while (!wants_signal(sig, t)) {
1014 			t = next_thread(t);
1015 			if (t == signal->curr_target)
1016 				/*
1017 				 * No thread needs to be woken.
1018 				 * Any eligible threads will see
1019 				 * the signal in the queue soon.
1020 				 */
1021 				return;
1022 		}
1023 		signal->curr_target = t;
1024 	}
1025 
1026 	/*
1027 	 * Found a killable thread.  If the signal will be fatal,
1028 	 * then start taking the whole group down immediately.
1029 	 */
1030 	if (sig_fatal(p, sig) &&
1031 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1032 	    !sigismember(&t->real_blocked, sig) &&
1033 	    (sig == SIGKILL || !p->ptrace)) {
1034 		/*
1035 		 * This signal will be fatal to the whole group.
1036 		 */
1037 		if (!sig_kernel_coredump(sig)) {
1038 			/*
1039 			 * Start a group exit and wake everybody up.
1040 			 * This way we don't have other threads
1041 			 * running and doing things after a slower
1042 			 * thread has the fatal signal pending.
1043 			 */
1044 			signal->flags = SIGNAL_GROUP_EXIT;
1045 			signal->group_exit_code = sig;
1046 			signal->group_stop_count = 0;
1047 			t = p;
1048 			do {
1049 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1050 				sigaddset(&t->pending.signal, SIGKILL);
1051 				signal_wake_up(t, 1);
1052 			} while_each_thread(p, t);
1053 			return;
1054 		}
1055 	}
1056 
1057 	/*
1058 	 * The signal is already in the shared-pending queue.
1059 	 * Tell the chosen thread to wake up and dequeue it.
1060 	 */
1061 	signal_wake_up(t, sig == SIGKILL);
1062 	return;
1063 }
1064 
1065 static inline bool legacy_queue(struct sigpending *signals, int sig)
1066 {
1067 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1068 }
1069 
1070 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1071 			enum pid_type type, bool force)
1072 {
1073 	struct sigpending *pending;
1074 	struct sigqueue *q;
1075 	int override_rlimit;
1076 	int ret = 0, result;
1077 
1078 	assert_spin_locked(&t->sighand->siglock);
1079 
1080 	result = TRACE_SIGNAL_IGNORED;
1081 	if (!prepare_signal(sig, t, force))
1082 		goto ret;
1083 
1084 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1085 	/*
1086 	 * Short-circuit ignored signals and support queuing
1087 	 * exactly one non-rt signal, so that we can get more
1088 	 * detailed information about the cause of the signal.
1089 	 */
1090 	result = TRACE_SIGNAL_ALREADY_PENDING;
1091 	if (legacy_queue(pending, sig))
1092 		goto ret;
1093 
1094 	result = TRACE_SIGNAL_DELIVERED;
1095 	/*
1096 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1097 	 */
1098 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1099 		goto out_set;
1100 
1101 	/*
1102 	 * Real-time signals must be queued if sent by sigqueue, or
1103 	 * some other real-time mechanism.  It is implementation
1104 	 * defined whether kill() does so.  We attempt to do so, on
1105 	 * the principle of least surprise, but since kill is not
1106 	 * allowed to fail with EAGAIN when low on memory we just
1107 	 * make sure at least one signal gets delivered and don't
1108 	 * pass on the info struct.
1109 	 */
1110 	if (sig < SIGRTMIN)
1111 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1112 	else
1113 		override_rlimit = 0;
1114 
1115 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1116 	if (q) {
1117 		list_add_tail(&q->list, &pending->list);
1118 		switch ((unsigned long) info) {
1119 		case (unsigned long) SEND_SIG_NOINFO:
1120 			clear_siginfo(&q->info);
1121 			q->info.si_signo = sig;
1122 			q->info.si_errno = 0;
1123 			q->info.si_code = SI_USER;
1124 			q->info.si_pid = task_tgid_nr_ns(current,
1125 							task_active_pid_ns(t));
1126 			rcu_read_lock();
1127 			q->info.si_uid =
1128 				from_kuid_munged(task_cred_xxx(t, user_ns),
1129 						 current_uid());
1130 			rcu_read_unlock();
1131 			break;
1132 		case (unsigned long) SEND_SIG_PRIV:
1133 			clear_siginfo(&q->info);
1134 			q->info.si_signo = sig;
1135 			q->info.si_errno = 0;
1136 			q->info.si_code = SI_KERNEL;
1137 			q->info.si_pid = 0;
1138 			q->info.si_uid = 0;
1139 			break;
1140 		default:
1141 			copy_siginfo(&q->info, info);
1142 			break;
1143 		}
1144 	} else if (!is_si_special(info) &&
1145 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1146 		/*
1147 		 * Queue overflow, abort.  We may abort if the
1148 		 * signal was rt and sent by user using something
1149 		 * other than kill().
1150 		 */
1151 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1152 		ret = -EAGAIN;
1153 		goto ret;
1154 	} else {
1155 		/*
1156 		 * This is a silent loss of information.  We still
1157 		 * send the signal, but the *info bits are lost.
1158 		 */
1159 		result = TRACE_SIGNAL_LOSE_INFO;
1160 	}
1161 
1162 out_set:
1163 	signalfd_notify(t, sig);
1164 	sigaddset(&pending->signal, sig);
1165 
1166 	/* Let multiprocess signals appear after on-going forks */
1167 	if (type > PIDTYPE_TGID) {
1168 		struct multiprocess_signals *delayed;
1169 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1170 			sigset_t *signal = &delayed->signal;
1171 			/* Can't queue both a stop and a continue signal */
1172 			if (sig == SIGCONT)
1173 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1174 			else if (sig_kernel_stop(sig))
1175 				sigdelset(signal, SIGCONT);
1176 			sigaddset(signal, sig);
1177 		}
1178 	}
1179 
1180 	complete_signal(sig, t, type);
1181 ret:
1182 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1183 	return ret;
1184 }
1185 
1186 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1187 {
1188 	bool ret = false;
1189 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1190 	case SIL_KILL:
1191 	case SIL_CHLD:
1192 	case SIL_RT:
1193 		ret = true;
1194 		break;
1195 	case SIL_TIMER:
1196 	case SIL_POLL:
1197 	case SIL_FAULT:
1198 	case SIL_FAULT_MCEERR:
1199 	case SIL_FAULT_BNDERR:
1200 	case SIL_FAULT_PKUERR:
1201 	case SIL_SYS:
1202 		ret = false;
1203 		break;
1204 	}
1205 	return ret;
1206 }
1207 
1208 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1209 			enum pid_type type)
1210 {
1211 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1212 	bool force = false;
1213 
1214 	if (info == SEND_SIG_NOINFO) {
1215 		/* Force if sent from an ancestor pid namespace */
1216 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1217 	} else if (info == SEND_SIG_PRIV) {
1218 		/* Don't ignore kernel generated signals */
1219 		force = true;
1220 	} else if (has_si_pid_and_uid(info)) {
1221 		/* SIGKILL and SIGSTOP is special or has ids */
1222 		struct user_namespace *t_user_ns;
1223 
1224 		rcu_read_lock();
1225 		t_user_ns = task_cred_xxx(t, user_ns);
1226 		if (current_user_ns() != t_user_ns) {
1227 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1228 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1229 		}
1230 		rcu_read_unlock();
1231 
1232 		/* A kernel generated signal? */
1233 		force = (info->si_code == SI_KERNEL);
1234 
1235 		/* From an ancestor pid namespace? */
1236 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1237 			info->si_pid = 0;
1238 			force = true;
1239 		}
1240 	}
1241 	return __send_signal(sig, info, t, type, force);
1242 }
1243 
1244 static void print_fatal_signal(int signr)
1245 {
1246 	struct pt_regs *regs = signal_pt_regs();
1247 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1248 
1249 #if defined(__i386__) && !defined(__arch_um__)
1250 	pr_info("code at %08lx: ", regs->ip);
1251 	{
1252 		int i;
1253 		for (i = 0; i < 16; i++) {
1254 			unsigned char insn;
1255 
1256 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1257 				break;
1258 			pr_cont("%02x ", insn);
1259 		}
1260 	}
1261 	pr_cont("\n");
1262 #endif
1263 	preempt_disable();
1264 	show_regs(regs);
1265 	preempt_enable();
1266 }
1267 
1268 static int __init setup_print_fatal_signals(char *str)
1269 {
1270 	get_option (&str, &print_fatal_signals);
1271 
1272 	return 1;
1273 }
1274 
1275 __setup("print-fatal-signals=", setup_print_fatal_signals);
1276 
1277 int
1278 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1279 {
1280 	return send_signal(sig, info, p, PIDTYPE_TGID);
1281 }
1282 
1283 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1284 			enum pid_type type)
1285 {
1286 	unsigned long flags;
1287 	int ret = -ESRCH;
1288 
1289 	if (lock_task_sighand(p, &flags)) {
1290 		ret = send_signal(sig, info, p, type);
1291 		unlock_task_sighand(p, &flags);
1292 	}
1293 
1294 	return ret;
1295 }
1296 
1297 /*
1298  * Force a signal that the process can't ignore: if necessary
1299  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1300  *
1301  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1302  * since we do not want to have a signal handler that was blocked
1303  * be invoked when user space had explicitly blocked it.
1304  *
1305  * We don't want to have recursive SIGSEGV's etc, for example,
1306  * that is why we also clear SIGNAL_UNKILLABLE.
1307  */
1308 static int
1309 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1310 {
1311 	unsigned long int flags;
1312 	int ret, blocked, ignored;
1313 	struct k_sigaction *action;
1314 	int sig = info->si_signo;
1315 
1316 	spin_lock_irqsave(&t->sighand->siglock, flags);
1317 	action = &t->sighand->action[sig-1];
1318 	ignored = action->sa.sa_handler == SIG_IGN;
1319 	blocked = sigismember(&t->blocked, sig);
1320 	if (blocked || ignored) {
1321 		action->sa.sa_handler = SIG_DFL;
1322 		if (blocked) {
1323 			sigdelset(&t->blocked, sig);
1324 			recalc_sigpending_and_wake(t);
1325 		}
1326 	}
1327 	/*
1328 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1329 	 * debugging to leave init killable.
1330 	 */
1331 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1332 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1333 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1334 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1335 
1336 	return ret;
1337 }
1338 
1339 int force_sig_info(struct kernel_siginfo *info)
1340 {
1341 	return force_sig_info_to_task(info, current);
1342 }
1343 
1344 /*
1345  * Nuke all other threads in the group.
1346  */
1347 int zap_other_threads(struct task_struct *p)
1348 {
1349 	struct task_struct *t = p;
1350 	int count = 0;
1351 
1352 	p->signal->group_stop_count = 0;
1353 
1354 	while_each_thread(p, t) {
1355 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1356 		count++;
1357 
1358 		/* Don't bother with already dead threads */
1359 		if (t->exit_state)
1360 			continue;
1361 		sigaddset(&t->pending.signal, SIGKILL);
1362 		signal_wake_up(t, 1);
1363 	}
1364 
1365 	return count;
1366 }
1367 
1368 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1369 					   unsigned long *flags)
1370 {
1371 	struct sighand_struct *sighand;
1372 
1373 	rcu_read_lock();
1374 	for (;;) {
1375 		sighand = rcu_dereference(tsk->sighand);
1376 		if (unlikely(sighand == NULL))
1377 			break;
1378 
1379 		/*
1380 		 * This sighand can be already freed and even reused, but
1381 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1382 		 * initializes ->siglock: this slab can't go away, it has
1383 		 * the same object type, ->siglock can't be reinitialized.
1384 		 *
1385 		 * We need to ensure that tsk->sighand is still the same
1386 		 * after we take the lock, we can race with de_thread() or
1387 		 * __exit_signal(). In the latter case the next iteration
1388 		 * must see ->sighand == NULL.
1389 		 */
1390 		spin_lock_irqsave(&sighand->siglock, *flags);
1391 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1392 			break;
1393 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1394 	}
1395 	rcu_read_unlock();
1396 
1397 	return sighand;
1398 }
1399 
1400 /*
1401  * send signal info to all the members of a group
1402  */
1403 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1404 			struct task_struct *p, enum pid_type type)
1405 {
1406 	int ret;
1407 
1408 	rcu_read_lock();
1409 	ret = check_kill_permission(sig, info, p);
1410 	rcu_read_unlock();
1411 
1412 	if (!ret && sig)
1413 		ret = do_send_sig_info(sig, info, p, type);
1414 
1415 	return ret;
1416 }
1417 
1418 /*
1419  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1420  * control characters do (^C, ^Z etc)
1421  * - the caller must hold at least a readlock on tasklist_lock
1422  */
1423 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1424 {
1425 	struct task_struct *p = NULL;
1426 	int retval, success;
1427 
1428 	success = 0;
1429 	retval = -ESRCH;
1430 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1431 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1432 		success |= !err;
1433 		retval = err;
1434 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1435 	return success ? 0 : retval;
1436 }
1437 
1438 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1439 {
1440 	int error = -ESRCH;
1441 	struct task_struct *p;
1442 
1443 	for (;;) {
1444 		rcu_read_lock();
1445 		p = pid_task(pid, PIDTYPE_PID);
1446 		if (p)
1447 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1448 		rcu_read_unlock();
1449 		if (likely(!p || error != -ESRCH))
1450 			return error;
1451 
1452 		/*
1453 		 * The task was unhashed in between, try again.  If it
1454 		 * is dead, pid_task() will return NULL, if we race with
1455 		 * de_thread() it will find the new leader.
1456 		 */
1457 	}
1458 }
1459 
1460 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1461 {
1462 	int error;
1463 	rcu_read_lock();
1464 	error = kill_pid_info(sig, info, find_vpid(pid));
1465 	rcu_read_unlock();
1466 	return error;
1467 }
1468 
1469 static inline bool kill_as_cred_perm(const struct cred *cred,
1470 				     struct task_struct *target)
1471 {
1472 	const struct cred *pcred = __task_cred(target);
1473 
1474 	return uid_eq(cred->euid, pcred->suid) ||
1475 	       uid_eq(cred->euid, pcred->uid) ||
1476 	       uid_eq(cred->uid, pcred->suid) ||
1477 	       uid_eq(cred->uid, pcred->uid);
1478 }
1479 
1480 /*
1481  * The usb asyncio usage of siginfo is wrong.  The glibc support
1482  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1483  * AKA after the generic fields:
1484  *	kernel_pid_t	si_pid;
1485  *	kernel_uid32_t	si_uid;
1486  *	sigval_t	si_value;
1487  *
1488  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1489  * after the generic fields is:
1490  *	void __user 	*si_addr;
1491  *
1492  * This is a practical problem when there is a 64bit big endian kernel
1493  * and a 32bit userspace.  As the 32bit address will encoded in the low
1494  * 32bits of the pointer.  Those low 32bits will be stored at higher
1495  * address than appear in a 32 bit pointer.  So userspace will not
1496  * see the address it was expecting for it's completions.
1497  *
1498  * There is nothing in the encoding that can allow
1499  * copy_siginfo_to_user32 to detect this confusion of formats, so
1500  * handle this by requiring the caller of kill_pid_usb_asyncio to
1501  * notice when this situration takes place and to store the 32bit
1502  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1503  * parameter.
1504  */
1505 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1506 			 struct pid *pid, const struct cred *cred)
1507 {
1508 	struct kernel_siginfo info;
1509 	struct task_struct *p;
1510 	unsigned long flags;
1511 	int ret = -EINVAL;
1512 
1513 	if (!valid_signal(sig))
1514 		return ret;
1515 
1516 	clear_siginfo(&info);
1517 	info.si_signo = sig;
1518 	info.si_errno = errno;
1519 	info.si_code = SI_ASYNCIO;
1520 	*((sigval_t *)&info.si_pid) = addr;
1521 
1522 	rcu_read_lock();
1523 	p = pid_task(pid, PIDTYPE_PID);
1524 	if (!p) {
1525 		ret = -ESRCH;
1526 		goto out_unlock;
1527 	}
1528 	if (!kill_as_cred_perm(cred, p)) {
1529 		ret = -EPERM;
1530 		goto out_unlock;
1531 	}
1532 	ret = security_task_kill(p, &info, sig, cred);
1533 	if (ret)
1534 		goto out_unlock;
1535 
1536 	if (sig) {
1537 		if (lock_task_sighand(p, &flags)) {
1538 			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1539 			unlock_task_sighand(p, &flags);
1540 		} else
1541 			ret = -ESRCH;
1542 	}
1543 out_unlock:
1544 	rcu_read_unlock();
1545 	return ret;
1546 }
1547 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1548 
1549 /*
1550  * kill_something_info() interprets pid in interesting ways just like kill(2).
1551  *
1552  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1553  * is probably wrong.  Should make it like BSD or SYSV.
1554  */
1555 
1556 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1557 {
1558 	int ret;
1559 
1560 	if (pid > 0)
1561 		return kill_proc_info(sig, info, pid);
1562 
1563 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1564 	if (pid == INT_MIN)
1565 		return -ESRCH;
1566 
1567 	read_lock(&tasklist_lock);
1568 	if (pid != -1) {
1569 		ret = __kill_pgrp_info(sig, info,
1570 				pid ? find_vpid(-pid) : task_pgrp(current));
1571 	} else {
1572 		int retval = 0, count = 0;
1573 		struct task_struct * p;
1574 
1575 		for_each_process(p) {
1576 			if (task_pid_vnr(p) > 1 &&
1577 					!same_thread_group(p, current)) {
1578 				int err = group_send_sig_info(sig, info, p,
1579 							      PIDTYPE_MAX);
1580 				++count;
1581 				if (err != -EPERM)
1582 					retval = err;
1583 			}
1584 		}
1585 		ret = count ? retval : -ESRCH;
1586 	}
1587 	read_unlock(&tasklist_lock);
1588 
1589 	return ret;
1590 }
1591 
1592 /*
1593  * These are for backward compatibility with the rest of the kernel source.
1594  */
1595 
1596 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1597 {
1598 	/*
1599 	 * Make sure legacy kernel users don't send in bad values
1600 	 * (normal paths check this in check_kill_permission).
1601 	 */
1602 	if (!valid_signal(sig))
1603 		return -EINVAL;
1604 
1605 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1606 }
1607 EXPORT_SYMBOL(send_sig_info);
1608 
1609 #define __si_special(priv) \
1610 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1611 
1612 int
1613 send_sig(int sig, struct task_struct *p, int priv)
1614 {
1615 	return send_sig_info(sig, __si_special(priv), p);
1616 }
1617 EXPORT_SYMBOL(send_sig);
1618 
1619 void force_sig(int sig)
1620 {
1621 	struct kernel_siginfo info;
1622 
1623 	clear_siginfo(&info);
1624 	info.si_signo = sig;
1625 	info.si_errno = 0;
1626 	info.si_code = SI_KERNEL;
1627 	info.si_pid = 0;
1628 	info.si_uid = 0;
1629 	force_sig_info(&info);
1630 }
1631 EXPORT_SYMBOL(force_sig);
1632 
1633 /*
1634  * When things go south during signal handling, we
1635  * will force a SIGSEGV. And if the signal that caused
1636  * the problem was already a SIGSEGV, we'll want to
1637  * make sure we don't even try to deliver the signal..
1638  */
1639 void force_sigsegv(int sig)
1640 {
1641 	struct task_struct *p = current;
1642 
1643 	if (sig == SIGSEGV) {
1644 		unsigned long flags;
1645 		spin_lock_irqsave(&p->sighand->siglock, flags);
1646 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1647 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1648 	}
1649 	force_sig(SIGSEGV);
1650 }
1651 
1652 int force_sig_fault_to_task(int sig, int code, void __user *addr
1653 	___ARCH_SI_TRAPNO(int trapno)
1654 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1655 	, struct task_struct *t)
1656 {
1657 	struct kernel_siginfo info;
1658 
1659 	clear_siginfo(&info);
1660 	info.si_signo = sig;
1661 	info.si_errno = 0;
1662 	info.si_code  = code;
1663 	info.si_addr  = addr;
1664 #ifdef __ARCH_SI_TRAPNO
1665 	info.si_trapno = trapno;
1666 #endif
1667 #ifdef __ia64__
1668 	info.si_imm = imm;
1669 	info.si_flags = flags;
1670 	info.si_isr = isr;
1671 #endif
1672 	return force_sig_info_to_task(&info, t);
1673 }
1674 
1675 int force_sig_fault(int sig, int code, void __user *addr
1676 	___ARCH_SI_TRAPNO(int trapno)
1677 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1678 {
1679 	return force_sig_fault_to_task(sig, code, addr
1680 				       ___ARCH_SI_TRAPNO(trapno)
1681 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1682 }
1683 
1684 int send_sig_fault(int sig, int code, void __user *addr
1685 	___ARCH_SI_TRAPNO(int trapno)
1686 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1687 	, struct task_struct *t)
1688 {
1689 	struct kernel_siginfo info;
1690 
1691 	clear_siginfo(&info);
1692 	info.si_signo = sig;
1693 	info.si_errno = 0;
1694 	info.si_code  = code;
1695 	info.si_addr  = addr;
1696 #ifdef __ARCH_SI_TRAPNO
1697 	info.si_trapno = trapno;
1698 #endif
1699 #ifdef __ia64__
1700 	info.si_imm = imm;
1701 	info.si_flags = flags;
1702 	info.si_isr = isr;
1703 #endif
1704 	return send_sig_info(info.si_signo, &info, t);
1705 }
1706 
1707 int force_sig_mceerr(int code, void __user *addr, short lsb)
1708 {
1709 	struct kernel_siginfo info;
1710 
1711 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1712 	clear_siginfo(&info);
1713 	info.si_signo = SIGBUS;
1714 	info.si_errno = 0;
1715 	info.si_code = code;
1716 	info.si_addr = addr;
1717 	info.si_addr_lsb = lsb;
1718 	return force_sig_info(&info);
1719 }
1720 
1721 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1722 {
1723 	struct kernel_siginfo info;
1724 
1725 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1726 	clear_siginfo(&info);
1727 	info.si_signo = SIGBUS;
1728 	info.si_errno = 0;
1729 	info.si_code = code;
1730 	info.si_addr = addr;
1731 	info.si_addr_lsb = lsb;
1732 	return send_sig_info(info.si_signo, &info, t);
1733 }
1734 EXPORT_SYMBOL(send_sig_mceerr);
1735 
1736 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1737 {
1738 	struct kernel_siginfo info;
1739 
1740 	clear_siginfo(&info);
1741 	info.si_signo = SIGSEGV;
1742 	info.si_errno = 0;
1743 	info.si_code  = SEGV_BNDERR;
1744 	info.si_addr  = addr;
1745 	info.si_lower = lower;
1746 	info.si_upper = upper;
1747 	return force_sig_info(&info);
1748 }
1749 
1750 #ifdef SEGV_PKUERR
1751 int force_sig_pkuerr(void __user *addr, u32 pkey)
1752 {
1753 	struct kernel_siginfo info;
1754 
1755 	clear_siginfo(&info);
1756 	info.si_signo = SIGSEGV;
1757 	info.si_errno = 0;
1758 	info.si_code  = SEGV_PKUERR;
1759 	info.si_addr  = addr;
1760 	info.si_pkey  = pkey;
1761 	return force_sig_info(&info);
1762 }
1763 #endif
1764 
1765 /* For the crazy architectures that include trap information in
1766  * the errno field, instead of an actual errno value.
1767  */
1768 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1769 {
1770 	struct kernel_siginfo info;
1771 
1772 	clear_siginfo(&info);
1773 	info.si_signo = SIGTRAP;
1774 	info.si_errno = errno;
1775 	info.si_code  = TRAP_HWBKPT;
1776 	info.si_addr  = addr;
1777 	return force_sig_info(&info);
1778 }
1779 
1780 int kill_pgrp(struct pid *pid, int sig, int priv)
1781 {
1782 	int ret;
1783 
1784 	read_lock(&tasklist_lock);
1785 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1786 	read_unlock(&tasklist_lock);
1787 
1788 	return ret;
1789 }
1790 EXPORT_SYMBOL(kill_pgrp);
1791 
1792 int kill_pid(struct pid *pid, int sig, int priv)
1793 {
1794 	return kill_pid_info(sig, __si_special(priv), pid);
1795 }
1796 EXPORT_SYMBOL(kill_pid);
1797 
1798 /*
1799  * These functions support sending signals using preallocated sigqueue
1800  * structures.  This is needed "because realtime applications cannot
1801  * afford to lose notifications of asynchronous events, like timer
1802  * expirations or I/O completions".  In the case of POSIX Timers
1803  * we allocate the sigqueue structure from the timer_create.  If this
1804  * allocation fails we are able to report the failure to the application
1805  * with an EAGAIN error.
1806  */
1807 struct sigqueue *sigqueue_alloc(void)
1808 {
1809 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1810 
1811 	if (q)
1812 		q->flags |= SIGQUEUE_PREALLOC;
1813 
1814 	return q;
1815 }
1816 
1817 void sigqueue_free(struct sigqueue *q)
1818 {
1819 	unsigned long flags;
1820 	spinlock_t *lock = &current->sighand->siglock;
1821 
1822 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1823 	/*
1824 	 * We must hold ->siglock while testing q->list
1825 	 * to serialize with collect_signal() or with
1826 	 * __exit_signal()->flush_sigqueue().
1827 	 */
1828 	spin_lock_irqsave(lock, flags);
1829 	q->flags &= ~SIGQUEUE_PREALLOC;
1830 	/*
1831 	 * If it is queued it will be freed when dequeued,
1832 	 * like the "regular" sigqueue.
1833 	 */
1834 	if (!list_empty(&q->list))
1835 		q = NULL;
1836 	spin_unlock_irqrestore(lock, flags);
1837 
1838 	if (q)
1839 		__sigqueue_free(q);
1840 }
1841 
1842 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1843 {
1844 	int sig = q->info.si_signo;
1845 	struct sigpending *pending;
1846 	struct task_struct *t;
1847 	unsigned long flags;
1848 	int ret, result;
1849 
1850 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1851 
1852 	ret = -1;
1853 	rcu_read_lock();
1854 	t = pid_task(pid, type);
1855 	if (!t || !likely(lock_task_sighand(t, &flags)))
1856 		goto ret;
1857 
1858 	ret = 1; /* the signal is ignored */
1859 	result = TRACE_SIGNAL_IGNORED;
1860 	if (!prepare_signal(sig, t, false))
1861 		goto out;
1862 
1863 	ret = 0;
1864 	if (unlikely(!list_empty(&q->list))) {
1865 		/*
1866 		 * If an SI_TIMER entry is already queue just increment
1867 		 * the overrun count.
1868 		 */
1869 		BUG_ON(q->info.si_code != SI_TIMER);
1870 		q->info.si_overrun++;
1871 		result = TRACE_SIGNAL_ALREADY_PENDING;
1872 		goto out;
1873 	}
1874 	q->info.si_overrun = 0;
1875 
1876 	signalfd_notify(t, sig);
1877 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1878 	list_add_tail(&q->list, &pending->list);
1879 	sigaddset(&pending->signal, sig);
1880 	complete_signal(sig, t, type);
1881 	result = TRACE_SIGNAL_DELIVERED;
1882 out:
1883 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1884 	unlock_task_sighand(t, &flags);
1885 ret:
1886 	rcu_read_unlock();
1887 	return ret;
1888 }
1889 
1890 static void do_notify_pidfd(struct task_struct *task)
1891 {
1892 	struct pid *pid;
1893 
1894 	WARN_ON(task->exit_state == 0);
1895 	pid = task_pid(task);
1896 	wake_up_all(&pid->wait_pidfd);
1897 }
1898 
1899 /*
1900  * Let a parent know about the death of a child.
1901  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1902  *
1903  * Returns true if our parent ignored us and so we've switched to
1904  * self-reaping.
1905  */
1906 bool do_notify_parent(struct task_struct *tsk, int sig)
1907 {
1908 	struct kernel_siginfo info;
1909 	unsigned long flags;
1910 	struct sighand_struct *psig;
1911 	bool autoreap = false;
1912 	u64 utime, stime;
1913 
1914 	BUG_ON(sig == -1);
1915 
1916  	/* do_notify_parent_cldstop should have been called instead.  */
1917  	BUG_ON(task_is_stopped_or_traced(tsk));
1918 
1919 	BUG_ON(!tsk->ptrace &&
1920 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1921 
1922 	/* Wake up all pidfd waiters */
1923 	do_notify_pidfd(tsk);
1924 
1925 	if (sig != SIGCHLD) {
1926 		/*
1927 		 * This is only possible if parent == real_parent.
1928 		 * Check if it has changed security domain.
1929 		 */
1930 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1931 			sig = SIGCHLD;
1932 	}
1933 
1934 	clear_siginfo(&info);
1935 	info.si_signo = sig;
1936 	info.si_errno = 0;
1937 	/*
1938 	 * We are under tasklist_lock here so our parent is tied to
1939 	 * us and cannot change.
1940 	 *
1941 	 * task_active_pid_ns will always return the same pid namespace
1942 	 * until a task passes through release_task.
1943 	 *
1944 	 * write_lock() currently calls preempt_disable() which is the
1945 	 * same as rcu_read_lock(), but according to Oleg, this is not
1946 	 * correct to rely on this
1947 	 */
1948 	rcu_read_lock();
1949 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1950 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1951 				       task_uid(tsk));
1952 	rcu_read_unlock();
1953 
1954 	task_cputime(tsk, &utime, &stime);
1955 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1956 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1957 
1958 	info.si_status = tsk->exit_code & 0x7f;
1959 	if (tsk->exit_code & 0x80)
1960 		info.si_code = CLD_DUMPED;
1961 	else if (tsk->exit_code & 0x7f)
1962 		info.si_code = CLD_KILLED;
1963 	else {
1964 		info.si_code = CLD_EXITED;
1965 		info.si_status = tsk->exit_code >> 8;
1966 	}
1967 
1968 	psig = tsk->parent->sighand;
1969 	spin_lock_irqsave(&psig->siglock, flags);
1970 	if (!tsk->ptrace && sig == SIGCHLD &&
1971 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1972 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1973 		/*
1974 		 * We are exiting and our parent doesn't care.  POSIX.1
1975 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1976 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1977 		 * automatically and not left for our parent's wait4 call.
1978 		 * Rather than having the parent do it as a magic kind of
1979 		 * signal handler, we just set this to tell do_exit that we
1980 		 * can be cleaned up without becoming a zombie.  Note that
1981 		 * we still call __wake_up_parent in this case, because a
1982 		 * blocked sys_wait4 might now return -ECHILD.
1983 		 *
1984 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1985 		 * is implementation-defined: we do (if you don't want
1986 		 * it, just use SIG_IGN instead).
1987 		 */
1988 		autoreap = true;
1989 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1990 			sig = 0;
1991 	}
1992 	if (valid_signal(sig) && sig)
1993 		__group_send_sig_info(sig, &info, tsk->parent);
1994 	__wake_up_parent(tsk, tsk->parent);
1995 	spin_unlock_irqrestore(&psig->siglock, flags);
1996 
1997 	return autoreap;
1998 }
1999 
2000 /**
2001  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2002  * @tsk: task reporting the state change
2003  * @for_ptracer: the notification is for ptracer
2004  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2005  *
2006  * Notify @tsk's parent that the stopped/continued state has changed.  If
2007  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2008  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2009  *
2010  * CONTEXT:
2011  * Must be called with tasklist_lock at least read locked.
2012  */
2013 static void do_notify_parent_cldstop(struct task_struct *tsk,
2014 				     bool for_ptracer, int why)
2015 {
2016 	struct kernel_siginfo info;
2017 	unsigned long flags;
2018 	struct task_struct *parent;
2019 	struct sighand_struct *sighand;
2020 	u64 utime, stime;
2021 
2022 	if (for_ptracer) {
2023 		parent = tsk->parent;
2024 	} else {
2025 		tsk = tsk->group_leader;
2026 		parent = tsk->real_parent;
2027 	}
2028 
2029 	clear_siginfo(&info);
2030 	info.si_signo = SIGCHLD;
2031 	info.si_errno = 0;
2032 	/*
2033 	 * see comment in do_notify_parent() about the following 4 lines
2034 	 */
2035 	rcu_read_lock();
2036 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2037 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2038 	rcu_read_unlock();
2039 
2040 	task_cputime(tsk, &utime, &stime);
2041 	info.si_utime = nsec_to_clock_t(utime);
2042 	info.si_stime = nsec_to_clock_t(stime);
2043 
2044  	info.si_code = why;
2045  	switch (why) {
2046  	case CLD_CONTINUED:
2047  		info.si_status = SIGCONT;
2048  		break;
2049  	case CLD_STOPPED:
2050  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2051  		break;
2052  	case CLD_TRAPPED:
2053  		info.si_status = tsk->exit_code & 0x7f;
2054  		break;
2055  	default:
2056  		BUG();
2057  	}
2058 
2059 	sighand = parent->sighand;
2060 	spin_lock_irqsave(&sighand->siglock, flags);
2061 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2062 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2063 		__group_send_sig_info(SIGCHLD, &info, parent);
2064 	/*
2065 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2066 	 */
2067 	__wake_up_parent(tsk, parent);
2068 	spin_unlock_irqrestore(&sighand->siglock, flags);
2069 }
2070 
2071 static inline bool may_ptrace_stop(void)
2072 {
2073 	if (!likely(current->ptrace))
2074 		return false;
2075 	/*
2076 	 * Are we in the middle of do_coredump?
2077 	 * If so and our tracer is also part of the coredump stopping
2078 	 * is a deadlock situation, and pointless because our tracer
2079 	 * is dead so don't allow us to stop.
2080 	 * If SIGKILL was already sent before the caller unlocked
2081 	 * ->siglock we must see ->core_state != NULL. Otherwise it
2082 	 * is safe to enter schedule().
2083 	 *
2084 	 * This is almost outdated, a task with the pending SIGKILL can't
2085 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2086 	 * after SIGKILL was already dequeued.
2087 	 */
2088 	if (unlikely(current->mm->core_state) &&
2089 	    unlikely(current->mm == current->parent->mm))
2090 		return false;
2091 
2092 	return true;
2093 }
2094 
2095 /*
2096  * Return non-zero if there is a SIGKILL that should be waking us up.
2097  * Called with the siglock held.
2098  */
2099 static bool sigkill_pending(struct task_struct *tsk)
2100 {
2101 	return sigismember(&tsk->pending.signal, SIGKILL) ||
2102 	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2103 }
2104 
2105 /*
2106  * This must be called with current->sighand->siglock held.
2107  *
2108  * This should be the path for all ptrace stops.
2109  * We always set current->last_siginfo while stopped here.
2110  * That makes it a way to test a stopped process for
2111  * being ptrace-stopped vs being job-control-stopped.
2112  *
2113  * If we actually decide not to stop at all because the tracer
2114  * is gone, we keep current->exit_code unless clear_code.
2115  */
2116 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2117 	__releases(&current->sighand->siglock)
2118 	__acquires(&current->sighand->siglock)
2119 {
2120 	bool gstop_done = false;
2121 
2122 	if (arch_ptrace_stop_needed(exit_code, info)) {
2123 		/*
2124 		 * The arch code has something special to do before a
2125 		 * ptrace stop.  This is allowed to block, e.g. for faults
2126 		 * on user stack pages.  We can't keep the siglock while
2127 		 * calling arch_ptrace_stop, so we must release it now.
2128 		 * To preserve proper semantics, we must do this before
2129 		 * any signal bookkeeping like checking group_stop_count.
2130 		 * Meanwhile, a SIGKILL could come in before we retake the
2131 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2132 		 * So after regaining the lock, we must check for SIGKILL.
2133 		 */
2134 		spin_unlock_irq(&current->sighand->siglock);
2135 		arch_ptrace_stop(exit_code, info);
2136 		spin_lock_irq(&current->sighand->siglock);
2137 		if (sigkill_pending(current))
2138 			return;
2139 	}
2140 
2141 	set_special_state(TASK_TRACED);
2142 
2143 	/*
2144 	 * We're committing to trapping.  TRACED should be visible before
2145 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2146 	 * Also, transition to TRACED and updates to ->jobctl should be
2147 	 * atomic with respect to siglock and should be done after the arch
2148 	 * hook as siglock is released and regrabbed across it.
2149 	 *
2150 	 *     TRACER				    TRACEE
2151 	 *
2152 	 *     ptrace_attach()
2153 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2154 	 *     do_wait()
2155 	 *       set_current_state()                smp_wmb();
2156 	 *       ptrace_do_wait()
2157 	 *         wait_task_stopped()
2158 	 *           task_stopped_code()
2159 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2160 	 */
2161 	smp_wmb();
2162 
2163 	current->last_siginfo = info;
2164 	current->exit_code = exit_code;
2165 
2166 	/*
2167 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2168 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2169 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2170 	 * could be clear now.  We act as if SIGCONT is received after
2171 	 * TASK_TRACED is entered - ignore it.
2172 	 */
2173 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2174 		gstop_done = task_participate_group_stop(current);
2175 
2176 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2177 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2178 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2179 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2180 
2181 	/* entering a trap, clear TRAPPING */
2182 	task_clear_jobctl_trapping(current);
2183 
2184 	spin_unlock_irq(&current->sighand->siglock);
2185 	read_lock(&tasklist_lock);
2186 	if (may_ptrace_stop()) {
2187 		/*
2188 		 * Notify parents of the stop.
2189 		 *
2190 		 * While ptraced, there are two parents - the ptracer and
2191 		 * the real_parent of the group_leader.  The ptracer should
2192 		 * know about every stop while the real parent is only
2193 		 * interested in the completion of group stop.  The states
2194 		 * for the two don't interact with each other.  Notify
2195 		 * separately unless they're gonna be duplicates.
2196 		 */
2197 		do_notify_parent_cldstop(current, true, why);
2198 		if (gstop_done && ptrace_reparented(current))
2199 			do_notify_parent_cldstop(current, false, why);
2200 
2201 		/*
2202 		 * Don't want to allow preemption here, because
2203 		 * sys_ptrace() needs this task to be inactive.
2204 		 *
2205 		 * XXX: implement read_unlock_no_resched().
2206 		 */
2207 		preempt_disable();
2208 		read_unlock(&tasklist_lock);
2209 		cgroup_enter_frozen();
2210 		preempt_enable_no_resched();
2211 		freezable_schedule();
2212 		cgroup_leave_frozen(true);
2213 	} else {
2214 		/*
2215 		 * By the time we got the lock, our tracer went away.
2216 		 * Don't drop the lock yet, another tracer may come.
2217 		 *
2218 		 * If @gstop_done, the ptracer went away between group stop
2219 		 * completion and here.  During detach, it would have set
2220 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2221 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2222 		 * the real parent of the group stop completion is enough.
2223 		 */
2224 		if (gstop_done)
2225 			do_notify_parent_cldstop(current, false, why);
2226 
2227 		/* tasklist protects us from ptrace_freeze_traced() */
2228 		__set_current_state(TASK_RUNNING);
2229 		if (clear_code)
2230 			current->exit_code = 0;
2231 		read_unlock(&tasklist_lock);
2232 	}
2233 
2234 	/*
2235 	 * We are back.  Now reacquire the siglock before touching
2236 	 * last_siginfo, so that we are sure to have synchronized with
2237 	 * any signal-sending on another CPU that wants to examine it.
2238 	 */
2239 	spin_lock_irq(&current->sighand->siglock);
2240 	current->last_siginfo = NULL;
2241 
2242 	/* LISTENING can be set only during STOP traps, clear it */
2243 	current->jobctl &= ~JOBCTL_LISTENING;
2244 
2245 	/*
2246 	 * Queued signals ignored us while we were stopped for tracing.
2247 	 * So check for any that we should take before resuming user mode.
2248 	 * This sets TIF_SIGPENDING, but never clears it.
2249 	 */
2250 	recalc_sigpending_tsk(current);
2251 }
2252 
2253 static void ptrace_do_notify(int signr, int exit_code, int why)
2254 {
2255 	kernel_siginfo_t info;
2256 
2257 	clear_siginfo(&info);
2258 	info.si_signo = signr;
2259 	info.si_code = exit_code;
2260 	info.si_pid = task_pid_vnr(current);
2261 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2262 
2263 	/* Let the debugger run.  */
2264 	ptrace_stop(exit_code, why, 1, &info);
2265 }
2266 
2267 void ptrace_notify(int exit_code)
2268 {
2269 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2270 	if (unlikely(current->task_works))
2271 		task_work_run();
2272 
2273 	spin_lock_irq(&current->sighand->siglock);
2274 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2275 	spin_unlock_irq(&current->sighand->siglock);
2276 }
2277 
2278 /**
2279  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2280  * @signr: signr causing group stop if initiating
2281  *
2282  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2283  * and participate in it.  If already set, participate in the existing
2284  * group stop.  If participated in a group stop (and thus slept), %true is
2285  * returned with siglock released.
2286  *
2287  * If ptraced, this function doesn't handle stop itself.  Instead,
2288  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2289  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2290  * places afterwards.
2291  *
2292  * CONTEXT:
2293  * Must be called with @current->sighand->siglock held, which is released
2294  * on %true return.
2295  *
2296  * RETURNS:
2297  * %false if group stop is already cancelled or ptrace trap is scheduled.
2298  * %true if participated in group stop.
2299  */
2300 static bool do_signal_stop(int signr)
2301 	__releases(&current->sighand->siglock)
2302 {
2303 	struct signal_struct *sig = current->signal;
2304 
2305 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2306 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2307 		struct task_struct *t;
2308 
2309 		/* signr will be recorded in task->jobctl for retries */
2310 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2311 
2312 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2313 		    unlikely(signal_group_exit(sig)))
2314 			return false;
2315 		/*
2316 		 * There is no group stop already in progress.  We must
2317 		 * initiate one now.
2318 		 *
2319 		 * While ptraced, a task may be resumed while group stop is
2320 		 * still in effect and then receive a stop signal and
2321 		 * initiate another group stop.  This deviates from the
2322 		 * usual behavior as two consecutive stop signals can't
2323 		 * cause two group stops when !ptraced.  That is why we
2324 		 * also check !task_is_stopped(t) below.
2325 		 *
2326 		 * The condition can be distinguished by testing whether
2327 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2328 		 * group_exit_code in such case.
2329 		 *
2330 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2331 		 * an intervening stop signal is required to cause two
2332 		 * continued events regardless of ptrace.
2333 		 */
2334 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2335 			sig->group_exit_code = signr;
2336 
2337 		sig->group_stop_count = 0;
2338 
2339 		if (task_set_jobctl_pending(current, signr | gstop))
2340 			sig->group_stop_count++;
2341 
2342 		t = current;
2343 		while_each_thread(current, t) {
2344 			/*
2345 			 * Setting state to TASK_STOPPED for a group
2346 			 * stop is always done with the siglock held,
2347 			 * so this check has no races.
2348 			 */
2349 			if (!task_is_stopped(t) &&
2350 			    task_set_jobctl_pending(t, signr | gstop)) {
2351 				sig->group_stop_count++;
2352 				if (likely(!(t->ptrace & PT_SEIZED)))
2353 					signal_wake_up(t, 0);
2354 				else
2355 					ptrace_trap_notify(t);
2356 			}
2357 		}
2358 	}
2359 
2360 	if (likely(!current->ptrace)) {
2361 		int notify = 0;
2362 
2363 		/*
2364 		 * If there are no other threads in the group, or if there
2365 		 * is a group stop in progress and we are the last to stop,
2366 		 * report to the parent.
2367 		 */
2368 		if (task_participate_group_stop(current))
2369 			notify = CLD_STOPPED;
2370 
2371 		set_special_state(TASK_STOPPED);
2372 		spin_unlock_irq(&current->sighand->siglock);
2373 
2374 		/*
2375 		 * Notify the parent of the group stop completion.  Because
2376 		 * we're not holding either the siglock or tasklist_lock
2377 		 * here, ptracer may attach inbetween; however, this is for
2378 		 * group stop and should always be delivered to the real
2379 		 * parent of the group leader.  The new ptracer will get
2380 		 * its notification when this task transitions into
2381 		 * TASK_TRACED.
2382 		 */
2383 		if (notify) {
2384 			read_lock(&tasklist_lock);
2385 			do_notify_parent_cldstop(current, false, notify);
2386 			read_unlock(&tasklist_lock);
2387 		}
2388 
2389 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2390 		cgroup_enter_frozen();
2391 		freezable_schedule();
2392 		return true;
2393 	} else {
2394 		/*
2395 		 * While ptraced, group stop is handled by STOP trap.
2396 		 * Schedule it and let the caller deal with it.
2397 		 */
2398 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2399 		return false;
2400 	}
2401 }
2402 
2403 /**
2404  * do_jobctl_trap - take care of ptrace jobctl traps
2405  *
2406  * When PT_SEIZED, it's used for both group stop and explicit
2407  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2408  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2409  * the stop signal; otherwise, %SIGTRAP.
2410  *
2411  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2412  * number as exit_code and no siginfo.
2413  *
2414  * CONTEXT:
2415  * Must be called with @current->sighand->siglock held, which may be
2416  * released and re-acquired before returning with intervening sleep.
2417  */
2418 static void do_jobctl_trap(void)
2419 {
2420 	struct signal_struct *signal = current->signal;
2421 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2422 
2423 	if (current->ptrace & PT_SEIZED) {
2424 		if (!signal->group_stop_count &&
2425 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2426 			signr = SIGTRAP;
2427 		WARN_ON_ONCE(!signr);
2428 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2429 				 CLD_STOPPED);
2430 	} else {
2431 		WARN_ON_ONCE(!signr);
2432 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2433 		current->exit_code = 0;
2434 	}
2435 }
2436 
2437 /**
2438  * do_freezer_trap - handle the freezer jobctl trap
2439  *
2440  * Puts the task into frozen state, if only the task is not about to quit.
2441  * In this case it drops JOBCTL_TRAP_FREEZE.
2442  *
2443  * CONTEXT:
2444  * Must be called with @current->sighand->siglock held,
2445  * which is always released before returning.
2446  */
2447 static void do_freezer_trap(void)
2448 	__releases(&current->sighand->siglock)
2449 {
2450 	/*
2451 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2452 	 * let's make another loop to give it a chance to be handled.
2453 	 * In any case, we'll return back.
2454 	 */
2455 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2456 	     JOBCTL_TRAP_FREEZE) {
2457 		spin_unlock_irq(&current->sighand->siglock);
2458 		return;
2459 	}
2460 
2461 	/*
2462 	 * Now we're sure that there is no pending fatal signal and no
2463 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2464 	 * immediately (if there is a non-fatal signal pending), and
2465 	 * put the task into sleep.
2466 	 */
2467 	__set_current_state(TASK_INTERRUPTIBLE);
2468 	clear_thread_flag(TIF_SIGPENDING);
2469 	spin_unlock_irq(&current->sighand->siglock);
2470 	cgroup_enter_frozen();
2471 	freezable_schedule();
2472 }
2473 
2474 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2475 {
2476 	/*
2477 	 * We do not check sig_kernel_stop(signr) but set this marker
2478 	 * unconditionally because we do not know whether debugger will
2479 	 * change signr. This flag has no meaning unless we are going
2480 	 * to stop after return from ptrace_stop(). In this case it will
2481 	 * be checked in do_signal_stop(), we should only stop if it was
2482 	 * not cleared by SIGCONT while we were sleeping. See also the
2483 	 * comment in dequeue_signal().
2484 	 */
2485 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2486 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2487 
2488 	/* We're back.  Did the debugger cancel the sig?  */
2489 	signr = current->exit_code;
2490 	if (signr == 0)
2491 		return signr;
2492 
2493 	current->exit_code = 0;
2494 
2495 	/*
2496 	 * Update the siginfo structure if the signal has
2497 	 * changed.  If the debugger wanted something
2498 	 * specific in the siginfo structure then it should
2499 	 * have updated *info via PTRACE_SETSIGINFO.
2500 	 */
2501 	if (signr != info->si_signo) {
2502 		clear_siginfo(info);
2503 		info->si_signo = signr;
2504 		info->si_errno = 0;
2505 		info->si_code = SI_USER;
2506 		rcu_read_lock();
2507 		info->si_pid = task_pid_vnr(current->parent);
2508 		info->si_uid = from_kuid_munged(current_user_ns(),
2509 						task_uid(current->parent));
2510 		rcu_read_unlock();
2511 	}
2512 
2513 	/* If the (new) signal is now blocked, requeue it.  */
2514 	if (sigismember(&current->blocked, signr)) {
2515 		send_signal(signr, info, current, PIDTYPE_PID);
2516 		signr = 0;
2517 	}
2518 
2519 	return signr;
2520 }
2521 
2522 bool get_signal(struct ksignal *ksig)
2523 {
2524 	struct sighand_struct *sighand = current->sighand;
2525 	struct signal_struct *signal = current->signal;
2526 	int signr;
2527 
2528 	if (unlikely(current->task_works))
2529 		task_work_run();
2530 
2531 	if (unlikely(uprobe_deny_signal()))
2532 		return false;
2533 
2534 	/*
2535 	 * Do this once, we can't return to user-mode if freezing() == T.
2536 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2537 	 * thus do not need another check after return.
2538 	 */
2539 	try_to_freeze();
2540 
2541 relock:
2542 	spin_lock_irq(&sighand->siglock);
2543 	/*
2544 	 * Every stopped thread goes here after wakeup. Check to see if
2545 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2546 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2547 	 */
2548 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2549 		int why;
2550 
2551 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2552 			why = CLD_CONTINUED;
2553 		else
2554 			why = CLD_STOPPED;
2555 
2556 		signal->flags &= ~SIGNAL_CLD_MASK;
2557 
2558 		spin_unlock_irq(&sighand->siglock);
2559 
2560 		/*
2561 		 * Notify the parent that we're continuing.  This event is
2562 		 * always per-process and doesn't make whole lot of sense
2563 		 * for ptracers, who shouldn't consume the state via
2564 		 * wait(2) either, but, for backward compatibility, notify
2565 		 * the ptracer of the group leader too unless it's gonna be
2566 		 * a duplicate.
2567 		 */
2568 		read_lock(&tasklist_lock);
2569 		do_notify_parent_cldstop(current, false, why);
2570 
2571 		if (ptrace_reparented(current->group_leader))
2572 			do_notify_parent_cldstop(current->group_leader,
2573 						true, why);
2574 		read_unlock(&tasklist_lock);
2575 
2576 		goto relock;
2577 	}
2578 
2579 	/* Has this task already been marked for death? */
2580 	if (signal_group_exit(signal)) {
2581 		ksig->info.si_signo = signr = SIGKILL;
2582 		sigdelset(&current->pending.signal, SIGKILL);
2583 		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2584 				&sighand->action[SIGKILL - 1]);
2585 		recalc_sigpending();
2586 		goto fatal;
2587 	}
2588 
2589 	for (;;) {
2590 		struct k_sigaction *ka;
2591 
2592 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2593 		    do_signal_stop(0))
2594 			goto relock;
2595 
2596 		if (unlikely(current->jobctl &
2597 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2598 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2599 				do_jobctl_trap();
2600 				spin_unlock_irq(&sighand->siglock);
2601 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2602 				do_freezer_trap();
2603 
2604 			goto relock;
2605 		}
2606 
2607 		/*
2608 		 * If the task is leaving the frozen state, let's update
2609 		 * cgroup counters and reset the frozen bit.
2610 		 */
2611 		if (unlikely(cgroup_task_frozen(current))) {
2612 			spin_unlock_irq(&sighand->siglock);
2613 			cgroup_leave_frozen(false);
2614 			goto relock;
2615 		}
2616 
2617 		/*
2618 		 * Signals generated by the execution of an instruction
2619 		 * need to be delivered before any other pending signals
2620 		 * so that the instruction pointer in the signal stack
2621 		 * frame points to the faulting instruction.
2622 		 */
2623 		signr = dequeue_synchronous_signal(&ksig->info);
2624 		if (!signr)
2625 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2626 
2627 		if (!signr)
2628 			break; /* will return 0 */
2629 
2630 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2631 			signr = ptrace_signal(signr, &ksig->info);
2632 			if (!signr)
2633 				continue;
2634 		}
2635 
2636 		ka = &sighand->action[signr-1];
2637 
2638 		/* Trace actually delivered signals. */
2639 		trace_signal_deliver(signr, &ksig->info, ka);
2640 
2641 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2642 			continue;
2643 		if (ka->sa.sa_handler != SIG_DFL) {
2644 			/* Run the handler.  */
2645 			ksig->ka = *ka;
2646 
2647 			if (ka->sa.sa_flags & SA_ONESHOT)
2648 				ka->sa.sa_handler = SIG_DFL;
2649 
2650 			break; /* will return non-zero "signr" value */
2651 		}
2652 
2653 		/*
2654 		 * Now we are doing the default action for this signal.
2655 		 */
2656 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2657 			continue;
2658 
2659 		/*
2660 		 * Global init gets no signals it doesn't want.
2661 		 * Container-init gets no signals it doesn't want from same
2662 		 * container.
2663 		 *
2664 		 * Note that if global/container-init sees a sig_kernel_only()
2665 		 * signal here, the signal must have been generated internally
2666 		 * or must have come from an ancestor namespace. In either
2667 		 * case, the signal cannot be dropped.
2668 		 */
2669 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2670 				!sig_kernel_only(signr))
2671 			continue;
2672 
2673 		if (sig_kernel_stop(signr)) {
2674 			/*
2675 			 * The default action is to stop all threads in
2676 			 * the thread group.  The job control signals
2677 			 * do nothing in an orphaned pgrp, but SIGSTOP
2678 			 * always works.  Note that siglock needs to be
2679 			 * dropped during the call to is_orphaned_pgrp()
2680 			 * because of lock ordering with tasklist_lock.
2681 			 * This allows an intervening SIGCONT to be posted.
2682 			 * We need to check for that and bail out if necessary.
2683 			 */
2684 			if (signr != SIGSTOP) {
2685 				spin_unlock_irq(&sighand->siglock);
2686 
2687 				/* signals can be posted during this window */
2688 
2689 				if (is_current_pgrp_orphaned())
2690 					goto relock;
2691 
2692 				spin_lock_irq(&sighand->siglock);
2693 			}
2694 
2695 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2696 				/* It released the siglock.  */
2697 				goto relock;
2698 			}
2699 
2700 			/*
2701 			 * We didn't actually stop, due to a race
2702 			 * with SIGCONT or something like that.
2703 			 */
2704 			continue;
2705 		}
2706 
2707 	fatal:
2708 		spin_unlock_irq(&sighand->siglock);
2709 		if (unlikely(cgroup_task_frozen(current)))
2710 			cgroup_leave_frozen(true);
2711 
2712 		/*
2713 		 * Anything else is fatal, maybe with a core dump.
2714 		 */
2715 		current->flags |= PF_SIGNALED;
2716 
2717 		if (sig_kernel_coredump(signr)) {
2718 			if (print_fatal_signals)
2719 				print_fatal_signal(ksig->info.si_signo);
2720 			proc_coredump_connector(current);
2721 			/*
2722 			 * If it was able to dump core, this kills all
2723 			 * other threads in the group and synchronizes with
2724 			 * their demise.  If we lost the race with another
2725 			 * thread getting here, it set group_exit_code
2726 			 * first and our do_group_exit call below will use
2727 			 * that value and ignore the one we pass it.
2728 			 */
2729 			do_coredump(&ksig->info);
2730 		}
2731 
2732 		/*
2733 		 * Death signals, no core dump.
2734 		 */
2735 		do_group_exit(ksig->info.si_signo);
2736 		/* NOTREACHED */
2737 	}
2738 	spin_unlock_irq(&sighand->siglock);
2739 
2740 	ksig->sig = signr;
2741 	return ksig->sig > 0;
2742 }
2743 
2744 /**
2745  * signal_delivered -
2746  * @ksig:		kernel signal struct
2747  * @stepping:		nonzero if debugger single-step or block-step in use
2748  *
2749  * This function should be called when a signal has successfully been
2750  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2751  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2752  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2753  */
2754 static void signal_delivered(struct ksignal *ksig, int stepping)
2755 {
2756 	sigset_t blocked;
2757 
2758 	/* A signal was successfully delivered, and the
2759 	   saved sigmask was stored on the signal frame,
2760 	   and will be restored by sigreturn.  So we can
2761 	   simply clear the restore sigmask flag.  */
2762 	clear_restore_sigmask();
2763 
2764 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2765 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2766 		sigaddset(&blocked, ksig->sig);
2767 	set_current_blocked(&blocked);
2768 	tracehook_signal_handler(stepping);
2769 }
2770 
2771 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2772 {
2773 	if (failed)
2774 		force_sigsegv(ksig->sig);
2775 	else
2776 		signal_delivered(ksig, stepping);
2777 }
2778 
2779 /*
2780  * It could be that complete_signal() picked us to notify about the
2781  * group-wide signal. Other threads should be notified now to take
2782  * the shared signals in @which since we will not.
2783  */
2784 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2785 {
2786 	sigset_t retarget;
2787 	struct task_struct *t;
2788 
2789 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2790 	if (sigisemptyset(&retarget))
2791 		return;
2792 
2793 	t = tsk;
2794 	while_each_thread(tsk, t) {
2795 		if (t->flags & PF_EXITING)
2796 			continue;
2797 
2798 		if (!has_pending_signals(&retarget, &t->blocked))
2799 			continue;
2800 		/* Remove the signals this thread can handle. */
2801 		sigandsets(&retarget, &retarget, &t->blocked);
2802 
2803 		if (!signal_pending(t))
2804 			signal_wake_up(t, 0);
2805 
2806 		if (sigisemptyset(&retarget))
2807 			break;
2808 	}
2809 }
2810 
2811 void exit_signals(struct task_struct *tsk)
2812 {
2813 	int group_stop = 0;
2814 	sigset_t unblocked;
2815 
2816 	/*
2817 	 * @tsk is about to have PF_EXITING set - lock out users which
2818 	 * expect stable threadgroup.
2819 	 */
2820 	cgroup_threadgroup_change_begin(tsk);
2821 
2822 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2823 		tsk->flags |= PF_EXITING;
2824 		cgroup_threadgroup_change_end(tsk);
2825 		return;
2826 	}
2827 
2828 	spin_lock_irq(&tsk->sighand->siglock);
2829 	/*
2830 	 * From now this task is not visible for group-wide signals,
2831 	 * see wants_signal(), do_signal_stop().
2832 	 */
2833 	tsk->flags |= PF_EXITING;
2834 
2835 	cgroup_threadgroup_change_end(tsk);
2836 
2837 	if (!signal_pending(tsk))
2838 		goto out;
2839 
2840 	unblocked = tsk->blocked;
2841 	signotset(&unblocked);
2842 	retarget_shared_pending(tsk, &unblocked);
2843 
2844 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2845 	    task_participate_group_stop(tsk))
2846 		group_stop = CLD_STOPPED;
2847 out:
2848 	spin_unlock_irq(&tsk->sighand->siglock);
2849 
2850 	/*
2851 	 * If group stop has completed, deliver the notification.  This
2852 	 * should always go to the real parent of the group leader.
2853 	 */
2854 	if (unlikely(group_stop)) {
2855 		read_lock(&tasklist_lock);
2856 		do_notify_parent_cldstop(tsk, false, group_stop);
2857 		read_unlock(&tasklist_lock);
2858 	}
2859 }
2860 
2861 /*
2862  * System call entry points.
2863  */
2864 
2865 /**
2866  *  sys_restart_syscall - restart a system call
2867  */
2868 SYSCALL_DEFINE0(restart_syscall)
2869 {
2870 	struct restart_block *restart = &current->restart_block;
2871 	return restart->fn(restart);
2872 }
2873 
2874 long do_no_restart_syscall(struct restart_block *param)
2875 {
2876 	return -EINTR;
2877 }
2878 
2879 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2880 {
2881 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2882 		sigset_t newblocked;
2883 		/* A set of now blocked but previously unblocked signals. */
2884 		sigandnsets(&newblocked, newset, &current->blocked);
2885 		retarget_shared_pending(tsk, &newblocked);
2886 	}
2887 	tsk->blocked = *newset;
2888 	recalc_sigpending();
2889 }
2890 
2891 /**
2892  * set_current_blocked - change current->blocked mask
2893  * @newset: new mask
2894  *
2895  * It is wrong to change ->blocked directly, this helper should be used
2896  * to ensure the process can't miss a shared signal we are going to block.
2897  */
2898 void set_current_blocked(sigset_t *newset)
2899 {
2900 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2901 	__set_current_blocked(newset);
2902 }
2903 
2904 void __set_current_blocked(const sigset_t *newset)
2905 {
2906 	struct task_struct *tsk = current;
2907 
2908 	/*
2909 	 * In case the signal mask hasn't changed, there is nothing we need
2910 	 * to do. The current->blocked shouldn't be modified by other task.
2911 	 */
2912 	if (sigequalsets(&tsk->blocked, newset))
2913 		return;
2914 
2915 	spin_lock_irq(&tsk->sighand->siglock);
2916 	__set_task_blocked(tsk, newset);
2917 	spin_unlock_irq(&tsk->sighand->siglock);
2918 }
2919 
2920 /*
2921  * This is also useful for kernel threads that want to temporarily
2922  * (or permanently) block certain signals.
2923  *
2924  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2925  * interface happily blocks "unblockable" signals like SIGKILL
2926  * and friends.
2927  */
2928 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2929 {
2930 	struct task_struct *tsk = current;
2931 	sigset_t newset;
2932 
2933 	/* Lockless, only current can change ->blocked, never from irq */
2934 	if (oldset)
2935 		*oldset = tsk->blocked;
2936 
2937 	switch (how) {
2938 	case SIG_BLOCK:
2939 		sigorsets(&newset, &tsk->blocked, set);
2940 		break;
2941 	case SIG_UNBLOCK:
2942 		sigandnsets(&newset, &tsk->blocked, set);
2943 		break;
2944 	case SIG_SETMASK:
2945 		newset = *set;
2946 		break;
2947 	default:
2948 		return -EINVAL;
2949 	}
2950 
2951 	__set_current_blocked(&newset);
2952 	return 0;
2953 }
2954 EXPORT_SYMBOL(sigprocmask);
2955 
2956 /*
2957  * The api helps set app-provided sigmasks.
2958  *
2959  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2960  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2961  *
2962  * Note that it does set_restore_sigmask() in advance, so it must be always
2963  * paired with restore_saved_sigmask_unless() before return from syscall.
2964  */
2965 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2966 {
2967 	sigset_t kmask;
2968 
2969 	if (!umask)
2970 		return 0;
2971 	if (sigsetsize != sizeof(sigset_t))
2972 		return -EINVAL;
2973 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2974 		return -EFAULT;
2975 
2976 	set_restore_sigmask();
2977 	current->saved_sigmask = current->blocked;
2978 	set_current_blocked(&kmask);
2979 
2980 	return 0;
2981 }
2982 
2983 #ifdef CONFIG_COMPAT
2984 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
2985 			    size_t sigsetsize)
2986 {
2987 	sigset_t kmask;
2988 
2989 	if (!umask)
2990 		return 0;
2991 	if (sigsetsize != sizeof(compat_sigset_t))
2992 		return -EINVAL;
2993 	if (get_compat_sigset(&kmask, umask))
2994 		return -EFAULT;
2995 
2996 	set_restore_sigmask();
2997 	current->saved_sigmask = current->blocked;
2998 	set_current_blocked(&kmask);
2999 
3000 	return 0;
3001 }
3002 #endif
3003 
3004 /**
3005  *  sys_rt_sigprocmask - change the list of currently blocked signals
3006  *  @how: whether to add, remove, or set signals
3007  *  @nset: stores pending signals
3008  *  @oset: previous value of signal mask if non-null
3009  *  @sigsetsize: size of sigset_t type
3010  */
3011 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3012 		sigset_t __user *, oset, size_t, sigsetsize)
3013 {
3014 	sigset_t old_set, new_set;
3015 	int error;
3016 
3017 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3018 	if (sigsetsize != sizeof(sigset_t))
3019 		return -EINVAL;
3020 
3021 	old_set = current->blocked;
3022 
3023 	if (nset) {
3024 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3025 			return -EFAULT;
3026 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3027 
3028 		error = sigprocmask(how, &new_set, NULL);
3029 		if (error)
3030 			return error;
3031 	}
3032 
3033 	if (oset) {
3034 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3035 			return -EFAULT;
3036 	}
3037 
3038 	return 0;
3039 }
3040 
3041 #ifdef CONFIG_COMPAT
3042 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3043 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3044 {
3045 	sigset_t old_set = current->blocked;
3046 
3047 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3048 	if (sigsetsize != sizeof(sigset_t))
3049 		return -EINVAL;
3050 
3051 	if (nset) {
3052 		sigset_t new_set;
3053 		int error;
3054 		if (get_compat_sigset(&new_set, nset))
3055 			return -EFAULT;
3056 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3057 
3058 		error = sigprocmask(how, &new_set, NULL);
3059 		if (error)
3060 			return error;
3061 	}
3062 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3063 }
3064 #endif
3065 
3066 static void do_sigpending(sigset_t *set)
3067 {
3068 	spin_lock_irq(&current->sighand->siglock);
3069 	sigorsets(set, &current->pending.signal,
3070 		  &current->signal->shared_pending.signal);
3071 	spin_unlock_irq(&current->sighand->siglock);
3072 
3073 	/* Outside the lock because only this thread touches it.  */
3074 	sigandsets(set, &current->blocked, set);
3075 }
3076 
3077 /**
3078  *  sys_rt_sigpending - examine a pending signal that has been raised
3079  *			while blocked
3080  *  @uset: stores pending signals
3081  *  @sigsetsize: size of sigset_t type or larger
3082  */
3083 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3084 {
3085 	sigset_t set;
3086 
3087 	if (sigsetsize > sizeof(*uset))
3088 		return -EINVAL;
3089 
3090 	do_sigpending(&set);
3091 
3092 	if (copy_to_user(uset, &set, sigsetsize))
3093 		return -EFAULT;
3094 
3095 	return 0;
3096 }
3097 
3098 #ifdef CONFIG_COMPAT
3099 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3100 		compat_size_t, sigsetsize)
3101 {
3102 	sigset_t set;
3103 
3104 	if (sigsetsize > sizeof(*uset))
3105 		return -EINVAL;
3106 
3107 	do_sigpending(&set);
3108 
3109 	return put_compat_sigset(uset, &set, sigsetsize);
3110 }
3111 #endif
3112 
3113 static const struct {
3114 	unsigned char limit, layout;
3115 } sig_sicodes[] = {
3116 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3117 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3118 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3119 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3120 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3121 #if defined(SIGEMT)
3122 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3123 #endif
3124 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3125 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3126 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3127 };
3128 
3129 static bool known_siginfo_layout(unsigned sig, int si_code)
3130 {
3131 	if (si_code == SI_KERNEL)
3132 		return true;
3133 	else if ((si_code > SI_USER)) {
3134 		if (sig_specific_sicodes(sig)) {
3135 			if (si_code <= sig_sicodes[sig].limit)
3136 				return true;
3137 		}
3138 		else if (si_code <= NSIGPOLL)
3139 			return true;
3140 	}
3141 	else if (si_code >= SI_DETHREAD)
3142 		return true;
3143 	else if (si_code == SI_ASYNCNL)
3144 		return true;
3145 	return false;
3146 }
3147 
3148 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3149 {
3150 	enum siginfo_layout layout = SIL_KILL;
3151 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3152 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3153 		    (si_code <= sig_sicodes[sig].limit)) {
3154 			layout = sig_sicodes[sig].layout;
3155 			/* Handle the exceptions */
3156 			if ((sig == SIGBUS) &&
3157 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3158 				layout = SIL_FAULT_MCEERR;
3159 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3160 				layout = SIL_FAULT_BNDERR;
3161 #ifdef SEGV_PKUERR
3162 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3163 				layout = SIL_FAULT_PKUERR;
3164 #endif
3165 		}
3166 		else if (si_code <= NSIGPOLL)
3167 			layout = SIL_POLL;
3168 	} else {
3169 		if (si_code == SI_TIMER)
3170 			layout = SIL_TIMER;
3171 		else if (si_code == SI_SIGIO)
3172 			layout = SIL_POLL;
3173 		else if (si_code < 0)
3174 			layout = SIL_RT;
3175 	}
3176 	return layout;
3177 }
3178 
3179 static inline char __user *si_expansion(const siginfo_t __user *info)
3180 {
3181 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3182 }
3183 
3184 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3185 {
3186 	char __user *expansion = si_expansion(to);
3187 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3188 		return -EFAULT;
3189 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3190 		return -EFAULT;
3191 	return 0;
3192 }
3193 
3194 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3195 				       const siginfo_t __user *from)
3196 {
3197 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3198 		char __user *expansion = si_expansion(from);
3199 		char buf[SI_EXPANSION_SIZE];
3200 		int i;
3201 		/*
3202 		 * An unknown si_code might need more than
3203 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3204 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3205 		 * will return this data to userspace exactly.
3206 		 */
3207 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3208 			return -EFAULT;
3209 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3210 			if (buf[i] != 0)
3211 				return -E2BIG;
3212 		}
3213 	}
3214 	return 0;
3215 }
3216 
3217 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3218 				    const siginfo_t __user *from)
3219 {
3220 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3221 		return -EFAULT;
3222 	to->si_signo = signo;
3223 	return post_copy_siginfo_from_user(to, from);
3224 }
3225 
3226 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3227 {
3228 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3229 		return -EFAULT;
3230 	return post_copy_siginfo_from_user(to, from);
3231 }
3232 
3233 #ifdef CONFIG_COMPAT
3234 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3235 			   const struct kernel_siginfo *from)
3236 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3237 {
3238 	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3239 }
3240 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3241 			     const struct kernel_siginfo *from, bool x32_ABI)
3242 #endif
3243 {
3244 	struct compat_siginfo new;
3245 	memset(&new, 0, sizeof(new));
3246 
3247 	new.si_signo = from->si_signo;
3248 	new.si_errno = from->si_errno;
3249 	new.si_code  = from->si_code;
3250 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3251 	case SIL_KILL:
3252 		new.si_pid = from->si_pid;
3253 		new.si_uid = from->si_uid;
3254 		break;
3255 	case SIL_TIMER:
3256 		new.si_tid     = from->si_tid;
3257 		new.si_overrun = from->si_overrun;
3258 		new.si_int     = from->si_int;
3259 		break;
3260 	case SIL_POLL:
3261 		new.si_band = from->si_band;
3262 		new.si_fd   = from->si_fd;
3263 		break;
3264 	case SIL_FAULT:
3265 		new.si_addr = ptr_to_compat(from->si_addr);
3266 #ifdef __ARCH_SI_TRAPNO
3267 		new.si_trapno = from->si_trapno;
3268 #endif
3269 		break;
3270 	case SIL_FAULT_MCEERR:
3271 		new.si_addr = ptr_to_compat(from->si_addr);
3272 #ifdef __ARCH_SI_TRAPNO
3273 		new.si_trapno = from->si_trapno;
3274 #endif
3275 		new.si_addr_lsb = from->si_addr_lsb;
3276 		break;
3277 	case SIL_FAULT_BNDERR:
3278 		new.si_addr = ptr_to_compat(from->si_addr);
3279 #ifdef __ARCH_SI_TRAPNO
3280 		new.si_trapno = from->si_trapno;
3281 #endif
3282 		new.si_lower = ptr_to_compat(from->si_lower);
3283 		new.si_upper = ptr_to_compat(from->si_upper);
3284 		break;
3285 	case SIL_FAULT_PKUERR:
3286 		new.si_addr = ptr_to_compat(from->si_addr);
3287 #ifdef __ARCH_SI_TRAPNO
3288 		new.si_trapno = from->si_trapno;
3289 #endif
3290 		new.si_pkey = from->si_pkey;
3291 		break;
3292 	case SIL_CHLD:
3293 		new.si_pid    = from->si_pid;
3294 		new.si_uid    = from->si_uid;
3295 		new.si_status = from->si_status;
3296 #ifdef CONFIG_X86_X32_ABI
3297 		if (x32_ABI) {
3298 			new._sifields._sigchld_x32._utime = from->si_utime;
3299 			new._sifields._sigchld_x32._stime = from->si_stime;
3300 		} else
3301 #endif
3302 		{
3303 			new.si_utime = from->si_utime;
3304 			new.si_stime = from->si_stime;
3305 		}
3306 		break;
3307 	case SIL_RT:
3308 		new.si_pid = from->si_pid;
3309 		new.si_uid = from->si_uid;
3310 		new.si_int = from->si_int;
3311 		break;
3312 	case SIL_SYS:
3313 		new.si_call_addr = ptr_to_compat(from->si_call_addr);
3314 		new.si_syscall   = from->si_syscall;
3315 		new.si_arch      = from->si_arch;
3316 		break;
3317 	}
3318 
3319 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3320 		return -EFAULT;
3321 
3322 	return 0;
3323 }
3324 
3325 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3326 					 const struct compat_siginfo *from)
3327 {
3328 	clear_siginfo(to);
3329 	to->si_signo = from->si_signo;
3330 	to->si_errno = from->si_errno;
3331 	to->si_code  = from->si_code;
3332 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3333 	case SIL_KILL:
3334 		to->si_pid = from->si_pid;
3335 		to->si_uid = from->si_uid;
3336 		break;
3337 	case SIL_TIMER:
3338 		to->si_tid     = from->si_tid;
3339 		to->si_overrun = from->si_overrun;
3340 		to->si_int     = from->si_int;
3341 		break;
3342 	case SIL_POLL:
3343 		to->si_band = from->si_band;
3344 		to->si_fd   = from->si_fd;
3345 		break;
3346 	case SIL_FAULT:
3347 		to->si_addr = compat_ptr(from->si_addr);
3348 #ifdef __ARCH_SI_TRAPNO
3349 		to->si_trapno = from->si_trapno;
3350 #endif
3351 		break;
3352 	case SIL_FAULT_MCEERR:
3353 		to->si_addr = compat_ptr(from->si_addr);
3354 #ifdef __ARCH_SI_TRAPNO
3355 		to->si_trapno = from->si_trapno;
3356 #endif
3357 		to->si_addr_lsb = from->si_addr_lsb;
3358 		break;
3359 	case SIL_FAULT_BNDERR:
3360 		to->si_addr = compat_ptr(from->si_addr);
3361 #ifdef __ARCH_SI_TRAPNO
3362 		to->si_trapno = from->si_trapno;
3363 #endif
3364 		to->si_lower = compat_ptr(from->si_lower);
3365 		to->si_upper = compat_ptr(from->si_upper);
3366 		break;
3367 	case SIL_FAULT_PKUERR:
3368 		to->si_addr = compat_ptr(from->si_addr);
3369 #ifdef __ARCH_SI_TRAPNO
3370 		to->si_trapno = from->si_trapno;
3371 #endif
3372 		to->si_pkey = from->si_pkey;
3373 		break;
3374 	case SIL_CHLD:
3375 		to->si_pid    = from->si_pid;
3376 		to->si_uid    = from->si_uid;
3377 		to->si_status = from->si_status;
3378 #ifdef CONFIG_X86_X32_ABI
3379 		if (in_x32_syscall()) {
3380 			to->si_utime = from->_sifields._sigchld_x32._utime;
3381 			to->si_stime = from->_sifields._sigchld_x32._stime;
3382 		} else
3383 #endif
3384 		{
3385 			to->si_utime = from->si_utime;
3386 			to->si_stime = from->si_stime;
3387 		}
3388 		break;
3389 	case SIL_RT:
3390 		to->si_pid = from->si_pid;
3391 		to->si_uid = from->si_uid;
3392 		to->si_int = from->si_int;
3393 		break;
3394 	case SIL_SYS:
3395 		to->si_call_addr = compat_ptr(from->si_call_addr);
3396 		to->si_syscall   = from->si_syscall;
3397 		to->si_arch      = from->si_arch;
3398 		break;
3399 	}
3400 	return 0;
3401 }
3402 
3403 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3404 				      const struct compat_siginfo __user *ufrom)
3405 {
3406 	struct compat_siginfo from;
3407 
3408 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3409 		return -EFAULT;
3410 
3411 	from.si_signo = signo;
3412 	return post_copy_siginfo_from_user32(to, &from);
3413 }
3414 
3415 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3416 			     const struct compat_siginfo __user *ufrom)
3417 {
3418 	struct compat_siginfo from;
3419 
3420 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3421 		return -EFAULT;
3422 
3423 	return post_copy_siginfo_from_user32(to, &from);
3424 }
3425 #endif /* CONFIG_COMPAT */
3426 
3427 /**
3428  *  do_sigtimedwait - wait for queued signals specified in @which
3429  *  @which: queued signals to wait for
3430  *  @info: if non-null, the signal's siginfo is returned here
3431  *  @ts: upper bound on process time suspension
3432  */
3433 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3434 		    const struct timespec64 *ts)
3435 {
3436 	ktime_t *to = NULL, timeout = KTIME_MAX;
3437 	struct task_struct *tsk = current;
3438 	sigset_t mask = *which;
3439 	int sig, ret = 0;
3440 
3441 	if (ts) {
3442 		if (!timespec64_valid(ts))
3443 			return -EINVAL;
3444 		timeout = timespec64_to_ktime(*ts);
3445 		to = &timeout;
3446 	}
3447 
3448 	/*
3449 	 * Invert the set of allowed signals to get those we want to block.
3450 	 */
3451 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3452 	signotset(&mask);
3453 
3454 	spin_lock_irq(&tsk->sighand->siglock);
3455 	sig = dequeue_signal(tsk, &mask, info);
3456 	if (!sig && timeout) {
3457 		/*
3458 		 * None ready, temporarily unblock those we're interested
3459 		 * while we are sleeping in so that we'll be awakened when
3460 		 * they arrive. Unblocking is always fine, we can avoid
3461 		 * set_current_blocked().
3462 		 */
3463 		tsk->real_blocked = tsk->blocked;
3464 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3465 		recalc_sigpending();
3466 		spin_unlock_irq(&tsk->sighand->siglock);
3467 
3468 		__set_current_state(TASK_INTERRUPTIBLE);
3469 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3470 							 HRTIMER_MODE_REL);
3471 		spin_lock_irq(&tsk->sighand->siglock);
3472 		__set_task_blocked(tsk, &tsk->real_blocked);
3473 		sigemptyset(&tsk->real_blocked);
3474 		sig = dequeue_signal(tsk, &mask, info);
3475 	}
3476 	spin_unlock_irq(&tsk->sighand->siglock);
3477 
3478 	if (sig)
3479 		return sig;
3480 	return ret ? -EINTR : -EAGAIN;
3481 }
3482 
3483 /**
3484  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3485  *			in @uthese
3486  *  @uthese: queued signals to wait for
3487  *  @uinfo: if non-null, the signal's siginfo is returned here
3488  *  @uts: upper bound on process time suspension
3489  *  @sigsetsize: size of sigset_t type
3490  */
3491 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3492 		siginfo_t __user *, uinfo,
3493 		const struct __kernel_timespec __user *, uts,
3494 		size_t, sigsetsize)
3495 {
3496 	sigset_t these;
3497 	struct timespec64 ts;
3498 	kernel_siginfo_t info;
3499 	int ret;
3500 
3501 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3502 	if (sigsetsize != sizeof(sigset_t))
3503 		return -EINVAL;
3504 
3505 	if (copy_from_user(&these, uthese, sizeof(these)))
3506 		return -EFAULT;
3507 
3508 	if (uts) {
3509 		if (get_timespec64(&ts, uts))
3510 			return -EFAULT;
3511 	}
3512 
3513 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3514 
3515 	if (ret > 0 && uinfo) {
3516 		if (copy_siginfo_to_user(uinfo, &info))
3517 			ret = -EFAULT;
3518 	}
3519 
3520 	return ret;
3521 }
3522 
3523 #ifdef CONFIG_COMPAT_32BIT_TIME
3524 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3525 		siginfo_t __user *, uinfo,
3526 		const struct old_timespec32 __user *, uts,
3527 		size_t, sigsetsize)
3528 {
3529 	sigset_t these;
3530 	struct timespec64 ts;
3531 	kernel_siginfo_t info;
3532 	int ret;
3533 
3534 	if (sigsetsize != sizeof(sigset_t))
3535 		return -EINVAL;
3536 
3537 	if (copy_from_user(&these, uthese, sizeof(these)))
3538 		return -EFAULT;
3539 
3540 	if (uts) {
3541 		if (get_old_timespec32(&ts, uts))
3542 			return -EFAULT;
3543 	}
3544 
3545 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3546 
3547 	if (ret > 0 && uinfo) {
3548 		if (copy_siginfo_to_user(uinfo, &info))
3549 			ret = -EFAULT;
3550 	}
3551 
3552 	return ret;
3553 }
3554 #endif
3555 
3556 #ifdef CONFIG_COMPAT
3557 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3558 		struct compat_siginfo __user *, uinfo,
3559 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3560 {
3561 	sigset_t s;
3562 	struct timespec64 t;
3563 	kernel_siginfo_t info;
3564 	long ret;
3565 
3566 	if (sigsetsize != sizeof(sigset_t))
3567 		return -EINVAL;
3568 
3569 	if (get_compat_sigset(&s, uthese))
3570 		return -EFAULT;
3571 
3572 	if (uts) {
3573 		if (get_timespec64(&t, uts))
3574 			return -EFAULT;
3575 	}
3576 
3577 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3578 
3579 	if (ret > 0 && uinfo) {
3580 		if (copy_siginfo_to_user32(uinfo, &info))
3581 			ret = -EFAULT;
3582 	}
3583 
3584 	return ret;
3585 }
3586 
3587 #ifdef CONFIG_COMPAT_32BIT_TIME
3588 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3589 		struct compat_siginfo __user *, uinfo,
3590 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3591 {
3592 	sigset_t s;
3593 	struct timespec64 t;
3594 	kernel_siginfo_t info;
3595 	long ret;
3596 
3597 	if (sigsetsize != sizeof(sigset_t))
3598 		return -EINVAL;
3599 
3600 	if (get_compat_sigset(&s, uthese))
3601 		return -EFAULT;
3602 
3603 	if (uts) {
3604 		if (get_old_timespec32(&t, uts))
3605 			return -EFAULT;
3606 	}
3607 
3608 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3609 
3610 	if (ret > 0 && uinfo) {
3611 		if (copy_siginfo_to_user32(uinfo, &info))
3612 			ret = -EFAULT;
3613 	}
3614 
3615 	return ret;
3616 }
3617 #endif
3618 #endif
3619 
3620 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3621 {
3622 	clear_siginfo(info);
3623 	info->si_signo = sig;
3624 	info->si_errno = 0;
3625 	info->si_code = SI_USER;
3626 	info->si_pid = task_tgid_vnr(current);
3627 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3628 }
3629 
3630 /**
3631  *  sys_kill - send a signal to a process
3632  *  @pid: the PID of the process
3633  *  @sig: signal to be sent
3634  */
3635 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3636 {
3637 	struct kernel_siginfo info;
3638 
3639 	prepare_kill_siginfo(sig, &info);
3640 
3641 	return kill_something_info(sig, &info, pid);
3642 }
3643 
3644 /*
3645  * Verify that the signaler and signalee either are in the same pid namespace
3646  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3647  * namespace.
3648  */
3649 static bool access_pidfd_pidns(struct pid *pid)
3650 {
3651 	struct pid_namespace *active = task_active_pid_ns(current);
3652 	struct pid_namespace *p = ns_of_pid(pid);
3653 
3654 	for (;;) {
3655 		if (!p)
3656 			return false;
3657 		if (p == active)
3658 			break;
3659 		p = p->parent;
3660 	}
3661 
3662 	return true;
3663 }
3664 
3665 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3666 {
3667 #ifdef CONFIG_COMPAT
3668 	/*
3669 	 * Avoid hooking up compat syscalls and instead handle necessary
3670 	 * conversions here. Note, this is a stop-gap measure and should not be
3671 	 * considered a generic solution.
3672 	 */
3673 	if (in_compat_syscall())
3674 		return copy_siginfo_from_user32(
3675 			kinfo, (struct compat_siginfo __user *)info);
3676 #endif
3677 	return copy_siginfo_from_user(kinfo, info);
3678 }
3679 
3680 static struct pid *pidfd_to_pid(const struct file *file)
3681 {
3682 	struct pid *pid;
3683 
3684 	pid = pidfd_pid(file);
3685 	if (!IS_ERR(pid))
3686 		return pid;
3687 
3688 	return tgid_pidfd_to_pid(file);
3689 }
3690 
3691 /**
3692  * sys_pidfd_send_signal - Signal a process through a pidfd
3693  * @pidfd:  file descriptor of the process
3694  * @sig:    signal to send
3695  * @info:   signal info
3696  * @flags:  future flags
3697  *
3698  * The syscall currently only signals via PIDTYPE_PID which covers
3699  * kill(<positive-pid>, <signal>. It does not signal threads or process
3700  * groups.
3701  * In order to extend the syscall to threads and process groups the @flags
3702  * argument should be used. In essence, the @flags argument will determine
3703  * what is signaled and not the file descriptor itself. Put in other words,
3704  * grouping is a property of the flags argument not a property of the file
3705  * descriptor.
3706  *
3707  * Return: 0 on success, negative errno on failure
3708  */
3709 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3710 		siginfo_t __user *, info, unsigned int, flags)
3711 {
3712 	int ret;
3713 	struct fd f;
3714 	struct pid *pid;
3715 	kernel_siginfo_t kinfo;
3716 
3717 	/* Enforce flags be set to 0 until we add an extension. */
3718 	if (flags)
3719 		return -EINVAL;
3720 
3721 	f = fdget(pidfd);
3722 	if (!f.file)
3723 		return -EBADF;
3724 
3725 	/* Is this a pidfd? */
3726 	pid = pidfd_to_pid(f.file);
3727 	if (IS_ERR(pid)) {
3728 		ret = PTR_ERR(pid);
3729 		goto err;
3730 	}
3731 
3732 	ret = -EINVAL;
3733 	if (!access_pidfd_pidns(pid))
3734 		goto err;
3735 
3736 	if (info) {
3737 		ret = copy_siginfo_from_user_any(&kinfo, info);
3738 		if (unlikely(ret))
3739 			goto err;
3740 
3741 		ret = -EINVAL;
3742 		if (unlikely(sig != kinfo.si_signo))
3743 			goto err;
3744 
3745 		/* Only allow sending arbitrary signals to yourself. */
3746 		ret = -EPERM;
3747 		if ((task_pid(current) != pid) &&
3748 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3749 			goto err;
3750 	} else {
3751 		prepare_kill_siginfo(sig, &kinfo);
3752 	}
3753 
3754 	ret = kill_pid_info(sig, &kinfo, pid);
3755 
3756 err:
3757 	fdput(f);
3758 	return ret;
3759 }
3760 
3761 static int
3762 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3763 {
3764 	struct task_struct *p;
3765 	int error = -ESRCH;
3766 
3767 	rcu_read_lock();
3768 	p = find_task_by_vpid(pid);
3769 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3770 		error = check_kill_permission(sig, info, p);
3771 		/*
3772 		 * The null signal is a permissions and process existence
3773 		 * probe.  No signal is actually delivered.
3774 		 */
3775 		if (!error && sig) {
3776 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3777 			/*
3778 			 * If lock_task_sighand() failed we pretend the task
3779 			 * dies after receiving the signal. The window is tiny,
3780 			 * and the signal is private anyway.
3781 			 */
3782 			if (unlikely(error == -ESRCH))
3783 				error = 0;
3784 		}
3785 	}
3786 	rcu_read_unlock();
3787 
3788 	return error;
3789 }
3790 
3791 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3792 {
3793 	struct kernel_siginfo info;
3794 
3795 	clear_siginfo(&info);
3796 	info.si_signo = sig;
3797 	info.si_errno = 0;
3798 	info.si_code = SI_TKILL;
3799 	info.si_pid = task_tgid_vnr(current);
3800 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3801 
3802 	return do_send_specific(tgid, pid, sig, &info);
3803 }
3804 
3805 /**
3806  *  sys_tgkill - send signal to one specific thread
3807  *  @tgid: the thread group ID of the thread
3808  *  @pid: the PID of the thread
3809  *  @sig: signal to be sent
3810  *
3811  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3812  *  exists but it's not belonging to the target process anymore. This
3813  *  method solves the problem of threads exiting and PIDs getting reused.
3814  */
3815 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3816 {
3817 	/* This is only valid for single tasks */
3818 	if (pid <= 0 || tgid <= 0)
3819 		return -EINVAL;
3820 
3821 	return do_tkill(tgid, pid, sig);
3822 }
3823 
3824 /**
3825  *  sys_tkill - send signal to one specific task
3826  *  @pid: the PID of the task
3827  *  @sig: signal to be sent
3828  *
3829  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3830  */
3831 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3832 {
3833 	/* This is only valid for single tasks */
3834 	if (pid <= 0)
3835 		return -EINVAL;
3836 
3837 	return do_tkill(0, pid, sig);
3838 }
3839 
3840 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3841 {
3842 	/* Not even root can pretend to send signals from the kernel.
3843 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3844 	 */
3845 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3846 	    (task_pid_vnr(current) != pid))
3847 		return -EPERM;
3848 
3849 	/* POSIX.1b doesn't mention process groups.  */
3850 	return kill_proc_info(sig, info, pid);
3851 }
3852 
3853 /**
3854  *  sys_rt_sigqueueinfo - send signal information to a signal
3855  *  @pid: the PID of the thread
3856  *  @sig: signal to be sent
3857  *  @uinfo: signal info to be sent
3858  */
3859 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3860 		siginfo_t __user *, uinfo)
3861 {
3862 	kernel_siginfo_t info;
3863 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3864 	if (unlikely(ret))
3865 		return ret;
3866 	return do_rt_sigqueueinfo(pid, sig, &info);
3867 }
3868 
3869 #ifdef CONFIG_COMPAT
3870 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3871 			compat_pid_t, pid,
3872 			int, sig,
3873 			struct compat_siginfo __user *, uinfo)
3874 {
3875 	kernel_siginfo_t info;
3876 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3877 	if (unlikely(ret))
3878 		return ret;
3879 	return do_rt_sigqueueinfo(pid, sig, &info);
3880 }
3881 #endif
3882 
3883 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3884 {
3885 	/* This is only valid for single tasks */
3886 	if (pid <= 0 || tgid <= 0)
3887 		return -EINVAL;
3888 
3889 	/* Not even root can pretend to send signals from the kernel.
3890 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3891 	 */
3892 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3893 	    (task_pid_vnr(current) != pid))
3894 		return -EPERM;
3895 
3896 	return do_send_specific(tgid, pid, sig, info);
3897 }
3898 
3899 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3900 		siginfo_t __user *, uinfo)
3901 {
3902 	kernel_siginfo_t info;
3903 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3904 	if (unlikely(ret))
3905 		return ret;
3906 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3907 }
3908 
3909 #ifdef CONFIG_COMPAT
3910 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3911 			compat_pid_t, tgid,
3912 			compat_pid_t, pid,
3913 			int, sig,
3914 			struct compat_siginfo __user *, uinfo)
3915 {
3916 	kernel_siginfo_t info;
3917 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3918 	if (unlikely(ret))
3919 		return ret;
3920 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3921 }
3922 #endif
3923 
3924 /*
3925  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3926  */
3927 void kernel_sigaction(int sig, __sighandler_t action)
3928 {
3929 	spin_lock_irq(&current->sighand->siglock);
3930 	current->sighand->action[sig - 1].sa.sa_handler = action;
3931 	if (action == SIG_IGN) {
3932 		sigset_t mask;
3933 
3934 		sigemptyset(&mask);
3935 		sigaddset(&mask, sig);
3936 
3937 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3938 		flush_sigqueue_mask(&mask, &current->pending);
3939 		recalc_sigpending();
3940 	}
3941 	spin_unlock_irq(&current->sighand->siglock);
3942 }
3943 EXPORT_SYMBOL(kernel_sigaction);
3944 
3945 void __weak sigaction_compat_abi(struct k_sigaction *act,
3946 		struct k_sigaction *oact)
3947 {
3948 }
3949 
3950 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3951 {
3952 	struct task_struct *p = current, *t;
3953 	struct k_sigaction *k;
3954 	sigset_t mask;
3955 
3956 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3957 		return -EINVAL;
3958 
3959 	k = &p->sighand->action[sig-1];
3960 
3961 	spin_lock_irq(&p->sighand->siglock);
3962 	if (oact)
3963 		*oact = *k;
3964 
3965 	sigaction_compat_abi(act, oact);
3966 
3967 	if (act) {
3968 		sigdelsetmask(&act->sa.sa_mask,
3969 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3970 		*k = *act;
3971 		/*
3972 		 * POSIX 3.3.1.3:
3973 		 *  "Setting a signal action to SIG_IGN for a signal that is
3974 		 *   pending shall cause the pending signal to be discarded,
3975 		 *   whether or not it is blocked."
3976 		 *
3977 		 *  "Setting a signal action to SIG_DFL for a signal that is
3978 		 *   pending and whose default action is to ignore the signal
3979 		 *   (for example, SIGCHLD), shall cause the pending signal to
3980 		 *   be discarded, whether or not it is blocked"
3981 		 */
3982 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3983 			sigemptyset(&mask);
3984 			sigaddset(&mask, sig);
3985 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3986 			for_each_thread(p, t)
3987 				flush_sigqueue_mask(&mask, &t->pending);
3988 		}
3989 	}
3990 
3991 	spin_unlock_irq(&p->sighand->siglock);
3992 	return 0;
3993 }
3994 
3995 static int
3996 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3997 		size_t min_ss_size)
3998 {
3999 	struct task_struct *t = current;
4000 
4001 	if (oss) {
4002 		memset(oss, 0, sizeof(stack_t));
4003 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4004 		oss->ss_size = t->sas_ss_size;
4005 		oss->ss_flags = sas_ss_flags(sp) |
4006 			(current->sas_ss_flags & SS_FLAG_BITS);
4007 	}
4008 
4009 	if (ss) {
4010 		void __user *ss_sp = ss->ss_sp;
4011 		size_t ss_size = ss->ss_size;
4012 		unsigned ss_flags = ss->ss_flags;
4013 		int ss_mode;
4014 
4015 		if (unlikely(on_sig_stack(sp)))
4016 			return -EPERM;
4017 
4018 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4019 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4020 				ss_mode != 0))
4021 			return -EINVAL;
4022 
4023 		if (ss_mode == SS_DISABLE) {
4024 			ss_size = 0;
4025 			ss_sp = NULL;
4026 		} else {
4027 			if (unlikely(ss_size < min_ss_size))
4028 				return -ENOMEM;
4029 		}
4030 
4031 		t->sas_ss_sp = (unsigned long) ss_sp;
4032 		t->sas_ss_size = ss_size;
4033 		t->sas_ss_flags = ss_flags;
4034 	}
4035 	return 0;
4036 }
4037 
4038 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4039 {
4040 	stack_t new, old;
4041 	int err;
4042 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4043 		return -EFAULT;
4044 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4045 			      current_user_stack_pointer(),
4046 			      MINSIGSTKSZ);
4047 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4048 		err = -EFAULT;
4049 	return err;
4050 }
4051 
4052 int restore_altstack(const stack_t __user *uss)
4053 {
4054 	stack_t new;
4055 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4056 		return -EFAULT;
4057 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4058 			     MINSIGSTKSZ);
4059 	/* squash all but EFAULT for now */
4060 	return 0;
4061 }
4062 
4063 int __save_altstack(stack_t __user *uss, unsigned long sp)
4064 {
4065 	struct task_struct *t = current;
4066 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4067 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4068 		__put_user(t->sas_ss_size, &uss->ss_size);
4069 	if (err)
4070 		return err;
4071 	if (t->sas_ss_flags & SS_AUTODISARM)
4072 		sas_ss_reset(t);
4073 	return 0;
4074 }
4075 
4076 #ifdef CONFIG_COMPAT
4077 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4078 				 compat_stack_t __user *uoss_ptr)
4079 {
4080 	stack_t uss, uoss;
4081 	int ret;
4082 
4083 	if (uss_ptr) {
4084 		compat_stack_t uss32;
4085 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4086 			return -EFAULT;
4087 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4088 		uss.ss_flags = uss32.ss_flags;
4089 		uss.ss_size = uss32.ss_size;
4090 	}
4091 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4092 			     compat_user_stack_pointer(),
4093 			     COMPAT_MINSIGSTKSZ);
4094 	if (ret >= 0 && uoss_ptr)  {
4095 		compat_stack_t old;
4096 		memset(&old, 0, sizeof(old));
4097 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4098 		old.ss_flags = uoss.ss_flags;
4099 		old.ss_size = uoss.ss_size;
4100 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4101 			ret = -EFAULT;
4102 	}
4103 	return ret;
4104 }
4105 
4106 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4107 			const compat_stack_t __user *, uss_ptr,
4108 			compat_stack_t __user *, uoss_ptr)
4109 {
4110 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4111 }
4112 
4113 int compat_restore_altstack(const compat_stack_t __user *uss)
4114 {
4115 	int err = do_compat_sigaltstack(uss, NULL);
4116 	/* squash all but -EFAULT for now */
4117 	return err == -EFAULT ? err : 0;
4118 }
4119 
4120 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4121 {
4122 	int err;
4123 	struct task_struct *t = current;
4124 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4125 			 &uss->ss_sp) |
4126 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4127 		__put_user(t->sas_ss_size, &uss->ss_size);
4128 	if (err)
4129 		return err;
4130 	if (t->sas_ss_flags & SS_AUTODISARM)
4131 		sas_ss_reset(t);
4132 	return 0;
4133 }
4134 #endif
4135 
4136 #ifdef __ARCH_WANT_SYS_SIGPENDING
4137 
4138 /**
4139  *  sys_sigpending - examine pending signals
4140  *  @uset: where mask of pending signal is returned
4141  */
4142 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4143 {
4144 	sigset_t set;
4145 
4146 	if (sizeof(old_sigset_t) > sizeof(*uset))
4147 		return -EINVAL;
4148 
4149 	do_sigpending(&set);
4150 
4151 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4152 		return -EFAULT;
4153 
4154 	return 0;
4155 }
4156 
4157 #ifdef CONFIG_COMPAT
4158 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4159 {
4160 	sigset_t set;
4161 
4162 	do_sigpending(&set);
4163 
4164 	return put_user(set.sig[0], set32);
4165 }
4166 #endif
4167 
4168 #endif
4169 
4170 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4171 /**
4172  *  sys_sigprocmask - examine and change blocked signals
4173  *  @how: whether to add, remove, or set signals
4174  *  @nset: signals to add or remove (if non-null)
4175  *  @oset: previous value of signal mask if non-null
4176  *
4177  * Some platforms have their own version with special arguments;
4178  * others support only sys_rt_sigprocmask.
4179  */
4180 
4181 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4182 		old_sigset_t __user *, oset)
4183 {
4184 	old_sigset_t old_set, new_set;
4185 	sigset_t new_blocked;
4186 
4187 	old_set = current->blocked.sig[0];
4188 
4189 	if (nset) {
4190 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4191 			return -EFAULT;
4192 
4193 		new_blocked = current->blocked;
4194 
4195 		switch (how) {
4196 		case SIG_BLOCK:
4197 			sigaddsetmask(&new_blocked, new_set);
4198 			break;
4199 		case SIG_UNBLOCK:
4200 			sigdelsetmask(&new_blocked, new_set);
4201 			break;
4202 		case SIG_SETMASK:
4203 			new_blocked.sig[0] = new_set;
4204 			break;
4205 		default:
4206 			return -EINVAL;
4207 		}
4208 
4209 		set_current_blocked(&new_blocked);
4210 	}
4211 
4212 	if (oset) {
4213 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4214 			return -EFAULT;
4215 	}
4216 
4217 	return 0;
4218 }
4219 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4220 
4221 #ifndef CONFIG_ODD_RT_SIGACTION
4222 /**
4223  *  sys_rt_sigaction - alter an action taken by a process
4224  *  @sig: signal to be sent
4225  *  @act: new sigaction
4226  *  @oact: used to save the previous sigaction
4227  *  @sigsetsize: size of sigset_t type
4228  */
4229 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4230 		const struct sigaction __user *, act,
4231 		struct sigaction __user *, oact,
4232 		size_t, sigsetsize)
4233 {
4234 	struct k_sigaction new_sa, old_sa;
4235 	int ret;
4236 
4237 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4238 	if (sigsetsize != sizeof(sigset_t))
4239 		return -EINVAL;
4240 
4241 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4242 		return -EFAULT;
4243 
4244 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4245 	if (ret)
4246 		return ret;
4247 
4248 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4249 		return -EFAULT;
4250 
4251 	return 0;
4252 }
4253 #ifdef CONFIG_COMPAT
4254 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4255 		const struct compat_sigaction __user *, act,
4256 		struct compat_sigaction __user *, oact,
4257 		compat_size_t, sigsetsize)
4258 {
4259 	struct k_sigaction new_ka, old_ka;
4260 #ifdef __ARCH_HAS_SA_RESTORER
4261 	compat_uptr_t restorer;
4262 #endif
4263 	int ret;
4264 
4265 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4266 	if (sigsetsize != sizeof(compat_sigset_t))
4267 		return -EINVAL;
4268 
4269 	if (act) {
4270 		compat_uptr_t handler;
4271 		ret = get_user(handler, &act->sa_handler);
4272 		new_ka.sa.sa_handler = compat_ptr(handler);
4273 #ifdef __ARCH_HAS_SA_RESTORER
4274 		ret |= get_user(restorer, &act->sa_restorer);
4275 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4276 #endif
4277 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4278 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4279 		if (ret)
4280 			return -EFAULT;
4281 	}
4282 
4283 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4284 	if (!ret && oact) {
4285 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4286 			       &oact->sa_handler);
4287 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4288 					 sizeof(oact->sa_mask));
4289 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4290 #ifdef __ARCH_HAS_SA_RESTORER
4291 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4292 				&oact->sa_restorer);
4293 #endif
4294 	}
4295 	return ret;
4296 }
4297 #endif
4298 #endif /* !CONFIG_ODD_RT_SIGACTION */
4299 
4300 #ifdef CONFIG_OLD_SIGACTION
4301 SYSCALL_DEFINE3(sigaction, int, sig,
4302 		const struct old_sigaction __user *, act,
4303 	        struct old_sigaction __user *, oact)
4304 {
4305 	struct k_sigaction new_ka, old_ka;
4306 	int ret;
4307 
4308 	if (act) {
4309 		old_sigset_t mask;
4310 		if (!access_ok(act, sizeof(*act)) ||
4311 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4312 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4313 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4314 		    __get_user(mask, &act->sa_mask))
4315 			return -EFAULT;
4316 #ifdef __ARCH_HAS_KA_RESTORER
4317 		new_ka.ka_restorer = NULL;
4318 #endif
4319 		siginitset(&new_ka.sa.sa_mask, mask);
4320 	}
4321 
4322 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4323 
4324 	if (!ret && oact) {
4325 		if (!access_ok(oact, sizeof(*oact)) ||
4326 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4327 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4328 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4329 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4330 			return -EFAULT;
4331 	}
4332 
4333 	return ret;
4334 }
4335 #endif
4336 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4337 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4338 		const struct compat_old_sigaction __user *, act,
4339 	        struct compat_old_sigaction __user *, oact)
4340 {
4341 	struct k_sigaction new_ka, old_ka;
4342 	int ret;
4343 	compat_old_sigset_t mask;
4344 	compat_uptr_t handler, restorer;
4345 
4346 	if (act) {
4347 		if (!access_ok(act, sizeof(*act)) ||
4348 		    __get_user(handler, &act->sa_handler) ||
4349 		    __get_user(restorer, &act->sa_restorer) ||
4350 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4351 		    __get_user(mask, &act->sa_mask))
4352 			return -EFAULT;
4353 
4354 #ifdef __ARCH_HAS_KA_RESTORER
4355 		new_ka.ka_restorer = NULL;
4356 #endif
4357 		new_ka.sa.sa_handler = compat_ptr(handler);
4358 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4359 		siginitset(&new_ka.sa.sa_mask, mask);
4360 	}
4361 
4362 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4363 
4364 	if (!ret && oact) {
4365 		if (!access_ok(oact, sizeof(*oact)) ||
4366 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4367 			       &oact->sa_handler) ||
4368 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4369 			       &oact->sa_restorer) ||
4370 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4371 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4372 			return -EFAULT;
4373 	}
4374 	return ret;
4375 }
4376 #endif
4377 
4378 #ifdef CONFIG_SGETMASK_SYSCALL
4379 
4380 /*
4381  * For backwards compatibility.  Functionality superseded by sigprocmask.
4382  */
4383 SYSCALL_DEFINE0(sgetmask)
4384 {
4385 	/* SMP safe */
4386 	return current->blocked.sig[0];
4387 }
4388 
4389 SYSCALL_DEFINE1(ssetmask, int, newmask)
4390 {
4391 	int old = current->blocked.sig[0];
4392 	sigset_t newset;
4393 
4394 	siginitset(&newset, newmask);
4395 	set_current_blocked(&newset);
4396 
4397 	return old;
4398 }
4399 #endif /* CONFIG_SGETMASK_SYSCALL */
4400 
4401 #ifdef __ARCH_WANT_SYS_SIGNAL
4402 /*
4403  * For backwards compatibility.  Functionality superseded by sigaction.
4404  */
4405 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4406 {
4407 	struct k_sigaction new_sa, old_sa;
4408 	int ret;
4409 
4410 	new_sa.sa.sa_handler = handler;
4411 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4412 	sigemptyset(&new_sa.sa.sa_mask);
4413 
4414 	ret = do_sigaction(sig, &new_sa, &old_sa);
4415 
4416 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4417 }
4418 #endif /* __ARCH_WANT_SYS_SIGNAL */
4419 
4420 #ifdef __ARCH_WANT_SYS_PAUSE
4421 
4422 SYSCALL_DEFINE0(pause)
4423 {
4424 	while (!signal_pending(current)) {
4425 		__set_current_state(TASK_INTERRUPTIBLE);
4426 		schedule();
4427 	}
4428 	return -ERESTARTNOHAND;
4429 }
4430 
4431 #endif
4432 
4433 static int sigsuspend(sigset_t *set)
4434 {
4435 	current->saved_sigmask = current->blocked;
4436 	set_current_blocked(set);
4437 
4438 	while (!signal_pending(current)) {
4439 		__set_current_state(TASK_INTERRUPTIBLE);
4440 		schedule();
4441 	}
4442 	set_restore_sigmask();
4443 	return -ERESTARTNOHAND;
4444 }
4445 
4446 /**
4447  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4448  *	@unewset value until a signal is received
4449  *  @unewset: new signal mask value
4450  *  @sigsetsize: size of sigset_t type
4451  */
4452 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4453 {
4454 	sigset_t newset;
4455 
4456 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4457 	if (sigsetsize != sizeof(sigset_t))
4458 		return -EINVAL;
4459 
4460 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4461 		return -EFAULT;
4462 	return sigsuspend(&newset);
4463 }
4464 
4465 #ifdef CONFIG_COMPAT
4466 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4467 {
4468 	sigset_t newset;
4469 
4470 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4471 	if (sigsetsize != sizeof(sigset_t))
4472 		return -EINVAL;
4473 
4474 	if (get_compat_sigset(&newset, unewset))
4475 		return -EFAULT;
4476 	return sigsuspend(&newset);
4477 }
4478 #endif
4479 
4480 #ifdef CONFIG_OLD_SIGSUSPEND
4481 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4482 {
4483 	sigset_t blocked;
4484 	siginitset(&blocked, mask);
4485 	return sigsuspend(&blocked);
4486 }
4487 #endif
4488 #ifdef CONFIG_OLD_SIGSUSPEND3
4489 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4490 {
4491 	sigset_t blocked;
4492 	siginitset(&blocked, mask);
4493 	return sigsuspend(&blocked);
4494 }
4495 #endif
4496 
4497 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4498 {
4499 	return NULL;
4500 }
4501 
4502 static inline void siginfo_buildtime_checks(void)
4503 {
4504 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4505 
4506 	/* Verify the offsets in the two siginfos match */
4507 #define CHECK_OFFSET(field) \
4508 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4509 
4510 	/* kill */
4511 	CHECK_OFFSET(si_pid);
4512 	CHECK_OFFSET(si_uid);
4513 
4514 	/* timer */
4515 	CHECK_OFFSET(si_tid);
4516 	CHECK_OFFSET(si_overrun);
4517 	CHECK_OFFSET(si_value);
4518 
4519 	/* rt */
4520 	CHECK_OFFSET(si_pid);
4521 	CHECK_OFFSET(si_uid);
4522 	CHECK_OFFSET(si_value);
4523 
4524 	/* sigchld */
4525 	CHECK_OFFSET(si_pid);
4526 	CHECK_OFFSET(si_uid);
4527 	CHECK_OFFSET(si_status);
4528 	CHECK_OFFSET(si_utime);
4529 	CHECK_OFFSET(si_stime);
4530 
4531 	/* sigfault */
4532 	CHECK_OFFSET(si_addr);
4533 	CHECK_OFFSET(si_addr_lsb);
4534 	CHECK_OFFSET(si_lower);
4535 	CHECK_OFFSET(si_upper);
4536 	CHECK_OFFSET(si_pkey);
4537 
4538 	/* sigpoll */
4539 	CHECK_OFFSET(si_band);
4540 	CHECK_OFFSET(si_fd);
4541 
4542 	/* sigsys */
4543 	CHECK_OFFSET(si_call_addr);
4544 	CHECK_OFFSET(si_syscall);
4545 	CHECK_OFFSET(si_arch);
4546 #undef CHECK_OFFSET
4547 
4548 	/* usb asyncio */
4549 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4550 		     offsetof(struct siginfo, si_addr));
4551 	if (sizeof(int) == sizeof(void __user *)) {
4552 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4553 			     sizeof(void __user *));
4554 	} else {
4555 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4556 			      sizeof_field(struct siginfo, si_uid)) !=
4557 			     sizeof(void __user *));
4558 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4559 			     offsetof(struct siginfo, si_uid));
4560 	}
4561 #ifdef CONFIG_COMPAT
4562 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4563 		     offsetof(struct compat_siginfo, si_addr));
4564 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4565 		     sizeof(compat_uptr_t));
4566 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4567 		     sizeof_field(struct siginfo, si_pid));
4568 #endif
4569 }
4570 
4571 void __init signals_init(void)
4572 {
4573 	siginfo_buildtime_checks();
4574 
4575 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4576 }
4577 
4578 #ifdef CONFIG_KGDB_KDB
4579 #include <linux/kdb.h>
4580 /*
4581  * kdb_send_sig - Allows kdb to send signals without exposing
4582  * signal internals.  This function checks if the required locks are
4583  * available before calling the main signal code, to avoid kdb
4584  * deadlocks.
4585  */
4586 void kdb_send_sig(struct task_struct *t, int sig)
4587 {
4588 	static struct task_struct *kdb_prev_t;
4589 	int new_t, ret;
4590 	if (!spin_trylock(&t->sighand->siglock)) {
4591 		kdb_printf("Can't do kill command now.\n"
4592 			   "The sigmask lock is held somewhere else in "
4593 			   "kernel, try again later\n");
4594 		return;
4595 	}
4596 	new_t = kdb_prev_t != t;
4597 	kdb_prev_t = t;
4598 	if (t->state != TASK_RUNNING && new_t) {
4599 		spin_unlock(&t->sighand->siglock);
4600 		kdb_printf("Process is not RUNNING, sending a signal from "
4601 			   "kdb risks deadlock\n"
4602 			   "on the run queue locks. "
4603 			   "The signal has _not_ been sent.\n"
4604 			   "Reissue the kill command if you want to risk "
4605 			   "the deadlock.\n");
4606 		return;
4607 	}
4608 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4609 	spin_unlock(&t->sighand->siglock);
4610 	if (ret)
4611 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4612 			   sig, t->pid);
4613 	else
4614 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4615 }
4616 #endif	/* CONFIG_KGDB_KDB */
4617