xref: /openbmc/linux/kernel/signal.c (revision a2cce7a9)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #include <linux/cn_proc.h>
36 #include <linux/compiler.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/signal.h>
40 
41 #include <asm/param.h>
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
44 #include <asm/siginfo.h>
45 #include <asm/cacheflush.h>
46 #include "audit.h"	/* audit_signal_info() */
47 
48 /*
49  * SLAB caches for signal bits.
50  */
51 
52 static struct kmem_cache *sigqueue_cachep;
53 
54 int print_fatal_signals __read_mostly;
55 
56 static void __user *sig_handler(struct task_struct *t, int sig)
57 {
58 	return t->sighand->action[sig - 1].sa.sa_handler;
59 }
60 
61 static int sig_handler_ignored(void __user *handler, int sig)
62 {
63 	/* Is it explicitly or implicitly ignored? */
64 	return handler == SIG_IGN ||
65 		(handler == SIG_DFL && sig_kernel_ignore(sig));
66 }
67 
68 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
69 {
70 	void __user *handler;
71 
72 	handler = sig_handler(t, sig);
73 
74 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
75 			handler == SIG_DFL && !force)
76 		return 1;
77 
78 	return sig_handler_ignored(handler, sig);
79 }
80 
81 static int sig_ignored(struct task_struct *t, int sig, bool force)
82 {
83 	/*
84 	 * Blocked signals are never ignored, since the
85 	 * signal handler may change by the time it is
86 	 * unblocked.
87 	 */
88 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
89 		return 0;
90 
91 	if (!sig_task_ignored(t, sig, force))
92 		return 0;
93 
94 	/*
95 	 * Tracers may want to know about even ignored signals.
96 	 */
97 	return !t->ptrace;
98 }
99 
100 /*
101  * Re-calculate pending state from the set of locally pending
102  * signals, globally pending signals, and blocked signals.
103  */
104 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
105 {
106 	unsigned long ready;
107 	long i;
108 
109 	switch (_NSIG_WORDS) {
110 	default:
111 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
112 			ready |= signal->sig[i] &~ blocked->sig[i];
113 		break;
114 
115 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
116 		ready |= signal->sig[2] &~ blocked->sig[2];
117 		ready |= signal->sig[1] &~ blocked->sig[1];
118 		ready |= signal->sig[0] &~ blocked->sig[0];
119 		break;
120 
121 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
122 		ready |= signal->sig[0] &~ blocked->sig[0];
123 		break;
124 
125 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
126 	}
127 	return ready !=	0;
128 }
129 
130 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
131 
132 static int recalc_sigpending_tsk(struct task_struct *t)
133 {
134 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
135 	    PENDING(&t->pending, &t->blocked) ||
136 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
137 		set_tsk_thread_flag(t, TIF_SIGPENDING);
138 		return 1;
139 	}
140 	/*
141 	 * We must never clear the flag in another thread, or in current
142 	 * when it's possible the current syscall is returning -ERESTART*.
143 	 * So we don't clear it here, and only callers who know they should do.
144 	 */
145 	return 0;
146 }
147 
148 /*
149  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
150  * This is superfluous when called on current, the wakeup is a harmless no-op.
151  */
152 void recalc_sigpending_and_wake(struct task_struct *t)
153 {
154 	if (recalc_sigpending_tsk(t))
155 		signal_wake_up(t, 0);
156 }
157 
158 void recalc_sigpending(void)
159 {
160 	if (!recalc_sigpending_tsk(current) && !freezing(current))
161 		clear_thread_flag(TIF_SIGPENDING);
162 
163 }
164 
165 /* Given the mask, find the first available signal that should be serviced. */
166 
167 #define SYNCHRONOUS_MASK \
168 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
169 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
170 
171 int next_signal(struct sigpending *pending, sigset_t *mask)
172 {
173 	unsigned long i, *s, *m, x;
174 	int sig = 0;
175 
176 	s = pending->signal.sig;
177 	m = mask->sig;
178 
179 	/*
180 	 * Handle the first word specially: it contains the
181 	 * synchronous signals that need to be dequeued first.
182 	 */
183 	x = *s &~ *m;
184 	if (x) {
185 		if (x & SYNCHRONOUS_MASK)
186 			x &= SYNCHRONOUS_MASK;
187 		sig = ffz(~x) + 1;
188 		return sig;
189 	}
190 
191 	switch (_NSIG_WORDS) {
192 	default:
193 		for (i = 1; i < _NSIG_WORDS; ++i) {
194 			x = *++s &~ *++m;
195 			if (!x)
196 				continue;
197 			sig = ffz(~x) + i*_NSIG_BPW + 1;
198 			break;
199 		}
200 		break;
201 
202 	case 2:
203 		x = s[1] &~ m[1];
204 		if (!x)
205 			break;
206 		sig = ffz(~x) + _NSIG_BPW + 1;
207 		break;
208 
209 	case 1:
210 		/* Nothing to do */
211 		break;
212 	}
213 
214 	return sig;
215 }
216 
217 static inline void print_dropped_signal(int sig)
218 {
219 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
220 
221 	if (!print_fatal_signals)
222 		return;
223 
224 	if (!__ratelimit(&ratelimit_state))
225 		return;
226 
227 	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
228 				current->comm, current->pid, sig);
229 }
230 
231 /**
232  * task_set_jobctl_pending - set jobctl pending bits
233  * @task: target task
234  * @mask: pending bits to set
235  *
236  * Clear @mask from @task->jobctl.  @mask must be subset of
237  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
238  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
239  * cleared.  If @task is already being killed or exiting, this function
240  * becomes noop.
241  *
242  * CONTEXT:
243  * Must be called with @task->sighand->siglock held.
244  *
245  * RETURNS:
246  * %true if @mask is set, %false if made noop because @task was dying.
247  */
248 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
249 {
250 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
251 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
252 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
253 
254 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
255 		return false;
256 
257 	if (mask & JOBCTL_STOP_SIGMASK)
258 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
259 
260 	task->jobctl |= mask;
261 	return true;
262 }
263 
264 /**
265  * task_clear_jobctl_trapping - clear jobctl trapping bit
266  * @task: target task
267  *
268  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
269  * Clear it and wake up the ptracer.  Note that we don't need any further
270  * locking.  @task->siglock guarantees that @task->parent points to the
271  * ptracer.
272  *
273  * CONTEXT:
274  * Must be called with @task->sighand->siglock held.
275  */
276 void task_clear_jobctl_trapping(struct task_struct *task)
277 {
278 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
279 		task->jobctl &= ~JOBCTL_TRAPPING;
280 		smp_mb();	/* advised by wake_up_bit() */
281 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
282 	}
283 }
284 
285 /**
286  * task_clear_jobctl_pending - clear jobctl pending bits
287  * @task: target task
288  * @mask: pending bits to clear
289  *
290  * Clear @mask from @task->jobctl.  @mask must be subset of
291  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
292  * STOP bits are cleared together.
293  *
294  * If clearing of @mask leaves no stop or trap pending, this function calls
295  * task_clear_jobctl_trapping().
296  *
297  * CONTEXT:
298  * Must be called with @task->sighand->siglock held.
299  */
300 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
301 {
302 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
303 
304 	if (mask & JOBCTL_STOP_PENDING)
305 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
306 
307 	task->jobctl &= ~mask;
308 
309 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
310 		task_clear_jobctl_trapping(task);
311 }
312 
313 /**
314  * task_participate_group_stop - participate in a group stop
315  * @task: task participating in a group stop
316  *
317  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
318  * Group stop states are cleared and the group stop count is consumed if
319  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
320  * stop, the appropriate %SIGNAL_* flags are set.
321  *
322  * CONTEXT:
323  * Must be called with @task->sighand->siglock held.
324  *
325  * RETURNS:
326  * %true if group stop completion should be notified to the parent, %false
327  * otherwise.
328  */
329 static bool task_participate_group_stop(struct task_struct *task)
330 {
331 	struct signal_struct *sig = task->signal;
332 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
333 
334 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
335 
336 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
337 
338 	if (!consume)
339 		return false;
340 
341 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
342 		sig->group_stop_count--;
343 
344 	/*
345 	 * Tell the caller to notify completion iff we are entering into a
346 	 * fresh group stop.  Read comment in do_signal_stop() for details.
347 	 */
348 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
349 		sig->flags = SIGNAL_STOP_STOPPED;
350 		return true;
351 	}
352 	return false;
353 }
354 
355 /*
356  * allocate a new signal queue record
357  * - this may be called without locks if and only if t == current, otherwise an
358  *   appropriate lock must be held to stop the target task from exiting
359  */
360 static struct sigqueue *
361 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
362 {
363 	struct sigqueue *q = NULL;
364 	struct user_struct *user;
365 
366 	/*
367 	 * Protect access to @t credentials. This can go away when all
368 	 * callers hold rcu read lock.
369 	 */
370 	rcu_read_lock();
371 	user = get_uid(__task_cred(t)->user);
372 	atomic_inc(&user->sigpending);
373 	rcu_read_unlock();
374 
375 	if (override_rlimit ||
376 	    atomic_read(&user->sigpending) <=
377 			task_rlimit(t, RLIMIT_SIGPENDING)) {
378 		q = kmem_cache_alloc(sigqueue_cachep, flags);
379 	} else {
380 		print_dropped_signal(sig);
381 	}
382 
383 	if (unlikely(q == NULL)) {
384 		atomic_dec(&user->sigpending);
385 		free_uid(user);
386 	} else {
387 		INIT_LIST_HEAD(&q->list);
388 		q->flags = 0;
389 		q->user = user;
390 	}
391 
392 	return q;
393 }
394 
395 static void __sigqueue_free(struct sigqueue *q)
396 {
397 	if (q->flags & SIGQUEUE_PREALLOC)
398 		return;
399 	atomic_dec(&q->user->sigpending);
400 	free_uid(q->user);
401 	kmem_cache_free(sigqueue_cachep, q);
402 }
403 
404 void flush_sigqueue(struct sigpending *queue)
405 {
406 	struct sigqueue *q;
407 
408 	sigemptyset(&queue->signal);
409 	while (!list_empty(&queue->list)) {
410 		q = list_entry(queue->list.next, struct sigqueue , list);
411 		list_del_init(&q->list);
412 		__sigqueue_free(q);
413 	}
414 }
415 
416 /*
417  * Flush all pending signals for this kthread.
418  */
419 void flush_signals(struct task_struct *t)
420 {
421 	unsigned long flags;
422 
423 	spin_lock_irqsave(&t->sighand->siglock, flags);
424 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
425 	flush_sigqueue(&t->pending);
426 	flush_sigqueue(&t->signal->shared_pending);
427 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
428 }
429 
430 static void __flush_itimer_signals(struct sigpending *pending)
431 {
432 	sigset_t signal, retain;
433 	struct sigqueue *q, *n;
434 
435 	signal = pending->signal;
436 	sigemptyset(&retain);
437 
438 	list_for_each_entry_safe(q, n, &pending->list, list) {
439 		int sig = q->info.si_signo;
440 
441 		if (likely(q->info.si_code != SI_TIMER)) {
442 			sigaddset(&retain, sig);
443 		} else {
444 			sigdelset(&signal, sig);
445 			list_del_init(&q->list);
446 			__sigqueue_free(q);
447 		}
448 	}
449 
450 	sigorsets(&pending->signal, &signal, &retain);
451 }
452 
453 void flush_itimer_signals(void)
454 {
455 	struct task_struct *tsk = current;
456 	unsigned long flags;
457 
458 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
459 	__flush_itimer_signals(&tsk->pending);
460 	__flush_itimer_signals(&tsk->signal->shared_pending);
461 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
462 }
463 
464 void ignore_signals(struct task_struct *t)
465 {
466 	int i;
467 
468 	for (i = 0; i < _NSIG; ++i)
469 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
470 
471 	flush_signals(t);
472 }
473 
474 /*
475  * Flush all handlers for a task.
476  */
477 
478 void
479 flush_signal_handlers(struct task_struct *t, int force_default)
480 {
481 	int i;
482 	struct k_sigaction *ka = &t->sighand->action[0];
483 	for (i = _NSIG ; i != 0 ; i--) {
484 		if (force_default || ka->sa.sa_handler != SIG_IGN)
485 			ka->sa.sa_handler = SIG_DFL;
486 		ka->sa.sa_flags = 0;
487 #ifdef __ARCH_HAS_SA_RESTORER
488 		ka->sa.sa_restorer = NULL;
489 #endif
490 		sigemptyset(&ka->sa.sa_mask);
491 		ka++;
492 	}
493 }
494 
495 int unhandled_signal(struct task_struct *tsk, int sig)
496 {
497 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
498 	if (is_global_init(tsk))
499 		return 1;
500 	if (handler != SIG_IGN && handler != SIG_DFL)
501 		return 0;
502 	/* if ptraced, let the tracer determine */
503 	return !tsk->ptrace;
504 }
505 
506 /*
507  * Notify the system that a driver wants to block all signals for this
508  * process, and wants to be notified if any signals at all were to be
509  * sent/acted upon.  If the notifier routine returns non-zero, then the
510  * signal will be acted upon after all.  If the notifier routine returns 0,
511  * then then signal will be blocked.  Only one block per process is
512  * allowed.  priv is a pointer to private data that the notifier routine
513  * can use to determine if the signal should be blocked or not.
514  */
515 void
516 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
517 {
518 	unsigned long flags;
519 
520 	spin_lock_irqsave(&current->sighand->siglock, flags);
521 	current->notifier_mask = mask;
522 	current->notifier_data = priv;
523 	current->notifier = notifier;
524 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
525 }
526 
527 /* Notify the system that blocking has ended. */
528 
529 void
530 unblock_all_signals(void)
531 {
532 	unsigned long flags;
533 
534 	spin_lock_irqsave(&current->sighand->siglock, flags);
535 	current->notifier = NULL;
536 	current->notifier_data = NULL;
537 	recalc_sigpending();
538 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
539 }
540 
541 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
542 {
543 	struct sigqueue *q, *first = NULL;
544 
545 	/*
546 	 * Collect the siginfo appropriate to this signal.  Check if
547 	 * there is another siginfo for the same signal.
548 	*/
549 	list_for_each_entry(q, &list->list, list) {
550 		if (q->info.si_signo == sig) {
551 			if (first)
552 				goto still_pending;
553 			first = q;
554 		}
555 	}
556 
557 	sigdelset(&list->signal, sig);
558 
559 	if (first) {
560 still_pending:
561 		list_del_init(&first->list);
562 		copy_siginfo(info, &first->info);
563 		__sigqueue_free(first);
564 	} else {
565 		/*
566 		 * Ok, it wasn't in the queue.  This must be
567 		 * a fast-pathed signal or we must have been
568 		 * out of queue space.  So zero out the info.
569 		 */
570 		info->si_signo = sig;
571 		info->si_errno = 0;
572 		info->si_code = SI_USER;
573 		info->si_pid = 0;
574 		info->si_uid = 0;
575 	}
576 }
577 
578 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
579 			siginfo_t *info)
580 {
581 	int sig = next_signal(pending, mask);
582 
583 	if (sig) {
584 		if (current->notifier) {
585 			if (sigismember(current->notifier_mask, sig)) {
586 				if (!(current->notifier)(current->notifier_data)) {
587 					clear_thread_flag(TIF_SIGPENDING);
588 					return 0;
589 				}
590 			}
591 		}
592 
593 		collect_signal(sig, pending, info);
594 	}
595 
596 	return sig;
597 }
598 
599 /*
600  * Dequeue a signal and return the element to the caller, which is
601  * expected to free it.
602  *
603  * All callers have to hold the siglock.
604  */
605 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
606 {
607 	int signr;
608 
609 	/* We only dequeue private signals from ourselves, we don't let
610 	 * signalfd steal them
611 	 */
612 	signr = __dequeue_signal(&tsk->pending, mask, info);
613 	if (!signr) {
614 		signr = __dequeue_signal(&tsk->signal->shared_pending,
615 					 mask, info);
616 		/*
617 		 * itimer signal ?
618 		 *
619 		 * itimers are process shared and we restart periodic
620 		 * itimers in the signal delivery path to prevent DoS
621 		 * attacks in the high resolution timer case. This is
622 		 * compliant with the old way of self-restarting
623 		 * itimers, as the SIGALRM is a legacy signal and only
624 		 * queued once. Changing the restart behaviour to
625 		 * restart the timer in the signal dequeue path is
626 		 * reducing the timer noise on heavy loaded !highres
627 		 * systems too.
628 		 */
629 		if (unlikely(signr == SIGALRM)) {
630 			struct hrtimer *tmr = &tsk->signal->real_timer;
631 
632 			if (!hrtimer_is_queued(tmr) &&
633 			    tsk->signal->it_real_incr.tv64 != 0) {
634 				hrtimer_forward(tmr, tmr->base->get_time(),
635 						tsk->signal->it_real_incr);
636 				hrtimer_restart(tmr);
637 			}
638 		}
639 	}
640 
641 	recalc_sigpending();
642 	if (!signr)
643 		return 0;
644 
645 	if (unlikely(sig_kernel_stop(signr))) {
646 		/*
647 		 * Set a marker that we have dequeued a stop signal.  Our
648 		 * caller might release the siglock and then the pending
649 		 * stop signal it is about to process is no longer in the
650 		 * pending bitmasks, but must still be cleared by a SIGCONT
651 		 * (and overruled by a SIGKILL).  So those cases clear this
652 		 * shared flag after we've set it.  Note that this flag may
653 		 * remain set after the signal we return is ignored or
654 		 * handled.  That doesn't matter because its only purpose
655 		 * is to alert stop-signal processing code when another
656 		 * processor has come along and cleared the flag.
657 		 */
658 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
659 	}
660 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
661 		/*
662 		 * Release the siglock to ensure proper locking order
663 		 * of timer locks outside of siglocks.  Note, we leave
664 		 * irqs disabled here, since the posix-timers code is
665 		 * about to disable them again anyway.
666 		 */
667 		spin_unlock(&tsk->sighand->siglock);
668 		do_schedule_next_timer(info);
669 		spin_lock(&tsk->sighand->siglock);
670 	}
671 	return signr;
672 }
673 
674 /*
675  * Tell a process that it has a new active signal..
676  *
677  * NOTE! we rely on the previous spin_lock to
678  * lock interrupts for us! We can only be called with
679  * "siglock" held, and the local interrupt must
680  * have been disabled when that got acquired!
681  *
682  * No need to set need_resched since signal event passing
683  * goes through ->blocked
684  */
685 void signal_wake_up_state(struct task_struct *t, unsigned int state)
686 {
687 	set_tsk_thread_flag(t, TIF_SIGPENDING);
688 	/*
689 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
690 	 * case. We don't check t->state here because there is a race with it
691 	 * executing another processor and just now entering stopped state.
692 	 * By using wake_up_state, we ensure the process will wake up and
693 	 * handle its death signal.
694 	 */
695 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
696 		kick_process(t);
697 }
698 
699 /*
700  * Remove signals in mask from the pending set and queue.
701  * Returns 1 if any signals were found.
702  *
703  * All callers must be holding the siglock.
704  */
705 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
706 {
707 	struct sigqueue *q, *n;
708 	sigset_t m;
709 
710 	sigandsets(&m, mask, &s->signal);
711 	if (sigisemptyset(&m))
712 		return 0;
713 
714 	sigandnsets(&s->signal, &s->signal, mask);
715 	list_for_each_entry_safe(q, n, &s->list, list) {
716 		if (sigismember(mask, q->info.si_signo)) {
717 			list_del_init(&q->list);
718 			__sigqueue_free(q);
719 		}
720 	}
721 	return 1;
722 }
723 
724 static inline int is_si_special(const struct siginfo *info)
725 {
726 	return info <= SEND_SIG_FORCED;
727 }
728 
729 static inline bool si_fromuser(const struct siginfo *info)
730 {
731 	return info == SEND_SIG_NOINFO ||
732 		(!is_si_special(info) && SI_FROMUSER(info));
733 }
734 
735 /*
736  * called with RCU read lock from check_kill_permission()
737  */
738 static int kill_ok_by_cred(struct task_struct *t)
739 {
740 	const struct cred *cred = current_cred();
741 	const struct cred *tcred = __task_cred(t);
742 
743 	if (uid_eq(cred->euid, tcred->suid) ||
744 	    uid_eq(cred->euid, tcred->uid)  ||
745 	    uid_eq(cred->uid,  tcred->suid) ||
746 	    uid_eq(cred->uid,  tcred->uid))
747 		return 1;
748 
749 	if (ns_capable(tcred->user_ns, CAP_KILL))
750 		return 1;
751 
752 	return 0;
753 }
754 
755 /*
756  * Bad permissions for sending the signal
757  * - the caller must hold the RCU read lock
758  */
759 static int check_kill_permission(int sig, struct siginfo *info,
760 				 struct task_struct *t)
761 {
762 	struct pid *sid;
763 	int error;
764 
765 	if (!valid_signal(sig))
766 		return -EINVAL;
767 
768 	if (!si_fromuser(info))
769 		return 0;
770 
771 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
772 	if (error)
773 		return error;
774 
775 	if (!same_thread_group(current, t) &&
776 	    !kill_ok_by_cred(t)) {
777 		switch (sig) {
778 		case SIGCONT:
779 			sid = task_session(t);
780 			/*
781 			 * We don't return the error if sid == NULL. The
782 			 * task was unhashed, the caller must notice this.
783 			 */
784 			if (!sid || sid == task_session(current))
785 				break;
786 		default:
787 			return -EPERM;
788 		}
789 	}
790 
791 	return security_task_kill(t, info, sig, 0);
792 }
793 
794 /**
795  * ptrace_trap_notify - schedule trap to notify ptracer
796  * @t: tracee wanting to notify tracer
797  *
798  * This function schedules sticky ptrace trap which is cleared on the next
799  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
800  * ptracer.
801  *
802  * If @t is running, STOP trap will be taken.  If trapped for STOP and
803  * ptracer is listening for events, tracee is woken up so that it can
804  * re-trap for the new event.  If trapped otherwise, STOP trap will be
805  * eventually taken without returning to userland after the existing traps
806  * are finished by PTRACE_CONT.
807  *
808  * CONTEXT:
809  * Must be called with @task->sighand->siglock held.
810  */
811 static void ptrace_trap_notify(struct task_struct *t)
812 {
813 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
814 	assert_spin_locked(&t->sighand->siglock);
815 
816 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
817 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
818 }
819 
820 /*
821  * Handle magic process-wide effects of stop/continue signals. Unlike
822  * the signal actions, these happen immediately at signal-generation
823  * time regardless of blocking, ignoring, or handling.  This does the
824  * actual continuing for SIGCONT, but not the actual stopping for stop
825  * signals. The process stop is done as a signal action for SIG_DFL.
826  *
827  * Returns true if the signal should be actually delivered, otherwise
828  * it should be dropped.
829  */
830 static bool prepare_signal(int sig, struct task_struct *p, bool force)
831 {
832 	struct signal_struct *signal = p->signal;
833 	struct task_struct *t;
834 	sigset_t flush;
835 
836 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
837 		if (signal->flags & SIGNAL_GROUP_COREDUMP)
838 			return sig == SIGKILL;
839 		/*
840 		 * The process is in the middle of dying, nothing to do.
841 		 */
842 	} else if (sig_kernel_stop(sig)) {
843 		/*
844 		 * This is a stop signal.  Remove SIGCONT from all queues.
845 		 */
846 		siginitset(&flush, sigmask(SIGCONT));
847 		flush_sigqueue_mask(&flush, &signal->shared_pending);
848 		for_each_thread(p, t)
849 			flush_sigqueue_mask(&flush, &t->pending);
850 	} else if (sig == SIGCONT) {
851 		unsigned int why;
852 		/*
853 		 * Remove all stop signals from all queues, wake all threads.
854 		 */
855 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
856 		flush_sigqueue_mask(&flush, &signal->shared_pending);
857 		for_each_thread(p, t) {
858 			flush_sigqueue_mask(&flush, &t->pending);
859 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
860 			if (likely(!(t->ptrace & PT_SEIZED)))
861 				wake_up_state(t, __TASK_STOPPED);
862 			else
863 				ptrace_trap_notify(t);
864 		}
865 
866 		/*
867 		 * Notify the parent with CLD_CONTINUED if we were stopped.
868 		 *
869 		 * If we were in the middle of a group stop, we pretend it
870 		 * was already finished, and then continued. Since SIGCHLD
871 		 * doesn't queue we report only CLD_STOPPED, as if the next
872 		 * CLD_CONTINUED was dropped.
873 		 */
874 		why = 0;
875 		if (signal->flags & SIGNAL_STOP_STOPPED)
876 			why |= SIGNAL_CLD_CONTINUED;
877 		else if (signal->group_stop_count)
878 			why |= SIGNAL_CLD_STOPPED;
879 
880 		if (why) {
881 			/*
882 			 * The first thread which returns from do_signal_stop()
883 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
884 			 * notify its parent. See get_signal_to_deliver().
885 			 */
886 			signal->flags = why | SIGNAL_STOP_CONTINUED;
887 			signal->group_stop_count = 0;
888 			signal->group_exit_code = 0;
889 		}
890 	}
891 
892 	return !sig_ignored(p, sig, force);
893 }
894 
895 /*
896  * Test if P wants to take SIG.  After we've checked all threads with this,
897  * it's equivalent to finding no threads not blocking SIG.  Any threads not
898  * blocking SIG were ruled out because they are not running and already
899  * have pending signals.  Such threads will dequeue from the shared queue
900  * as soon as they're available, so putting the signal on the shared queue
901  * will be equivalent to sending it to one such thread.
902  */
903 static inline int wants_signal(int sig, struct task_struct *p)
904 {
905 	if (sigismember(&p->blocked, sig))
906 		return 0;
907 	if (p->flags & PF_EXITING)
908 		return 0;
909 	if (sig == SIGKILL)
910 		return 1;
911 	if (task_is_stopped_or_traced(p))
912 		return 0;
913 	return task_curr(p) || !signal_pending(p);
914 }
915 
916 static void complete_signal(int sig, struct task_struct *p, int group)
917 {
918 	struct signal_struct *signal = p->signal;
919 	struct task_struct *t;
920 
921 	/*
922 	 * Now find a thread we can wake up to take the signal off the queue.
923 	 *
924 	 * If the main thread wants the signal, it gets first crack.
925 	 * Probably the least surprising to the average bear.
926 	 */
927 	if (wants_signal(sig, p))
928 		t = p;
929 	else if (!group || thread_group_empty(p))
930 		/*
931 		 * There is just one thread and it does not need to be woken.
932 		 * It will dequeue unblocked signals before it runs again.
933 		 */
934 		return;
935 	else {
936 		/*
937 		 * Otherwise try to find a suitable thread.
938 		 */
939 		t = signal->curr_target;
940 		while (!wants_signal(sig, t)) {
941 			t = next_thread(t);
942 			if (t == signal->curr_target)
943 				/*
944 				 * No thread needs to be woken.
945 				 * Any eligible threads will see
946 				 * the signal in the queue soon.
947 				 */
948 				return;
949 		}
950 		signal->curr_target = t;
951 	}
952 
953 	/*
954 	 * Found a killable thread.  If the signal will be fatal,
955 	 * then start taking the whole group down immediately.
956 	 */
957 	if (sig_fatal(p, sig) &&
958 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
959 	    !sigismember(&t->real_blocked, sig) &&
960 	    (sig == SIGKILL || !t->ptrace)) {
961 		/*
962 		 * This signal will be fatal to the whole group.
963 		 */
964 		if (!sig_kernel_coredump(sig)) {
965 			/*
966 			 * Start a group exit and wake everybody up.
967 			 * This way we don't have other threads
968 			 * running and doing things after a slower
969 			 * thread has the fatal signal pending.
970 			 */
971 			signal->flags = SIGNAL_GROUP_EXIT;
972 			signal->group_exit_code = sig;
973 			signal->group_stop_count = 0;
974 			t = p;
975 			do {
976 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
977 				sigaddset(&t->pending.signal, SIGKILL);
978 				signal_wake_up(t, 1);
979 			} while_each_thread(p, t);
980 			return;
981 		}
982 	}
983 
984 	/*
985 	 * The signal is already in the shared-pending queue.
986 	 * Tell the chosen thread to wake up and dequeue it.
987 	 */
988 	signal_wake_up(t, sig == SIGKILL);
989 	return;
990 }
991 
992 static inline int legacy_queue(struct sigpending *signals, int sig)
993 {
994 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
995 }
996 
997 #ifdef CONFIG_USER_NS
998 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
999 {
1000 	if (current_user_ns() == task_cred_xxx(t, user_ns))
1001 		return;
1002 
1003 	if (SI_FROMKERNEL(info))
1004 		return;
1005 
1006 	rcu_read_lock();
1007 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1008 					make_kuid(current_user_ns(), info->si_uid));
1009 	rcu_read_unlock();
1010 }
1011 #else
1012 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1013 {
1014 	return;
1015 }
1016 #endif
1017 
1018 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1019 			int group, int from_ancestor_ns)
1020 {
1021 	struct sigpending *pending;
1022 	struct sigqueue *q;
1023 	int override_rlimit;
1024 	int ret = 0, result;
1025 
1026 	assert_spin_locked(&t->sighand->siglock);
1027 
1028 	result = TRACE_SIGNAL_IGNORED;
1029 	if (!prepare_signal(sig, t,
1030 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1031 		goto ret;
1032 
1033 	pending = group ? &t->signal->shared_pending : &t->pending;
1034 	/*
1035 	 * Short-circuit ignored signals and support queuing
1036 	 * exactly one non-rt signal, so that we can get more
1037 	 * detailed information about the cause of the signal.
1038 	 */
1039 	result = TRACE_SIGNAL_ALREADY_PENDING;
1040 	if (legacy_queue(pending, sig))
1041 		goto ret;
1042 
1043 	result = TRACE_SIGNAL_DELIVERED;
1044 	/*
1045 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1046 	 * or SIGKILL.
1047 	 */
1048 	if (info == SEND_SIG_FORCED)
1049 		goto out_set;
1050 
1051 	/*
1052 	 * Real-time signals must be queued if sent by sigqueue, or
1053 	 * some other real-time mechanism.  It is implementation
1054 	 * defined whether kill() does so.  We attempt to do so, on
1055 	 * the principle of least surprise, but since kill is not
1056 	 * allowed to fail with EAGAIN when low on memory we just
1057 	 * make sure at least one signal gets delivered and don't
1058 	 * pass on the info struct.
1059 	 */
1060 	if (sig < SIGRTMIN)
1061 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1062 	else
1063 		override_rlimit = 0;
1064 
1065 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1066 		override_rlimit);
1067 	if (q) {
1068 		list_add_tail(&q->list, &pending->list);
1069 		switch ((unsigned long) info) {
1070 		case (unsigned long) SEND_SIG_NOINFO:
1071 			q->info.si_signo = sig;
1072 			q->info.si_errno = 0;
1073 			q->info.si_code = SI_USER;
1074 			q->info.si_pid = task_tgid_nr_ns(current,
1075 							task_active_pid_ns(t));
1076 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1077 			break;
1078 		case (unsigned long) SEND_SIG_PRIV:
1079 			q->info.si_signo = sig;
1080 			q->info.si_errno = 0;
1081 			q->info.si_code = SI_KERNEL;
1082 			q->info.si_pid = 0;
1083 			q->info.si_uid = 0;
1084 			break;
1085 		default:
1086 			copy_siginfo(&q->info, info);
1087 			if (from_ancestor_ns)
1088 				q->info.si_pid = 0;
1089 			break;
1090 		}
1091 
1092 		userns_fixup_signal_uid(&q->info, t);
1093 
1094 	} else if (!is_si_special(info)) {
1095 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1096 			/*
1097 			 * Queue overflow, abort.  We may abort if the
1098 			 * signal was rt and sent by user using something
1099 			 * other than kill().
1100 			 */
1101 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1102 			ret = -EAGAIN;
1103 			goto ret;
1104 		} else {
1105 			/*
1106 			 * This is a silent loss of information.  We still
1107 			 * send the signal, but the *info bits are lost.
1108 			 */
1109 			result = TRACE_SIGNAL_LOSE_INFO;
1110 		}
1111 	}
1112 
1113 out_set:
1114 	signalfd_notify(t, sig);
1115 	sigaddset(&pending->signal, sig);
1116 	complete_signal(sig, t, group);
1117 ret:
1118 	trace_signal_generate(sig, info, t, group, result);
1119 	return ret;
1120 }
1121 
1122 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1123 			int group)
1124 {
1125 	int from_ancestor_ns = 0;
1126 
1127 #ifdef CONFIG_PID_NS
1128 	from_ancestor_ns = si_fromuser(info) &&
1129 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1130 #endif
1131 
1132 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1133 }
1134 
1135 static void print_fatal_signal(int signr)
1136 {
1137 	struct pt_regs *regs = signal_pt_regs();
1138 	printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1139 
1140 #if defined(__i386__) && !defined(__arch_um__)
1141 	printk(KERN_INFO "code at %08lx: ", regs->ip);
1142 	{
1143 		int i;
1144 		for (i = 0; i < 16; i++) {
1145 			unsigned char insn;
1146 
1147 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1148 				break;
1149 			printk(KERN_CONT "%02x ", insn);
1150 		}
1151 	}
1152 	printk(KERN_CONT "\n");
1153 #endif
1154 	preempt_disable();
1155 	show_regs(regs);
1156 	preempt_enable();
1157 }
1158 
1159 static int __init setup_print_fatal_signals(char *str)
1160 {
1161 	get_option (&str, &print_fatal_signals);
1162 
1163 	return 1;
1164 }
1165 
1166 __setup("print-fatal-signals=", setup_print_fatal_signals);
1167 
1168 int
1169 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1170 {
1171 	return send_signal(sig, info, p, 1);
1172 }
1173 
1174 static int
1175 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1176 {
1177 	return send_signal(sig, info, t, 0);
1178 }
1179 
1180 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1181 			bool group)
1182 {
1183 	unsigned long flags;
1184 	int ret = -ESRCH;
1185 
1186 	if (lock_task_sighand(p, &flags)) {
1187 		ret = send_signal(sig, info, p, group);
1188 		unlock_task_sighand(p, &flags);
1189 	}
1190 
1191 	return ret;
1192 }
1193 
1194 /*
1195  * Force a signal that the process can't ignore: if necessary
1196  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1197  *
1198  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1199  * since we do not want to have a signal handler that was blocked
1200  * be invoked when user space had explicitly blocked it.
1201  *
1202  * We don't want to have recursive SIGSEGV's etc, for example,
1203  * that is why we also clear SIGNAL_UNKILLABLE.
1204  */
1205 int
1206 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1207 {
1208 	unsigned long int flags;
1209 	int ret, blocked, ignored;
1210 	struct k_sigaction *action;
1211 
1212 	spin_lock_irqsave(&t->sighand->siglock, flags);
1213 	action = &t->sighand->action[sig-1];
1214 	ignored = action->sa.sa_handler == SIG_IGN;
1215 	blocked = sigismember(&t->blocked, sig);
1216 	if (blocked || ignored) {
1217 		action->sa.sa_handler = SIG_DFL;
1218 		if (blocked) {
1219 			sigdelset(&t->blocked, sig);
1220 			recalc_sigpending_and_wake(t);
1221 		}
1222 	}
1223 	if (action->sa.sa_handler == SIG_DFL)
1224 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1225 	ret = specific_send_sig_info(sig, info, t);
1226 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1227 
1228 	return ret;
1229 }
1230 
1231 /*
1232  * Nuke all other threads in the group.
1233  */
1234 int zap_other_threads(struct task_struct *p)
1235 {
1236 	struct task_struct *t = p;
1237 	int count = 0;
1238 
1239 	p->signal->group_stop_count = 0;
1240 
1241 	while_each_thread(p, t) {
1242 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1243 		count++;
1244 
1245 		/* Don't bother with already dead threads */
1246 		if (t->exit_state)
1247 			continue;
1248 		sigaddset(&t->pending.signal, SIGKILL);
1249 		signal_wake_up(t, 1);
1250 	}
1251 
1252 	return count;
1253 }
1254 
1255 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1256 					   unsigned long *flags)
1257 {
1258 	struct sighand_struct *sighand;
1259 
1260 	for (;;) {
1261 		/*
1262 		 * Disable interrupts early to avoid deadlocks.
1263 		 * See rcu_read_unlock() comment header for details.
1264 		 */
1265 		local_irq_save(*flags);
1266 		rcu_read_lock();
1267 		sighand = rcu_dereference(tsk->sighand);
1268 		if (unlikely(sighand == NULL)) {
1269 			rcu_read_unlock();
1270 			local_irq_restore(*flags);
1271 			break;
1272 		}
1273 		/*
1274 		 * This sighand can be already freed and even reused, but
1275 		 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
1276 		 * initializes ->siglock: this slab can't go away, it has
1277 		 * the same object type, ->siglock can't be reinitialized.
1278 		 *
1279 		 * We need to ensure that tsk->sighand is still the same
1280 		 * after we take the lock, we can race with de_thread() or
1281 		 * __exit_signal(). In the latter case the next iteration
1282 		 * must see ->sighand == NULL.
1283 		 */
1284 		spin_lock(&sighand->siglock);
1285 		if (likely(sighand == tsk->sighand)) {
1286 			rcu_read_unlock();
1287 			break;
1288 		}
1289 		spin_unlock(&sighand->siglock);
1290 		rcu_read_unlock();
1291 		local_irq_restore(*flags);
1292 	}
1293 
1294 	return sighand;
1295 }
1296 
1297 /*
1298  * send signal info to all the members of a group
1299  */
1300 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1301 {
1302 	int ret;
1303 
1304 	rcu_read_lock();
1305 	ret = check_kill_permission(sig, info, p);
1306 	rcu_read_unlock();
1307 
1308 	if (!ret && sig)
1309 		ret = do_send_sig_info(sig, info, p, true);
1310 
1311 	return ret;
1312 }
1313 
1314 /*
1315  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1316  * control characters do (^C, ^Z etc)
1317  * - the caller must hold at least a readlock on tasklist_lock
1318  */
1319 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1320 {
1321 	struct task_struct *p = NULL;
1322 	int retval, success;
1323 
1324 	success = 0;
1325 	retval = -ESRCH;
1326 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1327 		int err = group_send_sig_info(sig, info, p);
1328 		success |= !err;
1329 		retval = err;
1330 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1331 	return success ? 0 : retval;
1332 }
1333 
1334 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1335 {
1336 	int error = -ESRCH;
1337 	struct task_struct *p;
1338 
1339 	for (;;) {
1340 		rcu_read_lock();
1341 		p = pid_task(pid, PIDTYPE_PID);
1342 		if (p)
1343 			error = group_send_sig_info(sig, info, p);
1344 		rcu_read_unlock();
1345 		if (likely(!p || error != -ESRCH))
1346 			return error;
1347 
1348 		/*
1349 		 * The task was unhashed in between, try again.  If it
1350 		 * is dead, pid_task() will return NULL, if we race with
1351 		 * de_thread() it will find the new leader.
1352 		 */
1353 	}
1354 }
1355 
1356 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1357 {
1358 	int error;
1359 	rcu_read_lock();
1360 	error = kill_pid_info(sig, info, find_vpid(pid));
1361 	rcu_read_unlock();
1362 	return error;
1363 }
1364 
1365 static int kill_as_cred_perm(const struct cred *cred,
1366 			     struct task_struct *target)
1367 {
1368 	const struct cred *pcred = __task_cred(target);
1369 	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1370 	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1371 		return 0;
1372 	return 1;
1373 }
1374 
1375 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1376 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1377 			 const struct cred *cred, u32 secid)
1378 {
1379 	int ret = -EINVAL;
1380 	struct task_struct *p;
1381 	unsigned long flags;
1382 
1383 	if (!valid_signal(sig))
1384 		return ret;
1385 
1386 	rcu_read_lock();
1387 	p = pid_task(pid, PIDTYPE_PID);
1388 	if (!p) {
1389 		ret = -ESRCH;
1390 		goto out_unlock;
1391 	}
1392 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1393 		ret = -EPERM;
1394 		goto out_unlock;
1395 	}
1396 	ret = security_task_kill(p, info, sig, secid);
1397 	if (ret)
1398 		goto out_unlock;
1399 
1400 	if (sig) {
1401 		if (lock_task_sighand(p, &flags)) {
1402 			ret = __send_signal(sig, info, p, 1, 0);
1403 			unlock_task_sighand(p, &flags);
1404 		} else
1405 			ret = -ESRCH;
1406 	}
1407 out_unlock:
1408 	rcu_read_unlock();
1409 	return ret;
1410 }
1411 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1412 
1413 /*
1414  * kill_something_info() interprets pid in interesting ways just like kill(2).
1415  *
1416  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1417  * is probably wrong.  Should make it like BSD or SYSV.
1418  */
1419 
1420 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1421 {
1422 	int ret;
1423 
1424 	if (pid > 0) {
1425 		rcu_read_lock();
1426 		ret = kill_pid_info(sig, info, find_vpid(pid));
1427 		rcu_read_unlock();
1428 		return ret;
1429 	}
1430 
1431 	read_lock(&tasklist_lock);
1432 	if (pid != -1) {
1433 		ret = __kill_pgrp_info(sig, info,
1434 				pid ? find_vpid(-pid) : task_pgrp(current));
1435 	} else {
1436 		int retval = 0, count = 0;
1437 		struct task_struct * p;
1438 
1439 		for_each_process(p) {
1440 			if (task_pid_vnr(p) > 1 &&
1441 					!same_thread_group(p, current)) {
1442 				int err = group_send_sig_info(sig, info, p);
1443 				++count;
1444 				if (err != -EPERM)
1445 					retval = err;
1446 			}
1447 		}
1448 		ret = count ? retval : -ESRCH;
1449 	}
1450 	read_unlock(&tasklist_lock);
1451 
1452 	return ret;
1453 }
1454 
1455 /*
1456  * These are for backward compatibility with the rest of the kernel source.
1457  */
1458 
1459 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1460 {
1461 	/*
1462 	 * Make sure legacy kernel users don't send in bad values
1463 	 * (normal paths check this in check_kill_permission).
1464 	 */
1465 	if (!valid_signal(sig))
1466 		return -EINVAL;
1467 
1468 	return do_send_sig_info(sig, info, p, false);
1469 }
1470 
1471 #define __si_special(priv) \
1472 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1473 
1474 int
1475 send_sig(int sig, struct task_struct *p, int priv)
1476 {
1477 	return send_sig_info(sig, __si_special(priv), p);
1478 }
1479 
1480 void
1481 force_sig(int sig, struct task_struct *p)
1482 {
1483 	force_sig_info(sig, SEND_SIG_PRIV, p);
1484 }
1485 
1486 /*
1487  * When things go south during signal handling, we
1488  * will force a SIGSEGV. And if the signal that caused
1489  * the problem was already a SIGSEGV, we'll want to
1490  * make sure we don't even try to deliver the signal..
1491  */
1492 int
1493 force_sigsegv(int sig, struct task_struct *p)
1494 {
1495 	if (sig == SIGSEGV) {
1496 		unsigned long flags;
1497 		spin_lock_irqsave(&p->sighand->siglock, flags);
1498 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1499 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1500 	}
1501 	force_sig(SIGSEGV, p);
1502 	return 0;
1503 }
1504 
1505 int kill_pgrp(struct pid *pid, int sig, int priv)
1506 {
1507 	int ret;
1508 
1509 	read_lock(&tasklist_lock);
1510 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1511 	read_unlock(&tasklist_lock);
1512 
1513 	return ret;
1514 }
1515 EXPORT_SYMBOL(kill_pgrp);
1516 
1517 int kill_pid(struct pid *pid, int sig, int priv)
1518 {
1519 	return kill_pid_info(sig, __si_special(priv), pid);
1520 }
1521 EXPORT_SYMBOL(kill_pid);
1522 
1523 /*
1524  * These functions support sending signals using preallocated sigqueue
1525  * structures.  This is needed "because realtime applications cannot
1526  * afford to lose notifications of asynchronous events, like timer
1527  * expirations or I/O completions".  In the case of POSIX Timers
1528  * we allocate the sigqueue structure from the timer_create.  If this
1529  * allocation fails we are able to report the failure to the application
1530  * with an EAGAIN error.
1531  */
1532 struct sigqueue *sigqueue_alloc(void)
1533 {
1534 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1535 
1536 	if (q)
1537 		q->flags |= SIGQUEUE_PREALLOC;
1538 
1539 	return q;
1540 }
1541 
1542 void sigqueue_free(struct sigqueue *q)
1543 {
1544 	unsigned long flags;
1545 	spinlock_t *lock = &current->sighand->siglock;
1546 
1547 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1548 	/*
1549 	 * We must hold ->siglock while testing q->list
1550 	 * to serialize with collect_signal() or with
1551 	 * __exit_signal()->flush_sigqueue().
1552 	 */
1553 	spin_lock_irqsave(lock, flags);
1554 	q->flags &= ~SIGQUEUE_PREALLOC;
1555 	/*
1556 	 * If it is queued it will be freed when dequeued,
1557 	 * like the "regular" sigqueue.
1558 	 */
1559 	if (!list_empty(&q->list))
1560 		q = NULL;
1561 	spin_unlock_irqrestore(lock, flags);
1562 
1563 	if (q)
1564 		__sigqueue_free(q);
1565 }
1566 
1567 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1568 {
1569 	int sig = q->info.si_signo;
1570 	struct sigpending *pending;
1571 	unsigned long flags;
1572 	int ret, result;
1573 
1574 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1575 
1576 	ret = -1;
1577 	if (!likely(lock_task_sighand(t, &flags)))
1578 		goto ret;
1579 
1580 	ret = 1; /* the signal is ignored */
1581 	result = TRACE_SIGNAL_IGNORED;
1582 	if (!prepare_signal(sig, t, false))
1583 		goto out;
1584 
1585 	ret = 0;
1586 	if (unlikely(!list_empty(&q->list))) {
1587 		/*
1588 		 * If an SI_TIMER entry is already queue just increment
1589 		 * the overrun count.
1590 		 */
1591 		BUG_ON(q->info.si_code != SI_TIMER);
1592 		q->info.si_overrun++;
1593 		result = TRACE_SIGNAL_ALREADY_PENDING;
1594 		goto out;
1595 	}
1596 	q->info.si_overrun = 0;
1597 
1598 	signalfd_notify(t, sig);
1599 	pending = group ? &t->signal->shared_pending : &t->pending;
1600 	list_add_tail(&q->list, &pending->list);
1601 	sigaddset(&pending->signal, sig);
1602 	complete_signal(sig, t, group);
1603 	result = TRACE_SIGNAL_DELIVERED;
1604 out:
1605 	trace_signal_generate(sig, &q->info, t, group, result);
1606 	unlock_task_sighand(t, &flags);
1607 ret:
1608 	return ret;
1609 }
1610 
1611 /*
1612  * Let a parent know about the death of a child.
1613  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1614  *
1615  * Returns true if our parent ignored us and so we've switched to
1616  * self-reaping.
1617  */
1618 bool do_notify_parent(struct task_struct *tsk, int sig)
1619 {
1620 	struct siginfo info;
1621 	unsigned long flags;
1622 	struct sighand_struct *psig;
1623 	bool autoreap = false;
1624 	cputime_t utime, stime;
1625 
1626 	BUG_ON(sig == -1);
1627 
1628  	/* do_notify_parent_cldstop should have been called instead.  */
1629  	BUG_ON(task_is_stopped_or_traced(tsk));
1630 
1631 	BUG_ON(!tsk->ptrace &&
1632 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1633 
1634 	if (sig != SIGCHLD) {
1635 		/*
1636 		 * This is only possible if parent == real_parent.
1637 		 * Check if it has changed security domain.
1638 		 */
1639 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1640 			sig = SIGCHLD;
1641 	}
1642 
1643 	info.si_signo = sig;
1644 	info.si_errno = 0;
1645 	/*
1646 	 * We are under tasklist_lock here so our parent is tied to
1647 	 * us and cannot change.
1648 	 *
1649 	 * task_active_pid_ns will always return the same pid namespace
1650 	 * until a task passes through release_task.
1651 	 *
1652 	 * write_lock() currently calls preempt_disable() which is the
1653 	 * same as rcu_read_lock(), but according to Oleg, this is not
1654 	 * correct to rely on this
1655 	 */
1656 	rcu_read_lock();
1657 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1658 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1659 				       task_uid(tsk));
1660 	rcu_read_unlock();
1661 
1662 	task_cputime(tsk, &utime, &stime);
1663 	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1664 	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1665 
1666 	info.si_status = tsk->exit_code & 0x7f;
1667 	if (tsk->exit_code & 0x80)
1668 		info.si_code = CLD_DUMPED;
1669 	else if (tsk->exit_code & 0x7f)
1670 		info.si_code = CLD_KILLED;
1671 	else {
1672 		info.si_code = CLD_EXITED;
1673 		info.si_status = tsk->exit_code >> 8;
1674 	}
1675 
1676 	psig = tsk->parent->sighand;
1677 	spin_lock_irqsave(&psig->siglock, flags);
1678 	if (!tsk->ptrace && sig == SIGCHLD &&
1679 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1680 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1681 		/*
1682 		 * We are exiting and our parent doesn't care.  POSIX.1
1683 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1684 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1685 		 * automatically and not left for our parent's wait4 call.
1686 		 * Rather than having the parent do it as a magic kind of
1687 		 * signal handler, we just set this to tell do_exit that we
1688 		 * can be cleaned up without becoming a zombie.  Note that
1689 		 * we still call __wake_up_parent in this case, because a
1690 		 * blocked sys_wait4 might now return -ECHILD.
1691 		 *
1692 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1693 		 * is implementation-defined: we do (if you don't want
1694 		 * it, just use SIG_IGN instead).
1695 		 */
1696 		autoreap = true;
1697 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1698 			sig = 0;
1699 	}
1700 	if (valid_signal(sig) && sig)
1701 		__group_send_sig_info(sig, &info, tsk->parent);
1702 	__wake_up_parent(tsk, tsk->parent);
1703 	spin_unlock_irqrestore(&psig->siglock, flags);
1704 
1705 	return autoreap;
1706 }
1707 
1708 /**
1709  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1710  * @tsk: task reporting the state change
1711  * @for_ptracer: the notification is for ptracer
1712  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1713  *
1714  * Notify @tsk's parent that the stopped/continued state has changed.  If
1715  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1716  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1717  *
1718  * CONTEXT:
1719  * Must be called with tasklist_lock at least read locked.
1720  */
1721 static void do_notify_parent_cldstop(struct task_struct *tsk,
1722 				     bool for_ptracer, int why)
1723 {
1724 	struct siginfo info;
1725 	unsigned long flags;
1726 	struct task_struct *parent;
1727 	struct sighand_struct *sighand;
1728 	cputime_t utime, stime;
1729 
1730 	if (for_ptracer) {
1731 		parent = tsk->parent;
1732 	} else {
1733 		tsk = tsk->group_leader;
1734 		parent = tsk->real_parent;
1735 	}
1736 
1737 	info.si_signo = SIGCHLD;
1738 	info.si_errno = 0;
1739 	/*
1740 	 * see comment in do_notify_parent() about the following 4 lines
1741 	 */
1742 	rcu_read_lock();
1743 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1744 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1745 	rcu_read_unlock();
1746 
1747 	task_cputime(tsk, &utime, &stime);
1748 	info.si_utime = cputime_to_clock_t(utime);
1749 	info.si_stime = cputime_to_clock_t(stime);
1750 
1751  	info.si_code = why;
1752  	switch (why) {
1753  	case CLD_CONTINUED:
1754  		info.si_status = SIGCONT;
1755  		break;
1756  	case CLD_STOPPED:
1757  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1758  		break;
1759  	case CLD_TRAPPED:
1760  		info.si_status = tsk->exit_code & 0x7f;
1761  		break;
1762  	default:
1763  		BUG();
1764  	}
1765 
1766 	sighand = parent->sighand;
1767 	spin_lock_irqsave(&sighand->siglock, flags);
1768 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1769 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1770 		__group_send_sig_info(SIGCHLD, &info, parent);
1771 	/*
1772 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1773 	 */
1774 	__wake_up_parent(tsk, parent);
1775 	spin_unlock_irqrestore(&sighand->siglock, flags);
1776 }
1777 
1778 static inline int may_ptrace_stop(void)
1779 {
1780 	if (!likely(current->ptrace))
1781 		return 0;
1782 	/*
1783 	 * Are we in the middle of do_coredump?
1784 	 * If so and our tracer is also part of the coredump stopping
1785 	 * is a deadlock situation, and pointless because our tracer
1786 	 * is dead so don't allow us to stop.
1787 	 * If SIGKILL was already sent before the caller unlocked
1788 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1789 	 * is safe to enter schedule().
1790 	 *
1791 	 * This is almost outdated, a task with the pending SIGKILL can't
1792 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1793 	 * after SIGKILL was already dequeued.
1794 	 */
1795 	if (unlikely(current->mm->core_state) &&
1796 	    unlikely(current->mm == current->parent->mm))
1797 		return 0;
1798 
1799 	return 1;
1800 }
1801 
1802 /*
1803  * Return non-zero if there is a SIGKILL that should be waking us up.
1804  * Called with the siglock held.
1805  */
1806 static int sigkill_pending(struct task_struct *tsk)
1807 {
1808 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1809 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1810 }
1811 
1812 /*
1813  * This must be called with current->sighand->siglock held.
1814  *
1815  * This should be the path for all ptrace stops.
1816  * We always set current->last_siginfo while stopped here.
1817  * That makes it a way to test a stopped process for
1818  * being ptrace-stopped vs being job-control-stopped.
1819  *
1820  * If we actually decide not to stop at all because the tracer
1821  * is gone, we keep current->exit_code unless clear_code.
1822  */
1823 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1824 	__releases(&current->sighand->siglock)
1825 	__acquires(&current->sighand->siglock)
1826 {
1827 	bool gstop_done = false;
1828 
1829 	if (arch_ptrace_stop_needed(exit_code, info)) {
1830 		/*
1831 		 * The arch code has something special to do before a
1832 		 * ptrace stop.  This is allowed to block, e.g. for faults
1833 		 * on user stack pages.  We can't keep the siglock while
1834 		 * calling arch_ptrace_stop, so we must release it now.
1835 		 * To preserve proper semantics, we must do this before
1836 		 * any signal bookkeeping like checking group_stop_count.
1837 		 * Meanwhile, a SIGKILL could come in before we retake the
1838 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1839 		 * So after regaining the lock, we must check for SIGKILL.
1840 		 */
1841 		spin_unlock_irq(&current->sighand->siglock);
1842 		arch_ptrace_stop(exit_code, info);
1843 		spin_lock_irq(&current->sighand->siglock);
1844 		if (sigkill_pending(current))
1845 			return;
1846 	}
1847 
1848 	/*
1849 	 * We're committing to trapping.  TRACED should be visible before
1850 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1851 	 * Also, transition to TRACED and updates to ->jobctl should be
1852 	 * atomic with respect to siglock and should be done after the arch
1853 	 * hook as siglock is released and regrabbed across it.
1854 	 */
1855 	set_current_state(TASK_TRACED);
1856 
1857 	current->last_siginfo = info;
1858 	current->exit_code = exit_code;
1859 
1860 	/*
1861 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1862 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1863 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1864 	 * could be clear now.  We act as if SIGCONT is received after
1865 	 * TASK_TRACED is entered - ignore it.
1866 	 */
1867 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1868 		gstop_done = task_participate_group_stop(current);
1869 
1870 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1871 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1872 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1873 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1874 
1875 	/* entering a trap, clear TRAPPING */
1876 	task_clear_jobctl_trapping(current);
1877 
1878 	spin_unlock_irq(&current->sighand->siglock);
1879 	read_lock(&tasklist_lock);
1880 	if (may_ptrace_stop()) {
1881 		/*
1882 		 * Notify parents of the stop.
1883 		 *
1884 		 * While ptraced, there are two parents - the ptracer and
1885 		 * the real_parent of the group_leader.  The ptracer should
1886 		 * know about every stop while the real parent is only
1887 		 * interested in the completion of group stop.  The states
1888 		 * for the two don't interact with each other.  Notify
1889 		 * separately unless they're gonna be duplicates.
1890 		 */
1891 		do_notify_parent_cldstop(current, true, why);
1892 		if (gstop_done && ptrace_reparented(current))
1893 			do_notify_parent_cldstop(current, false, why);
1894 
1895 		/*
1896 		 * Don't want to allow preemption here, because
1897 		 * sys_ptrace() needs this task to be inactive.
1898 		 *
1899 		 * XXX: implement read_unlock_no_resched().
1900 		 */
1901 		preempt_disable();
1902 		read_unlock(&tasklist_lock);
1903 		preempt_enable_no_resched();
1904 		freezable_schedule();
1905 	} else {
1906 		/*
1907 		 * By the time we got the lock, our tracer went away.
1908 		 * Don't drop the lock yet, another tracer may come.
1909 		 *
1910 		 * If @gstop_done, the ptracer went away between group stop
1911 		 * completion and here.  During detach, it would have set
1912 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1913 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1914 		 * the real parent of the group stop completion is enough.
1915 		 */
1916 		if (gstop_done)
1917 			do_notify_parent_cldstop(current, false, why);
1918 
1919 		/* tasklist protects us from ptrace_freeze_traced() */
1920 		__set_current_state(TASK_RUNNING);
1921 		if (clear_code)
1922 			current->exit_code = 0;
1923 		read_unlock(&tasklist_lock);
1924 	}
1925 
1926 	/*
1927 	 * We are back.  Now reacquire the siglock before touching
1928 	 * last_siginfo, so that we are sure to have synchronized with
1929 	 * any signal-sending on another CPU that wants to examine it.
1930 	 */
1931 	spin_lock_irq(&current->sighand->siglock);
1932 	current->last_siginfo = NULL;
1933 
1934 	/* LISTENING can be set only during STOP traps, clear it */
1935 	current->jobctl &= ~JOBCTL_LISTENING;
1936 
1937 	/*
1938 	 * Queued signals ignored us while we were stopped for tracing.
1939 	 * So check for any that we should take before resuming user mode.
1940 	 * This sets TIF_SIGPENDING, but never clears it.
1941 	 */
1942 	recalc_sigpending_tsk(current);
1943 }
1944 
1945 static void ptrace_do_notify(int signr, int exit_code, int why)
1946 {
1947 	siginfo_t info;
1948 
1949 	memset(&info, 0, sizeof info);
1950 	info.si_signo = signr;
1951 	info.si_code = exit_code;
1952 	info.si_pid = task_pid_vnr(current);
1953 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1954 
1955 	/* Let the debugger run.  */
1956 	ptrace_stop(exit_code, why, 1, &info);
1957 }
1958 
1959 void ptrace_notify(int exit_code)
1960 {
1961 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1962 	if (unlikely(current->task_works))
1963 		task_work_run();
1964 
1965 	spin_lock_irq(&current->sighand->siglock);
1966 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1967 	spin_unlock_irq(&current->sighand->siglock);
1968 }
1969 
1970 /**
1971  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1972  * @signr: signr causing group stop if initiating
1973  *
1974  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1975  * and participate in it.  If already set, participate in the existing
1976  * group stop.  If participated in a group stop (and thus slept), %true is
1977  * returned with siglock released.
1978  *
1979  * If ptraced, this function doesn't handle stop itself.  Instead,
1980  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1981  * untouched.  The caller must ensure that INTERRUPT trap handling takes
1982  * places afterwards.
1983  *
1984  * CONTEXT:
1985  * Must be called with @current->sighand->siglock held, which is released
1986  * on %true return.
1987  *
1988  * RETURNS:
1989  * %false if group stop is already cancelled or ptrace trap is scheduled.
1990  * %true if participated in group stop.
1991  */
1992 static bool do_signal_stop(int signr)
1993 	__releases(&current->sighand->siglock)
1994 {
1995 	struct signal_struct *sig = current->signal;
1996 
1997 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1998 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1999 		struct task_struct *t;
2000 
2001 		/* signr will be recorded in task->jobctl for retries */
2002 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2003 
2004 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2005 		    unlikely(signal_group_exit(sig)))
2006 			return false;
2007 		/*
2008 		 * There is no group stop already in progress.  We must
2009 		 * initiate one now.
2010 		 *
2011 		 * While ptraced, a task may be resumed while group stop is
2012 		 * still in effect and then receive a stop signal and
2013 		 * initiate another group stop.  This deviates from the
2014 		 * usual behavior as two consecutive stop signals can't
2015 		 * cause two group stops when !ptraced.  That is why we
2016 		 * also check !task_is_stopped(t) below.
2017 		 *
2018 		 * The condition can be distinguished by testing whether
2019 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2020 		 * group_exit_code in such case.
2021 		 *
2022 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2023 		 * an intervening stop signal is required to cause two
2024 		 * continued events regardless of ptrace.
2025 		 */
2026 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2027 			sig->group_exit_code = signr;
2028 
2029 		sig->group_stop_count = 0;
2030 
2031 		if (task_set_jobctl_pending(current, signr | gstop))
2032 			sig->group_stop_count++;
2033 
2034 		t = current;
2035 		while_each_thread(current, t) {
2036 			/*
2037 			 * Setting state to TASK_STOPPED for a group
2038 			 * stop is always done with the siglock held,
2039 			 * so this check has no races.
2040 			 */
2041 			if (!task_is_stopped(t) &&
2042 			    task_set_jobctl_pending(t, signr | gstop)) {
2043 				sig->group_stop_count++;
2044 				if (likely(!(t->ptrace & PT_SEIZED)))
2045 					signal_wake_up(t, 0);
2046 				else
2047 					ptrace_trap_notify(t);
2048 			}
2049 		}
2050 	}
2051 
2052 	if (likely(!current->ptrace)) {
2053 		int notify = 0;
2054 
2055 		/*
2056 		 * If there are no other threads in the group, or if there
2057 		 * is a group stop in progress and we are the last to stop,
2058 		 * report to the parent.
2059 		 */
2060 		if (task_participate_group_stop(current))
2061 			notify = CLD_STOPPED;
2062 
2063 		__set_current_state(TASK_STOPPED);
2064 		spin_unlock_irq(&current->sighand->siglock);
2065 
2066 		/*
2067 		 * Notify the parent of the group stop completion.  Because
2068 		 * we're not holding either the siglock or tasklist_lock
2069 		 * here, ptracer may attach inbetween; however, this is for
2070 		 * group stop and should always be delivered to the real
2071 		 * parent of the group leader.  The new ptracer will get
2072 		 * its notification when this task transitions into
2073 		 * TASK_TRACED.
2074 		 */
2075 		if (notify) {
2076 			read_lock(&tasklist_lock);
2077 			do_notify_parent_cldstop(current, false, notify);
2078 			read_unlock(&tasklist_lock);
2079 		}
2080 
2081 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2082 		freezable_schedule();
2083 		return true;
2084 	} else {
2085 		/*
2086 		 * While ptraced, group stop is handled by STOP trap.
2087 		 * Schedule it and let the caller deal with it.
2088 		 */
2089 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2090 		return false;
2091 	}
2092 }
2093 
2094 /**
2095  * do_jobctl_trap - take care of ptrace jobctl traps
2096  *
2097  * When PT_SEIZED, it's used for both group stop and explicit
2098  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2099  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2100  * the stop signal; otherwise, %SIGTRAP.
2101  *
2102  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2103  * number as exit_code and no siginfo.
2104  *
2105  * CONTEXT:
2106  * Must be called with @current->sighand->siglock held, which may be
2107  * released and re-acquired before returning with intervening sleep.
2108  */
2109 static void do_jobctl_trap(void)
2110 {
2111 	struct signal_struct *signal = current->signal;
2112 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2113 
2114 	if (current->ptrace & PT_SEIZED) {
2115 		if (!signal->group_stop_count &&
2116 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2117 			signr = SIGTRAP;
2118 		WARN_ON_ONCE(!signr);
2119 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2120 				 CLD_STOPPED);
2121 	} else {
2122 		WARN_ON_ONCE(!signr);
2123 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2124 		current->exit_code = 0;
2125 	}
2126 }
2127 
2128 static int ptrace_signal(int signr, siginfo_t *info)
2129 {
2130 	ptrace_signal_deliver();
2131 	/*
2132 	 * We do not check sig_kernel_stop(signr) but set this marker
2133 	 * unconditionally because we do not know whether debugger will
2134 	 * change signr. This flag has no meaning unless we are going
2135 	 * to stop after return from ptrace_stop(). In this case it will
2136 	 * be checked in do_signal_stop(), we should only stop if it was
2137 	 * not cleared by SIGCONT while we were sleeping. See also the
2138 	 * comment in dequeue_signal().
2139 	 */
2140 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2141 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2142 
2143 	/* We're back.  Did the debugger cancel the sig?  */
2144 	signr = current->exit_code;
2145 	if (signr == 0)
2146 		return signr;
2147 
2148 	current->exit_code = 0;
2149 
2150 	/*
2151 	 * Update the siginfo structure if the signal has
2152 	 * changed.  If the debugger wanted something
2153 	 * specific in the siginfo structure then it should
2154 	 * have updated *info via PTRACE_SETSIGINFO.
2155 	 */
2156 	if (signr != info->si_signo) {
2157 		info->si_signo = signr;
2158 		info->si_errno = 0;
2159 		info->si_code = SI_USER;
2160 		rcu_read_lock();
2161 		info->si_pid = task_pid_vnr(current->parent);
2162 		info->si_uid = from_kuid_munged(current_user_ns(),
2163 						task_uid(current->parent));
2164 		rcu_read_unlock();
2165 	}
2166 
2167 	/* If the (new) signal is now blocked, requeue it.  */
2168 	if (sigismember(&current->blocked, signr)) {
2169 		specific_send_sig_info(signr, info, current);
2170 		signr = 0;
2171 	}
2172 
2173 	return signr;
2174 }
2175 
2176 int get_signal(struct ksignal *ksig)
2177 {
2178 	struct sighand_struct *sighand = current->sighand;
2179 	struct signal_struct *signal = current->signal;
2180 	int signr;
2181 
2182 	if (unlikely(current->task_works))
2183 		task_work_run();
2184 
2185 	if (unlikely(uprobe_deny_signal()))
2186 		return 0;
2187 
2188 	/*
2189 	 * Do this once, we can't return to user-mode if freezing() == T.
2190 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2191 	 * thus do not need another check after return.
2192 	 */
2193 	try_to_freeze();
2194 
2195 relock:
2196 	spin_lock_irq(&sighand->siglock);
2197 	/*
2198 	 * Every stopped thread goes here after wakeup. Check to see if
2199 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2200 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2201 	 */
2202 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2203 		int why;
2204 
2205 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2206 			why = CLD_CONTINUED;
2207 		else
2208 			why = CLD_STOPPED;
2209 
2210 		signal->flags &= ~SIGNAL_CLD_MASK;
2211 
2212 		spin_unlock_irq(&sighand->siglock);
2213 
2214 		/*
2215 		 * Notify the parent that we're continuing.  This event is
2216 		 * always per-process and doesn't make whole lot of sense
2217 		 * for ptracers, who shouldn't consume the state via
2218 		 * wait(2) either, but, for backward compatibility, notify
2219 		 * the ptracer of the group leader too unless it's gonna be
2220 		 * a duplicate.
2221 		 */
2222 		read_lock(&tasklist_lock);
2223 		do_notify_parent_cldstop(current, false, why);
2224 
2225 		if (ptrace_reparented(current->group_leader))
2226 			do_notify_parent_cldstop(current->group_leader,
2227 						true, why);
2228 		read_unlock(&tasklist_lock);
2229 
2230 		goto relock;
2231 	}
2232 
2233 	for (;;) {
2234 		struct k_sigaction *ka;
2235 
2236 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2237 		    do_signal_stop(0))
2238 			goto relock;
2239 
2240 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2241 			do_jobctl_trap();
2242 			spin_unlock_irq(&sighand->siglock);
2243 			goto relock;
2244 		}
2245 
2246 		signr = dequeue_signal(current, &current->blocked, &ksig->info);
2247 
2248 		if (!signr)
2249 			break; /* will return 0 */
2250 
2251 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2252 			signr = ptrace_signal(signr, &ksig->info);
2253 			if (!signr)
2254 				continue;
2255 		}
2256 
2257 		ka = &sighand->action[signr-1];
2258 
2259 		/* Trace actually delivered signals. */
2260 		trace_signal_deliver(signr, &ksig->info, ka);
2261 
2262 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2263 			continue;
2264 		if (ka->sa.sa_handler != SIG_DFL) {
2265 			/* Run the handler.  */
2266 			ksig->ka = *ka;
2267 
2268 			if (ka->sa.sa_flags & SA_ONESHOT)
2269 				ka->sa.sa_handler = SIG_DFL;
2270 
2271 			break; /* will return non-zero "signr" value */
2272 		}
2273 
2274 		/*
2275 		 * Now we are doing the default action for this signal.
2276 		 */
2277 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2278 			continue;
2279 
2280 		/*
2281 		 * Global init gets no signals it doesn't want.
2282 		 * Container-init gets no signals it doesn't want from same
2283 		 * container.
2284 		 *
2285 		 * Note that if global/container-init sees a sig_kernel_only()
2286 		 * signal here, the signal must have been generated internally
2287 		 * or must have come from an ancestor namespace. In either
2288 		 * case, the signal cannot be dropped.
2289 		 */
2290 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2291 				!sig_kernel_only(signr))
2292 			continue;
2293 
2294 		if (sig_kernel_stop(signr)) {
2295 			/*
2296 			 * The default action is to stop all threads in
2297 			 * the thread group.  The job control signals
2298 			 * do nothing in an orphaned pgrp, but SIGSTOP
2299 			 * always works.  Note that siglock needs to be
2300 			 * dropped during the call to is_orphaned_pgrp()
2301 			 * because of lock ordering with tasklist_lock.
2302 			 * This allows an intervening SIGCONT to be posted.
2303 			 * We need to check for that and bail out if necessary.
2304 			 */
2305 			if (signr != SIGSTOP) {
2306 				spin_unlock_irq(&sighand->siglock);
2307 
2308 				/* signals can be posted during this window */
2309 
2310 				if (is_current_pgrp_orphaned())
2311 					goto relock;
2312 
2313 				spin_lock_irq(&sighand->siglock);
2314 			}
2315 
2316 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2317 				/* It released the siglock.  */
2318 				goto relock;
2319 			}
2320 
2321 			/*
2322 			 * We didn't actually stop, due to a race
2323 			 * with SIGCONT or something like that.
2324 			 */
2325 			continue;
2326 		}
2327 
2328 		spin_unlock_irq(&sighand->siglock);
2329 
2330 		/*
2331 		 * Anything else is fatal, maybe with a core dump.
2332 		 */
2333 		current->flags |= PF_SIGNALED;
2334 
2335 		if (sig_kernel_coredump(signr)) {
2336 			if (print_fatal_signals)
2337 				print_fatal_signal(ksig->info.si_signo);
2338 			proc_coredump_connector(current);
2339 			/*
2340 			 * If it was able to dump core, this kills all
2341 			 * other threads in the group and synchronizes with
2342 			 * their demise.  If we lost the race with another
2343 			 * thread getting here, it set group_exit_code
2344 			 * first and our do_group_exit call below will use
2345 			 * that value and ignore the one we pass it.
2346 			 */
2347 			do_coredump(&ksig->info);
2348 		}
2349 
2350 		/*
2351 		 * Death signals, no core dump.
2352 		 */
2353 		do_group_exit(ksig->info.si_signo);
2354 		/* NOTREACHED */
2355 	}
2356 	spin_unlock_irq(&sighand->siglock);
2357 
2358 	ksig->sig = signr;
2359 	return ksig->sig > 0;
2360 }
2361 
2362 /**
2363  * signal_delivered -
2364  * @ksig:		kernel signal struct
2365  * @stepping:		nonzero if debugger single-step or block-step in use
2366  *
2367  * This function should be called when a signal has successfully been
2368  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2369  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2370  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2371  */
2372 static void signal_delivered(struct ksignal *ksig, int stepping)
2373 {
2374 	sigset_t blocked;
2375 
2376 	/* A signal was successfully delivered, and the
2377 	   saved sigmask was stored on the signal frame,
2378 	   and will be restored by sigreturn.  So we can
2379 	   simply clear the restore sigmask flag.  */
2380 	clear_restore_sigmask();
2381 
2382 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2383 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2384 		sigaddset(&blocked, ksig->sig);
2385 	set_current_blocked(&blocked);
2386 	tracehook_signal_handler(stepping);
2387 }
2388 
2389 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2390 {
2391 	if (failed)
2392 		force_sigsegv(ksig->sig, current);
2393 	else
2394 		signal_delivered(ksig, stepping);
2395 }
2396 
2397 /*
2398  * It could be that complete_signal() picked us to notify about the
2399  * group-wide signal. Other threads should be notified now to take
2400  * the shared signals in @which since we will not.
2401  */
2402 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2403 {
2404 	sigset_t retarget;
2405 	struct task_struct *t;
2406 
2407 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2408 	if (sigisemptyset(&retarget))
2409 		return;
2410 
2411 	t = tsk;
2412 	while_each_thread(tsk, t) {
2413 		if (t->flags & PF_EXITING)
2414 			continue;
2415 
2416 		if (!has_pending_signals(&retarget, &t->blocked))
2417 			continue;
2418 		/* Remove the signals this thread can handle. */
2419 		sigandsets(&retarget, &retarget, &t->blocked);
2420 
2421 		if (!signal_pending(t))
2422 			signal_wake_up(t, 0);
2423 
2424 		if (sigisemptyset(&retarget))
2425 			break;
2426 	}
2427 }
2428 
2429 void exit_signals(struct task_struct *tsk)
2430 {
2431 	int group_stop = 0;
2432 	sigset_t unblocked;
2433 
2434 	/*
2435 	 * @tsk is about to have PF_EXITING set - lock out users which
2436 	 * expect stable threadgroup.
2437 	 */
2438 	threadgroup_change_begin(tsk);
2439 
2440 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2441 		tsk->flags |= PF_EXITING;
2442 		threadgroup_change_end(tsk);
2443 		return;
2444 	}
2445 
2446 	spin_lock_irq(&tsk->sighand->siglock);
2447 	/*
2448 	 * From now this task is not visible for group-wide signals,
2449 	 * see wants_signal(), do_signal_stop().
2450 	 */
2451 	tsk->flags |= PF_EXITING;
2452 
2453 	threadgroup_change_end(tsk);
2454 
2455 	if (!signal_pending(tsk))
2456 		goto out;
2457 
2458 	unblocked = tsk->blocked;
2459 	signotset(&unblocked);
2460 	retarget_shared_pending(tsk, &unblocked);
2461 
2462 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2463 	    task_participate_group_stop(tsk))
2464 		group_stop = CLD_STOPPED;
2465 out:
2466 	spin_unlock_irq(&tsk->sighand->siglock);
2467 
2468 	/*
2469 	 * If group stop has completed, deliver the notification.  This
2470 	 * should always go to the real parent of the group leader.
2471 	 */
2472 	if (unlikely(group_stop)) {
2473 		read_lock(&tasklist_lock);
2474 		do_notify_parent_cldstop(tsk, false, group_stop);
2475 		read_unlock(&tasklist_lock);
2476 	}
2477 }
2478 
2479 EXPORT_SYMBOL(recalc_sigpending);
2480 EXPORT_SYMBOL_GPL(dequeue_signal);
2481 EXPORT_SYMBOL(flush_signals);
2482 EXPORT_SYMBOL(force_sig);
2483 EXPORT_SYMBOL(send_sig);
2484 EXPORT_SYMBOL(send_sig_info);
2485 EXPORT_SYMBOL(sigprocmask);
2486 EXPORT_SYMBOL(block_all_signals);
2487 EXPORT_SYMBOL(unblock_all_signals);
2488 
2489 
2490 /*
2491  * System call entry points.
2492  */
2493 
2494 /**
2495  *  sys_restart_syscall - restart a system call
2496  */
2497 SYSCALL_DEFINE0(restart_syscall)
2498 {
2499 	struct restart_block *restart = &current->restart_block;
2500 	return restart->fn(restart);
2501 }
2502 
2503 long do_no_restart_syscall(struct restart_block *param)
2504 {
2505 	return -EINTR;
2506 }
2507 
2508 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2509 {
2510 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2511 		sigset_t newblocked;
2512 		/* A set of now blocked but previously unblocked signals. */
2513 		sigandnsets(&newblocked, newset, &current->blocked);
2514 		retarget_shared_pending(tsk, &newblocked);
2515 	}
2516 	tsk->blocked = *newset;
2517 	recalc_sigpending();
2518 }
2519 
2520 /**
2521  * set_current_blocked - change current->blocked mask
2522  * @newset: new mask
2523  *
2524  * It is wrong to change ->blocked directly, this helper should be used
2525  * to ensure the process can't miss a shared signal we are going to block.
2526  */
2527 void set_current_blocked(sigset_t *newset)
2528 {
2529 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2530 	__set_current_blocked(newset);
2531 }
2532 
2533 void __set_current_blocked(const sigset_t *newset)
2534 {
2535 	struct task_struct *tsk = current;
2536 
2537 	spin_lock_irq(&tsk->sighand->siglock);
2538 	__set_task_blocked(tsk, newset);
2539 	spin_unlock_irq(&tsk->sighand->siglock);
2540 }
2541 
2542 /*
2543  * This is also useful for kernel threads that want to temporarily
2544  * (or permanently) block certain signals.
2545  *
2546  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2547  * interface happily blocks "unblockable" signals like SIGKILL
2548  * and friends.
2549  */
2550 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2551 {
2552 	struct task_struct *tsk = current;
2553 	sigset_t newset;
2554 
2555 	/* Lockless, only current can change ->blocked, never from irq */
2556 	if (oldset)
2557 		*oldset = tsk->blocked;
2558 
2559 	switch (how) {
2560 	case SIG_BLOCK:
2561 		sigorsets(&newset, &tsk->blocked, set);
2562 		break;
2563 	case SIG_UNBLOCK:
2564 		sigandnsets(&newset, &tsk->blocked, set);
2565 		break;
2566 	case SIG_SETMASK:
2567 		newset = *set;
2568 		break;
2569 	default:
2570 		return -EINVAL;
2571 	}
2572 
2573 	__set_current_blocked(&newset);
2574 	return 0;
2575 }
2576 
2577 /**
2578  *  sys_rt_sigprocmask - change the list of currently blocked signals
2579  *  @how: whether to add, remove, or set signals
2580  *  @nset: stores pending signals
2581  *  @oset: previous value of signal mask if non-null
2582  *  @sigsetsize: size of sigset_t type
2583  */
2584 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2585 		sigset_t __user *, oset, size_t, sigsetsize)
2586 {
2587 	sigset_t old_set, new_set;
2588 	int error;
2589 
2590 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2591 	if (sigsetsize != sizeof(sigset_t))
2592 		return -EINVAL;
2593 
2594 	old_set = current->blocked;
2595 
2596 	if (nset) {
2597 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2598 			return -EFAULT;
2599 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2600 
2601 		error = sigprocmask(how, &new_set, NULL);
2602 		if (error)
2603 			return error;
2604 	}
2605 
2606 	if (oset) {
2607 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2608 			return -EFAULT;
2609 	}
2610 
2611 	return 0;
2612 }
2613 
2614 #ifdef CONFIG_COMPAT
2615 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2616 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2617 {
2618 #ifdef __BIG_ENDIAN
2619 	sigset_t old_set = current->blocked;
2620 
2621 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2622 	if (sigsetsize != sizeof(sigset_t))
2623 		return -EINVAL;
2624 
2625 	if (nset) {
2626 		compat_sigset_t new32;
2627 		sigset_t new_set;
2628 		int error;
2629 		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2630 			return -EFAULT;
2631 
2632 		sigset_from_compat(&new_set, &new32);
2633 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2634 
2635 		error = sigprocmask(how, &new_set, NULL);
2636 		if (error)
2637 			return error;
2638 	}
2639 	if (oset) {
2640 		compat_sigset_t old32;
2641 		sigset_to_compat(&old32, &old_set);
2642 		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2643 			return -EFAULT;
2644 	}
2645 	return 0;
2646 #else
2647 	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2648 				  (sigset_t __user *)oset, sigsetsize);
2649 #endif
2650 }
2651 #endif
2652 
2653 static int do_sigpending(void *set, unsigned long sigsetsize)
2654 {
2655 	if (sigsetsize > sizeof(sigset_t))
2656 		return -EINVAL;
2657 
2658 	spin_lock_irq(&current->sighand->siglock);
2659 	sigorsets(set, &current->pending.signal,
2660 		  &current->signal->shared_pending.signal);
2661 	spin_unlock_irq(&current->sighand->siglock);
2662 
2663 	/* Outside the lock because only this thread touches it.  */
2664 	sigandsets(set, &current->blocked, set);
2665 	return 0;
2666 }
2667 
2668 /**
2669  *  sys_rt_sigpending - examine a pending signal that has been raised
2670  *			while blocked
2671  *  @uset: stores pending signals
2672  *  @sigsetsize: size of sigset_t type or larger
2673  */
2674 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2675 {
2676 	sigset_t set;
2677 	int err = do_sigpending(&set, sigsetsize);
2678 	if (!err && copy_to_user(uset, &set, sigsetsize))
2679 		err = -EFAULT;
2680 	return err;
2681 }
2682 
2683 #ifdef CONFIG_COMPAT
2684 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2685 		compat_size_t, sigsetsize)
2686 {
2687 #ifdef __BIG_ENDIAN
2688 	sigset_t set;
2689 	int err = do_sigpending(&set, sigsetsize);
2690 	if (!err) {
2691 		compat_sigset_t set32;
2692 		sigset_to_compat(&set32, &set);
2693 		/* we can get here only if sigsetsize <= sizeof(set) */
2694 		if (copy_to_user(uset, &set32, sigsetsize))
2695 			err = -EFAULT;
2696 	}
2697 	return err;
2698 #else
2699 	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2700 #endif
2701 }
2702 #endif
2703 
2704 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2705 
2706 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2707 {
2708 	int err;
2709 
2710 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2711 		return -EFAULT;
2712 	if (from->si_code < 0)
2713 		return __copy_to_user(to, from, sizeof(siginfo_t))
2714 			? -EFAULT : 0;
2715 	/*
2716 	 * If you change siginfo_t structure, please be sure
2717 	 * this code is fixed accordingly.
2718 	 * Please remember to update the signalfd_copyinfo() function
2719 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2720 	 * It should never copy any pad contained in the structure
2721 	 * to avoid security leaks, but must copy the generic
2722 	 * 3 ints plus the relevant union member.
2723 	 */
2724 	err = __put_user(from->si_signo, &to->si_signo);
2725 	err |= __put_user(from->si_errno, &to->si_errno);
2726 	err |= __put_user((short)from->si_code, &to->si_code);
2727 	switch (from->si_code & __SI_MASK) {
2728 	case __SI_KILL:
2729 		err |= __put_user(from->si_pid, &to->si_pid);
2730 		err |= __put_user(from->si_uid, &to->si_uid);
2731 		break;
2732 	case __SI_TIMER:
2733 		 err |= __put_user(from->si_tid, &to->si_tid);
2734 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2735 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2736 		break;
2737 	case __SI_POLL:
2738 		err |= __put_user(from->si_band, &to->si_band);
2739 		err |= __put_user(from->si_fd, &to->si_fd);
2740 		break;
2741 	case __SI_FAULT:
2742 		err |= __put_user(from->si_addr, &to->si_addr);
2743 #ifdef __ARCH_SI_TRAPNO
2744 		err |= __put_user(from->si_trapno, &to->si_trapno);
2745 #endif
2746 #ifdef BUS_MCEERR_AO
2747 		/*
2748 		 * Other callers might not initialize the si_lsb field,
2749 		 * so check explicitly for the right codes here.
2750 		 */
2751 		if (from->si_signo == SIGBUS &&
2752 		    (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2753 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2754 #endif
2755 #ifdef SEGV_BNDERR
2756 		if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2757 			err |= __put_user(from->si_lower, &to->si_lower);
2758 			err |= __put_user(from->si_upper, &to->si_upper);
2759 		}
2760 #endif
2761 		break;
2762 	case __SI_CHLD:
2763 		err |= __put_user(from->si_pid, &to->si_pid);
2764 		err |= __put_user(from->si_uid, &to->si_uid);
2765 		err |= __put_user(from->si_status, &to->si_status);
2766 		err |= __put_user(from->si_utime, &to->si_utime);
2767 		err |= __put_user(from->si_stime, &to->si_stime);
2768 		break;
2769 	case __SI_RT: /* This is not generated by the kernel as of now. */
2770 	case __SI_MESGQ: /* But this is */
2771 		err |= __put_user(from->si_pid, &to->si_pid);
2772 		err |= __put_user(from->si_uid, &to->si_uid);
2773 		err |= __put_user(from->si_ptr, &to->si_ptr);
2774 		break;
2775 #ifdef __ARCH_SIGSYS
2776 	case __SI_SYS:
2777 		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2778 		err |= __put_user(from->si_syscall, &to->si_syscall);
2779 		err |= __put_user(from->si_arch, &to->si_arch);
2780 		break;
2781 #endif
2782 	default: /* this is just in case for now ... */
2783 		err |= __put_user(from->si_pid, &to->si_pid);
2784 		err |= __put_user(from->si_uid, &to->si_uid);
2785 		break;
2786 	}
2787 	return err;
2788 }
2789 
2790 #endif
2791 
2792 /**
2793  *  do_sigtimedwait - wait for queued signals specified in @which
2794  *  @which: queued signals to wait for
2795  *  @info: if non-null, the signal's siginfo is returned here
2796  *  @ts: upper bound on process time suspension
2797  */
2798 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2799 			const struct timespec *ts)
2800 {
2801 	struct task_struct *tsk = current;
2802 	long timeout = MAX_SCHEDULE_TIMEOUT;
2803 	sigset_t mask = *which;
2804 	int sig;
2805 
2806 	if (ts) {
2807 		if (!timespec_valid(ts))
2808 			return -EINVAL;
2809 		timeout = timespec_to_jiffies(ts);
2810 		/*
2811 		 * We can be close to the next tick, add another one
2812 		 * to ensure we will wait at least the time asked for.
2813 		 */
2814 		if (ts->tv_sec || ts->tv_nsec)
2815 			timeout++;
2816 	}
2817 
2818 	/*
2819 	 * Invert the set of allowed signals to get those we want to block.
2820 	 */
2821 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2822 	signotset(&mask);
2823 
2824 	spin_lock_irq(&tsk->sighand->siglock);
2825 	sig = dequeue_signal(tsk, &mask, info);
2826 	if (!sig && timeout) {
2827 		/*
2828 		 * None ready, temporarily unblock those we're interested
2829 		 * while we are sleeping in so that we'll be awakened when
2830 		 * they arrive. Unblocking is always fine, we can avoid
2831 		 * set_current_blocked().
2832 		 */
2833 		tsk->real_blocked = tsk->blocked;
2834 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2835 		recalc_sigpending();
2836 		spin_unlock_irq(&tsk->sighand->siglock);
2837 
2838 		timeout = freezable_schedule_timeout_interruptible(timeout);
2839 
2840 		spin_lock_irq(&tsk->sighand->siglock);
2841 		__set_task_blocked(tsk, &tsk->real_blocked);
2842 		sigemptyset(&tsk->real_blocked);
2843 		sig = dequeue_signal(tsk, &mask, info);
2844 	}
2845 	spin_unlock_irq(&tsk->sighand->siglock);
2846 
2847 	if (sig)
2848 		return sig;
2849 	return timeout ? -EINTR : -EAGAIN;
2850 }
2851 
2852 /**
2853  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2854  *			in @uthese
2855  *  @uthese: queued signals to wait for
2856  *  @uinfo: if non-null, the signal's siginfo is returned here
2857  *  @uts: upper bound on process time suspension
2858  *  @sigsetsize: size of sigset_t type
2859  */
2860 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2861 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2862 		size_t, sigsetsize)
2863 {
2864 	sigset_t these;
2865 	struct timespec ts;
2866 	siginfo_t info;
2867 	int ret;
2868 
2869 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2870 	if (sigsetsize != sizeof(sigset_t))
2871 		return -EINVAL;
2872 
2873 	if (copy_from_user(&these, uthese, sizeof(these)))
2874 		return -EFAULT;
2875 
2876 	if (uts) {
2877 		if (copy_from_user(&ts, uts, sizeof(ts)))
2878 			return -EFAULT;
2879 	}
2880 
2881 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2882 
2883 	if (ret > 0 && uinfo) {
2884 		if (copy_siginfo_to_user(uinfo, &info))
2885 			ret = -EFAULT;
2886 	}
2887 
2888 	return ret;
2889 }
2890 
2891 /**
2892  *  sys_kill - send a signal to a process
2893  *  @pid: the PID of the process
2894  *  @sig: signal to be sent
2895  */
2896 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2897 {
2898 	struct siginfo info;
2899 
2900 	info.si_signo = sig;
2901 	info.si_errno = 0;
2902 	info.si_code = SI_USER;
2903 	info.si_pid = task_tgid_vnr(current);
2904 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2905 
2906 	return kill_something_info(sig, &info, pid);
2907 }
2908 
2909 static int
2910 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2911 {
2912 	struct task_struct *p;
2913 	int error = -ESRCH;
2914 
2915 	rcu_read_lock();
2916 	p = find_task_by_vpid(pid);
2917 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2918 		error = check_kill_permission(sig, info, p);
2919 		/*
2920 		 * The null signal is a permissions and process existence
2921 		 * probe.  No signal is actually delivered.
2922 		 */
2923 		if (!error && sig) {
2924 			error = do_send_sig_info(sig, info, p, false);
2925 			/*
2926 			 * If lock_task_sighand() failed we pretend the task
2927 			 * dies after receiving the signal. The window is tiny,
2928 			 * and the signal is private anyway.
2929 			 */
2930 			if (unlikely(error == -ESRCH))
2931 				error = 0;
2932 		}
2933 	}
2934 	rcu_read_unlock();
2935 
2936 	return error;
2937 }
2938 
2939 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2940 {
2941 	struct siginfo info = {};
2942 
2943 	info.si_signo = sig;
2944 	info.si_errno = 0;
2945 	info.si_code = SI_TKILL;
2946 	info.si_pid = task_tgid_vnr(current);
2947 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2948 
2949 	return do_send_specific(tgid, pid, sig, &info);
2950 }
2951 
2952 /**
2953  *  sys_tgkill - send signal to one specific thread
2954  *  @tgid: the thread group ID of the thread
2955  *  @pid: the PID of the thread
2956  *  @sig: signal to be sent
2957  *
2958  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2959  *  exists but it's not belonging to the target process anymore. This
2960  *  method solves the problem of threads exiting and PIDs getting reused.
2961  */
2962 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2963 {
2964 	/* This is only valid for single tasks */
2965 	if (pid <= 0 || tgid <= 0)
2966 		return -EINVAL;
2967 
2968 	return do_tkill(tgid, pid, sig);
2969 }
2970 
2971 /**
2972  *  sys_tkill - send signal to one specific task
2973  *  @pid: the PID of the task
2974  *  @sig: signal to be sent
2975  *
2976  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2977  */
2978 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2979 {
2980 	/* This is only valid for single tasks */
2981 	if (pid <= 0)
2982 		return -EINVAL;
2983 
2984 	return do_tkill(0, pid, sig);
2985 }
2986 
2987 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2988 {
2989 	/* Not even root can pretend to send signals from the kernel.
2990 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2991 	 */
2992 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2993 	    (task_pid_vnr(current) != pid))
2994 		return -EPERM;
2995 
2996 	info->si_signo = sig;
2997 
2998 	/* POSIX.1b doesn't mention process groups.  */
2999 	return kill_proc_info(sig, info, pid);
3000 }
3001 
3002 /**
3003  *  sys_rt_sigqueueinfo - send signal information to a signal
3004  *  @pid: the PID of the thread
3005  *  @sig: signal to be sent
3006  *  @uinfo: signal info to be sent
3007  */
3008 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3009 		siginfo_t __user *, uinfo)
3010 {
3011 	siginfo_t info;
3012 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3013 		return -EFAULT;
3014 	return do_rt_sigqueueinfo(pid, sig, &info);
3015 }
3016 
3017 #ifdef CONFIG_COMPAT
3018 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3019 			compat_pid_t, pid,
3020 			int, sig,
3021 			struct compat_siginfo __user *, uinfo)
3022 {
3023 	siginfo_t info = {};
3024 	int ret = copy_siginfo_from_user32(&info, uinfo);
3025 	if (unlikely(ret))
3026 		return ret;
3027 	return do_rt_sigqueueinfo(pid, sig, &info);
3028 }
3029 #endif
3030 
3031 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3032 {
3033 	/* This is only valid for single tasks */
3034 	if (pid <= 0 || tgid <= 0)
3035 		return -EINVAL;
3036 
3037 	/* Not even root can pretend to send signals from the kernel.
3038 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3039 	 */
3040 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3041 	    (task_pid_vnr(current) != pid))
3042 		return -EPERM;
3043 
3044 	info->si_signo = sig;
3045 
3046 	return do_send_specific(tgid, pid, sig, info);
3047 }
3048 
3049 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3050 		siginfo_t __user *, uinfo)
3051 {
3052 	siginfo_t info;
3053 
3054 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3055 		return -EFAULT;
3056 
3057 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3058 }
3059 
3060 #ifdef CONFIG_COMPAT
3061 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3062 			compat_pid_t, tgid,
3063 			compat_pid_t, pid,
3064 			int, sig,
3065 			struct compat_siginfo __user *, uinfo)
3066 {
3067 	siginfo_t info = {};
3068 
3069 	if (copy_siginfo_from_user32(&info, uinfo))
3070 		return -EFAULT;
3071 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3072 }
3073 #endif
3074 
3075 /*
3076  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3077  */
3078 void kernel_sigaction(int sig, __sighandler_t action)
3079 {
3080 	spin_lock_irq(&current->sighand->siglock);
3081 	current->sighand->action[sig - 1].sa.sa_handler = action;
3082 	if (action == SIG_IGN) {
3083 		sigset_t mask;
3084 
3085 		sigemptyset(&mask);
3086 		sigaddset(&mask, sig);
3087 
3088 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3089 		flush_sigqueue_mask(&mask, &current->pending);
3090 		recalc_sigpending();
3091 	}
3092 	spin_unlock_irq(&current->sighand->siglock);
3093 }
3094 EXPORT_SYMBOL(kernel_sigaction);
3095 
3096 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3097 {
3098 	struct task_struct *p = current, *t;
3099 	struct k_sigaction *k;
3100 	sigset_t mask;
3101 
3102 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3103 		return -EINVAL;
3104 
3105 	k = &p->sighand->action[sig-1];
3106 
3107 	spin_lock_irq(&p->sighand->siglock);
3108 	if (oact)
3109 		*oact = *k;
3110 
3111 	if (act) {
3112 		sigdelsetmask(&act->sa.sa_mask,
3113 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3114 		*k = *act;
3115 		/*
3116 		 * POSIX 3.3.1.3:
3117 		 *  "Setting a signal action to SIG_IGN for a signal that is
3118 		 *   pending shall cause the pending signal to be discarded,
3119 		 *   whether or not it is blocked."
3120 		 *
3121 		 *  "Setting a signal action to SIG_DFL for a signal that is
3122 		 *   pending and whose default action is to ignore the signal
3123 		 *   (for example, SIGCHLD), shall cause the pending signal to
3124 		 *   be discarded, whether or not it is blocked"
3125 		 */
3126 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3127 			sigemptyset(&mask);
3128 			sigaddset(&mask, sig);
3129 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3130 			for_each_thread(p, t)
3131 				flush_sigqueue_mask(&mask, &t->pending);
3132 		}
3133 	}
3134 
3135 	spin_unlock_irq(&p->sighand->siglock);
3136 	return 0;
3137 }
3138 
3139 static int
3140 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3141 {
3142 	stack_t oss;
3143 	int error;
3144 
3145 	oss.ss_sp = (void __user *) current->sas_ss_sp;
3146 	oss.ss_size = current->sas_ss_size;
3147 	oss.ss_flags = sas_ss_flags(sp);
3148 
3149 	if (uss) {
3150 		void __user *ss_sp;
3151 		size_t ss_size;
3152 		int ss_flags;
3153 
3154 		error = -EFAULT;
3155 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3156 			goto out;
3157 		error = __get_user(ss_sp, &uss->ss_sp) |
3158 			__get_user(ss_flags, &uss->ss_flags) |
3159 			__get_user(ss_size, &uss->ss_size);
3160 		if (error)
3161 			goto out;
3162 
3163 		error = -EPERM;
3164 		if (on_sig_stack(sp))
3165 			goto out;
3166 
3167 		error = -EINVAL;
3168 		/*
3169 		 * Note - this code used to test ss_flags incorrectly:
3170 		 *  	  old code may have been written using ss_flags==0
3171 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3172 		 *	  way that worked) - this fix preserves that older
3173 		 *	  mechanism.
3174 		 */
3175 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3176 			goto out;
3177 
3178 		if (ss_flags == SS_DISABLE) {
3179 			ss_size = 0;
3180 			ss_sp = NULL;
3181 		} else {
3182 			error = -ENOMEM;
3183 			if (ss_size < MINSIGSTKSZ)
3184 				goto out;
3185 		}
3186 
3187 		current->sas_ss_sp = (unsigned long) ss_sp;
3188 		current->sas_ss_size = ss_size;
3189 	}
3190 
3191 	error = 0;
3192 	if (uoss) {
3193 		error = -EFAULT;
3194 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3195 			goto out;
3196 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3197 			__put_user(oss.ss_size, &uoss->ss_size) |
3198 			__put_user(oss.ss_flags, &uoss->ss_flags);
3199 	}
3200 
3201 out:
3202 	return error;
3203 }
3204 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3205 {
3206 	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3207 }
3208 
3209 int restore_altstack(const stack_t __user *uss)
3210 {
3211 	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3212 	/* squash all but EFAULT for now */
3213 	return err == -EFAULT ? err : 0;
3214 }
3215 
3216 int __save_altstack(stack_t __user *uss, unsigned long sp)
3217 {
3218 	struct task_struct *t = current;
3219 	return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3220 		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3221 		__put_user(t->sas_ss_size, &uss->ss_size);
3222 }
3223 
3224 #ifdef CONFIG_COMPAT
3225 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3226 			const compat_stack_t __user *, uss_ptr,
3227 			compat_stack_t __user *, uoss_ptr)
3228 {
3229 	stack_t uss, uoss;
3230 	int ret;
3231 	mm_segment_t seg;
3232 
3233 	if (uss_ptr) {
3234 		compat_stack_t uss32;
3235 
3236 		memset(&uss, 0, sizeof(stack_t));
3237 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3238 			return -EFAULT;
3239 		uss.ss_sp = compat_ptr(uss32.ss_sp);
3240 		uss.ss_flags = uss32.ss_flags;
3241 		uss.ss_size = uss32.ss_size;
3242 	}
3243 	seg = get_fs();
3244 	set_fs(KERNEL_DS);
3245 	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3246 			     (stack_t __force __user *) &uoss,
3247 			     compat_user_stack_pointer());
3248 	set_fs(seg);
3249 	if (ret >= 0 && uoss_ptr)  {
3250 		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3251 		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3252 		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3253 		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3254 			ret = -EFAULT;
3255 	}
3256 	return ret;
3257 }
3258 
3259 int compat_restore_altstack(const compat_stack_t __user *uss)
3260 {
3261 	int err = compat_sys_sigaltstack(uss, NULL);
3262 	/* squash all but -EFAULT for now */
3263 	return err == -EFAULT ? err : 0;
3264 }
3265 
3266 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3267 {
3268 	struct task_struct *t = current;
3269 	return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3270 		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3271 		__put_user(t->sas_ss_size, &uss->ss_size);
3272 }
3273 #endif
3274 
3275 #ifdef __ARCH_WANT_SYS_SIGPENDING
3276 
3277 /**
3278  *  sys_sigpending - examine pending signals
3279  *  @set: where mask of pending signal is returned
3280  */
3281 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3282 {
3283 	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3284 }
3285 
3286 #endif
3287 
3288 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3289 /**
3290  *  sys_sigprocmask - examine and change blocked signals
3291  *  @how: whether to add, remove, or set signals
3292  *  @nset: signals to add or remove (if non-null)
3293  *  @oset: previous value of signal mask if non-null
3294  *
3295  * Some platforms have their own version with special arguments;
3296  * others support only sys_rt_sigprocmask.
3297  */
3298 
3299 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3300 		old_sigset_t __user *, oset)
3301 {
3302 	old_sigset_t old_set, new_set;
3303 	sigset_t new_blocked;
3304 
3305 	old_set = current->blocked.sig[0];
3306 
3307 	if (nset) {
3308 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3309 			return -EFAULT;
3310 
3311 		new_blocked = current->blocked;
3312 
3313 		switch (how) {
3314 		case SIG_BLOCK:
3315 			sigaddsetmask(&new_blocked, new_set);
3316 			break;
3317 		case SIG_UNBLOCK:
3318 			sigdelsetmask(&new_blocked, new_set);
3319 			break;
3320 		case SIG_SETMASK:
3321 			new_blocked.sig[0] = new_set;
3322 			break;
3323 		default:
3324 			return -EINVAL;
3325 		}
3326 
3327 		set_current_blocked(&new_blocked);
3328 	}
3329 
3330 	if (oset) {
3331 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3332 			return -EFAULT;
3333 	}
3334 
3335 	return 0;
3336 }
3337 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3338 
3339 #ifndef CONFIG_ODD_RT_SIGACTION
3340 /**
3341  *  sys_rt_sigaction - alter an action taken by a process
3342  *  @sig: signal to be sent
3343  *  @act: new sigaction
3344  *  @oact: used to save the previous sigaction
3345  *  @sigsetsize: size of sigset_t type
3346  */
3347 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3348 		const struct sigaction __user *, act,
3349 		struct sigaction __user *, oact,
3350 		size_t, sigsetsize)
3351 {
3352 	struct k_sigaction new_sa, old_sa;
3353 	int ret = -EINVAL;
3354 
3355 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3356 	if (sigsetsize != sizeof(sigset_t))
3357 		goto out;
3358 
3359 	if (act) {
3360 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3361 			return -EFAULT;
3362 	}
3363 
3364 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3365 
3366 	if (!ret && oact) {
3367 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3368 			return -EFAULT;
3369 	}
3370 out:
3371 	return ret;
3372 }
3373 #ifdef CONFIG_COMPAT
3374 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3375 		const struct compat_sigaction __user *, act,
3376 		struct compat_sigaction __user *, oact,
3377 		compat_size_t, sigsetsize)
3378 {
3379 	struct k_sigaction new_ka, old_ka;
3380 	compat_sigset_t mask;
3381 #ifdef __ARCH_HAS_SA_RESTORER
3382 	compat_uptr_t restorer;
3383 #endif
3384 	int ret;
3385 
3386 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3387 	if (sigsetsize != sizeof(compat_sigset_t))
3388 		return -EINVAL;
3389 
3390 	if (act) {
3391 		compat_uptr_t handler;
3392 		ret = get_user(handler, &act->sa_handler);
3393 		new_ka.sa.sa_handler = compat_ptr(handler);
3394 #ifdef __ARCH_HAS_SA_RESTORER
3395 		ret |= get_user(restorer, &act->sa_restorer);
3396 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3397 #endif
3398 		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3399 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3400 		if (ret)
3401 			return -EFAULT;
3402 		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3403 	}
3404 
3405 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3406 	if (!ret && oact) {
3407 		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3408 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3409 			       &oact->sa_handler);
3410 		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3411 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3412 #ifdef __ARCH_HAS_SA_RESTORER
3413 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3414 				&oact->sa_restorer);
3415 #endif
3416 	}
3417 	return ret;
3418 }
3419 #endif
3420 #endif /* !CONFIG_ODD_RT_SIGACTION */
3421 
3422 #ifdef CONFIG_OLD_SIGACTION
3423 SYSCALL_DEFINE3(sigaction, int, sig,
3424 		const struct old_sigaction __user *, act,
3425 	        struct old_sigaction __user *, oact)
3426 {
3427 	struct k_sigaction new_ka, old_ka;
3428 	int ret;
3429 
3430 	if (act) {
3431 		old_sigset_t mask;
3432 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3433 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3434 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3435 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3436 		    __get_user(mask, &act->sa_mask))
3437 			return -EFAULT;
3438 #ifdef __ARCH_HAS_KA_RESTORER
3439 		new_ka.ka_restorer = NULL;
3440 #endif
3441 		siginitset(&new_ka.sa.sa_mask, mask);
3442 	}
3443 
3444 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3445 
3446 	if (!ret && oact) {
3447 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3448 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3449 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3450 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3451 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3452 			return -EFAULT;
3453 	}
3454 
3455 	return ret;
3456 }
3457 #endif
3458 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3459 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3460 		const struct compat_old_sigaction __user *, act,
3461 	        struct compat_old_sigaction __user *, oact)
3462 {
3463 	struct k_sigaction new_ka, old_ka;
3464 	int ret;
3465 	compat_old_sigset_t mask;
3466 	compat_uptr_t handler, restorer;
3467 
3468 	if (act) {
3469 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3470 		    __get_user(handler, &act->sa_handler) ||
3471 		    __get_user(restorer, &act->sa_restorer) ||
3472 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3473 		    __get_user(mask, &act->sa_mask))
3474 			return -EFAULT;
3475 
3476 #ifdef __ARCH_HAS_KA_RESTORER
3477 		new_ka.ka_restorer = NULL;
3478 #endif
3479 		new_ka.sa.sa_handler = compat_ptr(handler);
3480 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3481 		siginitset(&new_ka.sa.sa_mask, mask);
3482 	}
3483 
3484 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3485 
3486 	if (!ret && oact) {
3487 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3488 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3489 			       &oact->sa_handler) ||
3490 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3491 			       &oact->sa_restorer) ||
3492 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3493 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3494 			return -EFAULT;
3495 	}
3496 	return ret;
3497 }
3498 #endif
3499 
3500 #ifdef CONFIG_SGETMASK_SYSCALL
3501 
3502 /*
3503  * For backwards compatibility.  Functionality superseded by sigprocmask.
3504  */
3505 SYSCALL_DEFINE0(sgetmask)
3506 {
3507 	/* SMP safe */
3508 	return current->blocked.sig[0];
3509 }
3510 
3511 SYSCALL_DEFINE1(ssetmask, int, newmask)
3512 {
3513 	int old = current->blocked.sig[0];
3514 	sigset_t newset;
3515 
3516 	siginitset(&newset, newmask);
3517 	set_current_blocked(&newset);
3518 
3519 	return old;
3520 }
3521 #endif /* CONFIG_SGETMASK_SYSCALL */
3522 
3523 #ifdef __ARCH_WANT_SYS_SIGNAL
3524 /*
3525  * For backwards compatibility.  Functionality superseded by sigaction.
3526  */
3527 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3528 {
3529 	struct k_sigaction new_sa, old_sa;
3530 	int ret;
3531 
3532 	new_sa.sa.sa_handler = handler;
3533 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3534 	sigemptyset(&new_sa.sa.sa_mask);
3535 
3536 	ret = do_sigaction(sig, &new_sa, &old_sa);
3537 
3538 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3539 }
3540 #endif /* __ARCH_WANT_SYS_SIGNAL */
3541 
3542 #ifdef __ARCH_WANT_SYS_PAUSE
3543 
3544 SYSCALL_DEFINE0(pause)
3545 {
3546 	while (!signal_pending(current)) {
3547 		__set_current_state(TASK_INTERRUPTIBLE);
3548 		schedule();
3549 	}
3550 	return -ERESTARTNOHAND;
3551 }
3552 
3553 #endif
3554 
3555 int sigsuspend(sigset_t *set)
3556 {
3557 	current->saved_sigmask = current->blocked;
3558 	set_current_blocked(set);
3559 
3560 	__set_current_state(TASK_INTERRUPTIBLE);
3561 	schedule();
3562 	set_restore_sigmask();
3563 	return -ERESTARTNOHAND;
3564 }
3565 
3566 /**
3567  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3568  *	@unewset value until a signal is received
3569  *  @unewset: new signal mask value
3570  *  @sigsetsize: size of sigset_t type
3571  */
3572 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3573 {
3574 	sigset_t newset;
3575 
3576 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3577 	if (sigsetsize != sizeof(sigset_t))
3578 		return -EINVAL;
3579 
3580 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3581 		return -EFAULT;
3582 	return sigsuspend(&newset);
3583 }
3584 
3585 #ifdef CONFIG_COMPAT
3586 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3587 {
3588 #ifdef __BIG_ENDIAN
3589 	sigset_t newset;
3590 	compat_sigset_t newset32;
3591 
3592 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3593 	if (sigsetsize != sizeof(sigset_t))
3594 		return -EINVAL;
3595 
3596 	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3597 		return -EFAULT;
3598 	sigset_from_compat(&newset, &newset32);
3599 	return sigsuspend(&newset);
3600 #else
3601 	/* on little-endian bitmaps don't care about granularity */
3602 	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3603 #endif
3604 }
3605 #endif
3606 
3607 #ifdef CONFIG_OLD_SIGSUSPEND
3608 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3609 {
3610 	sigset_t blocked;
3611 	siginitset(&blocked, mask);
3612 	return sigsuspend(&blocked);
3613 }
3614 #endif
3615 #ifdef CONFIG_OLD_SIGSUSPEND3
3616 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3617 {
3618 	sigset_t blocked;
3619 	siginitset(&blocked, mask);
3620 	return sigsuspend(&blocked);
3621 }
3622 #endif
3623 
3624 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3625 {
3626 	return NULL;
3627 }
3628 
3629 void __init signals_init(void)
3630 {
3631 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3632 }
3633 
3634 #ifdef CONFIG_KGDB_KDB
3635 #include <linux/kdb.h>
3636 /*
3637  * kdb_send_sig_info - Allows kdb to send signals without exposing
3638  * signal internals.  This function checks if the required locks are
3639  * available before calling the main signal code, to avoid kdb
3640  * deadlocks.
3641  */
3642 void
3643 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3644 {
3645 	static struct task_struct *kdb_prev_t;
3646 	int sig, new_t;
3647 	if (!spin_trylock(&t->sighand->siglock)) {
3648 		kdb_printf("Can't do kill command now.\n"
3649 			   "The sigmask lock is held somewhere else in "
3650 			   "kernel, try again later\n");
3651 		return;
3652 	}
3653 	spin_unlock(&t->sighand->siglock);
3654 	new_t = kdb_prev_t != t;
3655 	kdb_prev_t = t;
3656 	if (t->state != TASK_RUNNING && new_t) {
3657 		kdb_printf("Process is not RUNNING, sending a signal from "
3658 			   "kdb risks deadlock\n"
3659 			   "on the run queue locks. "
3660 			   "The signal has _not_ been sent.\n"
3661 			   "Reissue the kill command if you want to risk "
3662 			   "the deadlock.\n");
3663 		return;
3664 	}
3665 	sig = info->si_signo;
3666 	if (send_sig_info(sig, info, t))
3667 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3668 			   sig, t->pid);
3669 	else
3670 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3671 }
3672 #endif	/* CONFIG_KGDB_KDB */
3673