1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/user.h> 18 #include <linux/sched/debug.h> 19 #include <linux/sched/task.h> 20 #include <linux/sched/task_stack.h> 21 #include <linux/sched/cputime.h> 22 #include <linux/fs.h> 23 #include <linux/tty.h> 24 #include <linux/binfmts.h> 25 #include <linux/coredump.h> 26 #include <linux/security.h> 27 #include <linux/syscalls.h> 28 #include <linux/ptrace.h> 29 #include <linux/signal.h> 30 #include <linux/signalfd.h> 31 #include <linux/ratelimit.h> 32 #include <linux/tracehook.h> 33 #include <linux/capability.h> 34 #include <linux/freezer.h> 35 #include <linux/pid_namespace.h> 36 #include <linux/nsproxy.h> 37 #include <linux/user_namespace.h> 38 #include <linux/uprobes.h> 39 #include <linux/compat.h> 40 #include <linux/cn_proc.h> 41 #include <linux/compiler.h> 42 #include <linux/posix-timers.h> 43 #include <linux/livepatch.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/signal.h> 47 48 #include <asm/param.h> 49 #include <linux/uaccess.h> 50 #include <asm/unistd.h> 51 #include <asm/siginfo.h> 52 #include <asm/cacheflush.h> 53 #include "audit.h" /* audit_signal_info() */ 54 55 /* 56 * SLAB caches for signal bits. 57 */ 58 59 static struct kmem_cache *sigqueue_cachep; 60 61 int print_fatal_signals __read_mostly; 62 63 static void __user *sig_handler(struct task_struct *t, int sig) 64 { 65 return t->sighand->action[sig - 1].sa.sa_handler; 66 } 67 68 static inline bool sig_handler_ignored(void __user *handler, int sig) 69 { 70 /* Is it explicitly or implicitly ignored? */ 71 return handler == SIG_IGN || 72 (handler == SIG_DFL && sig_kernel_ignore(sig)); 73 } 74 75 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 76 { 77 void __user *handler; 78 79 handler = sig_handler(t, sig); 80 81 /* SIGKILL and SIGSTOP may not be sent to the global init */ 82 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 83 return true; 84 85 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 86 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 87 return true; 88 89 return sig_handler_ignored(handler, sig); 90 } 91 92 static bool sig_ignored(struct task_struct *t, int sig, bool force) 93 { 94 /* 95 * Blocked signals are never ignored, since the 96 * signal handler may change by the time it is 97 * unblocked. 98 */ 99 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 100 return false; 101 102 /* 103 * Tracers may want to know about even ignored signal unless it 104 * is SIGKILL which can't be reported anyway but can be ignored 105 * by SIGNAL_UNKILLABLE task. 106 */ 107 if (t->ptrace && sig != SIGKILL) 108 return false; 109 110 return sig_task_ignored(t, sig, force); 111 } 112 113 /* 114 * Re-calculate pending state from the set of locally pending 115 * signals, globally pending signals, and blocked signals. 116 */ 117 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 118 { 119 unsigned long ready; 120 long i; 121 122 switch (_NSIG_WORDS) { 123 default: 124 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 125 ready |= signal->sig[i] &~ blocked->sig[i]; 126 break; 127 128 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 129 ready |= signal->sig[2] &~ blocked->sig[2]; 130 ready |= signal->sig[1] &~ blocked->sig[1]; 131 ready |= signal->sig[0] &~ blocked->sig[0]; 132 break; 133 134 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 135 ready |= signal->sig[0] &~ blocked->sig[0]; 136 break; 137 138 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 139 } 140 return ready != 0; 141 } 142 143 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 144 145 static bool recalc_sigpending_tsk(struct task_struct *t) 146 { 147 if ((t->jobctl & JOBCTL_PENDING_MASK) || 148 PENDING(&t->pending, &t->blocked) || 149 PENDING(&t->signal->shared_pending, &t->blocked)) { 150 set_tsk_thread_flag(t, TIF_SIGPENDING); 151 return true; 152 } 153 154 /* 155 * We must never clear the flag in another thread, or in current 156 * when it's possible the current syscall is returning -ERESTART*. 157 * So we don't clear it here, and only callers who know they should do. 158 */ 159 return false; 160 } 161 162 /* 163 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 164 * This is superfluous when called on current, the wakeup is a harmless no-op. 165 */ 166 void recalc_sigpending_and_wake(struct task_struct *t) 167 { 168 if (recalc_sigpending_tsk(t)) 169 signal_wake_up(t, 0); 170 } 171 172 void recalc_sigpending(void) 173 { 174 if (!recalc_sigpending_tsk(current) && !freezing(current) && 175 !klp_patch_pending(current)) 176 clear_thread_flag(TIF_SIGPENDING); 177 178 } 179 EXPORT_SYMBOL(recalc_sigpending); 180 181 void calculate_sigpending(void) 182 { 183 /* Have any signals or users of TIF_SIGPENDING been delayed 184 * until after fork? 185 */ 186 spin_lock_irq(¤t->sighand->siglock); 187 set_tsk_thread_flag(current, TIF_SIGPENDING); 188 recalc_sigpending(); 189 spin_unlock_irq(¤t->sighand->siglock); 190 } 191 192 /* Given the mask, find the first available signal that should be serviced. */ 193 194 #define SYNCHRONOUS_MASK \ 195 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 196 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 197 198 int next_signal(struct sigpending *pending, sigset_t *mask) 199 { 200 unsigned long i, *s, *m, x; 201 int sig = 0; 202 203 s = pending->signal.sig; 204 m = mask->sig; 205 206 /* 207 * Handle the first word specially: it contains the 208 * synchronous signals that need to be dequeued first. 209 */ 210 x = *s &~ *m; 211 if (x) { 212 if (x & SYNCHRONOUS_MASK) 213 x &= SYNCHRONOUS_MASK; 214 sig = ffz(~x) + 1; 215 return sig; 216 } 217 218 switch (_NSIG_WORDS) { 219 default: 220 for (i = 1; i < _NSIG_WORDS; ++i) { 221 x = *++s &~ *++m; 222 if (!x) 223 continue; 224 sig = ffz(~x) + i*_NSIG_BPW + 1; 225 break; 226 } 227 break; 228 229 case 2: 230 x = s[1] &~ m[1]; 231 if (!x) 232 break; 233 sig = ffz(~x) + _NSIG_BPW + 1; 234 break; 235 236 case 1: 237 /* Nothing to do */ 238 break; 239 } 240 241 return sig; 242 } 243 244 static inline void print_dropped_signal(int sig) 245 { 246 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 247 248 if (!print_fatal_signals) 249 return; 250 251 if (!__ratelimit(&ratelimit_state)) 252 return; 253 254 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 255 current->comm, current->pid, sig); 256 } 257 258 /** 259 * task_set_jobctl_pending - set jobctl pending bits 260 * @task: target task 261 * @mask: pending bits to set 262 * 263 * Clear @mask from @task->jobctl. @mask must be subset of 264 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 265 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 266 * cleared. If @task is already being killed or exiting, this function 267 * becomes noop. 268 * 269 * CONTEXT: 270 * Must be called with @task->sighand->siglock held. 271 * 272 * RETURNS: 273 * %true if @mask is set, %false if made noop because @task was dying. 274 */ 275 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 276 { 277 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 278 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 279 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 280 281 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 282 return false; 283 284 if (mask & JOBCTL_STOP_SIGMASK) 285 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 286 287 task->jobctl |= mask; 288 return true; 289 } 290 291 /** 292 * task_clear_jobctl_trapping - clear jobctl trapping bit 293 * @task: target task 294 * 295 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 296 * Clear it and wake up the ptracer. Note that we don't need any further 297 * locking. @task->siglock guarantees that @task->parent points to the 298 * ptracer. 299 * 300 * CONTEXT: 301 * Must be called with @task->sighand->siglock held. 302 */ 303 void task_clear_jobctl_trapping(struct task_struct *task) 304 { 305 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 306 task->jobctl &= ~JOBCTL_TRAPPING; 307 smp_mb(); /* advised by wake_up_bit() */ 308 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 309 } 310 } 311 312 /** 313 * task_clear_jobctl_pending - clear jobctl pending bits 314 * @task: target task 315 * @mask: pending bits to clear 316 * 317 * Clear @mask from @task->jobctl. @mask must be subset of 318 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 319 * STOP bits are cleared together. 320 * 321 * If clearing of @mask leaves no stop or trap pending, this function calls 322 * task_clear_jobctl_trapping(). 323 * 324 * CONTEXT: 325 * Must be called with @task->sighand->siglock held. 326 */ 327 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 328 { 329 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 330 331 if (mask & JOBCTL_STOP_PENDING) 332 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 333 334 task->jobctl &= ~mask; 335 336 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 337 task_clear_jobctl_trapping(task); 338 } 339 340 /** 341 * task_participate_group_stop - participate in a group stop 342 * @task: task participating in a group stop 343 * 344 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 345 * Group stop states are cleared and the group stop count is consumed if 346 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 347 * stop, the appropriate %SIGNAL_* flags are set. 348 * 349 * CONTEXT: 350 * Must be called with @task->sighand->siglock held. 351 * 352 * RETURNS: 353 * %true if group stop completion should be notified to the parent, %false 354 * otherwise. 355 */ 356 static bool task_participate_group_stop(struct task_struct *task) 357 { 358 struct signal_struct *sig = task->signal; 359 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 360 361 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 362 363 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 364 365 if (!consume) 366 return false; 367 368 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 369 sig->group_stop_count--; 370 371 /* 372 * Tell the caller to notify completion iff we are entering into a 373 * fresh group stop. Read comment in do_signal_stop() for details. 374 */ 375 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 376 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 377 return true; 378 } 379 return false; 380 } 381 382 void task_join_group_stop(struct task_struct *task) 383 { 384 /* Have the new thread join an on-going signal group stop */ 385 unsigned long jobctl = current->jobctl; 386 if (jobctl & JOBCTL_STOP_PENDING) { 387 struct signal_struct *sig = current->signal; 388 unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK; 389 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 390 if (task_set_jobctl_pending(task, signr | gstop)) { 391 sig->group_stop_count++; 392 } 393 } 394 } 395 396 /* 397 * allocate a new signal queue record 398 * - this may be called without locks if and only if t == current, otherwise an 399 * appropriate lock must be held to stop the target task from exiting 400 */ 401 static struct sigqueue * 402 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 403 { 404 struct sigqueue *q = NULL; 405 struct user_struct *user; 406 407 /* 408 * Protect access to @t credentials. This can go away when all 409 * callers hold rcu read lock. 410 */ 411 rcu_read_lock(); 412 user = get_uid(__task_cred(t)->user); 413 atomic_inc(&user->sigpending); 414 rcu_read_unlock(); 415 416 if (override_rlimit || 417 atomic_read(&user->sigpending) <= 418 task_rlimit(t, RLIMIT_SIGPENDING)) { 419 q = kmem_cache_alloc(sigqueue_cachep, flags); 420 } else { 421 print_dropped_signal(sig); 422 } 423 424 if (unlikely(q == NULL)) { 425 atomic_dec(&user->sigpending); 426 free_uid(user); 427 } else { 428 INIT_LIST_HEAD(&q->list); 429 q->flags = 0; 430 q->user = user; 431 } 432 433 return q; 434 } 435 436 static void __sigqueue_free(struct sigqueue *q) 437 { 438 if (q->flags & SIGQUEUE_PREALLOC) 439 return; 440 atomic_dec(&q->user->sigpending); 441 free_uid(q->user); 442 kmem_cache_free(sigqueue_cachep, q); 443 } 444 445 void flush_sigqueue(struct sigpending *queue) 446 { 447 struct sigqueue *q; 448 449 sigemptyset(&queue->signal); 450 while (!list_empty(&queue->list)) { 451 q = list_entry(queue->list.next, struct sigqueue , list); 452 list_del_init(&q->list); 453 __sigqueue_free(q); 454 } 455 } 456 457 /* 458 * Flush all pending signals for this kthread. 459 */ 460 void flush_signals(struct task_struct *t) 461 { 462 unsigned long flags; 463 464 spin_lock_irqsave(&t->sighand->siglock, flags); 465 clear_tsk_thread_flag(t, TIF_SIGPENDING); 466 flush_sigqueue(&t->pending); 467 flush_sigqueue(&t->signal->shared_pending); 468 spin_unlock_irqrestore(&t->sighand->siglock, flags); 469 } 470 EXPORT_SYMBOL(flush_signals); 471 472 #ifdef CONFIG_POSIX_TIMERS 473 static void __flush_itimer_signals(struct sigpending *pending) 474 { 475 sigset_t signal, retain; 476 struct sigqueue *q, *n; 477 478 signal = pending->signal; 479 sigemptyset(&retain); 480 481 list_for_each_entry_safe(q, n, &pending->list, list) { 482 int sig = q->info.si_signo; 483 484 if (likely(q->info.si_code != SI_TIMER)) { 485 sigaddset(&retain, sig); 486 } else { 487 sigdelset(&signal, sig); 488 list_del_init(&q->list); 489 __sigqueue_free(q); 490 } 491 } 492 493 sigorsets(&pending->signal, &signal, &retain); 494 } 495 496 void flush_itimer_signals(void) 497 { 498 struct task_struct *tsk = current; 499 unsigned long flags; 500 501 spin_lock_irqsave(&tsk->sighand->siglock, flags); 502 __flush_itimer_signals(&tsk->pending); 503 __flush_itimer_signals(&tsk->signal->shared_pending); 504 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 505 } 506 #endif 507 508 void ignore_signals(struct task_struct *t) 509 { 510 int i; 511 512 for (i = 0; i < _NSIG; ++i) 513 t->sighand->action[i].sa.sa_handler = SIG_IGN; 514 515 flush_signals(t); 516 } 517 518 /* 519 * Flush all handlers for a task. 520 */ 521 522 void 523 flush_signal_handlers(struct task_struct *t, int force_default) 524 { 525 int i; 526 struct k_sigaction *ka = &t->sighand->action[0]; 527 for (i = _NSIG ; i != 0 ; i--) { 528 if (force_default || ka->sa.sa_handler != SIG_IGN) 529 ka->sa.sa_handler = SIG_DFL; 530 ka->sa.sa_flags = 0; 531 #ifdef __ARCH_HAS_SA_RESTORER 532 ka->sa.sa_restorer = NULL; 533 #endif 534 sigemptyset(&ka->sa.sa_mask); 535 ka++; 536 } 537 } 538 539 bool unhandled_signal(struct task_struct *tsk, int sig) 540 { 541 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 542 if (is_global_init(tsk)) 543 return true; 544 545 if (handler != SIG_IGN && handler != SIG_DFL) 546 return false; 547 548 /* if ptraced, let the tracer determine */ 549 return !tsk->ptrace; 550 } 551 552 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 553 bool *resched_timer) 554 { 555 struct sigqueue *q, *first = NULL; 556 557 /* 558 * Collect the siginfo appropriate to this signal. Check if 559 * there is another siginfo for the same signal. 560 */ 561 list_for_each_entry(q, &list->list, list) { 562 if (q->info.si_signo == sig) { 563 if (first) 564 goto still_pending; 565 first = q; 566 } 567 } 568 569 sigdelset(&list->signal, sig); 570 571 if (first) { 572 still_pending: 573 list_del_init(&first->list); 574 copy_siginfo(info, &first->info); 575 576 *resched_timer = 577 (first->flags & SIGQUEUE_PREALLOC) && 578 (info->si_code == SI_TIMER) && 579 (info->si_sys_private); 580 581 __sigqueue_free(first); 582 } else { 583 /* 584 * Ok, it wasn't in the queue. This must be 585 * a fast-pathed signal or we must have been 586 * out of queue space. So zero out the info. 587 */ 588 clear_siginfo(info); 589 info->si_signo = sig; 590 info->si_errno = 0; 591 info->si_code = SI_USER; 592 info->si_pid = 0; 593 info->si_uid = 0; 594 } 595 } 596 597 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 598 kernel_siginfo_t *info, bool *resched_timer) 599 { 600 int sig = next_signal(pending, mask); 601 602 if (sig) 603 collect_signal(sig, pending, info, resched_timer); 604 return sig; 605 } 606 607 /* 608 * Dequeue a signal and return the element to the caller, which is 609 * expected to free it. 610 * 611 * All callers have to hold the siglock. 612 */ 613 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info) 614 { 615 bool resched_timer = false; 616 int signr; 617 618 /* We only dequeue private signals from ourselves, we don't let 619 * signalfd steal them 620 */ 621 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 622 if (!signr) { 623 signr = __dequeue_signal(&tsk->signal->shared_pending, 624 mask, info, &resched_timer); 625 #ifdef CONFIG_POSIX_TIMERS 626 /* 627 * itimer signal ? 628 * 629 * itimers are process shared and we restart periodic 630 * itimers in the signal delivery path to prevent DoS 631 * attacks in the high resolution timer case. This is 632 * compliant with the old way of self-restarting 633 * itimers, as the SIGALRM is a legacy signal and only 634 * queued once. Changing the restart behaviour to 635 * restart the timer in the signal dequeue path is 636 * reducing the timer noise on heavy loaded !highres 637 * systems too. 638 */ 639 if (unlikely(signr == SIGALRM)) { 640 struct hrtimer *tmr = &tsk->signal->real_timer; 641 642 if (!hrtimer_is_queued(tmr) && 643 tsk->signal->it_real_incr != 0) { 644 hrtimer_forward(tmr, tmr->base->get_time(), 645 tsk->signal->it_real_incr); 646 hrtimer_restart(tmr); 647 } 648 } 649 #endif 650 } 651 652 recalc_sigpending(); 653 if (!signr) 654 return 0; 655 656 if (unlikely(sig_kernel_stop(signr))) { 657 /* 658 * Set a marker that we have dequeued a stop signal. Our 659 * caller might release the siglock and then the pending 660 * stop signal it is about to process is no longer in the 661 * pending bitmasks, but must still be cleared by a SIGCONT 662 * (and overruled by a SIGKILL). So those cases clear this 663 * shared flag after we've set it. Note that this flag may 664 * remain set after the signal we return is ignored or 665 * handled. That doesn't matter because its only purpose 666 * is to alert stop-signal processing code when another 667 * processor has come along and cleared the flag. 668 */ 669 current->jobctl |= JOBCTL_STOP_DEQUEUED; 670 } 671 #ifdef CONFIG_POSIX_TIMERS 672 if (resched_timer) { 673 /* 674 * Release the siglock to ensure proper locking order 675 * of timer locks outside of siglocks. Note, we leave 676 * irqs disabled here, since the posix-timers code is 677 * about to disable them again anyway. 678 */ 679 spin_unlock(&tsk->sighand->siglock); 680 posixtimer_rearm(info); 681 spin_lock(&tsk->sighand->siglock); 682 683 /* Don't expose the si_sys_private value to userspace */ 684 info->si_sys_private = 0; 685 } 686 #endif 687 return signr; 688 } 689 EXPORT_SYMBOL_GPL(dequeue_signal); 690 691 /* 692 * Tell a process that it has a new active signal.. 693 * 694 * NOTE! we rely on the previous spin_lock to 695 * lock interrupts for us! We can only be called with 696 * "siglock" held, and the local interrupt must 697 * have been disabled when that got acquired! 698 * 699 * No need to set need_resched since signal event passing 700 * goes through ->blocked 701 */ 702 void signal_wake_up_state(struct task_struct *t, unsigned int state) 703 { 704 set_tsk_thread_flag(t, TIF_SIGPENDING); 705 /* 706 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 707 * case. We don't check t->state here because there is a race with it 708 * executing another processor and just now entering stopped state. 709 * By using wake_up_state, we ensure the process will wake up and 710 * handle its death signal. 711 */ 712 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 713 kick_process(t); 714 } 715 716 /* 717 * Remove signals in mask from the pending set and queue. 718 * Returns 1 if any signals were found. 719 * 720 * All callers must be holding the siglock. 721 */ 722 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 723 { 724 struct sigqueue *q, *n; 725 sigset_t m; 726 727 sigandsets(&m, mask, &s->signal); 728 if (sigisemptyset(&m)) 729 return; 730 731 sigandnsets(&s->signal, &s->signal, mask); 732 list_for_each_entry_safe(q, n, &s->list, list) { 733 if (sigismember(mask, q->info.si_signo)) { 734 list_del_init(&q->list); 735 __sigqueue_free(q); 736 } 737 } 738 } 739 740 static inline int is_si_special(const struct kernel_siginfo *info) 741 { 742 return info <= SEND_SIG_PRIV; 743 } 744 745 static inline bool si_fromuser(const struct kernel_siginfo *info) 746 { 747 return info == SEND_SIG_NOINFO || 748 (!is_si_special(info) && SI_FROMUSER(info)); 749 } 750 751 /* 752 * called with RCU read lock from check_kill_permission() 753 */ 754 static bool kill_ok_by_cred(struct task_struct *t) 755 { 756 const struct cred *cred = current_cred(); 757 const struct cred *tcred = __task_cred(t); 758 759 return uid_eq(cred->euid, tcred->suid) || 760 uid_eq(cred->euid, tcred->uid) || 761 uid_eq(cred->uid, tcred->suid) || 762 uid_eq(cred->uid, tcred->uid) || 763 ns_capable(tcred->user_ns, CAP_KILL); 764 } 765 766 /* 767 * Bad permissions for sending the signal 768 * - the caller must hold the RCU read lock 769 */ 770 static int check_kill_permission(int sig, struct kernel_siginfo *info, 771 struct task_struct *t) 772 { 773 struct pid *sid; 774 int error; 775 776 if (!valid_signal(sig)) 777 return -EINVAL; 778 779 if (!si_fromuser(info)) 780 return 0; 781 782 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 783 if (error) 784 return error; 785 786 if (!same_thread_group(current, t) && 787 !kill_ok_by_cred(t)) { 788 switch (sig) { 789 case SIGCONT: 790 sid = task_session(t); 791 /* 792 * We don't return the error if sid == NULL. The 793 * task was unhashed, the caller must notice this. 794 */ 795 if (!sid || sid == task_session(current)) 796 break; 797 default: 798 return -EPERM; 799 } 800 } 801 802 return security_task_kill(t, info, sig, NULL); 803 } 804 805 /** 806 * ptrace_trap_notify - schedule trap to notify ptracer 807 * @t: tracee wanting to notify tracer 808 * 809 * This function schedules sticky ptrace trap which is cleared on the next 810 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 811 * ptracer. 812 * 813 * If @t is running, STOP trap will be taken. If trapped for STOP and 814 * ptracer is listening for events, tracee is woken up so that it can 815 * re-trap for the new event. If trapped otherwise, STOP trap will be 816 * eventually taken without returning to userland after the existing traps 817 * are finished by PTRACE_CONT. 818 * 819 * CONTEXT: 820 * Must be called with @task->sighand->siglock held. 821 */ 822 static void ptrace_trap_notify(struct task_struct *t) 823 { 824 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 825 assert_spin_locked(&t->sighand->siglock); 826 827 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 828 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 829 } 830 831 /* 832 * Handle magic process-wide effects of stop/continue signals. Unlike 833 * the signal actions, these happen immediately at signal-generation 834 * time regardless of blocking, ignoring, or handling. This does the 835 * actual continuing for SIGCONT, but not the actual stopping for stop 836 * signals. The process stop is done as a signal action for SIG_DFL. 837 * 838 * Returns true if the signal should be actually delivered, otherwise 839 * it should be dropped. 840 */ 841 static bool prepare_signal(int sig, struct task_struct *p, bool force) 842 { 843 struct signal_struct *signal = p->signal; 844 struct task_struct *t; 845 sigset_t flush; 846 847 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 848 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 849 return sig == SIGKILL; 850 /* 851 * The process is in the middle of dying, nothing to do. 852 */ 853 } else if (sig_kernel_stop(sig)) { 854 /* 855 * This is a stop signal. Remove SIGCONT from all queues. 856 */ 857 siginitset(&flush, sigmask(SIGCONT)); 858 flush_sigqueue_mask(&flush, &signal->shared_pending); 859 for_each_thread(p, t) 860 flush_sigqueue_mask(&flush, &t->pending); 861 } else if (sig == SIGCONT) { 862 unsigned int why; 863 /* 864 * Remove all stop signals from all queues, wake all threads. 865 */ 866 siginitset(&flush, SIG_KERNEL_STOP_MASK); 867 flush_sigqueue_mask(&flush, &signal->shared_pending); 868 for_each_thread(p, t) { 869 flush_sigqueue_mask(&flush, &t->pending); 870 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 871 if (likely(!(t->ptrace & PT_SEIZED))) 872 wake_up_state(t, __TASK_STOPPED); 873 else 874 ptrace_trap_notify(t); 875 } 876 877 /* 878 * Notify the parent with CLD_CONTINUED if we were stopped. 879 * 880 * If we were in the middle of a group stop, we pretend it 881 * was already finished, and then continued. Since SIGCHLD 882 * doesn't queue we report only CLD_STOPPED, as if the next 883 * CLD_CONTINUED was dropped. 884 */ 885 why = 0; 886 if (signal->flags & SIGNAL_STOP_STOPPED) 887 why |= SIGNAL_CLD_CONTINUED; 888 else if (signal->group_stop_count) 889 why |= SIGNAL_CLD_STOPPED; 890 891 if (why) { 892 /* 893 * The first thread which returns from do_signal_stop() 894 * will take ->siglock, notice SIGNAL_CLD_MASK, and 895 * notify its parent. See get_signal(). 896 */ 897 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 898 signal->group_stop_count = 0; 899 signal->group_exit_code = 0; 900 } 901 } 902 903 return !sig_ignored(p, sig, force); 904 } 905 906 /* 907 * Test if P wants to take SIG. After we've checked all threads with this, 908 * it's equivalent to finding no threads not blocking SIG. Any threads not 909 * blocking SIG were ruled out because they are not running and already 910 * have pending signals. Such threads will dequeue from the shared queue 911 * as soon as they're available, so putting the signal on the shared queue 912 * will be equivalent to sending it to one such thread. 913 */ 914 static inline bool wants_signal(int sig, struct task_struct *p) 915 { 916 if (sigismember(&p->blocked, sig)) 917 return false; 918 919 if (p->flags & PF_EXITING) 920 return false; 921 922 if (sig == SIGKILL) 923 return true; 924 925 if (task_is_stopped_or_traced(p)) 926 return false; 927 928 return task_curr(p) || !signal_pending(p); 929 } 930 931 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 932 { 933 struct signal_struct *signal = p->signal; 934 struct task_struct *t; 935 936 /* 937 * Now find a thread we can wake up to take the signal off the queue. 938 * 939 * If the main thread wants the signal, it gets first crack. 940 * Probably the least surprising to the average bear. 941 */ 942 if (wants_signal(sig, p)) 943 t = p; 944 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 945 /* 946 * There is just one thread and it does not need to be woken. 947 * It will dequeue unblocked signals before it runs again. 948 */ 949 return; 950 else { 951 /* 952 * Otherwise try to find a suitable thread. 953 */ 954 t = signal->curr_target; 955 while (!wants_signal(sig, t)) { 956 t = next_thread(t); 957 if (t == signal->curr_target) 958 /* 959 * No thread needs to be woken. 960 * Any eligible threads will see 961 * the signal in the queue soon. 962 */ 963 return; 964 } 965 signal->curr_target = t; 966 } 967 968 /* 969 * Found a killable thread. If the signal will be fatal, 970 * then start taking the whole group down immediately. 971 */ 972 if (sig_fatal(p, sig) && 973 !(signal->flags & SIGNAL_GROUP_EXIT) && 974 !sigismember(&t->real_blocked, sig) && 975 (sig == SIGKILL || !p->ptrace)) { 976 /* 977 * This signal will be fatal to the whole group. 978 */ 979 if (!sig_kernel_coredump(sig)) { 980 /* 981 * Start a group exit and wake everybody up. 982 * This way we don't have other threads 983 * running and doing things after a slower 984 * thread has the fatal signal pending. 985 */ 986 signal->flags = SIGNAL_GROUP_EXIT; 987 signal->group_exit_code = sig; 988 signal->group_stop_count = 0; 989 t = p; 990 do { 991 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 992 sigaddset(&t->pending.signal, SIGKILL); 993 signal_wake_up(t, 1); 994 } while_each_thread(p, t); 995 return; 996 } 997 } 998 999 /* 1000 * The signal is already in the shared-pending queue. 1001 * Tell the chosen thread to wake up and dequeue it. 1002 */ 1003 signal_wake_up(t, sig == SIGKILL); 1004 return; 1005 } 1006 1007 static inline bool legacy_queue(struct sigpending *signals, int sig) 1008 { 1009 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1010 } 1011 1012 #ifdef CONFIG_USER_NS 1013 static inline void userns_fixup_signal_uid(struct kernel_siginfo *info, struct task_struct *t) 1014 { 1015 if (current_user_ns() == task_cred_xxx(t, user_ns)) 1016 return; 1017 1018 if (SI_FROMKERNEL(info)) 1019 return; 1020 1021 rcu_read_lock(); 1022 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), 1023 make_kuid(current_user_ns(), info->si_uid)); 1024 rcu_read_unlock(); 1025 } 1026 #else 1027 static inline void userns_fixup_signal_uid(struct kernel_siginfo *info, struct task_struct *t) 1028 { 1029 return; 1030 } 1031 #endif 1032 1033 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1034 enum pid_type type, int from_ancestor_ns) 1035 { 1036 struct sigpending *pending; 1037 struct sigqueue *q; 1038 int override_rlimit; 1039 int ret = 0, result; 1040 1041 assert_spin_locked(&t->sighand->siglock); 1042 1043 result = TRACE_SIGNAL_IGNORED; 1044 if (!prepare_signal(sig, t, 1045 from_ancestor_ns || (info == SEND_SIG_PRIV))) 1046 goto ret; 1047 1048 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1049 /* 1050 * Short-circuit ignored signals and support queuing 1051 * exactly one non-rt signal, so that we can get more 1052 * detailed information about the cause of the signal. 1053 */ 1054 result = TRACE_SIGNAL_ALREADY_PENDING; 1055 if (legacy_queue(pending, sig)) 1056 goto ret; 1057 1058 result = TRACE_SIGNAL_DELIVERED; 1059 /* 1060 * Skip useless siginfo allocation for SIGKILL SIGSTOP, 1061 * and kernel threads. 1062 */ 1063 if (sig_kernel_only(sig) || (t->flags & PF_KTHREAD)) 1064 goto out_set; 1065 1066 /* 1067 * Real-time signals must be queued if sent by sigqueue, or 1068 * some other real-time mechanism. It is implementation 1069 * defined whether kill() does so. We attempt to do so, on 1070 * the principle of least surprise, but since kill is not 1071 * allowed to fail with EAGAIN when low on memory we just 1072 * make sure at least one signal gets delivered and don't 1073 * pass on the info struct. 1074 */ 1075 if (sig < SIGRTMIN) 1076 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1077 else 1078 override_rlimit = 0; 1079 1080 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit); 1081 if (q) { 1082 list_add_tail(&q->list, &pending->list); 1083 switch ((unsigned long) info) { 1084 case (unsigned long) SEND_SIG_NOINFO: 1085 clear_siginfo(&q->info); 1086 q->info.si_signo = sig; 1087 q->info.si_errno = 0; 1088 q->info.si_code = SI_USER; 1089 q->info.si_pid = task_tgid_nr_ns(current, 1090 task_active_pid_ns(t)); 1091 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1092 break; 1093 case (unsigned long) SEND_SIG_PRIV: 1094 clear_siginfo(&q->info); 1095 q->info.si_signo = sig; 1096 q->info.si_errno = 0; 1097 q->info.si_code = SI_KERNEL; 1098 q->info.si_pid = 0; 1099 q->info.si_uid = 0; 1100 break; 1101 default: 1102 copy_siginfo(&q->info, info); 1103 if (from_ancestor_ns) 1104 q->info.si_pid = 0; 1105 break; 1106 } 1107 1108 userns_fixup_signal_uid(&q->info, t); 1109 1110 } else if (!is_si_special(info)) { 1111 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1112 /* 1113 * Queue overflow, abort. We may abort if the 1114 * signal was rt and sent by user using something 1115 * other than kill(). 1116 */ 1117 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1118 ret = -EAGAIN; 1119 goto ret; 1120 } else { 1121 /* 1122 * This is a silent loss of information. We still 1123 * send the signal, but the *info bits are lost. 1124 */ 1125 result = TRACE_SIGNAL_LOSE_INFO; 1126 } 1127 } 1128 1129 out_set: 1130 signalfd_notify(t, sig); 1131 sigaddset(&pending->signal, sig); 1132 1133 /* Let multiprocess signals appear after on-going forks */ 1134 if (type > PIDTYPE_TGID) { 1135 struct multiprocess_signals *delayed; 1136 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1137 sigset_t *signal = &delayed->signal; 1138 /* Can't queue both a stop and a continue signal */ 1139 if (sig == SIGCONT) 1140 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1141 else if (sig_kernel_stop(sig)) 1142 sigdelset(signal, SIGCONT); 1143 sigaddset(signal, sig); 1144 } 1145 } 1146 1147 complete_signal(sig, t, type); 1148 ret: 1149 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1150 return ret; 1151 } 1152 1153 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1154 enum pid_type type) 1155 { 1156 int from_ancestor_ns = 0; 1157 1158 #ifdef CONFIG_PID_NS 1159 from_ancestor_ns = si_fromuser(info) && 1160 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1161 #endif 1162 1163 return __send_signal(sig, info, t, type, from_ancestor_ns); 1164 } 1165 1166 static void print_fatal_signal(int signr) 1167 { 1168 struct pt_regs *regs = signal_pt_regs(); 1169 pr_info("potentially unexpected fatal signal %d.\n", signr); 1170 1171 #if defined(__i386__) && !defined(__arch_um__) 1172 pr_info("code at %08lx: ", regs->ip); 1173 { 1174 int i; 1175 for (i = 0; i < 16; i++) { 1176 unsigned char insn; 1177 1178 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1179 break; 1180 pr_cont("%02x ", insn); 1181 } 1182 } 1183 pr_cont("\n"); 1184 #endif 1185 preempt_disable(); 1186 show_regs(regs); 1187 preempt_enable(); 1188 } 1189 1190 static int __init setup_print_fatal_signals(char *str) 1191 { 1192 get_option (&str, &print_fatal_signals); 1193 1194 return 1; 1195 } 1196 1197 __setup("print-fatal-signals=", setup_print_fatal_signals); 1198 1199 int 1200 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1201 { 1202 return send_signal(sig, info, p, PIDTYPE_TGID); 1203 } 1204 1205 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1206 enum pid_type type) 1207 { 1208 unsigned long flags; 1209 int ret = -ESRCH; 1210 1211 if (lock_task_sighand(p, &flags)) { 1212 ret = send_signal(sig, info, p, type); 1213 unlock_task_sighand(p, &flags); 1214 } 1215 1216 return ret; 1217 } 1218 1219 /* 1220 * Force a signal that the process can't ignore: if necessary 1221 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1222 * 1223 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1224 * since we do not want to have a signal handler that was blocked 1225 * be invoked when user space had explicitly blocked it. 1226 * 1227 * We don't want to have recursive SIGSEGV's etc, for example, 1228 * that is why we also clear SIGNAL_UNKILLABLE. 1229 */ 1230 int 1231 force_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *t) 1232 { 1233 unsigned long int flags; 1234 int ret, blocked, ignored; 1235 struct k_sigaction *action; 1236 1237 spin_lock_irqsave(&t->sighand->siglock, flags); 1238 action = &t->sighand->action[sig-1]; 1239 ignored = action->sa.sa_handler == SIG_IGN; 1240 blocked = sigismember(&t->blocked, sig); 1241 if (blocked || ignored) { 1242 action->sa.sa_handler = SIG_DFL; 1243 if (blocked) { 1244 sigdelset(&t->blocked, sig); 1245 recalc_sigpending_and_wake(t); 1246 } 1247 } 1248 /* 1249 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1250 * debugging to leave init killable. 1251 */ 1252 if (action->sa.sa_handler == SIG_DFL && !t->ptrace) 1253 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1254 ret = send_signal(sig, info, t, PIDTYPE_PID); 1255 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1256 1257 return ret; 1258 } 1259 1260 /* 1261 * Nuke all other threads in the group. 1262 */ 1263 int zap_other_threads(struct task_struct *p) 1264 { 1265 struct task_struct *t = p; 1266 int count = 0; 1267 1268 p->signal->group_stop_count = 0; 1269 1270 while_each_thread(p, t) { 1271 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1272 count++; 1273 1274 /* Don't bother with already dead threads */ 1275 if (t->exit_state) 1276 continue; 1277 sigaddset(&t->pending.signal, SIGKILL); 1278 signal_wake_up(t, 1); 1279 } 1280 1281 return count; 1282 } 1283 1284 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1285 unsigned long *flags) 1286 { 1287 struct sighand_struct *sighand; 1288 1289 rcu_read_lock(); 1290 for (;;) { 1291 sighand = rcu_dereference(tsk->sighand); 1292 if (unlikely(sighand == NULL)) 1293 break; 1294 1295 /* 1296 * This sighand can be already freed and even reused, but 1297 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1298 * initializes ->siglock: this slab can't go away, it has 1299 * the same object type, ->siglock can't be reinitialized. 1300 * 1301 * We need to ensure that tsk->sighand is still the same 1302 * after we take the lock, we can race with de_thread() or 1303 * __exit_signal(). In the latter case the next iteration 1304 * must see ->sighand == NULL. 1305 */ 1306 spin_lock_irqsave(&sighand->siglock, *flags); 1307 if (likely(sighand == tsk->sighand)) 1308 break; 1309 spin_unlock_irqrestore(&sighand->siglock, *flags); 1310 } 1311 rcu_read_unlock(); 1312 1313 return sighand; 1314 } 1315 1316 /* 1317 * send signal info to all the members of a group 1318 */ 1319 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1320 struct task_struct *p, enum pid_type type) 1321 { 1322 int ret; 1323 1324 rcu_read_lock(); 1325 ret = check_kill_permission(sig, info, p); 1326 rcu_read_unlock(); 1327 1328 if (!ret && sig) 1329 ret = do_send_sig_info(sig, info, p, type); 1330 1331 return ret; 1332 } 1333 1334 /* 1335 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1336 * control characters do (^C, ^Z etc) 1337 * - the caller must hold at least a readlock on tasklist_lock 1338 */ 1339 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1340 { 1341 struct task_struct *p = NULL; 1342 int retval, success; 1343 1344 success = 0; 1345 retval = -ESRCH; 1346 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1347 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1348 success |= !err; 1349 retval = err; 1350 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1351 return success ? 0 : retval; 1352 } 1353 1354 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1355 { 1356 int error = -ESRCH; 1357 struct task_struct *p; 1358 1359 for (;;) { 1360 rcu_read_lock(); 1361 p = pid_task(pid, PIDTYPE_PID); 1362 if (p) 1363 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1364 rcu_read_unlock(); 1365 if (likely(!p || error != -ESRCH)) 1366 return error; 1367 1368 /* 1369 * The task was unhashed in between, try again. If it 1370 * is dead, pid_task() will return NULL, if we race with 1371 * de_thread() it will find the new leader. 1372 */ 1373 } 1374 } 1375 1376 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1377 { 1378 int error; 1379 rcu_read_lock(); 1380 error = kill_pid_info(sig, info, find_vpid(pid)); 1381 rcu_read_unlock(); 1382 return error; 1383 } 1384 1385 static inline bool kill_as_cred_perm(const struct cred *cred, 1386 struct task_struct *target) 1387 { 1388 const struct cred *pcred = __task_cred(target); 1389 1390 return uid_eq(cred->euid, pcred->suid) || 1391 uid_eq(cred->euid, pcred->uid) || 1392 uid_eq(cred->uid, pcred->suid) || 1393 uid_eq(cred->uid, pcred->uid); 1394 } 1395 1396 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1397 int kill_pid_info_as_cred(int sig, struct kernel_siginfo *info, struct pid *pid, 1398 const struct cred *cred) 1399 { 1400 int ret = -EINVAL; 1401 struct task_struct *p; 1402 unsigned long flags; 1403 1404 if (!valid_signal(sig)) 1405 return ret; 1406 1407 rcu_read_lock(); 1408 p = pid_task(pid, PIDTYPE_PID); 1409 if (!p) { 1410 ret = -ESRCH; 1411 goto out_unlock; 1412 } 1413 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1414 ret = -EPERM; 1415 goto out_unlock; 1416 } 1417 ret = security_task_kill(p, info, sig, cred); 1418 if (ret) 1419 goto out_unlock; 1420 1421 if (sig) { 1422 if (lock_task_sighand(p, &flags)) { 1423 ret = __send_signal(sig, info, p, PIDTYPE_TGID, 0); 1424 unlock_task_sighand(p, &flags); 1425 } else 1426 ret = -ESRCH; 1427 } 1428 out_unlock: 1429 rcu_read_unlock(); 1430 return ret; 1431 } 1432 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1433 1434 /* 1435 * kill_something_info() interprets pid in interesting ways just like kill(2). 1436 * 1437 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1438 * is probably wrong. Should make it like BSD or SYSV. 1439 */ 1440 1441 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1442 { 1443 int ret; 1444 1445 if (pid > 0) { 1446 rcu_read_lock(); 1447 ret = kill_pid_info(sig, info, find_vpid(pid)); 1448 rcu_read_unlock(); 1449 return ret; 1450 } 1451 1452 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1453 if (pid == INT_MIN) 1454 return -ESRCH; 1455 1456 read_lock(&tasklist_lock); 1457 if (pid != -1) { 1458 ret = __kill_pgrp_info(sig, info, 1459 pid ? find_vpid(-pid) : task_pgrp(current)); 1460 } else { 1461 int retval = 0, count = 0; 1462 struct task_struct * p; 1463 1464 for_each_process(p) { 1465 if (task_pid_vnr(p) > 1 && 1466 !same_thread_group(p, current)) { 1467 int err = group_send_sig_info(sig, info, p, 1468 PIDTYPE_MAX); 1469 ++count; 1470 if (err != -EPERM) 1471 retval = err; 1472 } 1473 } 1474 ret = count ? retval : -ESRCH; 1475 } 1476 read_unlock(&tasklist_lock); 1477 1478 return ret; 1479 } 1480 1481 /* 1482 * These are for backward compatibility with the rest of the kernel source. 1483 */ 1484 1485 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1486 { 1487 /* 1488 * Make sure legacy kernel users don't send in bad values 1489 * (normal paths check this in check_kill_permission). 1490 */ 1491 if (!valid_signal(sig)) 1492 return -EINVAL; 1493 1494 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1495 } 1496 EXPORT_SYMBOL(send_sig_info); 1497 1498 #define __si_special(priv) \ 1499 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1500 1501 int 1502 send_sig(int sig, struct task_struct *p, int priv) 1503 { 1504 return send_sig_info(sig, __si_special(priv), p); 1505 } 1506 EXPORT_SYMBOL(send_sig); 1507 1508 void force_sig(int sig, struct task_struct *p) 1509 { 1510 force_sig_info(sig, SEND_SIG_PRIV, p); 1511 } 1512 EXPORT_SYMBOL(force_sig); 1513 1514 /* 1515 * When things go south during signal handling, we 1516 * will force a SIGSEGV. And if the signal that caused 1517 * the problem was already a SIGSEGV, we'll want to 1518 * make sure we don't even try to deliver the signal.. 1519 */ 1520 void force_sigsegv(int sig, struct task_struct *p) 1521 { 1522 if (sig == SIGSEGV) { 1523 unsigned long flags; 1524 spin_lock_irqsave(&p->sighand->siglock, flags); 1525 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1526 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1527 } 1528 force_sig(SIGSEGV, p); 1529 } 1530 1531 int force_sig_fault(int sig, int code, void __user *addr 1532 ___ARCH_SI_TRAPNO(int trapno) 1533 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1534 , struct task_struct *t) 1535 { 1536 struct kernel_siginfo info; 1537 1538 clear_siginfo(&info); 1539 info.si_signo = sig; 1540 info.si_errno = 0; 1541 info.si_code = code; 1542 info.si_addr = addr; 1543 #ifdef __ARCH_SI_TRAPNO 1544 info.si_trapno = trapno; 1545 #endif 1546 #ifdef __ia64__ 1547 info.si_imm = imm; 1548 info.si_flags = flags; 1549 info.si_isr = isr; 1550 #endif 1551 return force_sig_info(info.si_signo, &info, t); 1552 } 1553 1554 int send_sig_fault(int sig, int code, void __user *addr 1555 ___ARCH_SI_TRAPNO(int trapno) 1556 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1557 , struct task_struct *t) 1558 { 1559 struct kernel_siginfo info; 1560 1561 clear_siginfo(&info); 1562 info.si_signo = sig; 1563 info.si_errno = 0; 1564 info.si_code = code; 1565 info.si_addr = addr; 1566 #ifdef __ARCH_SI_TRAPNO 1567 info.si_trapno = trapno; 1568 #endif 1569 #ifdef __ia64__ 1570 info.si_imm = imm; 1571 info.si_flags = flags; 1572 info.si_isr = isr; 1573 #endif 1574 return send_sig_info(info.si_signo, &info, t); 1575 } 1576 1577 int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1578 { 1579 struct kernel_siginfo info; 1580 1581 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1582 clear_siginfo(&info); 1583 info.si_signo = SIGBUS; 1584 info.si_errno = 0; 1585 info.si_code = code; 1586 info.si_addr = addr; 1587 info.si_addr_lsb = lsb; 1588 return force_sig_info(info.si_signo, &info, t); 1589 } 1590 1591 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1592 { 1593 struct kernel_siginfo info; 1594 1595 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1596 clear_siginfo(&info); 1597 info.si_signo = SIGBUS; 1598 info.si_errno = 0; 1599 info.si_code = code; 1600 info.si_addr = addr; 1601 info.si_addr_lsb = lsb; 1602 return send_sig_info(info.si_signo, &info, t); 1603 } 1604 EXPORT_SYMBOL(send_sig_mceerr); 1605 1606 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1607 { 1608 struct kernel_siginfo info; 1609 1610 clear_siginfo(&info); 1611 info.si_signo = SIGSEGV; 1612 info.si_errno = 0; 1613 info.si_code = SEGV_BNDERR; 1614 info.si_addr = addr; 1615 info.si_lower = lower; 1616 info.si_upper = upper; 1617 return force_sig_info(info.si_signo, &info, current); 1618 } 1619 1620 #ifdef SEGV_PKUERR 1621 int force_sig_pkuerr(void __user *addr, u32 pkey) 1622 { 1623 struct kernel_siginfo info; 1624 1625 clear_siginfo(&info); 1626 info.si_signo = SIGSEGV; 1627 info.si_errno = 0; 1628 info.si_code = SEGV_PKUERR; 1629 info.si_addr = addr; 1630 info.si_pkey = pkey; 1631 return force_sig_info(info.si_signo, &info, current); 1632 } 1633 #endif 1634 1635 /* For the crazy architectures that include trap information in 1636 * the errno field, instead of an actual errno value. 1637 */ 1638 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1639 { 1640 struct kernel_siginfo info; 1641 1642 clear_siginfo(&info); 1643 info.si_signo = SIGTRAP; 1644 info.si_errno = errno; 1645 info.si_code = TRAP_HWBKPT; 1646 info.si_addr = addr; 1647 return force_sig_info(info.si_signo, &info, current); 1648 } 1649 1650 int kill_pgrp(struct pid *pid, int sig, int priv) 1651 { 1652 int ret; 1653 1654 read_lock(&tasklist_lock); 1655 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1656 read_unlock(&tasklist_lock); 1657 1658 return ret; 1659 } 1660 EXPORT_SYMBOL(kill_pgrp); 1661 1662 int kill_pid(struct pid *pid, int sig, int priv) 1663 { 1664 return kill_pid_info(sig, __si_special(priv), pid); 1665 } 1666 EXPORT_SYMBOL(kill_pid); 1667 1668 /* 1669 * These functions support sending signals using preallocated sigqueue 1670 * structures. This is needed "because realtime applications cannot 1671 * afford to lose notifications of asynchronous events, like timer 1672 * expirations or I/O completions". In the case of POSIX Timers 1673 * we allocate the sigqueue structure from the timer_create. If this 1674 * allocation fails we are able to report the failure to the application 1675 * with an EAGAIN error. 1676 */ 1677 struct sigqueue *sigqueue_alloc(void) 1678 { 1679 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1680 1681 if (q) 1682 q->flags |= SIGQUEUE_PREALLOC; 1683 1684 return q; 1685 } 1686 1687 void sigqueue_free(struct sigqueue *q) 1688 { 1689 unsigned long flags; 1690 spinlock_t *lock = ¤t->sighand->siglock; 1691 1692 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1693 /* 1694 * We must hold ->siglock while testing q->list 1695 * to serialize with collect_signal() or with 1696 * __exit_signal()->flush_sigqueue(). 1697 */ 1698 spin_lock_irqsave(lock, flags); 1699 q->flags &= ~SIGQUEUE_PREALLOC; 1700 /* 1701 * If it is queued it will be freed when dequeued, 1702 * like the "regular" sigqueue. 1703 */ 1704 if (!list_empty(&q->list)) 1705 q = NULL; 1706 spin_unlock_irqrestore(lock, flags); 1707 1708 if (q) 1709 __sigqueue_free(q); 1710 } 1711 1712 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1713 { 1714 int sig = q->info.si_signo; 1715 struct sigpending *pending; 1716 struct task_struct *t; 1717 unsigned long flags; 1718 int ret, result; 1719 1720 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1721 1722 ret = -1; 1723 rcu_read_lock(); 1724 t = pid_task(pid, type); 1725 if (!t || !likely(lock_task_sighand(t, &flags))) 1726 goto ret; 1727 1728 ret = 1; /* the signal is ignored */ 1729 result = TRACE_SIGNAL_IGNORED; 1730 if (!prepare_signal(sig, t, false)) 1731 goto out; 1732 1733 ret = 0; 1734 if (unlikely(!list_empty(&q->list))) { 1735 /* 1736 * If an SI_TIMER entry is already queue just increment 1737 * the overrun count. 1738 */ 1739 BUG_ON(q->info.si_code != SI_TIMER); 1740 q->info.si_overrun++; 1741 result = TRACE_SIGNAL_ALREADY_PENDING; 1742 goto out; 1743 } 1744 q->info.si_overrun = 0; 1745 1746 signalfd_notify(t, sig); 1747 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1748 list_add_tail(&q->list, &pending->list); 1749 sigaddset(&pending->signal, sig); 1750 complete_signal(sig, t, type); 1751 result = TRACE_SIGNAL_DELIVERED; 1752 out: 1753 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 1754 unlock_task_sighand(t, &flags); 1755 ret: 1756 rcu_read_unlock(); 1757 return ret; 1758 } 1759 1760 /* 1761 * Let a parent know about the death of a child. 1762 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1763 * 1764 * Returns true if our parent ignored us and so we've switched to 1765 * self-reaping. 1766 */ 1767 bool do_notify_parent(struct task_struct *tsk, int sig) 1768 { 1769 struct kernel_siginfo info; 1770 unsigned long flags; 1771 struct sighand_struct *psig; 1772 bool autoreap = false; 1773 u64 utime, stime; 1774 1775 BUG_ON(sig == -1); 1776 1777 /* do_notify_parent_cldstop should have been called instead. */ 1778 BUG_ON(task_is_stopped_or_traced(tsk)); 1779 1780 BUG_ON(!tsk->ptrace && 1781 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1782 1783 if (sig != SIGCHLD) { 1784 /* 1785 * This is only possible if parent == real_parent. 1786 * Check if it has changed security domain. 1787 */ 1788 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1789 sig = SIGCHLD; 1790 } 1791 1792 clear_siginfo(&info); 1793 info.si_signo = sig; 1794 info.si_errno = 0; 1795 /* 1796 * We are under tasklist_lock here so our parent is tied to 1797 * us and cannot change. 1798 * 1799 * task_active_pid_ns will always return the same pid namespace 1800 * until a task passes through release_task. 1801 * 1802 * write_lock() currently calls preempt_disable() which is the 1803 * same as rcu_read_lock(), but according to Oleg, this is not 1804 * correct to rely on this 1805 */ 1806 rcu_read_lock(); 1807 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1808 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1809 task_uid(tsk)); 1810 rcu_read_unlock(); 1811 1812 task_cputime(tsk, &utime, &stime); 1813 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 1814 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 1815 1816 info.si_status = tsk->exit_code & 0x7f; 1817 if (tsk->exit_code & 0x80) 1818 info.si_code = CLD_DUMPED; 1819 else if (tsk->exit_code & 0x7f) 1820 info.si_code = CLD_KILLED; 1821 else { 1822 info.si_code = CLD_EXITED; 1823 info.si_status = tsk->exit_code >> 8; 1824 } 1825 1826 psig = tsk->parent->sighand; 1827 spin_lock_irqsave(&psig->siglock, flags); 1828 if (!tsk->ptrace && sig == SIGCHLD && 1829 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1830 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1831 /* 1832 * We are exiting and our parent doesn't care. POSIX.1 1833 * defines special semantics for setting SIGCHLD to SIG_IGN 1834 * or setting the SA_NOCLDWAIT flag: we should be reaped 1835 * automatically and not left for our parent's wait4 call. 1836 * Rather than having the parent do it as a magic kind of 1837 * signal handler, we just set this to tell do_exit that we 1838 * can be cleaned up without becoming a zombie. Note that 1839 * we still call __wake_up_parent in this case, because a 1840 * blocked sys_wait4 might now return -ECHILD. 1841 * 1842 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1843 * is implementation-defined: we do (if you don't want 1844 * it, just use SIG_IGN instead). 1845 */ 1846 autoreap = true; 1847 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1848 sig = 0; 1849 } 1850 if (valid_signal(sig) && sig) 1851 __group_send_sig_info(sig, &info, tsk->parent); 1852 __wake_up_parent(tsk, tsk->parent); 1853 spin_unlock_irqrestore(&psig->siglock, flags); 1854 1855 return autoreap; 1856 } 1857 1858 /** 1859 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1860 * @tsk: task reporting the state change 1861 * @for_ptracer: the notification is for ptracer 1862 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1863 * 1864 * Notify @tsk's parent that the stopped/continued state has changed. If 1865 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1866 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1867 * 1868 * CONTEXT: 1869 * Must be called with tasklist_lock at least read locked. 1870 */ 1871 static void do_notify_parent_cldstop(struct task_struct *tsk, 1872 bool for_ptracer, int why) 1873 { 1874 struct kernel_siginfo info; 1875 unsigned long flags; 1876 struct task_struct *parent; 1877 struct sighand_struct *sighand; 1878 u64 utime, stime; 1879 1880 if (for_ptracer) { 1881 parent = tsk->parent; 1882 } else { 1883 tsk = tsk->group_leader; 1884 parent = tsk->real_parent; 1885 } 1886 1887 clear_siginfo(&info); 1888 info.si_signo = SIGCHLD; 1889 info.si_errno = 0; 1890 /* 1891 * see comment in do_notify_parent() about the following 4 lines 1892 */ 1893 rcu_read_lock(); 1894 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 1895 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 1896 rcu_read_unlock(); 1897 1898 task_cputime(tsk, &utime, &stime); 1899 info.si_utime = nsec_to_clock_t(utime); 1900 info.si_stime = nsec_to_clock_t(stime); 1901 1902 info.si_code = why; 1903 switch (why) { 1904 case CLD_CONTINUED: 1905 info.si_status = SIGCONT; 1906 break; 1907 case CLD_STOPPED: 1908 info.si_status = tsk->signal->group_exit_code & 0x7f; 1909 break; 1910 case CLD_TRAPPED: 1911 info.si_status = tsk->exit_code & 0x7f; 1912 break; 1913 default: 1914 BUG(); 1915 } 1916 1917 sighand = parent->sighand; 1918 spin_lock_irqsave(&sighand->siglock, flags); 1919 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1920 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1921 __group_send_sig_info(SIGCHLD, &info, parent); 1922 /* 1923 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1924 */ 1925 __wake_up_parent(tsk, parent); 1926 spin_unlock_irqrestore(&sighand->siglock, flags); 1927 } 1928 1929 static inline bool may_ptrace_stop(void) 1930 { 1931 if (!likely(current->ptrace)) 1932 return false; 1933 /* 1934 * Are we in the middle of do_coredump? 1935 * If so and our tracer is also part of the coredump stopping 1936 * is a deadlock situation, and pointless because our tracer 1937 * is dead so don't allow us to stop. 1938 * If SIGKILL was already sent before the caller unlocked 1939 * ->siglock we must see ->core_state != NULL. Otherwise it 1940 * is safe to enter schedule(). 1941 * 1942 * This is almost outdated, a task with the pending SIGKILL can't 1943 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 1944 * after SIGKILL was already dequeued. 1945 */ 1946 if (unlikely(current->mm->core_state) && 1947 unlikely(current->mm == current->parent->mm)) 1948 return false; 1949 1950 return true; 1951 } 1952 1953 /* 1954 * Return non-zero if there is a SIGKILL that should be waking us up. 1955 * Called with the siglock held. 1956 */ 1957 static bool sigkill_pending(struct task_struct *tsk) 1958 { 1959 return sigismember(&tsk->pending.signal, SIGKILL) || 1960 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1961 } 1962 1963 /* 1964 * This must be called with current->sighand->siglock held. 1965 * 1966 * This should be the path for all ptrace stops. 1967 * We always set current->last_siginfo while stopped here. 1968 * That makes it a way to test a stopped process for 1969 * being ptrace-stopped vs being job-control-stopped. 1970 * 1971 * If we actually decide not to stop at all because the tracer 1972 * is gone, we keep current->exit_code unless clear_code. 1973 */ 1974 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info) 1975 __releases(¤t->sighand->siglock) 1976 __acquires(¤t->sighand->siglock) 1977 { 1978 bool gstop_done = false; 1979 1980 if (arch_ptrace_stop_needed(exit_code, info)) { 1981 /* 1982 * The arch code has something special to do before a 1983 * ptrace stop. This is allowed to block, e.g. for faults 1984 * on user stack pages. We can't keep the siglock while 1985 * calling arch_ptrace_stop, so we must release it now. 1986 * To preserve proper semantics, we must do this before 1987 * any signal bookkeeping like checking group_stop_count. 1988 * Meanwhile, a SIGKILL could come in before we retake the 1989 * siglock. That must prevent us from sleeping in TASK_TRACED. 1990 * So after regaining the lock, we must check for SIGKILL. 1991 */ 1992 spin_unlock_irq(¤t->sighand->siglock); 1993 arch_ptrace_stop(exit_code, info); 1994 spin_lock_irq(¤t->sighand->siglock); 1995 if (sigkill_pending(current)) 1996 return; 1997 } 1998 1999 set_special_state(TASK_TRACED); 2000 2001 /* 2002 * We're committing to trapping. TRACED should be visible before 2003 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2004 * Also, transition to TRACED and updates to ->jobctl should be 2005 * atomic with respect to siglock and should be done after the arch 2006 * hook as siglock is released and regrabbed across it. 2007 * 2008 * TRACER TRACEE 2009 * 2010 * ptrace_attach() 2011 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2012 * do_wait() 2013 * set_current_state() smp_wmb(); 2014 * ptrace_do_wait() 2015 * wait_task_stopped() 2016 * task_stopped_code() 2017 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2018 */ 2019 smp_wmb(); 2020 2021 current->last_siginfo = info; 2022 current->exit_code = exit_code; 2023 2024 /* 2025 * If @why is CLD_STOPPED, we're trapping to participate in a group 2026 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2027 * across siglock relocks since INTERRUPT was scheduled, PENDING 2028 * could be clear now. We act as if SIGCONT is received after 2029 * TASK_TRACED is entered - ignore it. 2030 */ 2031 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2032 gstop_done = task_participate_group_stop(current); 2033 2034 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2035 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2036 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2037 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2038 2039 /* entering a trap, clear TRAPPING */ 2040 task_clear_jobctl_trapping(current); 2041 2042 spin_unlock_irq(¤t->sighand->siglock); 2043 read_lock(&tasklist_lock); 2044 if (may_ptrace_stop()) { 2045 /* 2046 * Notify parents of the stop. 2047 * 2048 * While ptraced, there are two parents - the ptracer and 2049 * the real_parent of the group_leader. The ptracer should 2050 * know about every stop while the real parent is only 2051 * interested in the completion of group stop. The states 2052 * for the two don't interact with each other. Notify 2053 * separately unless they're gonna be duplicates. 2054 */ 2055 do_notify_parent_cldstop(current, true, why); 2056 if (gstop_done && ptrace_reparented(current)) 2057 do_notify_parent_cldstop(current, false, why); 2058 2059 /* 2060 * Don't want to allow preemption here, because 2061 * sys_ptrace() needs this task to be inactive. 2062 * 2063 * XXX: implement read_unlock_no_resched(). 2064 */ 2065 preempt_disable(); 2066 read_unlock(&tasklist_lock); 2067 preempt_enable_no_resched(); 2068 freezable_schedule(); 2069 } else { 2070 /* 2071 * By the time we got the lock, our tracer went away. 2072 * Don't drop the lock yet, another tracer may come. 2073 * 2074 * If @gstop_done, the ptracer went away between group stop 2075 * completion and here. During detach, it would have set 2076 * JOBCTL_STOP_PENDING on us and we'll re-enter 2077 * TASK_STOPPED in do_signal_stop() on return, so notifying 2078 * the real parent of the group stop completion is enough. 2079 */ 2080 if (gstop_done) 2081 do_notify_parent_cldstop(current, false, why); 2082 2083 /* tasklist protects us from ptrace_freeze_traced() */ 2084 __set_current_state(TASK_RUNNING); 2085 if (clear_code) 2086 current->exit_code = 0; 2087 read_unlock(&tasklist_lock); 2088 } 2089 2090 /* 2091 * We are back. Now reacquire the siglock before touching 2092 * last_siginfo, so that we are sure to have synchronized with 2093 * any signal-sending on another CPU that wants to examine it. 2094 */ 2095 spin_lock_irq(¤t->sighand->siglock); 2096 current->last_siginfo = NULL; 2097 2098 /* LISTENING can be set only during STOP traps, clear it */ 2099 current->jobctl &= ~JOBCTL_LISTENING; 2100 2101 /* 2102 * Queued signals ignored us while we were stopped for tracing. 2103 * So check for any that we should take before resuming user mode. 2104 * This sets TIF_SIGPENDING, but never clears it. 2105 */ 2106 recalc_sigpending_tsk(current); 2107 } 2108 2109 static void ptrace_do_notify(int signr, int exit_code, int why) 2110 { 2111 kernel_siginfo_t info; 2112 2113 clear_siginfo(&info); 2114 info.si_signo = signr; 2115 info.si_code = exit_code; 2116 info.si_pid = task_pid_vnr(current); 2117 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2118 2119 /* Let the debugger run. */ 2120 ptrace_stop(exit_code, why, 1, &info); 2121 } 2122 2123 void ptrace_notify(int exit_code) 2124 { 2125 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2126 if (unlikely(current->task_works)) 2127 task_work_run(); 2128 2129 spin_lock_irq(¤t->sighand->siglock); 2130 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 2131 spin_unlock_irq(¤t->sighand->siglock); 2132 } 2133 2134 /** 2135 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2136 * @signr: signr causing group stop if initiating 2137 * 2138 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2139 * and participate in it. If already set, participate in the existing 2140 * group stop. If participated in a group stop (and thus slept), %true is 2141 * returned with siglock released. 2142 * 2143 * If ptraced, this function doesn't handle stop itself. Instead, 2144 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2145 * untouched. The caller must ensure that INTERRUPT trap handling takes 2146 * places afterwards. 2147 * 2148 * CONTEXT: 2149 * Must be called with @current->sighand->siglock held, which is released 2150 * on %true return. 2151 * 2152 * RETURNS: 2153 * %false if group stop is already cancelled or ptrace trap is scheduled. 2154 * %true if participated in group stop. 2155 */ 2156 static bool do_signal_stop(int signr) 2157 __releases(¤t->sighand->siglock) 2158 { 2159 struct signal_struct *sig = current->signal; 2160 2161 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2162 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2163 struct task_struct *t; 2164 2165 /* signr will be recorded in task->jobctl for retries */ 2166 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2167 2168 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2169 unlikely(signal_group_exit(sig))) 2170 return false; 2171 /* 2172 * There is no group stop already in progress. We must 2173 * initiate one now. 2174 * 2175 * While ptraced, a task may be resumed while group stop is 2176 * still in effect and then receive a stop signal and 2177 * initiate another group stop. This deviates from the 2178 * usual behavior as two consecutive stop signals can't 2179 * cause two group stops when !ptraced. That is why we 2180 * also check !task_is_stopped(t) below. 2181 * 2182 * The condition can be distinguished by testing whether 2183 * SIGNAL_STOP_STOPPED is already set. Don't generate 2184 * group_exit_code in such case. 2185 * 2186 * This is not necessary for SIGNAL_STOP_CONTINUED because 2187 * an intervening stop signal is required to cause two 2188 * continued events regardless of ptrace. 2189 */ 2190 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2191 sig->group_exit_code = signr; 2192 2193 sig->group_stop_count = 0; 2194 2195 if (task_set_jobctl_pending(current, signr | gstop)) 2196 sig->group_stop_count++; 2197 2198 t = current; 2199 while_each_thread(current, t) { 2200 /* 2201 * Setting state to TASK_STOPPED for a group 2202 * stop is always done with the siglock held, 2203 * so this check has no races. 2204 */ 2205 if (!task_is_stopped(t) && 2206 task_set_jobctl_pending(t, signr | gstop)) { 2207 sig->group_stop_count++; 2208 if (likely(!(t->ptrace & PT_SEIZED))) 2209 signal_wake_up(t, 0); 2210 else 2211 ptrace_trap_notify(t); 2212 } 2213 } 2214 } 2215 2216 if (likely(!current->ptrace)) { 2217 int notify = 0; 2218 2219 /* 2220 * If there are no other threads in the group, or if there 2221 * is a group stop in progress and we are the last to stop, 2222 * report to the parent. 2223 */ 2224 if (task_participate_group_stop(current)) 2225 notify = CLD_STOPPED; 2226 2227 set_special_state(TASK_STOPPED); 2228 spin_unlock_irq(¤t->sighand->siglock); 2229 2230 /* 2231 * Notify the parent of the group stop completion. Because 2232 * we're not holding either the siglock or tasklist_lock 2233 * here, ptracer may attach inbetween; however, this is for 2234 * group stop and should always be delivered to the real 2235 * parent of the group leader. The new ptracer will get 2236 * its notification when this task transitions into 2237 * TASK_TRACED. 2238 */ 2239 if (notify) { 2240 read_lock(&tasklist_lock); 2241 do_notify_parent_cldstop(current, false, notify); 2242 read_unlock(&tasklist_lock); 2243 } 2244 2245 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2246 freezable_schedule(); 2247 return true; 2248 } else { 2249 /* 2250 * While ptraced, group stop is handled by STOP trap. 2251 * Schedule it and let the caller deal with it. 2252 */ 2253 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2254 return false; 2255 } 2256 } 2257 2258 /** 2259 * do_jobctl_trap - take care of ptrace jobctl traps 2260 * 2261 * When PT_SEIZED, it's used for both group stop and explicit 2262 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2263 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2264 * the stop signal; otherwise, %SIGTRAP. 2265 * 2266 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2267 * number as exit_code and no siginfo. 2268 * 2269 * CONTEXT: 2270 * Must be called with @current->sighand->siglock held, which may be 2271 * released and re-acquired before returning with intervening sleep. 2272 */ 2273 static void do_jobctl_trap(void) 2274 { 2275 struct signal_struct *signal = current->signal; 2276 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2277 2278 if (current->ptrace & PT_SEIZED) { 2279 if (!signal->group_stop_count && 2280 !(signal->flags & SIGNAL_STOP_STOPPED)) 2281 signr = SIGTRAP; 2282 WARN_ON_ONCE(!signr); 2283 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2284 CLD_STOPPED); 2285 } else { 2286 WARN_ON_ONCE(!signr); 2287 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2288 current->exit_code = 0; 2289 } 2290 } 2291 2292 static int ptrace_signal(int signr, kernel_siginfo_t *info) 2293 { 2294 /* 2295 * We do not check sig_kernel_stop(signr) but set this marker 2296 * unconditionally because we do not know whether debugger will 2297 * change signr. This flag has no meaning unless we are going 2298 * to stop after return from ptrace_stop(). In this case it will 2299 * be checked in do_signal_stop(), we should only stop if it was 2300 * not cleared by SIGCONT while we were sleeping. See also the 2301 * comment in dequeue_signal(). 2302 */ 2303 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2304 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2305 2306 /* We're back. Did the debugger cancel the sig? */ 2307 signr = current->exit_code; 2308 if (signr == 0) 2309 return signr; 2310 2311 current->exit_code = 0; 2312 2313 /* 2314 * Update the siginfo structure if the signal has 2315 * changed. If the debugger wanted something 2316 * specific in the siginfo structure then it should 2317 * have updated *info via PTRACE_SETSIGINFO. 2318 */ 2319 if (signr != info->si_signo) { 2320 clear_siginfo(info); 2321 info->si_signo = signr; 2322 info->si_errno = 0; 2323 info->si_code = SI_USER; 2324 rcu_read_lock(); 2325 info->si_pid = task_pid_vnr(current->parent); 2326 info->si_uid = from_kuid_munged(current_user_ns(), 2327 task_uid(current->parent)); 2328 rcu_read_unlock(); 2329 } 2330 2331 /* If the (new) signal is now blocked, requeue it. */ 2332 if (sigismember(¤t->blocked, signr)) { 2333 send_signal(signr, info, current, PIDTYPE_PID); 2334 signr = 0; 2335 } 2336 2337 return signr; 2338 } 2339 2340 bool get_signal(struct ksignal *ksig) 2341 { 2342 struct sighand_struct *sighand = current->sighand; 2343 struct signal_struct *signal = current->signal; 2344 int signr; 2345 2346 if (unlikely(current->task_works)) 2347 task_work_run(); 2348 2349 if (unlikely(uprobe_deny_signal())) 2350 return false; 2351 2352 /* 2353 * Do this once, we can't return to user-mode if freezing() == T. 2354 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2355 * thus do not need another check after return. 2356 */ 2357 try_to_freeze(); 2358 2359 relock: 2360 spin_lock_irq(&sighand->siglock); 2361 /* 2362 * Every stopped thread goes here after wakeup. Check to see if 2363 * we should notify the parent, prepare_signal(SIGCONT) encodes 2364 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2365 */ 2366 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2367 int why; 2368 2369 if (signal->flags & SIGNAL_CLD_CONTINUED) 2370 why = CLD_CONTINUED; 2371 else 2372 why = CLD_STOPPED; 2373 2374 signal->flags &= ~SIGNAL_CLD_MASK; 2375 2376 spin_unlock_irq(&sighand->siglock); 2377 2378 /* 2379 * Notify the parent that we're continuing. This event is 2380 * always per-process and doesn't make whole lot of sense 2381 * for ptracers, who shouldn't consume the state via 2382 * wait(2) either, but, for backward compatibility, notify 2383 * the ptracer of the group leader too unless it's gonna be 2384 * a duplicate. 2385 */ 2386 read_lock(&tasklist_lock); 2387 do_notify_parent_cldstop(current, false, why); 2388 2389 if (ptrace_reparented(current->group_leader)) 2390 do_notify_parent_cldstop(current->group_leader, 2391 true, why); 2392 read_unlock(&tasklist_lock); 2393 2394 goto relock; 2395 } 2396 2397 for (;;) { 2398 struct k_sigaction *ka; 2399 2400 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2401 do_signal_stop(0)) 2402 goto relock; 2403 2404 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2405 do_jobctl_trap(); 2406 spin_unlock_irq(&sighand->siglock); 2407 goto relock; 2408 } 2409 2410 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2411 2412 if (!signr) 2413 break; /* will return 0 */ 2414 2415 if (unlikely(current->ptrace) && signr != SIGKILL) { 2416 signr = ptrace_signal(signr, &ksig->info); 2417 if (!signr) 2418 continue; 2419 } 2420 2421 ka = &sighand->action[signr-1]; 2422 2423 /* Trace actually delivered signals. */ 2424 trace_signal_deliver(signr, &ksig->info, ka); 2425 2426 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2427 continue; 2428 if (ka->sa.sa_handler != SIG_DFL) { 2429 /* Run the handler. */ 2430 ksig->ka = *ka; 2431 2432 if (ka->sa.sa_flags & SA_ONESHOT) 2433 ka->sa.sa_handler = SIG_DFL; 2434 2435 break; /* will return non-zero "signr" value */ 2436 } 2437 2438 /* 2439 * Now we are doing the default action for this signal. 2440 */ 2441 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2442 continue; 2443 2444 /* 2445 * Global init gets no signals it doesn't want. 2446 * Container-init gets no signals it doesn't want from same 2447 * container. 2448 * 2449 * Note that if global/container-init sees a sig_kernel_only() 2450 * signal here, the signal must have been generated internally 2451 * or must have come from an ancestor namespace. In either 2452 * case, the signal cannot be dropped. 2453 */ 2454 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2455 !sig_kernel_only(signr)) 2456 continue; 2457 2458 if (sig_kernel_stop(signr)) { 2459 /* 2460 * The default action is to stop all threads in 2461 * the thread group. The job control signals 2462 * do nothing in an orphaned pgrp, but SIGSTOP 2463 * always works. Note that siglock needs to be 2464 * dropped during the call to is_orphaned_pgrp() 2465 * because of lock ordering with tasklist_lock. 2466 * This allows an intervening SIGCONT to be posted. 2467 * We need to check for that and bail out if necessary. 2468 */ 2469 if (signr != SIGSTOP) { 2470 spin_unlock_irq(&sighand->siglock); 2471 2472 /* signals can be posted during this window */ 2473 2474 if (is_current_pgrp_orphaned()) 2475 goto relock; 2476 2477 spin_lock_irq(&sighand->siglock); 2478 } 2479 2480 if (likely(do_signal_stop(ksig->info.si_signo))) { 2481 /* It released the siglock. */ 2482 goto relock; 2483 } 2484 2485 /* 2486 * We didn't actually stop, due to a race 2487 * with SIGCONT or something like that. 2488 */ 2489 continue; 2490 } 2491 2492 spin_unlock_irq(&sighand->siglock); 2493 2494 /* 2495 * Anything else is fatal, maybe with a core dump. 2496 */ 2497 current->flags |= PF_SIGNALED; 2498 2499 if (sig_kernel_coredump(signr)) { 2500 if (print_fatal_signals) 2501 print_fatal_signal(ksig->info.si_signo); 2502 proc_coredump_connector(current); 2503 /* 2504 * If it was able to dump core, this kills all 2505 * other threads in the group and synchronizes with 2506 * their demise. If we lost the race with another 2507 * thread getting here, it set group_exit_code 2508 * first and our do_group_exit call below will use 2509 * that value and ignore the one we pass it. 2510 */ 2511 do_coredump(&ksig->info); 2512 } 2513 2514 /* 2515 * Death signals, no core dump. 2516 */ 2517 do_group_exit(ksig->info.si_signo); 2518 /* NOTREACHED */ 2519 } 2520 spin_unlock_irq(&sighand->siglock); 2521 2522 ksig->sig = signr; 2523 return ksig->sig > 0; 2524 } 2525 2526 /** 2527 * signal_delivered - 2528 * @ksig: kernel signal struct 2529 * @stepping: nonzero if debugger single-step or block-step in use 2530 * 2531 * This function should be called when a signal has successfully been 2532 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2533 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2534 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2535 */ 2536 static void signal_delivered(struct ksignal *ksig, int stepping) 2537 { 2538 sigset_t blocked; 2539 2540 /* A signal was successfully delivered, and the 2541 saved sigmask was stored on the signal frame, 2542 and will be restored by sigreturn. So we can 2543 simply clear the restore sigmask flag. */ 2544 clear_restore_sigmask(); 2545 2546 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2547 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2548 sigaddset(&blocked, ksig->sig); 2549 set_current_blocked(&blocked); 2550 tracehook_signal_handler(stepping); 2551 } 2552 2553 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2554 { 2555 if (failed) 2556 force_sigsegv(ksig->sig, current); 2557 else 2558 signal_delivered(ksig, stepping); 2559 } 2560 2561 /* 2562 * It could be that complete_signal() picked us to notify about the 2563 * group-wide signal. Other threads should be notified now to take 2564 * the shared signals in @which since we will not. 2565 */ 2566 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2567 { 2568 sigset_t retarget; 2569 struct task_struct *t; 2570 2571 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2572 if (sigisemptyset(&retarget)) 2573 return; 2574 2575 t = tsk; 2576 while_each_thread(tsk, t) { 2577 if (t->flags & PF_EXITING) 2578 continue; 2579 2580 if (!has_pending_signals(&retarget, &t->blocked)) 2581 continue; 2582 /* Remove the signals this thread can handle. */ 2583 sigandsets(&retarget, &retarget, &t->blocked); 2584 2585 if (!signal_pending(t)) 2586 signal_wake_up(t, 0); 2587 2588 if (sigisemptyset(&retarget)) 2589 break; 2590 } 2591 } 2592 2593 void exit_signals(struct task_struct *tsk) 2594 { 2595 int group_stop = 0; 2596 sigset_t unblocked; 2597 2598 /* 2599 * @tsk is about to have PF_EXITING set - lock out users which 2600 * expect stable threadgroup. 2601 */ 2602 cgroup_threadgroup_change_begin(tsk); 2603 2604 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2605 tsk->flags |= PF_EXITING; 2606 cgroup_threadgroup_change_end(tsk); 2607 return; 2608 } 2609 2610 spin_lock_irq(&tsk->sighand->siglock); 2611 /* 2612 * From now this task is not visible for group-wide signals, 2613 * see wants_signal(), do_signal_stop(). 2614 */ 2615 tsk->flags |= PF_EXITING; 2616 2617 cgroup_threadgroup_change_end(tsk); 2618 2619 if (!signal_pending(tsk)) 2620 goto out; 2621 2622 unblocked = tsk->blocked; 2623 signotset(&unblocked); 2624 retarget_shared_pending(tsk, &unblocked); 2625 2626 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2627 task_participate_group_stop(tsk)) 2628 group_stop = CLD_STOPPED; 2629 out: 2630 spin_unlock_irq(&tsk->sighand->siglock); 2631 2632 /* 2633 * If group stop has completed, deliver the notification. This 2634 * should always go to the real parent of the group leader. 2635 */ 2636 if (unlikely(group_stop)) { 2637 read_lock(&tasklist_lock); 2638 do_notify_parent_cldstop(tsk, false, group_stop); 2639 read_unlock(&tasklist_lock); 2640 } 2641 } 2642 2643 /* 2644 * System call entry points. 2645 */ 2646 2647 /** 2648 * sys_restart_syscall - restart a system call 2649 */ 2650 SYSCALL_DEFINE0(restart_syscall) 2651 { 2652 struct restart_block *restart = ¤t->restart_block; 2653 return restart->fn(restart); 2654 } 2655 2656 long do_no_restart_syscall(struct restart_block *param) 2657 { 2658 return -EINTR; 2659 } 2660 2661 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2662 { 2663 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2664 sigset_t newblocked; 2665 /* A set of now blocked but previously unblocked signals. */ 2666 sigandnsets(&newblocked, newset, ¤t->blocked); 2667 retarget_shared_pending(tsk, &newblocked); 2668 } 2669 tsk->blocked = *newset; 2670 recalc_sigpending(); 2671 } 2672 2673 /** 2674 * set_current_blocked - change current->blocked mask 2675 * @newset: new mask 2676 * 2677 * It is wrong to change ->blocked directly, this helper should be used 2678 * to ensure the process can't miss a shared signal we are going to block. 2679 */ 2680 void set_current_blocked(sigset_t *newset) 2681 { 2682 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2683 __set_current_blocked(newset); 2684 } 2685 2686 void __set_current_blocked(const sigset_t *newset) 2687 { 2688 struct task_struct *tsk = current; 2689 2690 /* 2691 * In case the signal mask hasn't changed, there is nothing we need 2692 * to do. The current->blocked shouldn't be modified by other task. 2693 */ 2694 if (sigequalsets(&tsk->blocked, newset)) 2695 return; 2696 2697 spin_lock_irq(&tsk->sighand->siglock); 2698 __set_task_blocked(tsk, newset); 2699 spin_unlock_irq(&tsk->sighand->siglock); 2700 } 2701 2702 /* 2703 * This is also useful for kernel threads that want to temporarily 2704 * (or permanently) block certain signals. 2705 * 2706 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2707 * interface happily blocks "unblockable" signals like SIGKILL 2708 * and friends. 2709 */ 2710 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2711 { 2712 struct task_struct *tsk = current; 2713 sigset_t newset; 2714 2715 /* Lockless, only current can change ->blocked, never from irq */ 2716 if (oldset) 2717 *oldset = tsk->blocked; 2718 2719 switch (how) { 2720 case SIG_BLOCK: 2721 sigorsets(&newset, &tsk->blocked, set); 2722 break; 2723 case SIG_UNBLOCK: 2724 sigandnsets(&newset, &tsk->blocked, set); 2725 break; 2726 case SIG_SETMASK: 2727 newset = *set; 2728 break; 2729 default: 2730 return -EINVAL; 2731 } 2732 2733 __set_current_blocked(&newset); 2734 return 0; 2735 } 2736 EXPORT_SYMBOL(sigprocmask); 2737 2738 /* 2739 * The api helps set app-provided sigmasks. 2740 * 2741 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 2742 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 2743 */ 2744 int set_user_sigmask(const sigset_t __user *usigmask, sigset_t *set, 2745 sigset_t *oldset, size_t sigsetsize) 2746 { 2747 if (!usigmask) 2748 return 0; 2749 2750 if (sigsetsize != sizeof(sigset_t)) 2751 return -EINVAL; 2752 if (copy_from_user(set, usigmask, sizeof(sigset_t))) 2753 return -EFAULT; 2754 2755 *oldset = current->blocked; 2756 set_current_blocked(set); 2757 2758 return 0; 2759 } 2760 EXPORT_SYMBOL(set_user_sigmask); 2761 2762 #ifdef CONFIG_COMPAT 2763 int set_compat_user_sigmask(const compat_sigset_t __user *usigmask, 2764 sigset_t *set, sigset_t *oldset, 2765 size_t sigsetsize) 2766 { 2767 if (!usigmask) 2768 return 0; 2769 2770 if (sigsetsize != sizeof(compat_sigset_t)) 2771 return -EINVAL; 2772 if (get_compat_sigset(set, usigmask)) 2773 return -EFAULT; 2774 2775 *oldset = current->blocked; 2776 set_current_blocked(set); 2777 2778 return 0; 2779 } 2780 EXPORT_SYMBOL(set_compat_user_sigmask); 2781 #endif 2782 2783 /* 2784 * restore_user_sigmask: 2785 * usigmask: sigmask passed in from userland. 2786 * sigsaved: saved sigmask when the syscall started and changed the sigmask to 2787 * usigmask. 2788 * 2789 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 2790 * epoll_pwait where a new sigmask is passed in from userland for the syscalls. 2791 */ 2792 void restore_user_sigmask(const void __user *usigmask, sigset_t *sigsaved) 2793 { 2794 2795 if (!usigmask) 2796 return; 2797 /* 2798 * When signals are pending, do not restore them here. 2799 * Restoring sigmask here can lead to delivering signals that the above 2800 * syscalls are intended to block because of the sigmask passed in. 2801 */ 2802 if (signal_pending(current)) { 2803 current->saved_sigmask = *sigsaved; 2804 set_restore_sigmask(); 2805 return; 2806 } 2807 2808 /* 2809 * This is needed because the fast syscall return path does not restore 2810 * saved_sigmask when signals are not pending. 2811 */ 2812 set_current_blocked(sigsaved); 2813 } 2814 EXPORT_SYMBOL(restore_user_sigmask); 2815 2816 /** 2817 * sys_rt_sigprocmask - change the list of currently blocked signals 2818 * @how: whether to add, remove, or set signals 2819 * @nset: stores pending signals 2820 * @oset: previous value of signal mask if non-null 2821 * @sigsetsize: size of sigset_t type 2822 */ 2823 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2824 sigset_t __user *, oset, size_t, sigsetsize) 2825 { 2826 sigset_t old_set, new_set; 2827 int error; 2828 2829 /* XXX: Don't preclude handling different sized sigset_t's. */ 2830 if (sigsetsize != sizeof(sigset_t)) 2831 return -EINVAL; 2832 2833 old_set = current->blocked; 2834 2835 if (nset) { 2836 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2837 return -EFAULT; 2838 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2839 2840 error = sigprocmask(how, &new_set, NULL); 2841 if (error) 2842 return error; 2843 } 2844 2845 if (oset) { 2846 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2847 return -EFAULT; 2848 } 2849 2850 return 0; 2851 } 2852 2853 #ifdef CONFIG_COMPAT 2854 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 2855 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 2856 { 2857 sigset_t old_set = current->blocked; 2858 2859 /* XXX: Don't preclude handling different sized sigset_t's. */ 2860 if (sigsetsize != sizeof(sigset_t)) 2861 return -EINVAL; 2862 2863 if (nset) { 2864 sigset_t new_set; 2865 int error; 2866 if (get_compat_sigset(&new_set, nset)) 2867 return -EFAULT; 2868 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2869 2870 error = sigprocmask(how, &new_set, NULL); 2871 if (error) 2872 return error; 2873 } 2874 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 2875 } 2876 #endif 2877 2878 static void do_sigpending(sigset_t *set) 2879 { 2880 spin_lock_irq(¤t->sighand->siglock); 2881 sigorsets(set, ¤t->pending.signal, 2882 ¤t->signal->shared_pending.signal); 2883 spin_unlock_irq(¤t->sighand->siglock); 2884 2885 /* Outside the lock because only this thread touches it. */ 2886 sigandsets(set, ¤t->blocked, set); 2887 } 2888 2889 /** 2890 * sys_rt_sigpending - examine a pending signal that has been raised 2891 * while blocked 2892 * @uset: stores pending signals 2893 * @sigsetsize: size of sigset_t type or larger 2894 */ 2895 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 2896 { 2897 sigset_t set; 2898 2899 if (sigsetsize > sizeof(*uset)) 2900 return -EINVAL; 2901 2902 do_sigpending(&set); 2903 2904 if (copy_to_user(uset, &set, sigsetsize)) 2905 return -EFAULT; 2906 2907 return 0; 2908 } 2909 2910 #ifdef CONFIG_COMPAT 2911 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 2912 compat_size_t, sigsetsize) 2913 { 2914 sigset_t set; 2915 2916 if (sigsetsize > sizeof(*uset)) 2917 return -EINVAL; 2918 2919 do_sigpending(&set); 2920 2921 return put_compat_sigset(uset, &set, sigsetsize); 2922 } 2923 #endif 2924 2925 static const struct { 2926 unsigned char limit, layout; 2927 } sig_sicodes[] = { 2928 [SIGILL] = { NSIGILL, SIL_FAULT }, 2929 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 2930 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 2931 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 2932 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 2933 #if defined(SIGEMT) 2934 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 2935 #endif 2936 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 2937 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 2938 [SIGSYS] = { NSIGSYS, SIL_SYS }, 2939 }; 2940 2941 static bool known_siginfo_layout(unsigned sig, int si_code) 2942 { 2943 if (si_code == SI_KERNEL) 2944 return true; 2945 else if ((si_code > SI_USER)) { 2946 if (sig_specific_sicodes(sig)) { 2947 if (si_code <= sig_sicodes[sig].limit) 2948 return true; 2949 } 2950 else if (si_code <= NSIGPOLL) 2951 return true; 2952 } 2953 else if (si_code >= SI_DETHREAD) 2954 return true; 2955 else if (si_code == SI_ASYNCNL) 2956 return true; 2957 return false; 2958 } 2959 2960 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 2961 { 2962 enum siginfo_layout layout = SIL_KILL; 2963 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 2964 if ((sig < ARRAY_SIZE(sig_sicodes)) && 2965 (si_code <= sig_sicodes[sig].limit)) { 2966 layout = sig_sicodes[sig].layout; 2967 /* Handle the exceptions */ 2968 if ((sig == SIGBUS) && 2969 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 2970 layout = SIL_FAULT_MCEERR; 2971 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 2972 layout = SIL_FAULT_BNDERR; 2973 #ifdef SEGV_PKUERR 2974 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 2975 layout = SIL_FAULT_PKUERR; 2976 #endif 2977 } 2978 else if (si_code <= NSIGPOLL) 2979 layout = SIL_POLL; 2980 } else { 2981 if (si_code == SI_TIMER) 2982 layout = SIL_TIMER; 2983 else if (si_code == SI_SIGIO) 2984 layout = SIL_POLL; 2985 else if (si_code < 0) 2986 layout = SIL_RT; 2987 } 2988 return layout; 2989 } 2990 2991 static inline char __user *si_expansion(const siginfo_t __user *info) 2992 { 2993 return ((char __user *)info) + sizeof(struct kernel_siginfo); 2994 } 2995 2996 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 2997 { 2998 char __user *expansion = si_expansion(to); 2999 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3000 return -EFAULT; 3001 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3002 return -EFAULT; 3003 return 0; 3004 } 3005 3006 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3007 const siginfo_t __user *from) 3008 { 3009 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3010 char __user *expansion = si_expansion(from); 3011 char buf[SI_EXPANSION_SIZE]; 3012 int i; 3013 /* 3014 * An unknown si_code might need more than 3015 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3016 * extra bytes are 0. This guarantees copy_siginfo_to_user 3017 * will return this data to userspace exactly. 3018 */ 3019 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3020 return -EFAULT; 3021 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3022 if (buf[i] != 0) 3023 return -E2BIG; 3024 } 3025 } 3026 return 0; 3027 } 3028 3029 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3030 const siginfo_t __user *from) 3031 { 3032 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3033 return -EFAULT; 3034 to->si_signo = signo; 3035 return post_copy_siginfo_from_user(to, from); 3036 } 3037 3038 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3039 { 3040 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3041 return -EFAULT; 3042 return post_copy_siginfo_from_user(to, from); 3043 } 3044 3045 #ifdef CONFIG_COMPAT 3046 int copy_siginfo_to_user32(struct compat_siginfo __user *to, 3047 const struct kernel_siginfo *from) 3048 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION) 3049 { 3050 return __copy_siginfo_to_user32(to, from, in_x32_syscall()); 3051 } 3052 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3053 const struct kernel_siginfo *from, bool x32_ABI) 3054 #endif 3055 { 3056 struct compat_siginfo new; 3057 memset(&new, 0, sizeof(new)); 3058 3059 new.si_signo = from->si_signo; 3060 new.si_errno = from->si_errno; 3061 new.si_code = from->si_code; 3062 switch(siginfo_layout(from->si_signo, from->si_code)) { 3063 case SIL_KILL: 3064 new.si_pid = from->si_pid; 3065 new.si_uid = from->si_uid; 3066 break; 3067 case SIL_TIMER: 3068 new.si_tid = from->si_tid; 3069 new.si_overrun = from->si_overrun; 3070 new.si_int = from->si_int; 3071 break; 3072 case SIL_POLL: 3073 new.si_band = from->si_band; 3074 new.si_fd = from->si_fd; 3075 break; 3076 case SIL_FAULT: 3077 new.si_addr = ptr_to_compat(from->si_addr); 3078 #ifdef __ARCH_SI_TRAPNO 3079 new.si_trapno = from->si_trapno; 3080 #endif 3081 break; 3082 case SIL_FAULT_MCEERR: 3083 new.si_addr = ptr_to_compat(from->si_addr); 3084 #ifdef __ARCH_SI_TRAPNO 3085 new.si_trapno = from->si_trapno; 3086 #endif 3087 new.si_addr_lsb = from->si_addr_lsb; 3088 break; 3089 case SIL_FAULT_BNDERR: 3090 new.si_addr = ptr_to_compat(from->si_addr); 3091 #ifdef __ARCH_SI_TRAPNO 3092 new.si_trapno = from->si_trapno; 3093 #endif 3094 new.si_lower = ptr_to_compat(from->si_lower); 3095 new.si_upper = ptr_to_compat(from->si_upper); 3096 break; 3097 case SIL_FAULT_PKUERR: 3098 new.si_addr = ptr_to_compat(from->si_addr); 3099 #ifdef __ARCH_SI_TRAPNO 3100 new.si_trapno = from->si_trapno; 3101 #endif 3102 new.si_pkey = from->si_pkey; 3103 break; 3104 case SIL_CHLD: 3105 new.si_pid = from->si_pid; 3106 new.si_uid = from->si_uid; 3107 new.si_status = from->si_status; 3108 #ifdef CONFIG_X86_X32_ABI 3109 if (x32_ABI) { 3110 new._sifields._sigchld_x32._utime = from->si_utime; 3111 new._sifields._sigchld_x32._stime = from->si_stime; 3112 } else 3113 #endif 3114 { 3115 new.si_utime = from->si_utime; 3116 new.si_stime = from->si_stime; 3117 } 3118 break; 3119 case SIL_RT: 3120 new.si_pid = from->si_pid; 3121 new.si_uid = from->si_uid; 3122 new.si_int = from->si_int; 3123 break; 3124 case SIL_SYS: 3125 new.si_call_addr = ptr_to_compat(from->si_call_addr); 3126 new.si_syscall = from->si_syscall; 3127 new.si_arch = from->si_arch; 3128 break; 3129 } 3130 3131 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3132 return -EFAULT; 3133 3134 return 0; 3135 } 3136 3137 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3138 const struct compat_siginfo *from) 3139 { 3140 clear_siginfo(to); 3141 to->si_signo = from->si_signo; 3142 to->si_errno = from->si_errno; 3143 to->si_code = from->si_code; 3144 switch(siginfo_layout(from->si_signo, from->si_code)) { 3145 case SIL_KILL: 3146 to->si_pid = from->si_pid; 3147 to->si_uid = from->si_uid; 3148 break; 3149 case SIL_TIMER: 3150 to->si_tid = from->si_tid; 3151 to->si_overrun = from->si_overrun; 3152 to->si_int = from->si_int; 3153 break; 3154 case SIL_POLL: 3155 to->si_band = from->si_band; 3156 to->si_fd = from->si_fd; 3157 break; 3158 case SIL_FAULT: 3159 to->si_addr = compat_ptr(from->si_addr); 3160 #ifdef __ARCH_SI_TRAPNO 3161 to->si_trapno = from->si_trapno; 3162 #endif 3163 break; 3164 case SIL_FAULT_MCEERR: 3165 to->si_addr = compat_ptr(from->si_addr); 3166 #ifdef __ARCH_SI_TRAPNO 3167 to->si_trapno = from->si_trapno; 3168 #endif 3169 to->si_addr_lsb = from->si_addr_lsb; 3170 break; 3171 case SIL_FAULT_BNDERR: 3172 to->si_addr = compat_ptr(from->si_addr); 3173 #ifdef __ARCH_SI_TRAPNO 3174 to->si_trapno = from->si_trapno; 3175 #endif 3176 to->si_lower = compat_ptr(from->si_lower); 3177 to->si_upper = compat_ptr(from->si_upper); 3178 break; 3179 case SIL_FAULT_PKUERR: 3180 to->si_addr = compat_ptr(from->si_addr); 3181 #ifdef __ARCH_SI_TRAPNO 3182 to->si_trapno = from->si_trapno; 3183 #endif 3184 to->si_pkey = from->si_pkey; 3185 break; 3186 case SIL_CHLD: 3187 to->si_pid = from->si_pid; 3188 to->si_uid = from->si_uid; 3189 to->si_status = from->si_status; 3190 #ifdef CONFIG_X86_X32_ABI 3191 if (in_x32_syscall()) { 3192 to->si_utime = from->_sifields._sigchld_x32._utime; 3193 to->si_stime = from->_sifields._sigchld_x32._stime; 3194 } else 3195 #endif 3196 { 3197 to->si_utime = from->si_utime; 3198 to->si_stime = from->si_stime; 3199 } 3200 break; 3201 case SIL_RT: 3202 to->si_pid = from->si_pid; 3203 to->si_uid = from->si_uid; 3204 to->si_int = from->si_int; 3205 break; 3206 case SIL_SYS: 3207 to->si_call_addr = compat_ptr(from->si_call_addr); 3208 to->si_syscall = from->si_syscall; 3209 to->si_arch = from->si_arch; 3210 break; 3211 } 3212 return 0; 3213 } 3214 3215 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3216 const struct compat_siginfo __user *ufrom) 3217 { 3218 struct compat_siginfo from; 3219 3220 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3221 return -EFAULT; 3222 3223 from.si_signo = signo; 3224 return post_copy_siginfo_from_user32(to, &from); 3225 } 3226 3227 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3228 const struct compat_siginfo __user *ufrom) 3229 { 3230 struct compat_siginfo from; 3231 3232 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3233 return -EFAULT; 3234 3235 return post_copy_siginfo_from_user32(to, &from); 3236 } 3237 #endif /* CONFIG_COMPAT */ 3238 3239 /** 3240 * do_sigtimedwait - wait for queued signals specified in @which 3241 * @which: queued signals to wait for 3242 * @info: if non-null, the signal's siginfo is returned here 3243 * @ts: upper bound on process time suspension 3244 */ 3245 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3246 const struct timespec64 *ts) 3247 { 3248 ktime_t *to = NULL, timeout = KTIME_MAX; 3249 struct task_struct *tsk = current; 3250 sigset_t mask = *which; 3251 int sig, ret = 0; 3252 3253 if (ts) { 3254 if (!timespec64_valid(ts)) 3255 return -EINVAL; 3256 timeout = timespec64_to_ktime(*ts); 3257 to = &timeout; 3258 } 3259 3260 /* 3261 * Invert the set of allowed signals to get those we want to block. 3262 */ 3263 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3264 signotset(&mask); 3265 3266 spin_lock_irq(&tsk->sighand->siglock); 3267 sig = dequeue_signal(tsk, &mask, info); 3268 if (!sig && timeout) { 3269 /* 3270 * None ready, temporarily unblock those we're interested 3271 * while we are sleeping in so that we'll be awakened when 3272 * they arrive. Unblocking is always fine, we can avoid 3273 * set_current_blocked(). 3274 */ 3275 tsk->real_blocked = tsk->blocked; 3276 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3277 recalc_sigpending(); 3278 spin_unlock_irq(&tsk->sighand->siglock); 3279 3280 __set_current_state(TASK_INTERRUPTIBLE); 3281 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3282 HRTIMER_MODE_REL); 3283 spin_lock_irq(&tsk->sighand->siglock); 3284 __set_task_blocked(tsk, &tsk->real_blocked); 3285 sigemptyset(&tsk->real_blocked); 3286 sig = dequeue_signal(tsk, &mask, info); 3287 } 3288 spin_unlock_irq(&tsk->sighand->siglock); 3289 3290 if (sig) 3291 return sig; 3292 return ret ? -EINTR : -EAGAIN; 3293 } 3294 3295 /** 3296 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3297 * in @uthese 3298 * @uthese: queued signals to wait for 3299 * @uinfo: if non-null, the signal's siginfo is returned here 3300 * @uts: upper bound on process time suspension 3301 * @sigsetsize: size of sigset_t type 3302 */ 3303 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3304 siginfo_t __user *, uinfo, 3305 const struct __kernel_timespec __user *, uts, 3306 size_t, sigsetsize) 3307 { 3308 sigset_t these; 3309 struct timespec64 ts; 3310 kernel_siginfo_t info; 3311 int ret; 3312 3313 /* XXX: Don't preclude handling different sized sigset_t's. */ 3314 if (sigsetsize != sizeof(sigset_t)) 3315 return -EINVAL; 3316 3317 if (copy_from_user(&these, uthese, sizeof(these))) 3318 return -EFAULT; 3319 3320 if (uts) { 3321 if (get_timespec64(&ts, uts)) 3322 return -EFAULT; 3323 } 3324 3325 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3326 3327 if (ret > 0 && uinfo) { 3328 if (copy_siginfo_to_user(uinfo, &info)) 3329 ret = -EFAULT; 3330 } 3331 3332 return ret; 3333 } 3334 3335 #ifdef CONFIG_COMPAT_32BIT_TIME 3336 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3337 siginfo_t __user *, uinfo, 3338 const struct old_timespec32 __user *, uts, 3339 size_t, sigsetsize) 3340 { 3341 sigset_t these; 3342 struct timespec64 ts; 3343 kernel_siginfo_t info; 3344 int ret; 3345 3346 if (sigsetsize != sizeof(sigset_t)) 3347 return -EINVAL; 3348 3349 if (copy_from_user(&these, uthese, sizeof(these))) 3350 return -EFAULT; 3351 3352 if (uts) { 3353 if (get_old_timespec32(&ts, uts)) 3354 return -EFAULT; 3355 } 3356 3357 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3358 3359 if (ret > 0 && uinfo) { 3360 if (copy_siginfo_to_user(uinfo, &info)) 3361 ret = -EFAULT; 3362 } 3363 3364 return ret; 3365 } 3366 #endif 3367 3368 #ifdef CONFIG_COMPAT 3369 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3370 struct compat_siginfo __user *, uinfo, 3371 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3372 { 3373 sigset_t s; 3374 struct timespec64 t; 3375 kernel_siginfo_t info; 3376 long ret; 3377 3378 if (sigsetsize != sizeof(sigset_t)) 3379 return -EINVAL; 3380 3381 if (get_compat_sigset(&s, uthese)) 3382 return -EFAULT; 3383 3384 if (uts) { 3385 if (get_timespec64(&t, uts)) 3386 return -EFAULT; 3387 } 3388 3389 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3390 3391 if (ret > 0 && uinfo) { 3392 if (copy_siginfo_to_user32(uinfo, &info)) 3393 ret = -EFAULT; 3394 } 3395 3396 return ret; 3397 } 3398 3399 #ifdef CONFIG_COMPAT_32BIT_TIME 3400 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese, 3401 struct compat_siginfo __user *, uinfo, 3402 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3403 { 3404 sigset_t s; 3405 struct timespec64 t; 3406 kernel_siginfo_t info; 3407 long ret; 3408 3409 if (sigsetsize != sizeof(sigset_t)) 3410 return -EINVAL; 3411 3412 if (get_compat_sigset(&s, uthese)) 3413 return -EFAULT; 3414 3415 if (uts) { 3416 if (get_old_timespec32(&t, uts)) 3417 return -EFAULT; 3418 } 3419 3420 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3421 3422 if (ret > 0 && uinfo) { 3423 if (copy_siginfo_to_user32(uinfo, &info)) 3424 ret = -EFAULT; 3425 } 3426 3427 return ret; 3428 } 3429 #endif 3430 #endif 3431 3432 /** 3433 * sys_kill - send a signal to a process 3434 * @pid: the PID of the process 3435 * @sig: signal to be sent 3436 */ 3437 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3438 { 3439 struct kernel_siginfo info; 3440 3441 clear_siginfo(&info); 3442 info.si_signo = sig; 3443 info.si_errno = 0; 3444 info.si_code = SI_USER; 3445 info.si_pid = task_tgid_vnr(current); 3446 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3447 3448 return kill_something_info(sig, &info, pid); 3449 } 3450 3451 static int 3452 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3453 { 3454 struct task_struct *p; 3455 int error = -ESRCH; 3456 3457 rcu_read_lock(); 3458 p = find_task_by_vpid(pid); 3459 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3460 error = check_kill_permission(sig, info, p); 3461 /* 3462 * The null signal is a permissions and process existence 3463 * probe. No signal is actually delivered. 3464 */ 3465 if (!error && sig) { 3466 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3467 /* 3468 * If lock_task_sighand() failed we pretend the task 3469 * dies after receiving the signal. The window is tiny, 3470 * and the signal is private anyway. 3471 */ 3472 if (unlikely(error == -ESRCH)) 3473 error = 0; 3474 } 3475 } 3476 rcu_read_unlock(); 3477 3478 return error; 3479 } 3480 3481 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3482 { 3483 struct kernel_siginfo info; 3484 3485 clear_siginfo(&info); 3486 info.si_signo = sig; 3487 info.si_errno = 0; 3488 info.si_code = SI_TKILL; 3489 info.si_pid = task_tgid_vnr(current); 3490 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3491 3492 return do_send_specific(tgid, pid, sig, &info); 3493 } 3494 3495 /** 3496 * sys_tgkill - send signal to one specific thread 3497 * @tgid: the thread group ID of the thread 3498 * @pid: the PID of the thread 3499 * @sig: signal to be sent 3500 * 3501 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3502 * exists but it's not belonging to the target process anymore. This 3503 * method solves the problem of threads exiting and PIDs getting reused. 3504 */ 3505 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3506 { 3507 /* This is only valid for single tasks */ 3508 if (pid <= 0 || tgid <= 0) 3509 return -EINVAL; 3510 3511 return do_tkill(tgid, pid, sig); 3512 } 3513 3514 /** 3515 * sys_tkill - send signal to one specific task 3516 * @pid: the PID of the task 3517 * @sig: signal to be sent 3518 * 3519 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3520 */ 3521 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3522 { 3523 /* This is only valid for single tasks */ 3524 if (pid <= 0) 3525 return -EINVAL; 3526 3527 return do_tkill(0, pid, sig); 3528 } 3529 3530 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 3531 { 3532 /* Not even root can pretend to send signals from the kernel. 3533 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3534 */ 3535 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3536 (task_pid_vnr(current) != pid)) 3537 return -EPERM; 3538 3539 /* POSIX.1b doesn't mention process groups. */ 3540 return kill_proc_info(sig, info, pid); 3541 } 3542 3543 /** 3544 * sys_rt_sigqueueinfo - send signal information to a signal 3545 * @pid: the PID of the thread 3546 * @sig: signal to be sent 3547 * @uinfo: signal info to be sent 3548 */ 3549 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3550 siginfo_t __user *, uinfo) 3551 { 3552 kernel_siginfo_t info; 3553 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3554 if (unlikely(ret)) 3555 return ret; 3556 return do_rt_sigqueueinfo(pid, sig, &info); 3557 } 3558 3559 #ifdef CONFIG_COMPAT 3560 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3561 compat_pid_t, pid, 3562 int, sig, 3563 struct compat_siginfo __user *, uinfo) 3564 { 3565 kernel_siginfo_t info; 3566 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 3567 if (unlikely(ret)) 3568 return ret; 3569 return do_rt_sigqueueinfo(pid, sig, &info); 3570 } 3571 #endif 3572 3573 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 3574 { 3575 /* This is only valid for single tasks */ 3576 if (pid <= 0 || tgid <= 0) 3577 return -EINVAL; 3578 3579 /* Not even root can pretend to send signals from the kernel. 3580 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3581 */ 3582 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3583 (task_pid_vnr(current) != pid)) 3584 return -EPERM; 3585 3586 return do_send_specific(tgid, pid, sig, info); 3587 } 3588 3589 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3590 siginfo_t __user *, uinfo) 3591 { 3592 kernel_siginfo_t info; 3593 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3594 if (unlikely(ret)) 3595 return ret; 3596 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3597 } 3598 3599 #ifdef CONFIG_COMPAT 3600 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3601 compat_pid_t, tgid, 3602 compat_pid_t, pid, 3603 int, sig, 3604 struct compat_siginfo __user *, uinfo) 3605 { 3606 kernel_siginfo_t info; 3607 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 3608 if (unlikely(ret)) 3609 return ret; 3610 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3611 } 3612 #endif 3613 3614 /* 3615 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 3616 */ 3617 void kernel_sigaction(int sig, __sighandler_t action) 3618 { 3619 spin_lock_irq(¤t->sighand->siglock); 3620 current->sighand->action[sig - 1].sa.sa_handler = action; 3621 if (action == SIG_IGN) { 3622 sigset_t mask; 3623 3624 sigemptyset(&mask); 3625 sigaddset(&mask, sig); 3626 3627 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 3628 flush_sigqueue_mask(&mask, ¤t->pending); 3629 recalc_sigpending(); 3630 } 3631 spin_unlock_irq(¤t->sighand->siglock); 3632 } 3633 EXPORT_SYMBOL(kernel_sigaction); 3634 3635 void __weak sigaction_compat_abi(struct k_sigaction *act, 3636 struct k_sigaction *oact) 3637 { 3638 } 3639 3640 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 3641 { 3642 struct task_struct *p = current, *t; 3643 struct k_sigaction *k; 3644 sigset_t mask; 3645 3646 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3647 return -EINVAL; 3648 3649 k = &p->sighand->action[sig-1]; 3650 3651 spin_lock_irq(&p->sighand->siglock); 3652 if (oact) 3653 *oact = *k; 3654 3655 sigaction_compat_abi(act, oact); 3656 3657 if (act) { 3658 sigdelsetmask(&act->sa.sa_mask, 3659 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3660 *k = *act; 3661 /* 3662 * POSIX 3.3.1.3: 3663 * "Setting a signal action to SIG_IGN for a signal that is 3664 * pending shall cause the pending signal to be discarded, 3665 * whether or not it is blocked." 3666 * 3667 * "Setting a signal action to SIG_DFL for a signal that is 3668 * pending and whose default action is to ignore the signal 3669 * (for example, SIGCHLD), shall cause the pending signal to 3670 * be discarded, whether or not it is blocked" 3671 */ 3672 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 3673 sigemptyset(&mask); 3674 sigaddset(&mask, sig); 3675 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 3676 for_each_thread(p, t) 3677 flush_sigqueue_mask(&mask, &t->pending); 3678 } 3679 } 3680 3681 spin_unlock_irq(&p->sighand->siglock); 3682 return 0; 3683 } 3684 3685 static int 3686 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 3687 size_t min_ss_size) 3688 { 3689 struct task_struct *t = current; 3690 3691 if (oss) { 3692 memset(oss, 0, sizeof(stack_t)); 3693 oss->ss_sp = (void __user *) t->sas_ss_sp; 3694 oss->ss_size = t->sas_ss_size; 3695 oss->ss_flags = sas_ss_flags(sp) | 3696 (current->sas_ss_flags & SS_FLAG_BITS); 3697 } 3698 3699 if (ss) { 3700 void __user *ss_sp = ss->ss_sp; 3701 size_t ss_size = ss->ss_size; 3702 unsigned ss_flags = ss->ss_flags; 3703 int ss_mode; 3704 3705 if (unlikely(on_sig_stack(sp))) 3706 return -EPERM; 3707 3708 ss_mode = ss_flags & ~SS_FLAG_BITS; 3709 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 3710 ss_mode != 0)) 3711 return -EINVAL; 3712 3713 if (ss_mode == SS_DISABLE) { 3714 ss_size = 0; 3715 ss_sp = NULL; 3716 } else { 3717 if (unlikely(ss_size < min_ss_size)) 3718 return -ENOMEM; 3719 } 3720 3721 t->sas_ss_sp = (unsigned long) ss_sp; 3722 t->sas_ss_size = ss_size; 3723 t->sas_ss_flags = ss_flags; 3724 } 3725 return 0; 3726 } 3727 3728 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 3729 { 3730 stack_t new, old; 3731 int err; 3732 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 3733 return -EFAULT; 3734 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 3735 current_user_stack_pointer(), 3736 MINSIGSTKSZ); 3737 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 3738 err = -EFAULT; 3739 return err; 3740 } 3741 3742 int restore_altstack(const stack_t __user *uss) 3743 { 3744 stack_t new; 3745 if (copy_from_user(&new, uss, sizeof(stack_t))) 3746 return -EFAULT; 3747 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 3748 MINSIGSTKSZ); 3749 /* squash all but EFAULT for now */ 3750 return 0; 3751 } 3752 3753 int __save_altstack(stack_t __user *uss, unsigned long sp) 3754 { 3755 struct task_struct *t = current; 3756 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 3757 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3758 __put_user(t->sas_ss_size, &uss->ss_size); 3759 if (err) 3760 return err; 3761 if (t->sas_ss_flags & SS_AUTODISARM) 3762 sas_ss_reset(t); 3763 return 0; 3764 } 3765 3766 #ifdef CONFIG_COMPAT 3767 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 3768 compat_stack_t __user *uoss_ptr) 3769 { 3770 stack_t uss, uoss; 3771 int ret; 3772 3773 if (uss_ptr) { 3774 compat_stack_t uss32; 3775 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 3776 return -EFAULT; 3777 uss.ss_sp = compat_ptr(uss32.ss_sp); 3778 uss.ss_flags = uss32.ss_flags; 3779 uss.ss_size = uss32.ss_size; 3780 } 3781 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 3782 compat_user_stack_pointer(), 3783 COMPAT_MINSIGSTKSZ); 3784 if (ret >= 0 && uoss_ptr) { 3785 compat_stack_t old; 3786 memset(&old, 0, sizeof(old)); 3787 old.ss_sp = ptr_to_compat(uoss.ss_sp); 3788 old.ss_flags = uoss.ss_flags; 3789 old.ss_size = uoss.ss_size; 3790 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 3791 ret = -EFAULT; 3792 } 3793 return ret; 3794 } 3795 3796 COMPAT_SYSCALL_DEFINE2(sigaltstack, 3797 const compat_stack_t __user *, uss_ptr, 3798 compat_stack_t __user *, uoss_ptr) 3799 { 3800 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 3801 } 3802 3803 int compat_restore_altstack(const compat_stack_t __user *uss) 3804 { 3805 int err = do_compat_sigaltstack(uss, NULL); 3806 /* squash all but -EFAULT for now */ 3807 return err == -EFAULT ? err : 0; 3808 } 3809 3810 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 3811 { 3812 int err; 3813 struct task_struct *t = current; 3814 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 3815 &uss->ss_sp) | 3816 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3817 __put_user(t->sas_ss_size, &uss->ss_size); 3818 if (err) 3819 return err; 3820 if (t->sas_ss_flags & SS_AUTODISARM) 3821 sas_ss_reset(t); 3822 return 0; 3823 } 3824 #endif 3825 3826 #ifdef __ARCH_WANT_SYS_SIGPENDING 3827 3828 /** 3829 * sys_sigpending - examine pending signals 3830 * @uset: where mask of pending signal is returned 3831 */ 3832 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 3833 { 3834 sigset_t set; 3835 3836 if (sizeof(old_sigset_t) > sizeof(*uset)) 3837 return -EINVAL; 3838 3839 do_sigpending(&set); 3840 3841 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 3842 return -EFAULT; 3843 3844 return 0; 3845 } 3846 3847 #ifdef CONFIG_COMPAT 3848 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 3849 { 3850 sigset_t set; 3851 3852 do_sigpending(&set); 3853 3854 return put_user(set.sig[0], set32); 3855 } 3856 #endif 3857 3858 #endif 3859 3860 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 3861 /** 3862 * sys_sigprocmask - examine and change blocked signals 3863 * @how: whether to add, remove, or set signals 3864 * @nset: signals to add or remove (if non-null) 3865 * @oset: previous value of signal mask if non-null 3866 * 3867 * Some platforms have their own version with special arguments; 3868 * others support only sys_rt_sigprocmask. 3869 */ 3870 3871 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3872 old_sigset_t __user *, oset) 3873 { 3874 old_sigset_t old_set, new_set; 3875 sigset_t new_blocked; 3876 3877 old_set = current->blocked.sig[0]; 3878 3879 if (nset) { 3880 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3881 return -EFAULT; 3882 3883 new_blocked = current->blocked; 3884 3885 switch (how) { 3886 case SIG_BLOCK: 3887 sigaddsetmask(&new_blocked, new_set); 3888 break; 3889 case SIG_UNBLOCK: 3890 sigdelsetmask(&new_blocked, new_set); 3891 break; 3892 case SIG_SETMASK: 3893 new_blocked.sig[0] = new_set; 3894 break; 3895 default: 3896 return -EINVAL; 3897 } 3898 3899 set_current_blocked(&new_blocked); 3900 } 3901 3902 if (oset) { 3903 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3904 return -EFAULT; 3905 } 3906 3907 return 0; 3908 } 3909 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3910 3911 #ifndef CONFIG_ODD_RT_SIGACTION 3912 /** 3913 * sys_rt_sigaction - alter an action taken by a process 3914 * @sig: signal to be sent 3915 * @act: new sigaction 3916 * @oact: used to save the previous sigaction 3917 * @sigsetsize: size of sigset_t type 3918 */ 3919 SYSCALL_DEFINE4(rt_sigaction, int, sig, 3920 const struct sigaction __user *, act, 3921 struct sigaction __user *, oact, 3922 size_t, sigsetsize) 3923 { 3924 struct k_sigaction new_sa, old_sa; 3925 int ret; 3926 3927 /* XXX: Don't preclude handling different sized sigset_t's. */ 3928 if (sigsetsize != sizeof(sigset_t)) 3929 return -EINVAL; 3930 3931 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3932 return -EFAULT; 3933 3934 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3935 if (ret) 3936 return ret; 3937 3938 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3939 return -EFAULT; 3940 3941 return 0; 3942 } 3943 #ifdef CONFIG_COMPAT 3944 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 3945 const struct compat_sigaction __user *, act, 3946 struct compat_sigaction __user *, oact, 3947 compat_size_t, sigsetsize) 3948 { 3949 struct k_sigaction new_ka, old_ka; 3950 #ifdef __ARCH_HAS_SA_RESTORER 3951 compat_uptr_t restorer; 3952 #endif 3953 int ret; 3954 3955 /* XXX: Don't preclude handling different sized sigset_t's. */ 3956 if (sigsetsize != sizeof(compat_sigset_t)) 3957 return -EINVAL; 3958 3959 if (act) { 3960 compat_uptr_t handler; 3961 ret = get_user(handler, &act->sa_handler); 3962 new_ka.sa.sa_handler = compat_ptr(handler); 3963 #ifdef __ARCH_HAS_SA_RESTORER 3964 ret |= get_user(restorer, &act->sa_restorer); 3965 new_ka.sa.sa_restorer = compat_ptr(restorer); 3966 #endif 3967 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 3968 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 3969 if (ret) 3970 return -EFAULT; 3971 } 3972 3973 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3974 if (!ret && oact) { 3975 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 3976 &oact->sa_handler); 3977 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 3978 sizeof(oact->sa_mask)); 3979 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 3980 #ifdef __ARCH_HAS_SA_RESTORER 3981 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3982 &oact->sa_restorer); 3983 #endif 3984 } 3985 return ret; 3986 } 3987 #endif 3988 #endif /* !CONFIG_ODD_RT_SIGACTION */ 3989 3990 #ifdef CONFIG_OLD_SIGACTION 3991 SYSCALL_DEFINE3(sigaction, int, sig, 3992 const struct old_sigaction __user *, act, 3993 struct old_sigaction __user *, oact) 3994 { 3995 struct k_sigaction new_ka, old_ka; 3996 int ret; 3997 3998 if (act) { 3999 old_sigset_t mask; 4000 if (!access_ok(act, sizeof(*act)) || 4001 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4002 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4003 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4004 __get_user(mask, &act->sa_mask)) 4005 return -EFAULT; 4006 #ifdef __ARCH_HAS_KA_RESTORER 4007 new_ka.ka_restorer = NULL; 4008 #endif 4009 siginitset(&new_ka.sa.sa_mask, mask); 4010 } 4011 4012 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4013 4014 if (!ret && oact) { 4015 if (!access_ok(oact, sizeof(*oact)) || 4016 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4017 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4018 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4019 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4020 return -EFAULT; 4021 } 4022 4023 return ret; 4024 } 4025 #endif 4026 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4027 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4028 const struct compat_old_sigaction __user *, act, 4029 struct compat_old_sigaction __user *, oact) 4030 { 4031 struct k_sigaction new_ka, old_ka; 4032 int ret; 4033 compat_old_sigset_t mask; 4034 compat_uptr_t handler, restorer; 4035 4036 if (act) { 4037 if (!access_ok(act, sizeof(*act)) || 4038 __get_user(handler, &act->sa_handler) || 4039 __get_user(restorer, &act->sa_restorer) || 4040 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4041 __get_user(mask, &act->sa_mask)) 4042 return -EFAULT; 4043 4044 #ifdef __ARCH_HAS_KA_RESTORER 4045 new_ka.ka_restorer = NULL; 4046 #endif 4047 new_ka.sa.sa_handler = compat_ptr(handler); 4048 new_ka.sa.sa_restorer = compat_ptr(restorer); 4049 siginitset(&new_ka.sa.sa_mask, mask); 4050 } 4051 4052 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4053 4054 if (!ret && oact) { 4055 if (!access_ok(oact, sizeof(*oact)) || 4056 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4057 &oact->sa_handler) || 4058 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4059 &oact->sa_restorer) || 4060 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4061 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4062 return -EFAULT; 4063 } 4064 return ret; 4065 } 4066 #endif 4067 4068 #ifdef CONFIG_SGETMASK_SYSCALL 4069 4070 /* 4071 * For backwards compatibility. Functionality superseded by sigprocmask. 4072 */ 4073 SYSCALL_DEFINE0(sgetmask) 4074 { 4075 /* SMP safe */ 4076 return current->blocked.sig[0]; 4077 } 4078 4079 SYSCALL_DEFINE1(ssetmask, int, newmask) 4080 { 4081 int old = current->blocked.sig[0]; 4082 sigset_t newset; 4083 4084 siginitset(&newset, newmask); 4085 set_current_blocked(&newset); 4086 4087 return old; 4088 } 4089 #endif /* CONFIG_SGETMASK_SYSCALL */ 4090 4091 #ifdef __ARCH_WANT_SYS_SIGNAL 4092 /* 4093 * For backwards compatibility. Functionality superseded by sigaction. 4094 */ 4095 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4096 { 4097 struct k_sigaction new_sa, old_sa; 4098 int ret; 4099 4100 new_sa.sa.sa_handler = handler; 4101 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4102 sigemptyset(&new_sa.sa.sa_mask); 4103 4104 ret = do_sigaction(sig, &new_sa, &old_sa); 4105 4106 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4107 } 4108 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4109 4110 #ifdef __ARCH_WANT_SYS_PAUSE 4111 4112 SYSCALL_DEFINE0(pause) 4113 { 4114 while (!signal_pending(current)) { 4115 __set_current_state(TASK_INTERRUPTIBLE); 4116 schedule(); 4117 } 4118 return -ERESTARTNOHAND; 4119 } 4120 4121 #endif 4122 4123 static int sigsuspend(sigset_t *set) 4124 { 4125 current->saved_sigmask = current->blocked; 4126 set_current_blocked(set); 4127 4128 while (!signal_pending(current)) { 4129 __set_current_state(TASK_INTERRUPTIBLE); 4130 schedule(); 4131 } 4132 set_restore_sigmask(); 4133 return -ERESTARTNOHAND; 4134 } 4135 4136 /** 4137 * sys_rt_sigsuspend - replace the signal mask for a value with the 4138 * @unewset value until a signal is received 4139 * @unewset: new signal mask value 4140 * @sigsetsize: size of sigset_t type 4141 */ 4142 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4143 { 4144 sigset_t newset; 4145 4146 /* XXX: Don't preclude handling different sized sigset_t's. */ 4147 if (sigsetsize != sizeof(sigset_t)) 4148 return -EINVAL; 4149 4150 if (copy_from_user(&newset, unewset, sizeof(newset))) 4151 return -EFAULT; 4152 return sigsuspend(&newset); 4153 } 4154 4155 #ifdef CONFIG_COMPAT 4156 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4157 { 4158 sigset_t newset; 4159 4160 /* XXX: Don't preclude handling different sized sigset_t's. */ 4161 if (sigsetsize != sizeof(sigset_t)) 4162 return -EINVAL; 4163 4164 if (get_compat_sigset(&newset, unewset)) 4165 return -EFAULT; 4166 return sigsuspend(&newset); 4167 } 4168 #endif 4169 4170 #ifdef CONFIG_OLD_SIGSUSPEND 4171 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4172 { 4173 sigset_t blocked; 4174 siginitset(&blocked, mask); 4175 return sigsuspend(&blocked); 4176 } 4177 #endif 4178 #ifdef CONFIG_OLD_SIGSUSPEND3 4179 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4180 { 4181 sigset_t blocked; 4182 siginitset(&blocked, mask); 4183 return sigsuspend(&blocked); 4184 } 4185 #endif 4186 4187 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4188 { 4189 return NULL; 4190 } 4191 4192 static inline void siginfo_buildtime_checks(void) 4193 { 4194 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4195 4196 /* Verify the offsets in the two siginfos match */ 4197 #define CHECK_OFFSET(field) \ 4198 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4199 4200 /* kill */ 4201 CHECK_OFFSET(si_pid); 4202 CHECK_OFFSET(si_uid); 4203 4204 /* timer */ 4205 CHECK_OFFSET(si_tid); 4206 CHECK_OFFSET(si_overrun); 4207 CHECK_OFFSET(si_value); 4208 4209 /* rt */ 4210 CHECK_OFFSET(si_pid); 4211 CHECK_OFFSET(si_uid); 4212 CHECK_OFFSET(si_value); 4213 4214 /* sigchld */ 4215 CHECK_OFFSET(si_pid); 4216 CHECK_OFFSET(si_uid); 4217 CHECK_OFFSET(si_status); 4218 CHECK_OFFSET(si_utime); 4219 CHECK_OFFSET(si_stime); 4220 4221 /* sigfault */ 4222 CHECK_OFFSET(si_addr); 4223 CHECK_OFFSET(si_addr_lsb); 4224 CHECK_OFFSET(si_lower); 4225 CHECK_OFFSET(si_upper); 4226 CHECK_OFFSET(si_pkey); 4227 4228 /* sigpoll */ 4229 CHECK_OFFSET(si_band); 4230 CHECK_OFFSET(si_fd); 4231 4232 /* sigsys */ 4233 CHECK_OFFSET(si_call_addr); 4234 CHECK_OFFSET(si_syscall); 4235 CHECK_OFFSET(si_arch); 4236 #undef CHECK_OFFSET 4237 } 4238 4239 void __init signals_init(void) 4240 { 4241 siginfo_buildtime_checks(); 4242 4243 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 4244 } 4245 4246 #ifdef CONFIG_KGDB_KDB 4247 #include <linux/kdb.h> 4248 /* 4249 * kdb_send_sig - Allows kdb to send signals without exposing 4250 * signal internals. This function checks if the required locks are 4251 * available before calling the main signal code, to avoid kdb 4252 * deadlocks. 4253 */ 4254 void kdb_send_sig(struct task_struct *t, int sig) 4255 { 4256 static struct task_struct *kdb_prev_t; 4257 int new_t, ret; 4258 if (!spin_trylock(&t->sighand->siglock)) { 4259 kdb_printf("Can't do kill command now.\n" 4260 "The sigmask lock is held somewhere else in " 4261 "kernel, try again later\n"); 4262 return; 4263 } 4264 new_t = kdb_prev_t != t; 4265 kdb_prev_t = t; 4266 if (t->state != TASK_RUNNING && new_t) { 4267 spin_unlock(&t->sighand->siglock); 4268 kdb_printf("Process is not RUNNING, sending a signal from " 4269 "kdb risks deadlock\n" 4270 "on the run queue locks. " 4271 "The signal has _not_ been sent.\n" 4272 "Reissue the kill command if you want to risk " 4273 "the deadlock.\n"); 4274 return; 4275 } 4276 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4277 spin_unlock(&t->sighand->siglock); 4278 if (ret) 4279 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4280 sig, t->pid); 4281 else 4282 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4283 } 4284 #endif /* CONFIG_KGDB_KDB */ 4285