xref: /openbmc/linux/kernel/signal.c (revision 93d90ad7)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #include <linux/cn_proc.h>
36 #include <linux/compiler.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/signal.h>
40 
41 #include <asm/param.h>
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
44 #include <asm/siginfo.h>
45 #include <asm/cacheflush.h>
46 #include "audit.h"	/* audit_signal_info() */
47 
48 /*
49  * SLAB caches for signal bits.
50  */
51 
52 static struct kmem_cache *sigqueue_cachep;
53 
54 int print_fatal_signals __read_mostly;
55 
56 static void __user *sig_handler(struct task_struct *t, int sig)
57 {
58 	return t->sighand->action[sig - 1].sa.sa_handler;
59 }
60 
61 static int sig_handler_ignored(void __user *handler, int sig)
62 {
63 	/* Is it explicitly or implicitly ignored? */
64 	return handler == SIG_IGN ||
65 		(handler == SIG_DFL && sig_kernel_ignore(sig));
66 }
67 
68 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
69 {
70 	void __user *handler;
71 
72 	handler = sig_handler(t, sig);
73 
74 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
75 			handler == SIG_DFL && !force)
76 		return 1;
77 
78 	return sig_handler_ignored(handler, sig);
79 }
80 
81 static int sig_ignored(struct task_struct *t, int sig, bool force)
82 {
83 	/*
84 	 * Blocked signals are never ignored, since the
85 	 * signal handler may change by the time it is
86 	 * unblocked.
87 	 */
88 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
89 		return 0;
90 
91 	if (!sig_task_ignored(t, sig, force))
92 		return 0;
93 
94 	/*
95 	 * Tracers may want to know about even ignored signals.
96 	 */
97 	return !t->ptrace;
98 }
99 
100 /*
101  * Re-calculate pending state from the set of locally pending
102  * signals, globally pending signals, and blocked signals.
103  */
104 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
105 {
106 	unsigned long ready;
107 	long i;
108 
109 	switch (_NSIG_WORDS) {
110 	default:
111 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
112 			ready |= signal->sig[i] &~ blocked->sig[i];
113 		break;
114 
115 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
116 		ready |= signal->sig[2] &~ blocked->sig[2];
117 		ready |= signal->sig[1] &~ blocked->sig[1];
118 		ready |= signal->sig[0] &~ blocked->sig[0];
119 		break;
120 
121 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
122 		ready |= signal->sig[0] &~ blocked->sig[0];
123 		break;
124 
125 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
126 	}
127 	return ready !=	0;
128 }
129 
130 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
131 
132 static int recalc_sigpending_tsk(struct task_struct *t)
133 {
134 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
135 	    PENDING(&t->pending, &t->blocked) ||
136 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
137 		set_tsk_thread_flag(t, TIF_SIGPENDING);
138 		return 1;
139 	}
140 	/*
141 	 * We must never clear the flag in another thread, or in current
142 	 * when it's possible the current syscall is returning -ERESTART*.
143 	 * So we don't clear it here, and only callers who know they should do.
144 	 */
145 	return 0;
146 }
147 
148 /*
149  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
150  * This is superfluous when called on current, the wakeup is a harmless no-op.
151  */
152 void recalc_sigpending_and_wake(struct task_struct *t)
153 {
154 	if (recalc_sigpending_tsk(t))
155 		signal_wake_up(t, 0);
156 }
157 
158 void recalc_sigpending(void)
159 {
160 	if (!recalc_sigpending_tsk(current) && !freezing(current))
161 		clear_thread_flag(TIF_SIGPENDING);
162 
163 }
164 
165 /* Given the mask, find the first available signal that should be serviced. */
166 
167 #define SYNCHRONOUS_MASK \
168 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
169 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
170 
171 int next_signal(struct sigpending *pending, sigset_t *mask)
172 {
173 	unsigned long i, *s, *m, x;
174 	int sig = 0;
175 
176 	s = pending->signal.sig;
177 	m = mask->sig;
178 
179 	/*
180 	 * Handle the first word specially: it contains the
181 	 * synchronous signals that need to be dequeued first.
182 	 */
183 	x = *s &~ *m;
184 	if (x) {
185 		if (x & SYNCHRONOUS_MASK)
186 			x &= SYNCHRONOUS_MASK;
187 		sig = ffz(~x) + 1;
188 		return sig;
189 	}
190 
191 	switch (_NSIG_WORDS) {
192 	default:
193 		for (i = 1; i < _NSIG_WORDS; ++i) {
194 			x = *++s &~ *++m;
195 			if (!x)
196 				continue;
197 			sig = ffz(~x) + i*_NSIG_BPW + 1;
198 			break;
199 		}
200 		break;
201 
202 	case 2:
203 		x = s[1] &~ m[1];
204 		if (!x)
205 			break;
206 		sig = ffz(~x) + _NSIG_BPW + 1;
207 		break;
208 
209 	case 1:
210 		/* Nothing to do */
211 		break;
212 	}
213 
214 	return sig;
215 }
216 
217 static inline void print_dropped_signal(int sig)
218 {
219 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
220 
221 	if (!print_fatal_signals)
222 		return;
223 
224 	if (!__ratelimit(&ratelimit_state))
225 		return;
226 
227 	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
228 				current->comm, current->pid, sig);
229 }
230 
231 /**
232  * task_set_jobctl_pending - set jobctl pending bits
233  * @task: target task
234  * @mask: pending bits to set
235  *
236  * Clear @mask from @task->jobctl.  @mask must be subset of
237  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
238  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
239  * cleared.  If @task is already being killed or exiting, this function
240  * becomes noop.
241  *
242  * CONTEXT:
243  * Must be called with @task->sighand->siglock held.
244  *
245  * RETURNS:
246  * %true if @mask is set, %false if made noop because @task was dying.
247  */
248 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
249 {
250 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
251 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
252 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
253 
254 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
255 		return false;
256 
257 	if (mask & JOBCTL_STOP_SIGMASK)
258 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
259 
260 	task->jobctl |= mask;
261 	return true;
262 }
263 
264 /**
265  * task_clear_jobctl_trapping - clear jobctl trapping bit
266  * @task: target task
267  *
268  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
269  * Clear it and wake up the ptracer.  Note that we don't need any further
270  * locking.  @task->siglock guarantees that @task->parent points to the
271  * ptracer.
272  *
273  * CONTEXT:
274  * Must be called with @task->sighand->siglock held.
275  */
276 void task_clear_jobctl_trapping(struct task_struct *task)
277 {
278 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
279 		task->jobctl &= ~JOBCTL_TRAPPING;
280 		smp_mb();	/* advised by wake_up_bit() */
281 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
282 	}
283 }
284 
285 /**
286  * task_clear_jobctl_pending - clear jobctl pending bits
287  * @task: target task
288  * @mask: pending bits to clear
289  *
290  * Clear @mask from @task->jobctl.  @mask must be subset of
291  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
292  * STOP bits are cleared together.
293  *
294  * If clearing of @mask leaves no stop or trap pending, this function calls
295  * task_clear_jobctl_trapping().
296  *
297  * CONTEXT:
298  * Must be called with @task->sighand->siglock held.
299  */
300 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
301 {
302 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
303 
304 	if (mask & JOBCTL_STOP_PENDING)
305 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
306 
307 	task->jobctl &= ~mask;
308 
309 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
310 		task_clear_jobctl_trapping(task);
311 }
312 
313 /**
314  * task_participate_group_stop - participate in a group stop
315  * @task: task participating in a group stop
316  *
317  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
318  * Group stop states are cleared and the group stop count is consumed if
319  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
320  * stop, the appropriate %SIGNAL_* flags are set.
321  *
322  * CONTEXT:
323  * Must be called with @task->sighand->siglock held.
324  *
325  * RETURNS:
326  * %true if group stop completion should be notified to the parent, %false
327  * otherwise.
328  */
329 static bool task_participate_group_stop(struct task_struct *task)
330 {
331 	struct signal_struct *sig = task->signal;
332 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
333 
334 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
335 
336 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
337 
338 	if (!consume)
339 		return false;
340 
341 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
342 		sig->group_stop_count--;
343 
344 	/*
345 	 * Tell the caller to notify completion iff we are entering into a
346 	 * fresh group stop.  Read comment in do_signal_stop() for details.
347 	 */
348 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
349 		sig->flags = SIGNAL_STOP_STOPPED;
350 		return true;
351 	}
352 	return false;
353 }
354 
355 /*
356  * allocate a new signal queue record
357  * - this may be called without locks if and only if t == current, otherwise an
358  *   appropriate lock must be held to stop the target task from exiting
359  */
360 static struct sigqueue *
361 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
362 {
363 	struct sigqueue *q = NULL;
364 	struct user_struct *user;
365 
366 	/*
367 	 * Protect access to @t credentials. This can go away when all
368 	 * callers hold rcu read lock.
369 	 */
370 	rcu_read_lock();
371 	user = get_uid(__task_cred(t)->user);
372 	atomic_inc(&user->sigpending);
373 	rcu_read_unlock();
374 
375 	if (override_rlimit ||
376 	    atomic_read(&user->sigpending) <=
377 			task_rlimit(t, RLIMIT_SIGPENDING)) {
378 		q = kmem_cache_alloc(sigqueue_cachep, flags);
379 	} else {
380 		print_dropped_signal(sig);
381 	}
382 
383 	if (unlikely(q == NULL)) {
384 		atomic_dec(&user->sigpending);
385 		free_uid(user);
386 	} else {
387 		INIT_LIST_HEAD(&q->list);
388 		q->flags = 0;
389 		q->user = user;
390 	}
391 
392 	return q;
393 }
394 
395 static void __sigqueue_free(struct sigqueue *q)
396 {
397 	if (q->flags & SIGQUEUE_PREALLOC)
398 		return;
399 	atomic_dec(&q->user->sigpending);
400 	free_uid(q->user);
401 	kmem_cache_free(sigqueue_cachep, q);
402 }
403 
404 void flush_sigqueue(struct sigpending *queue)
405 {
406 	struct sigqueue *q;
407 
408 	sigemptyset(&queue->signal);
409 	while (!list_empty(&queue->list)) {
410 		q = list_entry(queue->list.next, struct sigqueue , list);
411 		list_del_init(&q->list);
412 		__sigqueue_free(q);
413 	}
414 }
415 
416 /*
417  * Flush all pending signals for a task.
418  */
419 void __flush_signals(struct task_struct *t)
420 {
421 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
422 	flush_sigqueue(&t->pending);
423 	flush_sigqueue(&t->signal->shared_pending);
424 }
425 
426 void flush_signals(struct task_struct *t)
427 {
428 	unsigned long flags;
429 
430 	spin_lock_irqsave(&t->sighand->siglock, flags);
431 	__flush_signals(t);
432 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
433 }
434 
435 static void __flush_itimer_signals(struct sigpending *pending)
436 {
437 	sigset_t signal, retain;
438 	struct sigqueue *q, *n;
439 
440 	signal = pending->signal;
441 	sigemptyset(&retain);
442 
443 	list_for_each_entry_safe(q, n, &pending->list, list) {
444 		int sig = q->info.si_signo;
445 
446 		if (likely(q->info.si_code != SI_TIMER)) {
447 			sigaddset(&retain, sig);
448 		} else {
449 			sigdelset(&signal, sig);
450 			list_del_init(&q->list);
451 			__sigqueue_free(q);
452 		}
453 	}
454 
455 	sigorsets(&pending->signal, &signal, &retain);
456 }
457 
458 void flush_itimer_signals(void)
459 {
460 	struct task_struct *tsk = current;
461 	unsigned long flags;
462 
463 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
464 	__flush_itimer_signals(&tsk->pending);
465 	__flush_itimer_signals(&tsk->signal->shared_pending);
466 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
467 }
468 
469 void ignore_signals(struct task_struct *t)
470 {
471 	int i;
472 
473 	for (i = 0; i < _NSIG; ++i)
474 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
475 
476 	flush_signals(t);
477 }
478 
479 /*
480  * Flush all handlers for a task.
481  */
482 
483 void
484 flush_signal_handlers(struct task_struct *t, int force_default)
485 {
486 	int i;
487 	struct k_sigaction *ka = &t->sighand->action[0];
488 	for (i = _NSIG ; i != 0 ; i--) {
489 		if (force_default || ka->sa.sa_handler != SIG_IGN)
490 			ka->sa.sa_handler = SIG_DFL;
491 		ka->sa.sa_flags = 0;
492 #ifdef __ARCH_HAS_SA_RESTORER
493 		ka->sa.sa_restorer = NULL;
494 #endif
495 		sigemptyset(&ka->sa.sa_mask);
496 		ka++;
497 	}
498 }
499 
500 int unhandled_signal(struct task_struct *tsk, int sig)
501 {
502 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
503 	if (is_global_init(tsk))
504 		return 1;
505 	if (handler != SIG_IGN && handler != SIG_DFL)
506 		return 0;
507 	/* if ptraced, let the tracer determine */
508 	return !tsk->ptrace;
509 }
510 
511 /*
512  * Notify the system that a driver wants to block all signals for this
513  * process, and wants to be notified if any signals at all were to be
514  * sent/acted upon.  If the notifier routine returns non-zero, then the
515  * signal will be acted upon after all.  If the notifier routine returns 0,
516  * then then signal will be blocked.  Only one block per process is
517  * allowed.  priv is a pointer to private data that the notifier routine
518  * can use to determine if the signal should be blocked or not.
519  */
520 void
521 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
522 {
523 	unsigned long flags;
524 
525 	spin_lock_irqsave(&current->sighand->siglock, flags);
526 	current->notifier_mask = mask;
527 	current->notifier_data = priv;
528 	current->notifier = notifier;
529 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
530 }
531 
532 /* Notify the system that blocking has ended. */
533 
534 void
535 unblock_all_signals(void)
536 {
537 	unsigned long flags;
538 
539 	spin_lock_irqsave(&current->sighand->siglock, flags);
540 	current->notifier = NULL;
541 	current->notifier_data = NULL;
542 	recalc_sigpending();
543 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
544 }
545 
546 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
547 {
548 	struct sigqueue *q, *first = NULL;
549 
550 	/*
551 	 * Collect the siginfo appropriate to this signal.  Check if
552 	 * there is another siginfo for the same signal.
553 	*/
554 	list_for_each_entry(q, &list->list, list) {
555 		if (q->info.si_signo == sig) {
556 			if (first)
557 				goto still_pending;
558 			first = q;
559 		}
560 	}
561 
562 	sigdelset(&list->signal, sig);
563 
564 	if (first) {
565 still_pending:
566 		list_del_init(&first->list);
567 		copy_siginfo(info, &first->info);
568 		__sigqueue_free(first);
569 	} else {
570 		/*
571 		 * Ok, it wasn't in the queue.  This must be
572 		 * a fast-pathed signal or we must have been
573 		 * out of queue space.  So zero out the info.
574 		 */
575 		info->si_signo = sig;
576 		info->si_errno = 0;
577 		info->si_code = SI_USER;
578 		info->si_pid = 0;
579 		info->si_uid = 0;
580 	}
581 }
582 
583 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
584 			siginfo_t *info)
585 {
586 	int sig = next_signal(pending, mask);
587 
588 	if (sig) {
589 		if (current->notifier) {
590 			if (sigismember(current->notifier_mask, sig)) {
591 				if (!(current->notifier)(current->notifier_data)) {
592 					clear_thread_flag(TIF_SIGPENDING);
593 					return 0;
594 				}
595 			}
596 		}
597 
598 		collect_signal(sig, pending, info);
599 	}
600 
601 	return sig;
602 }
603 
604 /*
605  * Dequeue a signal and return the element to the caller, which is
606  * expected to free it.
607  *
608  * All callers have to hold the siglock.
609  */
610 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
611 {
612 	int signr;
613 
614 	/* We only dequeue private signals from ourselves, we don't let
615 	 * signalfd steal them
616 	 */
617 	signr = __dequeue_signal(&tsk->pending, mask, info);
618 	if (!signr) {
619 		signr = __dequeue_signal(&tsk->signal->shared_pending,
620 					 mask, info);
621 		/*
622 		 * itimer signal ?
623 		 *
624 		 * itimers are process shared and we restart periodic
625 		 * itimers in the signal delivery path to prevent DoS
626 		 * attacks in the high resolution timer case. This is
627 		 * compliant with the old way of self-restarting
628 		 * itimers, as the SIGALRM is a legacy signal and only
629 		 * queued once. Changing the restart behaviour to
630 		 * restart the timer in the signal dequeue path is
631 		 * reducing the timer noise on heavy loaded !highres
632 		 * systems too.
633 		 */
634 		if (unlikely(signr == SIGALRM)) {
635 			struct hrtimer *tmr = &tsk->signal->real_timer;
636 
637 			if (!hrtimer_is_queued(tmr) &&
638 			    tsk->signal->it_real_incr.tv64 != 0) {
639 				hrtimer_forward(tmr, tmr->base->get_time(),
640 						tsk->signal->it_real_incr);
641 				hrtimer_restart(tmr);
642 			}
643 		}
644 	}
645 
646 	recalc_sigpending();
647 	if (!signr)
648 		return 0;
649 
650 	if (unlikely(sig_kernel_stop(signr))) {
651 		/*
652 		 * Set a marker that we have dequeued a stop signal.  Our
653 		 * caller might release the siglock and then the pending
654 		 * stop signal it is about to process is no longer in the
655 		 * pending bitmasks, but must still be cleared by a SIGCONT
656 		 * (and overruled by a SIGKILL).  So those cases clear this
657 		 * shared flag after we've set it.  Note that this flag may
658 		 * remain set after the signal we return is ignored or
659 		 * handled.  That doesn't matter because its only purpose
660 		 * is to alert stop-signal processing code when another
661 		 * processor has come along and cleared the flag.
662 		 */
663 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
664 	}
665 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
666 		/*
667 		 * Release the siglock to ensure proper locking order
668 		 * of timer locks outside of siglocks.  Note, we leave
669 		 * irqs disabled here, since the posix-timers code is
670 		 * about to disable them again anyway.
671 		 */
672 		spin_unlock(&tsk->sighand->siglock);
673 		do_schedule_next_timer(info);
674 		spin_lock(&tsk->sighand->siglock);
675 	}
676 	return signr;
677 }
678 
679 /*
680  * Tell a process that it has a new active signal..
681  *
682  * NOTE! we rely on the previous spin_lock to
683  * lock interrupts for us! We can only be called with
684  * "siglock" held, and the local interrupt must
685  * have been disabled when that got acquired!
686  *
687  * No need to set need_resched since signal event passing
688  * goes through ->blocked
689  */
690 void signal_wake_up_state(struct task_struct *t, unsigned int state)
691 {
692 	set_tsk_thread_flag(t, TIF_SIGPENDING);
693 	/*
694 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
695 	 * case. We don't check t->state here because there is a race with it
696 	 * executing another processor and just now entering stopped state.
697 	 * By using wake_up_state, we ensure the process will wake up and
698 	 * handle its death signal.
699 	 */
700 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
701 		kick_process(t);
702 }
703 
704 /*
705  * Remove signals in mask from the pending set and queue.
706  * Returns 1 if any signals were found.
707  *
708  * All callers must be holding the siglock.
709  */
710 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
711 {
712 	struct sigqueue *q, *n;
713 	sigset_t m;
714 
715 	sigandsets(&m, mask, &s->signal);
716 	if (sigisemptyset(&m))
717 		return 0;
718 
719 	sigandnsets(&s->signal, &s->signal, mask);
720 	list_for_each_entry_safe(q, n, &s->list, list) {
721 		if (sigismember(mask, q->info.si_signo)) {
722 			list_del_init(&q->list);
723 			__sigqueue_free(q);
724 		}
725 	}
726 	return 1;
727 }
728 
729 static inline int is_si_special(const struct siginfo *info)
730 {
731 	return info <= SEND_SIG_FORCED;
732 }
733 
734 static inline bool si_fromuser(const struct siginfo *info)
735 {
736 	return info == SEND_SIG_NOINFO ||
737 		(!is_si_special(info) && SI_FROMUSER(info));
738 }
739 
740 /*
741  * called with RCU read lock from check_kill_permission()
742  */
743 static int kill_ok_by_cred(struct task_struct *t)
744 {
745 	const struct cred *cred = current_cred();
746 	const struct cred *tcred = __task_cred(t);
747 
748 	if (uid_eq(cred->euid, tcred->suid) ||
749 	    uid_eq(cred->euid, tcred->uid)  ||
750 	    uid_eq(cred->uid,  tcred->suid) ||
751 	    uid_eq(cred->uid,  tcred->uid))
752 		return 1;
753 
754 	if (ns_capable(tcred->user_ns, CAP_KILL))
755 		return 1;
756 
757 	return 0;
758 }
759 
760 /*
761  * Bad permissions for sending the signal
762  * - the caller must hold the RCU read lock
763  */
764 static int check_kill_permission(int sig, struct siginfo *info,
765 				 struct task_struct *t)
766 {
767 	struct pid *sid;
768 	int error;
769 
770 	if (!valid_signal(sig))
771 		return -EINVAL;
772 
773 	if (!si_fromuser(info))
774 		return 0;
775 
776 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
777 	if (error)
778 		return error;
779 
780 	if (!same_thread_group(current, t) &&
781 	    !kill_ok_by_cred(t)) {
782 		switch (sig) {
783 		case SIGCONT:
784 			sid = task_session(t);
785 			/*
786 			 * We don't return the error if sid == NULL. The
787 			 * task was unhashed, the caller must notice this.
788 			 */
789 			if (!sid || sid == task_session(current))
790 				break;
791 		default:
792 			return -EPERM;
793 		}
794 	}
795 
796 	return security_task_kill(t, info, sig, 0);
797 }
798 
799 /**
800  * ptrace_trap_notify - schedule trap to notify ptracer
801  * @t: tracee wanting to notify tracer
802  *
803  * This function schedules sticky ptrace trap which is cleared on the next
804  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
805  * ptracer.
806  *
807  * If @t is running, STOP trap will be taken.  If trapped for STOP and
808  * ptracer is listening for events, tracee is woken up so that it can
809  * re-trap for the new event.  If trapped otherwise, STOP trap will be
810  * eventually taken without returning to userland after the existing traps
811  * are finished by PTRACE_CONT.
812  *
813  * CONTEXT:
814  * Must be called with @task->sighand->siglock held.
815  */
816 static void ptrace_trap_notify(struct task_struct *t)
817 {
818 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
819 	assert_spin_locked(&t->sighand->siglock);
820 
821 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
822 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
823 }
824 
825 /*
826  * Handle magic process-wide effects of stop/continue signals. Unlike
827  * the signal actions, these happen immediately at signal-generation
828  * time regardless of blocking, ignoring, or handling.  This does the
829  * actual continuing for SIGCONT, but not the actual stopping for stop
830  * signals. The process stop is done as a signal action for SIG_DFL.
831  *
832  * Returns true if the signal should be actually delivered, otherwise
833  * it should be dropped.
834  */
835 static bool prepare_signal(int sig, struct task_struct *p, bool force)
836 {
837 	struct signal_struct *signal = p->signal;
838 	struct task_struct *t;
839 	sigset_t flush;
840 
841 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
842 		if (signal->flags & SIGNAL_GROUP_COREDUMP)
843 			return sig == SIGKILL;
844 		/*
845 		 * The process is in the middle of dying, nothing to do.
846 		 */
847 	} else if (sig_kernel_stop(sig)) {
848 		/*
849 		 * This is a stop signal.  Remove SIGCONT from all queues.
850 		 */
851 		siginitset(&flush, sigmask(SIGCONT));
852 		flush_sigqueue_mask(&flush, &signal->shared_pending);
853 		for_each_thread(p, t)
854 			flush_sigqueue_mask(&flush, &t->pending);
855 	} else if (sig == SIGCONT) {
856 		unsigned int why;
857 		/*
858 		 * Remove all stop signals from all queues, wake all threads.
859 		 */
860 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
861 		flush_sigqueue_mask(&flush, &signal->shared_pending);
862 		for_each_thread(p, t) {
863 			flush_sigqueue_mask(&flush, &t->pending);
864 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
865 			if (likely(!(t->ptrace & PT_SEIZED)))
866 				wake_up_state(t, __TASK_STOPPED);
867 			else
868 				ptrace_trap_notify(t);
869 		}
870 
871 		/*
872 		 * Notify the parent with CLD_CONTINUED if we were stopped.
873 		 *
874 		 * If we were in the middle of a group stop, we pretend it
875 		 * was already finished, and then continued. Since SIGCHLD
876 		 * doesn't queue we report only CLD_STOPPED, as if the next
877 		 * CLD_CONTINUED was dropped.
878 		 */
879 		why = 0;
880 		if (signal->flags & SIGNAL_STOP_STOPPED)
881 			why |= SIGNAL_CLD_CONTINUED;
882 		else if (signal->group_stop_count)
883 			why |= SIGNAL_CLD_STOPPED;
884 
885 		if (why) {
886 			/*
887 			 * The first thread which returns from do_signal_stop()
888 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
889 			 * notify its parent. See get_signal_to_deliver().
890 			 */
891 			signal->flags = why | SIGNAL_STOP_CONTINUED;
892 			signal->group_stop_count = 0;
893 			signal->group_exit_code = 0;
894 		}
895 	}
896 
897 	return !sig_ignored(p, sig, force);
898 }
899 
900 /*
901  * Test if P wants to take SIG.  After we've checked all threads with this,
902  * it's equivalent to finding no threads not blocking SIG.  Any threads not
903  * blocking SIG were ruled out because they are not running and already
904  * have pending signals.  Such threads will dequeue from the shared queue
905  * as soon as they're available, so putting the signal on the shared queue
906  * will be equivalent to sending it to one such thread.
907  */
908 static inline int wants_signal(int sig, struct task_struct *p)
909 {
910 	if (sigismember(&p->blocked, sig))
911 		return 0;
912 	if (p->flags & PF_EXITING)
913 		return 0;
914 	if (sig == SIGKILL)
915 		return 1;
916 	if (task_is_stopped_or_traced(p))
917 		return 0;
918 	return task_curr(p) || !signal_pending(p);
919 }
920 
921 static void complete_signal(int sig, struct task_struct *p, int group)
922 {
923 	struct signal_struct *signal = p->signal;
924 	struct task_struct *t;
925 
926 	/*
927 	 * Now find a thread we can wake up to take the signal off the queue.
928 	 *
929 	 * If the main thread wants the signal, it gets first crack.
930 	 * Probably the least surprising to the average bear.
931 	 */
932 	if (wants_signal(sig, p))
933 		t = p;
934 	else if (!group || thread_group_empty(p))
935 		/*
936 		 * There is just one thread and it does not need to be woken.
937 		 * It will dequeue unblocked signals before it runs again.
938 		 */
939 		return;
940 	else {
941 		/*
942 		 * Otherwise try to find a suitable thread.
943 		 */
944 		t = signal->curr_target;
945 		while (!wants_signal(sig, t)) {
946 			t = next_thread(t);
947 			if (t == signal->curr_target)
948 				/*
949 				 * No thread needs to be woken.
950 				 * Any eligible threads will see
951 				 * the signal in the queue soon.
952 				 */
953 				return;
954 		}
955 		signal->curr_target = t;
956 	}
957 
958 	/*
959 	 * Found a killable thread.  If the signal will be fatal,
960 	 * then start taking the whole group down immediately.
961 	 */
962 	if (sig_fatal(p, sig) &&
963 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
964 	    !sigismember(&t->real_blocked, sig) &&
965 	    (sig == SIGKILL || !t->ptrace)) {
966 		/*
967 		 * This signal will be fatal to the whole group.
968 		 */
969 		if (!sig_kernel_coredump(sig)) {
970 			/*
971 			 * Start a group exit and wake everybody up.
972 			 * This way we don't have other threads
973 			 * running and doing things after a slower
974 			 * thread has the fatal signal pending.
975 			 */
976 			signal->flags = SIGNAL_GROUP_EXIT;
977 			signal->group_exit_code = sig;
978 			signal->group_stop_count = 0;
979 			t = p;
980 			do {
981 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
982 				sigaddset(&t->pending.signal, SIGKILL);
983 				signal_wake_up(t, 1);
984 			} while_each_thread(p, t);
985 			return;
986 		}
987 	}
988 
989 	/*
990 	 * The signal is already in the shared-pending queue.
991 	 * Tell the chosen thread to wake up and dequeue it.
992 	 */
993 	signal_wake_up(t, sig == SIGKILL);
994 	return;
995 }
996 
997 static inline int legacy_queue(struct sigpending *signals, int sig)
998 {
999 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1000 }
1001 
1002 #ifdef CONFIG_USER_NS
1003 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1004 {
1005 	if (current_user_ns() == task_cred_xxx(t, user_ns))
1006 		return;
1007 
1008 	if (SI_FROMKERNEL(info))
1009 		return;
1010 
1011 	rcu_read_lock();
1012 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1013 					make_kuid(current_user_ns(), info->si_uid));
1014 	rcu_read_unlock();
1015 }
1016 #else
1017 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1018 {
1019 	return;
1020 }
1021 #endif
1022 
1023 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1024 			int group, int from_ancestor_ns)
1025 {
1026 	struct sigpending *pending;
1027 	struct sigqueue *q;
1028 	int override_rlimit;
1029 	int ret = 0, result;
1030 
1031 	assert_spin_locked(&t->sighand->siglock);
1032 
1033 	result = TRACE_SIGNAL_IGNORED;
1034 	if (!prepare_signal(sig, t,
1035 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1036 		goto ret;
1037 
1038 	pending = group ? &t->signal->shared_pending : &t->pending;
1039 	/*
1040 	 * Short-circuit ignored signals and support queuing
1041 	 * exactly one non-rt signal, so that we can get more
1042 	 * detailed information about the cause of the signal.
1043 	 */
1044 	result = TRACE_SIGNAL_ALREADY_PENDING;
1045 	if (legacy_queue(pending, sig))
1046 		goto ret;
1047 
1048 	result = TRACE_SIGNAL_DELIVERED;
1049 	/*
1050 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1051 	 * or SIGKILL.
1052 	 */
1053 	if (info == SEND_SIG_FORCED)
1054 		goto out_set;
1055 
1056 	/*
1057 	 * Real-time signals must be queued if sent by sigqueue, or
1058 	 * some other real-time mechanism.  It is implementation
1059 	 * defined whether kill() does so.  We attempt to do so, on
1060 	 * the principle of least surprise, but since kill is not
1061 	 * allowed to fail with EAGAIN when low on memory we just
1062 	 * make sure at least one signal gets delivered and don't
1063 	 * pass on the info struct.
1064 	 */
1065 	if (sig < SIGRTMIN)
1066 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1067 	else
1068 		override_rlimit = 0;
1069 
1070 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1071 		override_rlimit);
1072 	if (q) {
1073 		list_add_tail(&q->list, &pending->list);
1074 		switch ((unsigned long) info) {
1075 		case (unsigned long) SEND_SIG_NOINFO:
1076 			q->info.si_signo = sig;
1077 			q->info.si_errno = 0;
1078 			q->info.si_code = SI_USER;
1079 			q->info.si_pid = task_tgid_nr_ns(current,
1080 							task_active_pid_ns(t));
1081 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1082 			break;
1083 		case (unsigned long) SEND_SIG_PRIV:
1084 			q->info.si_signo = sig;
1085 			q->info.si_errno = 0;
1086 			q->info.si_code = SI_KERNEL;
1087 			q->info.si_pid = 0;
1088 			q->info.si_uid = 0;
1089 			break;
1090 		default:
1091 			copy_siginfo(&q->info, info);
1092 			if (from_ancestor_ns)
1093 				q->info.si_pid = 0;
1094 			break;
1095 		}
1096 
1097 		userns_fixup_signal_uid(&q->info, t);
1098 
1099 	} else if (!is_si_special(info)) {
1100 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1101 			/*
1102 			 * Queue overflow, abort.  We may abort if the
1103 			 * signal was rt and sent by user using something
1104 			 * other than kill().
1105 			 */
1106 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1107 			ret = -EAGAIN;
1108 			goto ret;
1109 		} else {
1110 			/*
1111 			 * This is a silent loss of information.  We still
1112 			 * send the signal, but the *info bits are lost.
1113 			 */
1114 			result = TRACE_SIGNAL_LOSE_INFO;
1115 		}
1116 	}
1117 
1118 out_set:
1119 	signalfd_notify(t, sig);
1120 	sigaddset(&pending->signal, sig);
1121 	complete_signal(sig, t, group);
1122 ret:
1123 	trace_signal_generate(sig, info, t, group, result);
1124 	return ret;
1125 }
1126 
1127 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1128 			int group)
1129 {
1130 	int from_ancestor_ns = 0;
1131 
1132 #ifdef CONFIG_PID_NS
1133 	from_ancestor_ns = si_fromuser(info) &&
1134 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1135 #endif
1136 
1137 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1138 }
1139 
1140 static void print_fatal_signal(int signr)
1141 {
1142 	struct pt_regs *regs = signal_pt_regs();
1143 	printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1144 
1145 #if defined(__i386__) && !defined(__arch_um__)
1146 	printk(KERN_INFO "code at %08lx: ", regs->ip);
1147 	{
1148 		int i;
1149 		for (i = 0; i < 16; i++) {
1150 			unsigned char insn;
1151 
1152 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1153 				break;
1154 			printk(KERN_CONT "%02x ", insn);
1155 		}
1156 	}
1157 	printk(KERN_CONT "\n");
1158 #endif
1159 	preempt_disable();
1160 	show_regs(regs);
1161 	preempt_enable();
1162 }
1163 
1164 static int __init setup_print_fatal_signals(char *str)
1165 {
1166 	get_option (&str, &print_fatal_signals);
1167 
1168 	return 1;
1169 }
1170 
1171 __setup("print-fatal-signals=", setup_print_fatal_signals);
1172 
1173 int
1174 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1175 {
1176 	return send_signal(sig, info, p, 1);
1177 }
1178 
1179 static int
1180 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1181 {
1182 	return send_signal(sig, info, t, 0);
1183 }
1184 
1185 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1186 			bool group)
1187 {
1188 	unsigned long flags;
1189 	int ret = -ESRCH;
1190 
1191 	if (lock_task_sighand(p, &flags)) {
1192 		ret = send_signal(sig, info, p, group);
1193 		unlock_task_sighand(p, &flags);
1194 	}
1195 
1196 	return ret;
1197 }
1198 
1199 /*
1200  * Force a signal that the process can't ignore: if necessary
1201  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1202  *
1203  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1204  * since we do not want to have a signal handler that was blocked
1205  * be invoked when user space had explicitly blocked it.
1206  *
1207  * We don't want to have recursive SIGSEGV's etc, for example,
1208  * that is why we also clear SIGNAL_UNKILLABLE.
1209  */
1210 int
1211 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1212 {
1213 	unsigned long int flags;
1214 	int ret, blocked, ignored;
1215 	struct k_sigaction *action;
1216 
1217 	spin_lock_irqsave(&t->sighand->siglock, flags);
1218 	action = &t->sighand->action[sig-1];
1219 	ignored = action->sa.sa_handler == SIG_IGN;
1220 	blocked = sigismember(&t->blocked, sig);
1221 	if (blocked || ignored) {
1222 		action->sa.sa_handler = SIG_DFL;
1223 		if (blocked) {
1224 			sigdelset(&t->blocked, sig);
1225 			recalc_sigpending_and_wake(t);
1226 		}
1227 	}
1228 	if (action->sa.sa_handler == SIG_DFL)
1229 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1230 	ret = specific_send_sig_info(sig, info, t);
1231 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1232 
1233 	return ret;
1234 }
1235 
1236 /*
1237  * Nuke all other threads in the group.
1238  */
1239 int zap_other_threads(struct task_struct *p)
1240 {
1241 	struct task_struct *t = p;
1242 	int count = 0;
1243 
1244 	p->signal->group_stop_count = 0;
1245 
1246 	while_each_thread(p, t) {
1247 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1248 		count++;
1249 
1250 		/* Don't bother with already dead threads */
1251 		if (t->exit_state)
1252 			continue;
1253 		sigaddset(&t->pending.signal, SIGKILL);
1254 		signal_wake_up(t, 1);
1255 	}
1256 
1257 	return count;
1258 }
1259 
1260 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1261 					   unsigned long *flags)
1262 {
1263 	struct sighand_struct *sighand;
1264 
1265 	for (;;) {
1266 		/*
1267 		 * Disable interrupts early to avoid deadlocks.
1268 		 * See rcu_read_unlock() comment header for details.
1269 		 */
1270 		local_irq_save(*flags);
1271 		rcu_read_lock();
1272 		sighand = rcu_dereference(tsk->sighand);
1273 		if (unlikely(sighand == NULL)) {
1274 			rcu_read_unlock();
1275 			local_irq_restore(*flags);
1276 			break;
1277 		}
1278 		/*
1279 		 * This sighand can be already freed and even reused, but
1280 		 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
1281 		 * initializes ->siglock: this slab can't go away, it has
1282 		 * the same object type, ->siglock can't be reinitialized.
1283 		 *
1284 		 * We need to ensure that tsk->sighand is still the same
1285 		 * after we take the lock, we can race with de_thread() or
1286 		 * __exit_signal(). In the latter case the next iteration
1287 		 * must see ->sighand == NULL.
1288 		 */
1289 		spin_lock(&sighand->siglock);
1290 		if (likely(sighand == tsk->sighand)) {
1291 			rcu_read_unlock();
1292 			break;
1293 		}
1294 		spin_unlock(&sighand->siglock);
1295 		rcu_read_unlock();
1296 		local_irq_restore(*flags);
1297 	}
1298 
1299 	return sighand;
1300 }
1301 
1302 /*
1303  * send signal info to all the members of a group
1304  */
1305 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1306 {
1307 	int ret;
1308 
1309 	rcu_read_lock();
1310 	ret = check_kill_permission(sig, info, p);
1311 	rcu_read_unlock();
1312 
1313 	if (!ret && sig)
1314 		ret = do_send_sig_info(sig, info, p, true);
1315 
1316 	return ret;
1317 }
1318 
1319 /*
1320  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1321  * control characters do (^C, ^Z etc)
1322  * - the caller must hold at least a readlock on tasklist_lock
1323  */
1324 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1325 {
1326 	struct task_struct *p = NULL;
1327 	int retval, success;
1328 
1329 	success = 0;
1330 	retval = -ESRCH;
1331 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1332 		int err = group_send_sig_info(sig, info, p);
1333 		success |= !err;
1334 		retval = err;
1335 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1336 	return success ? 0 : retval;
1337 }
1338 
1339 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1340 {
1341 	int error = -ESRCH;
1342 	struct task_struct *p;
1343 
1344 	for (;;) {
1345 		rcu_read_lock();
1346 		p = pid_task(pid, PIDTYPE_PID);
1347 		if (p)
1348 			error = group_send_sig_info(sig, info, p);
1349 		rcu_read_unlock();
1350 		if (likely(!p || error != -ESRCH))
1351 			return error;
1352 
1353 		/*
1354 		 * The task was unhashed in between, try again.  If it
1355 		 * is dead, pid_task() will return NULL, if we race with
1356 		 * de_thread() it will find the new leader.
1357 		 */
1358 	}
1359 }
1360 
1361 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1362 {
1363 	int error;
1364 	rcu_read_lock();
1365 	error = kill_pid_info(sig, info, find_vpid(pid));
1366 	rcu_read_unlock();
1367 	return error;
1368 }
1369 
1370 static int kill_as_cred_perm(const struct cred *cred,
1371 			     struct task_struct *target)
1372 {
1373 	const struct cred *pcred = __task_cred(target);
1374 	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1375 	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1376 		return 0;
1377 	return 1;
1378 }
1379 
1380 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1381 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1382 			 const struct cred *cred, u32 secid)
1383 {
1384 	int ret = -EINVAL;
1385 	struct task_struct *p;
1386 	unsigned long flags;
1387 
1388 	if (!valid_signal(sig))
1389 		return ret;
1390 
1391 	rcu_read_lock();
1392 	p = pid_task(pid, PIDTYPE_PID);
1393 	if (!p) {
1394 		ret = -ESRCH;
1395 		goto out_unlock;
1396 	}
1397 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1398 		ret = -EPERM;
1399 		goto out_unlock;
1400 	}
1401 	ret = security_task_kill(p, info, sig, secid);
1402 	if (ret)
1403 		goto out_unlock;
1404 
1405 	if (sig) {
1406 		if (lock_task_sighand(p, &flags)) {
1407 			ret = __send_signal(sig, info, p, 1, 0);
1408 			unlock_task_sighand(p, &flags);
1409 		} else
1410 			ret = -ESRCH;
1411 	}
1412 out_unlock:
1413 	rcu_read_unlock();
1414 	return ret;
1415 }
1416 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1417 
1418 /*
1419  * kill_something_info() interprets pid in interesting ways just like kill(2).
1420  *
1421  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1422  * is probably wrong.  Should make it like BSD or SYSV.
1423  */
1424 
1425 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1426 {
1427 	int ret;
1428 
1429 	if (pid > 0) {
1430 		rcu_read_lock();
1431 		ret = kill_pid_info(sig, info, find_vpid(pid));
1432 		rcu_read_unlock();
1433 		return ret;
1434 	}
1435 
1436 	read_lock(&tasklist_lock);
1437 	if (pid != -1) {
1438 		ret = __kill_pgrp_info(sig, info,
1439 				pid ? find_vpid(-pid) : task_pgrp(current));
1440 	} else {
1441 		int retval = 0, count = 0;
1442 		struct task_struct * p;
1443 
1444 		for_each_process(p) {
1445 			if (task_pid_vnr(p) > 1 &&
1446 					!same_thread_group(p, current)) {
1447 				int err = group_send_sig_info(sig, info, p);
1448 				++count;
1449 				if (err != -EPERM)
1450 					retval = err;
1451 			}
1452 		}
1453 		ret = count ? retval : -ESRCH;
1454 	}
1455 	read_unlock(&tasklist_lock);
1456 
1457 	return ret;
1458 }
1459 
1460 /*
1461  * These are for backward compatibility with the rest of the kernel source.
1462  */
1463 
1464 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1465 {
1466 	/*
1467 	 * Make sure legacy kernel users don't send in bad values
1468 	 * (normal paths check this in check_kill_permission).
1469 	 */
1470 	if (!valid_signal(sig))
1471 		return -EINVAL;
1472 
1473 	return do_send_sig_info(sig, info, p, false);
1474 }
1475 
1476 #define __si_special(priv) \
1477 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1478 
1479 int
1480 send_sig(int sig, struct task_struct *p, int priv)
1481 {
1482 	return send_sig_info(sig, __si_special(priv), p);
1483 }
1484 
1485 void
1486 force_sig(int sig, struct task_struct *p)
1487 {
1488 	force_sig_info(sig, SEND_SIG_PRIV, p);
1489 }
1490 
1491 /*
1492  * When things go south during signal handling, we
1493  * will force a SIGSEGV. And if the signal that caused
1494  * the problem was already a SIGSEGV, we'll want to
1495  * make sure we don't even try to deliver the signal..
1496  */
1497 int
1498 force_sigsegv(int sig, struct task_struct *p)
1499 {
1500 	if (sig == SIGSEGV) {
1501 		unsigned long flags;
1502 		spin_lock_irqsave(&p->sighand->siglock, flags);
1503 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1504 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1505 	}
1506 	force_sig(SIGSEGV, p);
1507 	return 0;
1508 }
1509 
1510 int kill_pgrp(struct pid *pid, int sig, int priv)
1511 {
1512 	int ret;
1513 
1514 	read_lock(&tasklist_lock);
1515 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1516 	read_unlock(&tasklist_lock);
1517 
1518 	return ret;
1519 }
1520 EXPORT_SYMBOL(kill_pgrp);
1521 
1522 int kill_pid(struct pid *pid, int sig, int priv)
1523 {
1524 	return kill_pid_info(sig, __si_special(priv), pid);
1525 }
1526 EXPORT_SYMBOL(kill_pid);
1527 
1528 /*
1529  * These functions support sending signals using preallocated sigqueue
1530  * structures.  This is needed "because realtime applications cannot
1531  * afford to lose notifications of asynchronous events, like timer
1532  * expirations or I/O completions".  In the case of POSIX Timers
1533  * we allocate the sigqueue structure from the timer_create.  If this
1534  * allocation fails we are able to report the failure to the application
1535  * with an EAGAIN error.
1536  */
1537 struct sigqueue *sigqueue_alloc(void)
1538 {
1539 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1540 
1541 	if (q)
1542 		q->flags |= SIGQUEUE_PREALLOC;
1543 
1544 	return q;
1545 }
1546 
1547 void sigqueue_free(struct sigqueue *q)
1548 {
1549 	unsigned long flags;
1550 	spinlock_t *lock = &current->sighand->siglock;
1551 
1552 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1553 	/*
1554 	 * We must hold ->siglock while testing q->list
1555 	 * to serialize with collect_signal() or with
1556 	 * __exit_signal()->flush_sigqueue().
1557 	 */
1558 	spin_lock_irqsave(lock, flags);
1559 	q->flags &= ~SIGQUEUE_PREALLOC;
1560 	/*
1561 	 * If it is queued it will be freed when dequeued,
1562 	 * like the "regular" sigqueue.
1563 	 */
1564 	if (!list_empty(&q->list))
1565 		q = NULL;
1566 	spin_unlock_irqrestore(lock, flags);
1567 
1568 	if (q)
1569 		__sigqueue_free(q);
1570 }
1571 
1572 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1573 {
1574 	int sig = q->info.si_signo;
1575 	struct sigpending *pending;
1576 	unsigned long flags;
1577 	int ret, result;
1578 
1579 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1580 
1581 	ret = -1;
1582 	if (!likely(lock_task_sighand(t, &flags)))
1583 		goto ret;
1584 
1585 	ret = 1; /* the signal is ignored */
1586 	result = TRACE_SIGNAL_IGNORED;
1587 	if (!prepare_signal(sig, t, false))
1588 		goto out;
1589 
1590 	ret = 0;
1591 	if (unlikely(!list_empty(&q->list))) {
1592 		/*
1593 		 * If an SI_TIMER entry is already queue just increment
1594 		 * the overrun count.
1595 		 */
1596 		BUG_ON(q->info.si_code != SI_TIMER);
1597 		q->info.si_overrun++;
1598 		result = TRACE_SIGNAL_ALREADY_PENDING;
1599 		goto out;
1600 	}
1601 	q->info.si_overrun = 0;
1602 
1603 	signalfd_notify(t, sig);
1604 	pending = group ? &t->signal->shared_pending : &t->pending;
1605 	list_add_tail(&q->list, &pending->list);
1606 	sigaddset(&pending->signal, sig);
1607 	complete_signal(sig, t, group);
1608 	result = TRACE_SIGNAL_DELIVERED;
1609 out:
1610 	trace_signal_generate(sig, &q->info, t, group, result);
1611 	unlock_task_sighand(t, &flags);
1612 ret:
1613 	return ret;
1614 }
1615 
1616 /*
1617  * Let a parent know about the death of a child.
1618  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1619  *
1620  * Returns true if our parent ignored us and so we've switched to
1621  * self-reaping.
1622  */
1623 bool do_notify_parent(struct task_struct *tsk, int sig)
1624 {
1625 	struct siginfo info;
1626 	unsigned long flags;
1627 	struct sighand_struct *psig;
1628 	bool autoreap = false;
1629 	cputime_t utime, stime;
1630 
1631 	BUG_ON(sig == -1);
1632 
1633  	/* do_notify_parent_cldstop should have been called instead.  */
1634  	BUG_ON(task_is_stopped_or_traced(tsk));
1635 
1636 	BUG_ON(!tsk->ptrace &&
1637 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1638 
1639 	if (sig != SIGCHLD) {
1640 		/*
1641 		 * This is only possible if parent == real_parent.
1642 		 * Check if it has changed security domain.
1643 		 */
1644 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1645 			sig = SIGCHLD;
1646 	}
1647 
1648 	info.si_signo = sig;
1649 	info.si_errno = 0;
1650 	/*
1651 	 * We are under tasklist_lock here so our parent is tied to
1652 	 * us and cannot change.
1653 	 *
1654 	 * task_active_pid_ns will always return the same pid namespace
1655 	 * until a task passes through release_task.
1656 	 *
1657 	 * write_lock() currently calls preempt_disable() which is the
1658 	 * same as rcu_read_lock(), but according to Oleg, this is not
1659 	 * correct to rely on this
1660 	 */
1661 	rcu_read_lock();
1662 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1663 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1664 				       task_uid(tsk));
1665 	rcu_read_unlock();
1666 
1667 	task_cputime(tsk, &utime, &stime);
1668 	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1669 	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1670 
1671 	info.si_status = tsk->exit_code & 0x7f;
1672 	if (tsk->exit_code & 0x80)
1673 		info.si_code = CLD_DUMPED;
1674 	else if (tsk->exit_code & 0x7f)
1675 		info.si_code = CLD_KILLED;
1676 	else {
1677 		info.si_code = CLD_EXITED;
1678 		info.si_status = tsk->exit_code >> 8;
1679 	}
1680 
1681 	psig = tsk->parent->sighand;
1682 	spin_lock_irqsave(&psig->siglock, flags);
1683 	if (!tsk->ptrace && sig == SIGCHLD &&
1684 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1685 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1686 		/*
1687 		 * We are exiting and our parent doesn't care.  POSIX.1
1688 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1689 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1690 		 * automatically and not left for our parent's wait4 call.
1691 		 * Rather than having the parent do it as a magic kind of
1692 		 * signal handler, we just set this to tell do_exit that we
1693 		 * can be cleaned up without becoming a zombie.  Note that
1694 		 * we still call __wake_up_parent in this case, because a
1695 		 * blocked sys_wait4 might now return -ECHILD.
1696 		 *
1697 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1698 		 * is implementation-defined: we do (if you don't want
1699 		 * it, just use SIG_IGN instead).
1700 		 */
1701 		autoreap = true;
1702 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1703 			sig = 0;
1704 	}
1705 	if (valid_signal(sig) && sig)
1706 		__group_send_sig_info(sig, &info, tsk->parent);
1707 	__wake_up_parent(tsk, tsk->parent);
1708 	spin_unlock_irqrestore(&psig->siglock, flags);
1709 
1710 	return autoreap;
1711 }
1712 
1713 /**
1714  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1715  * @tsk: task reporting the state change
1716  * @for_ptracer: the notification is for ptracer
1717  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1718  *
1719  * Notify @tsk's parent that the stopped/continued state has changed.  If
1720  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1721  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1722  *
1723  * CONTEXT:
1724  * Must be called with tasklist_lock at least read locked.
1725  */
1726 static void do_notify_parent_cldstop(struct task_struct *tsk,
1727 				     bool for_ptracer, int why)
1728 {
1729 	struct siginfo info;
1730 	unsigned long flags;
1731 	struct task_struct *parent;
1732 	struct sighand_struct *sighand;
1733 	cputime_t utime, stime;
1734 
1735 	if (for_ptracer) {
1736 		parent = tsk->parent;
1737 	} else {
1738 		tsk = tsk->group_leader;
1739 		parent = tsk->real_parent;
1740 	}
1741 
1742 	info.si_signo = SIGCHLD;
1743 	info.si_errno = 0;
1744 	/*
1745 	 * see comment in do_notify_parent() about the following 4 lines
1746 	 */
1747 	rcu_read_lock();
1748 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1749 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1750 	rcu_read_unlock();
1751 
1752 	task_cputime(tsk, &utime, &stime);
1753 	info.si_utime = cputime_to_clock_t(utime);
1754 	info.si_stime = cputime_to_clock_t(stime);
1755 
1756  	info.si_code = why;
1757  	switch (why) {
1758  	case CLD_CONTINUED:
1759  		info.si_status = SIGCONT;
1760  		break;
1761  	case CLD_STOPPED:
1762  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1763  		break;
1764  	case CLD_TRAPPED:
1765  		info.si_status = tsk->exit_code & 0x7f;
1766  		break;
1767  	default:
1768  		BUG();
1769  	}
1770 
1771 	sighand = parent->sighand;
1772 	spin_lock_irqsave(&sighand->siglock, flags);
1773 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1774 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1775 		__group_send_sig_info(SIGCHLD, &info, parent);
1776 	/*
1777 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1778 	 */
1779 	__wake_up_parent(tsk, parent);
1780 	spin_unlock_irqrestore(&sighand->siglock, flags);
1781 }
1782 
1783 static inline int may_ptrace_stop(void)
1784 {
1785 	if (!likely(current->ptrace))
1786 		return 0;
1787 	/*
1788 	 * Are we in the middle of do_coredump?
1789 	 * If so and our tracer is also part of the coredump stopping
1790 	 * is a deadlock situation, and pointless because our tracer
1791 	 * is dead so don't allow us to stop.
1792 	 * If SIGKILL was already sent before the caller unlocked
1793 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1794 	 * is safe to enter schedule().
1795 	 *
1796 	 * This is almost outdated, a task with the pending SIGKILL can't
1797 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1798 	 * after SIGKILL was already dequeued.
1799 	 */
1800 	if (unlikely(current->mm->core_state) &&
1801 	    unlikely(current->mm == current->parent->mm))
1802 		return 0;
1803 
1804 	return 1;
1805 }
1806 
1807 /*
1808  * Return non-zero if there is a SIGKILL that should be waking us up.
1809  * Called with the siglock held.
1810  */
1811 static int sigkill_pending(struct task_struct *tsk)
1812 {
1813 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1814 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1815 }
1816 
1817 /*
1818  * This must be called with current->sighand->siglock held.
1819  *
1820  * This should be the path for all ptrace stops.
1821  * We always set current->last_siginfo while stopped here.
1822  * That makes it a way to test a stopped process for
1823  * being ptrace-stopped vs being job-control-stopped.
1824  *
1825  * If we actually decide not to stop at all because the tracer
1826  * is gone, we keep current->exit_code unless clear_code.
1827  */
1828 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1829 	__releases(&current->sighand->siglock)
1830 	__acquires(&current->sighand->siglock)
1831 {
1832 	bool gstop_done = false;
1833 
1834 	if (arch_ptrace_stop_needed(exit_code, info)) {
1835 		/*
1836 		 * The arch code has something special to do before a
1837 		 * ptrace stop.  This is allowed to block, e.g. for faults
1838 		 * on user stack pages.  We can't keep the siglock while
1839 		 * calling arch_ptrace_stop, so we must release it now.
1840 		 * To preserve proper semantics, we must do this before
1841 		 * any signal bookkeeping like checking group_stop_count.
1842 		 * Meanwhile, a SIGKILL could come in before we retake the
1843 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1844 		 * So after regaining the lock, we must check for SIGKILL.
1845 		 */
1846 		spin_unlock_irq(&current->sighand->siglock);
1847 		arch_ptrace_stop(exit_code, info);
1848 		spin_lock_irq(&current->sighand->siglock);
1849 		if (sigkill_pending(current))
1850 			return;
1851 	}
1852 
1853 	/*
1854 	 * We're committing to trapping.  TRACED should be visible before
1855 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1856 	 * Also, transition to TRACED and updates to ->jobctl should be
1857 	 * atomic with respect to siglock and should be done after the arch
1858 	 * hook as siglock is released and regrabbed across it.
1859 	 */
1860 	set_current_state(TASK_TRACED);
1861 
1862 	current->last_siginfo = info;
1863 	current->exit_code = exit_code;
1864 
1865 	/*
1866 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1867 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1868 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1869 	 * could be clear now.  We act as if SIGCONT is received after
1870 	 * TASK_TRACED is entered - ignore it.
1871 	 */
1872 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1873 		gstop_done = task_participate_group_stop(current);
1874 
1875 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1876 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1877 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1878 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1879 
1880 	/* entering a trap, clear TRAPPING */
1881 	task_clear_jobctl_trapping(current);
1882 
1883 	spin_unlock_irq(&current->sighand->siglock);
1884 	read_lock(&tasklist_lock);
1885 	if (may_ptrace_stop()) {
1886 		/*
1887 		 * Notify parents of the stop.
1888 		 *
1889 		 * While ptraced, there are two parents - the ptracer and
1890 		 * the real_parent of the group_leader.  The ptracer should
1891 		 * know about every stop while the real parent is only
1892 		 * interested in the completion of group stop.  The states
1893 		 * for the two don't interact with each other.  Notify
1894 		 * separately unless they're gonna be duplicates.
1895 		 */
1896 		do_notify_parent_cldstop(current, true, why);
1897 		if (gstop_done && ptrace_reparented(current))
1898 			do_notify_parent_cldstop(current, false, why);
1899 
1900 		/*
1901 		 * Don't want to allow preemption here, because
1902 		 * sys_ptrace() needs this task to be inactive.
1903 		 *
1904 		 * XXX: implement read_unlock_no_resched().
1905 		 */
1906 		preempt_disable();
1907 		read_unlock(&tasklist_lock);
1908 		preempt_enable_no_resched();
1909 		freezable_schedule();
1910 	} else {
1911 		/*
1912 		 * By the time we got the lock, our tracer went away.
1913 		 * Don't drop the lock yet, another tracer may come.
1914 		 *
1915 		 * If @gstop_done, the ptracer went away between group stop
1916 		 * completion and here.  During detach, it would have set
1917 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1918 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1919 		 * the real parent of the group stop completion is enough.
1920 		 */
1921 		if (gstop_done)
1922 			do_notify_parent_cldstop(current, false, why);
1923 
1924 		/* tasklist protects us from ptrace_freeze_traced() */
1925 		__set_current_state(TASK_RUNNING);
1926 		if (clear_code)
1927 			current->exit_code = 0;
1928 		read_unlock(&tasklist_lock);
1929 	}
1930 
1931 	/*
1932 	 * We are back.  Now reacquire the siglock before touching
1933 	 * last_siginfo, so that we are sure to have synchronized with
1934 	 * any signal-sending on another CPU that wants to examine it.
1935 	 */
1936 	spin_lock_irq(&current->sighand->siglock);
1937 	current->last_siginfo = NULL;
1938 
1939 	/* LISTENING can be set only during STOP traps, clear it */
1940 	current->jobctl &= ~JOBCTL_LISTENING;
1941 
1942 	/*
1943 	 * Queued signals ignored us while we were stopped for tracing.
1944 	 * So check for any that we should take before resuming user mode.
1945 	 * This sets TIF_SIGPENDING, but never clears it.
1946 	 */
1947 	recalc_sigpending_tsk(current);
1948 }
1949 
1950 static void ptrace_do_notify(int signr, int exit_code, int why)
1951 {
1952 	siginfo_t info;
1953 
1954 	memset(&info, 0, sizeof info);
1955 	info.si_signo = signr;
1956 	info.si_code = exit_code;
1957 	info.si_pid = task_pid_vnr(current);
1958 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1959 
1960 	/* Let the debugger run.  */
1961 	ptrace_stop(exit_code, why, 1, &info);
1962 }
1963 
1964 void ptrace_notify(int exit_code)
1965 {
1966 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1967 	if (unlikely(current->task_works))
1968 		task_work_run();
1969 
1970 	spin_lock_irq(&current->sighand->siglock);
1971 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1972 	spin_unlock_irq(&current->sighand->siglock);
1973 }
1974 
1975 /**
1976  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1977  * @signr: signr causing group stop if initiating
1978  *
1979  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1980  * and participate in it.  If already set, participate in the existing
1981  * group stop.  If participated in a group stop (and thus slept), %true is
1982  * returned with siglock released.
1983  *
1984  * If ptraced, this function doesn't handle stop itself.  Instead,
1985  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1986  * untouched.  The caller must ensure that INTERRUPT trap handling takes
1987  * places afterwards.
1988  *
1989  * CONTEXT:
1990  * Must be called with @current->sighand->siglock held, which is released
1991  * on %true return.
1992  *
1993  * RETURNS:
1994  * %false if group stop is already cancelled or ptrace trap is scheduled.
1995  * %true if participated in group stop.
1996  */
1997 static bool do_signal_stop(int signr)
1998 	__releases(&current->sighand->siglock)
1999 {
2000 	struct signal_struct *sig = current->signal;
2001 
2002 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2003 		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2004 		struct task_struct *t;
2005 
2006 		/* signr will be recorded in task->jobctl for retries */
2007 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2008 
2009 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2010 		    unlikely(signal_group_exit(sig)))
2011 			return false;
2012 		/*
2013 		 * There is no group stop already in progress.  We must
2014 		 * initiate one now.
2015 		 *
2016 		 * While ptraced, a task may be resumed while group stop is
2017 		 * still in effect and then receive a stop signal and
2018 		 * initiate another group stop.  This deviates from the
2019 		 * usual behavior as two consecutive stop signals can't
2020 		 * cause two group stops when !ptraced.  That is why we
2021 		 * also check !task_is_stopped(t) below.
2022 		 *
2023 		 * The condition can be distinguished by testing whether
2024 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2025 		 * group_exit_code in such case.
2026 		 *
2027 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2028 		 * an intervening stop signal is required to cause two
2029 		 * continued events regardless of ptrace.
2030 		 */
2031 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2032 			sig->group_exit_code = signr;
2033 
2034 		sig->group_stop_count = 0;
2035 
2036 		if (task_set_jobctl_pending(current, signr | gstop))
2037 			sig->group_stop_count++;
2038 
2039 		t = current;
2040 		while_each_thread(current, t) {
2041 			/*
2042 			 * Setting state to TASK_STOPPED for a group
2043 			 * stop is always done with the siglock held,
2044 			 * so this check has no races.
2045 			 */
2046 			if (!task_is_stopped(t) &&
2047 			    task_set_jobctl_pending(t, signr | gstop)) {
2048 				sig->group_stop_count++;
2049 				if (likely(!(t->ptrace & PT_SEIZED)))
2050 					signal_wake_up(t, 0);
2051 				else
2052 					ptrace_trap_notify(t);
2053 			}
2054 		}
2055 	}
2056 
2057 	if (likely(!current->ptrace)) {
2058 		int notify = 0;
2059 
2060 		/*
2061 		 * If there are no other threads in the group, or if there
2062 		 * is a group stop in progress and we are the last to stop,
2063 		 * report to the parent.
2064 		 */
2065 		if (task_participate_group_stop(current))
2066 			notify = CLD_STOPPED;
2067 
2068 		__set_current_state(TASK_STOPPED);
2069 		spin_unlock_irq(&current->sighand->siglock);
2070 
2071 		/*
2072 		 * Notify the parent of the group stop completion.  Because
2073 		 * we're not holding either the siglock or tasklist_lock
2074 		 * here, ptracer may attach inbetween; however, this is for
2075 		 * group stop and should always be delivered to the real
2076 		 * parent of the group leader.  The new ptracer will get
2077 		 * its notification when this task transitions into
2078 		 * TASK_TRACED.
2079 		 */
2080 		if (notify) {
2081 			read_lock(&tasklist_lock);
2082 			do_notify_parent_cldstop(current, false, notify);
2083 			read_unlock(&tasklist_lock);
2084 		}
2085 
2086 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2087 		freezable_schedule();
2088 		return true;
2089 	} else {
2090 		/*
2091 		 * While ptraced, group stop is handled by STOP trap.
2092 		 * Schedule it and let the caller deal with it.
2093 		 */
2094 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2095 		return false;
2096 	}
2097 }
2098 
2099 /**
2100  * do_jobctl_trap - take care of ptrace jobctl traps
2101  *
2102  * When PT_SEIZED, it's used for both group stop and explicit
2103  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2104  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2105  * the stop signal; otherwise, %SIGTRAP.
2106  *
2107  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2108  * number as exit_code and no siginfo.
2109  *
2110  * CONTEXT:
2111  * Must be called with @current->sighand->siglock held, which may be
2112  * released and re-acquired before returning with intervening sleep.
2113  */
2114 static void do_jobctl_trap(void)
2115 {
2116 	struct signal_struct *signal = current->signal;
2117 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2118 
2119 	if (current->ptrace & PT_SEIZED) {
2120 		if (!signal->group_stop_count &&
2121 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2122 			signr = SIGTRAP;
2123 		WARN_ON_ONCE(!signr);
2124 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2125 				 CLD_STOPPED);
2126 	} else {
2127 		WARN_ON_ONCE(!signr);
2128 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2129 		current->exit_code = 0;
2130 	}
2131 }
2132 
2133 static int ptrace_signal(int signr, siginfo_t *info)
2134 {
2135 	ptrace_signal_deliver();
2136 	/*
2137 	 * We do not check sig_kernel_stop(signr) but set this marker
2138 	 * unconditionally because we do not know whether debugger will
2139 	 * change signr. This flag has no meaning unless we are going
2140 	 * to stop after return from ptrace_stop(). In this case it will
2141 	 * be checked in do_signal_stop(), we should only stop if it was
2142 	 * not cleared by SIGCONT while we were sleeping. See also the
2143 	 * comment in dequeue_signal().
2144 	 */
2145 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2146 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2147 
2148 	/* We're back.  Did the debugger cancel the sig?  */
2149 	signr = current->exit_code;
2150 	if (signr == 0)
2151 		return signr;
2152 
2153 	current->exit_code = 0;
2154 
2155 	/*
2156 	 * Update the siginfo structure if the signal has
2157 	 * changed.  If the debugger wanted something
2158 	 * specific in the siginfo structure then it should
2159 	 * have updated *info via PTRACE_SETSIGINFO.
2160 	 */
2161 	if (signr != info->si_signo) {
2162 		info->si_signo = signr;
2163 		info->si_errno = 0;
2164 		info->si_code = SI_USER;
2165 		rcu_read_lock();
2166 		info->si_pid = task_pid_vnr(current->parent);
2167 		info->si_uid = from_kuid_munged(current_user_ns(),
2168 						task_uid(current->parent));
2169 		rcu_read_unlock();
2170 	}
2171 
2172 	/* If the (new) signal is now blocked, requeue it.  */
2173 	if (sigismember(&current->blocked, signr)) {
2174 		specific_send_sig_info(signr, info, current);
2175 		signr = 0;
2176 	}
2177 
2178 	return signr;
2179 }
2180 
2181 int get_signal(struct ksignal *ksig)
2182 {
2183 	struct sighand_struct *sighand = current->sighand;
2184 	struct signal_struct *signal = current->signal;
2185 	int signr;
2186 
2187 	if (unlikely(current->task_works))
2188 		task_work_run();
2189 
2190 	if (unlikely(uprobe_deny_signal()))
2191 		return 0;
2192 
2193 	/*
2194 	 * Do this once, we can't return to user-mode if freezing() == T.
2195 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2196 	 * thus do not need another check after return.
2197 	 */
2198 	try_to_freeze();
2199 
2200 relock:
2201 	spin_lock_irq(&sighand->siglock);
2202 	/*
2203 	 * Every stopped thread goes here after wakeup. Check to see if
2204 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2205 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2206 	 */
2207 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2208 		int why;
2209 
2210 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2211 			why = CLD_CONTINUED;
2212 		else
2213 			why = CLD_STOPPED;
2214 
2215 		signal->flags &= ~SIGNAL_CLD_MASK;
2216 
2217 		spin_unlock_irq(&sighand->siglock);
2218 
2219 		/*
2220 		 * Notify the parent that we're continuing.  This event is
2221 		 * always per-process and doesn't make whole lot of sense
2222 		 * for ptracers, who shouldn't consume the state via
2223 		 * wait(2) either, but, for backward compatibility, notify
2224 		 * the ptracer of the group leader too unless it's gonna be
2225 		 * a duplicate.
2226 		 */
2227 		read_lock(&tasklist_lock);
2228 		do_notify_parent_cldstop(current, false, why);
2229 
2230 		if (ptrace_reparented(current->group_leader))
2231 			do_notify_parent_cldstop(current->group_leader,
2232 						true, why);
2233 		read_unlock(&tasklist_lock);
2234 
2235 		goto relock;
2236 	}
2237 
2238 	for (;;) {
2239 		struct k_sigaction *ka;
2240 
2241 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2242 		    do_signal_stop(0))
2243 			goto relock;
2244 
2245 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2246 			do_jobctl_trap();
2247 			spin_unlock_irq(&sighand->siglock);
2248 			goto relock;
2249 		}
2250 
2251 		signr = dequeue_signal(current, &current->blocked, &ksig->info);
2252 
2253 		if (!signr)
2254 			break; /* will return 0 */
2255 
2256 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2257 			signr = ptrace_signal(signr, &ksig->info);
2258 			if (!signr)
2259 				continue;
2260 		}
2261 
2262 		ka = &sighand->action[signr-1];
2263 
2264 		/* Trace actually delivered signals. */
2265 		trace_signal_deliver(signr, &ksig->info, ka);
2266 
2267 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2268 			continue;
2269 		if (ka->sa.sa_handler != SIG_DFL) {
2270 			/* Run the handler.  */
2271 			ksig->ka = *ka;
2272 
2273 			if (ka->sa.sa_flags & SA_ONESHOT)
2274 				ka->sa.sa_handler = SIG_DFL;
2275 
2276 			break; /* will return non-zero "signr" value */
2277 		}
2278 
2279 		/*
2280 		 * Now we are doing the default action for this signal.
2281 		 */
2282 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2283 			continue;
2284 
2285 		/*
2286 		 * Global init gets no signals it doesn't want.
2287 		 * Container-init gets no signals it doesn't want from same
2288 		 * container.
2289 		 *
2290 		 * Note that if global/container-init sees a sig_kernel_only()
2291 		 * signal here, the signal must have been generated internally
2292 		 * or must have come from an ancestor namespace. In either
2293 		 * case, the signal cannot be dropped.
2294 		 */
2295 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2296 				!sig_kernel_only(signr))
2297 			continue;
2298 
2299 		if (sig_kernel_stop(signr)) {
2300 			/*
2301 			 * The default action is to stop all threads in
2302 			 * the thread group.  The job control signals
2303 			 * do nothing in an orphaned pgrp, but SIGSTOP
2304 			 * always works.  Note that siglock needs to be
2305 			 * dropped during the call to is_orphaned_pgrp()
2306 			 * because of lock ordering with tasklist_lock.
2307 			 * This allows an intervening SIGCONT to be posted.
2308 			 * We need to check for that and bail out if necessary.
2309 			 */
2310 			if (signr != SIGSTOP) {
2311 				spin_unlock_irq(&sighand->siglock);
2312 
2313 				/* signals can be posted during this window */
2314 
2315 				if (is_current_pgrp_orphaned())
2316 					goto relock;
2317 
2318 				spin_lock_irq(&sighand->siglock);
2319 			}
2320 
2321 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2322 				/* It released the siglock.  */
2323 				goto relock;
2324 			}
2325 
2326 			/*
2327 			 * We didn't actually stop, due to a race
2328 			 * with SIGCONT or something like that.
2329 			 */
2330 			continue;
2331 		}
2332 
2333 		spin_unlock_irq(&sighand->siglock);
2334 
2335 		/*
2336 		 * Anything else is fatal, maybe with a core dump.
2337 		 */
2338 		current->flags |= PF_SIGNALED;
2339 
2340 		if (sig_kernel_coredump(signr)) {
2341 			if (print_fatal_signals)
2342 				print_fatal_signal(ksig->info.si_signo);
2343 			proc_coredump_connector(current);
2344 			/*
2345 			 * If it was able to dump core, this kills all
2346 			 * other threads in the group and synchronizes with
2347 			 * their demise.  If we lost the race with another
2348 			 * thread getting here, it set group_exit_code
2349 			 * first and our do_group_exit call below will use
2350 			 * that value and ignore the one we pass it.
2351 			 */
2352 			do_coredump(&ksig->info);
2353 		}
2354 
2355 		/*
2356 		 * Death signals, no core dump.
2357 		 */
2358 		do_group_exit(ksig->info.si_signo);
2359 		/* NOTREACHED */
2360 	}
2361 	spin_unlock_irq(&sighand->siglock);
2362 
2363 	ksig->sig = signr;
2364 	return ksig->sig > 0;
2365 }
2366 
2367 /**
2368  * signal_delivered -
2369  * @ksig:		kernel signal struct
2370  * @stepping:		nonzero if debugger single-step or block-step in use
2371  *
2372  * This function should be called when a signal has successfully been
2373  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2374  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2375  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2376  */
2377 static void signal_delivered(struct ksignal *ksig, int stepping)
2378 {
2379 	sigset_t blocked;
2380 
2381 	/* A signal was successfully delivered, and the
2382 	   saved sigmask was stored on the signal frame,
2383 	   and will be restored by sigreturn.  So we can
2384 	   simply clear the restore sigmask flag.  */
2385 	clear_restore_sigmask();
2386 
2387 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2388 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2389 		sigaddset(&blocked, ksig->sig);
2390 	set_current_blocked(&blocked);
2391 	tracehook_signal_handler(stepping);
2392 }
2393 
2394 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2395 {
2396 	if (failed)
2397 		force_sigsegv(ksig->sig, current);
2398 	else
2399 		signal_delivered(ksig, stepping);
2400 }
2401 
2402 /*
2403  * It could be that complete_signal() picked us to notify about the
2404  * group-wide signal. Other threads should be notified now to take
2405  * the shared signals in @which since we will not.
2406  */
2407 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2408 {
2409 	sigset_t retarget;
2410 	struct task_struct *t;
2411 
2412 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2413 	if (sigisemptyset(&retarget))
2414 		return;
2415 
2416 	t = tsk;
2417 	while_each_thread(tsk, t) {
2418 		if (t->flags & PF_EXITING)
2419 			continue;
2420 
2421 		if (!has_pending_signals(&retarget, &t->blocked))
2422 			continue;
2423 		/* Remove the signals this thread can handle. */
2424 		sigandsets(&retarget, &retarget, &t->blocked);
2425 
2426 		if (!signal_pending(t))
2427 			signal_wake_up(t, 0);
2428 
2429 		if (sigisemptyset(&retarget))
2430 			break;
2431 	}
2432 }
2433 
2434 void exit_signals(struct task_struct *tsk)
2435 {
2436 	int group_stop = 0;
2437 	sigset_t unblocked;
2438 
2439 	/*
2440 	 * @tsk is about to have PF_EXITING set - lock out users which
2441 	 * expect stable threadgroup.
2442 	 */
2443 	threadgroup_change_begin(tsk);
2444 
2445 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2446 		tsk->flags |= PF_EXITING;
2447 		threadgroup_change_end(tsk);
2448 		return;
2449 	}
2450 
2451 	spin_lock_irq(&tsk->sighand->siglock);
2452 	/*
2453 	 * From now this task is not visible for group-wide signals,
2454 	 * see wants_signal(), do_signal_stop().
2455 	 */
2456 	tsk->flags |= PF_EXITING;
2457 
2458 	threadgroup_change_end(tsk);
2459 
2460 	if (!signal_pending(tsk))
2461 		goto out;
2462 
2463 	unblocked = tsk->blocked;
2464 	signotset(&unblocked);
2465 	retarget_shared_pending(tsk, &unblocked);
2466 
2467 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2468 	    task_participate_group_stop(tsk))
2469 		group_stop = CLD_STOPPED;
2470 out:
2471 	spin_unlock_irq(&tsk->sighand->siglock);
2472 
2473 	/*
2474 	 * If group stop has completed, deliver the notification.  This
2475 	 * should always go to the real parent of the group leader.
2476 	 */
2477 	if (unlikely(group_stop)) {
2478 		read_lock(&tasklist_lock);
2479 		do_notify_parent_cldstop(tsk, false, group_stop);
2480 		read_unlock(&tasklist_lock);
2481 	}
2482 }
2483 
2484 EXPORT_SYMBOL(recalc_sigpending);
2485 EXPORT_SYMBOL_GPL(dequeue_signal);
2486 EXPORT_SYMBOL(flush_signals);
2487 EXPORT_SYMBOL(force_sig);
2488 EXPORT_SYMBOL(send_sig);
2489 EXPORT_SYMBOL(send_sig_info);
2490 EXPORT_SYMBOL(sigprocmask);
2491 EXPORT_SYMBOL(block_all_signals);
2492 EXPORT_SYMBOL(unblock_all_signals);
2493 
2494 
2495 /*
2496  * System call entry points.
2497  */
2498 
2499 /**
2500  *  sys_restart_syscall - restart a system call
2501  */
2502 SYSCALL_DEFINE0(restart_syscall)
2503 {
2504 	struct restart_block *restart = &current_thread_info()->restart_block;
2505 	return restart->fn(restart);
2506 }
2507 
2508 long do_no_restart_syscall(struct restart_block *param)
2509 {
2510 	return -EINTR;
2511 }
2512 
2513 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2514 {
2515 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2516 		sigset_t newblocked;
2517 		/* A set of now blocked but previously unblocked signals. */
2518 		sigandnsets(&newblocked, newset, &current->blocked);
2519 		retarget_shared_pending(tsk, &newblocked);
2520 	}
2521 	tsk->blocked = *newset;
2522 	recalc_sigpending();
2523 }
2524 
2525 /**
2526  * set_current_blocked - change current->blocked mask
2527  * @newset: new mask
2528  *
2529  * It is wrong to change ->blocked directly, this helper should be used
2530  * to ensure the process can't miss a shared signal we are going to block.
2531  */
2532 void set_current_blocked(sigset_t *newset)
2533 {
2534 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2535 	__set_current_blocked(newset);
2536 }
2537 
2538 void __set_current_blocked(const sigset_t *newset)
2539 {
2540 	struct task_struct *tsk = current;
2541 
2542 	spin_lock_irq(&tsk->sighand->siglock);
2543 	__set_task_blocked(tsk, newset);
2544 	spin_unlock_irq(&tsk->sighand->siglock);
2545 }
2546 
2547 /*
2548  * This is also useful for kernel threads that want to temporarily
2549  * (or permanently) block certain signals.
2550  *
2551  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2552  * interface happily blocks "unblockable" signals like SIGKILL
2553  * and friends.
2554  */
2555 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2556 {
2557 	struct task_struct *tsk = current;
2558 	sigset_t newset;
2559 
2560 	/* Lockless, only current can change ->blocked, never from irq */
2561 	if (oldset)
2562 		*oldset = tsk->blocked;
2563 
2564 	switch (how) {
2565 	case SIG_BLOCK:
2566 		sigorsets(&newset, &tsk->blocked, set);
2567 		break;
2568 	case SIG_UNBLOCK:
2569 		sigandnsets(&newset, &tsk->blocked, set);
2570 		break;
2571 	case SIG_SETMASK:
2572 		newset = *set;
2573 		break;
2574 	default:
2575 		return -EINVAL;
2576 	}
2577 
2578 	__set_current_blocked(&newset);
2579 	return 0;
2580 }
2581 
2582 /**
2583  *  sys_rt_sigprocmask - change the list of currently blocked signals
2584  *  @how: whether to add, remove, or set signals
2585  *  @nset: stores pending signals
2586  *  @oset: previous value of signal mask if non-null
2587  *  @sigsetsize: size of sigset_t type
2588  */
2589 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2590 		sigset_t __user *, oset, size_t, sigsetsize)
2591 {
2592 	sigset_t old_set, new_set;
2593 	int error;
2594 
2595 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2596 	if (sigsetsize != sizeof(sigset_t))
2597 		return -EINVAL;
2598 
2599 	old_set = current->blocked;
2600 
2601 	if (nset) {
2602 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2603 			return -EFAULT;
2604 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2605 
2606 		error = sigprocmask(how, &new_set, NULL);
2607 		if (error)
2608 			return error;
2609 	}
2610 
2611 	if (oset) {
2612 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2613 			return -EFAULT;
2614 	}
2615 
2616 	return 0;
2617 }
2618 
2619 #ifdef CONFIG_COMPAT
2620 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2621 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2622 {
2623 #ifdef __BIG_ENDIAN
2624 	sigset_t old_set = current->blocked;
2625 
2626 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2627 	if (sigsetsize != sizeof(sigset_t))
2628 		return -EINVAL;
2629 
2630 	if (nset) {
2631 		compat_sigset_t new32;
2632 		sigset_t new_set;
2633 		int error;
2634 		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2635 			return -EFAULT;
2636 
2637 		sigset_from_compat(&new_set, &new32);
2638 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2639 
2640 		error = sigprocmask(how, &new_set, NULL);
2641 		if (error)
2642 			return error;
2643 	}
2644 	if (oset) {
2645 		compat_sigset_t old32;
2646 		sigset_to_compat(&old32, &old_set);
2647 		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2648 			return -EFAULT;
2649 	}
2650 	return 0;
2651 #else
2652 	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2653 				  (sigset_t __user *)oset, sigsetsize);
2654 #endif
2655 }
2656 #endif
2657 
2658 static int do_sigpending(void *set, unsigned long sigsetsize)
2659 {
2660 	if (sigsetsize > sizeof(sigset_t))
2661 		return -EINVAL;
2662 
2663 	spin_lock_irq(&current->sighand->siglock);
2664 	sigorsets(set, &current->pending.signal,
2665 		  &current->signal->shared_pending.signal);
2666 	spin_unlock_irq(&current->sighand->siglock);
2667 
2668 	/* Outside the lock because only this thread touches it.  */
2669 	sigandsets(set, &current->blocked, set);
2670 	return 0;
2671 }
2672 
2673 /**
2674  *  sys_rt_sigpending - examine a pending signal that has been raised
2675  *			while blocked
2676  *  @uset: stores pending signals
2677  *  @sigsetsize: size of sigset_t type or larger
2678  */
2679 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2680 {
2681 	sigset_t set;
2682 	int err = do_sigpending(&set, sigsetsize);
2683 	if (!err && copy_to_user(uset, &set, sigsetsize))
2684 		err = -EFAULT;
2685 	return err;
2686 }
2687 
2688 #ifdef CONFIG_COMPAT
2689 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2690 		compat_size_t, sigsetsize)
2691 {
2692 #ifdef __BIG_ENDIAN
2693 	sigset_t set;
2694 	int err = do_sigpending(&set, sigsetsize);
2695 	if (!err) {
2696 		compat_sigset_t set32;
2697 		sigset_to_compat(&set32, &set);
2698 		/* we can get here only if sigsetsize <= sizeof(set) */
2699 		if (copy_to_user(uset, &set32, sigsetsize))
2700 			err = -EFAULT;
2701 	}
2702 	return err;
2703 #else
2704 	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2705 #endif
2706 }
2707 #endif
2708 
2709 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2710 
2711 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2712 {
2713 	int err;
2714 
2715 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2716 		return -EFAULT;
2717 	if (from->si_code < 0)
2718 		return __copy_to_user(to, from, sizeof(siginfo_t))
2719 			? -EFAULT : 0;
2720 	/*
2721 	 * If you change siginfo_t structure, please be sure
2722 	 * this code is fixed accordingly.
2723 	 * Please remember to update the signalfd_copyinfo() function
2724 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2725 	 * It should never copy any pad contained in the structure
2726 	 * to avoid security leaks, but must copy the generic
2727 	 * 3 ints plus the relevant union member.
2728 	 */
2729 	err = __put_user(from->si_signo, &to->si_signo);
2730 	err |= __put_user(from->si_errno, &to->si_errno);
2731 	err |= __put_user((short)from->si_code, &to->si_code);
2732 	switch (from->si_code & __SI_MASK) {
2733 	case __SI_KILL:
2734 		err |= __put_user(from->si_pid, &to->si_pid);
2735 		err |= __put_user(from->si_uid, &to->si_uid);
2736 		break;
2737 	case __SI_TIMER:
2738 		 err |= __put_user(from->si_tid, &to->si_tid);
2739 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2740 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2741 		break;
2742 	case __SI_POLL:
2743 		err |= __put_user(from->si_band, &to->si_band);
2744 		err |= __put_user(from->si_fd, &to->si_fd);
2745 		break;
2746 	case __SI_FAULT:
2747 		err |= __put_user(from->si_addr, &to->si_addr);
2748 #ifdef __ARCH_SI_TRAPNO
2749 		err |= __put_user(from->si_trapno, &to->si_trapno);
2750 #endif
2751 #ifdef BUS_MCEERR_AO
2752 		/*
2753 		 * Other callers might not initialize the si_lsb field,
2754 		 * so check explicitly for the right codes here.
2755 		 */
2756 		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2757 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2758 #endif
2759 #ifdef SEGV_BNDERR
2760 		err |= __put_user(from->si_lower, &to->si_lower);
2761 		err |= __put_user(from->si_upper, &to->si_upper);
2762 #endif
2763 		break;
2764 	case __SI_CHLD:
2765 		err |= __put_user(from->si_pid, &to->si_pid);
2766 		err |= __put_user(from->si_uid, &to->si_uid);
2767 		err |= __put_user(from->si_status, &to->si_status);
2768 		err |= __put_user(from->si_utime, &to->si_utime);
2769 		err |= __put_user(from->si_stime, &to->si_stime);
2770 		break;
2771 	case __SI_RT: /* This is not generated by the kernel as of now. */
2772 	case __SI_MESGQ: /* But this is */
2773 		err |= __put_user(from->si_pid, &to->si_pid);
2774 		err |= __put_user(from->si_uid, &to->si_uid);
2775 		err |= __put_user(from->si_ptr, &to->si_ptr);
2776 		break;
2777 #ifdef __ARCH_SIGSYS
2778 	case __SI_SYS:
2779 		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2780 		err |= __put_user(from->si_syscall, &to->si_syscall);
2781 		err |= __put_user(from->si_arch, &to->si_arch);
2782 		break;
2783 #endif
2784 	default: /* this is just in case for now ... */
2785 		err |= __put_user(from->si_pid, &to->si_pid);
2786 		err |= __put_user(from->si_uid, &to->si_uid);
2787 		break;
2788 	}
2789 	return err;
2790 }
2791 
2792 #endif
2793 
2794 /**
2795  *  do_sigtimedwait - wait for queued signals specified in @which
2796  *  @which: queued signals to wait for
2797  *  @info: if non-null, the signal's siginfo is returned here
2798  *  @ts: upper bound on process time suspension
2799  */
2800 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2801 			const struct timespec *ts)
2802 {
2803 	struct task_struct *tsk = current;
2804 	long timeout = MAX_SCHEDULE_TIMEOUT;
2805 	sigset_t mask = *which;
2806 	int sig;
2807 
2808 	if (ts) {
2809 		if (!timespec_valid(ts))
2810 			return -EINVAL;
2811 		timeout = timespec_to_jiffies(ts);
2812 		/*
2813 		 * We can be close to the next tick, add another one
2814 		 * to ensure we will wait at least the time asked for.
2815 		 */
2816 		if (ts->tv_sec || ts->tv_nsec)
2817 			timeout++;
2818 	}
2819 
2820 	/*
2821 	 * Invert the set of allowed signals to get those we want to block.
2822 	 */
2823 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2824 	signotset(&mask);
2825 
2826 	spin_lock_irq(&tsk->sighand->siglock);
2827 	sig = dequeue_signal(tsk, &mask, info);
2828 	if (!sig && timeout) {
2829 		/*
2830 		 * None ready, temporarily unblock those we're interested
2831 		 * while we are sleeping in so that we'll be awakened when
2832 		 * they arrive. Unblocking is always fine, we can avoid
2833 		 * set_current_blocked().
2834 		 */
2835 		tsk->real_blocked = tsk->blocked;
2836 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2837 		recalc_sigpending();
2838 		spin_unlock_irq(&tsk->sighand->siglock);
2839 
2840 		timeout = freezable_schedule_timeout_interruptible(timeout);
2841 
2842 		spin_lock_irq(&tsk->sighand->siglock);
2843 		__set_task_blocked(tsk, &tsk->real_blocked);
2844 		sigemptyset(&tsk->real_blocked);
2845 		sig = dequeue_signal(tsk, &mask, info);
2846 	}
2847 	spin_unlock_irq(&tsk->sighand->siglock);
2848 
2849 	if (sig)
2850 		return sig;
2851 	return timeout ? -EINTR : -EAGAIN;
2852 }
2853 
2854 /**
2855  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2856  *			in @uthese
2857  *  @uthese: queued signals to wait for
2858  *  @uinfo: if non-null, the signal's siginfo is returned here
2859  *  @uts: upper bound on process time suspension
2860  *  @sigsetsize: size of sigset_t type
2861  */
2862 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2863 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2864 		size_t, sigsetsize)
2865 {
2866 	sigset_t these;
2867 	struct timespec ts;
2868 	siginfo_t info;
2869 	int ret;
2870 
2871 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2872 	if (sigsetsize != sizeof(sigset_t))
2873 		return -EINVAL;
2874 
2875 	if (copy_from_user(&these, uthese, sizeof(these)))
2876 		return -EFAULT;
2877 
2878 	if (uts) {
2879 		if (copy_from_user(&ts, uts, sizeof(ts)))
2880 			return -EFAULT;
2881 	}
2882 
2883 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2884 
2885 	if (ret > 0 && uinfo) {
2886 		if (copy_siginfo_to_user(uinfo, &info))
2887 			ret = -EFAULT;
2888 	}
2889 
2890 	return ret;
2891 }
2892 
2893 /**
2894  *  sys_kill - send a signal to a process
2895  *  @pid: the PID of the process
2896  *  @sig: signal to be sent
2897  */
2898 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2899 {
2900 	struct siginfo info;
2901 
2902 	info.si_signo = sig;
2903 	info.si_errno = 0;
2904 	info.si_code = SI_USER;
2905 	info.si_pid = task_tgid_vnr(current);
2906 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2907 
2908 	return kill_something_info(sig, &info, pid);
2909 }
2910 
2911 static int
2912 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2913 {
2914 	struct task_struct *p;
2915 	int error = -ESRCH;
2916 
2917 	rcu_read_lock();
2918 	p = find_task_by_vpid(pid);
2919 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2920 		error = check_kill_permission(sig, info, p);
2921 		/*
2922 		 * The null signal is a permissions and process existence
2923 		 * probe.  No signal is actually delivered.
2924 		 */
2925 		if (!error && sig) {
2926 			error = do_send_sig_info(sig, info, p, false);
2927 			/*
2928 			 * If lock_task_sighand() failed we pretend the task
2929 			 * dies after receiving the signal. The window is tiny,
2930 			 * and the signal is private anyway.
2931 			 */
2932 			if (unlikely(error == -ESRCH))
2933 				error = 0;
2934 		}
2935 	}
2936 	rcu_read_unlock();
2937 
2938 	return error;
2939 }
2940 
2941 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2942 {
2943 	struct siginfo info = {};
2944 
2945 	info.si_signo = sig;
2946 	info.si_errno = 0;
2947 	info.si_code = SI_TKILL;
2948 	info.si_pid = task_tgid_vnr(current);
2949 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2950 
2951 	return do_send_specific(tgid, pid, sig, &info);
2952 }
2953 
2954 /**
2955  *  sys_tgkill - send signal to one specific thread
2956  *  @tgid: the thread group ID of the thread
2957  *  @pid: the PID of the thread
2958  *  @sig: signal to be sent
2959  *
2960  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2961  *  exists but it's not belonging to the target process anymore. This
2962  *  method solves the problem of threads exiting and PIDs getting reused.
2963  */
2964 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2965 {
2966 	/* This is only valid for single tasks */
2967 	if (pid <= 0 || tgid <= 0)
2968 		return -EINVAL;
2969 
2970 	return do_tkill(tgid, pid, sig);
2971 }
2972 
2973 /**
2974  *  sys_tkill - send signal to one specific task
2975  *  @pid: the PID of the task
2976  *  @sig: signal to be sent
2977  *
2978  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2979  */
2980 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2981 {
2982 	/* This is only valid for single tasks */
2983 	if (pid <= 0)
2984 		return -EINVAL;
2985 
2986 	return do_tkill(0, pid, sig);
2987 }
2988 
2989 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2990 {
2991 	/* Not even root can pretend to send signals from the kernel.
2992 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2993 	 */
2994 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2995 	    (task_pid_vnr(current) != pid)) {
2996 		/* We used to allow any < 0 si_code */
2997 		WARN_ON_ONCE(info->si_code < 0);
2998 		return -EPERM;
2999 	}
3000 	info->si_signo = sig;
3001 
3002 	/* POSIX.1b doesn't mention process groups.  */
3003 	return kill_proc_info(sig, info, pid);
3004 }
3005 
3006 /**
3007  *  sys_rt_sigqueueinfo - send signal information to a signal
3008  *  @pid: the PID of the thread
3009  *  @sig: signal to be sent
3010  *  @uinfo: signal info to be sent
3011  */
3012 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3013 		siginfo_t __user *, uinfo)
3014 {
3015 	siginfo_t info;
3016 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3017 		return -EFAULT;
3018 	return do_rt_sigqueueinfo(pid, sig, &info);
3019 }
3020 
3021 #ifdef CONFIG_COMPAT
3022 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3023 			compat_pid_t, pid,
3024 			int, sig,
3025 			struct compat_siginfo __user *, uinfo)
3026 {
3027 	siginfo_t info;
3028 	int ret = copy_siginfo_from_user32(&info, uinfo);
3029 	if (unlikely(ret))
3030 		return ret;
3031 	return do_rt_sigqueueinfo(pid, sig, &info);
3032 }
3033 #endif
3034 
3035 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3036 {
3037 	/* This is only valid for single tasks */
3038 	if (pid <= 0 || tgid <= 0)
3039 		return -EINVAL;
3040 
3041 	/* Not even root can pretend to send signals from the kernel.
3042 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3043 	 */
3044 	if (((info->si_code >= 0 || info->si_code == SI_TKILL)) &&
3045 	    (task_pid_vnr(current) != pid)) {
3046 		/* We used to allow any < 0 si_code */
3047 		WARN_ON_ONCE(info->si_code < 0);
3048 		return -EPERM;
3049 	}
3050 	info->si_signo = sig;
3051 
3052 	return do_send_specific(tgid, pid, sig, info);
3053 }
3054 
3055 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3056 		siginfo_t __user *, uinfo)
3057 {
3058 	siginfo_t info;
3059 
3060 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3061 		return -EFAULT;
3062 
3063 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3064 }
3065 
3066 #ifdef CONFIG_COMPAT
3067 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3068 			compat_pid_t, tgid,
3069 			compat_pid_t, pid,
3070 			int, sig,
3071 			struct compat_siginfo __user *, uinfo)
3072 {
3073 	siginfo_t info;
3074 
3075 	if (copy_siginfo_from_user32(&info, uinfo))
3076 		return -EFAULT;
3077 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3078 }
3079 #endif
3080 
3081 /*
3082  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3083  */
3084 void kernel_sigaction(int sig, __sighandler_t action)
3085 {
3086 	spin_lock_irq(&current->sighand->siglock);
3087 	current->sighand->action[sig - 1].sa.sa_handler = action;
3088 	if (action == SIG_IGN) {
3089 		sigset_t mask;
3090 
3091 		sigemptyset(&mask);
3092 		sigaddset(&mask, sig);
3093 
3094 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3095 		flush_sigqueue_mask(&mask, &current->pending);
3096 		recalc_sigpending();
3097 	}
3098 	spin_unlock_irq(&current->sighand->siglock);
3099 }
3100 EXPORT_SYMBOL(kernel_sigaction);
3101 
3102 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3103 {
3104 	struct task_struct *p = current, *t;
3105 	struct k_sigaction *k;
3106 	sigset_t mask;
3107 
3108 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3109 		return -EINVAL;
3110 
3111 	k = &p->sighand->action[sig-1];
3112 
3113 	spin_lock_irq(&p->sighand->siglock);
3114 	if (oact)
3115 		*oact = *k;
3116 
3117 	if (act) {
3118 		sigdelsetmask(&act->sa.sa_mask,
3119 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3120 		*k = *act;
3121 		/*
3122 		 * POSIX 3.3.1.3:
3123 		 *  "Setting a signal action to SIG_IGN for a signal that is
3124 		 *   pending shall cause the pending signal to be discarded,
3125 		 *   whether or not it is blocked."
3126 		 *
3127 		 *  "Setting a signal action to SIG_DFL for a signal that is
3128 		 *   pending and whose default action is to ignore the signal
3129 		 *   (for example, SIGCHLD), shall cause the pending signal to
3130 		 *   be discarded, whether or not it is blocked"
3131 		 */
3132 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3133 			sigemptyset(&mask);
3134 			sigaddset(&mask, sig);
3135 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3136 			for_each_thread(p, t)
3137 				flush_sigqueue_mask(&mask, &t->pending);
3138 		}
3139 	}
3140 
3141 	spin_unlock_irq(&p->sighand->siglock);
3142 	return 0;
3143 }
3144 
3145 static int
3146 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3147 {
3148 	stack_t oss;
3149 	int error;
3150 
3151 	oss.ss_sp = (void __user *) current->sas_ss_sp;
3152 	oss.ss_size = current->sas_ss_size;
3153 	oss.ss_flags = sas_ss_flags(sp);
3154 
3155 	if (uss) {
3156 		void __user *ss_sp;
3157 		size_t ss_size;
3158 		int ss_flags;
3159 
3160 		error = -EFAULT;
3161 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3162 			goto out;
3163 		error = __get_user(ss_sp, &uss->ss_sp) |
3164 			__get_user(ss_flags, &uss->ss_flags) |
3165 			__get_user(ss_size, &uss->ss_size);
3166 		if (error)
3167 			goto out;
3168 
3169 		error = -EPERM;
3170 		if (on_sig_stack(sp))
3171 			goto out;
3172 
3173 		error = -EINVAL;
3174 		/*
3175 		 * Note - this code used to test ss_flags incorrectly:
3176 		 *  	  old code may have been written using ss_flags==0
3177 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3178 		 *	  way that worked) - this fix preserves that older
3179 		 *	  mechanism.
3180 		 */
3181 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3182 			goto out;
3183 
3184 		if (ss_flags == SS_DISABLE) {
3185 			ss_size = 0;
3186 			ss_sp = NULL;
3187 		} else {
3188 			error = -ENOMEM;
3189 			if (ss_size < MINSIGSTKSZ)
3190 				goto out;
3191 		}
3192 
3193 		current->sas_ss_sp = (unsigned long) ss_sp;
3194 		current->sas_ss_size = ss_size;
3195 	}
3196 
3197 	error = 0;
3198 	if (uoss) {
3199 		error = -EFAULT;
3200 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3201 			goto out;
3202 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3203 			__put_user(oss.ss_size, &uoss->ss_size) |
3204 			__put_user(oss.ss_flags, &uoss->ss_flags);
3205 	}
3206 
3207 out:
3208 	return error;
3209 }
3210 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3211 {
3212 	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3213 }
3214 
3215 int restore_altstack(const stack_t __user *uss)
3216 {
3217 	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3218 	/* squash all but EFAULT for now */
3219 	return err == -EFAULT ? err : 0;
3220 }
3221 
3222 int __save_altstack(stack_t __user *uss, unsigned long sp)
3223 {
3224 	struct task_struct *t = current;
3225 	return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3226 		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3227 		__put_user(t->sas_ss_size, &uss->ss_size);
3228 }
3229 
3230 #ifdef CONFIG_COMPAT
3231 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3232 			const compat_stack_t __user *, uss_ptr,
3233 			compat_stack_t __user *, uoss_ptr)
3234 {
3235 	stack_t uss, uoss;
3236 	int ret;
3237 	mm_segment_t seg;
3238 
3239 	if (uss_ptr) {
3240 		compat_stack_t uss32;
3241 
3242 		memset(&uss, 0, sizeof(stack_t));
3243 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3244 			return -EFAULT;
3245 		uss.ss_sp = compat_ptr(uss32.ss_sp);
3246 		uss.ss_flags = uss32.ss_flags;
3247 		uss.ss_size = uss32.ss_size;
3248 	}
3249 	seg = get_fs();
3250 	set_fs(KERNEL_DS);
3251 	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3252 			     (stack_t __force __user *) &uoss,
3253 			     compat_user_stack_pointer());
3254 	set_fs(seg);
3255 	if (ret >= 0 && uoss_ptr)  {
3256 		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3257 		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3258 		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3259 		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3260 			ret = -EFAULT;
3261 	}
3262 	return ret;
3263 }
3264 
3265 int compat_restore_altstack(const compat_stack_t __user *uss)
3266 {
3267 	int err = compat_sys_sigaltstack(uss, NULL);
3268 	/* squash all but -EFAULT for now */
3269 	return err == -EFAULT ? err : 0;
3270 }
3271 
3272 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3273 {
3274 	struct task_struct *t = current;
3275 	return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3276 		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3277 		__put_user(t->sas_ss_size, &uss->ss_size);
3278 }
3279 #endif
3280 
3281 #ifdef __ARCH_WANT_SYS_SIGPENDING
3282 
3283 /**
3284  *  sys_sigpending - examine pending signals
3285  *  @set: where mask of pending signal is returned
3286  */
3287 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3288 {
3289 	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3290 }
3291 
3292 #endif
3293 
3294 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3295 /**
3296  *  sys_sigprocmask - examine and change blocked signals
3297  *  @how: whether to add, remove, or set signals
3298  *  @nset: signals to add or remove (if non-null)
3299  *  @oset: previous value of signal mask if non-null
3300  *
3301  * Some platforms have their own version with special arguments;
3302  * others support only sys_rt_sigprocmask.
3303  */
3304 
3305 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3306 		old_sigset_t __user *, oset)
3307 {
3308 	old_sigset_t old_set, new_set;
3309 	sigset_t new_blocked;
3310 
3311 	old_set = current->blocked.sig[0];
3312 
3313 	if (nset) {
3314 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3315 			return -EFAULT;
3316 
3317 		new_blocked = current->blocked;
3318 
3319 		switch (how) {
3320 		case SIG_BLOCK:
3321 			sigaddsetmask(&new_blocked, new_set);
3322 			break;
3323 		case SIG_UNBLOCK:
3324 			sigdelsetmask(&new_blocked, new_set);
3325 			break;
3326 		case SIG_SETMASK:
3327 			new_blocked.sig[0] = new_set;
3328 			break;
3329 		default:
3330 			return -EINVAL;
3331 		}
3332 
3333 		set_current_blocked(&new_blocked);
3334 	}
3335 
3336 	if (oset) {
3337 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3338 			return -EFAULT;
3339 	}
3340 
3341 	return 0;
3342 }
3343 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3344 
3345 #ifndef CONFIG_ODD_RT_SIGACTION
3346 /**
3347  *  sys_rt_sigaction - alter an action taken by a process
3348  *  @sig: signal to be sent
3349  *  @act: new sigaction
3350  *  @oact: used to save the previous sigaction
3351  *  @sigsetsize: size of sigset_t type
3352  */
3353 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3354 		const struct sigaction __user *, act,
3355 		struct sigaction __user *, oact,
3356 		size_t, sigsetsize)
3357 {
3358 	struct k_sigaction new_sa, old_sa;
3359 	int ret = -EINVAL;
3360 
3361 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3362 	if (sigsetsize != sizeof(sigset_t))
3363 		goto out;
3364 
3365 	if (act) {
3366 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3367 			return -EFAULT;
3368 	}
3369 
3370 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3371 
3372 	if (!ret && oact) {
3373 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3374 			return -EFAULT;
3375 	}
3376 out:
3377 	return ret;
3378 }
3379 #ifdef CONFIG_COMPAT
3380 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3381 		const struct compat_sigaction __user *, act,
3382 		struct compat_sigaction __user *, oact,
3383 		compat_size_t, sigsetsize)
3384 {
3385 	struct k_sigaction new_ka, old_ka;
3386 	compat_sigset_t mask;
3387 #ifdef __ARCH_HAS_SA_RESTORER
3388 	compat_uptr_t restorer;
3389 #endif
3390 	int ret;
3391 
3392 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3393 	if (sigsetsize != sizeof(compat_sigset_t))
3394 		return -EINVAL;
3395 
3396 	if (act) {
3397 		compat_uptr_t handler;
3398 		ret = get_user(handler, &act->sa_handler);
3399 		new_ka.sa.sa_handler = compat_ptr(handler);
3400 #ifdef __ARCH_HAS_SA_RESTORER
3401 		ret |= get_user(restorer, &act->sa_restorer);
3402 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3403 #endif
3404 		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3405 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3406 		if (ret)
3407 			return -EFAULT;
3408 		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3409 	}
3410 
3411 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3412 	if (!ret && oact) {
3413 		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3414 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3415 			       &oact->sa_handler);
3416 		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3417 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3418 #ifdef __ARCH_HAS_SA_RESTORER
3419 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3420 				&oact->sa_restorer);
3421 #endif
3422 	}
3423 	return ret;
3424 }
3425 #endif
3426 #endif /* !CONFIG_ODD_RT_SIGACTION */
3427 
3428 #ifdef CONFIG_OLD_SIGACTION
3429 SYSCALL_DEFINE3(sigaction, int, sig,
3430 		const struct old_sigaction __user *, act,
3431 	        struct old_sigaction __user *, oact)
3432 {
3433 	struct k_sigaction new_ka, old_ka;
3434 	int ret;
3435 
3436 	if (act) {
3437 		old_sigset_t mask;
3438 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3439 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3440 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3441 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3442 		    __get_user(mask, &act->sa_mask))
3443 			return -EFAULT;
3444 #ifdef __ARCH_HAS_KA_RESTORER
3445 		new_ka.ka_restorer = NULL;
3446 #endif
3447 		siginitset(&new_ka.sa.sa_mask, mask);
3448 	}
3449 
3450 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3451 
3452 	if (!ret && oact) {
3453 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3454 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3455 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3456 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3457 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3458 			return -EFAULT;
3459 	}
3460 
3461 	return ret;
3462 }
3463 #endif
3464 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3465 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3466 		const struct compat_old_sigaction __user *, act,
3467 	        struct compat_old_sigaction __user *, oact)
3468 {
3469 	struct k_sigaction new_ka, old_ka;
3470 	int ret;
3471 	compat_old_sigset_t mask;
3472 	compat_uptr_t handler, restorer;
3473 
3474 	if (act) {
3475 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3476 		    __get_user(handler, &act->sa_handler) ||
3477 		    __get_user(restorer, &act->sa_restorer) ||
3478 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3479 		    __get_user(mask, &act->sa_mask))
3480 			return -EFAULT;
3481 
3482 #ifdef __ARCH_HAS_KA_RESTORER
3483 		new_ka.ka_restorer = NULL;
3484 #endif
3485 		new_ka.sa.sa_handler = compat_ptr(handler);
3486 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3487 		siginitset(&new_ka.sa.sa_mask, mask);
3488 	}
3489 
3490 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3491 
3492 	if (!ret && oact) {
3493 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3494 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3495 			       &oact->sa_handler) ||
3496 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3497 			       &oact->sa_restorer) ||
3498 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3499 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3500 			return -EFAULT;
3501 	}
3502 	return ret;
3503 }
3504 #endif
3505 
3506 #ifdef CONFIG_SGETMASK_SYSCALL
3507 
3508 /*
3509  * For backwards compatibility.  Functionality superseded by sigprocmask.
3510  */
3511 SYSCALL_DEFINE0(sgetmask)
3512 {
3513 	/* SMP safe */
3514 	return current->blocked.sig[0];
3515 }
3516 
3517 SYSCALL_DEFINE1(ssetmask, int, newmask)
3518 {
3519 	int old = current->blocked.sig[0];
3520 	sigset_t newset;
3521 
3522 	siginitset(&newset, newmask);
3523 	set_current_blocked(&newset);
3524 
3525 	return old;
3526 }
3527 #endif /* CONFIG_SGETMASK_SYSCALL */
3528 
3529 #ifdef __ARCH_WANT_SYS_SIGNAL
3530 /*
3531  * For backwards compatibility.  Functionality superseded by sigaction.
3532  */
3533 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3534 {
3535 	struct k_sigaction new_sa, old_sa;
3536 	int ret;
3537 
3538 	new_sa.sa.sa_handler = handler;
3539 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3540 	sigemptyset(&new_sa.sa.sa_mask);
3541 
3542 	ret = do_sigaction(sig, &new_sa, &old_sa);
3543 
3544 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3545 }
3546 #endif /* __ARCH_WANT_SYS_SIGNAL */
3547 
3548 #ifdef __ARCH_WANT_SYS_PAUSE
3549 
3550 SYSCALL_DEFINE0(pause)
3551 {
3552 	while (!signal_pending(current)) {
3553 		current->state = TASK_INTERRUPTIBLE;
3554 		schedule();
3555 	}
3556 	return -ERESTARTNOHAND;
3557 }
3558 
3559 #endif
3560 
3561 int sigsuspend(sigset_t *set)
3562 {
3563 	current->saved_sigmask = current->blocked;
3564 	set_current_blocked(set);
3565 
3566 	current->state = TASK_INTERRUPTIBLE;
3567 	schedule();
3568 	set_restore_sigmask();
3569 	return -ERESTARTNOHAND;
3570 }
3571 
3572 /**
3573  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3574  *	@unewset value until a signal is received
3575  *  @unewset: new signal mask value
3576  *  @sigsetsize: size of sigset_t type
3577  */
3578 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3579 {
3580 	sigset_t newset;
3581 
3582 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3583 	if (sigsetsize != sizeof(sigset_t))
3584 		return -EINVAL;
3585 
3586 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3587 		return -EFAULT;
3588 	return sigsuspend(&newset);
3589 }
3590 
3591 #ifdef CONFIG_COMPAT
3592 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3593 {
3594 #ifdef __BIG_ENDIAN
3595 	sigset_t newset;
3596 	compat_sigset_t newset32;
3597 
3598 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3599 	if (sigsetsize != sizeof(sigset_t))
3600 		return -EINVAL;
3601 
3602 	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3603 		return -EFAULT;
3604 	sigset_from_compat(&newset, &newset32);
3605 	return sigsuspend(&newset);
3606 #else
3607 	/* on little-endian bitmaps don't care about granularity */
3608 	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3609 #endif
3610 }
3611 #endif
3612 
3613 #ifdef CONFIG_OLD_SIGSUSPEND
3614 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3615 {
3616 	sigset_t blocked;
3617 	siginitset(&blocked, mask);
3618 	return sigsuspend(&blocked);
3619 }
3620 #endif
3621 #ifdef CONFIG_OLD_SIGSUSPEND3
3622 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3623 {
3624 	sigset_t blocked;
3625 	siginitset(&blocked, mask);
3626 	return sigsuspend(&blocked);
3627 }
3628 #endif
3629 
3630 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3631 {
3632 	return NULL;
3633 }
3634 
3635 void __init signals_init(void)
3636 {
3637 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3638 }
3639 
3640 #ifdef CONFIG_KGDB_KDB
3641 #include <linux/kdb.h>
3642 /*
3643  * kdb_send_sig_info - Allows kdb to send signals without exposing
3644  * signal internals.  This function checks if the required locks are
3645  * available before calling the main signal code, to avoid kdb
3646  * deadlocks.
3647  */
3648 void
3649 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3650 {
3651 	static struct task_struct *kdb_prev_t;
3652 	int sig, new_t;
3653 	if (!spin_trylock(&t->sighand->siglock)) {
3654 		kdb_printf("Can't do kill command now.\n"
3655 			   "The sigmask lock is held somewhere else in "
3656 			   "kernel, try again later\n");
3657 		return;
3658 	}
3659 	spin_unlock(&t->sighand->siglock);
3660 	new_t = kdb_prev_t != t;
3661 	kdb_prev_t = t;
3662 	if (t->state != TASK_RUNNING && new_t) {
3663 		kdb_printf("Process is not RUNNING, sending a signal from "
3664 			   "kdb risks deadlock\n"
3665 			   "on the run queue locks. "
3666 			   "The signal has _not_ been sent.\n"
3667 			   "Reissue the kill command if you want to risk "
3668 			   "the deadlock.\n");
3669 		return;
3670 	}
3671 	sig = info->si_signo;
3672 	if (send_sig_info(sig, info, t))
3673 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3674 			   sig, t->pid);
3675 	else
3676 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3677 }
3678 #endif	/* CONFIG_KGDB_KDB */
3679