xref: /openbmc/linux/kernel/signal.c (revision 8b4a4080)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
29 
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h"	/* audit_signal_info() */
35 
36 /*
37  * SLAB caches for signal bits.
38  */
39 
40 static struct kmem_cache *sigqueue_cachep;
41 
42 
43 static int sig_ignored(struct task_struct *t, int sig)
44 {
45 	void __user * handler;
46 
47 	/*
48 	 * Tracers always want to know about signals..
49 	 */
50 	if (t->ptrace & PT_PTRACED)
51 		return 0;
52 
53 	/*
54 	 * Blocked signals are never ignored, since the
55 	 * signal handler may change by the time it is
56 	 * unblocked.
57 	 */
58 	if (sigismember(&t->blocked, sig))
59 		return 0;
60 
61 	/* Is it explicitly or implicitly ignored? */
62 	handler = t->sighand->action[sig-1].sa.sa_handler;
63 	return   handler == SIG_IGN ||
64 		(handler == SIG_DFL && sig_kernel_ignore(sig));
65 }
66 
67 /*
68  * Re-calculate pending state from the set of locally pending
69  * signals, globally pending signals, and blocked signals.
70  */
71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
72 {
73 	unsigned long ready;
74 	long i;
75 
76 	switch (_NSIG_WORDS) {
77 	default:
78 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
79 			ready |= signal->sig[i] &~ blocked->sig[i];
80 		break;
81 
82 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
83 		ready |= signal->sig[2] &~ blocked->sig[2];
84 		ready |= signal->sig[1] &~ blocked->sig[1];
85 		ready |= signal->sig[0] &~ blocked->sig[0];
86 		break;
87 
88 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
89 		ready |= signal->sig[0] &~ blocked->sig[0];
90 		break;
91 
92 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
93 	}
94 	return ready !=	0;
95 }
96 
97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
98 
99 static int recalc_sigpending_tsk(struct task_struct *t)
100 {
101 	if (t->signal->group_stop_count > 0 ||
102 	    (freezing(t)) ||
103 	    PENDING(&t->pending, &t->blocked) ||
104 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
105 		set_tsk_thread_flag(t, TIF_SIGPENDING);
106 		return 1;
107 	}
108 	/*
109 	 * We must never clear the flag in another thread, or in current
110 	 * when it's possible the current syscall is returning -ERESTART*.
111 	 * So we don't clear it here, and only callers who know they should do.
112 	 */
113 	return 0;
114 }
115 
116 /*
117  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
118  * This is superfluous when called on current, the wakeup is a harmless no-op.
119  */
120 void recalc_sigpending_and_wake(struct task_struct *t)
121 {
122 	if (recalc_sigpending_tsk(t))
123 		signal_wake_up(t, 0);
124 }
125 
126 void recalc_sigpending(void)
127 {
128 	if (!recalc_sigpending_tsk(current))
129 		clear_thread_flag(TIF_SIGPENDING);
130 
131 }
132 
133 /* Given the mask, find the first available signal that should be serviced. */
134 
135 int next_signal(struct sigpending *pending, sigset_t *mask)
136 {
137 	unsigned long i, *s, *m, x;
138 	int sig = 0;
139 
140 	s = pending->signal.sig;
141 	m = mask->sig;
142 	switch (_NSIG_WORDS) {
143 	default:
144 		for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
145 			if ((x = *s &~ *m) != 0) {
146 				sig = ffz(~x) + i*_NSIG_BPW + 1;
147 				break;
148 			}
149 		break;
150 
151 	case 2: if ((x = s[0] &~ m[0]) != 0)
152 			sig = 1;
153 		else if ((x = s[1] &~ m[1]) != 0)
154 			sig = _NSIG_BPW + 1;
155 		else
156 			break;
157 		sig += ffz(~x);
158 		break;
159 
160 	case 1: if ((x = *s &~ *m) != 0)
161 			sig = ffz(~x) + 1;
162 		break;
163 	}
164 
165 	return sig;
166 }
167 
168 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
169 					 int override_rlimit)
170 {
171 	struct sigqueue *q = NULL;
172 	struct user_struct *user;
173 
174 	/*
175 	 * In order to avoid problems with "switch_user()", we want to make
176 	 * sure that the compiler doesn't re-load "t->user"
177 	 */
178 	user = t->user;
179 	barrier();
180 	atomic_inc(&user->sigpending);
181 	if (override_rlimit ||
182 	    atomic_read(&user->sigpending) <=
183 			t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
184 		q = kmem_cache_alloc(sigqueue_cachep, flags);
185 	if (unlikely(q == NULL)) {
186 		atomic_dec(&user->sigpending);
187 	} else {
188 		INIT_LIST_HEAD(&q->list);
189 		q->flags = 0;
190 		q->user = get_uid(user);
191 	}
192 	return(q);
193 }
194 
195 static void __sigqueue_free(struct sigqueue *q)
196 {
197 	if (q->flags & SIGQUEUE_PREALLOC)
198 		return;
199 	atomic_dec(&q->user->sigpending);
200 	free_uid(q->user);
201 	kmem_cache_free(sigqueue_cachep, q);
202 }
203 
204 void flush_sigqueue(struct sigpending *queue)
205 {
206 	struct sigqueue *q;
207 
208 	sigemptyset(&queue->signal);
209 	while (!list_empty(&queue->list)) {
210 		q = list_entry(queue->list.next, struct sigqueue , list);
211 		list_del_init(&q->list);
212 		__sigqueue_free(q);
213 	}
214 }
215 
216 /*
217  * Flush all pending signals for a task.
218  */
219 void flush_signals(struct task_struct *t)
220 {
221 	unsigned long flags;
222 
223 	spin_lock_irqsave(&t->sighand->siglock, flags);
224 	clear_tsk_thread_flag(t,TIF_SIGPENDING);
225 	flush_sigqueue(&t->pending);
226 	flush_sigqueue(&t->signal->shared_pending);
227 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
228 }
229 
230 void ignore_signals(struct task_struct *t)
231 {
232 	int i;
233 
234 	for (i = 0; i < _NSIG; ++i)
235 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
236 
237 	flush_signals(t);
238 }
239 
240 /*
241  * Flush all handlers for a task.
242  */
243 
244 void
245 flush_signal_handlers(struct task_struct *t, int force_default)
246 {
247 	int i;
248 	struct k_sigaction *ka = &t->sighand->action[0];
249 	for (i = _NSIG ; i != 0 ; i--) {
250 		if (force_default || ka->sa.sa_handler != SIG_IGN)
251 			ka->sa.sa_handler = SIG_DFL;
252 		ka->sa.sa_flags = 0;
253 		sigemptyset(&ka->sa.sa_mask);
254 		ka++;
255 	}
256 }
257 
258 
259 /* Notify the system that a driver wants to block all signals for this
260  * process, and wants to be notified if any signals at all were to be
261  * sent/acted upon.  If the notifier routine returns non-zero, then the
262  * signal will be acted upon after all.  If the notifier routine returns 0,
263  * then then signal will be blocked.  Only one block per process is
264  * allowed.  priv is a pointer to private data that the notifier routine
265  * can use to determine if the signal should be blocked or not.  */
266 
267 void
268 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
269 {
270 	unsigned long flags;
271 
272 	spin_lock_irqsave(&current->sighand->siglock, flags);
273 	current->notifier_mask = mask;
274 	current->notifier_data = priv;
275 	current->notifier = notifier;
276 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
277 }
278 
279 /* Notify the system that blocking has ended. */
280 
281 void
282 unblock_all_signals(void)
283 {
284 	unsigned long flags;
285 
286 	spin_lock_irqsave(&current->sighand->siglock, flags);
287 	current->notifier = NULL;
288 	current->notifier_data = NULL;
289 	recalc_sigpending();
290 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
291 }
292 
293 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
294 {
295 	struct sigqueue *q, *first = NULL;
296 	int still_pending = 0;
297 
298 	if (unlikely(!sigismember(&list->signal, sig)))
299 		return 0;
300 
301 	/*
302 	 * Collect the siginfo appropriate to this signal.  Check if
303 	 * there is another siginfo for the same signal.
304 	*/
305 	list_for_each_entry(q, &list->list, list) {
306 		if (q->info.si_signo == sig) {
307 			if (first) {
308 				still_pending = 1;
309 				break;
310 			}
311 			first = q;
312 		}
313 	}
314 	if (first) {
315 		list_del_init(&first->list);
316 		copy_siginfo(info, &first->info);
317 		__sigqueue_free(first);
318 		if (!still_pending)
319 			sigdelset(&list->signal, sig);
320 	} else {
321 
322 		/* Ok, it wasn't in the queue.  This must be
323 		   a fast-pathed signal or we must have been
324 		   out of queue space.  So zero out the info.
325 		 */
326 		sigdelset(&list->signal, sig);
327 		info->si_signo = sig;
328 		info->si_errno = 0;
329 		info->si_code = 0;
330 		info->si_pid = 0;
331 		info->si_uid = 0;
332 	}
333 	return 1;
334 }
335 
336 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
337 			siginfo_t *info)
338 {
339 	int sig = next_signal(pending, mask);
340 
341 	if (sig) {
342 		if (current->notifier) {
343 			if (sigismember(current->notifier_mask, sig)) {
344 				if (!(current->notifier)(current->notifier_data)) {
345 					clear_thread_flag(TIF_SIGPENDING);
346 					return 0;
347 				}
348 			}
349 		}
350 
351 		if (!collect_signal(sig, pending, info))
352 			sig = 0;
353 	}
354 
355 	return sig;
356 }
357 
358 /*
359  * Dequeue a signal and return the element to the caller, which is
360  * expected to free it.
361  *
362  * All callers have to hold the siglock.
363  */
364 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
365 {
366 	int signr = 0;
367 
368 	/* We only dequeue private signals from ourselves, we don't let
369 	 * signalfd steal them
370 	 */
371 	if (tsk == current)
372 		signr = __dequeue_signal(&tsk->pending, mask, info);
373 	if (!signr) {
374 		signr = __dequeue_signal(&tsk->signal->shared_pending,
375 					 mask, info);
376 		/*
377 		 * itimer signal ?
378 		 *
379 		 * itimers are process shared and we restart periodic
380 		 * itimers in the signal delivery path to prevent DoS
381 		 * attacks in the high resolution timer case. This is
382 		 * compliant with the old way of self restarting
383 		 * itimers, as the SIGALRM is a legacy signal and only
384 		 * queued once. Changing the restart behaviour to
385 		 * restart the timer in the signal dequeue path is
386 		 * reducing the timer noise on heavy loaded !highres
387 		 * systems too.
388 		 */
389 		if (unlikely(signr == SIGALRM)) {
390 			struct hrtimer *tmr = &tsk->signal->real_timer;
391 
392 			if (!hrtimer_is_queued(tmr) &&
393 			    tsk->signal->it_real_incr.tv64 != 0) {
394 				hrtimer_forward(tmr, tmr->base->get_time(),
395 						tsk->signal->it_real_incr);
396 				hrtimer_restart(tmr);
397 			}
398 		}
399 	}
400 	if (likely(tsk == current))
401 		recalc_sigpending();
402 	if (signr && unlikely(sig_kernel_stop(signr))) {
403 		/*
404 		 * Set a marker that we have dequeued a stop signal.  Our
405 		 * caller might release the siglock and then the pending
406 		 * stop signal it is about to process is no longer in the
407 		 * pending bitmasks, but must still be cleared by a SIGCONT
408 		 * (and overruled by a SIGKILL).  So those cases clear this
409 		 * shared flag after we've set it.  Note that this flag may
410 		 * remain set after the signal we return is ignored or
411 		 * handled.  That doesn't matter because its only purpose
412 		 * is to alert stop-signal processing code when another
413 		 * processor has come along and cleared the flag.
414 		 */
415 		if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
416 			tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
417 	}
418 	if ( signr &&
419 	     ((info->si_code & __SI_MASK) == __SI_TIMER) &&
420 	     info->si_sys_private){
421 		/*
422 		 * Release the siglock to ensure proper locking order
423 		 * of timer locks outside of siglocks.  Note, we leave
424 		 * irqs disabled here, since the posix-timers code is
425 		 * about to disable them again anyway.
426 		 */
427 		spin_unlock(&tsk->sighand->siglock);
428 		do_schedule_next_timer(info);
429 		spin_lock(&tsk->sighand->siglock);
430 	}
431 	return signr;
432 }
433 
434 /*
435  * Tell a process that it has a new active signal..
436  *
437  * NOTE! we rely on the previous spin_lock to
438  * lock interrupts for us! We can only be called with
439  * "siglock" held, and the local interrupt must
440  * have been disabled when that got acquired!
441  *
442  * No need to set need_resched since signal event passing
443  * goes through ->blocked
444  */
445 void signal_wake_up(struct task_struct *t, int resume)
446 {
447 	unsigned int mask;
448 
449 	set_tsk_thread_flag(t, TIF_SIGPENDING);
450 
451 	/*
452 	 * For SIGKILL, we want to wake it up in the stopped/traced case.
453 	 * We don't check t->state here because there is a race with it
454 	 * executing another processor and just now entering stopped state.
455 	 * By using wake_up_state, we ensure the process will wake up and
456 	 * handle its death signal.
457 	 */
458 	mask = TASK_INTERRUPTIBLE;
459 	if (resume)
460 		mask |= TASK_STOPPED | TASK_TRACED;
461 	if (!wake_up_state(t, mask))
462 		kick_process(t);
463 }
464 
465 /*
466  * Remove signals in mask from the pending set and queue.
467  * Returns 1 if any signals were found.
468  *
469  * All callers must be holding the siglock.
470  *
471  * This version takes a sigset mask and looks at all signals,
472  * not just those in the first mask word.
473  */
474 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
475 {
476 	struct sigqueue *q, *n;
477 	sigset_t m;
478 
479 	sigandsets(&m, mask, &s->signal);
480 	if (sigisemptyset(&m))
481 		return 0;
482 
483 	signandsets(&s->signal, &s->signal, mask);
484 	list_for_each_entry_safe(q, n, &s->list, list) {
485 		if (sigismember(mask, q->info.si_signo)) {
486 			list_del_init(&q->list);
487 			__sigqueue_free(q);
488 		}
489 	}
490 	return 1;
491 }
492 /*
493  * Remove signals in mask from the pending set and queue.
494  * Returns 1 if any signals were found.
495  *
496  * All callers must be holding the siglock.
497  */
498 static int rm_from_queue(unsigned long mask, struct sigpending *s)
499 {
500 	struct sigqueue *q, *n;
501 
502 	if (!sigtestsetmask(&s->signal, mask))
503 		return 0;
504 
505 	sigdelsetmask(&s->signal, mask);
506 	list_for_each_entry_safe(q, n, &s->list, list) {
507 		if (q->info.si_signo < SIGRTMIN &&
508 		    (mask & sigmask(q->info.si_signo))) {
509 			list_del_init(&q->list);
510 			__sigqueue_free(q);
511 		}
512 	}
513 	return 1;
514 }
515 
516 /*
517  * Bad permissions for sending the signal
518  */
519 static int check_kill_permission(int sig, struct siginfo *info,
520 				 struct task_struct *t)
521 {
522 	int error = -EINVAL;
523 	if (!valid_signal(sig))
524 		return error;
525 
526 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
527 	if (error)
528 		return error;
529 
530 	error = -EPERM;
531 	if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
532 	    && ((sig != SIGCONT) ||
533 		(process_session(current) != process_session(t)))
534 	    && (current->euid ^ t->suid) && (current->euid ^ t->uid)
535 	    && (current->uid ^ t->suid) && (current->uid ^ t->uid)
536 	    && !capable(CAP_KILL))
537 		return error;
538 
539 	return security_task_kill(t, info, sig, 0);
540 }
541 
542 /* forward decl */
543 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
544 
545 /*
546  * Handle magic process-wide effects of stop/continue signals.
547  * Unlike the signal actions, these happen immediately at signal-generation
548  * time regardless of blocking, ignoring, or handling.  This does the
549  * actual continuing for SIGCONT, but not the actual stopping for stop
550  * signals.  The process stop is done as a signal action for SIG_DFL.
551  */
552 static void handle_stop_signal(int sig, struct task_struct *p)
553 {
554 	struct task_struct *t;
555 
556 	if (p->signal->flags & SIGNAL_GROUP_EXIT)
557 		/*
558 		 * The process is in the middle of dying already.
559 		 */
560 		return;
561 
562 	if (sig_kernel_stop(sig)) {
563 		/*
564 		 * This is a stop signal.  Remove SIGCONT from all queues.
565 		 */
566 		rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
567 		t = p;
568 		do {
569 			rm_from_queue(sigmask(SIGCONT), &t->pending);
570 			t = next_thread(t);
571 		} while (t != p);
572 	} else if (sig == SIGCONT) {
573 		/*
574 		 * Remove all stop signals from all queues,
575 		 * and wake all threads.
576 		 */
577 		if (unlikely(p->signal->group_stop_count > 0)) {
578 			/*
579 			 * There was a group stop in progress.  We'll
580 			 * pretend it finished before we got here.  We are
581 			 * obliged to report it to the parent: if the
582 			 * SIGSTOP happened "after" this SIGCONT, then it
583 			 * would have cleared this pending SIGCONT.  If it
584 			 * happened "before" this SIGCONT, then the parent
585 			 * got the SIGCHLD about the stop finishing before
586 			 * the continue happened.  We do the notification
587 			 * now, and it's as if the stop had finished and
588 			 * the SIGCHLD was pending on entry to this kill.
589 			 */
590 			p->signal->group_stop_count = 0;
591 			p->signal->flags = SIGNAL_STOP_CONTINUED;
592 			spin_unlock(&p->sighand->siglock);
593 			do_notify_parent_cldstop(p, CLD_STOPPED);
594 			spin_lock(&p->sighand->siglock);
595 		}
596 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
597 		t = p;
598 		do {
599 			unsigned int state;
600 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
601 
602 			/*
603 			 * If there is a handler for SIGCONT, we must make
604 			 * sure that no thread returns to user mode before
605 			 * we post the signal, in case it was the only
606 			 * thread eligible to run the signal handler--then
607 			 * it must not do anything between resuming and
608 			 * running the handler.  With the TIF_SIGPENDING
609 			 * flag set, the thread will pause and acquire the
610 			 * siglock that we hold now and until we've queued
611 			 * the pending signal.
612 			 *
613 			 * Wake up the stopped thread _after_ setting
614 			 * TIF_SIGPENDING
615 			 */
616 			state = TASK_STOPPED;
617 			if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
618 				set_tsk_thread_flag(t, TIF_SIGPENDING);
619 				state |= TASK_INTERRUPTIBLE;
620 			}
621 			wake_up_state(t, state);
622 
623 			t = next_thread(t);
624 		} while (t != p);
625 
626 		if (p->signal->flags & SIGNAL_STOP_STOPPED) {
627 			/*
628 			 * We were in fact stopped, and are now continued.
629 			 * Notify the parent with CLD_CONTINUED.
630 			 */
631 			p->signal->flags = SIGNAL_STOP_CONTINUED;
632 			p->signal->group_exit_code = 0;
633 			spin_unlock(&p->sighand->siglock);
634 			do_notify_parent_cldstop(p, CLD_CONTINUED);
635 			spin_lock(&p->sighand->siglock);
636 		} else {
637 			/*
638 			 * We are not stopped, but there could be a stop
639 			 * signal in the middle of being processed after
640 			 * being removed from the queue.  Clear that too.
641 			 */
642 			p->signal->flags = 0;
643 		}
644 	} else if (sig == SIGKILL) {
645 		/*
646 		 * Make sure that any pending stop signal already dequeued
647 		 * is undone by the wakeup for SIGKILL.
648 		 */
649 		p->signal->flags = 0;
650 	}
651 }
652 
653 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
654 			struct sigpending *signals)
655 {
656 	struct sigqueue * q = NULL;
657 	int ret = 0;
658 
659 	/*
660 	 * Deliver the signal to listening signalfds. This must be called
661 	 * with the sighand lock held.
662 	 */
663 	signalfd_notify(t, sig);
664 
665 	/*
666 	 * fast-pathed signals for kernel-internal things like SIGSTOP
667 	 * or SIGKILL.
668 	 */
669 	if (info == SEND_SIG_FORCED)
670 		goto out_set;
671 
672 	/* Real-time signals must be queued if sent by sigqueue, or
673 	   some other real-time mechanism.  It is implementation
674 	   defined whether kill() does so.  We attempt to do so, on
675 	   the principle of least surprise, but since kill is not
676 	   allowed to fail with EAGAIN when low on memory we just
677 	   make sure at least one signal gets delivered and don't
678 	   pass on the info struct.  */
679 
680 	q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
681 					     (is_si_special(info) ||
682 					      info->si_code >= 0)));
683 	if (q) {
684 		list_add_tail(&q->list, &signals->list);
685 		switch ((unsigned long) info) {
686 		case (unsigned long) SEND_SIG_NOINFO:
687 			q->info.si_signo = sig;
688 			q->info.si_errno = 0;
689 			q->info.si_code = SI_USER;
690 			q->info.si_pid = current->pid;
691 			q->info.si_uid = current->uid;
692 			break;
693 		case (unsigned long) SEND_SIG_PRIV:
694 			q->info.si_signo = sig;
695 			q->info.si_errno = 0;
696 			q->info.si_code = SI_KERNEL;
697 			q->info.si_pid = 0;
698 			q->info.si_uid = 0;
699 			break;
700 		default:
701 			copy_siginfo(&q->info, info);
702 			break;
703 		}
704 	} else if (!is_si_special(info)) {
705 		if (sig >= SIGRTMIN && info->si_code != SI_USER)
706 		/*
707 		 * Queue overflow, abort.  We may abort if the signal was rt
708 		 * and sent by user using something other than kill().
709 		 */
710 			return -EAGAIN;
711 	}
712 
713 out_set:
714 	sigaddset(&signals->signal, sig);
715 	return ret;
716 }
717 
718 #define LEGACY_QUEUE(sigptr, sig) \
719 	(((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
720 
721 int print_fatal_signals;
722 
723 static void print_fatal_signal(struct pt_regs *regs, int signr)
724 {
725 	printk("%s/%d: potentially unexpected fatal signal %d.\n",
726 		current->comm, current->pid, signr);
727 
728 #ifdef __i386__
729 	printk("code at %08lx: ", regs->eip);
730 	{
731 		int i;
732 		for (i = 0; i < 16; i++) {
733 			unsigned char insn;
734 
735 			__get_user(insn, (unsigned char *)(regs->eip + i));
736 			printk("%02x ", insn);
737 		}
738 	}
739 #endif
740 	printk("\n");
741 	show_regs(regs);
742 }
743 
744 static int __init setup_print_fatal_signals(char *str)
745 {
746 	get_option (&str, &print_fatal_signals);
747 
748 	return 1;
749 }
750 
751 __setup("print-fatal-signals=", setup_print_fatal_signals);
752 
753 static int
754 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
755 {
756 	int ret = 0;
757 
758 	BUG_ON(!irqs_disabled());
759 	assert_spin_locked(&t->sighand->siglock);
760 
761 	/* Short-circuit ignored signals.  */
762 	if (sig_ignored(t, sig))
763 		goto out;
764 
765 	/* Support queueing exactly one non-rt signal, so that we
766 	   can get more detailed information about the cause of
767 	   the signal. */
768 	if (LEGACY_QUEUE(&t->pending, sig))
769 		goto out;
770 
771 	ret = send_signal(sig, info, t, &t->pending);
772 	if (!ret && !sigismember(&t->blocked, sig))
773 		signal_wake_up(t, sig == SIGKILL);
774 out:
775 	return ret;
776 }
777 
778 /*
779  * Force a signal that the process can't ignore: if necessary
780  * we unblock the signal and change any SIG_IGN to SIG_DFL.
781  *
782  * Note: If we unblock the signal, we always reset it to SIG_DFL,
783  * since we do not want to have a signal handler that was blocked
784  * be invoked when user space had explicitly blocked it.
785  *
786  * We don't want to have recursive SIGSEGV's etc, for example.
787  */
788 int
789 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
790 {
791 	unsigned long int flags;
792 	int ret, blocked, ignored;
793 	struct k_sigaction *action;
794 
795 	spin_lock_irqsave(&t->sighand->siglock, flags);
796 	action = &t->sighand->action[sig-1];
797 	ignored = action->sa.sa_handler == SIG_IGN;
798 	blocked = sigismember(&t->blocked, sig);
799 	if (blocked || ignored) {
800 		action->sa.sa_handler = SIG_DFL;
801 		if (blocked) {
802 			sigdelset(&t->blocked, sig);
803 			recalc_sigpending_and_wake(t);
804 		}
805 	}
806 	ret = specific_send_sig_info(sig, info, t);
807 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
808 
809 	return ret;
810 }
811 
812 void
813 force_sig_specific(int sig, struct task_struct *t)
814 {
815 	force_sig_info(sig, SEND_SIG_FORCED, t);
816 }
817 
818 /*
819  * Test if P wants to take SIG.  After we've checked all threads with this,
820  * it's equivalent to finding no threads not blocking SIG.  Any threads not
821  * blocking SIG were ruled out because they are not running and already
822  * have pending signals.  Such threads will dequeue from the shared queue
823  * as soon as they're available, so putting the signal on the shared queue
824  * will be equivalent to sending it to one such thread.
825  */
826 static inline int wants_signal(int sig, struct task_struct *p)
827 {
828 	if (sigismember(&p->blocked, sig))
829 		return 0;
830 	if (p->flags & PF_EXITING)
831 		return 0;
832 	if (sig == SIGKILL)
833 		return 1;
834 	if (p->state & (TASK_STOPPED | TASK_TRACED))
835 		return 0;
836 	return task_curr(p) || !signal_pending(p);
837 }
838 
839 static void
840 __group_complete_signal(int sig, struct task_struct *p)
841 {
842 	struct task_struct *t;
843 
844 	/*
845 	 * Now find a thread we can wake up to take the signal off the queue.
846 	 *
847 	 * If the main thread wants the signal, it gets first crack.
848 	 * Probably the least surprising to the average bear.
849 	 */
850 	if (wants_signal(sig, p))
851 		t = p;
852 	else if (thread_group_empty(p))
853 		/*
854 		 * There is just one thread and it does not need to be woken.
855 		 * It will dequeue unblocked signals before it runs again.
856 		 */
857 		return;
858 	else {
859 		/*
860 		 * Otherwise try to find a suitable thread.
861 		 */
862 		t = p->signal->curr_target;
863 		if (t == NULL)
864 			/* restart balancing at this thread */
865 			t = p->signal->curr_target = p;
866 
867 		while (!wants_signal(sig, t)) {
868 			t = next_thread(t);
869 			if (t == p->signal->curr_target)
870 				/*
871 				 * No thread needs to be woken.
872 				 * Any eligible threads will see
873 				 * the signal in the queue soon.
874 				 */
875 				return;
876 		}
877 		p->signal->curr_target = t;
878 	}
879 
880 	/*
881 	 * Found a killable thread.  If the signal will be fatal,
882 	 * then start taking the whole group down immediately.
883 	 */
884 	if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
885 	    !sigismember(&t->real_blocked, sig) &&
886 	    (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
887 		/*
888 		 * This signal will be fatal to the whole group.
889 		 */
890 		if (!sig_kernel_coredump(sig)) {
891 			/*
892 			 * Start a group exit and wake everybody up.
893 			 * This way we don't have other threads
894 			 * running and doing things after a slower
895 			 * thread has the fatal signal pending.
896 			 */
897 			p->signal->flags = SIGNAL_GROUP_EXIT;
898 			p->signal->group_exit_code = sig;
899 			p->signal->group_stop_count = 0;
900 			t = p;
901 			do {
902 				sigaddset(&t->pending.signal, SIGKILL);
903 				signal_wake_up(t, 1);
904 				t = next_thread(t);
905 			} while (t != p);
906 			return;
907 		}
908 
909 		/*
910 		 * There will be a core dump.  We make all threads other
911 		 * than the chosen one go into a group stop so that nothing
912 		 * happens until it gets scheduled, takes the signal off
913 		 * the shared queue, and does the core dump.  This is a
914 		 * little more complicated than strictly necessary, but it
915 		 * keeps the signal state that winds up in the core dump
916 		 * unchanged from the death state, e.g. which thread had
917 		 * the core-dump signal unblocked.
918 		 */
919 		rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
920 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
921 		p->signal->group_stop_count = 0;
922 		p->signal->group_exit_task = t;
923 		t = p;
924 		do {
925 			p->signal->group_stop_count++;
926 			signal_wake_up(t, 0);
927 			t = next_thread(t);
928 		} while (t != p);
929 		wake_up_process(p->signal->group_exit_task);
930 		return;
931 	}
932 
933 	/*
934 	 * The signal is already in the shared-pending queue.
935 	 * Tell the chosen thread to wake up and dequeue it.
936 	 */
937 	signal_wake_up(t, sig == SIGKILL);
938 	return;
939 }
940 
941 int
942 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
943 {
944 	int ret = 0;
945 
946 	assert_spin_locked(&p->sighand->siglock);
947 	handle_stop_signal(sig, p);
948 
949 	/* Short-circuit ignored signals.  */
950 	if (sig_ignored(p, sig))
951 		return ret;
952 
953 	if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
954 		/* This is a non-RT signal and we already have one queued.  */
955 		return ret;
956 
957 	/*
958 	 * Put this signal on the shared-pending queue, or fail with EAGAIN.
959 	 * We always use the shared queue for process-wide signals,
960 	 * to avoid several races.
961 	 */
962 	ret = send_signal(sig, info, p, &p->signal->shared_pending);
963 	if (unlikely(ret))
964 		return ret;
965 
966 	__group_complete_signal(sig, p);
967 	return 0;
968 }
969 
970 /*
971  * Nuke all other threads in the group.
972  */
973 void zap_other_threads(struct task_struct *p)
974 {
975 	struct task_struct *t;
976 
977 	p->signal->flags = SIGNAL_GROUP_EXIT;
978 	p->signal->group_stop_count = 0;
979 
980 	if (thread_group_empty(p))
981 		return;
982 
983 	for (t = next_thread(p); t != p; t = next_thread(t)) {
984 		/*
985 		 * Don't bother with already dead threads
986 		 */
987 		if (t->exit_state)
988 			continue;
989 
990 		/* SIGKILL will be handled before any pending SIGSTOP */
991 		sigaddset(&t->pending.signal, SIGKILL);
992 		signal_wake_up(t, 1);
993 	}
994 }
995 
996 /*
997  * Must be called under rcu_read_lock() or with tasklist_lock read-held.
998  */
999 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1000 {
1001 	struct sighand_struct *sighand;
1002 
1003 	for (;;) {
1004 		sighand = rcu_dereference(tsk->sighand);
1005 		if (unlikely(sighand == NULL))
1006 			break;
1007 
1008 		spin_lock_irqsave(&sighand->siglock, *flags);
1009 		if (likely(sighand == tsk->sighand))
1010 			break;
1011 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1012 	}
1013 
1014 	return sighand;
1015 }
1016 
1017 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1018 {
1019 	unsigned long flags;
1020 	int ret;
1021 
1022 	ret = check_kill_permission(sig, info, p);
1023 
1024 	if (!ret && sig) {
1025 		ret = -ESRCH;
1026 		if (lock_task_sighand(p, &flags)) {
1027 			ret = __group_send_sig_info(sig, info, p);
1028 			unlock_task_sighand(p, &flags);
1029 		}
1030 	}
1031 
1032 	return ret;
1033 }
1034 
1035 /*
1036  * kill_pgrp_info() sends a signal to a process group: this is what the tty
1037  * control characters do (^C, ^Z etc)
1038  */
1039 
1040 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1041 {
1042 	struct task_struct *p = NULL;
1043 	int retval, success;
1044 
1045 	success = 0;
1046 	retval = -ESRCH;
1047 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1048 		int err = group_send_sig_info(sig, info, p);
1049 		success |= !err;
1050 		retval = err;
1051 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1052 	return success ? 0 : retval;
1053 }
1054 
1055 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1056 {
1057 	int retval;
1058 
1059 	read_lock(&tasklist_lock);
1060 	retval = __kill_pgrp_info(sig, info, pgrp);
1061 	read_unlock(&tasklist_lock);
1062 
1063 	return retval;
1064 }
1065 
1066 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1067 {
1068 	int error;
1069 	struct task_struct *p;
1070 
1071 	rcu_read_lock();
1072 	if (unlikely(sig_needs_tasklist(sig)))
1073 		read_lock(&tasklist_lock);
1074 
1075 	p = pid_task(pid, PIDTYPE_PID);
1076 	error = -ESRCH;
1077 	if (p)
1078 		error = group_send_sig_info(sig, info, p);
1079 
1080 	if (unlikely(sig_needs_tasklist(sig)))
1081 		read_unlock(&tasklist_lock);
1082 	rcu_read_unlock();
1083 	return error;
1084 }
1085 
1086 int
1087 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1088 {
1089 	int error;
1090 	rcu_read_lock();
1091 	error = kill_pid_info(sig, info, find_pid(pid));
1092 	rcu_read_unlock();
1093 	return error;
1094 }
1095 
1096 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1097 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1098 		      uid_t uid, uid_t euid, u32 secid)
1099 {
1100 	int ret = -EINVAL;
1101 	struct task_struct *p;
1102 
1103 	if (!valid_signal(sig))
1104 		return ret;
1105 
1106 	read_lock(&tasklist_lock);
1107 	p = pid_task(pid, PIDTYPE_PID);
1108 	if (!p) {
1109 		ret = -ESRCH;
1110 		goto out_unlock;
1111 	}
1112 	if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1113 	    && (euid != p->suid) && (euid != p->uid)
1114 	    && (uid != p->suid) && (uid != p->uid)) {
1115 		ret = -EPERM;
1116 		goto out_unlock;
1117 	}
1118 	ret = security_task_kill(p, info, sig, secid);
1119 	if (ret)
1120 		goto out_unlock;
1121 	if (sig && p->sighand) {
1122 		unsigned long flags;
1123 		spin_lock_irqsave(&p->sighand->siglock, flags);
1124 		ret = __group_send_sig_info(sig, info, p);
1125 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1126 	}
1127 out_unlock:
1128 	read_unlock(&tasklist_lock);
1129 	return ret;
1130 }
1131 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1132 
1133 /*
1134  * kill_something_info() interprets pid in interesting ways just like kill(2).
1135  *
1136  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1137  * is probably wrong.  Should make it like BSD or SYSV.
1138  */
1139 
1140 static int kill_something_info(int sig, struct siginfo *info, int pid)
1141 {
1142 	int ret;
1143 	rcu_read_lock();
1144 	if (!pid) {
1145 		ret = kill_pgrp_info(sig, info, task_pgrp(current));
1146 	} else if (pid == -1) {
1147 		int retval = 0, count = 0;
1148 		struct task_struct * p;
1149 
1150 		read_lock(&tasklist_lock);
1151 		for_each_process(p) {
1152 			if (p->pid > 1 && p->tgid != current->tgid) {
1153 				int err = group_send_sig_info(sig, info, p);
1154 				++count;
1155 				if (err != -EPERM)
1156 					retval = err;
1157 			}
1158 		}
1159 		read_unlock(&tasklist_lock);
1160 		ret = count ? retval : -ESRCH;
1161 	} else if (pid < 0) {
1162 		ret = kill_pgrp_info(sig, info, find_pid(-pid));
1163 	} else {
1164 		ret = kill_pid_info(sig, info, find_pid(pid));
1165 	}
1166 	rcu_read_unlock();
1167 	return ret;
1168 }
1169 
1170 /*
1171  * These are for backward compatibility with the rest of the kernel source.
1172  */
1173 
1174 /*
1175  * These two are the most common entry points.  They send a signal
1176  * just to the specific thread.
1177  */
1178 int
1179 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1180 {
1181 	int ret;
1182 	unsigned long flags;
1183 
1184 	/*
1185 	 * Make sure legacy kernel users don't send in bad values
1186 	 * (normal paths check this in check_kill_permission).
1187 	 */
1188 	if (!valid_signal(sig))
1189 		return -EINVAL;
1190 
1191 	/*
1192 	 * We need the tasklist lock even for the specific
1193 	 * thread case (when we don't need to follow the group
1194 	 * lists) in order to avoid races with "p->sighand"
1195 	 * going away or changing from under us.
1196 	 */
1197 	read_lock(&tasklist_lock);
1198 	spin_lock_irqsave(&p->sighand->siglock, flags);
1199 	ret = specific_send_sig_info(sig, info, p);
1200 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1201 	read_unlock(&tasklist_lock);
1202 	return ret;
1203 }
1204 
1205 #define __si_special(priv) \
1206 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1207 
1208 int
1209 send_sig(int sig, struct task_struct *p, int priv)
1210 {
1211 	return send_sig_info(sig, __si_special(priv), p);
1212 }
1213 
1214 /*
1215  * This is the entry point for "process-wide" signals.
1216  * They will go to an appropriate thread in the thread group.
1217  */
1218 int
1219 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1220 {
1221 	int ret;
1222 	read_lock(&tasklist_lock);
1223 	ret = group_send_sig_info(sig, info, p);
1224 	read_unlock(&tasklist_lock);
1225 	return ret;
1226 }
1227 
1228 void
1229 force_sig(int sig, struct task_struct *p)
1230 {
1231 	force_sig_info(sig, SEND_SIG_PRIV, p);
1232 }
1233 
1234 /*
1235  * When things go south during signal handling, we
1236  * will force a SIGSEGV. And if the signal that caused
1237  * the problem was already a SIGSEGV, we'll want to
1238  * make sure we don't even try to deliver the signal..
1239  */
1240 int
1241 force_sigsegv(int sig, struct task_struct *p)
1242 {
1243 	if (sig == SIGSEGV) {
1244 		unsigned long flags;
1245 		spin_lock_irqsave(&p->sighand->siglock, flags);
1246 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1247 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1248 	}
1249 	force_sig(SIGSEGV, p);
1250 	return 0;
1251 }
1252 
1253 int kill_pgrp(struct pid *pid, int sig, int priv)
1254 {
1255 	return kill_pgrp_info(sig, __si_special(priv), pid);
1256 }
1257 EXPORT_SYMBOL(kill_pgrp);
1258 
1259 int kill_pid(struct pid *pid, int sig, int priv)
1260 {
1261 	return kill_pid_info(sig, __si_special(priv), pid);
1262 }
1263 EXPORT_SYMBOL(kill_pid);
1264 
1265 int
1266 kill_proc(pid_t pid, int sig, int priv)
1267 {
1268 	return kill_proc_info(sig, __si_special(priv), pid);
1269 }
1270 
1271 /*
1272  * These functions support sending signals using preallocated sigqueue
1273  * structures.  This is needed "because realtime applications cannot
1274  * afford to lose notifications of asynchronous events, like timer
1275  * expirations or I/O completions".  In the case of Posix Timers
1276  * we allocate the sigqueue structure from the timer_create.  If this
1277  * allocation fails we are able to report the failure to the application
1278  * with an EAGAIN error.
1279  */
1280 
1281 struct sigqueue *sigqueue_alloc(void)
1282 {
1283 	struct sigqueue *q;
1284 
1285 	if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1286 		q->flags |= SIGQUEUE_PREALLOC;
1287 	return(q);
1288 }
1289 
1290 void sigqueue_free(struct sigqueue *q)
1291 {
1292 	unsigned long flags;
1293 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1294 	/*
1295 	 * If the signal is still pending remove it from the
1296 	 * pending queue.
1297 	 */
1298 	if (unlikely(!list_empty(&q->list))) {
1299 		spinlock_t *lock = &current->sighand->siglock;
1300 		read_lock(&tasklist_lock);
1301 		spin_lock_irqsave(lock, flags);
1302 		if (!list_empty(&q->list))
1303 			list_del_init(&q->list);
1304 		spin_unlock_irqrestore(lock, flags);
1305 		read_unlock(&tasklist_lock);
1306 	}
1307 	q->flags &= ~SIGQUEUE_PREALLOC;
1308 	__sigqueue_free(q);
1309 }
1310 
1311 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1312 {
1313 	unsigned long flags;
1314 	int ret = 0;
1315 
1316 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1317 
1318 	/*
1319 	 * The rcu based delayed sighand destroy makes it possible to
1320 	 * run this without tasklist lock held. The task struct itself
1321 	 * cannot go away as create_timer did get_task_struct().
1322 	 *
1323 	 * We return -1, when the task is marked exiting, so
1324 	 * posix_timer_event can redirect it to the group leader
1325 	 */
1326 	rcu_read_lock();
1327 
1328 	if (!likely(lock_task_sighand(p, &flags))) {
1329 		ret = -1;
1330 		goto out_err;
1331 	}
1332 
1333 	if (unlikely(!list_empty(&q->list))) {
1334 		/*
1335 		 * If an SI_TIMER entry is already queue just increment
1336 		 * the overrun count.
1337 		 */
1338 		BUG_ON(q->info.si_code != SI_TIMER);
1339 		q->info.si_overrun++;
1340 		goto out;
1341 	}
1342 	/* Short-circuit ignored signals.  */
1343 	if (sig_ignored(p, sig)) {
1344 		ret = 1;
1345 		goto out;
1346 	}
1347 	/*
1348 	 * Deliver the signal to listening signalfds. This must be called
1349 	 * with the sighand lock held.
1350 	 */
1351 	signalfd_notify(p, sig);
1352 
1353 	list_add_tail(&q->list, &p->pending.list);
1354 	sigaddset(&p->pending.signal, sig);
1355 	if (!sigismember(&p->blocked, sig))
1356 		signal_wake_up(p, sig == SIGKILL);
1357 
1358 out:
1359 	unlock_task_sighand(p, &flags);
1360 out_err:
1361 	rcu_read_unlock();
1362 
1363 	return ret;
1364 }
1365 
1366 int
1367 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1368 {
1369 	unsigned long flags;
1370 	int ret = 0;
1371 
1372 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1373 
1374 	read_lock(&tasklist_lock);
1375 	/* Since it_lock is held, p->sighand cannot be NULL. */
1376 	spin_lock_irqsave(&p->sighand->siglock, flags);
1377 	handle_stop_signal(sig, p);
1378 
1379 	/* Short-circuit ignored signals.  */
1380 	if (sig_ignored(p, sig)) {
1381 		ret = 1;
1382 		goto out;
1383 	}
1384 
1385 	if (unlikely(!list_empty(&q->list))) {
1386 		/*
1387 		 * If an SI_TIMER entry is already queue just increment
1388 		 * the overrun count.  Other uses should not try to
1389 		 * send the signal multiple times.
1390 		 */
1391 		BUG_ON(q->info.si_code != SI_TIMER);
1392 		q->info.si_overrun++;
1393 		goto out;
1394 	}
1395 	/*
1396 	 * Deliver the signal to listening signalfds. This must be called
1397 	 * with the sighand lock held.
1398 	 */
1399 	signalfd_notify(p, sig);
1400 
1401 	/*
1402 	 * Put this signal on the shared-pending queue.
1403 	 * We always use the shared queue for process-wide signals,
1404 	 * to avoid several races.
1405 	 */
1406 	list_add_tail(&q->list, &p->signal->shared_pending.list);
1407 	sigaddset(&p->signal->shared_pending.signal, sig);
1408 
1409 	__group_complete_signal(sig, p);
1410 out:
1411 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1412 	read_unlock(&tasklist_lock);
1413 	return ret;
1414 }
1415 
1416 /*
1417  * Wake up any threads in the parent blocked in wait* syscalls.
1418  */
1419 static inline void __wake_up_parent(struct task_struct *p,
1420 				    struct task_struct *parent)
1421 {
1422 	wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1423 }
1424 
1425 /*
1426  * Let a parent know about the death of a child.
1427  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1428  */
1429 
1430 void do_notify_parent(struct task_struct *tsk, int sig)
1431 {
1432 	struct siginfo info;
1433 	unsigned long flags;
1434 	struct sighand_struct *psig;
1435 
1436 	BUG_ON(sig == -1);
1437 
1438  	/* do_notify_parent_cldstop should have been called instead.  */
1439  	BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1440 
1441 	BUG_ON(!tsk->ptrace &&
1442 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1443 
1444 	info.si_signo = sig;
1445 	info.si_errno = 0;
1446 	info.si_pid = tsk->pid;
1447 	info.si_uid = tsk->uid;
1448 
1449 	/* FIXME: find out whether or not this is supposed to be c*time. */
1450 	info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1451 						       tsk->signal->utime));
1452 	info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1453 						       tsk->signal->stime));
1454 
1455 	info.si_status = tsk->exit_code & 0x7f;
1456 	if (tsk->exit_code & 0x80)
1457 		info.si_code = CLD_DUMPED;
1458 	else if (tsk->exit_code & 0x7f)
1459 		info.si_code = CLD_KILLED;
1460 	else {
1461 		info.si_code = CLD_EXITED;
1462 		info.si_status = tsk->exit_code >> 8;
1463 	}
1464 
1465 	psig = tsk->parent->sighand;
1466 	spin_lock_irqsave(&psig->siglock, flags);
1467 	if (!tsk->ptrace && sig == SIGCHLD &&
1468 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1469 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1470 		/*
1471 		 * We are exiting and our parent doesn't care.  POSIX.1
1472 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1473 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1474 		 * automatically and not left for our parent's wait4 call.
1475 		 * Rather than having the parent do it as a magic kind of
1476 		 * signal handler, we just set this to tell do_exit that we
1477 		 * can be cleaned up without becoming a zombie.  Note that
1478 		 * we still call __wake_up_parent in this case, because a
1479 		 * blocked sys_wait4 might now return -ECHILD.
1480 		 *
1481 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1482 		 * is implementation-defined: we do (if you don't want
1483 		 * it, just use SIG_IGN instead).
1484 		 */
1485 		tsk->exit_signal = -1;
1486 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1487 			sig = 0;
1488 	}
1489 	if (valid_signal(sig) && sig > 0)
1490 		__group_send_sig_info(sig, &info, tsk->parent);
1491 	__wake_up_parent(tsk, tsk->parent);
1492 	spin_unlock_irqrestore(&psig->siglock, flags);
1493 }
1494 
1495 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1496 {
1497 	struct siginfo info;
1498 	unsigned long flags;
1499 	struct task_struct *parent;
1500 	struct sighand_struct *sighand;
1501 
1502 	if (tsk->ptrace & PT_PTRACED)
1503 		parent = tsk->parent;
1504 	else {
1505 		tsk = tsk->group_leader;
1506 		parent = tsk->real_parent;
1507 	}
1508 
1509 	info.si_signo = SIGCHLD;
1510 	info.si_errno = 0;
1511 	info.si_pid = tsk->pid;
1512 	info.si_uid = tsk->uid;
1513 
1514 	/* FIXME: find out whether or not this is supposed to be c*time. */
1515 	info.si_utime = cputime_to_jiffies(tsk->utime);
1516 	info.si_stime = cputime_to_jiffies(tsk->stime);
1517 
1518  	info.si_code = why;
1519  	switch (why) {
1520  	case CLD_CONTINUED:
1521  		info.si_status = SIGCONT;
1522  		break;
1523  	case CLD_STOPPED:
1524  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1525  		break;
1526  	case CLD_TRAPPED:
1527  		info.si_status = tsk->exit_code & 0x7f;
1528  		break;
1529  	default:
1530  		BUG();
1531  	}
1532 
1533 	sighand = parent->sighand;
1534 	spin_lock_irqsave(&sighand->siglock, flags);
1535 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1536 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1537 		__group_send_sig_info(SIGCHLD, &info, parent);
1538 	/*
1539 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1540 	 */
1541 	__wake_up_parent(tsk, parent);
1542 	spin_unlock_irqrestore(&sighand->siglock, flags);
1543 }
1544 
1545 static inline int may_ptrace_stop(void)
1546 {
1547 	if (!likely(current->ptrace & PT_PTRACED))
1548 		return 0;
1549 
1550 	if (unlikely(current->parent == current->real_parent &&
1551 		    (current->ptrace & PT_ATTACHED)))
1552 		return 0;
1553 
1554 	if (unlikely(current->signal == current->parent->signal) &&
1555 	    unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))
1556 		return 0;
1557 
1558 	/*
1559 	 * Are we in the middle of do_coredump?
1560 	 * If so and our tracer is also part of the coredump stopping
1561 	 * is a deadlock situation, and pointless because our tracer
1562 	 * is dead so don't allow us to stop.
1563 	 * If SIGKILL was already sent before the caller unlocked
1564 	 * ->siglock we must see ->core_waiters != 0. Otherwise it
1565 	 * is safe to enter schedule().
1566 	 */
1567 	if (unlikely(current->mm->core_waiters) &&
1568 	    unlikely(current->mm == current->parent->mm))
1569 		return 0;
1570 
1571 	return 1;
1572 }
1573 
1574 /*
1575  * This must be called with current->sighand->siglock held.
1576  *
1577  * This should be the path for all ptrace stops.
1578  * We always set current->last_siginfo while stopped here.
1579  * That makes it a way to test a stopped process for
1580  * being ptrace-stopped vs being job-control-stopped.
1581  *
1582  * If we actually decide not to stop at all because the tracer is gone,
1583  * we leave nostop_code in current->exit_code.
1584  */
1585 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1586 {
1587 	/*
1588 	 * If there is a group stop in progress,
1589 	 * we must participate in the bookkeeping.
1590 	 */
1591 	if (current->signal->group_stop_count > 0)
1592 		--current->signal->group_stop_count;
1593 
1594 	current->last_siginfo = info;
1595 	current->exit_code = exit_code;
1596 
1597 	/* Let the debugger run.  */
1598 	set_current_state(TASK_TRACED);
1599 	spin_unlock_irq(&current->sighand->siglock);
1600 	try_to_freeze();
1601 	read_lock(&tasklist_lock);
1602 	if (may_ptrace_stop()) {
1603 		do_notify_parent_cldstop(current, CLD_TRAPPED);
1604 		read_unlock(&tasklist_lock);
1605 		schedule();
1606 	} else {
1607 		/*
1608 		 * By the time we got the lock, our tracer went away.
1609 		 * Don't stop here.
1610 		 */
1611 		read_unlock(&tasklist_lock);
1612 		set_current_state(TASK_RUNNING);
1613 		current->exit_code = nostop_code;
1614 	}
1615 
1616 	/*
1617 	 * We are back.  Now reacquire the siglock before touching
1618 	 * last_siginfo, so that we are sure to have synchronized with
1619 	 * any signal-sending on another CPU that wants to examine it.
1620 	 */
1621 	spin_lock_irq(&current->sighand->siglock);
1622 	current->last_siginfo = NULL;
1623 
1624 	/*
1625 	 * Queued signals ignored us while we were stopped for tracing.
1626 	 * So check for any that we should take before resuming user mode.
1627 	 * This sets TIF_SIGPENDING, but never clears it.
1628 	 */
1629 	recalc_sigpending_tsk(current);
1630 }
1631 
1632 void ptrace_notify(int exit_code)
1633 {
1634 	siginfo_t info;
1635 
1636 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1637 
1638 	memset(&info, 0, sizeof info);
1639 	info.si_signo = SIGTRAP;
1640 	info.si_code = exit_code;
1641 	info.si_pid = current->pid;
1642 	info.si_uid = current->uid;
1643 
1644 	/* Let the debugger run.  */
1645 	spin_lock_irq(&current->sighand->siglock);
1646 	ptrace_stop(exit_code, 0, &info);
1647 	spin_unlock_irq(&current->sighand->siglock);
1648 }
1649 
1650 static void
1651 finish_stop(int stop_count)
1652 {
1653 	/*
1654 	 * If there are no other threads in the group, or if there is
1655 	 * a group stop in progress and we are the last to stop,
1656 	 * report to the parent.  When ptraced, every thread reports itself.
1657 	 */
1658 	if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1659 		read_lock(&tasklist_lock);
1660 		do_notify_parent_cldstop(current, CLD_STOPPED);
1661 		read_unlock(&tasklist_lock);
1662 	}
1663 
1664 	do {
1665 		schedule();
1666 	} while (try_to_freeze());
1667 	/*
1668 	 * Now we don't run again until continued.
1669 	 */
1670 	current->exit_code = 0;
1671 }
1672 
1673 /*
1674  * This performs the stopping for SIGSTOP and other stop signals.
1675  * We have to stop all threads in the thread group.
1676  * Returns nonzero if we've actually stopped and released the siglock.
1677  * Returns zero if we didn't stop and still hold the siglock.
1678  */
1679 static int do_signal_stop(int signr)
1680 {
1681 	struct signal_struct *sig = current->signal;
1682 	int stop_count;
1683 
1684 	if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1685 		return 0;
1686 
1687 	if (sig->group_stop_count > 0) {
1688 		/*
1689 		 * There is a group stop in progress.  We don't need to
1690 		 * start another one.
1691 		 */
1692 		stop_count = --sig->group_stop_count;
1693 	} else {
1694 		/*
1695 		 * There is no group stop already in progress.
1696 		 * We must initiate one now.
1697 		 */
1698 		struct task_struct *t;
1699 
1700 		sig->group_exit_code = signr;
1701 
1702 		stop_count = 0;
1703 		for (t = next_thread(current); t != current; t = next_thread(t))
1704 			/*
1705 			 * Setting state to TASK_STOPPED for a group
1706 			 * stop is always done with the siglock held,
1707 			 * so this check has no races.
1708 			 */
1709 			if (!t->exit_state &&
1710 			    !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1711 				stop_count++;
1712 				signal_wake_up(t, 0);
1713 			}
1714 		sig->group_stop_count = stop_count;
1715 	}
1716 
1717 	if (stop_count == 0)
1718 		sig->flags = SIGNAL_STOP_STOPPED;
1719 	current->exit_code = sig->group_exit_code;
1720 	__set_current_state(TASK_STOPPED);
1721 
1722 	spin_unlock_irq(&current->sighand->siglock);
1723 	finish_stop(stop_count);
1724 	return 1;
1725 }
1726 
1727 /*
1728  * Do appropriate magic when group_stop_count > 0.
1729  * We return nonzero if we stopped, after releasing the siglock.
1730  * We return zero if we still hold the siglock and should look
1731  * for another signal without checking group_stop_count again.
1732  */
1733 static int handle_group_stop(void)
1734 {
1735 	int stop_count;
1736 
1737 	if (current->signal->group_exit_task == current) {
1738 		/*
1739 		 * Group stop is so we can do a core dump,
1740 		 * We are the initiating thread, so get on with it.
1741 		 */
1742 		current->signal->group_exit_task = NULL;
1743 		return 0;
1744 	}
1745 
1746 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
1747 		/*
1748 		 * Group stop is so another thread can do a core dump,
1749 		 * or else we are racing against a death signal.
1750 		 * Just punt the stop so we can get the next signal.
1751 		 */
1752 		return 0;
1753 
1754 	/*
1755 	 * There is a group stop in progress.  We stop
1756 	 * without any associated signal being in our queue.
1757 	 */
1758 	stop_count = --current->signal->group_stop_count;
1759 	if (stop_count == 0)
1760 		current->signal->flags = SIGNAL_STOP_STOPPED;
1761 	current->exit_code = current->signal->group_exit_code;
1762 	set_current_state(TASK_STOPPED);
1763 	spin_unlock_irq(&current->sighand->siglock);
1764 	finish_stop(stop_count);
1765 	return 1;
1766 }
1767 
1768 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1769 			  struct pt_regs *regs, void *cookie)
1770 {
1771 	sigset_t *mask = &current->blocked;
1772 	int signr = 0;
1773 
1774 	try_to_freeze();
1775 
1776 relock:
1777 	spin_lock_irq(&current->sighand->siglock);
1778 	for (;;) {
1779 		struct k_sigaction *ka;
1780 
1781 		if (unlikely(current->signal->group_stop_count > 0) &&
1782 		    handle_group_stop())
1783 			goto relock;
1784 
1785 		signr = dequeue_signal(current, mask, info);
1786 
1787 		if (!signr)
1788 			break; /* will return 0 */
1789 
1790 		if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1791 			ptrace_signal_deliver(regs, cookie);
1792 
1793 			/* Let the debugger run.  */
1794 			ptrace_stop(signr, signr, info);
1795 
1796 			/* We're back.  Did the debugger cancel the sig?  */
1797 			signr = current->exit_code;
1798 			if (signr == 0)
1799 				continue;
1800 
1801 			current->exit_code = 0;
1802 
1803 			/* Update the siginfo structure if the signal has
1804 			   changed.  If the debugger wanted something
1805 			   specific in the siginfo structure then it should
1806 			   have updated *info via PTRACE_SETSIGINFO.  */
1807 			if (signr != info->si_signo) {
1808 				info->si_signo = signr;
1809 				info->si_errno = 0;
1810 				info->si_code = SI_USER;
1811 				info->si_pid = current->parent->pid;
1812 				info->si_uid = current->parent->uid;
1813 			}
1814 
1815 			/* If the (new) signal is now blocked, requeue it.  */
1816 			if (sigismember(&current->blocked, signr)) {
1817 				specific_send_sig_info(signr, info, current);
1818 				continue;
1819 			}
1820 		}
1821 
1822 		ka = &current->sighand->action[signr-1];
1823 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
1824 			continue;
1825 		if (ka->sa.sa_handler != SIG_DFL) {
1826 			/* Run the handler.  */
1827 			*return_ka = *ka;
1828 
1829 			if (ka->sa.sa_flags & SA_ONESHOT)
1830 				ka->sa.sa_handler = SIG_DFL;
1831 
1832 			break; /* will return non-zero "signr" value */
1833 		}
1834 
1835 		/*
1836 		 * Now we are doing the default action for this signal.
1837 		 */
1838 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
1839 			continue;
1840 
1841 		/*
1842 		 * Init of a pid space gets no signals it doesn't want from
1843 		 * within that pid space. It can of course get signals from
1844 		 * its parent pid space.
1845 		 */
1846 		if (current == child_reaper(current))
1847 			continue;
1848 
1849 		if (sig_kernel_stop(signr)) {
1850 			/*
1851 			 * The default action is to stop all threads in
1852 			 * the thread group.  The job control signals
1853 			 * do nothing in an orphaned pgrp, but SIGSTOP
1854 			 * always works.  Note that siglock needs to be
1855 			 * dropped during the call to is_orphaned_pgrp()
1856 			 * because of lock ordering with tasklist_lock.
1857 			 * This allows an intervening SIGCONT to be posted.
1858 			 * We need to check for that and bail out if necessary.
1859 			 */
1860 			if (signr != SIGSTOP) {
1861 				spin_unlock_irq(&current->sighand->siglock);
1862 
1863 				/* signals can be posted during this window */
1864 
1865 				if (is_current_pgrp_orphaned())
1866 					goto relock;
1867 
1868 				spin_lock_irq(&current->sighand->siglock);
1869 			}
1870 
1871 			if (likely(do_signal_stop(signr))) {
1872 				/* It released the siglock.  */
1873 				goto relock;
1874 			}
1875 
1876 			/*
1877 			 * We didn't actually stop, due to a race
1878 			 * with SIGCONT or something like that.
1879 			 */
1880 			continue;
1881 		}
1882 
1883 		spin_unlock_irq(&current->sighand->siglock);
1884 
1885 		/*
1886 		 * Anything else is fatal, maybe with a core dump.
1887 		 */
1888 		current->flags |= PF_SIGNALED;
1889 		if ((signr != SIGKILL) && print_fatal_signals)
1890 			print_fatal_signal(regs, signr);
1891 		if (sig_kernel_coredump(signr)) {
1892 			/*
1893 			 * If it was able to dump core, this kills all
1894 			 * other threads in the group and synchronizes with
1895 			 * their demise.  If we lost the race with another
1896 			 * thread getting here, it set group_exit_code
1897 			 * first and our do_group_exit call below will use
1898 			 * that value and ignore the one we pass it.
1899 			 */
1900 			do_coredump((long)signr, signr, regs);
1901 		}
1902 
1903 		/*
1904 		 * Death signals, no core dump.
1905 		 */
1906 		do_group_exit(signr);
1907 		/* NOTREACHED */
1908 	}
1909 	spin_unlock_irq(&current->sighand->siglock);
1910 	return signr;
1911 }
1912 
1913 EXPORT_SYMBOL(recalc_sigpending);
1914 EXPORT_SYMBOL_GPL(dequeue_signal);
1915 EXPORT_SYMBOL(flush_signals);
1916 EXPORT_SYMBOL(force_sig);
1917 EXPORT_SYMBOL(kill_proc);
1918 EXPORT_SYMBOL(ptrace_notify);
1919 EXPORT_SYMBOL(send_sig);
1920 EXPORT_SYMBOL(send_sig_info);
1921 EXPORT_SYMBOL(sigprocmask);
1922 EXPORT_SYMBOL(block_all_signals);
1923 EXPORT_SYMBOL(unblock_all_signals);
1924 
1925 
1926 /*
1927  * System call entry points.
1928  */
1929 
1930 asmlinkage long sys_restart_syscall(void)
1931 {
1932 	struct restart_block *restart = &current_thread_info()->restart_block;
1933 	return restart->fn(restart);
1934 }
1935 
1936 long do_no_restart_syscall(struct restart_block *param)
1937 {
1938 	return -EINTR;
1939 }
1940 
1941 /*
1942  * We don't need to get the kernel lock - this is all local to this
1943  * particular thread.. (and that's good, because this is _heavily_
1944  * used by various programs)
1945  */
1946 
1947 /*
1948  * This is also useful for kernel threads that want to temporarily
1949  * (or permanently) block certain signals.
1950  *
1951  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1952  * interface happily blocks "unblockable" signals like SIGKILL
1953  * and friends.
1954  */
1955 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1956 {
1957 	int error;
1958 
1959 	spin_lock_irq(&current->sighand->siglock);
1960 	if (oldset)
1961 		*oldset = current->blocked;
1962 
1963 	error = 0;
1964 	switch (how) {
1965 	case SIG_BLOCK:
1966 		sigorsets(&current->blocked, &current->blocked, set);
1967 		break;
1968 	case SIG_UNBLOCK:
1969 		signandsets(&current->blocked, &current->blocked, set);
1970 		break;
1971 	case SIG_SETMASK:
1972 		current->blocked = *set;
1973 		break;
1974 	default:
1975 		error = -EINVAL;
1976 	}
1977 	recalc_sigpending();
1978 	spin_unlock_irq(&current->sighand->siglock);
1979 
1980 	return error;
1981 }
1982 
1983 asmlinkage long
1984 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1985 {
1986 	int error = -EINVAL;
1987 	sigset_t old_set, new_set;
1988 
1989 	/* XXX: Don't preclude handling different sized sigset_t's.  */
1990 	if (sigsetsize != sizeof(sigset_t))
1991 		goto out;
1992 
1993 	if (set) {
1994 		error = -EFAULT;
1995 		if (copy_from_user(&new_set, set, sizeof(*set)))
1996 			goto out;
1997 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1998 
1999 		error = sigprocmask(how, &new_set, &old_set);
2000 		if (error)
2001 			goto out;
2002 		if (oset)
2003 			goto set_old;
2004 	} else if (oset) {
2005 		spin_lock_irq(&current->sighand->siglock);
2006 		old_set = current->blocked;
2007 		spin_unlock_irq(&current->sighand->siglock);
2008 
2009 	set_old:
2010 		error = -EFAULT;
2011 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2012 			goto out;
2013 	}
2014 	error = 0;
2015 out:
2016 	return error;
2017 }
2018 
2019 long do_sigpending(void __user *set, unsigned long sigsetsize)
2020 {
2021 	long error = -EINVAL;
2022 	sigset_t pending;
2023 
2024 	if (sigsetsize > sizeof(sigset_t))
2025 		goto out;
2026 
2027 	spin_lock_irq(&current->sighand->siglock);
2028 	sigorsets(&pending, &current->pending.signal,
2029 		  &current->signal->shared_pending.signal);
2030 	spin_unlock_irq(&current->sighand->siglock);
2031 
2032 	/* Outside the lock because only this thread touches it.  */
2033 	sigandsets(&pending, &current->blocked, &pending);
2034 
2035 	error = -EFAULT;
2036 	if (!copy_to_user(set, &pending, sigsetsize))
2037 		error = 0;
2038 
2039 out:
2040 	return error;
2041 }
2042 
2043 asmlinkage long
2044 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2045 {
2046 	return do_sigpending(set, sigsetsize);
2047 }
2048 
2049 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2050 
2051 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2052 {
2053 	int err;
2054 
2055 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2056 		return -EFAULT;
2057 	if (from->si_code < 0)
2058 		return __copy_to_user(to, from, sizeof(siginfo_t))
2059 			? -EFAULT : 0;
2060 	/*
2061 	 * If you change siginfo_t structure, please be sure
2062 	 * this code is fixed accordingly.
2063 	 * Please remember to update the signalfd_copyinfo() function
2064 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2065 	 * It should never copy any pad contained in the structure
2066 	 * to avoid security leaks, but must copy the generic
2067 	 * 3 ints plus the relevant union member.
2068 	 */
2069 	err = __put_user(from->si_signo, &to->si_signo);
2070 	err |= __put_user(from->si_errno, &to->si_errno);
2071 	err |= __put_user((short)from->si_code, &to->si_code);
2072 	switch (from->si_code & __SI_MASK) {
2073 	case __SI_KILL:
2074 		err |= __put_user(from->si_pid, &to->si_pid);
2075 		err |= __put_user(from->si_uid, &to->si_uid);
2076 		break;
2077 	case __SI_TIMER:
2078 		 err |= __put_user(from->si_tid, &to->si_tid);
2079 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2080 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2081 		break;
2082 	case __SI_POLL:
2083 		err |= __put_user(from->si_band, &to->si_band);
2084 		err |= __put_user(from->si_fd, &to->si_fd);
2085 		break;
2086 	case __SI_FAULT:
2087 		err |= __put_user(from->si_addr, &to->si_addr);
2088 #ifdef __ARCH_SI_TRAPNO
2089 		err |= __put_user(from->si_trapno, &to->si_trapno);
2090 #endif
2091 		break;
2092 	case __SI_CHLD:
2093 		err |= __put_user(from->si_pid, &to->si_pid);
2094 		err |= __put_user(from->si_uid, &to->si_uid);
2095 		err |= __put_user(from->si_status, &to->si_status);
2096 		err |= __put_user(from->si_utime, &to->si_utime);
2097 		err |= __put_user(from->si_stime, &to->si_stime);
2098 		break;
2099 	case __SI_RT: /* This is not generated by the kernel as of now. */
2100 	case __SI_MESGQ: /* But this is */
2101 		err |= __put_user(from->si_pid, &to->si_pid);
2102 		err |= __put_user(from->si_uid, &to->si_uid);
2103 		err |= __put_user(from->si_ptr, &to->si_ptr);
2104 		break;
2105 	default: /* this is just in case for now ... */
2106 		err |= __put_user(from->si_pid, &to->si_pid);
2107 		err |= __put_user(from->si_uid, &to->si_uid);
2108 		break;
2109 	}
2110 	return err;
2111 }
2112 
2113 #endif
2114 
2115 asmlinkage long
2116 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2117 		    siginfo_t __user *uinfo,
2118 		    const struct timespec __user *uts,
2119 		    size_t sigsetsize)
2120 {
2121 	int ret, sig;
2122 	sigset_t these;
2123 	struct timespec ts;
2124 	siginfo_t info;
2125 	long timeout = 0;
2126 
2127 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2128 	if (sigsetsize != sizeof(sigset_t))
2129 		return -EINVAL;
2130 
2131 	if (copy_from_user(&these, uthese, sizeof(these)))
2132 		return -EFAULT;
2133 
2134 	/*
2135 	 * Invert the set of allowed signals to get those we
2136 	 * want to block.
2137 	 */
2138 	sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2139 	signotset(&these);
2140 
2141 	if (uts) {
2142 		if (copy_from_user(&ts, uts, sizeof(ts)))
2143 			return -EFAULT;
2144 		if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2145 		    || ts.tv_sec < 0)
2146 			return -EINVAL;
2147 	}
2148 
2149 	spin_lock_irq(&current->sighand->siglock);
2150 	sig = dequeue_signal(current, &these, &info);
2151 	if (!sig) {
2152 		timeout = MAX_SCHEDULE_TIMEOUT;
2153 		if (uts)
2154 			timeout = (timespec_to_jiffies(&ts)
2155 				   + (ts.tv_sec || ts.tv_nsec));
2156 
2157 		if (timeout) {
2158 			/* None ready -- temporarily unblock those we're
2159 			 * interested while we are sleeping in so that we'll
2160 			 * be awakened when they arrive.  */
2161 			current->real_blocked = current->blocked;
2162 			sigandsets(&current->blocked, &current->blocked, &these);
2163 			recalc_sigpending();
2164 			spin_unlock_irq(&current->sighand->siglock);
2165 
2166 			timeout = schedule_timeout_interruptible(timeout);
2167 
2168 			spin_lock_irq(&current->sighand->siglock);
2169 			sig = dequeue_signal(current, &these, &info);
2170 			current->blocked = current->real_blocked;
2171 			siginitset(&current->real_blocked, 0);
2172 			recalc_sigpending();
2173 		}
2174 	}
2175 	spin_unlock_irq(&current->sighand->siglock);
2176 
2177 	if (sig) {
2178 		ret = sig;
2179 		if (uinfo) {
2180 			if (copy_siginfo_to_user(uinfo, &info))
2181 				ret = -EFAULT;
2182 		}
2183 	} else {
2184 		ret = -EAGAIN;
2185 		if (timeout)
2186 			ret = -EINTR;
2187 	}
2188 
2189 	return ret;
2190 }
2191 
2192 asmlinkage long
2193 sys_kill(int pid, int sig)
2194 {
2195 	struct siginfo info;
2196 
2197 	info.si_signo = sig;
2198 	info.si_errno = 0;
2199 	info.si_code = SI_USER;
2200 	info.si_pid = current->tgid;
2201 	info.si_uid = current->uid;
2202 
2203 	return kill_something_info(sig, &info, pid);
2204 }
2205 
2206 static int do_tkill(int tgid, int pid, int sig)
2207 {
2208 	int error;
2209 	struct siginfo info;
2210 	struct task_struct *p;
2211 
2212 	error = -ESRCH;
2213 	info.si_signo = sig;
2214 	info.si_errno = 0;
2215 	info.si_code = SI_TKILL;
2216 	info.si_pid = current->tgid;
2217 	info.si_uid = current->uid;
2218 
2219 	read_lock(&tasklist_lock);
2220 	p = find_task_by_pid(pid);
2221 	if (p && (tgid <= 0 || p->tgid == tgid)) {
2222 		error = check_kill_permission(sig, &info, p);
2223 		/*
2224 		 * The null signal is a permissions and process existence
2225 		 * probe.  No signal is actually delivered.
2226 		 */
2227 		if (!error && sig && p->sighand) {
2228 			spin_lock_irq(&p->sighand->siglock);
2229 			handle_stop_signal(sig, p);
2230 			error = specific_send_sig_info(sig, &info, p);
2231 			spin_unlock_irq(&p->sighand->siglock);
2232 		}
2233 	}
2234 	read_unlock(&tasklist_lock);
2235 
2236 	return error;
2237 }
2238 
2239 /**
2240  *  sys_tgkill - send signal to one specific thread
2241  *  @tgid: the thread group ID of the thread
2242  *  @pid: the PID of the thread
2243  *  @sig: signal to be sent
2244  *
2245  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2246  *  exists but it's not belonging to the target process anymore. This
2247  *  method solves the problem of threads exiting and PIDs getting reused.
2248  */
2249 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2250 {
2251 	/* This is only valid for single tasks */
2252 	if (pid <= 0 || tgid <= 0)
2253 		return -EINVAL;
2254 
2255 	return do_tkill(tgid, pid, sig);
2256 }
2257 
2258 /*
2259  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2260  */
2261 asmlinkage long
2262 sys_tkill(int pid, int sig)
2263 {
2264 	/* This is only valid for single tasks */
2265 	if (pid <= 0)
2266 		return -EINVAL;
2267 
2268 	return do_tkill(0, pid, sig);
2269 }
2270 
2271 asmlinkage long
2272 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2273 {
2274 	siginfo_t info;
2275 
2276 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2277 		return -EFAULT;
2278 
2279 	/* Not even root can pretend to send signals from the kernel.
2280 	   Nor can they impersonate a kill(), which adds source info.  */
2281 	if (info.si_code >= 0)
2282 		return -EPERM;
2283 	info.si_signo = sig;
2284 
2285 	/* POSIX.1b doesn't mention process groups.  */
2286 	return kill_proc_info(sig, &info, pid);
2287 }
2288 
2289 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2290 {
2291 	struct k_sigaction *k;
2292 	sigset_t mask;
2293 
2294 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2295 		return -EINVAL;
2296 
2297 	k = &current->sighand->action[sig-1];
2298 
2299 	spin_lock_irq(&current->sighand->siglock);
2300 	if (signal_pending(current)) {
2301 		/*
2302 		 * If there might be a fatal signal pending on multiple
2303 		 * threads, make sure we take it before changing the action.
2304 		 */
2305 		spin_unlock_irq(&current->sighand->siglock);
2306 		return -ERESTARTNOINTR;
2307 	}
2308 
2309 	if (oact)
2310 		*oact = *k;
2311 
2312 	if (act) {
2313 		sigdelsetmask(&act->sa.sa_mask,
2314 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2315 		*k = *act;
2316 		/*
2317 		 * POSIX 3.3.1.3:
2318 		 *  "Setting a signal action to SIG_IGN for a signal that is
2319 		 *   pending shall cause the pending signal to be discarded,
2320 		 *   whether or not it is blocked."
2321 		 *
2322 		 *  "Setting a signal action to SIG_DFL for a signal that is
2323 		 *   pending and whose default action is to ignore the signal
2324 		 *   (for example, SIGCHLD), shall cause the pending signal to
2325 		 *   be discarded, whether or not it is blocked"
2326 		 */
2327 		if (act->sa.sa_handler == SIG_IGN ||
2328 		   (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2329 			struct task_struct *t = current;
2330 			sigemptyset(&mask);
2331 			sigaddset(&mask, sig);
2332 			rm_from_queue_full(&mask, &t->signal->shared_pending);
2333 			do {
2334 				rm_from_queue_full(&mask, &t->pending);
2335 				recalc_sigpending_and_wake(t);
2336 				t = next_thread(t);
2337 			} while (t != current);
2338 		}
2339 	}
2340 
2341 	spin_unlock_irq(&current->sighand->siglock);
2342 	return 0;
2343 }
2344 
2345 int
2346 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2347 {
2348 	stack_t oss;
2349 	int error;
2350 
2351 	if (uoss) {
2352 		oss.ss_sp = (void __user *) current->sas_ss_sp;
2353 		oss.ss_size = current->sas_ss_size;
2354 		oss.ss_flags = sas_ss_flags(sp);
2355 	}
2356 
2357 	if (uss) {
2358 		void __user *ss_sp;
2359 		size_t ss_size;
2360 		int ss_flags;
2361 
2362 		error = -EFAULT;
2363 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2364 		    || __get_user(ss_sp, &uss->ss_sp)
2365 		    || __get_user(ss_flags, &uss->ss_flags)
2366 		    || __get_user(ss_size, &uss->ss_size))
2367 			goto out;
2368 
2369 		error = -EPERM;
2370 		if (on_sig_stack(sp))
2371 			goto out;
2372 
2373 		error = -EINVAL;
2374 		/*
2375 		 *
2376 		 * Note - this code used to test ss_flags incorrectly
2377 		 *  	  old code may have been written using ss_flags==0
2378 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2379 		 *	  way that worked) - this fix preserves that older
2380 		 *	  mechanism
2381 		 */
2382 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2383 			goto out;
2384 
2385 		if (ss_flags == SS_DISABLE) {
2386 			ss_size = 0;
2387 			ss_sp = NULL;
2388 		} else {
2389 			error = -ENOMEM;
2390 			if (ss_size < MINSIGSTKSZ)
2391 				goto out;
2392 		}
2393 
2394 		current->sas_ss_sp = (unsigned long) ss_sp;
2395 		current->sas_ss_size = ss_size;
2396 	}
2397 
2398 	if (uoss) {
2399 		error = -EFAULT;
2400 		if (copy_to_user(uoss, &oss, sizeof(oss)))
2401 			goto out;
2402 	}
2403 
2404 	error = 0;
2405 out:
2406 	return error;
2407 }
2408 
2409 #ifdef __ARCH_WANT_SYS_SIGPENDING
2410 
2411 asmlinkage long
2412 sys_sigpending(old_sigset_t __user *set)
2413 {
2414 	return do_sigpending(set, sizeof(*set));
2415 }
2416 
2417 #endif
2418 
2419 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2420 /* Some platforms have their own version with special arguments others
2421    support only sys_rt_sigprocmask.  */
2422 
2423 asmlinkage long
2424 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2425 {
2426 	int error;
2427 	old_sigset_t old_set, new_set;
2428 
2429 	if (set) {
2430 		error = -EFAULT;
2431 		if (copy_from_user(&new_set, set, sizeof(*set)))
2432 			goto out;
2433 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2434 
2435 		spin_lock_irq(&current->sighand->siglock);
2436 		old_set = current->blocked.sig[0];
2437 
2438 		error = 0;
2439 		switch (how) {
2440 		default:
2441 			error = -EINVAL;
2442 			break;
2443 		case SIG_BLOCK:
2444 			sigaddsetmask(&current->blocked, new_set);
2445 			break;
2446 		case SIG_UNBLOCK:
2447 			sigdelsetmask(&current->blocked, new_set);
2448 			break;
2449 		case SIG_SETMASK:
2450 			current->blocked.sig[0] = new_set;
2451 			break;
2452 		}
2453 
2454 		recalc_sigpending();
2455 		spin_unlock_irq(&current->sighand->siglock);
2456 		if (error)
2457 			goto out;
2458 		if (oset)
2459 			goto set_old;
2460 	} else if (oset) {
2461 		old_set = current->blocked.sig[0];
2462 	set_old:
2463 		error = -EFAULT;
2464 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2465 			goto out;
2466 	}
2467 	error = 0;
2468 out:
2469 	return error;
2470 }
2471 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2472 
2473 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2474 asmlinkage long
2475 sys_rt_sigaction(int sig,
2476 		 const struct sigaction __user *act,
2477 		 struct sigaction __user *oact,
2478 		 size_t sigsetsize)
2479 {
2480 	struct k_sigaction new_sa, old_sa;
2481 	int ret = -EINVAL;
2482 
2483 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2484 	if (sigsetsize != sizeof(sigset_t))
2485 		goto out;
2486 
2487 	if (act) {
2488 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2489 			return -EFAULT;
2490 	}
2491 
2492 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2493 
2494 	if (!ret && oact) {
2495 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2496 			return -EFAULT;
2497 	}
2498 out:
2499 	return ret;
2500 }
2501 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2502 
2503 #ifdef __ARCH_WANT_SYS_SGETMASK
2504 
2505 /*
2506  * For backwards compatibility.  Functionality superseded by sigprocmask.
2507  */
2508 asmlinkage long
2509 sys_sgetmask(void)
2510 {
2511 	/* SMP safe */
2512 	return current->blocked.sig[0];
2513 }
2514 
2515 asmlinkage long
2516 sys_ssetmask(int newmask)
2517 {
2518 	int old;
2519 
2520 	spin_lock_irq(&current->sighand->siglock);
2521 	old = current->blocked.sig[0];
2522 
2523 	siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2524 						  sigmask(SIGSTOP)));
2525 	recalc_sigpending();
2526 	spin_unlock_irq(&current->sighand->siglock);
2527 
2528 	return old;
2529 }
2530 #endif /* __ARCH_WANT_SGETMASK */
2531 
2532 #ifdef __ARCH_WANT_SYS_SIGNAL
2533 /*
2534  * For backwards compatibility.  Functionality superseded by sigaction.
2535  */
2536 asmlinkage unsigned long
2537 sys_signal(int sig, __sighandler_t handler)
2538 {
2539 	struct k_sigaction new_sa, old_sa;
2540 	int ret;
2541 
2542 	new_sa.sa.sa_handler = handler;
2543 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2544 	sigemptyset(&new_sa.sa.sa_mask);
2545 
2546 	ret = do_sigaction(sig, &new_sa, &old_sa);
2547 
2548 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2549 }
2550 #endif /* __ARCH_WANT_SYS_SIGNAL */
2551 
2552 #ifdef __ARCH_WANT_SYS_PAUSE
2553 
2554 asmlinkage long
2555 sys_pause(void)
2556 {
2557 	current->state = TASK_INTERRUPTIBLE;
2558 	schedule();
2559 	return -ERESTARTNOHAND;
2560 }
2561 
2562 #endif
2563 
2564 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2565 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2566 {
2567 	sigset_t newset;
2568 
2569 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2570 	if (sigsetsize != sizeof(sigset_t))
2571 		return -EINVAL;
2572 
2573 	if (copy_from_user(&newset, unewset, sizeof(newset)))
2574 		return -EFAULT;
2575 	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2576 
2577 	spin_lock_irq(&current->sighand->siglock);
2578 	current->saved_sigmask = current->blocked;
2579 	current->blocked = newset;
2580 	recalc_sigpending();
2581 	spin_unlock_irq(&current->sighand->siglock);
2582 
2583 	current->state = TASK_INTERRUPTIBLE;
2584 	schedule();
2585 	set_thread_flag(TIF_RESTORE_SIGMASK);
2586 	return -ERESTARTNOHAND;
2587 }
2588 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2589 
2590 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2591 {
2592 	return NULL;
2593 }
2594 
2595 void __init signals_init(void)
2596 {
2597 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2598 }
2599