xref: /openbmc/linux/kernel/signal.c (revision 8b030a57)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/fs.h>
23 #include <linux/tty.h>
24 #include <linux/binfmts.h>
25 #include <linux/coredump.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/ptrace.h>
29 #include <linux/signal.h>
30 #include <linux/signalfd.h>
31 #include <linux/ratelimit.h>
32 #include <linux/tracehook.h>
33 #include <linux/capability.h>
34 #include <linux/freezer.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/nsproxy.h>
37 #include <linux/user_namespace.h>
38 #include <linux/uprobes.h>
39 #include <linux/compat.h>
40 #include <linux/cn_proc.h>
41 #include <linux/compiler.h>
42 #include <linux/posix-timers.h>
43 #include <linux/livepatch.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/signal.h>
47 
48 #include <asm/param.h>
49 #include <linux/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/siginfo.h>
52 #include <asm/cacheflush.h>
53 #include "audit.h"	/* audit_signal_info() */
54 
55 /*
56  * SLAB caches for signal bits.
57  */
58 
59 static struct kmem_cache *sigqueue_cachep;
60 
61 int print_fatal_signals __read_mostly;
62 
63 static void __user *sig_handler(struct task_struct *t, int sig)
64 {
65 	return t->sighand->action[sig - 1].sa.sa_handler;
66 }
67 
68 static inline bool sig_handler_ignored(void __user *handler, int sig)
69 {
70 	/* Is it explicitly or implicitly ignored? */
71 	return handler == SIG_IGN ||
72 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
73 }
74 
75 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
76 {
77 	void __user *handler;
78 
79 	handler = sig_handler(t, sig);
80 
81 	/* SIGKILL and SIGSTOP may not be sent to the global init */
82 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
83 		return true;
84 
85 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
86 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
87 		return true;
88 
89 	return sig_handler_ignored(handler, sig);
90 }
91 
92 static bool sig_ignored(struct task_struct *t, int sig, bool force)
93 {
94 	/*
95 	 * Blocked signals are never ignored, since the
96 	 * signal handler may change by the time it is
97 	 * unblocked.
98 	 */
99 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
100 		return false;
101 
102 	/*
103 	 * Tracers may want to know about even ignored signal unless it
104 	 * is SIGKILL which can't be reported anyway but can be ignored
105 	 * by SIGNAL_UNKILLABLE task.
106 	 */
107 	if (t->ptrace && sig != SIGKILL)
108 		return false;
109 
110 	return sig_task_ignored(t, sig, force);
111 }
112 
113 /*
114  * Re-calculate pending state from the set of locally pending
115  * signals, globally pending signals, and blocked signals.
116  */
117 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
118 {
119 	unsigned long ready;
120 	long i;
121 
122 	switch (_NSIG_WORDS) {
123 	default:
124 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
125 			ready |= signal->sig[i] &~ blocked->sig[i];
126 		break;
127 
128 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
129 		ready |= signal->sig[2] &~ blocked->sig[2];
130 		ready |= signal->sig[1] &~ blocked->sig[1];
131 		ready |= signal->sig[0] &~ blocked->sig[0];
132 		break;
133 
134 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
135 		ready |= signal->sig[0] &~ blocked->sig[0];
136 		break;
137 
138 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
139 	}
140 	return ready !=	0;
141 }
142 
143 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
144 
145 static bool recalc_sigpending_tsk(struct task_struct *t)
146 {
147 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
148 	    PENDING(&t->pending, &t->blocked) ||
149 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
150 		set_tsk_thread_flag(t, TIF_SIGPENDING);
151 		return true;
152 	}
153 
154 	/*
155 	 * We must never clear the flag in another thread, or in current
156 	 * when it's possible the current syscall is returning -ERESTART*.
157 	 * So we don't clear it here, and only callers who know they should do.
158 	 */
159 	return false;
160 }
161 
162 /*
163  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
164  * This is superfluous when called on current, the wakeup is a harmless no-op.
165  */
166 void recalc_sigpending_and_wake(struct task_struct *t)
167 {
168 	if (recalc_sigpending_tsk(t))
169 		signal_wake_up(t, 0);
170 }
171 
172 void recalc_sigpending(void)
173 {
174 	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
175 	    !klp_patch_pending(current))
176 		clear_thread_flag(TIF_SIGPENDING);
177 
178 }
179 EXPORT_SYMBOL(recalc_sigpending);
180 
181 void calculate_sigpending(void)
182 {
183 	/* Have any signals or users of TIF_SIGPENDING been delayed
184 	 * until after fork?
185 	 */
186 	spin_lock_irq(&current->sighand->siglock);
187 	set_tsk_thread_flag(current, TIF_SIGPENDING);
188 	recalc_sigpending();
189 	spin_unlock_irq(&current->sighand->siglock);
190 }
191 
192 /* Given the mask, find the first available signal that should be serviced. */
193 
194 #define SYNCHRONOUS_MASK \
195 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
196 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
197 
198 int next_signal(struct sigpending *pending, sigset_t *mask)
199 {
200 	unsigned long i, *s, *m, x;
201 	int sig = 0;
202 
203 	s = pending->signal.sig;
204 	m = mask->sig;
205 
206 	/*
207 	 * Handle the first word specially: it contains the
208 	 * synchronous signals that need to be dequeued first.
209 	 */
210 	x = *s &~ *m;
211 	if (x) {
212 		if (x & SYNCHRONOUS_MASK)
213 			x &= SYNCHRONOUS_MASK;
214 		sig = ffz(~x) + 1;
215 		return sig;
216 	}
217 
218 	switch (_NSIG_WORDS) {
219 	default:
220 		for (i = 1; i < _NSIG_WORDS; ++i) {
221 			x = *++s &~ *++m;
222 			if (!x)
223 				continue;
224 			sig = ffz(~x) + i*_NSIG_BPW + 1;
225 			break;
226 		}
227 		break;
228 
229 	case 2:
230 		x = s[1] &~ m[1];
231 		if (!x)
232 			break;
233 		sig = ffz(~x) + _NSIG_BPW + 1;
234 		break;
235 
236 	case 1:
237 		/* Nothing to do */
238 		break;
239 	}
240 
241 	return sig;
242 }
243 
244 static inline void print_dropped_signal(int sig)
245 {
246 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
247 
248 	if (!print_fatal_signals)
249 		return;
250 
251 	if (!__ratelimit(&ratelimit_state))
252 		return;
253 
254 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
255 				current->comm, current->pid, sig);
256 }
257 
258 /**
259  * task_set_jobctl_pending - set jobctl pending bits
260  * @task: target task
261  * @mask: pending bits to set
262  *
263  * Clear @mask from @task->jobctl.  @mask must be subset of
264  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
265  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
266  * cleared.  If @task is already being killed or exiting, this function
267  * becomes noop.
268  *
269  * CONTEXT:
270  * Must be called with @task->sighand->siglock held.
271  *
272  * RETURNS:
273  * %true if @mask is set, %false if made noop because @task was dying.
274  */
275 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
276 {
277 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
278 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
279 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
280 
281 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
282 		return false;
283 
284 	if (mask & JOBCTL_STOP_SIGMASK)
285 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
286 
287 	task->jobctl |= mask;
288 	return true;
289 }
290 
291 /**
292  * task_clear_jobctl_trapping - clear jobctl trapping bit
293  * @task: target task
294  *
295  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
296  * Clear it and wake up the ptracer.  Note that we don't need any further
297  * locking.  @task->siglock guarantees that @task->parent points to the
298  * ptracer.
299  *
300  * CONTEXT:
301  * Must be called with @task->sighand->siglock held.
302  */
303 void task_clear_jobctl_trapping(struct task_struct *task)
304 {
305 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
306 		task->jobctl &= ~JOBCTL_TRAPPING;
307 		smp_mb();	/* advised by wake_up_bit() */
308 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
309 	}
310 }
311 
312 /**
313  * task_clear_jobctl_pending - clear jobctl pending bits
314  * @task: target task
315  * @mask: pending bits to clear
316  *
317  * Clear @mask from @task->jobctl.  @mask must be subset of
318  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
319  * STOP bits are cleared together.
320  *
321  * If clearing of @mask leaves no stop or trap pending, this function calls
322  * task_clear_jobctl_trapping().
323  *
324  * CONTEXT:
325  * Must be called with @task->sighand->siglock held.
326  */
327 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
328 {
329 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
330 
331 	if (mask & JOBCTL_STOP_PENDING)
332 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
333 
334 	task->jobctl &= ~mask;
335 
336 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
337 		task_clear_jobctl_trapping(task);
338 }
339 
340 /**
341  * task_participate_group_stop - participate in a group stop
342  * @task: task participating in a group stop
343  *
344  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
345  * Group stop states are cleared and the group stop count is consumed if
346  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
347  * stop, the appropriate %SIGNAL_* flags are set.
348  *
349  * CONTEXT:
350  * Must be called with @task->sighand->siglock held.
351  *
352  * RETURNS:
353  * %true if group stop completion should be notified to the parent, %false
354  * otherwise.
355  */
356 static bool task_participate_group_stop(struct task_struct *task)
357 {
358 	struct signal_struct *sig = task->signal;
359 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
360 
361 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
362 
363 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
364 
365 	if (!consume)
366 		return false;
367 
368 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
369 		sig->group_stop_count--;
370 
371 	/*
372 	 * Tell the caller to notify completion iff we are entering into a
373 	 * fresh group stop.  Read comment in do_signal_stop() for details.
374 	 */
375 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
376 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
377 		return true;
378 	}
379 	return false;
380 }
381 
382 void task_join_group_stop(struct task_struct *task)
383 {
384 	/* Have the new thread join an on-going signal group stop */
385 	unsigned long jobctl = current->jobctl;
386 	if (jobctl & JOBCTL_STOP_PENDING) {
387 		struct signal_struct *sig = current->signal;
388 		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
389 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
390 		if (task_set_jobctl_pending(task, signr | gstop)) {
391 			sig->group_stop_count++;
392 		}
393 	}
394 }
395 
396 /*
397  * allocate a new signal queue record
398  * - this may be called without locks if and only if t == current, otherwise an
399  *   appropriate lock must be held to stop the target task from exiting
400  */
401 static struct sigqueue *
402 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
403 {
404 	struct sigqueue *q = NULL;
405 	struct user_struct *user;
406 
407 	/*
408 	 * Protect access to @t credentials. This can go away when all
409 	 * callers hold rcu read lock.
410 	 */
411 	rcu_read_lock();
412 	user = get_uid(__task_cred(t)->user);
413 	atomic_inc(&user->sigpending);
414 	rcu_read_unlock();
415 
416 	if (override_rlimit ||
417 	    atomic_read(&user->sigpending) <=
418 			task_rlimit(t, RLIMIT_SIGPENDING)) {
419 		q = kmem_cache_alloc(sigqueue_cachep, flags);
420 	} else {
421 		print_dropped_signal(sig);
422 	}
423 
424 	if (unlikely(q == NULL)) {
425 		atomic_dec(&user->sigpending);
426 		free_uid(user);
427 	} else {
428 		INIT_LIST_HEAD(&q->list);
429 		q->flags = 0;
430 		q->user = user;
431 	}
432 
433 	return q;
434 }
435 
436 static void __sigqueue_free(struct sigqueue *q)
437 {
438 	if (q->flags & SIGQUEUE_PREALLOC)
439 		return;
440 	atomic_dec(&q->user->sigpending);
441 	free_uid(q->user);
442 	kmem_cache_free(sigqueue_cachep, q);
443 }
444 
445 void flush_sigqueue(struct sigpending *queue)
446 {
447 	struct sigqueue *q;
448 
449 	sigemptyset(&queue->signal);
450 	while (!list_empty(&queue->list)) {
451 		q = list_entry(queue->list.next, struct sigqueue , list);
452 		list_del_init(&q->list);
453 		__sigqueue_free(q);
454 	}
455 }
456 
457 /*
458  * Flush all pending signals for this kthread.
459  */
460 void flush_signals(struct task_struct *t)
461 {
462 	unsigned long flags;
463 
464 	spin_lock_irqsave(&t->sighand->siglock, flags);
465 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
466 	flush_sigqueue(&t->pending);
467 	flush_sigqueue(&t->signal->shared_pending);
468 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
469 }
470 EXPORT_SYMBOL(flush_signals);
471 
472 #ifdef CONFIG_POSIX_TIMERS
473 static void __flush_itimer_signals(struct sigpending *pending)
474 {
475 	sigset_t signal, retain;
476 	struct sigqueue *q, *n;
477 
478 	signal = pending->signal;
479 	sigemptyset(&retain);
480 
481 	list_for_each_entry_safe(q, n, &pending->list, list) {
482 		int sig = q->info.si_signo;
483 
484 		if (likely(q->info.si_code != SI_TIMER)) {
485 			sigaddset(&retain, sig);
486 		} else {
487 			sigdelset(&signal, sig);
488 			list_del_init(&q->list);
489 			__sigqueue_free(q);
490 		}
491 	}
492 
493 	sigorsets(&pending->signal, &signal, &retain);
494 }
495 
496 void flush_itimer_signals(void)
497 {
498 	struct task_struct *tsk = current;
499 	unsigned long flags;
500 
501 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
502 	__flush_itimer_signals(&tsk->pending);
503 	__flush_itimer_signals(&tsk->signal->shared_pending);
504 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
505 }
506 #endif
507 
508 void ignore_signals(struct task_struct *t)
509 {
510 	int i;
511 
512 	for (i = 0; i < _NSIG; ++i)
513 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
514 
515 	flush_signals(t);
516 }
517 
518 /*
519  * Flush all handlers for a task.
520  */
521 
522 void
523 flush_signal_handlers(struct task_struct *t, int force_default)
524 {
525 	int i;
526 	struct k_sigaction *ka = &t->sighand->action[0];
527 	for (i = _NSIG ; i != 0 ; i--) {
528 		if (force_default || ka->sa.sa_handler != SIG_IGN)
529 			ka->sa.sa_handler = SIG_DFL;
530 		ka->sa.sa_flags = 0;
531 #ifdef __ARCH_HAS_SA_RESTORER
532 		ka->sa.sa_restorer = NULL;
533 #endif
534 		sigemptyset(&ka->sa.sa_mask);
535 		ka++;
536 	}
537 }
538 
539 bool unhandled_signal(struct task_struct *tsk, int sig)
540 {
541 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
542 	if (is_global_init(tsk))
543 		return true;
544 
545 	if (handler != SIG_IGN && handler != SIG_DFL)
546 		return false;
547 
548 	/* if ptraced, let the tracer determine */
549 	return !tsk->ptrace;
550 }
551 
552 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
553 			   bool *resched_timer)
554 {
555 	struct sigqueue *q, *first = NULL;
556 
557 	/*
558 	 * Collect the siginfo appropriate to this signal.  Check if
559 	 * there is another siginfo for the same signal.
560 	*/
561 	list_for_each_entry(q, &list->list, list) {
562 		if (q->info.si_signo == sig) {
563 			if (first)
564 				goto still_pending;
565 			first = q;
566 		}
567 	}
568 
569 	sigdelset(&list->signal, sig);
570 
571 	if (first) {
572 still_pending:
573 		list_del_init(&first->list);
574 		copy_siginfo(info, &first->info);
575 
576 		*resched_timer =
577 			(first->flags & SIGQUEUE_PREALLOC) &&
578 			(info->si_code == SI_TIMER) &&
579 			(info->si_sys_private);
580 
581 		__sigqueue_free(first);
582 	} else {
583 		/*
584 		 * Ok, it wasn't in the queue.  This must be
585 		 * a fast-pathed signal or we must have been
586 		 * out of queue space.  So zero out the info.
587 		 */
588 		clear_siginfo(info);
589 		info->si_signo = sig;
590 		info->si_errno = 0;
591 		info->si_code = SI_USER;
592 		info->si_pid = 0;
593 		info->si_uid = 0;
594 	}
595 }
596 
597 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
598 			kernel_siginfo_t *info, bool *resched_timer)
599 {
600 	int sig = next_signal(pending, mask);
601 
602 	if (sig)
603 		collect_signal(sig, pending, info, resched_timer);
604 	return sig;
605 }
606 
607 /*
608  * Dequeue a signal and return the element to the caller, which is
609  * expected to free it.
610  *
611  * All callers have to hold the siglock.
612  */
613 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
614 {
615 	bool resched_timer = false;
616 	int signr;
617 
618 	/* We only dequeue private signals from ourselves, we don't let
619 	 * signalfd steal them
620 	 */
621 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
622 	if (!signr) {
623 		signr = __dequeue_signal(&tsk->signal->shared_pending,
624 					 mask, info, &resched_timer);
625 #ifdef CONFIG_POSIX_TIMERS
626 		/*
627 		 * itimer signal ?
628 		 *
629 		 * itimers are process shared and we restart periodic
630 		 * itimers in the signal delivery path to prevent DoS
631 		 * attacks in the high resolution timer case. This is
632 		 * compliant with the old way of self-restarting
633 		 * itimers, as the SIGALRM is a legacy signal and only
634 		 * queued once. Changing the restart behaviour to
635 		 * restart the timer in the signal dequeue path is
636 		 * reducing the timer noise on heavy loaded !highres
637 		 * systems too.
638 		 */
639 		if (unlikely(signr == SIGALRM)) {
640 			struct hrtimer *tmr = &tsk->signal->real_timer;
641 
642 			if (!hrtimer_is_queued(tmr) &&
643 			    tsk->signal->it_real_incr != 0) {
644 				hrtimer_forward(tmr, tmr->base->get_time(),
645 						tsk->signal->it_real_incr);
646 				hrtimer_restart(tmr);
647 			}
648 		}
649 #endif
650 	}
651 
652 	recalc_sigpending();
653 	if (!signr)
654 		return 0;
655 
656 	if (unlikely(sig_kernel_stop(signr))) {
657 		/*
658 		 * Set a marker that we have dequeued a stop signal.  Our
659 		 * caller might release the siglock and then the pending
660 		 * stop signal it is about to process is no longer in the
661 		 * pending bitmasks, but must still be cleared by a SIGCONT
662 		 * (and overruled by a SIGKILL).  So those cases clear this
663 		 * shared flag after we've set it.  Note that this flag may
664 		 * remain set after the signal we return is ignored or
665 		 * handled.  That doesn't matter because its only purpose
666 		 * is to alert stop-signal processing code when another
667 		 * processor has come along and cleared the flag.
668 		 */
669 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
670 	}
671 #ifdef CONFIG_POSIX_TIMERS
672 	if (resched_timer) {
673 		/*
674 		 * Release the siglock to ensure proper locking order
675 		 * of timer locks outside of siglocks.  Note, we leave
676 		 * irqs disabled here, since the posix-timers code is
677 		 * about to disable them again anyway.
678 		 */
679 		spin_unlock(&tsk->sighand->siglock);
680 		posixtimer_rearm(info);
681 		spin_lock(&tsk->sighand->siglock);
682 
683 		/* Don't expose the si_sys_private value to userspace */
684 		info->si_sys_private = 0;
685 	}
686 #endif
687 	return signr;
688 }
689 EXPORT_SYMBOL_GPL(dequeue_signal);
690 
691 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
692 {
693 	struct task_struct *tsk = current;
694 	struct sigpending *pending = &tsk->pending;
695 	struct sigqueue *q, *sync = NULL;
696 
697 	/*
698 	 * Might a synchronous signal be in the queue?
699 	 */
700 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
701 		return 0;
702 
703 	/*
704 	 * Return the first synchronous signal in the queue.
705 	 */
706 	list_for_each_entry(q, &pending->list, list) {
707 		/* Synchronous signals have a postive si_code */
708 		if ((q->info.si_code > SI_USER) &&
709 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
710 			sync = q;
711 			goto next;
712 		}
713 	}
714 	return 0;
715 next:
716 	/*
717 	 * Check if there is another siginfo for the same signal.
718 	 */
719 	list_for_each_entry_continue(q, &pending->list, list) {
720 		if (q->info.si_signo == sync->info.si_signo)
721 			goto still_pending;
722 	}
723 
724 	sigdelset(&pending->signal, sync->info.si_signo);
725 	recalc_sigpending();
726 still_pending:
727 	list_del_init(&sync->list);
728 	copy_siginfo(info, &sync->info);
729 	__sigqueue_free(sync);
730 	return info->si_signo;
731 }
732 
733 /*
734  * Tell a process that it has a new active signal..
735  *
736  * NOTE! we rely on the previous spin_lock to
737  * lock interrupts for us! We can only be called with
738  * "siglock" held, and the local interrupt must
739  * have been disabled when that got acquired!
740  *
741  * No need to set need_resched since signal event passing
742  * goes through ->blocked
743  */
744 void signal_wake_up_state(struct task_struct *t, unsigned int state)
745 {
746 	set_tsk_thread_flag(t, TIF_SIGPENDING);
747 	/*
748 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
749 	 * case. We don't check t->state here because there is a race with it
750 	 * executing another processor and just now entering stopped state.
751 	 * By using wake_up_state, we ensure the process will wake up and
752 	 * handle its death signal.
753 	 */
754 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
755 		kick_process(t);
756 }
757 
758 /*
759  * Remove signals in mask from the pending set and queue.
760  * Returns 1 if any signals were found.
761  *
762  * All callers must be holding the siglock.
763  */
764 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
765 {
766 	struct sigqueue *q, *n;
767 	sigset_t m;
768 
769 	sigandsets(&m, mask, &s->signal);
770 	if (sigisemptyset(&m))
771 		return;
772 
773 	sigandnsets(&s->signal, &s->signal, mask);
774 	list_for_each_entry_safe(q, n, &s->list, list) {
775 		if (sigismember(mask, q->info.si_signo)) {
776 			list_del_init(&q->list);
777 			__sigqueue_free(q);
778 		}
779 	}
780 }
781 
782 static inline int is_si_special(const struct kernel_siginfo *info)
783 {
784 	return info <= SEND_SIG_PRIV;
785 }
786 
787 static inline bool si_fromuser(const struct kernel_siginfo *info)
788 {
789 	return info == SEND_SIG_NOINFO ||
790 		(!is_si_special(info) && SI_FROMUSER(info));
791 }
792 
793 /*
794  * called with RCU read lock from check_kill_permission()
795  */
796 static bool kill_ok_by_cred(struct task_struct *t)
797 {
798 	const struct cred *cred = current_cred();
799 	const struct cred *tcred = __task_cred(t);
800 
801 	return uid_eq(cred->euid, tcred->suid) ||
802 	       uid_eq(cred->euid, tcred->uid) ||
803 	       uid_eq(cred->uid, tcred->suid) ||
804 	       uid_eq(cred->uid, tcred->uid) ||
805 	       ns_capable(tcred->user_ns, CAP_KILL);
806 }
807 
808 /*
809  * Bad permissions for sending the signal
810  * - the caller must hold the RCU read lock
811  */
812 static int check_kill_permission(int sig, struct kernel_siginfo *info,
813 				 struct task_struct *t)
814 {
815 	struct pid *sid;
816 	int error;
817 
818 	if (!valid_signal(sig))
819 		return -EINVAL;
820 
821 	if (!si_fromuser(info))
822 		return 0;
823 
824 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
825 	if (error)
826 		return error;
827 
828 	if (!same_thread_group(current, t) &&
829 	    !kill_ok_by_cred(t)) {
830 		switch (sig) {
831 		case SIGCONT:
832 			sid = task_session(t);
833 			/*
834 			 * We don't return the error if sid == NULL. The
835 			 * task was unhashed, the caller must notice this.
836 			 */
837 			if (!sid || sid == task_session(current))
838 				break;
839 		default:
840 			return -EPERM;
841 		}
842 	}
843 
844 	return security_task_kill(t, info, sig, NULL);
845 }
846 
847 /**
848  * ptrace_trap_notify - schedule trap to notify ptracer
849  * @t: tracee wanting to notify tracer
850  *
851  * This function schedules sticky ptrace trap which is cleared on the next
852  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
853  * ptracer.
854  *
855  * If @t is running, STOP trap will be taken.  If trapped for STOP and
856  * ptracer is listening for events, tracee is woken up so that it can
857  * re-trap for the new event.  If trapped otherwise, STOP trap will be
858  * eventually taken without returning to userland after the existing traps
859  * are finished by PTRACE_CONT.
860  *
861  * CONTEXT:
862  * Must be called with @task->sighand->siglock held.
863  */
864 static void ptrace_trap_notify(struct task_struct *t)
865 {
866 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
867 	assert_spin_locked(&t->sighand->siglock);
868 
869 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
870 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
871 }
872 
873 /*
874  * Handle magic process-wide effects of stop/continue signals. Unlike
875  * the signal actions, these happen immediately at signal-generation
876  * time regardless of blocking, ignoring, or handling.  This does the
877  * actual continuing for SIGCONT, but not the actual stopping for stop
878  * signals. The process stop is done as a signal action for SIG_DFL.
879  *
880  * Returns true if the signal should be actually delivered, otherwise
881  * it should be dropped.
882  */
883 static bool prepare_signal(int sig, struct task_struct *p, bool force)
884 {
885 	struct signal_struct *signal = p->signal;
886 	struct task_struct *t;
887 	sigset_t flush;
888 
889 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
890 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
891 			return sig == SIGKILL;
892 		/*
893 		 * The process is in the middle of dying, nothing to do.
894 		 */
895 	} else if (sig_kernel_stop(sig)) {
896 		/*
897 		 * This is a stop signal.  Remove SIGCONT from all queues.
898 		 */
899 		siginitset(&flush, sigmask(SIGCONT));
900 		flush_sigqueue_mask(&flush, &signal->shared_pending);
901 		for_each_thread(p, t)
902 			flush_sigqueue_mask(&flush, &t->pending);
903 	} else if (sig == SIGCONT) {
904 		unsigned int why;
905 		/*
906 		 * Remove all stop signals from all queues, wake all threads.
907 		 */
908 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
909 		flush_sigqueue_mask(&flush, &signal->shared_pending);
910 		for_each_thread(p, t) {
911 			flush_sigqueue_mask(&flush, &t->pending);
912 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
913 			if (likely(!(t->ptrace & PT_SEIZED)))
914 				wake_up_state(t, __TASK_STOPPED);
915 			else
916 				ptrace_trap_notify(t);
917 		}
918 
919 		/*
920 		 * Notify the parent with CLD_CONTINUED if we were stopped.
921 		 *
922 		 * If we were in the middle of a group stop, we pretend it
923 		 * was already finished, and then continued. Since SIGCHLD
924 		 * doesn't queue we report only CLD_STOPPED, as if the next
925 		 * CLD_CONTINUED was dropped.
926 		 */
927 		why = 0;
928 		if (signal->flags & SIGNAL_STOP_STOPPED)
929 			why |= SIGNAL_CLD_CONTINUED;
930 		else if (signal->group_stop_count)
931 			why |= SIGNAL_CLD_STOPPED;
932 
933 		if (why) {
934 			/*
935 			 * The first thread which returns from do_signal_stop()
936 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
937 			 * notify its parent. See get_signal().
938 			 */
939 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
940 			signal->group_stop_count = 0;
941 			signal->group_exit_code = 0;
942 		}
943 	}
944 
945 	return !sig_ignored(p, sig, force);
946 }
947 
948 /*
949  * Test if P wants to take SIG.  After we've checked all threads with this,
950  * it's equivalent to finding no threads not blocking SIG.  Any threads not
951  * blocking SIG were ruled out because they are not running and already
952  * have pending signals.  Such threads will dequeue from the shared queue
953  * as soon as they're available, so putting the signal on the shared queue
954  * will be equivalent to sending it to one such thread.
955  */
956 static inline bool wants_signal(int sig, struct task_struct *p)
957 {
958 	if (sigismember(&p->blocked, sig))
959 		return false;
960 
961 	if (p->flags & PF_EXITING)
962 		return false;
963 
964 	if (sig == SIGKILL)
965 		return true;
966 
967 	if (task_is_stopped_or_traced(p))
968 		return false;
969 
970 	return task_curr(p) || !signal_pending(p);
971 }
972 
973 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
974 {
975 	struct signal_struct *signal = p->signal;
976 	struct task_struct *t;
977 
978 	/*
979 	 * Now find a thread we can wake up to take the signal off the queue.
980 	 *
981 	 * If the main thread wants the signal, it gets first crack.
982 	 * Probably the least surprising to the average bear.
983 	 */
984 	if (wants_signal(sig, p))
985 		t = p;
986 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
987 		/*
988 		 * There is just one thread and it does not need to be woken.
989 		 * It will dequeue unblocked signals before it runs again.
990 		 */
991 		return;
992 	else {
993 		/*
994 		 * Otherwise try to find a suitable thread.
995 		 */
996 		t = signal->curr_target;
997 		while (!wants_signal(sig, t)) {
998 			t = next_thread(t);
999 			if (t == signal->curr_target)
1000 				/*
1001 				 * No thread needs to be woken.
1002 				 * Any eligible threads will see
1003 				 * the signal in the queue soon.
1004 				 */
1005 				return;
1006 		}
1007 		signal->curr_target = t;
1008 	}
1009 
1010 	/*
1011 	 * Found a killable thread.  If the signal will be fatal,
1012 	 * then start taking the whole group down immediately.
1013 	 */
1014 	if (sig_fatal(p, sig) &&
1015 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1016 	    !sigismember(&t->real_blocked, sig) &&
1017 	    (sig == SIGKILL || !p->ptrace)) {
1018 		/*
1019 		 * This signal will be fatal to the whole group.
1020 		 */
1021 		if (!sig_kernel_coredump(sig)) {
1022 			/*
1023 			 * Start a group exit and wake everybody up.
1024 			 * This way we don't have other threads
1025 			 * running and doing things after a slower
1026 			 * thread has the fatal signal pending.
1027 			 */
1028 			signal->flags = SIGNAL_GROUP_EXIT;
1029 			signal->group_exit_code = sig;
1030 			signal->group_stop_count = 0;
1031 			t = p;
1032 			do {
1033 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1034 				sigaddset(&t->pending.signal, SIGKILL);
1035 				signal_wake_up(t, 1);
1036 			} while_each_thread(p, t);
1037 			return;
1038 		}
1039 	}
1040 
1041 	/*
1042 	 * The signal is already in the shared-pending queue.
1043 	 * Tell the chosen thread to wake up and dequeue it.
1044 	 */
1045 	signal_wake_up(t, sig == SIGKILL);
1046 	return;
1047 }
1048 
1049 static inline bool legacy_queue(struct sigpending *signals, int sig)
1050 {
1051 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1052 }
1053 
1054 #ifdef CONFIG_USER_NS
1055 static inline void userns_fixup_signal_uid(struct kernel_siginfo *info, struct task_struct *t)
1056 {
1057 	if (current_user_ns() == task_cred_xxx(t, user_ns))
1058 		return;
1059 
1060 	if (SI_FROMKERNEL(info))
1061 		return;
1062 
1063 	rcu_read_lock();
1064 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1065 					make_kuid(current_user_ns(), info->si_uid));
1066 	rcu_read_unlock();
1067 }
1068 #else
1069 static inline void userns_fixup_signal_uid(struct kernel_siginfo *info, struct task_struct *t)
1070 {
1071 	return;
1072 }
1073 #endif
1074 
1075 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1076 			enum pid_type type, int from_ancestor_ns)
1077 {
1078 	struct sigpending *pending;
1079 	struct sigqueue *q;
1080 	int override_rlimit;
1081 	int ret = 0, result;
1082 
1083 	assert_spin_locked(&t->sighand->siglock);
1084 
1085 	result = TRACE_SIGNAL_IGNORED;
1086 	if (!prepare_signal(sig, t,
1087 			from_ancestor_ns || (info == SEND_SIG_PRIV)))
1088 		goto ret;
1089 
1090 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1091 	/*
1092 	 * Short-circuit ignored signals and support queuing
1093 	 * exactly one non-rt signal, so that we can get more
1094 	 * detailed information about the cause of the signal.
1095 	 */
1096 	result = TRACE_SIGNAL_ALREADY_PENDING;
1097 	if (legacy_queue(pending, sig))
1098 		goto ret;
1099 
1100 	result = TRACE_SIGNAL_DELIVERED;
1101 	/*
1102 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1103 	 */
1104 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1105 		goto out_set;
1106 
1107 	/*
1108 	 * Real-time signals must be queued if sent by sigqueue, or
1109 	 * some other real-time mechanism.  It is implementation
1110 	 * defined whether kill() does so.  We attempt to do so, on
1111 	 * the principle of least surprise, but since kill is not
1112 	 * allowed to fail with EAGAIN when low on memory we just
1113 	 * make sure at least one signal gets delivered and don't
1114 	 * pass on the info struct.
1115 	 */
1116 	if (sig < SIGRTMIN)
1117 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1118 	else
1119 		override_rlimit = 0;
1120 
1121 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1122 	if (q) {
1123 		list_add_tail(&q->list, &pending->list);
1124 		switch ((unsigned long) info) {
1125 		case (unsigned long) SEND_SIG_NOINFO:
1126 			clear_siginfo(&q->info);
1127 			q->info.si_signo = sig;
1128 			q->info.si_errno = 0;
1129 			q->info.si_code = SI_USER;
1130 			q->info.si_pid = task_tgid_nr_ns(current,
1131 							task_active_pid_ns(t));
1132 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1133 			break;
1134 		case (unsigned long) SEND_SIG_PRIV:
1135 			clear_siginfo(&q->info);
1136 			q->info.si_signo = sig;
1137 			q->info.si_errno = 0;
1138 			q->info.si_code = SI_KERNEL;
1139 			q->info.si_pid = 0;
1140 			q->info.si_uid = 0;
1141 			break;
1142 		default:
1143 			copy_siginfo(&q->info, info);
1144 			if (from_ancestor_ns)
1145 				q->info.si_pid = 0;
1146 			break;
1147 		}
1148 
1149 		userns_fixup_signal_uid(&q->info, t);
1150 
1151 	} else if (!is_si_special(info)) {
1152 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1153 			/*
1154 			 * Queue overflow, abort.  We may abort if the
1155 			 * signal was rt and sent by user using something
1156 			 * other than kill().
1157 			 */
1158 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1159 			ret = -EAGAIN;
1160 			goto ret;
1161 		} else {
1162 			/*
1163 			 * This is a silent loss of information.  We still
1164 			 * send the signal, but the *info bits are lost.
1165 			 */
1166 			result = TRACE_SIGNAL_LOSE_INFO;
1167 		}
1168 	}
1169 
1170 out_set:
1171 	signalfd_notify(t, sig);
1172 	sigaddset(&pending->signal, sig);
1173 
1174 	/* Let multiprocess signals appear after on-going forks */
1175 	if (type > PIDTYPE_TGID) {
1176 		struct multiprocess_signals *delayed;
1177 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1178 			sigset_t *signal = &delayed->signal;
1179 			/* Can't queue both a stop and a continue signal */
1180 			if (sig == SIGCONT)
1181 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1182 			else if (sig_kernel_stop(sig))
1183 				sigdelset(signal, SIGCONT);
1184 			sigaddset(signal, sig);
1185 		}
1186 	}
1187 
1188 	complete_signal(sig, t, type);
1189 ret:
1190 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1191 	return ret;
1192 }
1193 
1194 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1195 			enum pid_type type)
1196 {
1197 	int from_ancestor_ns = 0;
1198 
1199 #ifdef CONFIG_PID_NS
1200 	from_ancestor_ns = si_fromuser(info) &&
1201 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1202 #endif
1203 
1204 	return __send_signal(sig, info, t, type, from_ancestor_ns);
1205 }
1206 
1207 static void print_fatal_signal(int signr)
1208 {
1209 	struct pt_regs *regs = signal_pt_regs();
1210 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1211 
1212 #if defined(__i386__) && !defined(__arch_um__)
1213 	pr_info("code at %08lx: ", regs->ip);
1214 	{
1215 		int i;
1216 		for (i = 0; i < 16; i++) {
1217 			unsigned char insn;
1218 
1219 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1220 				break;
1221 			pr_cont("%02x ", insn);
1222 		}
1223 	}
1224 	pr_cont("\n");
1225 #endif
1226 	preempt_disable();
1227 	show_regs(regs);
1228 	preempt_enable();
1229 }
1230 
1231 static int __init setup_print_fatal_signals(char *str)
1232 {
1233 	get_option (&str, &print_fatal_signals);
1234 
1235 	return 1;
1236 }
1237 
1238 __setup("print-fatal-signals=", setup_print_fatal_signals);
1239 
1240 int
1241 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1242 {
1243 	return send_signal(sig, info, p, PIDTYPE_TGID);
1244 }
1245 
1246 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1247 			enum pid_type type)
1248 {
1249 	unsigned long flags;
1250 	int ret = -ESRCH;
1251 
1252 	if (lock_task_sighand(p, &flags)) {
1253 		ret = send_signal(sig, info, p, type);
1254 		unlock_task_sighand(p, &flags);
1255 	}
1256 
1257 	return ret;
1258 }
1259 
1260 /*
1261  * Force a signal that the process can't ignore: if necessary
1262  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1263  *
1264  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1265  * since we do not want to have a signal handler that was blocked
1266  * be invoked when user space had explicitly blocked it.
1267  *
1268  * We don't want to have recursive SIGSEGV's etc, for example,
1269  * that is why we also clear SIGNAL_UNKILLABLE.
1270  */
1271 int
1272 force_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *t)
1273 {
1274 	unsigned long int flags;
1275 	int ret, blocked, ignored;
1276 	struct k_sigaction *action;
1277 
1278 	spin_lock_irqsave(&t->sighand->siglock, flags);
1279 	action = &t->sighand->action[sig-1];
1280 	ignored = action->sa.sa_handler == SIG_IGN;
1281 	blocked = sigismember(&t->blocked, sig);
1282 	if (blocked || ignored) {
1283 		action->sa.sa_handler = SIG_DFL;
1284 		if (blocked) {
1285 			sigdelset(&t->blocked, sig);
1286 			recalc_sigpending_and_wake(t);
1287 		}
1288 	}
1289 	/*
1290 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1291 	 * debugging to leave init killable.
1292 	 */
1293 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1294 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1295 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1296 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1297 
1298 	return ret;
1299 }
1300 
1301 /*
1302  * Nuke all other threads in the group.
1303  */
1304 int zap_other_threads(struct task_struct *p)
1305 {
1306 	struct task_struct *t = p;
1307 	int count = 0;
1308 
1309 	p->signal->group_stop_count = 0;
1310 
1311 	while_each_thread(p, t) {
1312 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1313 		count++;
1314 
1315 		/* Don't bother with already dead threads */
1316 		if (t->exit_state)
1317 			continue;
1318 		sigaddset(&t->pending.signal, SIGKILL);
1319 		signal_wake_up(t, 1);
1320 	}
1321 
1322 	return count;
1323 }
1324 
1325 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1326 					   unsigned long *flags)
1327 {
1328 	struct sighand_struct *sighand;
1329 
1330 	rcu_read_lock();
1331 	for (;;) {
1332 		sighand = rcu_dereference(tsk->sighand);
1333 		if (unlikely(sighand == NULL))
1334 			break;
1335 
1336 		/*
1337 		 * This sighand can be already freed and even reused, but
1338 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1339 		 * initializes ->siglock: this slab can't go away, it has
1340 		 * the same object type, ->siglock can't be reinitialized.
1341 		 *
1342 		 * We need to ensure that tsk->sighand is still the same
1343 		 * after we take the lock, we can race with de_thread() or
1344 		 * __exit_signal(). In the latter case the next iteration
1345 		 * must see ->sighand == NULL.
1346 		 */
1347 		spin_lock_irqsave(&sighand->siglock, *flags);
1348 		if (likely(sighand == tsk->sighand))
1349 			break;
1350 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1351 	}
1352 	rcu_read_unlock();
1353 
1354 	return sighand;
1355 }
1356 
1357 /*
1358  * send signal info to all the members of a group
1359  */
1360 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1361 			struct task_struct *p, enum pid_type type)
1362 {
1363 	int ret;
1364 
1365 	rcu_read_lock();
1366 	ret = check_kill_permission(sig, info, p);
1367 	rcu_read_unlock();
1368 
1369 	if (!ret && sig)
1370 		ret = do_send_sig_info(sig, info, p, type);
1371 
1372 	return ret;
1373 }
1374 
1375 /*
1376  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1377  * control characters do (^C, ^Z etc)
1378  * - the caller must hold at least a readlock on tasklist_lock
1379  */
1380 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1381 {
1382 	struct task_struct *p = NULL;
1383 	int retval, success;
1384 
1385 	success = 0;
1386 	retval = -ESRCH;
1387 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1388 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1389 		success |= !err;
1390 		retval = err;
1391 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1392 	return success ? 0 : retval;
1393 }
1394 
1395 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1396 {
1397 	int error = -ESRCH;
1398 	struct task_struct *p;
1399 
1400 	for (;;) {
1401 		rcu_read_lock();
1402 		p = pid_task(pid, PIDTYPE_PID);
1403 		if (p)
1404 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1405 		rcu_read_unlock();
1406 		if (likely(!p || error != -ESRCH))
1407 			return error;
1408 
1409 		/*
1410 		 * The task was unhashed in between, try again.  If it
1411 		 * is dead, pid_task() will return NULL, if we race with
1412 		 * de_thread() it will find the new leader.
1413 		 */
1414 	}
1415 }
1416 
1417 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1418 {
1419 	int error;
1420 	rcu_read_lock();
1421 	error = kill_pid_info(sig, info, find_vpid(pid));
1422 	rcu_read_unlock();
1423 	return error;
1424 }
1425 
1426 static inline bool kill_as_cred_perm(const struct cred *cred,
1427 				     struct task_struct *target)
1428 {
1429 	const struct cred *pcred = __task_cred(target);
1430 
1431 	return uid_eq(cred->euid, pcred->suid) ||
1432 	       uid_eq(cred->euid, pcred->uid) ||
1433 	       uid_eq(cred->uid, pcred->suid) ||
1434 	       uid_eq(cred->uid, pcred->uid);
1435 }
1436 
1437 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1438 int kill_pid_info_as_cred(int sig, struct kernel_siginfo *info, struct pid *pid,
1439 			 const struct cred *cred)
1440 {
1441 	int ret = -EINVAL;
1442 	struct task_struct *p;
1443 	unsigned long flags;
1444 
1445 	if (!valid_signal(sig))
1446 		return ret;
1447 
1448 	rcu_read_lock();
1449 	p = pid_task(pid, PIDTYPE_PID);
1450 	if (!p) {
1451 		ret = -ESRCH;
1452 		goto out_unlock;
1453 	}
1454 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1455 		ret = -EPERM;
1456 		goto out_unlock;
1457 	}
1458 	ret = security_task_kill(p, info, sig, cred);
1459 	if (ret)
1460 		goto out_unlock;
1461 
1462 	if (sig) {
1463 		if (lock_task_sighand(p, &flags)) {
1464 			ret = __send_signal(sig, info, p, PIDTYPE_TGID, 0);
1465 			unlock_task_sighand(p, &flags);
1466 		} else
1467 			ret = -ESRCH;
1468 	}
1469 out_unlock:
1470 	rcu_read_unlock();
1471 	return ret;
1472 }
1473 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1474 
1475 /*
1476  * kill_something_info() interprets pid in interesting ways just like kill(2).
1477  *
1478  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1479  * is probably wrong.  Should make it like BSD or SYSV.
1480  */
1481 
1482 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1483 {
1484 	int ret;
1485 
1486 	if (pid > 0) {
1487 		rcu_read_lock();
1488 		ret = kill_pid_info(sig, info, find_vpid(pid));
1489 		rcu_read_unlock();
1490 		return ret;
1491 	}
1492 
1493 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1494 	if (pid == INT_MIN)
1495 		return -ESRCH;
1496 
1497 	read_lock(&tasklist_lock);
1498 	if (pid != -1) {
1499 		ret = __kill_pgrp_info(sig, info,
1500 				pid ? find_vpid(-pid) : task_pgrp(current));
1501 	} else {
1502 		int retval = 0, count = 0;
1503 		struct task_struct * p;
1504 
1505 		for_each_process(p) {
1506 			if (task_pid_vnr(p) > 1 &&
1507 					!same_thread_group(p, current)) {
1508 				int err = group_send_sig_info(sig, info, p,
1509 							      PIDTYPE_MAX);
1510 				++count;
1511 				if (err != -EPERM)
1512 					retval = err;
1513 			}
1514 		}
1515 		ret = count ? retval : -ESRCH;
1516 	}
1517 	read_unlock(&tasklist_lock);
1518 
1519 	return ret;
1520 }
1521 
1522 /*
1523  * These are for backward compatibility with the rest of the kernel source.
1524  */
1525 
1526 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1527 {
1528 	/*
1529 	 * Make sure legacy kernel users don't send in bad values
1530 	 * (normal paths check this in check_kill_permission).
1531 	 */
1532 	if (!valid_signal(sig))
1533 		return -EINVAL;
1534 
1535 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1536 }
1537 EXPORT_SYMBOL(send_sig_info);
1538 
1539 #define __si_special(priv) \
1540 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1541 
1542 int
1543 send_sig(int sig, struct task_struct *p, int priv)
1544 {
1545 	return send_sig_info(sig, __si_special(priv), p);
1546 }
1547 EXPORT_SYMBOL(send_sig);
1548 
1549 void force_sig(int sig, struct task_struct *p)
1550 {
1551 	force_sig_info(sig, SEND_SIG_PRIV, p);
1552 }
1553 EXPORT_SYMBOL(force_sig);
1554 
1555 /*
1556  * When things go south during signal handling, we
1557  * will force a SIGSEGV. And if the signal that caused
1558  * the problem was already a SIGSEGV, we'll want to
1559  * make sure we don't even try to deliver the signal..
1560  */
1561 void force_sigsegv(int sig, struct task_struct *p)
1562 {
1563 	if (sig == SIGSEGV) {
1564 		unsigned long flags;
1565 		spin_lock_irqsave(&p->sighand->siglock, flags);
1566 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1567 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1568 	}
1569 	force_sig(SIGSEGV, p);
1570 }
1571 
1572 int force_sig_fault(int sig, int code, void __user *addr
1573 	___ARCH_SI_TRAPNO(int trapno)
1574 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1575 	, struct task_struct *t)
1576 {
1577 	struct kernel_siginfo info;
1578 
1579 	clear_siginfo(&info);
1580 	info.si_signo = sig;
1581 	info.si_errno = 0;
1582 	info.si_code  = code;
1583 	info.si_addr  = addr;
1584 #ifdef __ARCH_SI_TRAPNO
1585 	info.si_trapno = trapno;
1586 #endif
1587 #ifdef __ia64__
1588 	info.si_imm = imm;
1589 	info.si_flags = flags;
1590 	info.si_isr = isr;
1591 #endif
1592 	return force_sig_info(info.si_signo, &info, t);
1593 }
1594 
1595 int send_sig_fault(int sig, int code, void __user *addr
1596 	___ARCH_SI_TRAPNO(int trapno)
1597 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1598 	, struct task_struct *t)
1599 {
1600 	struct kernel_siginfo info;
1601 
1602 	clear_siginfo(&info);
1603 	info.si_signo = sig;
1604 	info.si_errno = 0;
1605 	info.si_code  = code;
1606 	info.si_addr  = addr;
1607 #ifdef __ARCH_SI_TRAPNO
1608 	info.si_trapno = trapno;
1609 #endif
1610 #ifdef __ia64__
1611 	info.si_imm = imm;
1612 	info.si_flags = flags;
1613 	info.si_isr = isr;
1614 #endif
1615 	return send_sig_info(info.si_signo, &info, t);
1616 }
1617 
1618 int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1619 {
1620 	struct kernel_siginfo info;
1621 
1622 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1623 	clear_siginfo(&info);
1624 	info.si_signo = SIGBUS;
1625 	info.si_errno = 0;
1626 	info.si_code = code;
1627 	info.si_addr = addr;
1628 	info.si_addr_lsb = lsb;
1629 	return force_sig_info(info.si_signo, &info, t);
1630 }
1631 
1632 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1633 {
1634 	struct kernel_siginfo info;
1635 
1636 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1637 	clear_siginfo(&info);
1638 	info.si_signo = SIGBUS;
1639 	info.si_errno = 0;
1640 	info.si_code = code;
1641 	info.si_addr = addr;
1642 	info.si_addr_lsb = lsb;
1643 	return send_sig_info(info.si_signo, &info, t);
1644 }
1645 EXPORT_SYMBOL(send_sig_mceerr);
1646 
1647 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1648 {
1649 	struct kernel_siginfo info;
1650 
1651 	clear_siginfo(&info);
1652 	info.si_signo = SIGSEGV;
1653 	info.si_errno = 0;
1654 	info.si_code  = SEGV_BNDERR;
1655 	info.si_addr  = addr;
1656 	info.si_lower = lower;
1657 	info.si_upper = upper;
1658 	return force_sig_info(info.si_signo, &info, current);
1659 }
1660 
1661 #ifdef SEGV_PKUERR
1662 int force_sig_pkuerr(void __user *addr, u32 pkey)
1663 {
1664 	struct kernel_siginfo info;
1665 
1666 	clear_siginfo(&info);
1667 	info.si_signo = SIGSEGV;
1668 	info.si_errno = 0;
1669 	info.si_code  = SEGV_PKUERR;
1670 	info.si_addr  = addr;
1671 	info.si_pkey  = pkey;
1672 	return force_sig_info(info.si_signo, &info, current);
1673 }
1674 #endif
1675 
1676 /* For the crazy architectures that include trap information in
1677  * the errno field, instead of an actual errno value.
1678  */
1679 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1680 {
1681 	struct kernel_siginfo info;
1682 
1683 	clear_siginfo(&info);
1684 	info.si_signo = SIGTRAP;
1685 	info.si_errno = errno;
1686 	info.si_code  = TRAP_HWBKPT;
1687 	info.si_addr  = addr;
1688 	return force_sig_info(info.si_signo, &info, current);
1689 }
1690 
1691 int kill_pgrp(struct pid *pid, int sig, int priv)
1692 {
1693 	int ret;
1694 
1695 	read_lock(&tasklist_lock);
1696 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1697 	read_unlock(&tasklist_lock);
1698 
1699 	return ret;
1700 }
1701 EXPORT_SYMBOL(kill_pgrp);
1702 
1703 int kill_pid(struct pid *pid, int sig, int priv)
1704 {
1705 	return kill_pid_info(sig, __si_special(priv), pid);
1706 }
1707 EXPORT_SYMBOL(kill_pid);
1708 
1709 /*
1710  * These functions support sending signals using preallocated sigqueue
1711  * structures.  This is needed "because realtime applications cannot
1712  * afford to lose notifications of asynchronous events, like timer
1713  * expirations or I/O completions".  In the case of POSIX Timers
1714  * we allocate the sigqueue structure from the timer_create.  If this
1715  * allocation fails we are able to report the failure to the application
1716  * with an EAGAIN error.
1717  */
1718 struct sigqueue *sigqueue_alloc(void)
1719 {
1720 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1721 
1722 	if (q)
1723 		q->flags |= SIGQUEUE_PREALLOC;
1724 
1725 	return q;
1726 }
1727 
1728 void sigqueue_free(struct sigqueue *q)
1729 {
1730 	unsigned long flags;
1731 	spinlock_t *lock = &current->sighand->siglock;
1732 
1733 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1734 	/*
1735 	 * We must hold ->siglock while testing q->list
1736 	 * to serialize with collect_signal() or with
1737 	 * __exit_signal()->flush_sigqueue().
1738 	 */
1739 	spin_lock_irqsave(lock, flags);
1740 	q->flags &= ~SIGQUEUE_PREALLOC;
1741 	/*
1742 	 * If it is queued it will be freed when dequeued,
1743 	 * like the "regular" sigqueue.
1744 	 */
1745 	if (!list_empty(&q->list))
1746 		q = NULL;
1747 	spin_unlock_irqrestore(lock, flags);
1748 
1749 	if (q)
1750 		__sigqueue_free(q);
1751 }
1752 
1753 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1754 {
1755 	int sig = q->info.si_signo;
1756 	struct sigpending *pending;
1757 	struct task_struct *t;
1758 	unsigned long flags;
1759 	int ret, result;
1760 
1761 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1762 
1763 	ret = -1;
1764 	rcu_read_lock();
1765 	t = pid_task(pid, type);
1766 	if (!t || !likely(lock_task_sighand(t, &flags)))
1767 		goto ret;
1768 
1769 	ret = 1; /* the signal is ignored */
1770 	result = TRACE_SIGNAL_IGNORED;
1771 	if (!prepare_signal(sig, t, false))
1772 		goto out;
1773 
1774 	ret = 0;
1775 	if (unlikely(!list_empty(&q->list))) {
1776 		/*
1777 		 * If an SI_TIMER entry is already queue just increment
1778 		 * the overrun count.
1779 		 */
1780 		BUG_ON(q->info.si_code != SI_TIMER);
1781 		q->info.si_overrun++;
1782 		result = TRACE_SIGNAL_ALREADY_PENDING;
1783 		goto out;
1784 	}
1785 	q->info.si_overrun = 0;
1786 
1787 	signalfd_notify(t, sig);
1788 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1789 	list_add_tail(&q->list, &pending->list);
1790 	sigaddset(&pending->signal, sig);
1791 	complete_signal(sig, t, type);
1792 	result = TRACE_SIGNAL_DELIVERED;
1793 out:
1794 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1795 	unlock_task_sighand(t, &flags);
1796 ret:
1797 	rcu_read_unlock();
1798 	return ret;
1799 }
1800 
1801 /*
1802  * Let a parent know about the death of a child.
1803  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1804  *
1805  * Returns true if our parent ignored us and so we've switched to
1806  * self-reaping.
1807  */
1808 bool do_notify_parent(struct task_struct *tsk, int sig)
1809 {
1810 	struct kernel_siginfo info;
1811 	unsigned long flags;
1812 	struct sighand_struct *psig;
1813 	bool autoreap = false;
1814 	u64 utime, stime;
1815 
1816 	BUG_ON(sig == -1);
1817 
1818  	/* do_notify_parent_cldstop should have been called instead.  */
1819  	BUG_ON(task_is_stopped_or_traced(tsk));
1820 
1821 	BUG_ON(!tsk->ptrace &&
1822 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1823 
1824 	if (sig != SIGCHLD) {
1825 		/*
1826 		 * This is only possible if parent == real_parent.
1827 		 * Check if it has changed security domain.
1828 		 */
1829 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1830 			sig = SIGCHLD;
1831 	}
1832 
1833 	clear_siginfo(&info);
1834 	info.si_signo = sig;
1835 	info.si_errno = 0;
1836 	/*
1837 	 * We are under tasklist_lock here so our parent is tied to
1838 	 * us and cannot change.
1839 	 *
1840 	 * task_active_pid_ns will always return the same pid namespace
1841 	 * until a task passes through release_task.
1842 	 *
1843 	 * write_lock() currently calls preempt_disable() which is the
1844 	 * same as rcu_read_lock(), but according to Oleg, this is not
1845 	 * correct to rely on this
1846 	 */
1847 	rcu_read_lock();
1848 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1849 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1850 				       task_uid(tsk));
1851 	rcu_read_unlock();
1852 
1853 	task_cputime(tsk, &utime, &stime);
1854 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1855 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1856 
1857 	info.si_status = tsk->exit_code & 0x7f;
1858 	if (tsk->exit_code & 0x80)
1859 		info.si_code = CLD_DUMPED;
1860 	else if (tsk->exit_code & 0x7f)
1861 		info.si_code = CLD_KILLED;
1862 	else {
1863 		info.si_code = CLD_EXITED;
1864 		info.si_status = tsk->exit_code >> 8;
1865 	}
1866 
1867 	psig = tsk->parent->sighand;
1868 	spin_lock_irqsave(&psig->siglock, flags);
1869 	if (!tsk->ptrace && sig == SIGCHLD &&
1870 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1871 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1872 		/*
1873 		 * We are exiting and our parent doesn't care.  POSIX.1
1874 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1875 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1876 		 * automatically and not left for our parent's wait4 call.
1877 		 * Rather than having the parent do it as a magic kind of
1878 		 * signal handler, we just set this to tell do_exit that we
1879 		 * can be cleaned up without becoming a zombie.  Note that
1880 		 * we still call __wake_up_parent in this case, because a
1881 		 * blocked sys_wait4 might now return -ECHILD.
1882 		 *
1883 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1884 		 * is implementation-defined: we do (if you don't want
1885 		 * it, just use SIG_IGN instead).
1886 		 */
1887 		autoreap = true;
1888 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1889 			sig = 0;
1890 	}
1891 	if (valid_signal(sig) && sig)
1892 		__group_send_sig_info(sig, &info, tsk->parent);
1893 	__wake_up_parent(tsk, tsk->parent);
1894 	spin_unlock_irqrestore(&psig->siglock, flags);
1895 
1896 	return autoreap;
1897 }
1898 
1899 /**
1900  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1901  * @tsk: task reporting the state change
1902  * @for_ptracer: the notification is for ptracer
1903  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1904  *
1905  * Notify @tsk's parent that the stopped/continued state has changed.  If
1906  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1907  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1908  *
1909  * CONTEXT:
1910  * Must be called with tasklist_lock at least read locked.
1911  */
1912 static void do_notify_parent_cldstop(struct task_struct *tsk,
1913 				     bool for_ptracer, int why)
1914 {
1915 	struct kernel_siginfo info;
1916 	unsigned long flags;
1917 	struct task_struct *parent;
1918 	struct sighand_struct *sighand;
1919 	u64 utime, stime;
1920 
1921 	if (for_ptracer) {
1922 		parent = tsk->parent;
1923 	} else {
1924 		tsk = tsk->group_leader;
1925 		parent = tsk->real_parent;
1926 	}
1927 
1928 	clear_siginfo(&info);
1929 	info.si_signo = SIGCHLD;
1930 	info.si_errno = 0;
1931 	/*
1932 	 * see comment in do_notify_parent() about the following 4 lines
1933 	 */
1934 	rcu_read_lock();
1935 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1936 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1937 	rcu_read_unlock();
1938 
1939 	task_cputime(tsk, &utime, &stime);
1940 	info.si_utime = nsec_to_clock_t(utime);
1941 	info.si_stime = nsec_to_clock_t(stime);
1942 
1943  	info.si_code = why;
1944  	switch (why) {
1945  	case CLD_CONTINUED:
1946  		info.si_status = SIGCONT;
1947  		break;
1948  	case CLD_STOPPED:
1949  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1950  		break;
1951  	case CLD_TRAPPED:
1952  		info.si_status = tsk->exit_code & 0x7f;
1953  		break;
1954  	default:
1955  		BUG();
1956  	}
1957 
1958 	sighand = parent->sighand;
1959 	spin_lock_irqsave(&sighand->siglock, flags);
1960 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1961 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1962 		__group_send_sig_info(SIGCHLD, &info, parent);
1963 	/*
1964 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1965 	 */
1966 	__wake_up_parent(tsk, parent);
1967 	spin_unlock_irqrestore(&sighand->siglock, flags);
1968 }
1969 
1970 static inline bool may_ptrace_stop(void)
1971 {
1972 	if (!likely(current->ptrace))
1973 		return false;
1974 	/*
1975 	 * Are we in the middle of do_coredump?
1976 	 * If so and our tracer is also part of the coredump stopping
1977 	 * is a deadlock situation, and pointless because our tracer
1978 	 * is dead so don't allow us to stop.
1979 	 * If SIGKILL was already sent before the caller unlocked
1980 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1981 	 * is safe to enter schedule().
1982 	 *
1983 	 * This is almost outdated, a task with the pending SIGKILL can't
1984 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1985 	 * after SIGKILL was already dequeued.
1986 	 */
1987 	if (unlikely(current->mm->core_state) &&
1988 	    unlikely(current->mm == current->parent->mm))
1989 		return false;
1990 
1991 	return true;
1992 }
1993 
1994 /*
1995  * Return non-zero if there is a SIGKILL that should be waking us up.
1996  * Called with the siglock held.
1997  */
1998 static bool sigkill_pending(struct task_struct *tsk)
1999 {
2000 	return sigismember(&tsk->pending.signal, SIGKILL) ||
2001 	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2002 }
2003 
2004 /*
2005  * This must be called with current->sighand->siglock held.
2006  *
2007  * This should be the path for all ptrace stops.
2008  * We always set current->last_siginfo while stopped here.
2009  * That makes it a way to test a stopped process for
2010  * being ptrace-stopped vs being job-control-stopped.
2011  *
2012  * If we actually decide not to stop at all because the tracer
2013  * is gone, we keep current->exit_code unless clear_code.
2014  */
2015 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2016 	__releases(&current->sighand->siglock)
2017 	__acquires(&current->sighand->siglock)
2018 {
2019 	bool gstop_done = false;
2020 
2021 	if (arch_ptrace_stop_needed(exit_code, info)) {
2022 		/*
2023 		 * The arch code has something special to do before a
2024 		 * ptrace stop.  This is allowed to block, e.g. for faults
2025 		 * on user stack pages.  We can't keep the siglock while
2026 		 * calling arch_ptrace_stop, so we must release it now.
2027 		 * To preserve proper semantics, we must do this before
2028 		 * any signal bookkeeping like checking group_stop_count.
2029 		 * Meanwhile, a SIGKILL could come in before we retake the
2030 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2031 		 * So after regaining the lock, we must check for SIGKILL.
2032 		 */
2033 		spin_unlock_irq(&current->sighand->siglock);
2034 		arch_ptrace_stop(exit_code, info);
2035 		spin_lock_irq(&current->sighand->siglock);
2036 		if (sigkill_pending(current))
2037 			return;
2038 	}
2039 
2040 	set_special_state(TASK_TRACED);
2041 
2042 	/*
2043 	 * We're committing to trapping.  TRACED should be visible before
2044 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2045 	 * Also, transition to TRACED and updates to ->jobctl should be
2046 	 * atomic with respect to siglock and should be done after the arch
2047 	 * hook as siglock is released and regrabbed across it.
2048 	 *
2049 	 *     TRACER				    TRACEE
2050 	 *
2051 	 *     ptrace_attach()
2052 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2053 	 *     do_wait()
2054 	 *       set_current_state()                smp_wmb();
2055 	 *       ptrace_do_wait()
2056 	 *         wait_task_stopped()
2057 	 *           task_stopped_code()
2058 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2059 	 */
2060 	smp_wmb();
2061 
2062 	current->last_siginfo = info;
2063 	current->exit_code = exit_code;
2064 
2065 	/*
2066 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2067 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2068 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2069 	 * could be clear now.  We act as if SIGCONT is received after
2070 	 * TASK_TRACED is entered - ignore it.
2071 	 */
2072 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2073 		gstop_done = task_participate_group_stop(current);
2074 
2075 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2076 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2077 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2078 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2079 
2080 	/* entering a trap, clear TRAPPING */
2081 	task_clear_jobctl_trapping(current);
2082 
2083 	spin_unlock_irq(&current->sighand->siglock);
2084 	read_lock(&tasklist_lock);
2085 	if (may_ptrace_stop()) {
2086 		/*
2087 		 * Notify parents of the stop.
2088 		 *
2089 		 * While ptraced, there are two parents - the ptracer and
2090 		 * the real_parent of the group_leader.  The ptracer should
2091 		 * know about every stop while the real parent is only
2092 		 * interested in the completion of group stop.  The states
2093 		 * for the two don't interact with each other.  Notify
2094 		 * separately unless they're gonna be duplicates.
2095 		 */
2096 		do_notify_parent_cldstop(current, true, why);
2097 		if (gstop_done && ptrace_reparented(current))
2098 			do_notify_parent_cldstop(current, false, why);
2099 
2100 		/*
2101 		 * Don't want to allow preemption here, because
2102 		 * sys_ptrace() needs this task to be inactive.
2103 		 *
2104 		 * XXX: implement read_unlock_no_resched().
2105 		 */
2106 		preempt_disable();
2107 		read_unlock(&tasklist_lock);
2108 		preempt_enable_no_resched();
2109 		freezable_schedule();
2110 	} else {
2111 		/*
2112 		 * By the time we got the lock, our tracer went away.
2113 		 * Don't drop the lock yet, another tracer may come.
2114 		 *
2115 		 * If @gstop_done, the ptracer went away between group stop
2116 		 * completion and here.  During detach, it would have set
2117 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2118 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2119 		 * the real parent of the group stop completion is enough.
2120 		 */
2121 		if (gstop_done)
2122 			do_notify_parent_cldstop(current, false, why);
2123 
2124 		/* tasklist protects us from ptrace_freeze_traced() */
2125 		__set_current_state(TASK_RUNNING);
2126 		if (clear_code)
2127 			current->exit_code = 0;
2128 		read_unlock(&tasklist_lock);
2129 	}
2130 
2131 	/*
2132 	 * We are back.  Now reacquire the siglock before touching
2133 	 * last_siginfo, so that we are sure to have synchronized with
2134 	 * any signal-sending on another CPU that wants to examine it.
2135 	 */
2136 	spin_lock_irq(&current->sighand->siglock);
2137 	current->last_siginfo = NULL;
2138 
2139 	/* LISTENING can be set only during STOP traps, clear it */
2140 	current->jobctl &= ~JOBCTL_LISTENING;
2141 
2142 	/*
2143 	 * Queued signals ignored us while we were stopped for tracing.
2144 	 * So check for any that we should take before resuming user mode.
2145 	 * This sets TIF_SIGPENDING, but never clears it.
2146 	 */
2147 	recalc_sigpending_tsk(current);
2148 }
2149 
2150 static void ptrace_do_notify(int signr, int exit_code, int why)
2151 {
2152 	kernel_siginfo_t info;
2153 
2154 	clear_siginfo(&info);
2155 	info.si_signo = signr;
2156 	info.si_code = exit_code;
2157 	info.si_pid = task_pid_vnr(current);
2158 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2159 
2160 	/* Let the debugger run.  */
2161 	ptrace_stop(exit_code, why, 1, &info);
2162 }
2163 
2164 void ptrace_notify(int exit_code)
2165 {
2166 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2167 	if (unlikely(current->task_works))
2168 		task_work_run();
2169 
2170 	spin_lock_irq(&current->sighand->siglock);
2171 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2172 	spin_unlock_irq(&current->sighand->siglock);
2173 }
2174 
2175 /**
2176  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2177  * @signr: signr causing group stop if initiating
2178  *
2179  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2180  * and participate in it.  If already set, participate in the existing
2181  * group stop.  If participated in a group stop (and thus slept), %true is
2182  * returned with siglock released.
2183  *
2184  * If ptraced, this function doesn't handle stop itself.  Instead,
2185  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2186  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2187  * places afterwards.
2188  *
2189  * CONTEXT:
2190  * Must be called with @current->sighand->siglock held, which is released
2191  * on %true return.
2192  *
2193  * RETURNS:
2194  * %false if group stop is already cancelled or ptrace trap is scheduled.
2195  * %true if participated in group stop.
2196  */
2197 static bool do_signal_stop(int signr)
2198 	__releases(&current->sighand->siglock)
2199 {
2200 	struct signal_struct *sig = current->signal;
2201 
2202 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2203 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2204 		struct task_struct *t;
2205 
2206 		/* signr will be recorded in task->jobctl for retries */
2207 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2208 
2209 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2210 		    unlikely(signal_group_exit(sig)))
2211 			return false;
2212 		/*
2213 		 * There is no group stop already in progress.  We must
2214 		 * initiate one now.
2215 		 *
2216 		 * While ptraced, a task may be resumed while group stop is
2217 		 * still in effect and then receive a stop signal and
2218 		 * initiate another group stop.  This deviates from the
2219 		 * usual behavior as two consecutive stop signals can't
2220 		 * cause two group stops when !ptraced.  That is why we
2221 		 * also check !task_is_stopped(t) below.
2222 		 *
2223 		 * The condition can be distinguished by testing whether
2224 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2225 		 * group_exit_code in such case.
2226 		 *
2227 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2228 		 * an intervening stop signal is required to cause two
2229 		 * continued events regardless of ptrace.
2230 		 */
2231 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2232 			sig->group_exit_code = signr;
2233 
2234 		sig->group_stop_count = 0;
2235 
2236 		if (task_set_jobctl_pending(current, signr | gstop))
2237 			sig->group_stop_count++;
2238 
2239 		t = current;
2240 		while_each_thread(current, t) {
2241 			/*
2242 			 * Setting state to TASK_STOPPED for a group
2243 			 * stop is always done with the siglock held,
2244 			 * so this check has no races.
2245 			 */
2246 			if (!task_is_stopped(t) &&
2247 			    task_set_jobctl_pending(t, signr | gstop)) {
2248 				sig->group_stop_count++;
2249 				if (likely(!(t->ptrace & PT_SEIZED)))
2250 					signal_wake_up(t, 0);
2251 				else
2252 					ptrace_trap_notify(t);
2253 			}
2254 		}
2255 	}
2256 
2257 	if (likely(!current->ptrace)) {
2258 		int notify = 0;
2259 
2260 		/*
2261 		 * If there are no other threads in the group, or if there
2262 		 * is a group stop in progress and we are the last to stop,
2263 		 * report to the parent.
2264 		 */
2265 		if (task_participate_group_stop(current))
2266 			notify = CLD_STOPPED;
2267 
2268 		set_special_state(TASK_STOPPED);
2269 		spin_unlock_irq(&current->sighand->siglock);
2270 
2271 		/*
2272 		 * Notify the parent of the group stop completion.  Because
2273 		 * we're not holding either the siglock or tasklist_lock
2274 		 * here, ptracer may attach inbetween; however, this is for
2275 		 * group stop and should always be delivered to the real
2276 		 * parent of the group leader.  The new ptracer will get
2277 		 * its notification when this task transitions into
2278 		 * TASK_TRACED.
2279 		 */
2280 		if (notify) {
2281 			read_lock(&tasklist_lock);
2282 			do_notify_parent_cldstop(current, false, notify);
2283 			read_unlock(&tasklist_lock);
2284 		}
2285 
2286 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2287 		freezable_schedule();
2288 		return true;
2289 	} else {
2290 		/*
2291 		 * While ptraced, group stop is handled by STOP trap.
2292 		 * Schedule it and let the caller deal with it.
2293 		 */
2294 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2295 		return false;
2296 	}
2297 }
2298 
2299 /**
2300  * do_jobctl_trap - take care of ptrace jobctl traps
2301  *
2302  * When PT_SEIZED, it's used for both group stop and explicit
2303  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2304  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2305  * the stop signal; otherwise, %SIGTRAP.
2306  *
2307  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2308  * number as exit_code and no siginfo.
2309  *
2310  * CONTEXT:
2311  * Must be called with @current->sighand->siglock held, which may be
2312  * released and re-acquired before returning with intervening sleep.
2313  */
2314 static void do_jobctl_trap(void)
2315 {
2316 	struct signal_struct *signal = current->signal;
2317 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2318 
2319 	if (current->ptrace & PT_SEIZED) {
2320 		if (!signal->group_stop_count &&
2321 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2322 			signr = SIGTRAP;
2323 		WARN_ON_ONCE(!signr);
2324 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2325 				 CLD_STOPPED);
2326 	} else {
2327 		WARN_ON_ONCE(!signr);
2328 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2329 		current->exit_code = 0;
2330 	}
2331 }
2332 
2333 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2334 {
2335 	/*
2336 	 * We do not check sig_kernel_stop(signr) but set this marker
2337 	 * unconditionally because we do not know whether debugger will
2338 	 * change signr. This flag has no meaning unless we are going
2339 	 * to stop after return from ptrace_stop(). In this case it will
2340 	 * be checked in do_signal_stop(), we should only stop if it was
2341 	 * not cleared by SIGCONT while we were sleeping. See also the
2342 	 * comment in dequeue_signal().
2343 	 */
2344 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2345 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2346 
2347 	/* We're back.  Did the debugger cancel the sig?  */
2348 	signr = current->exit_code;
2349 	if (signr == 0)
2350 		return signr;
2351 
2352 	current->exit_code = 0;
2353 
2354 	/*
2355 	 * Update the siginfo structure if the signal has
2356 	 * changed.  If the debugger wanted something
2357 	 * specific in the siginfo structure then it should
2358 	 * have updated *info via PTRACE_SETSIGINFO.
2359 	 */
2360 	if (signr != info->si_signo) {
2361 		clear_siginfo(info);
2362 		info->si_signo = signr;
2363 		info->si_errno = 0;
2364 		info->si_code = SI_USER;
2365 		rcu_read_lock();
2366 		info->si_pid = task_pid_vnr(current->parent);
2367 		info->si_uid = from_kuid_munged(current_user_ns(),
2368 						task_uid(current->parent));
2369 		rcu_read_unlock();
2370 	}
2371 
2372 	/* If the (new) signal is now blocked, requeue it.  */
2373 	if (sigismember(&current->blocked, signr)) {
2374 		send_signal(signr, info, current, PIDTYPE_PID);
2375 		signr = 0;
2376 	}
2377 
2378 	return signr;
2379 }
2380 
2381 bool get_signal(struct ksignal *ksig)
2382 {
2383 	struct sighand_struct *sighand = current->sighand;
2384 	struct signal_struct *signal = current->signal;
2385 	int signr;
2386 
2387 	if (unlikely(current->task_works))
2388 		task_work_run();
2389 
2390 	if (unlikely(uprobe_deny_signal()))
2391 		return false;
2392 
2393 	/*
2394 	 * Do this once, we can't return to user-mode if freezing() == T.
2395 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2396 	 * thus do not need another check after return.
2397 	 */
2398 	try_to_freeze();
2399 
2400 relock:
2401 	spin_lock_irq(&sighand->siglock);
2402 	/*
2403 	 * Every stopped thread goes here after wakeup. Check to see if
2404 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2405 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2406 	 */
2407 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2408 		int why;
2409 
2410 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2411 			why = CLD_CONTINUED;
2412 		else
2413 			why = CLD_STOPPED;
2414 
2415 		signal->flags &= ~SIGNAL_CLD_MASK;
2416 
2417 		spin_unlock_irq(&sighand->siglock);
2418 
2419 		/*
2420 		 * Notify the parent that we're continuing.  This event is
2421 		 * always per-process and doesn't make whole lot of sense
2422 		 * for ptracers, who shouldn't consume the state via
2423 		 * wait(2) either, but, for backward compatibility, notify
2424 		 * the ptracer of the group leader too unless it's gonna be
2425 		 * a duplicate.
2426 		 */
2427 		read_lock(&tasklist_lock);
2428 		do_notify_parent_cldstop(current, false, why);
2429 
2430 		if (ptrace_reparented(current->group_leader))
2431 			do_notify_parent_cldstop(current->group_leader,
2432 						true, why);
2433 		read_unlock(&tasklist_lock);
2434 
2435 		goto relock;
2436 	}
2437 
2438 	/* Has this task already been marked for death? */
2439 	if (signal_group_exit(signal)) {
2440 		ksig->info.si_signo = signr = SIGKILL;
2441 		sigdelset(&current->pending.signal, SIGKILL);
2442 		recalc_sigpending();
2443 		goto fatal;
2444 	}
2445 
2446 	for (;;) {
2447 		struct k_sigaction *ka;
2448 
2449 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2450 		    do_signal_stop(0))
2451 			goto relock;
2452 
2453 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2454 			do_jobctl_trap();
2455 			spin_unlock_irq(&sighand->siglock);
2456 			goto relock;
2457 		}
2458 
2459 		/*
2460 		 * Signals generated by the execution of an instruction
2461 		 * need to be delivered before any other pending signals
2462 		 * so that the instruction pointer in the signal stack
2463 		 * frame points to the faulting instruction.
2464 		 */
2465 		signr = dequeue_synchronous_signal(&ksig->info);
2466 		if (!signr)
2467 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2468 
2469 		if (!signr)
2470 			break; /* will return 0 */
2471 
2472 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2473 			signr = ptrace_signal(signr, &ksig->info);
2474 			if (!signr)
2475 				continue;
2476 		}
2477 
2478 		ka = &sighand->action[signr-1];
2479 
2480 		/* Trace actually delivered signals. */
2481 		trace_signal_deliver(signr, &ksig->info, ka);
2482 
2483 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2484 			continue;
2485 		if (ka->sa.sa_handler != SIG_DFL) {
2486 			/* Run the handler.  */
2487 			ksig->ka = *ka;
2488 
2489 			if (ka->sa.sa_flags & SA_ONESHOT)
2490 				ka->sa.sa_handler = SIG_DFL;
2491 
2492 			break; /* will return non-zero "signr" value */
2493 		}
2494 
2495 		/*
2496 		 * Now we are doing the default action for this signal.
2497 		 */
2498 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2499 			continue;
2500 
2501 		/*
2502 		 * Global init gets no signals it doesn't want.
2503 		 * Container-init gets no signals it doesn't want from same
2504 		 * container.
2505 		 *
2506 		 * Note that if global/container-init sees a sig_kernel_only()
2507 		 * signal here, the signal must have been generated internally
2508 		 * or must have come from an ancestor namespace. In either
2509 		 * case, the signal cannot be dropped.
2510 		 */
2511 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2512 				!sig_kernel_only(signr))
2513 			continue;
2514 
2515 		if (sig_kernel_stop(signr)) {
2516 			/*
2517 			 * The default action is to stop all threads in
2518 			 * the thread group.  The job control signals
2519 			 * do nothing in an orphaned pgrp, but SIGSTOP
2520 			 * always works.  Note that siglock needs to be
2521 			 * dropped during the call to is_orphaned_pgrp()
2522 			 * because of lock ordering with tasklist_lock.
2523 			 * This allows an intervening SIGCONT to be posted.
2524 			 * We need to check for that and bail out if necessary.
2525 			 */
2526 			if (signr != SIGSTOP) {
2527 				spin_unlock_irq(&sighand->siglock);
2528 
2529 				/* signals can be posted during this window */
2530 
2531 				if (is_current_pgrp_orphaned())
2532 					goto relock;
2533 
2534 				spin_lock_irq(&sighand->siglock);
2535 			}
2536 
2537 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2538 				/* It released the siglock.  */
2539 				goto relock;
2540 			}
2541 
2542 			/*
2543 			 * We didn't actually stop, due to a race
2544 			 * with SIGCONT or something like that.
2545 			 */
2546 			continue;
2547 		}
2548 
2549 	fatal:
2550 		spin_unlock_irq(&sighand->siglock);
2551 
2552 		/*
2553 		 * Anything else is fatal, maybe with a core dump.
2554 		 */
2555 		current->flags |= PF_SIGNALED;
2556 
2557 		if (sig_kernel_coredump(signr)) {
2558 			if (print_fatal_signals)
2559 				print_fatal_signal(ksig->info.si_signo);
2560 			proc_coredump_connector(current);
2561 			/*
2562 			 * If it was able to dump core, this kills all
2563 			 * other threads in the group and synchronizes with
2564 			 * their demise.  If we lost the race with another
2565 			 * thread getting here, it set group_exit_code
2566 			 * first and our do_group_exit call below will use
2567 			 * that value and ignore the one we pass it.
2568 			 */
2569 			do_coredump(&ksig->info);
2570 		}
2571 
2572 		/*
2573 		 * Death signals, no core dump.
2574 		 */
2575 		do_group_exit(ksig->info.si_signo);
2576 		/* NOTREACHED */
2577 	}
2578 	spin_unlock_irq(&sighand->siglock);
2579 
2580 	ksig->sig = signr;
2581 	return ksig->sig > 0;
2582 }
2583 
2584 /**
2585  * signal_delivered -
2586  * @ksig:		kernel signal struct
2587  * @stepping:		nonzero if debugger single-step or block-step in use
2588  *
2589  * This function should be called when a signal has successfully been
2590  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2591  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2592  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2593  */
2594 static void signal_delivered(struct ksignal *ksig, int stepping)
2595 {
2596 	sigset_t blocked;
2597 
2598 	/* A signal was successfully delivered, and the
2599 	   saved sigmask was stored on the signal frame,
2600 	   and will be restored by sigreturn.  So we can
2601 	   simply clear the restore sigmask flag.  */
2602 	clear_restore_sigmask();
2603 
2604 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2605 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2606 		sigaddset(&blocked, ksig->sig);
2607 	set_current_blocked(&blocked);
2608 	tracehook_signal_handler(stepping);
2609 }
2610 
2611 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2612 {
2613 	if (failed)
2614 		force_sigsegv(ksig->sig, current);
2615 	else
2616 		signal_delivered(ksig, stepping);
2617 }
2618 
2619 /*
2620  * It could be that complete_signal() picked us to notify about the
2621  * group-wide signal. Other threads should be notified now to take
2622  * the shared signals in @which since we will not.
2623  */
2624 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2625 {
2626 	sigset_t retarget;
2627 	struct task_struct *t;
2628 
2629 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2630 	if (sigisemptyset(&retarget))
2631 		return;
2632 
2633 	t = tsk;
2634 	while_each_thread(tsk, t) {
2635 		if (t->flags & PF_EXITING)
2636 			continue;
2637 
2638 		if (!has_pending_signals(&retarget, &t->blocked))
2639 			continue;
2640 		/* Remove the signals this thread can handle. */
2641 		sigandsets(&retarget, &retarget, &t->blocked);
2642 
2643 		if (!signal_pending(t))
2644 			signal_wake_up(t, 0);
2645 
2646 		if (sigisemptyset(&retarget))
2647 			break;
2648 	}
2649 }
2650 
2651 void exit_signals(struct task_struct *tsk)
2652 {
2653 	int group_stop = 0;
2654 	sigset_t unblocked;
2655 
2656 	/*
2657 	 * @tsk is about to have PF_EXITING set - lock out users which
2658 	 * expect stable threadgroup.
2659 	 */
2660 	cgroup_threadgroup_change_begin(tsk);
2661 
2662 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2663 		tsk->flags |= PF_EXITING;
2664 		cgroup_threadgroup_change_end(tsk);
2665 		return;
2666 	}
2667 
2668 	spin_lock_irq(&tsk->sighand->siglock);
2669 	/*
2670 	 * From now this task is not visible for group-wide signals,
2671 	 * see wants_signal(), do_signal_stop().
2672 	 */
2673 	tsk->flags |= PF_EXITING;
2674 
2675 	cgroup_threadgroup_change_end(tsk);
2676 
2677 	if (!signal_pending(tsk))
2678 		goto out;
2679 
2680 	unblocked = tsk->blocked;
2681 	signotset(&unblocked);
2682 	retarget_shared_pending(tsk, &unblocked);
2683 
2684 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2685 	    task_participate_group_stop(tsk))
2686 		group_stop = CLD_STOPPED;
2687 out:
2688 	spin_unlock_irq(&tsk->sighand->siglock);
2689 
2690 	/*
2691 	 * If group stop has completed, deliver the notification.  This
2692 	 * should always go to the real parent of the group leader.
2693 	 */
2694 	if (unlikely(group_stop)) {
2695 		read_lock(&tasklist_lock);
2696 		do_notify_parent_cldstop(tsk, false, group_stop);
2697 		read_unlock(&tasklist_lock);
2698 	}
2699 }
2700 
2701 /*
2702  * System call entry points.
2703  */
2704 
2705 /**
2706  *  sys_restart_syscall - restart a system call
2707  */
2708 SYSCALL_DEFINE0(restart_syscall)
2709 {
2710 	struct restart_block *restart = &current->restart_block;
2711 	return restart->fn(restart);
2712 }
2713 
2714 long do_no_restart_syscall(struct restart_block *param)
2715 {
2716 	return -EINTR;
2717 }
2718 
2719 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2720 {
2721 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2722 		sigset_t newblocked;
2723 		/* A set of now blocked but previously unblocked signals. */
2724 		sigandnsets(&newblocked, newset, &current->blocked);
2725 		retarget_shared_pending(tsk, &newblocked);
2726 	}
2727 	tsk->blocked = *newset;
2728 	recalc_sigpending();
2729 }
2730 
2731 /**
2732  * set_current_blocked - change current->blocked mask
2733  * @newset: new mask
2734  *
2735  * It is wrong to change ->blocked directly, this helper should be used
2736  * to ensure the process can't miss a shared signal we are going to block.
2737  */
2738 void set_current_blocked(sigset_t *newset)
2739 {
2740 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2741 	__set_current_blocked(newset);
2742 }
2743 
2744 void __set_current_blocked(const sigset_t *newset)
2745 {
2746 	struct task_struct *tsk = current;
2747 
2748 	/*
2749 	 * In case the signal mask hasn't changed, there is nothing we need
2750 	 * to do. The current->blocked shouldn't be modified by other task.
2751 	 */
2752 	if (sigequalsets(&tsk->blocked, newset))
2753 		return;
2754 
2755 	spin_lock_irq(&tsk->sighand->siglock);
2756 	__set_task_blocked(tsk, newset);
2757 	spin_unlock_irq(&tsk->sighand->siglock);
2758 }
2759 
2760 /*
2761  * This is also useful for kernel threads that want to temporarily
2762  * (or permanently) block certain signals.
2763  *
2764  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2765  * interface happily blocks "unblockable" signals like SIGKILL
2766  * and friends.
2767  */
2768 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2769 {
2770 	struct task_struct *tsk = current;
2771 	sigset_t newset;
2772 
2773 	/* Lockless, only current can change ->blocked, never from irq */
2774 	if (oldset)
2775 		*oldset = tsk->blocked;
2776 
2777 	switch (how) {
2778 	case SIG_BLOCK:
2779 		sigorsets(&newset, &tsk->blocked, set);
2780 		break;
2781 	case SIG_UNBLOCK:
2782 		sigandnsets(&newset, &tsk->blocked, set);
2783 		break;
2784 	case SIG_SETMASK:
2785 		newset = *set;
2786 		break;
2787 	default:
2788 		return -EINVAL;
2789 	}
2790 
2791 	__set_current_blocked(&newset);
2792 	return 0;
2793 }
2794 EXPORT_SYMBOL(sigprocmask);
2795 
2796 /*
2797  * The api helps set app-provided sigmasks.
2798  *
2799  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2800  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2801  */
2802 int set_user_sigmask(const sigset_t __user *usigmask, sigset_t *set,
2803 		     sigset_t *oldset, size_t sigsetsize)
2804 {
2805 	if (!usigmask)
2806 		return 0;
2807 
2808 	if (sigsetsize != sizeof(sigset_t))
2809 		return -EINVAL;
2810 	if (copy_from_user(set, usigmask, sizeof(sigset_t)))
2811 		return -EFAULT;
2812 
2813 	*oldset = current->blocked;
2814 	set_current_blocked(set);
2815 
2816 	return 0;
2817 }
2818 EXPORT_SYMBOL(set_user_sigmask);
2819 
2820 #ifdef CONFIG_COMPAT
2821 int set_compat_user_sigmask(const compat_sigset_t __user *usigmask,
2822 			    sigset_t *set, sigset_t *oldset,
2823 			    size_t sigsetsize)
2824 {
2825 	if (!usigmask)
2826 		return 0;
2827 
2828 	if (sigsetsize != sizeof(compat_sigset_t))
2829 		return -EINVAL;
2830 	if (get_compat_sigset(set, usigmask))
2831 		return -EFAULT;
2832 
2833 	*oldset = current->blocked;
2834 	set_current_blocked(set);
2835 
2836 	return 0;
2837 }
2838 EXPORT_SYMBOL(set_compat_user_sigmask);
2839 #endif
2840 
2841 /*
2842  * restore_user_sigmask:
2843  * usigmask: sigmask passed in from userland.
2844  * sigsaved: saved sigmask when the syscall started and changed the sigmask to
2845  *           usigmask.
2846  *
2847  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2848  * epoll_pwait where a new sigmask is passed in from userland for the syscalls.
2849  */
2850 void restore_user_sigmask(const void __user *usigmask, sigset_t *sigsaved)
2851 {
2852 
2853 	if (!usigmask)
2854 		return;
2855 	/*
2856 	 * When signals are pending, do not restore them here.
2857 	 * Restoring sigmask here can lead to delivering signals that the above
2858 	 * syscalls are intended to block because of the sigmask passed in.
2859 	 */
2860 	if (signal_pending(current)) {
2861 		current->saved_sigmask = *sigsaved;
2862 		set_restore_sigmask();
2863 		return;
2864 	}
2865 
2866 	/*
2867 	 * This is needed because the fast syscall return path does not restore
2868 	 * saved_sigmask when signals are not pending.
2869 	 */
2870 	set_current_blocked(sigsaved);
2871 }
2872 EXPORT_SYMBOL(restore_user_sigmask);
2873 
2874 /**
2875  *  sys_rt_sigprocmask - change the list of currently blocked signals
2876  *  @how: whether to add, remove, or set signals
2877  *  @nset: stores pending signals
2878  *  @oset: previous value of signal mask if non-null
2879  *  @sigsetsize: size of sigset_t type
2880  */
2881 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2882 		sigset_t __user *, oset, size_t, sigsetsize)
2883 {
2884 	sigset_t old_set, new_set;
2885 	int error;
2886 
2887 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2888 	if (sigsetsize != sizeof(sigset_t))
2889 		return -EINVAL;
2890 
2891 	old_set = current->blocked;
2892 
2893 	if (nset) {
2894 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2895 			return -EFAULT;
2896 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2897 
2898 		error = sigprocmask(how, &new_set, NULL);
2899 		if (error)
2900 			return error;
2901 	}
2902 
2903 	if (oset) {
2904 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2905 			return -EFAULT;
2906 	}
2907 
2908 	return 0;
2909 }
2910 
2911 #ifdef CONFIG_COMPAT
2912 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2913 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2914 {
2915 	sigset_t old_set = current->blocked;
2916 
2917 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2918 	if (sigsetsize != sizeof(sigset_t))
2919 		return -EINVAL;
2920 
2921 	if (nset) {
2922 		sigset_t new_set;
2923 		int error;
2924 		if (get_compat_sigset(&new_set, nset))
2925 			return -EFAULT;
2926 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2927 
2928 		error = sigprocmask(how, &new_set, NULL);
2929 		if (error)
2930 			return error;
2931 	}
2932 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2933 }
2934 #endif
2935 
2936 static void do_sigpending(sigset_t *set)
2937 {
2938 	spin_lock_irq(&current->sighand->siglock);
2939 	sigorsets(set, &current->pending.signal,
2940 		  &current->signal->shared_pending.signal);
2941 	spin_unlock_irq(&current->sighand->siglock);
2942 
2943 	/* Outside the lock because only this thread touches it.  */
2944 	sigandsets(set, &current->blocked, set);
2945 }
2946 
2947 /**
2948  *  sys_rt_sigpending - examine a pending signal that has been raised
2949  *			while blocked
2950  *  @uset: stores pending signals
2951  *  @sigsetsize: size of sigset_t type or larger
2952  */
2953 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2954 {
2955 	sigset_t set;
2956 
2957 	if (sigsetsize > sizeof(*uset))
2958 		return -EINVAL;
2959 
2960 	do_sigpending(&set);
2961 
2962 	if (copy_to_user(uset, &set, sigsetsize))
2963 		return -EFAULT;
2964 
2965 	return 0;
2966 }
2967 
2968 #ifdef CONFIG_COMPAT
2969 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2970 		compat_size_t, sigsetsize)
2971 {
2972 	sigset_t set;
2973 
2974 	if (sigsetsize > sizeof(*uset))
2975 		return -EINVAL;
2976 
2977 	do_sigpending(&set);
2978 
2979 	return put_compat_sigset(uset, &set, sigsetsize);
2980 }
2981 #endif
2982 
2983 static const struct {
2984 	unsigned char limit, layout;
2985 } sig_sicodes[] = {
2986 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
2987 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
2988 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2989 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
2990 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2991 #if defined(SIGEMT)
2992 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
2993 #endif
2994 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2995 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
2996 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
2997 };
2998 
2999 static bool known_siginfo_layout(unsigned sig, int si_code)
3000 {
3001 	if (si_code == SI_KERNEL)
3002 		return true;
3003 	else if ((si_code > SI_USER)) {
3004 		if (sig_specific_sicodes(sig)) {
3005 			if (si_code <= sig_sicodes[sig].limit)
3006 				return true;
3007 		}
3008 		else if (si_code <= NSIGPOLL)
3009 			return true;
3010 	}
3011 	else if (si_code >= SI_DETHREAD)
3012 		return true;
3013 	else if (si_code == SI_ASYNCNL)
3014 		return true;
3015 	return false;
3016 }
3017 
3018 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3019 {
3020 	enum siginfo_layout layout = SIL_KILL;
3021 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3022 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3023 		    (si_code <= sig_sicodes[sig].limit)) {
3024 			layout = sig_sicodes[sig].layout;
3025 			/* Handle the exceptions */
3026 			if ((sig == SIGBUS) &&
3027 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3028 				layout = SIL_FAULT_MCEERR;
3029 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3030 				layout = SIL_FAULT_BNDERR;
3031 #ifdef SEGV_PKUERR
3032 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3033 				layout = SIL_FAULT_PKUERR;
3034 #endif
3035 		}
3036 		else if (si_code <= NSIGPOLL)
3037 			layout = SIL_POLL;
3038 	} else {
3039 		if (si_code == SI_TIMER)
3040 			layout = SIL_TIMER;
3041 		else if (si_code == SI_SIGIO)
3042 			layout = SIL_POLL;
3043 		else if (si_code < 0)
3044 			layout = SIL_RT;
3045 	}
3046 	return layout;
3047 }
3048 
3049 static inline char __user *si_expansion(const siginfo_t __user *info)
3050 {
3051 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3052 }
3053 
3054 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3055 {
3056 	char __user *expansion = si_expansion(to);
3057 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3058 		return -EFAULT;
3059 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3060 		return -EFAULT;
3061 	return 0;
3062 }
3063 
3064 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3065 				       const siginfo_t __user *from)
3066 {
3067 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3068 		char __user *expansion = si_expansion(from);
3069 		char buf[SI_EXPANSION_SIZE];
3070 		int i;
3071 		/*
3072 		 * An unknown si_code might need more than
3073 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3074 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3075 		 * will return this data to userspace exactly.
3076 		 */
3077 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3078 			return -EFAULT;
3079 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3080 			if (buf[i] != 0)
3081 				return -E2BIG;
3082 		}
3083 	}
3084 	return 0;
3085 }
3086 
3087 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3088 				    const siginfo_t __user *from)
3089 {
3090 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3091 		return -EFAULT;
3092 	to->si_signo = signo;
3093 	return post_copy_siginfo_from_user(to, from);
3094 }
3095 
3096 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3097 {
3098 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3099 		return -EFAULT;
3100 	return post_copy_siginfo_from_user(to, from);
3101 }
3102 
3103 #ifdef CONFIG_COMPAT
3104 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3105 			   const struct kernel_siginfo *from)
3106 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3107 {
3108 	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3109 }
3110 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3111 			     const struct kernel_siginfo *from, bool x32_ABI)
3112 #endif
3113 {
3114 	struct compat_siginfo new;
3115 	memset(&new, 0, sizeof(new));
3116 
3117 	new.si_signo = from->si_signo;
3118 	new.si_errno = from->si_errno;
3119 	new.si_code  = from->si_code;
3120 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3121 	case SIL_KILL:
3122 		new.si_pid = from->si_pid;
3123 		new.si_uid = from->si_uid;
3124 		break;
3125 	case SIL_TIMER:
3126 		new.si_tid     = from->si_tid;
3127 		new.si_overrun = from->si_overrun;
3128 		new.si_int     = from->si_int;
3129 		break;
3130 	case SIL_POLL:
3131 		new.si_band = from->si_band;
3132 		new.si_fd   = from->si_fd;
3133 		break;
3134 	case SIL_FAULT:
3135 		new.si_addr = ptr_to_compat(from->si_addr);
3136 #ifdef __ARCH_SI_TRAPNO
3137 		new.si_trapno = from->si_trapno;
3138 #endif
3139 		break;
3140 	case SIL_FAULT_MCEERR:
3141 		new.si_addr = ptr_to_compat(from->si_addr);
3142 #ifdef __ARCH_SI_TRAPNO
3143 		new.si_trapno = from->si_trapno;
3144 #endif
3145 		new.si_addr_lsb = from->si_addr_lsb;
3146 		break;
3147 	case SIL_FAULT_BNDERR:
3148 		new.si_addr = ptr_to_compat(from->si_addr);
3149 #ifdef __ARCH_SI_TRAPNO
3150 		new.si_trapno = from->si_trapno;
3151 #endif
3152 		new.si_lower = ptr_to_compat(from->si_lower);
3153 		new.si_upper = ptr_to_compat(from->si_upper);
3154 		break;
3155 	case SIL_FAULT_PKUERR:
3156 		new.si_addr = ptr_to_compat(from->si_addr);
3157 #ifdef __ARCH_SI_TRAPNO
3158 		new.si_trapno = from->si_trapno;
3159 #endif
3160 		new.si_pkey = from->si_pkey;
3161 		break;
3162 	case SIL_CHLD:
3163 		new.si_pid    = from->si_pid;
3164 		new.si_uid    = from->si_uid;
3165 		new.si_status = from->si_status;
3166 #ifdef CONFIG_X86_X32_ABI
3167 		if (x32_ABI) {
3168 			new._sifields._sigchld_x32._utime = from->si_utime;
3169 			new._sifields._sigchld_x32._stime = from->si_stime;
3170 		} else
3171 #endif
3172 		{
3173 			new.si_utime = from->si_utime;
3174 			new.si_stime = from->si_stime;
3175 		}
3176 		break;
3177 	case SIL_RT:
3178 		new.si_pid = from->si_pid;
3179 		new.si_uid = from->si_uid;
3180 		new.si_int = from->si_int;
3181 		break;
3182 	case SIL_SYS:
3183 		new.si_call_addr = ptr_to_compat(from->si_call_addr);
3184 		new.si_syscall   = from->si_syscall;
3185 		new.si_arch      = from->si_arch;
3186 		break;
3187 	}
3188 
3189 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3190 		return -EFAULT;
3191 
3192 	return 0;
3193 }
3194 
3195 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3196 					 const struct compat_siginfo *from)
3197 {
3198 	clear_siginfo(to);
3199 	to->si_signo = from->si_signo;
3200 	to->si_errno = from->si_errno;
3201 	to->si_code  = from->si_code;
3202 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3203 	case SIL_KILL:
3204 		to->si_pid = from->si_pid;
3205 		to->si_uid = from->si_uid;
3206 		break;
3207 	case SIL_TIMER:
3208 		to->si_tid     = from->si_tid;
3209 		to->si_overrun = from->si_overrun;
3210 		to->si_int     = from->si_int;
3211 		break;
3212 	case SIL_POLL:
3213 		to->si_band = from->si_band;
3214 		to->si_fd   = from->si_fd;
3215 		break;
3216 	case SIL_FAULT:
3217 		to->si_addr = compat_ptr(from->si_addr);
3218 #ifdef __ARCH_SI_TRAPNO
3219 		to->si_trapno = from->si_trapno;
3220 #endif
3221 		break;
3222 	case SIL_FAULT_MCEERR:
3223 		to->si_addr = compat_ptr(from->si_addr);
3224 #ifdef __ARCH_SI_TRAPNO
3225 		to->si_trapno = from->si_trapno;
3226 #endif
3227 		to->si_addr_lsb = from->si_addr_lsb;
3228 		break;
3229 	case SIL_FAULT_BNDERR:
3230 		to->si_addr = compat_ptr(from->si_addr);
3231 #ifdef __ARCH_SI_TRAPNO
3232 		to->si_trapno = from->si_trapno;
3233 #endif
3234 		to->si_lower = compat_ptr(from->si_lower);
3235 		to->si_upper = compat_ptr(from->si_upper);
3236 		break;
3237 	case SIL_FAULT_PKUERR:
3238 		to->si_addr = compat_ptr(from->si_addr);
3239 #ifdef __ARCH_SI_TRAPNO
3240 		to->si_trapno = from->si_trapno;
3241 #endif
3242 		to->si_pkey = from->si_pkey;
3243 		break;
3244 	case SIL_CHLD:
3245 		to->si_pid    = from->si_pid;
3246 		to->si_uid    = from->si_uid;
3247 		to->si_status = from->si_status;
3248 #ifdef CONFIG_X86_X32_ABI
3249 		if (in_x32_syscall()) {
3250 			to->si_utime = from->_sifields._sigchld_x32._utime;
3251 			to->si_stime = from->_sifields._sigchld_x32._stime;
3252 		} else
3253 #endif
3254 		{
3255 			to->si_utime = from->si_utime;
3256 			to->si_stime = from->si_stime;
3257 		}
3258 		break;
3259 	case SIL_RT:
3260 		to->si_pid = from->si_pid;
3261 		to->si_uid = from->si_uid;
3262 		to->si_int = from->si_int;
3263 		break;
3264 	case SIL_SYS:
3265 		to->si_call_addr = compat_ptr(from->si_call_addr);
3266 		to->si_syscall   = from->si_syscall;
3267 		to->si_arch      = from->si_arch;
3268 		break;
3269 	}
3270 	return 0;
3271 }
3272 
3273 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3274 				      const struct compat_siginfo __user *ufrom)
3275 {
3276 	struct compat_siginfo from;
3277 
3278 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3279 		return -EFAULT;
3280 
3281 	from.si_signo = signo;
3282 	return post_copy_siginfo_from_user32(to, &from);
3283 }
3284 
3285 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3286 			     const struct compat_siginfo __user *ufrom)
3287 {
3288 	struct compat_siginfo from;
3289 
3290 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3291 		return -EFAULT;
3292 
3293 	return post_copy_siginfo_from_user32(to, &from);
3294 }
3295 #endif /* CONFIG_COMPAT */
3296 
3297 /**
3298  *  do_sigtimedwait - wait for queued signals specified in @which
3299  *  @which: queued signals to wait for
3300  *  @info: if non-null, the signal's siginfo is returned here
3301  *  @ts: upper bound on process time suspension
3302  */
3303 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3304 		    const struct timespec64 *ts)
3305 {
3306 	ktime_t *to = NULL, timeout = KTIME_MAX;
3307 	struct task_struct *tsk = current;
3308 	sigset_t mask = *which;
3309 	int sig, ret = 0;
3310 
3311 	if (ts) {
3312 		if (!timespec64_valid(ts))
3313 			return -EINVAL;
3314 		timeout = timespec64_to_ktime(*ts);
3315 		to = &timeout;
3316 	}
3317 
3318 	/*
3319 	 * Invert the set of allowed signals to get those we want to block.
3320 	 */
3321 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3322 	signotset(&mask);
3323 
3324 	spin_lock_irq(&tsk->sighand->siglock);
3325 	sig = dequeue_signal(tsk, &mask, info);
3326 	if (!sig && timeout) {
3327 		/*
3328 		 * None ready, temporarily unblock those we're interested
3329 		 * while we are sleeping in so that we'll be awakened when
3330 		 * they arrive. Unblocking is always fine, we can avoid
3331 		 * set_current_blocked().
3332 		 */
3333 		tsk->real_blocked = tsk->blocked;
3334 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3335 		recalc_sigpending();
3336 		spin_unlock_irq(&tsk->sighand->siglock);
3337 
3338 		__set_current_state(TASK_INTERRUPTIBLE);
3339 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3340 							 HRTIMER_MODE_REL);
3341 		spin_lock_irq(&tsk->sighand->siglock);
3342 		__set_task_blocked(tsk, &tsk->real_blocked);
3343 		sigemptyset(&tsk->real_blocked);
3344 		sig = dequeue_signal(tsk, &mask, info);
3345 	}
3346 	spin_unlock_irq(&tsk->sighand->siglock);
3347 
3348 	if (sig)
3349 		return sig;
3350 	return ret ? -EINTR : -EAGAIN;
3351 }
3352 
3353 /**
3354  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3355  *			in @uthese
3356  *  @uthese: queued signals to wait for
3357  *  @uinfo: if non-null, the signal's siginfo is returned here
3358  *  @uts: upper bound on process time suspension
3359  *  @sigsetsize: size of sigset_t type
3360  */
3361 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3362 		siginfo_t __user *, uinfo,
3363 		const struct __kernel_timespec __user *, uts,
3364 		size_t, sigsetsize)
3365 {
3366 	sigset_t these;
3367 	struct timespec64 ts;
3368 	kernel_siginfo_t info;
3369 	int ret;
3370 
3371 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3372 	if (sigsetsize != sizeof(sigset_t))
3373 		return -EINVAL;
3374 
3375 	if (copy_from_user(&these, uthese, sizeof(these)))
3376 		return -EFAULT;
3377 
3378 	if (uts) {
3379 		if (get_timespec64(&ts, uts))
3380 			return -EFAULT;
3381 	}
3382 
3383 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3384 
3385 	if (ret > 0 && uinfo) {
3386 		if (copy_siginfo_to_user(uinfo, &info))
3387 			ret = -EFAULT;
3388 	}
3389 
3390 	return ret;
3391 }
3392 
3393 #ifdef CONFIG_COMPAT_32BIT_TIME
3394 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3395 		siginfo_t __user *, uinfo,
3396 		const struct old_timespec32 __user *, uts,
3397 		size_t, sigsetsize)
3398 {
3399 	sigset_t these;
3400 	struct timespec64 ts;
3401 	kernel_siginfo_t info;
3402 	int ret;
3403 
3404 	if (sigsetsize != sizeof(sigset_t))
3405 		return -EINVAL;
3406 
3407 	if (copy_from_user(&these, uthese, sizeof(these)))
3408 		return -EFAULT;
3409 
3410 	if (uts) {
3411 		if (get_old_timespec32(&ts, uts))
3412 			return -EFAULT;
3413 	}
3414 
3415 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3416 
3417 	if (ret > 0 && uinfo) {
3418 		if (copy_siginfo_to_user(uinfo, &info))
3419 			ret = -EFAULT;
3420 	}
3421 
3422 	return ret;
3423 }
3424 #endif
3425 
3426 #ifdef CONFIG_COMPAT
3427 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3428 		struct compat_siginfo __user *, uinfo,
3429 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3430 {
3431 	sigset_t s;
3432 	struct timespec64 t;
3433 	kernel_siginfo_t info;
3434 	long ret;
3435 
3436 	if (sigsetsize != sizeof(sigset_t))
3437 		return -EINVAL;
3438 
3439 	if (get_compat_sigset(&s, uthese))
3440 		return -EFAULT;
3441 
3442 	if (uts) {
3443 		if (get_timespec64(&t, uts))
3444 			return -EFAULT;
3445 	}
3446 
3447 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3448 
3449 	if (ret > 0 && uinfo) {
3450 		if (copy_siginfo_to_user32(uinfo, &info))
3451 			ret = -EFAULT;
3452 	}
3453 
3454 	return ret;
3455 }
3456 
3457 #ifdef CONFIG_COMPAT_32BIT_TIME
3458 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
3459 		struct compat_siginfo __user *, uinfo,
3460 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3461 {
3462 	sigset_t s;
3463 	struct timespec64 t;
3464 	kernel_siginfo_t info;
3465 	long ret;
3466 
3467 	if (sigsetsize != sizeof(sigset_t))
3468 		return -EINVAL;
3469 
3470 	if (get_compat_sigset(&s, uthese))
3471 		return -EFAULT;
3472 
3473 	if (uts) {
3474 		if (get_old_timespec32(&t, uts))
3475 			return -EFAULT;
3476 	}
3477 
3478 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3479 
3480 	if (ret > 0 && uinfo) {
3481 		if (copy_siginfo_to_user32(uinfo, &info))
3482 			ret = -EFAULT;
3483 	}
3484 
3485 	return ret;
3486 }
3487 #endif
3488 #endif
3489 
3490 /**
3491  *  sys_kill - send a signal to a process
3492  *  @pid: the PID of the process
3493  *  @sig: signal to be sent
3494  */
3495 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3496 {
3497 	struct kernel_siginfo info;
3498 
3499 	clear_siginfo(&info);
3500 	info.si_signo = sig;
3501 	info.si_errno = 0;
3502 	info.si_code = SI_USER;
3503 	info.si_pid = task_tgid_vnr(current);
3504 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3505 
3506 	return kill_something_info(sig, &info, pid);
3507 }
3508 
3509 static int
3510 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3511 {
3512 	struct task_struct *p;
3513 	int error = -ESRCH;
3514 
3515 	rcu_read_lock();
3516 	p = find_task_by_vpid(pid);
3517 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3518 		error = check_kill_permission(sig, info, p);
3519 		/*
3520 		 * The null signal is a permissions and process existence
3521 		 * probe.  No signal is actually delivered.
3522 		 */
3523 		if (!error && sig) {
3524 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3525 			/*
3526 			 * If lock_task_sighand() failed we pretend the task
3527 			 * dies after receiving the signal. The window is tiny,
3528 			 * and the signal is private anyway.
3529 			 */
3530 			if (unlikely(error == -ESRCH))
3531 				error = 0;
3532 		}
3533 	}
3534 	rcu_read_unlock();
3535 
3536 	return error;
3537 }
3538 
3539 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3540 {
3541 	struct kernel_siginfo info;
3542 
3543 	clear_siginfo(&info);
3544 	info.si_signo = sig;
3545 	info.si_errno = 0;
3546 	info.si_code = SI_TKILL;
3547 	info.si_pid = task_tgid_vnr(current);
3548 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3549 
3550 	return do_send_specific(tgid, pid, sig, &info);
3551 }
3552 
3553 /**
3554  *  sys_tgkill - send signal to one specific thread
3555  *  @tgid: the thread group ID of the thread
3556  *  @pid: the PID of the thread
3557  *  @sig: signal to be sent
3558  *
3559  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3560  *  exists but it's not belonging to the target process anymore. This
3561  *  method solves the problem of threads exiting and PIDs getting reused.
3562  */
3563 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3564 {
3565 	/* This is only valid for single tasks */
3566 	if (pid <= 0 || tgid <= 0)
3567 		return -EINVAL;
3568 
3569 	return do_tkill(tgid, pid, sig);
3570 }
3571 
3572 /**
3573  *  sys_tkill - send signal to one specific task
3574  *  @pid: the PID of the task
3575  *  @sig: signal to be sent
3576  *
3577  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3578  */
3579 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3580 {
3581 	/* This is only valid for single tasks */
3582 	if (pid <= 0)
3583 		return -EINVAL;
3584 
3585 	return do_tkill(0, pid, sig);
3586 }
3587 
3588 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3589 {
3590 	/* Not even root can pretend to send signals from the kernel.
3591 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3592 	 */
3593 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3594 	    (task_pid_vnr(current) != pid))
3595 		return -EPERM;
3596 
3597 	/* POSIX.1b doesn't mention process groups.  */
3598 	return kill_proc_info(sig, info, pid);
3599 }
3600 
3601 /**
3602  *  sys_rt_sigqueueinfo - send signal information to a signal
3603  *  @pid: the PID of the thread
3604  *  @sig: signal to be sent
3605  *  @uinfo: signal info to be sent
3606  */
3607 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3608 		siginfo_t __user *, uinfo)
3609 {
3610 	kernel_siginfo_t info;
3611 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3612 	if (unlikely(ret))
3613 		return ret;
3614 	return do_rt_sigqueueinfo(pid, sig, &info);
3615 }
3616 
3617 #ifdef CONFIG_COMPAT
3618 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3619 			compat_pid_t, pid,
3620 			int, sig,
3621 			struct compat_siginfo __user *, uinfo)
3622 {
3623 	kernel_siginfo_t info;
3624 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3625 	if (unlikely(ret))
3626 		return ret;
3627 	return do_rt_sigqueueinfo(pid, sig, &info);
3628 }
3629 #endif
3630 
3631 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3632 {
3633 	/* This is only valid for single tasks */
3634 	if (pid <= 0 || tgid <= 0)
3635 		return -EINVAL;
3636 
3637 	/* Not even root can pretend to send signals from the kernel.
3638 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3639 	 */
3640 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3641 	    (task_pid_vnr(current) != pid))
3642 		return -EPERM;
3643 
3644 	return do_send_specific(tgid, pid, sig, info);
3645 }
3646 
3647 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3648 		siginfo_t __user *, uinfo)
3649 {
3650 	kernel_siginfo_t info;
3651 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3652 	if (unlikely(ret))
3653 		return ret;
3654 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3655 }
3656 
3657 #ifdef CONFIG_COMPAT
3658 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3659 			compat_pid_t, tgid,
3660 			compat_pid_t, pid,
3661 			int, sig,
3662 			struct compat_siginfo __user *, uinfo)
3663 {
3664 	kernel_siginfo_t info;
3665 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3666 	if (unlikely(ret))
3667 		return ret;
3668 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3669 }
3670 #endif
3671 
3672 /*
3673  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3674  */
3675 void kernel_sigaction(int sig, __sighandler_t action)
3676 {
3677 	spin_lock_irq(&current->sighand->siglock);
3678 	current->sighand->action[sig - 1].sa.sa_handler = action;
3679 	if (action == SIG_IGN) {
3680 		sigset_t mask;
3681 
3682 		sigemptyset(&mask);
3683 		sigaddset(&mask, sig);
3684 
3685 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3686 		flush_sigqueue_mask(&mask, &current->pending);
3687 		recalc_sigpending();
3688 	}
3689 	spin_unlock_irq(&current->sighand->siglock);
3690 }
3691 EXPORT_SYMBOL(kernel_sigaction);
3692 
3693 void __weak sigaction_compat_abi(struct k_sigaction *act,
3694 		struct k_sigaction *oact)
3695 {
3696 }
3697 
3698 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3699 {
3700 	struct task_struct *p = current, *t;
3701 	struct k_sigaction *k;
3702 	sigset_t mask;
3703 
3704 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3705 		return -EINVAL;
3706 
3707 	k = &p->sighand->action[sig-1];
3708 
3709 	spin_lock_irq(&p->sighand->siglock);
3710 	if (oact)
3711 		*oact = *k;
3712 
3713 	sigaction_compat_abi(act, oact);
3714 
3715 	if (act) {
3716 		sigdelsetmask(&act->sa.sa_mask,
3717 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3718 		*k = *act;
3719 		/*
3720 		 * POSIX 3.3.1.3:
3721 		 *  "Setting a signal action to SIG_IGN for a signal that is
3722 		 *   pending shall cause the pending signal to be discarded,
3723 		 *   whether or not it is blocked."
3724 		 *
3725 		 *  "Setting a signal action to SIG_DFL for a signal that is
3726 		 *   pending and whose default action is to ignore the signal
3727 		 *   (for example, SIGCHLD), shall cause the pending signal to
3728 		 *   be discarded, whether or not it is blocked"
3729 		 */
3730 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3731 			sigemptyset(&mask);
3732 			sigaddset(&mask, sig);
3733 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3734 			for_each_thread(p, t)
3735 				flush_sigqueue_mask(&mask, &t->pending);
3736 		}
3737 	}
3738 
3739 	spin_unlock_irq(&p->sighand->siglock);
3740 	return 0;
3741 }
3742 
3743 static int
3744 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3745 		size_t min_ss_size)
3746 {
3747 	struct task_struct *t = current;
3748 
3749 	if (oss) {
3750 		memset(oss, 0, sizeof(stack_t));
3751 		oss->ss_sp = (void __user *) t->sas_ss_sp;
3752 		oss->ss_size = t->sas_ss_size;
3753 		oss->ss_flags = sas_ss_flags(sp) |
3754 			(current->sas_ss_flags & SS_FLAG_BITS);
3755 	}
3756 
3757 	if (ss) {
3758 		void __user *ss_sp = ss->ss_sp;
3759 		size_t ss_size = ss->ss_size;
3760 		unsigned ss_flags = ss->ss_flags;
3761 		int ss_mode;
3762 
3763 		if (unlikely(on_sig_stack(sp)))
3764 			return -EPERM;
3765 
3766 		ss_mode = ss_flags & ~SS_FLAG_BITS;
3767 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3768 				ss_mode != 0))
3769 			return -EINVAL;
3770 
3771 		if (ss_mode == SS_DISABLE) {
3772 			ss_size = 0;
3773 			ss_sp = NULL;
3774 		} else {
3775 			if (unlikely(ss_size < min_ss_size))
3776 				return -ENOMEM;
3777 		}
3778 
3779 		t->sas_ss_sp = (unsigned long) ss_sp;
3780 		t->sas_ss_size = ss_size;
3781 		t->sas_ss_flags = ss_flags;
3782 	}
3783 	return 0;
3784 }
3785 
3786 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3787 {
3788 	stack_t new, old;
3789 	int err;
3790 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3791 		return -EFAULT;
3792 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3793 			      current_user_stack_pointer(),
3794 			      MINSIGSTKSZ);
3795 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3796 		err = -EFAULT;
3797 	return err;
3798 }
3799 
3800 int restore_altstack(const stack_t __user *uss)
3801 {
3802 	stack_t new;
3803 	if (copy_from_user(&new, uss, sizeof(stack_t)))
3804 		return -EFAULT;
3805 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
3806 			     MINSIGSTKSZ);
3807 	/* squash all but EFAULT for now */
3808 	return 0;
3809 }
3810 
3811 int __save_altstack(stack_t __user *uss, unsigned long sp)
3812 {
3813 	struct task_struct *t = current;
3814 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3815 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3816 		__put_user(t->sas_ss_size, &uss->ss_size);
3817 	if (err)
3818 		return err;
3819 	if (t->sas_ss_flags & SS_AUTODISARM)
3820 		sas_ss_reset(t);
3821 	return 0;
3822 }
3823 
3824 #ifdef CONFIG_COMPAT
3825 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
3826 				 compat_stack_t __user *uoss_ptr)
3827 {
3828 	stack_t uss, uoss;
3829 	int ret;
3830 
3831 	if (uss_ptr) {
3832 		compat_stack_t uss32;
3833 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3834 			return -EFAULT;
3835 		uss.ss_sp = compat_ptr(uss32.ss_sp);
3836 		uss.ss_flags = uss32.ss_flags;
3837 		uss.ss_size = uss32.ss_size;
3838 	}
3839 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3840 			     compat_user_stack_pointer(),
3841 			     COMPAT_MINSIGSTKSZ);
3842 	if (ret >= 0 && uoss_ptr)  {
3843 		compat_stack_t old;
3844 		memset(&old, 0, sizeof(old));
3845 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
3846 		old.ss_flags = uoss.ss_flags;
3847 		old.ss_size = uoss.ss_size;
3848 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3849 			ret = -EFAULT;
3850 	}
3851 	return ret;
3852 }
3853 
3854 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3855 			const compat_stack_t __user *, uss_ptr,
3856 			compat_stack_t __user *, uoss_ptr)
3857 {
3858 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
3859 }
3860 
3861 int compat_restore_altstack(const compat_stack_t __user *uss)
3862 {
3863 	int err = do_compat_sigaltstack(uss, NULL);
3864 	/* squash all but -EFAULT for now */
3865 	return err == -EFAULT ? err : 0;
3866 }
3867 
3868 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3869 {
3870 	int err;
3871 	struct task_struct *t = current;
3872 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3873 			 &uss->ss_sp) |
3874 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3875 		__put_user(t->sas_ss_size, &uss->ss_size);
3876 	if (err)
3877 		return err;
3878 	if (t->sas_ss_flags & SS_AUTODISARM)
3879 		sas_ss_reset(t);
3880 	return 0;
3881 }
3882 #endif
3883 
3884 #ifdef __ARCH_WANT_SYS_SIGPENDING
3885 
3886 /**
3887  *  sys_sigpending - examine pending signals
3888  *  @uset: where mask of pending signal is returned
3889  */
3890 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
3891 {
3892 	sigset_t set;
3893 
3894 	if (sizeof(old_sigset_t) > sizeof(*uset))
3895 		return -EINVAL;
3896 
3897 	do_sigpending(&set);
3898 
3899 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
3900 		return -EFAULT;
3901 
3902 	return 0;
3903 }
3904 
3905 #ifdef CONFIG_COMPAT
3906 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3907 {
3908 	sigset_t set;
3909 
3910 	do_sigpending(&set);
3911 
3912 	return put_user(set.sig[0], set32);
3913 }
3914 #endif
3915 
3916 #endif
3917 
3918 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3919 /**
3920  *  sys_sigprocmask - examine and change blocked signals
3921  *  @how: whether to add, remove, or set signals
3922  *  @nset: signals to add or remove (if non-null)
3923  *  @oset: previous value of signal mask if non-null
3924  *
3925  * Some platforms have their own version with special arguments;
3926  * others support only sys_rt_sigprocmask.
3927  */
3928 
3929 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3930 		old_sigset_t __user *, oset)
3931 {
3932 	old_sigset_t old_set, new_set;
3933 	sigset_t new_blocked;
3934 
3935 	old_set = current->blocked.sig[0];
3936 
3937 	if (nset) {
3938 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3939 			return -EFAULT;
3940 
3941 		new_blocked = current->blocked;
3942 
3943 		switch (how) {
3944 		case SIG_BLOCK:
3945 			sigaddsetmask(&new_blocked, new_set);
3946 			break;
3947 		case SIG_UNBLOCK:
3948 			sigdelsetmask(&new_blocked, new_set);
3949 			break;
3950 		case SIG_SETMASK:
3951 			new_blocked.sig[0] = new_set;
3952 			break;
3953 		default:
3954 			return -EINVAL;
3955 		}
3956 
3957 		set_current_blocked(&new_blocked);
3958 	}
3959 
3960 	if (oset) {
3961 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3962 			return -EFAULT;
3963 	}
3964 
3965 	return 0;
3966 }
3967 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3968 
3969 #ifndef CONFIG_ODD_RT_SIGACTION
3970 /**
3971  *  sys_rt_sigaction - alter an action taken by a process
3972  *  @sig: signal to be sent
3973  *  @act: new sigaction
3974  *  @oact: used to save the previous sigaction
3975  *  @sigsetsize: size of sigset_t type
3976  */
3977 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3978 		const struct sigaction __user *, act,
3979 		struct sigaction __user *, oact,
3980 		size_t, sigsetsize)
3981 {
3982 	struct k_sigaction new_sa, old_sa;
3983 	int ret;
3984 
3985 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3986 	if (sigsetsize != sizeof(sigset_t))
3987 		return -EINVAL;
3988 
3989 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3990 		return -EFAULT;
3991 
3992 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3993 	if (ret)
3994 		return ret;
3995 
3996 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3997 		return -EFAULT;
3998 
3999 	return 0;
4000 }
4001 #ifdef CONFIG_COMPAT
4002 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4003 		const struct compat_sigaction __user *, act,
4004 		struct compat_sigaction __user *, oact,
4005 		compat_size_t, sigsetsize)
4006 {
4007 	struct k_sigaction new_ka, old_ka;
4008 #ifdef __ARCH_HAS_SA_RESTORER
4009 	compat_uptr_t restorer;
4010 #endif
4011 	int ret;
4012 
4013 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4014 	if (sigsetsize != sizeof(compat_sigset_t))
4015 		return -EINVAL;
4016 
4017 	if (act) {
4018 		compat_uptr_t handler;
4019 		ret = get_user(handler, &act->sa_handler);
4020 		new_ka.sa.sa_handler = compat_ptr(handler);
4021 #ifdef __ARCH_HAS_SA_RESTORER
4022 		ret |= get_user(restorer, &act->sa_restorer);
4023 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4024 #endif
4025 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4026 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4027 		if (ret)
4028 			return -EFAULT;
4029 	}
4030 
4031 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4032 	if (!ret && oact) {
4033 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4034 			       &oact->sa_handler);
4035 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4036 					 sizeof(oact->sa_mask));
4037 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4038 #ifdef __ARCH_HAS_SA_RESTORER
4039 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4040 				&oact->sa_restorer);
4041 #endif
4042 	}
4043 	return ret;
4044 }
4045 #endif
4046 #endif /* !CONFIG_ODD_RT_SIGACTION */
4047 
4048 #ifdef CONFIG_OLD_SIGACTION
4049 SYSCALL_DEFINE3(sigaction, int, sig,
4050 		const struct old_sigaction __user *, act,
4051 	        struct old_sigaction __user *, oact)
4052 {
4053 	struct k_sigaction new_ka, old_ka;
4054 	int ret;
4055 
4056 	if (act) {
4057 		old_sigset_t mask;
4058 		if (!access_ok(act, sizeof(*act)) ||
4059 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4060 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4061 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4062 		    __get_user(mask, &act->sa_mask))
4063 			return -EFAULT;
4064 #ifdef __ARCH_HAS_KA_RESTORER
4065 		new_ka.ka_restorer = NULL;
4066 #endif
4067 		siginitset(&new_ka.sa.sa_mask, mask);
4068 	}
4069 
4070 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4071 
4072 	if (!ret && oact) {
4073 		if (!access_ok(oact, sizeof(*oact)) ||
4074 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4075 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4076 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4077 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4078 			return -EFAULT;
4079 	}
4080 
4081 	return ret;
4082 }
4083 #endif
4084 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4085 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4086 		const struct compat_old_sigaction __user *, act,
4087 	        struct compat_old_sigaction __user *, oact)
4088 {
4089 	struct k_sigaction new_ka, old_ka;
4090 	int ret;
4091 	compat_old_sigset_t mask;
4092 	compat_uptr_t handler, restorer;
4093 
4094 	if (act) {
4095 		if (!access_ok(act, sizeof(*act)) ||
4096 		    __get_user(handler, &act->sa_handler) ||
4097 		    __get_user(restorer, &act->sa_restorer) ||
4098 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4099 		    __get_user(mask, &act->sa_mask))
4100 			return -EFAULT;
4101 
4102 #ifdef __ARCH_HAS_KA_RESTORER
4103 		new_ka.ka_restorer = NULL;
4104 #endif
4105 		new_ka.sa.sa_handler = compat_ptr(handler);
4106 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4107 		siginitset(&new_ka.sa.sa_mask, mask);
4108 	}
4109 
4110 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4111 
4112 	if (!ret && oact) {
4113 		if (!access_ok(oact, sizeof(*oact)) ||
4114 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4115 			       &oact->sa_handler) ||
4116 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4117 			       &oact->sa_restorer) ||
4118 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4119 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4120 			return -EFAULT;
4121 	}
4122 	return ret;
4123 }
4124 #endif
4125 
4126 #ifdef CONFIG_SGETMASK_SYSCALL
4127 
4128 /*
4129  * For backwards compatibility.  Functionality superseded by sigprocmask.
4130  */
4131 SYSCALL_DEFINE0(sgetmask)
4132 {
4133 	/* SMP safe */
4134 	return current->blocked.sig[0];
4135 }
4136 
4137 SYSCALL_DEFINE1(ssetmask, int, newmask)
4138 {
4139 	int old = current->blocked.sig[0];
4140 	sigset_t newset;
4141 
4142 	siginitset(&newset, newmask);
4143 	set_current_blocked(&newset);
4144 
4145 	return old;
4146 }
4147 #endif /* CONFIG_SGETMASK_SYSCALL */
4148 
4149 #ifdef __ARCH_WANT_SYS_SIGNAL
4150 /*
4151  * For backwards compatibility.  Functionality superseded by sigaction.
4152  */
4153 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4154 {
4155 	struct k_sigaction new_sa, old_sa;
4156 	int ret;
4157 
4158 	new_sa.sa.sa_handler = handler;
4159 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4160 	sigemptyset(&new_sa.sa.sa_mask);
4161 
4162 	ret = do_sigaction(sig, &new_sa, &old_sa);
4163 
4164 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4165 }
4166 #endif /* __ARCH_WANT_SYS_SIGNAL */
4167 
4168 #ifdef __ARCH_WANT_SYS_PAUSE
4169 
4170 SYSCALL_DEFINE0(pause)
4171 {
4172 	while (!signal_pending(current)) {
4173 		__set_current_state(TASK_INTERRUPTIBLE);
4174 		schedule();
4175 	}
4176 	return -ERESTARTNOHAND;
4177 }
4178 
4179 #endif
4180 
4181 static int sigsuspend(sigset_t *set)
4182 {
4183 	current->saved_sigmask = current->blocked;
4184 	set_current_blocked(set);
4185 
4186 	while (!signal_pending(current)) {
4187 		__set_current_state(TASK_INTERRUPTIBLE);
4188 		schedule();
4189 	}
4190 	set_restore_sigmask();
4191 	return -ERESTARTNOHAND;
4192 }
4193 
4194 /**
4195  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4196  *	@unewset value until a signal is received
4197  *  @unewset: new signal mask value
4198  *  @sigsetsize: size of sigset_t type
4199  */
4200 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4201 {
4202 	sigset_t newset;
4203 
4204 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4205 	if (sigsetsize != sizeof(sigset_t))
4206 		return -EINVAL;
4207 
4208 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4209 		return -EFAULT;
4210 	return sigsuspend(&newset);
4211 }
4212 
4213 #ifdef CONFIG_COMPAT
4214 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4215 {
4216 	sigset_t newset;
4217 
4218 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4219 	if (sigsetsize != sizeof(sigset_t))
4220 		return -EINVAL;
4221 
4222 	if (get_compat_sigset(&newset, unewset))
4223 		return -EFAULT;
4224 	return sigsuspend(&newset);
4225 }
4226 #endif
4227 
4228 #ifdef CONFIG_OLD_SIGSUSPEND
4229 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4230 {
4231 	sigset_t blocked;
4232 	siginitset(&blocked, mask);
4233 	return sigsuspend(&blocked);
4234 }
4235 #endif
4236 #ifdef CONFIG_OLD_SIGSUSPEND3
4237 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4238 {
4239 	sigset_t blocked;
4240 	siginitset(&blocked, mask);
4241 	return sigsuspend(&blocked);
4242 }
4243 #endif
4244 
4245 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4246 {
4247 	return NULL;
4248 }
4249 
4250 static inline void siginfo_buildtime_checks(void)
4251 {
4252 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4253 
4254 	/* Verify the offsets in the two siginfos match */
4255 #define CHECK_OFFSET(field) \
4256 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4257 
4258 	/* kill */
4259 	CHECK_OFFSET(si_pid);
4260 	CHECK_OFFSET(si_uid);
4261 
4262 	/* timer */
4263 	CHECK_OFFSET(si_tid);
4264 	CHECK_OFFSET(si_overrun);
4265 	CHECK_OFFSET(si_value);
4266 
4267 	/* rt */
4268 	CHECK_OFFSET(si_pid);
4269 	CHECK_OFFSET(si_uid);
4270 	CHECK_OFFSET(si_value);
4271 
4272 	/* sigchld */
4273 	CHECK_OFFSET(si_pid);
4274 	CHECK_OFFSET(si_uid);
4275 	CHECK_OFFSET(si_status);
4276 	CHECK_OFFSET(si_utime);
4277 	CHECK_OFFSET(si_stime);
4278 
4279 	/* sigfault */
4280 	CHECK_OFFSET(si_addr);
4281 	CHECK_OFFSET(si_addr_lsb);
4282 	CHECK_OFFSET(si_lower);
4283 	CHECK_OFFSET(si_upper);
4284 	CHECK_OFFSET(si_pkey);
4285 
4286 	/* sigpoll */
4287 	CHECK_OFFSET(si_band);
4288 	CHECK_OFFSET(si_fd);
4289 
4290 	/* sigsys */
4291 	CHECK_OFFSET(si_call_addr);
4292 	CHECK_OFFSET(si_syscall);
4293 	CHECK_OFFSET(si_arch);
4294 #undef CHECK_OFFSET
4295 }
4296 
4297 void __init signals_init(void)
4298 {
4299 	siginfo_buildtime_checks();
4300 
4301 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4302 }
4303 
4304 #ifdef CONFIG_KGDB_KDB
4305 #include <linux/kdb.h>
4306 /*
4307  * kdb_send_sig - Allows kdb to send signals without exposing
4308  * signal internals.  This function checks if the required locks are
4309  * available before calling the main signal code, to avoid kdb
4310  * deadlocks.
4311  */
4312 void kdb_send_sig(struct task_struct *t, int sig)
4313 {
4314 	static struct task_struct *kdb_prev_t;
4315 	int new_t, ret;
4316 	if (!spin_trylock(&t->sighand->siglock)) {
4317 		kdb_printf("Can't do kill command now.\n"
4318 			   "The sigmask lock is held somewhere else in "
4319 			   "kernel, try again later\n");
4320 		return;
4321 	}
4322 	new_t = kdb_prev_t != t;
4323 	kdb_prev_t = t;
4324 	if (t->state != TASK_RUNNING && new_t) {
4325 		spin_unlock(&t->sighand->siglock);
4326 		kdb_printf("Process is not RUNNING, sending a signal from "
4327 			   "kdb risks deadlock\n"
4328 			   "on the run queue locks. "
4329 			   "The signal has _not_ been sent.\n"
4330 			   "Reissue the kill command if you want to risk "
4331 			   "the deadlock.\n");
4332 		return;
4333 	}
4334 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4335 	spin_unlock(&t->sighand->siglock);
4336 	if (ret)
4337 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4338 			   sig, t->pid);
4339 	else
4340 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4341 }
4342 #endif	/* CONFIG_KGDB_KDB */
4343