1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/coredump.h> 21 #include <linux/security.h> 22 #include <linux/syscalls.h> 23 #include <linux/ptrace.h> 24 #include <linux/signal.h> 25 #include <linux/signalfd.h> 26 #include <linux/ratelimit.h> 27 #include <linux/tracehook.h> 28 #include <linux/capability.h> 29 #include <linux/freezer.h> 30 #include <linux/pid_namespace.h> 31 #include <linux/nsproxy.h> 32 #include <linux/user_namespace.h> 33 #include <linux/uprobes.h> 34 #include <linux/compat.h> 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/signal.h> 37 38 #include <asm/param.h> 39 #include <asm/uaccess.h> 40 #include <asm/unistd.h> 41 #include <asm/siginfo.h> 42 #include <asm/cacheflush.h> 43 #include "audit.h" /* audit_signal_info() */ 44 45 /* 46 * SLAB caches for signal bits. 47 */ 48 49 static struct kmem_cache *sigqueue_cachep; 50 51 int print_fatal_signals __read_mostly; 52 53 static void __user *sig_handler(struct task_struct *t, int sig) 54 { 55 return t->sighand->action[sig - 1].sa.sa_handler; 56 } 57 58 static int sig_handler_ignored(void __user *handler, int sig) 59 { 60 /* Is it explicitly or implicitly ignored? */ 61 return handler == SIG_IGN || 62 (handler == SIG_DFL && sig_kernel_ignore(sig)); 63 } 64 65 static int sig_task_ignored(struct task_struct *t, int sig, bool force) 66 { 67 void __user *handler; 68 69 handler = sig_handler(t, sig); 70 71 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 72 handler == SIG_DFL && !force) 73 return 1; 74 75 return sig_handler_ignored(handler, sig); 76 } 77 78 static int sig_ignored(struct task_struct *t, int sig, bool force) 79 { 80 /* 81 * Blocked signals are never ignored, since the 82 * signal handler may change by the time it is 83 * unblocked. 84 */ 85 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 86 return 0; 87 88 if (!sig_task_ignored(t, sig, force)) 89 return 0; 90 91 /* 92 * Tracers may want to know about even ignored signals. 93 */ 94 return !t->ptrace; 95 } 96 97 /* 98 * Re-calculate pending state from the set of locally pending 99 * signals, globally pending signals, and blocked signals. 100 */ 101 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 102 { 103 unsigned long ready; 104 long i; 105 106 switch (_NSIG_WORDS) { 107 default: 108 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 109 ready |= signal->sig[i] &~ blocked->sig[i]; 110 break; 111 112 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 113 ready |= signal->sig[2] &~ blocked->sig[2]; 114 ready |= signal->sig[1] &~ blocked->sig[1]; 115 ready |= signal->sig[0] &~ blocked->sig[0]; 116 break; 117 118 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 119 ready |= signal->sig[0] &~ blocked->sig[0]; 120 break; 121 122 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 123 } 124 return ready != 0; 125 } 126 127 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 128 129 static int recalc_sigpending_tsk(struct task_struct *t) 130 { 131 if ((t->jobctl & JOBCTL_PENDING_MASK) || 132 PENDING(&t->pending, &t->blocked) || 133 PENDING(&t->signal->shared_pending, &t->blocked)) { 134 set_tsk_thread_flag(t, TIF_SIGPENDING); 135 return 1; 136 } 137 /* 138 * We must never clear the flag in another thread, or in current 139 * when it's possible the current syscall is returning -ERESTART*. 140 * So we don't clear it here, and only callers who know they should do. 141 */ 142 return 0; 143 } 144 145 /* 146 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 147 * This is superfluous when called on current, the wakeup is a harmless no-op. 148 */ 149 void recalc_sigpending_and_wake(struct task_struct *t) 150 { 151 if (recalc_sigpending_tsk(t)) 152 signal_wake_up(t, 0); 153 } 154 155 void recalc_sigpending(void) 156 { 157 if (!recalc_sigpending_tsk(current) && !freezing(current)) 158 clear_thread_flag(TIF_SIGPENDING); 159 160 } 161 162 /* Given the mask, find the first available signal that should be serviced. */ 163 164 #define SYNCHRONOUS_MASK \ 165 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 166 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 167 168 int next_signal(struct sigpending *pending, sigset_t *mask) 169 { 170 unsigned long i, *s, *m, x; 171 int sig = 0; 172 173 s = pending->signal.sig; 174 m = mask->sig; 175 176 /* 177 * Handle the first word specially: it contains the 178 * synchronous signals that need to be dequeued first. 179 */ 180 x = *s &~ *m; 181 if (x) { 182 if (x & SYNCHRONOUS_MASK) 183 x &= SYNCHRONOUS_MASK; 184 sig = ffz(~x) + 1; 185 return sig; 186 } 187 188 switch (_NSIG_WORDS) { 189 default: 190 for (i = 1; i < _NSIG_WORDS; ++i) { 191 x = *++s &~ *++m; 192 if (!x) 193 continue; 194 sig = ffz(~x) + i*_NSIG_BPW + 1; 195 break; 196 } 197 break; 198 199 case 2: 200 x = s[1] &~ m[1]; 201 if (!x) 202 break; 203 sig = ffz(~x) + _NSIG_BPW + 1; 204 break; 205 206 case 1: 207 /* Nothing to do */ 208 break; 209 } 210 211 return sig; 212 } 213 214 static inline void print_dropped_signal(int sig) 215 { 216 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 217 218 if (!print_fatal_signals) 219 return; 220 221 if (!__ratelimit(&ratelimit_state)) 222 return; 223 224 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 225 current->comm, current->pid, sig); 226 } 227 228 /** 229 * task_set_jobctl_pending - set jobctl pending bits 230 * @task: target task 231 * @mask: pending bits to set 232 * 233 * Clear @mask from @task->jobctl. @mask must be subset of 234 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 235 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 236 * cleared. If @task is already being killed or exiting, this function 237 * becomes noop. 238 * 239 * CONTEXT: 240 * Must be called with @task->sighand->siglock held. 241 * 242 * RETURNS: 243 * %true if @mask is set, %false if made noop because @task was dying. 244 */ 245 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask) 246 { 247 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 248 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 249 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 250 251 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 252 return false; 253 254 if (mask & JOBCTL_STOP_SIGMASK) 255 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 256 257 task->jobctl |= mask; 258 return true; 259 } 260 261 /** 262 * task_clear_jobctl_trapping - clear jobctl trapping bit 263 * @task: target task 264 * 265 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 266 * Clear it and wake up the ptracer. Note that we don't need any further 267 * locking. @task->siglock guarantees that @task->parent points to the 268 * ptracer. 269 * 270 * CONTEXT: 271 * Must be called with @task->sighand->siglock held. 272 */ 273 void task_clear_jobctl_trapping(struct task_struct *task) 274 { 275 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 276 task->jobctl &= ~JOBCTL_TRAPPING; 277 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 278 } 279 } 280 281 /** 282 * task_clear_jobctl_pending - clear jobctl pending bits 283 * @task: target task 284 * @mask: pending bits to clear 285 * 286 * Clear @mask from @task->jobctl. @mask must be subset of 287 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 288 * STOP bits are cleared together. 289 * 290 * If clearing of @mask leaves no stop or trap pending, this function calls 291 * task_clear_jobctl_trapping(). 292 * 293 * CONTEXT: 294 * Must be called with @task->sighand->siglock held. 295 */ 296 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask) 297 { 298 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 299 300 if (mask & JOBCTL_STOP_PENDING) 301 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 302 303 task->jobctl &= ~mask; 304 305 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 306 task_clear_jobctl_trapping(task); 307 } 308 309 /** 310 * task_participate_group_stop - participate in a group stop 311 * @task: task participating in a group stop 312 * 313 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 314 * Group stop states are cleared and the group stop count is consumed if 315 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 316 * stop, the appropriate %SIGNAL_* flags are set. 317 * 318 * CONTEXT: 319 * Must be called with @task->sighand->siglock held. 320 * 321 * RETURNS: 322 * %true if group stop completion should be notified to the parent, %false 323 * otherwise. 324 */ 325 static bool task_participate_group_stop(struct task_struct *task) 326 { 327 struct signal_struct *sig = task->signal; 328 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 329 330 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 331 332 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 333 334 if (!consume) 335 return false; 336 337 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 338 sig->group_stop_count--; 339 340 /* 341 * Tell the caller to notify completion iff we are entering into a 342 * fresh group stop. Read comment in do_signal_stop() for details. 343 */ 344 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 345 sig->flags = SIGNAL_STOP_STOPPED; 346 return true; 347 } 348 return false; 349 } 350 351 /* 352 * allocate a new signal queue record 353 * - this may be called without locks if and only if t == current, otherwise an 354 * appropriate lock must be held to stop the target task from exiting 355 */ 356 static struct sigqueue * 357 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 358 { 359 struct sigqueue *q = NULL; 360 struct user_struct *user; 361 362 /* 363 * Protect access to @t credentials. This can go away when all 364 * callers hold rcu read lock. 365 */ 366 rcu_read_lock(); 367 user = get_uid(__task_cred(t)->user); 368 atomic_inc(&user->sigpending); 369 rcu_read_unlock(); 370 371 if (override_rlimit || 372 atomic_read(&user->sigpending) <= 373 task_rlimit(t, RLIMIT_SIGPENDING)) { 374 q = kmem_cache_alloc(sigqueue_cachep, flags); 375 } else { 376 print_dropped_signal(sig); 377 } 378 379 if (unlikely(q == NULL)) { 380 atomic_dec(&user->sigpending); 381 free_uid(user); 382 } else { 383 INIT_LIST_HEAD(&q->list); 384 q->flags = 0; 385 q->user = user; 386 } 387 388 return q; 389 } 390 391 static void __sigqueue_free(struct sigqueue *q) 392 { 393 if (q->flags & SIGQUEUE_PREALLOC) 394 return; 395 atomic_dec(&q->user->sigpending); 396 free_uid(q->user); 397 kmem_cache_free(sigqueue_cachep, q); 398 } 399 400 void flush_sigqueue(struct sigpending *queue) 401 { 402 struct sigqueue *q; 403 404 sigemptyset(&queue->signal); 405 while (!list_empty(&queue->list)) { 406 q = list_entry(queue->list.next, struct sigqueue , list); 407 list_del_init(&q->list); 408 __sigqueue_free(q); 409 } 410 } 411 412 /* 413 * Flush all pending signals for a task. 414 */ 415 void __flush_signals(struct task_struct *t) 416 { 417 clear_tsk_thread_flag(t, TIF_SIGPENDING); 418 flush_sigqueue(&t->pending); 419 flush_sigqueue(&t->signal->shared_pending); 420 } 421 422 void flush_signals(struct task_struct *t) 423 { 424 unsigned long flags; 425 426 spin_lock_irqsave(&t->sighand->siglock, flags); 427 __flush_signals(t); 428 spin_unlock_irqrestore(&t->sighand->siglock, flags); 429 } 430 431 static void __flush_itimer_signals(struct sigpending *pending) 432 { 433 sigset_t signal, retain; 434 struct sigqueue *q, *n; 435 436 signal = pending->signal; 437 sigemptyset(&retain); 438 439 list_for_each_entry_safe(q, n, &pending->list, list) { 440 int sig = q->info.si_signo; 441 442 if (likely(q->info.si_code != SI_TIMER)) { 443 sigaddset(&retain, sig); 444 } else { 445 sigdelset(&signal, sig); 446 list_del_init(&q->list); 447 __sigqueue_free(q); 448 } 449 } 450 451 sigorsets(&pending->signal, &signal, &retain); 452 } 453 454 void flush_itimer_signals(void) 455 { 456 struct task_struct *tsk = current; 457 unsigned long flags; 458 459 spin_lock_irqsave(&tsk->sighand->siglock, flags); 460 __flush_itimer_signals(&tsk->pending); 461 __flush_itimer_signals(&tsk->signal->shared_pending); 462 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 463 } 464 465 void ignore_signals(struct task_struct *t) 466 { 467 int i; 468 469 for (i = 0; i < _NSIG; ++i) 470 t->sighand->action[i].sa.sa_handler = SIG_IGN; 471 472 flush_signals(t); 473 } 474 475 /* 476 * Flush all handlers for a task. 477 */ 478 479 void 480 flush_signal_handlers(struct task_struct *t, int force_default) 481 { 482 int i; 483 struct k_sigaction *ka = &t->sighand->action[0]; 484 for (i = _NSIG ; i != 0 ; i--) { 485 if (force_default || ka->sa.sa_handler != SIG_IGN) 486 ka->sa.sa_handler = SIG_DFL; 487 ka->sa.sa_flags = 0; 488 sigemptyset(&ka->sa.sa_mask); 489 ka++; 490 } 491 } 492 493 int unhandled_signal(struct task_struct *tsk, int sig) 494 { 495 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 496 if (is_global_init(tsk)) 497 return 1; 498 if (handler != SIG_IGN && handler != SIG_DFL) 499 return 0; 500 /* if ptraced, let the tracer determine */ 501 return !tsk->ptrace; 502 } 503 504 /* 505 * Notify the system that a driver wants to block all signals for this 506 * process, and wants to be notified if any signals at all were to be 507 * sent/acted upon. If the notifier routine returns non-zero, then the 508 * signal will be acted upon after all. If the notifier routine returns 0, 509 * then then signal will be blocked. Only one block per process is 510 * allowed. priv is a pointer to private data that the notifier routine 511 * can use to determine if the signal should be blocked or not. 512 */ 513 void 514 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 515 { 516 unsigned long flags; 517 518 spin_lock_irqsave(¤t->sighand->siglock, flags); 519 current->notifier_mask = mask; 520 current->notifier_data = priv; 521 current->notifier = notifier; 522 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 523 } 524 525 /* Notify the system that blocking has ended. */ 526 527 void 528 unblock_all_signals(void) 529 { 530 unsigned long flags; 531 532 spin_lock_irqsave(¤t->sighand->siglock, flags); 533 current->notifier = NULL; 534 current->notifier_data = NULL; 535 recalc_sigpending(); 536 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 537 } 538 539 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) 540 { 541 struct sigqueue *q, *first = NULL; 542 543 /* 544 * Collect the siginfo appropriate to this signal. Check if 545 * there is another siginfo for the same signal. 546 */ 547 list_for_each_entry(q, &list->list, list) { 548 if (q->info.si_signo == sig) { 549 if (first) 550 goto still_pending; 551 first = q; 552 } 553 } 554 555 sigdelset(&list->signal, sig); 556 557 if (first) { 558 still_pending: 559 list_del_init(&first->list); 560 copy_siginfo(info, &first->info); 561 __sigqueue_free(first); 562 } else { 563 /* 564 * Ok, it wasn't in the queue. This must be 565 * a fast-pathed signal or we must have been 566 * out of queue space. So zero out the info. 567 */ 568 info->si_signo = sig; 569 info->si_errno = 0; 570 info->si_code = SI_USER; 571 info->si_pid = 0; 572 info->si_uid = 0; 573 } 574 } 575 576 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 577 siginfo_t *info) 578 { 579 int sig = next_signal(pending, mask); 580 581 if (sig) { 582 if (current->notifier) { 583 if (sigismember(current->notifier_mask, sig)) { 584 if (!(current->notifier)(current->notifier_data)) { 585 clear_thread_flag(TIF_SIGPENDING); 586 return 0; 587 } 588 } 589 } 590 591 collect_signal(sig, pending, info); 592 } 593 594 return sig; 595 } 596 597 /* 598 * Dequeue a signal and return the element to the caller, which is 599 * expected to free it. 600 * 601 * All callers have to hold the siglock. 602 */ 603 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 604 { 605 int signr; 606 607 /* We only dequeue private signals from ourselves, we don't let 608 * signalfd steal them 609 */ 610 signr = __dequeue_signal(&tsk->pending, mask, info); 611 if (!signr) { 612 signr = __dequeue_signal(&tsk->signal->shared_pending, 613 mask, info); 614 /* 615 * itimer signal ? 616 * 617 * itimers are process shared and we restart periodic 618 * itimers in the signal delivery path to prevent DoS 619 * attacks in the high resolution timer case. This is 620 * compliant with the old way of self-restarting 621 * itimers, as the SIGALRM is a legacy signal and only 622 * queued once. Changing the restart behaviour to 623 * restart the timer in the signal dequeue path is 624 * reducing the timer noise on heavy loaded !highres 625 * systems too. 626 */ 627 if (unlikely(signr == SIGALRM)) { 628 struct hrtimer *tmr = &tsk->signal->real_timer; 629 630 if (!hrtimer_is_queued(tmr) && 631 tsk->signal->it_real_incr.tv64 != 0) { 632 hrtimer_forward(tmr, tmr->base->get_time(), 633 tsk->signal->it_real_incr); 634 hrtimer_restart(tmr); 635 } 636 } 637 } 638 639 recalc_sigpending(); 640 if (!signr) 641 return 0; 642 643 if (unlikely(sig_kernel_stop(signr))) { 644 /* 645 * Set a marker that we have dequeued a stop signal. Our 646 * caller might release the siglock and then the pending 647 * stop signal it is about to process is no longer in the 648 * pending bitmasks, but must still be cleared by a SIGCONT 649 * (and overruled by a SIGKILL). So those cases clear this 650 * shared flag after we've set it. Note that this flag may 651 * remain set after the signal we return is ignored or 652 * handled. That doesn't matter because its only purpose 653 * is to alert stop-signal processing code when another 654 * processor has come along and cleared the flag. 655 */ 656 current->jobctl |= JOBCTL_STOP_DEQUEUED; 657 } 658 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { 659 /* 660 * Release the siglock to ensure proper locking order 661 * of timer locks outside of siglocks. Note, we leave 662 * irqs disabled here, since the posix-timers code is 663 * about to disable them again anyway. 664 */ 665 spin_unlock(&tsk->sighand->siglock); 666 do_schedule_next_timer(info); 667 spin_lock(&tsk->sighand->siglock); 668 } 669 return signr; 670 } 671 672 /* 673 * Tell a process that it has a new active signal.. 674 * 675 * NOTE! we rely on the previous spin_lock to 676 * lock interrupts for us! We can only be called with 677 * "siglock" held, and the local interrupt must 678 * have been disabled when that got acquired! 679 * 680 * No need to set need_resched since signal event passing 681 * goes through ->blocked 682 */ 683 void signal_wake_up_state(struct task_struct *t, unsigned int state) 684 { 685 set_tsk_thread_flag(t, TIF_SIGPENDING); 686 /* 687 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 688 * case. We don't check t->state here because there is a race with it 689 * executing another processor and just now entering stopped state. 690 * By using wake_up_state, we ensure the process will wake up and 691 * handle its death signal. 692 */ 693 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 694 kick_process(t); 695 } 696 697 /* 698 * Remove signals in mask from the pending set and queue. 699 * Returns 1 if any signals were found. 700 * 701 * All callers must be holding the siglock. 702 * 703 * This version takes a sigset mask and looks at all signals, 704 * not just those in the first mask word. 705 */ 706 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 707 { 708 struct sigqueue *q, *n; 709 sigset_t m; 710 711 sigandsets(&m, mask, &s->signal); 712 if (sigisemptyset(&m)) 713 return 0; 714 715 sigandnsets(&s->signal, &s->signal, mask); 716 list_for_each_entry_safe(q, n, &s->list, list) { 717 if (sigismember(mask, q->info.si_signo)) { 718 list_del_init(&q->list); 719 __sigqueue_free(q); 720 } 721 } 722 return 1; 723 } 724 /* 725 * Remove signals in mask from the pending set and queue. 726 * Returns 1 if any signals were found. 727 * 728 * All callers must be holding the siglock. 729 */ 730 static int rm_from_queue(unsigned long mask, struct sigpending *s) 731 { 732 struct sigqueue *q, *n; 733 734 if (!sigtestsetmask(&s->signal, mask)) 735 return 0; 736 737 sigdelsetmask(&s->signal, mask); 738 list_for_each_entry_safe(q, n, &s->list, list) { 739 if (q->info.si_signo < SIGRTMIN && 740 (mask & sigmask(q->info.si_signo))) { 741 list_del_init(&q->list); 742 __sigqueue_free(q); 743 } 744 } 745 return 1; 746 } 747 748 static inline int is_si_special(const struct siginfo *info) 749 { 750 return info <= SEND_SIG_FORCED; 751 } 752 753 static inline bool si_fromuser(const struct siginfo *info) 754 { 755 return info == SEND_SIG_NOINFO || 756 (!is_si_special(info) && SI_FROMUSER(info)); 757 } 758 759 /* 760 * called with RCU read lock from check_kill_permission() 761 */ 762 static int kill_ok_by_cred(struct task_struct *t) 763 { 764 const struct cred *cred = current_cred(); 765 const struct cred *tcred = __task_cred(t); 766 767 if (uid_eq(cred->euid, tcred->suid) || 768 uid_eq(cred->euid, tcred->uid) || 769 uid_eq(cred->uid, tcred->suid) || 770 uid_eq(cred->uid, tcred->uid)) 771 return 1; 772 773 if (ns_capable(tcred->user_ns, CAP_KILL)) 774 return 1; 775 776 return 0; 777 } 778 779 /* 780 * Bad permissions for sending the signal 781 * - the caller must hold the RCU read lock 782 */ 783 static int check_kill_permission(int sig, struct siginfo *info, 784 struct task_struct *t) 785 { 786 struct pid *sid; 787 int error; 788 789 if (!valid_signal(sig)) 790 return -EINVAL; 791 792 if (!si_fromuser(info)) 793 return 0; 794 795 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 796 if (error) 797 return error; 798 799 if (!same_thread_group(current, t) && 800 !kill_ok_by_cred(t)) { 801 switch (sig) { 802 case SIGCONT: 803 sid = task_session(t); 804 /* 805 * We don't return the error if sid == NULL. The 806 * task was unhashed, the caller must notice this. 807 */ 808 if (!sid || sid == task_session(current)) 809 break; 810 default: 811 return -EPERM; 812 } 813 } 814 815 return security_task_kill(t, info, sig, 0); 816 } 817 818 /** 819 * ptrace_trap_notify - schedule trap to notify ptracer 820 * @t: tracee wanting to notify tracer 821 * 822 * This function schedules sticky ptrace trap which is cleared on the next 823 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 824 * ptracer. 825 * 826 * If @t is running, STOP trap will be taken. If trapped for STOP and 827 * ptracer is listening for events, tracee is woken up so that it can 828 * re-trap for the new event. If trapped otherwise, STOP trap will be 829 * eventually taken without returning to userland after the existing traps 830 * are finished by PTRACE_CONT. 831 * 832 * CONTEXT: 833 * Must be called with @task->sighand->siglock held. 834 */ 835 static void ptrace_trap_notify(struct task_struct *t) 836 { 837 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 838 assert_spin_locked(&t->sighand->siglock); 839 840 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 841 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 842 } 843 844 /* 845 * Handle magic process-wide effects of stop/continue signals. Unlike 846 * the signal actions, these happen immediately at signal-generation 847 * time regardless of blocking, ignoring, or handling. This does the 848 * actual continuing for SIGCONT, but not the actual stopping for stop 849 * signals. The process stop is done as a signal action for SIG_DFL. 850 * 851 * Returns true if the signal should be actually delivered, otherwise 852 * it should be dropped. 853 */ 854 static int prepare_signal(int sig, struct task_struct *p, bool force) 855 { 856 struct signal_struct *signal = p->signal; 857 struct task_struct *t; 858 859 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) { 860 /* 861 * The process is in the middle of dying, nothing to do. 862 */ 863 } else if (sig_kernel_stop(sig)) { 864 /* 865 * This is a stop signal. Remove SIGCONT from all queues. 866 */ 867 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending); 868 t = p; 869 do { 870 rm_from_queue(sigmask(SIGCONT), &t->pending); 871 } while_each_thread(p, t); 872 } else if (sig == SIGCONT) { 873 unsigned int why; 874 /* 875 * Remove all stop signals from all queues, wake all threads. 876 */ 877 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending); 878 t = p; 879 do { 880 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 881 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 882 if (likely(!(t->ptrace & PT_SEIZED))) 883 wake_up_state(t, __TASK_STOPPED); 884 else 885 ptrace_trap_notify(t); 886 } while_each_thread(p, t); 887 888 /* 889 * Notify the parent with CLD_CONTINUED if we were stopped. 890 * 891 * If we were in the middle of a group stop, we pretend it 892 * was already finished, and then continued. Since SIGCHLD 893 * doesn't queue we report only CLD_STOPPED, as if the next 894 * CLD_CONTINUED was dropped. 895 */ 896 why = 0; 897 if (signal->flags & SIGNAL_STOP_STOPPED) 898 why |= SIGNAL_CLD_CONTINUED; 899 else if (signal->group_stop_count) 900 why |= SIGNAL_CLD_STOPPED; 901 902 if (why) { 903 /* 904 * The first thread which returns from do_signal_stop() 905 * will take ->siglock, notice SIGNAL_CLD_MASK, and 906 * notify its parent. See get_signal_to_deliver(). 907 */ 908 signal->flags = why | SIGNAL_STOP_CONTINUED; 909 signal->group_stop_count = 0; 910 signal->group_exit_code = 0; 911 } 912 } 913 914 return !sig_ignored(p, sig, force); 915 } 916 917 /* 918 * Test if P wants to take SIG. After we've checked all threads with this, 919 * it's equivalent to finding no threads not blocking SIG. Any threads not 920 * blocking SIG were ruled out because they are not running and already 921 * have pending signals. Such threads will dequeue from the shared queue 922 * as soon as they're available, so putting the signal on the shared queue 923 * will be equivalent to sending it to one such thread. 924 */ 925 static inline int wants_signal(int sig, struct task_struct *p) 926 { 927 if (sigismember(&p->blocked, sig)) 928 return 0; 929 if (p->flags & PF_EXITING) 930 return 0; 931 if (sig == SIGKILL) 932 return 1; 933 if (task_is_stopped_or_traced(p)) 934 return 0; 935 return task_curr(p) || !signal_pending(p); 936 } 937 938 static void complete_signal(int sig, struct task_struct *p, int group) 939 { 940 struct signal_struct *signal = p->signal; 941 struct task_struct *t; 942 943 /* 944 * Now find a thread we can wake up to take the signal off the queue. 945 * 946 * If the main thread wants the signal, it gets first crack. 947 * Probably the least surprising to the average bear. 948 */ 949 if (wants_signal(sig, p)) 950 t = p; 951 else if (!group || thread_group_empty(p)) 952 /* 953 * There is just one thread and it does not need to be woken. 954 * It will dequeue unblocked signals before it runs again. 955 */ 956 return; 957 else { 958 /* 959 * Otherwise try to find a suitable thread. 960 */ 961 t = signal->curr_target; 962 while (!wants_signal(sig, t)) { 963 t = next_thread(t); 964 if (t == signal->curr_target) 965 /* 966 * No thread needs to be woken. 967 * Any eligible threads will see 968 * the signal in the queue soon. 969 */ 970 return; 971 } 972 signal->curr_target = t; 973 } 974 975 /* 976 * Found a killable thread. If the signal will be fatal, 977 * then start taking the whole group down immediately. 978 */ 979 if (sig_fatal(p, sig) && 980 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 981 !sigismember(&t->real_blocked, sig) && 982 (sig == SIGKILL || !t->ptrace)) { 983 /* 984 * This signal will be fatal to the whole group. 985 */ 986 if (!sig_kernel_coredump(sig)) { 987 /* 988 * Start a group exit and wake everybody up. 989 * This way we don't have other threads 990 * running and doing things after a slower 991 * thread has the fatal signal pending. 992 */ 993 signal->flags = SIGNAL_GROUP_EXIT; 994 signal->group_exit_code = sig; 995 signal->group_stop_count = 0; 996 t = p; 997 do { 998 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 999 sigaddset(&t->pending.signal, SIGKILL); 1000 signal_wake_up(t, 1); 1001 } while_each_thread(p, t); 1002 return; 1003 } 1004 } 1005 1006 /* 1007 * The signal is already in the shared-pending queue. 1008 * Tell the chosen thread to wake up and dequeue it. 1009 */ 1010 signal_wake_up(t, sig == SIGKILL); 1011 return; 1012 } 1013 1014 static inline int legacy_queue(struct sigpending *signals, int sig) 1015 { 1016 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1017 } 1018 1019 #ifdef CONFIG_USER_NS 1020 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1021 { 1022 if (current_user_ns() == task_cred_xxx(t, user_ns)) 1023 return; 1024 1025 if (SI_FROMKERNEL(info)) 1026 return; 1027 1028 rcu_read_lock(); 1029 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), 1030 make_kuid(current_user_ns(), info->si_uid)); 1031 rcu_read_unlock(); 1032 } 1033 #else 1034 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1035 { 1036 return; 1037 } 1038 #endif 1039 1040 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 1041 int group, int from_ancestor_ns) 1042 { 1043 struct sigpending *pending; 1044 struct sigqueue *q; 1045 int override_rlimit; 1046 int ret = 0, result; 1047 1048 assert_spin_locked(&t->sighand->siglock); 1049 1050 result = TRACE_SIGNAL_IGNORED; 1051 if (!prepare_signal(sig, t, 1052 from_ancestor_ns || (info == SEND_SIG_FORCED))) 1053 goto ret; 1054 1055 pending = group ? &t->signal->shared_pending : &t->pending; 1056 /* 1057 * Short-circuit ignored signals and support queuing 1058 * exactly one non-rt signal, so that we can get more 1059 * detailed information about the cause of the signal. 1060 */ 1061 result = TRACE_SIGNAL_ALREADY_PENDING; 1062 if (legacy_queue(pending, sig)) 1063 goto ret; 1064 1065 result = TRACE_SIGNAL_DELIVERED; 1066 /* 1067 * fast-pathed signals for kernel-internal things like SIGSTOP 1068 * or SIGKILL. 1069 */ 1070 if (info == SEND_SIG_FORCED) 1071 goto out_set; 1072 1073 /* 1074 * Real-time signals must be queued if sent by sigqueue, or 1075 * some other real-time mechanism. It is implementation 1076 * defined whether kill() does so. We attempt to do so, on 1077 * the principle of least surprise, but since kill is not 1078 * allowed to fail with EAGAIN when low on memory we just 1079 * make sure at least one signal gets delivered and don't 1080 * pass on the info struct. 1081 */ 1082 if (sig < SIGRTMIN) 1083 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1084 else 1085 override_rlimit = 0; 1086 1087 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, 1088 override_rlimit); 1089 if (q) { 1090 list_add_tail(&q->list, &pending->list); 1091 switch ((unsigned long) info) { 1092 case (unsigned long) SEND_SIG_NOINFO: 1093 q->info.si_signo = sig; 1094 q->info.si_errno = 0; 1095 q->info.si_code = SI_USER; 1096 q->info.si_pid = task_tgid_nr_ns(current, 1097 task_active_pid_ns(t)); 1098 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1099 break; 1100 case (unsigned long) SEND_SIG_PRIV: 1101 q->info.si_signo = sig; 1102 q->info.si_errno = 0; 1103 q->info.si_code = SI_KERNEL; 1104 q->info.si_pid = 0; 1105 q->info.si_uid = 0; 1106 break; 1107 default: 1108 copy_siginfo(&q->info, info); 1109 if (from_ancestor_ns) 1110 q->info.si_pid = 0; 1111 break; 1112 } 1113 1114 userns_fixup_signal_uid(&q->info, t); 1115 1116 } else if (!is_si_special(info)) { 1117 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1118 /* 1119 * Queue overflow, abort. We may abort if the 1120 * signal was rt and sent by user using something 1121 * other than kill(). 1122 */ 1123 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1124 ret = -EAGAIN; 1125 goto ret; 1126 } else { 1127 /* 1128 * This is a silent loss of information. We still 1129 * send the signal, but the *info bits are lost. 1130 */ 1131 result = TRACE_SIGNAL_LOSE_INFO; 1132 } 1133 } 1134 1135 out_set: 1136 signalfd_notify(t, sig); 1137 sigaddset(&pending->signal, sig); 1138 complete_signal(sig, t, group); 1139 ret: 1140 trace_signal_generate(sig, info, t, group, result); 1141 return ret; 1142 } 1143 1144 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 1145 int group) 1146 { 1147 int from_ancestor_ns = 0; 1148 1149 #ifdef CONFIG_PID_NS 1150 from_ancestor_ns = si_fromuser(info) && 1151 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1152 #endif 1153 1154 return __send_signal(sig, info, t, group, from_ancestor_ns); 1155 } 1156 1157 static void print_fatal_signal(int signr) 1158 { 1159 struct pt_regs *regs = signal_pt_regs(); 1160 printk(KERN_INFO "%s/%d: potentially unexpected fatal signal %d.\n", 1161 current->comm, task_pid_nr(current), signr); 1162 1163 #if defined(__i386__) && !defined(__arch_um__) 1164 printk(KERN_INFO "code at %08lx: ", regs->ip); 1165 { 1166 int i; 1167 for (i = 0; i < 16; i++) { 1168 unsigned char insn; 1169 1170 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1171 break; 1172 printk(KERN_CONT "%02x ", insn); 1173 } 1174 } 1175 printk(KERN_CONT "\n"); 1176 #endif 1177 preempt_disable(); 1178 show_regs(regs); 1179 preempt_enable(); 1180 } 1181 1182 static int __init setup_print_fatal_signals(char *str) 1183 { 1184 get_option (&str, &print_fatal_signals); 1185 1186 return 1; 1187 } 1188 1189 __setup("print-fatal-signals=", setup_print_fatal_signals); 1190 1191 int 1192 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1193 { 1194 return send_signal(sig, info, p, 1); 1195 } 1196 1197 static int 1198 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1199 { 1200 return send_signal(sig, info, t, 0); 1201 } 1202 1203 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1204 bool group) 1205 { 1206 unsigned long flags; 1207 int ret = -ESRCH; 1208 1209 if (lock_task_sighand(p, &flags)) { 1210 ret = send_signal(sig, info, p, group); 1211 unlock_task_sighand(p, &flags); 1212 } 1213 1214 return ret; 1215 } 1216 1217 /* 1218 * Force a signal that the process can't ignore: if necessary 1219 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1220 * 1221 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1222 * since we do not want to have a signal handler that was blocked 1223 * be invoked when user space had explicitly blocked it. 1224 * 1225 * We don't want to have recursive SIGSEGV's etc, for example, 1226 * that is why we also clear SIGNAL_UNKILLABLE. 1227 */ 1228 int 1229 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1230 { 1231 unsigned long int flags; 1232 int ret, blocked, ignored; 1233 struct k_sigaction *action; 1234 1235 spin_lock_irqsave(&t->sighand->siglock, flags); 1236 action = &t->sighand->action[sig-1]; 1237 ignored = action->sa.sa_handler == SIG_IGN; 1238 blocked = sigismember(&t->blocked, sig); 1239 if (blocked || ignored) { 1240 action->sa.sa_handler = SIG_DFL; 1241 if (blocked) { 1242 sigdelset(&t->blocked, sig); 1243 recalc_sigpending_and_wake(t); 1244 } 1245 } 1246 if (action->sa.sa_handler == SIG_DFL) 1247 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1248 ret = specific_send_sig_info(sig, info, t); 1249 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1250 1251 return ret; 1252 } 1253 1254 /* 1255 * Nuke all other threads in the group. 1256 */ 1257 int zap_other_threads(struct task_struct *p) 1258 { 1259 struct task_struct *t = p; 1260 int count = 0; 1261 1262 p->signal->group_stop_count = 0; 1263 1264 while_each_thread(p, t) { 1265 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1266 count++; 1267 1268 /* Don't bother with already dead threads */ 1269 if (t->exit_state) 1270 continue; 1271 sigaddset(&t->pending.signal, SIGKILL); 1272 signal_wake_up(t, 1); 1273 } 1274 1275 return count; 1276 } 1277 1278 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1279 unsigned long *flags) 1280 { 1281 struct sighand_struct *sighand; 1282 1283 for (;;) { 1284 local_irq_save(*flags); 1285 rcu_read_lock(); 1286 sighand = rcu_dereference(tsk->sighand); 1287 if (unlikely(sighand == NULL)) { 1288 rcu_read_unlock(); 1289 local_irq_restore(*flags); 1290 break; 1291 } 1292 1293 spin_lock(&sighand->siglock); 1294 if (likely(sighand == tsk->sighand)) { 1295 rcu_read_unlock(); 1296 break; 1297 } 1298 spin_unlock(&sighand->siglock); 1299 rcu_read_unlock(); 1300 local_irq_restore(*flags); 1301 } 1302 1303 return sighand; 1304 } 1305 1306 /* 1307 * send signal info to all the members of a group 1308 */ 1309 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1310 { 1311 int ret; 1312 1313 rcu_read_lock(); 1314 ret = check_kill_permission(sig, info, p); 1315 rcu_read_unlock(); 1316 1317 if (!ret && sig) 1318 ret = do_send_sig_info(sig, info, p, true); 1319 1320 return ret; 1321 } 1322 1323 /* 1324 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1325 * control characters do (^C, ^Z etc) 1326 * - the caller must hold at least a readlock on tasklist_lock 1327 */ 1328 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1329 { 1330 struct task_struct *p = NULL; 1331 int retval, success; 1332 1333 success = 0; 1334 retval = -ESRCH; 1335 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1336 int err = group_send_sig_info(sig, info, p); 1337 success |= !err; 1338 retval = err; 1339 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1340 return success ? 0 : retval; 1341 } 1342 1343 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1344 { 1345 int error = -ESRCH; 1346 struct task_struct *p; 1347 1348 rcu_read_lock(); 1349 retry: 1350 p = pid_task(pid, PIDTYPE_PID); 1351 if (p) { 1352 error = group_send_sig_info(sig, info, p); 1353 if (unlikely(error == -ESRCH)) 1354 /* 1355 * The task was unhashed in between, try again. 1356 * If it is dead, pid_task() will return NULL, 1357 * if we race with de_thread() it will find the 1358 * new leader. 1359 */ 1360 goto retry; 1361 } 1362 rcu_read_unlock(); 1363 1364 return error; 1365 } 1366 1367 int kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1368 { 1369 int error; 1370 rcu_read_lock(); 1371 error = kill_pid_info(sig, info, find_vpid(pid)); 1372 rcu_read_unlock(); 1373 return error; 1374 } 1375 1376 static int kill_as_cred_perm(const struct cred *cred, 1377 struct task_struct *target) 1378 { 1379 const struct cred *pcred = __task_cred(target); 1380 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) && 1381 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid)) 1382 return 0; 1383 return 1; 1384 } 1385 1386 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1387 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, 1388 const struct cred *cred, u32 secid) 1389 { 1390 int ret = -EINVAL; 1391 struct task_struct *p; 1392 unsigned long flags; 1393 1394 if (!valid_signal(sig)) 1395 return ret; 1396 1397 rcu_read_lock(); 1398 p = pid_task(pid, PIDTYPE_PID); 1399 if (!p) { 1400 ret = -ESRCH; 1401 goto out_unlock; 1402 } 1403 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1404 ret = -EPERM; 1405 goto out_unlock; 1406 } 1407 ret = security_task_kill(p, info, sig, secid); 1408 if (ret) 1409 goto out_unlock; 1410 1411 if (sig) { 1412 if (lock_task_sighand(p, &flags)) { 1413 ret = __send_signal(sig, info, p, 1, 0); 1414 unlock_task_sighand(p, &flags); 1415 } else 1416 ret = -ESRCH; 1417 } 1418 out_unlock: 1419 rcu_read_unlock(); 1420 return ret; 1421 } 1422 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1423 1424 /* 1425 * kill_something_info() interprets pid in interesting ways just like kill(2). 1426 * 1427 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1428 * is probably wrong. Should make it like BSD or SYSV. 1429 */ 1430 1431 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1432 { 1433 int ret; 1434 1435 if (pid > 0) { 1436 rcu_read_lock(); 1437 ret = kill_pid_info(sig, info, find_vpid(pid)); 1438 rcu_read_unlock(); 1439 return ret; 1440 } 1441 1442 read_lock(&tasklist_lock); 1443 if (pid != -1) { 1444 ret = __kill_pgrp_info(sig, info, 1445 pid ? find_vpid(-pid) : task_pgrp(current)); 1446 } else { 1447 int retval = 0, count = 0; 1448 struct task_struct * p; 1449 1450 for_each_process(p) { 1451 if (task_pid_vnr(p) > 1 && 1452 !same_thread_group(p, current)) { 1453 int err = group_send_sig_info(sig, info, p); 1454 ++count; 1455 if (err != -EPERM) 1456 retval = err; 1457 } 1458 } 1459 ret = count ? retval : -ESRCH; 1460 } 1461 read_unlock(&tasklist_lock); 1462 1463 return ret; 1464 } 1465 1466 /* 1467 * These are for backward compatibility with the rest of the kernel source. 1468 */ 1469 1470 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1471 { 1472 /* 1473 * Make sure legacy kernel users don't send in bad values 1474 * (normal paths check this in check_kill_permission). 1475 */ 1476 if (!valid_signal(sig)) 1477 return -EINVAL; 1478 1479 return do_send_sig_info(sig, info, p, false); 1480 } 1481 1482 #define __si_special(priv) \ 1483 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1484 1485 int 1486 send_sig(int sig, struct task_struct *p, int priv) 1487 { 1488 return send_sig_info(sig, __si_special(priv), p); 1489 } 1490 1491 void 1492 force_sig(int sig, struct task_struct *p) 1493 { 1494 force_sig_info(sig, SEND_SIG_PRIV, p); 1495 } 1496 1497 /* 1498 * When things go south during signal handling, we 1499 * will force a SIGSEGV. And if the signal that caused 1500 * the problem was already a SIGSEGV, we'll want to 1501 * make sure we don't even try to deliver the signal.. 1502 */ 1503 int 1504 force_sigsegv(int sig, struct task_struct *p) 1505 { 1506 if (sig == SIGSEGV) { 1507 unsigned long flags; 1508 spin_lock_irqsave(&p->sighand->siglock, flags); 1509 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1510 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1511 } 1512 force_sig(SIGSEGV, p); 1513 return 0; 1514 } 1515 1516 int kill_pgrp(struct pid *pid, int sig, int priv) 1517 { 1518 int ret; 1519 1520 read_lock(&tasklist_lock); 1521 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1522 read_unlock(&tasklist_lock); 1523 1524 return ret; 1525 } 1526 EXPORT_SYMBOL(kill_pgrp); 1527 1528 int kill_pid(struct pid *pid, int sig, int priv) 1529 { 1530 return kill_pid_info(sig, __si_special(priv), pid); 1531 } 1532 EXPORT_SYMBOL(kill_pid); 1533 1534 /* 1535 * These functions support sending signals using preallocated sigqueue 1536 * structures. This is needed "because realtime applications cannot 1537 * afford to lose notifications of asynchronous events, like timer 1538 * expirations or I/O completions". In the case of POSIX Timers 1539 * we allocate the sigqueue structure from the timer_create. If this 1540 * allocation fails we are able to report the failure to the application 1541 * with an EAGAIN error. 1542 */ 1543 struct sigqueue *sigqueue_alloc(void) 1544 { 1545 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1546 1547 if (q) 1548 q->flags |= SIGQUEUE_PREALLOC; 1549 1550 return q; 1551 } 1552 1553 void sigqueue_free(struct sigqueue *q) 1554 { 1555 unsigned long flags; 1556 spinlock_t *lock = ¤t->sighand->siglock; 1557 1558 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1559 /* 1560 * We must hold ->siglock while testing q->list 1561 * to serialize with collect_signal() or with 1562 * __exit_signal()->flush_sigqueue(). 1563 */ 1564 spin_lock_irqsave(lock, flags); 1565 q->flags &= ~SIGQUEUE_PREALLOC; 1566 /* 1567 * If it is queued it will be freed when dequeued, 1568 * like the "regular" sigqueue. 1569 */ 1570 if (!list_empty(&q->list)) 1571 q = NULL; 1572 spin_unlock_irqrestore(lock, flags); 1573 1574 if (q) 1575 __sigqueue_free(q); 1576 } 1577 1578 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1579 { 1580 int sig = q->info.si_signo; 1581 struct sigpending *pending; 1582 unsigned long flags; 1583 int ret, result; 1584 1585 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1586 1587 ret = -1; 1588 if (!likely(lock_task_sighand(t, &flags))) 1589 goto ret; 1590 1591 ret = 1; /* the signal is ignored */ 1592 result = TRACE_SIGNAL_IGNORED; 1593 if (!prepare_signal(sig, t, false)) 1594 goto out; 1595 1596 ret = 0; 1597 if (unlikely(!list_empty(&q->list))) { 1598 /* 1599 * If an SI_TIMER entry is already queue just increment 1600 * the overrun count. 1601 */ 1602 BUG_ON(q->info.si_code != SI_TIMER); 1603 q->info.si_overrun++; 1604 result = TRACE_SIGNAL_ALREADY_PENDING; 1605 goto out; 1606 } 1607 q->info.si_overrun = 0; 1608 1609 signalfd_notify(t, sig); 1610 pending = group ? &t->signal->shared_pending : &t->pending; 1611 list_add_tail(&q->list, &pending->list); 1612 sigaddset(&pending->signal, sig); 1613 complete_signal(sig, t, group); 1614 result = TRACE_SIGNAL_DELIVERED; 1615 out: 1616 trace_signal_generate(sig, &q->info, t, group, result); 1617 unlock_task_sighand(t, &flags); 1618 ret: 1619 return ret; 1620 } 1621 1622 /* 1623 * Let a parent know about the death of a child. 1624 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1625 * 1626 * Returns true if our parent ignored us and so we've switched to 1627 * self-reaping. 1628 */ 1629 bool do_notify_parent(struct task_struct *tsk, int sig) 1630 { 1631 struct siginfo info; 1632 unsigned long flags; 1633 struct sighand_struct *psig; 1634 bool autoreap = false; 1635 cputime_t utime, stime; 1636 1637 BUG_ON(sig == -1); 1638 1639 /* do_notify_parent_cldstop should have been called instead. */ 1640 BUG_ON(task_is_stopped_or_traced(tsk)); 1641 1642 BUG_ON(!tsk->ptrace && 1643 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1644 1645 if (sig != SIGCHLD) { 1646 /* 1647 * This is only possible if parent == real_parent. 1648 * Check if it has changed security domain. 1649 */ 1650 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1651 sig = SIGCHLD; 1652 } 1653 1654 info.si_signo = sig; 1655 info.si_errno = 0; 1656 /* 1657 * We are under tasklist_lock here so our parent is tied to 1658 * us and cannot change. 1659 * 1660 * task_active_pid_ns will always return the same pid namespace 1661 * until a task passes through release_task. 1662 * 1663 * write_lock() currently calls preempt_disable() which is the 1664 * same as rcu_read_lock(), but according to Oleg, this is not 1665 * correct to rely on this 1666 */ 1667 rcu_read_lock(); 1668 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1669 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1670 task_uid(tsk)); 1671 rcu_read_unlock(); 1672 1673 task_cputime(tsk, &utime, &stime); 1674 info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime); 1675 info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime); 1676 1677 info.si_status = tsk->exit_code & 0x7f; 1678 if (tsk->exit_code & 0x80) 1679 info.si_code = CLD_DUMPED; 1680 else if (tsk->exit_code & 0x7f) 1681 info.si_code = CLD_KILLED; 1682 else { 1683 info.si_code = CLD_EXITED; 1684 info.si_status = tsk->exit_code >> 8; 1685 } 1686 1687 psig = tsk->parent->sighand; 1688 spin_lock_irqsave(&psig->siglock, flags); 1689 if (!tsk->ptrace && sig == SIGCHLD && 1690 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1691 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1692 /* 1693 * We are exiting and our parent doesn't care. POSIX.1 1694 * defines special semantics for setting SIGCHLD to SIG_IGN 1695 * or setting the SA_NOCLDWAIT flag: we should be reaped 1696 * automatically and not left for our parent's wait4 call. 1697 * Rather than having the parent do it as a magic kind of 1698 * signal handler, we just set this to tell do_exit that we 1699 * can be cleaned up without becoming a zombie. Note that 1700 * we still call __wake_up_parent in this case, because a 1701 * blocked sys_wait4 might now return -ECHILD. 1702 * 1703 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1704 * is implementation-defined: we do (if you don't want 1705 * it, just use SIG_IGN instead). 1706 */ 1707 autoreap = true; 1708 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1709 sig = 0; 1710 } 1711 if (valid_signal(sig) && sig) 1712 __group_send_sig_info(sig, &info, tsk->parent); 1713 __wake_up_parent(tsk, tsk->parent); 1714 spin_unlock_irqrestore(&psig->siglock, flags); 1715 1716 return autoreap; 1717 } 1718 1719 /** 1720 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1721 * @tsk: task reporting the state change 1722 * @for_ptracer: the notification is for ptracer 1723 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1724 * 1725 * Notify @tsk's parent that the stopped/continued state has changed. If 1726 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1727 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1728 * 1729 * CONTEXT: 1730 * Must be called with tasklist_lock at least read locked. 1731 */ 1732 static void do_notify_parent_cldstop(struct task_struct *tsk, 1733 bool for_ptracer, int why) 1734 { 1735 struct siginfo info; 1736 unsigned long flags; 1737 struct task_struct *parent; 1738 struct sighand_struct *sighand; 1739 cputime_t utime, stime; 1740 1741 if (for_ptracer) { 1742 parent = tsk->parent; 1743 } else { 1744 tsk = tsk->group_leader; 1745 parent = tsk->real_parent; 1746 } 1747 1748 info.si_signo = SIGCHLD; 1749 info.si_errno = 0; 1750 /* 1751 * see comment in do_notify_parent() about the following 4 lines 1752 */ 1753 rcu_read_lock(); 1754 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 1755 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 1756 rcu_read_unlock(); 1757 1758 task_cputime(tsk, &utime, &stime); 1759 info.si_utime = cputime_to_clock_t(utime); 1760 info.si_stime = cputime_to_clock_t(stime); 1761 1762 info.si_code = why; 1763 switch (why) { 1764 case CLD_CONTINUED: 1765 info.si_status = SIGCONT; 1766 break; 1767 case CLD_STOPPED: 1768 info.si_status = tsk->signal->group_exit_code & 0x7f; 1769 break; 1770 case CLD_TRAPPED: 1771 info.si_status = tsk->exit_code & 0x7f; 1772 break; 1773 default: 1774 BUG(); 1775 } 1776 1777 sighand = parent->sighand; 1778 spin_lock_irqsave(&sighand->siglock, flags); 1779 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1780 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1781 __group_send_sig_info(SIGCHLD, &info, parent); 1782 /* 1783 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1784 */ 1785 __wake_up_parent(tsk, parent); 1786 spin_unlock_irqrestore(&sighand->siglock, flags); 1787 } 1788 1789 static inline int may_ptrace_stop(void) 1790 { 1791 if (!likely(current->ptrace)) 1792 return 0; 1793 /* 1794 * Are we in the middle of do_coredump? 1795 * If so and our tracer is also part of the coredump stopping 1796 * is a deadlock situation, and pointless because our tracer 1797 * is dead so don't allow us to stop. 1798 * If SIGKILL was already sent before the caller unlocked 1799 * ->siglock we must see ->core_state != NULL. Otherwise it 1800 * is safe to enter schedule(). 1801 * 1802 * This is almost outdated, a task with the pending SIGKILL can't 1803 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 1804 * after SIGKILL was already dequeued. 1805 */ 1806 if (unlikely(current->mm->core_state) && 1807 unlikely(current->mm == current->parent->mm)) 1808 return 0; 1809 1810 return 1; 1811 } 1812 1813 /* 1814 * Return non-zero if there is a SIGKILL that should be waking us up. 1815 * Called with the siglock held. 1816 */ 1817 static int sigkill_pending(struct task_struct *tsk) 1818 { 1819 return sigismember(&tsk->pending.signal, SIGKILL) || 1820 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1821 } 1822 1823 /* 1824 * This must be called with current->sighand->siglock held. 1825 * 1826 * This should be the path for all ptrace stops. 1827 * We always set current->last_siginfo while stopped here. 1828 * That makes it a way to test a stopped process for 1829 * being ptrace-stopped vs being job-control-stopped. 1830 * 1831 * If we actually decide not to stop at all because the tracer 1832 * is gone, we keep current->exit_code unless clear_code. 1833 */ 1834 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) 1835 __releases(¤t->sighand->siglock) 1836 __acquires(¤t->sighand->siglock) 1837 { 1838 bool gstop_done = false; 1839 1840 if (arch_ptrace_stop_needed(exit_code, info)) { 1841 /* 1842 * The arch code has something special to do before a 1843 * ptrace stop. This is allowed to block, e.g. for faults 1844 * on user stack pages. We can't keep the siglock while 1845 * calling arch_ptrace_stop, so we must release it now. 1846 * To preserve proper semantics, we must do this before 1847 * any signal bookkeeping like checking group_stop_count. 1848 * Meanwhile, a SIGKILL could come in before we retake the 1849 * siglock. That must prevent us from sleeping in TASK_TRACED. 1850 * So after regaining the lock, we must check for SIGKILL. 1851 */ 1852 spin_unlock_irq(¤t->sighand->siglock); 1853 arch_ptrace_stop(exit_code, info); 1854 spin_lock_irq(¤t->sighand->siglock); 1855 if (sigkill_pending(current)) 1856 return; 1857 } 1858 1859 /* 1860 * We're committing to trapping. TRACED should be visible before 1861 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 1862 * Also, transition to TRACED and updates to ->jobctl should be 1863 * atomic with respect to siglock and should be done after the arch 1864 * hook as siglock is released and regrabbed across it. 1865 */ 1866 set_current_state(TASK_TRACED); 1867 1868 current->last_siginfo = info; 1869 current->exit_code = exit_code; 1870 1871 /* 1872 * If @why is CLD_STOPPED, we're trapping to participate in a group 1873 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 1874 * across siglock relocks since INTERRUPT was scheduled, PENDING 1875 * could be clear now. We act as if SIGCONT is received after 1876 * TASK_TRACED is entered - ignore it. 1877 */ 1878 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 1879 gstop_done = task_participate_group_stop(current); 1880 1881 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 1882 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 1883 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 1884 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 1885 1886 /* entering a trap, clear TRAPPING */ 1887 task_clear_jobctl_trapping(current); 1888 1889 spin_unlock_irq(¤t->sighand->siglock); 1890 read_lock(&tasklist_lock); 1891 if (may_ptrace_stop()) { 1892 /* 1893 * Notify parents of the stop. 1894 * 1895 * While ptraced, there are two parents - the ptracer and 1896 * the real_parent of the group_leader. The ptracer should 1897 * know about every stop while the real parent is only 1898 * interested in the completion of group stop. The states 1899 * for the two don't interact with each other. Notify 1900 * separately unless they're gonna be duplicates. 1901 */ 1902 do_notify_parent_cldstop(current, true, why); 1903 if (gstop_done && ptrace_reparented(current)) 1904 do_notify_parent_cldstop(current, false, why); 1905 1906 /* 1907 * Don't want to allow preemption here, because 1908 * sys_ptrace() needs this task to be inactive. 1909 * 1910 * XXX: implement read_unlock_no_resched(). 1911 */ 1912 preempt_disable(); 1913 read_unlock(&tasklist_lock); 1914 preempt_enable_no_resched(); 1915 freezable_schedule(); 1916 } else { 1917 /* 1918 * By the time we got the lock, our tracer went away. 1919 * Don't drop the lock yet, another tracer may come. 1920 * 1921 * If @gstop_done, the ptracer went away between group stop 1922 * completion and here. During detach, it would have set 1923 * JOBCTL_STOP_PENDING on us and we'll re-enter 1924 * TASK_STOPPED in do_signal_stop() on return, so notifying 1925 * the real parent of the group stop completion is enough. 1926 */ 1927 if (gstop_done) 1928 do_notify_parent_cldstop(current, false, why); 1929 1930 /* tasklist protects us from ptrace_freeze_traced() */ 1931 __set_current_state(TASK_RUNNING); 1932 if (clear_code) 1933 current->exit_code = 0; 1934 read_unlock(&tasklist_lock); 1935 } 1936 1937 /* 1938 * We are back. Now reacquire the siglock before touching 1939 * last_siginfo, so that we are sure to have synchronized with 1940 * any signal-sending on another CPU that wants to examine it. 1941 */ 1942 spin_lock_irq(¤t->sighand->siglock); 1943 current->last_siginfo = NULL; 1944 1945 /* LISTENING can be set only during STOP traps, clear it */ 1946 current->jobctl &= ~JOBCTL_LISTENING; 1947 1948 /* 1949 * Queued signals ignored us while we were stopped for tracing. 1950 * So check for any that we should take before resuming user mode. 1951 * This sets TIF_SIGPENDING, but never clears it. 1952 */ 1953 recalc_sigpending_tsk(current); 1954 } 1955 1956 static void ptrace_do_notify(int signr, int exit_code, int why) 1957 { 1958 siginfo_t info; 1959 1960 memset(&info, 0, sizeof info); 1961 info.si_signo = signr; 1962 info.si_code = exit_code; 1963 info.si_pid = task_pid_vnr(current); 1964 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1965 1966 /* Let the debugger run. */ 1967 ptrace_stop(exit_code, why, 1, &info); 1968 } 1969 1970 void ptrace_notify(int exit_code) 1971 { 1972 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1973 if (unlikely(current->task_works)) 1974 task_work_run(); 1975 1976 spin_lock_irq(¤t->sighand->siglock); 1977 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 1978 spin_unlock_irq(¤t->sighand->siglock); 1979 } 1980 1981 /** 1982 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 1983 * @signr: signr causing group stop if initiating 1984 * 1985 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 1986 * and participate in it. If already set, participate in the existing 1987 * group stop. If participated in a group stop (and thus slept), %true is 1988 * returned with siglock released. 1989 * 1990 * If ptraced, this function doesn't handle stop itself. Instead, 1991 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 1992 * untouched. The caller must ensure that INTERRUPT trap handling takes 1993 * places afterwards. 1994 * 1995 * CONTEXT: 1996 * Must be called with @current->sighand->siglock held, which is released 1997 * on %true return. 1998 * 1999 * RETURNS: 2000 * %false if group stop is already cancelled or ptrace trap is scheduled. 2001 * %true if participated in group stop. 2002 */ 2003 static bool do_signal_stop(int signr) 2004 __releases(¤t->sighand->siglock) 2005 { 2006 struct signal_struct *sig = current->signal; 2007 2008 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2009 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2010 struct task_struct *t; 2011 2012 /* signr will be recorded in task->jobctl for retries */ 2013 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2014 2015 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2016 unlikely(signal_group_exit(sig))) 2017 return false; 2018 /* 2019 * There is no group stop already in progress. We must 2020 * initiate one now. 2021 * 2022 * While ptraced, a task may be resumed while group stop is 2023 * still in effect and then receive a stop signal and 2024 * initiate another group stop. This deviates from the 2025 * usual behavior as two consecutive stop signals can't 2026 * cause two group stops when !ptraced. That is why we 2027 * also check !task_is_stopped(t) below. 2028 * 2029 * The condition can be distinguished by testing whether 2030 * SIGNAL_STOP_STOPPED is already set. Don't generate 2031 * group_exit_code in such case. 2032 * 2033 * This is not necessary for SIGNAL_STOP_CONTINUED because 2034 * an intervening stop signal is required to cause two 2035 * continued events regardless of ptrace. 2036 */ 2037 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2038 sig->group_exit_code = signr; 2039 2040 sig->group_stop_count = 0; 2041 2042 if (task_set_jobctl_pending(current, signr | gstop)) 2043 sig->group_stop_count++; 2044 2045 for (t = next_thread(current); t != current; 2046 t = next_thread(t)) { 2047 /* 2048 * Setting state to TASK_STOPPED for a group 2049 * stop is always done with the siglock held, 2050 * so this check has no races. 2051 */ 2052 if (!task_is_stopped(t) && 2053 task_set_jobctl_pending(t, signr | gstop)) { 2054 sig->group_stop_count++; 2055 if (likely(!(t->ptrace & PT_SEIZED))) 2056 signal_wake_up(t, 0); 2057 else 2058 ptrace_trap_notify(t); 2059 } 2060 } 2061 } 2062 2063 if (likely(!current->ptrace)) { 2064 int notify = 0; 2065 2066 /* 2067 * If there are no other threads in the group, or if there 2068 * is a group stop in progress and we are the last to stop, 2069 * report to the parent. 2070 */ 2071 if (task_participate_group_stop(current)) 2072 notify = CLD_STOPPED; 2073 2074 __set_current_state(TASK_STOPPED); 2075 spin_unlock_irq(¤t->sighand->siglock); 2076 2077 /* 2078 * Notify the parent of the group stop completion. Because 2079 * we're not holding either the siglock or tasklist_lock 2080 * here, ptracer may attach inbetween; however, this is for 2081 * group stop and should always be delivered to the real 2082 * parent of the group leader. The new ptracer will get 2083 * its notification when this task transitions into 2084 * TASK_TRACED. 2085 */ 2086 if (notify) { 2087 read_lock(&tasklist_lock); 2088 do_notify_parent_cldstop(current, false, notify); 2089 read_unlock(&tasklist_lock); 2090 } 2091 2092 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2093 freezable_schedule(); 2094 return true; 2095 } else { 2096 /* 2097 * While ptraced, group stop is handled by STOP trap. 2098 * Schedule it and let the caller deal with it. 2099 */ 2100 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2101 return false; 2102 } 2103 } 2104 2105 /** 2106 * do_jobctl_trap - take care of ptrace jobctl traps 2107 * 2108 * When PT_SEIZED, it's used for both group stop and explicit 2109 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2110 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2111 * the stop signal; otherwise, %SIGTRAP. 2112 * 2113 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2114 * number as exit_code and no siginfo. 2115 * 2116 * CONTEXT: 2117 * Must be called with @current->sighand->siglock held, which may be 2118 * released and re-acquired before returning with intervening sleep. 2119 */ 2120 static void do_jobctl_trap(void) 2121 { 2122 struct signal_struct *signal = current->signal; 2123 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2124 2125 if (current->ptrace & PT_SEIZED) { 2126 if (!signal->group_stop_count && 2127 !(signal->flags & SIGNAL_STOP_STOPPED)) 2128 signr = SIGTRAP; 2129 WARN_ON_ONCE(!signr); 2130 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2131 CLD_STOPPED); 2132 } else { 2133 WARN_ON_ONCE(!signr); 2134 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2135 current->exit_code = 0; 2136 } 2137 } 2138 2139 static int ptrace_signal(int signr, siginfo_t *info) 2140 { 2141 ptrace_signal_deliver(); 2142 /* 2143 * We do not check sig_kernel_stop(signr) but set this marker 2144 * unconditionally because we do not know whether debugger will 2145 * change signr. This flag has no meaning unless we are going 2146 * to stop after return from ptrace_stop(). In this case it will 2147 * be checked in do_signal_stop(), we should only stop if it was 2148 * not cleared by SIGCONT while we were sleeping. See also the 2149 * comment in dequeue_signal(). 2150 */ 2151 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2152 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2153 2154 /* We're back. Did the debugger cancel the sig? */ 2155 signr = current->exit_code; 2156 if (signr == 0) 2157 return signr; 2158 2159 current->exit_code = 0; 2160 2161 /* 2162 * Update the siginfo structure if the signal has 2163 * changed. If the debugger wanted something 2164 * specific in the siginfo structure then it should 2165 * have updated *info via PTRACE_SETSIGINFO. 2166 */ 2167 if (signr != info->si_signo) { 2168 info->si_signo = signr; 2169 info->si_errno = 0; 2170 info->si_code = SI_USER; 2171 rcu_read_lock(); 2172 info->si_pid = task_pid_vnr(current->parent); 2173 info->si_uid = from_kuid_munged(current_user_ns(), 2174 task_uid(current->parent)); 2175 rcu_read_unlock(); 2176 } 2177 2178 /* If the (new) signal is now blocked, requeue it. */ 2179 if (sigismember(¤t->blocked, signr)) { 2180 specific_send_sig_info(signr, info, current); 2181 signr = 0; 2182 } 2183 2184 return signr; 2185 } 2186 2187 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 2188 struct pt_regs *regs, void *cookie) 2189 { 2190 struct sighand_struct *sighand = current->sighand; 2191 struct signal_struct *signal = current->signal; 2192 int signr; 2193 2194 if (unlikely(current->task_works)) 2195 task_work_run(); 2196 2197 if (unlikely(uprobe_deny_signal())) 2198 return 0; 2199 2200 /* 2201 * Do this once, we can't return to user-mode if freezing() == T. 2202 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2203 * thus do not need another check after return. 2204 */ 2205 try_to_freeze(); 2206 2207 relock: 2208 spin_lock_irq(&sighand->siglock); 2209 /* 2210 * Every stopped thread goes here after wakeup. Check to see if 2211 * we should notify the parent, prepare_signal(SIGCONT) encodes 2212 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2213 */ 2214 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2215 int why; 2216 2217 if (signal->flags & SIGNAL_CLD_CONTINUED) 2218 why = CLD_CONTINUED; 2219 else 2220 why = CLD_STOPPED; 2221 2222 signal->flags &= ~SIGNAL_CLD_MASK; 2223 2224 spin_unlock_irq(&sighand->siglock); 2225 2226 /* 2227 * Notify the parent that we're continuing. This event is 2228 * always per-process and doesn't make whole lot of sense 2229 * for ptracers, who shouldn't consume the state via 2230 * wait(2) either, but, for backward compatibility, notify 2231 * the ptracer of the group leader too unless it's gonna be 2232 * a duplicate. 2233 */ 2234 read_lock(&tasklist_lock); 2235 do_notify_parent_cldstop(current, false, why); 2236 2237 if (ptrace_reparented(current->group_leader)) 2238 do_notify_parent_cldstop(current->group_leader, 2239 true, why); 2240 read_unlock(&tasklist_lock); 2241 2242 goto relock; 2243 } 2244 2245 for (;;) { 2246 struct k_sigaction *ka; 2247 2248 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2249 do_signal_stop(0)) 2250 goto relock; 2251 2252 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2253 do_jobctl_trap(); 2254 spin_unlock_irq(&sighand->siglock); 2255 goto relock; 2256 } 2257 2258 signr = dequeue_signal(current, ¤t->blocked, info); 2259 2260 if (!signr) 2261 break; /* will return 0 */ 2262 2263 if (unlikely(current->ptrace) && signr != SIGKILL) { 2264 signr = ptrace_signal(signr, info); 2265 if (!signr) 2266 continue; 2267 } 2268 2269 ka = &sighand->action[signr-1]; 2270 2271 /* Trace actually delivered signals. */ 2272 trace_signal_deliver(signr, info, ka); 2273 2274 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2275 continue; 2276 if (ka->sa.sa_handler != SIG_DFL) { 2277 /* Run the handler. */ 2278 *return_ka = *ka; 2279 2280 if (ka->sa.sa_flags & SA_ONESHOT) 2281 ka->sa.sa_handler = SIG_DFL; 2282 2283 break; /* will return non-zero "signr" value */ 2284 } 2285 2286 /* 2287 * Now we are doing the default action for this signal. 2288 */ 2289 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2290 continue; 2291 2292 /* 2293 * Global init gets no signals it doesn't want. 2294 * Container-init gets no signals it doesn't want from same 2295 * container. 2296 * 2297 * Note that if global/container-init sees a sig_kernel_only() 2298 * signal here, the signal must have been generated internally 2299 * or must have come from an ancestor namespace. In either 2300 * case, the signal cannot be dropped. 2301 */ 2302 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2303 !sig_kernel_only(signr)) 2304 continue; 2305 2306 if (sig_kernel_stop(signr)) { 2307 /* 2308 * The default action is to stop all threads in 2309 * the thread group. The job control signals 2310 * do nothing in an orphaned pgrp, but SIGSTOP 2311 * always works. Note that siglock needs to be 2312 * dropped during the call to is_orphaned_pgrp() 2313 * because of lock ordering with tasklist_lock. 2314 * This allows an intervening SIGCONT to be posted. 2315 * We need to check for that and bail out if necessary. 2316 */ 2317 if (signr != SIGSTOP) { 2318 spin_unlock_irq(&sighand->siglock); 2319 2320 /* signals can be posted during this window */ 2321 2322 if (is_current_pgrp_orphaned()) 2323 goto relock; 2324 2325 spin_lock_irq(&sighand->siglock); 2326 } 2327 2328 if (likely(do_signal_stop(info->si_signo))) { 2329 /* It released the siglock. */ 2330 goto relock; 2331 } 2332 2333 /* 2334 * We didn't actually stop, due to a race 2335 * with SIGCONT or something like that. 2336 */ 2337 continue; 2338 } 2339 2340 spin_unlock_irq(&sighand->siglock); 2341 2342 /* 2343 * Anything else is fatal, maybe with a core dump. 2344 */ 2345 current->flags |= PF_SIGNALED; 2346 2347 if (sig_kernel_coredump(signr)) { 2348 if (print_fatal_signals) 2349 print_fatal_signal(info->si_signo); 2350 /* 2351 * If it was able to dump core, this kills all 2352 * other threads in the group and synchronizes with 2353 * their demise. If we lost the race with another 2354 * thread getting here, it set group_exit_code 2355 * first and our do_group_exit call below will use 2356 * that value and ignore the one we pass it. 2357 */ 2358 do_coredump(info); 2359 } 2360 2361 /* 2362 * Death signals, no core dump. 2363 */ 2364 do_group_exit(info->si_signo); 2365 /* NOTREACHED */ 2366 } 2367 spin_unlock_irq(&sighand->siglock); 2368 return signr; 2369 } 2370 2371 /** 2372 * signal_delivered - 2373 * @sig: number of signal being delivered 2374 * @info: siginfo_t of signal being delivered 2375 * @ka: sigaction setting that chose the handler 2376 * @regs: user register state 2377 * @stepping: nonzero if debugger single-step or block-step in use 2378 * 2379 * This function should be called when a signal has succesfully been 2380 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask 2381 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2382 * is set in @ka->sa.sa_flags. Tracing is notified. 2383 */ 2384 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka, 2385 struct pt_regs *regs, int stepping) 2386 { 2387 sigset_t blocked; 2388 2389 /* A signal was successfully delivered, and the 2390 saved sigmask was stored on the signal frame, 2391 and will be restored by sigreturn. So we can 2392 simply clear the restore sigmask flag. */ 2393 clear_restore_sigmask(); 2394 2395 sigorsets(&blocked, ¤t->blocked, &ka->sa.sa_mask); 2396 if (!(ka->sa.sa_flags & SA_NODEFER)) 2397 sigaddset(&blocked, sig); 2398 set_current_blocked(&blocked); 2399 tracehook_signal_handler(sig, info, ka, regs, stepping); 2400 } 2401 2402 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2403 { 2404 if (failed) 2405 force_sigsegv(ksig->sig, current); 2406 else 2407 signal_delivered(ksig->sig, &ksig->info, &ksig->ka, 2408 signal_pt_regs(), stepping); 2409 } 2410 2411 /* 2412 * It could be that complete_signal() picked us to notify about the 2413 * group-wide signal. Other threads should be notified now to take 2414 * the shared signals in @which since we will not. 2415 */ 2416 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2417 { 2418 sigset_t retarget; 2419 struct task_struct *t; 2420 2421 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2422 if (sigisemptyset(&retarget)) 2423 return; 2424 2425 t = tsk; 2426 while_each_thread(tsk, t) { 2427 if (t->flags & PF_EXITING) 2428 continue; 2429 2430 if (!has_pending_signals(&retarget, &t->blocked)) 2431 continue; 2432 /* Remove the signals this thread can handle. */ 2433 sigandsets(&retarget, &retarget, &t->blocked); 2434 2435 if (!signal_pending(t)) 2436 signal_wake_up(t, 0); 2437 2438 if (sigisemptyset(&retarget)) 2439 break; 2440 } 2441 } 2442 2443 void exit_signals(struct task_struct *tsk) 2444 { 2445 int group_stop = 0; 2446 sigset_t unblocked; 2447 2448 /* 2449 * @tsk is about to have PF_EXITING set - lock out users which 2450 * expect stable threadgroup. 2451 */ 2452 threadgroup_change_begin(tsk); 2453 2454 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2455 tsk->flags |= PF_EXITING; 2456 threadgroup_change_end(tsk); 2457 return; 2458 } 2459 2460 spin_lock_irq(&tsk->sighand->siglock); 2461 /* 2462 * From now this task is not visible for group-wide signals, 2463 * see wants_signal(), do_signal_stop(). 2464 */ 2465 tsk->flags |= PF_EXITING; 2466 2467 threadgroup_change_end(tsk); 2468 2469 if (!signal_pending(tsk)) 2470 goto out; 2471 2472 unblocked = tsk->blocked; 2473 signotset(&unblocked); 2474 retarget_shared_pending(tsk, &unblocked); 2475 2476 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2477 task_participate_group_stop(tsk)) 2478 group_stop = CLD_STOPPED; 2479 out: 2480 spin_unlock_irq(&tsk->sighand->siglock); 2481 2482 /* 2483 * If group stop has completed, deliver the notification. This 2484 * should always go to the real parent of the group leader. 2485 */ 2486 if (unlikely(group_stop)) { 2487 read_lock(&tasklist_lock); 2488 do_notify_parent_cldstop(tsk, false, group_stop); 2489 read_unlock(&tasklist_lock); 2490 } 2491 } 2492 2493 EXPORT_SYMBOL(recalc_sigpending); 2494 EXPORT_SYMBOL_GPL(dequeue_signal); 2495 EXPORT_SYMBOL(flush_signals); 2496 EXPORT_SYMBOL(force_sig); 2497 EXPORT_SYMBOL(send_sig); 2498 EXPORT_SYMBOL(send_sig_info); 2499 EXPORT_SYMBOL(sigprocmask); 2500 EXPORT_SYMBOL(block_all_signals); 2501 EXPORT_SYMBOL(unblock_all_signals); 2502 2503 2504 /* 2505 * System call entry points. 2506 */ 2507 2508 /** 2509 * sys_restart_syscall - restart a system call 2510 */ 2511 SYSCALL_DEFINE0(restart_syscall) 2512 { 2513 struct restart_block *restart = ¤t_thread_info()->restart_block; 2514 return restart->fn(restart); 2515 } 2516 2517 long do_no_restart_syscall(struct restart_block *param) 2518 { 2519 return -EINTR; 2520 } 2521 2522 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2523 { 2524 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2525 sigset_t newblocked; 2526 /* A set of now blocked but previously unblocked signals. */ 2527 sigandnsets(&newblocked, newset, ¤t->blocked); 2528 retarget_shared_pending(tsk, &newblocked); 2529 } 2530 tsk->blocked = *newset; 2531 recalc_sigpending(); 2532 } 2533 2534 /** 2535 * set_current_blocked - change current->blocked mask 2536 * @newset: new mask 2537 * 2538 * It is wrong to change ->blocked directly, this helper should be used 2539 * to ensure the process can't miss a shared signal we are going to block. 2540 */ 2541 void set_current_blocked(sigset_t *newset) 2542 { 2543 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2544 __set_current_blocked(newset); 2545 } 2546 2547 void __set_current_blocked(const sigset_t *newset) 2548 { 2549 struct task_struct *tsk = current; 2550 2551 spin_lock_irq(&tsk->sighand->siglock); 2552 __set_task_blocked(tsk, newset); 2553 spin_unlock_irq(&tsk->sighand->siglock); 2554 } 2555 2556 /* 2557 * This is also useful for kernel threads that want to temporarily 2558 * (or permanently) block certain signals. 2559 * 2560 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2561 * interface happily blocks "unblockable" signals like SIGKILL 2562 * and friends. 2563 */ 2564 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2565 { 2566 struct task_struct *tsk = current; 2567 sigset_t newset; 2568 2569 /* Lockless, only current can change ->blocked, never from irq */ 2570 if (oldset) 2571 *oldset = tsk->blocked; 2572 2573 switch (how) { 2574 case SIG_BLOCK: 2575 sigorsets(&newset, &tsk->blocked, set); 2576 break; 2577 case SIG_UNBLOCK: 2578 sigandnsets(&newset, &tsk->blocked, set); 2579 break; 2580 case SIG_SETMASK: 2581 newset = *set; 2582 break; 2583 default: 2584 return -EINVAL; 2585 } 2586 2587 __set_current_blocked(&newset); 2588 return 0; 2589 } 2590 2591 /** 2592 * sys_rt_sigprocmask - change the list of currently blocked signals 2593 * @how: whether to add, remove, or set signals 2594 * @nset: stores pending signals 2595 * @oset: previous value of signal mask if non-null 2596 * @sigsetsize: size of sigset_t type 2597 */ 2598 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2599 sigset_t __user *, oset, size_t, sigsetsize) 2600 { 2601 sigset_t old_set, new_set; 2602 int error; 2603 2604 /* XXX: Don't preclude handling different sized sigset_t's. */ 2605 if (sigsetsize != sizeof(sigset_t)) 2606 return -EINVAL; 2607 2608 old_set = current->blocked; 2609 2610 if (nset) { 2611 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2612 return -EFAULT; 2613 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2614 2615 error = sigprocmask(how, &new_set, NULL); 2616 if (error) 2617 return error; 2618 } 2619 2620 if (oset) { 2621 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2622 return -EFAULT; 2623 } 2624 2625 return 0; 2626 } 2627 2628 #ifdef CONFIG_COMPAT 2629 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 2630 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 2631 { 2632 #ifdef __BIG_ENDIAN 2633 sigset_t old_set = current->blocked; 2634 2635 /* XXX: Don't preclude handling different sized sigset_t's. */ 2636 if (sigsetsize != sizeof(sigset_t)) 2637 return -EINVAL; 2638 2639 if (nset) { 2640 compat_sigset_t new32; 2641 sigset_t new_set; 2642 int error; 2643 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t))) 2644 return -EFAULT; 2645 2646 sigset_from_compat(&new_set, &new32); 2647 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2648 2649 error = sigprocmask(how, &new_set, NULL); 2650 if (error) 2651 return error; 2652 } 2653 if (oset) { 2654 compat_sigset_t old32; 2655 sigset_to_compat(&old32, &old_set); 2656 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t))) 2657 return -EFAULT; 2658 } 2659 return 0; 2660 #else 2661 return sys_rt_sigprocmask(how, (sigset_t __user *)nset, 2662 (sigset_t __user *)oset, sigsetsize); 2663 #endif 2664 } 2665 #endif 2666 2667 static int do_sigpending(void *set, unsigned long sigsetsize) 2668 { 2669 if (sigsetsize > sizeof(sigset_t)) 2670 return -EINVAL; 2671 2672 spin_lock_irq(¤t->sighand->siglock); 2673 sigorsets(set, ¤t->pending.signal, 2674 ¤t->signal->shared_pending.signal); 2675 spin_unlock_irq(¤t->sighand->siglock); 2676 2677 /* Outside the lock because only this thread touches it. */ 2678 sigandsets(set, ¤t->blocked, set); 2679 return 0; 2680 } 2681 2682 /** 2683 * sys_rt_sigpending - examine a pending signal that has been raised 2684 * while blocked 2685 * @set: stores pending signals 2686 * @sigsetsize: size of sigset_t type or larger 2687 */ 2688 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 2689 { 2690 sigset_t set; 2691 int err = do_sigpending(&set, sigsetsize); 2692 if (!err && copy_to_user(uset, &set, sigsetsize)) 2693 err = -EFAULT; 2694 return err; 2695 } 2696 2697 #ifdef CONFIG_COMPAT 2698 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 2699 compat_size_t, sigsetsize) 2700 { 2701 #ifdef __BIG_ENDIAN 2702 sigset_t set; 2703 int err = do_sigpending(&set, sigsetsize); 2704 if (!err) { 2705 compat_sigset_t set32; 2706 sigset_to_compat(&set32, &set); 2707 /* we can get here only if sigsetsize <= sizeof(set) */ 2708 if (copy_to_user(uset, &set32, sigsetsize)) 2709 err = -EFAULT; 2710 } 2711 return err; 2712 #else 2713 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize); 2714 #endif 2715 } 2716 #endif 2717 2718 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2719 2720 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2721 { 2722 int err; 2723 2724 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2725 return -EFAULT; 2726 if (from->si_code < 0) 2727 return __copy_to_user(to, from, sizeof(siginfo_t)) 2728 ? -EFAULT : 0; 2729 /* 2730 * If you change siginfo_t structure, please be sure 2731 * this code is fixed accordingly. 2732 * Please remember to update the signalfd_copyinfo() function 2733 * inside fs/signalfd.c too, in case siginfo_t changes. 2734 * It should never copy any pad contained in the structure 2735 * to avoid security leaks, but must copy the generic 2736 * 3 ints plus the relevant union member. 2737 */ 2738 err = __put_user(from->si_signo, &to->si_signo); 2739 err |= __put_user(from->si_errno, &to->si_errno); 2740 err |= __put_user((short)from->si_code, &to->si_code); 2741 switch (from->si_code & __SI_MASK) { 2742 case __SI_KILL: 2743 err |= __put_user(from->si_pid, &to->si_pid); 2744 err |= __put_user(from->si_uid, &to->si_uid); 2745 break; 2746 case __SI_TIMER: 2747 err |= __put_user(from->si_tid, &to->si_tid); 2748 err |= __put_user(from->si_overrun, &to->si_overrun); 2749 err |= __put_user(from->si_ptr, &to->si_ptr); 2750 break; 2751 case __SI_POLL: 2752 err |= __put_user(from->si_band, &to->si_band); 2753 err |= __put_user(from->si_fd, &to->si_fd); 2754 break; 2755 case __SI_FAULT: 2756 err |= __put_user(from->si_addr, &to->si_addr); 2757 #ifdef __ARCH_SI_TRAPNO 2758 err |= __put_user(from->si_trapno, &to->si_trapno); 2759 #endif 2760 #ifdef BUS_MCEERR_AO 2761 /* 2762 * Other callers might not initialize the si_lsb field, 2763 * so check explicitly for the right codes here. 2764 */ 2765 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO) 2766 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); 2767 #endif 2768 break; 2769 case __SI_CHLD: 2770 err |= __put_user(from->si_pid, &to->si_pid); 2771 err |= __put_user(from->si_uid, &to->si_uid); 2772 err |= __put_user(from->si_status, &to->si_status); 2773 err |= __put_user(from->si_utime, &to->si_utime); 2774 err |= __put_user(from->si_stime, &to->si_stime); 2775 break; 2776 case __SI_RT: /* This is not generated by the kernel as of now. */ 2777 case __SI_MESGQ: /* But this is */ 2778 err |= __put_user(from->si_pid, &to->si_pid); 2779 err |= __put_user(from->si_uid, &to->si_uid); 2780 err |= __put_user(from->si_ptr, &to->si_ptr); 2781 break; 2782 #ifdef __ARCH_SIGSYS 2783 case __SI_SYS: 2784 err |= __put_user(from->si_call_addr, &to->si_call_addr); 2785 err |= __put_user(from->si_syscall, &to->si_syscall); 2786 err |= __put_user(from->si_arch, &to->si_arch); 2787 break; 2788 #endif 2789 default: /* this is just in case for now ... */ 2790 err |= __put_user(from->si_pid, &to->si_pid); 2791 err |= __put_user(from->si_uid, &to->si_uid); 2792 break; 2793 } 2794 return err; 2795 } 2796 2797 #endif 2798 2799 /** 2800 * do_sigtimedwait - wait for queued signals specified in @which 2801 * @which: queued signals to wait for 2802 * @info: if non-null, the signal's siginfo is returned here 2803 * @ts: upper bound on process time suspension 2804 */ 2805 int do_sigtimedwait(const sigset_t *which, siginfo_t *info, 2806 const struct timespec *ts) 2807 { 2808 struct task_struct *tsk = current; 2809 long timeout = MAX_SCHEDULE_TIMEOUT; 2810 sigset_t mask = *which; 2811 int sig; 2812 2813 if (ts) { 2814 if (!timespec_valid(ts)) 2815 return -EINVAL; 2816 timeout = timespec_to_jiffies(ts); 2817 /* 2818 * We can be close to the next tick, add another one 2819 * to ensure we will wait at least the time asked for. 2820 */ 2821 if (ts->tv_sec || ts->tv_nsec) 2822 timeout++; 2823 } 2824 2825 /* 2826 * Invert the set of allowed signals to get those we want to block. 2827 */ 2828 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2829 signotset(&mask); 2830 2831 spin_lock_irq(&tsk->sighand->siglock); 2832 sig = dequeue_signal(tsk, &mask, info); 2833 if (!sig && timeout) { 2834 /* 2835 * None ready, temporarily unblock those we're interested 2836 * while we are sleeping in so that we'll be awakened when 2837 * they arrive. Unblocking is always fine, we can avoid 2838 * set_current_blocked(). 2839 */ 2840 tsk->real_blocked = tsk->blocked; 2841 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 2842 recalc_sigpending(); 2843 spin_unlock_irq(&tsk->sighand->siglock); 2844 2845 timeout = schedule_timeout_interruptible(timeout); 2846 2847 spin_lock_irq(&tsk->sighand->siglock); 2848 __set_task_blocked(tsk, &tsk->real_blocked); 2849 siginitset(&tsk->real_blocked, 0); 2850 sig = dequeue_signal(tsk, &mask, info); 2851 } 2852 spin_unlock_irq(&tsk->sighand->siglock); 2853 2854 if (sig) 2855 return sig; 2856 return timeout ? -EINTR : -EAGAIN; 2857 } 2858 2859 /** 2860 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 2861 * in @uthese 2862 * @uthese: queued signals to wait for 2863 * @uinfo: if non-null, the signal's siginfo is returned here 2864 * @uts: upper bound on process time suspension 2865 * @sigsetsize: size of sigset_t type 2866 */ 2867 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 2868 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 2869 size_t, sigsetsize) 2870 { 2871 sigset_t these; 2872 struct timespec ts; 2873 siginfo_t info; 2874 int ret; 2875 2876 /* XXX: Don't preclude handling different sized sigset_t's. */ 2877 if (sigsetsize != sizeof(sigset_t)) 2878 return -EINVAL; 2879 2880 if (copy_from_user(&these, uthese, sizeof(these))) 2881 return -EFAULT; 2882 2883 if (uts) { 2884 if (copy_from_user(&ts, uts, sizeof(ts))) 2885 return -EFAULT; 2886 } 2887 2888 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 2889 2890 if (ret > 0 && uinfo) { 2891 if (copy_siginfo_to_user(uinfo, &info)) 2892 ret = -EFAULT; 2893 } 2894 2895 return ret; 2896 } 2897 2898 /** 2899 * sys_kill - send a signal to a process 2900 * @pid: the PID of the process 2901 * @sig: signal to be sent 2902 */ 2903 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 2904 { 2905 struct siginfo info; 2906 2907 info.si_signo = sig; 2908 info.si_errno = 0; 2909 info.si_code = SI_USER; 2910 info.si_pid = task_tgid_vnr(current); 2911 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2912 2913 return kill_something_info(sig, &info, pid); 2914 } 2915 2916 static int 2917 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 2918 { 2919 struct task_struct *p; 2920 int error = -ESRCH; 2921 2922 rcu_read_lock(); 2923 p = find_task_by_vpid(pid); 2924 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2925 error = check_kill_permission(sig, info, p); 2926 /* 2927 * The null signal is a permissions and process existence 2928 * probe. No signal is actually delivered. 2929 */ 2930 if (!error && sig) { 2931 error = do_send_sig_info(sig, info, p, false); 2932 /* 2933 * If lock_task_sighand() failed we pretend the task 2934 * dies after receiving the signal. The window is tiny, 2935 * and the signal is private anyway. 2936 */ 2937 if (unlikely(error == -ESRCH)) 2938 error = 0; 2939 } 2940 } 2941 rcu_read_unlock(); 2942 2943 return error; 2944 } 2945 2946 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2947 { 2948 struct siginfo info; 2949 2950 info.si_signo = sig; 2951 info.si_errno = 0; 2952 info.si_code = SI_TKILL; 2953 info.si_pid = task_tgid_vnr(current); 2954 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2955 2956 return do_send_specific(tgid, pid, sig, &info); 2957 } 2958 2959 /** 2960 * sys_tgkill - send signal to one specific thread 2961 * @tgid: the thread group ID of the thread 2962 * @pid: the PID of the thread 2963 * @sig: signal to be sent 2964 * 2965 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2966 * exists but it's not belonging to the target process anymore. This 2967 * method solves the problem of threads exiting and PIDs getting reused. 2968 */ 2969 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 2970 { 2971 /* This is only valid for single tasks */ 2972 if (pid <= 0 || tgid <= 0) 2973 return -EINVAL; 2974 2975 return do_tkill(tgid, pid, sig); 2976 } 2977 2978 /** 2979 * sys_tkill - send signal to one specific task 2980 * @pid: the PID of the task 2981 * @sig: signal to be sent 2982 * 2983 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2984 */ 2985 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 2986 { 2987 /* This is only valid for single tasks */ 2988 if (pid <= 0) 2989 return -EINVAL; 2990 2991 return do_tkill(0, pid, sig); 2992 } 2993 2994 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info) 2995 { 2996 /* Not even root can pretend to send signals from the kernel. 2997 * Nor can they impersonate a kill()/tgkill(), which adds source info. 2998 */ 2999 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3000 (task_pid_vnr(current) != pid)) { 3001 /* We used to allow any < 0 si_code */ 3002 WARN_ON_ONCE(info->si_code < 0); 3003 return -EPERM; 3004 } 3005 info->si_signo = sig; 3006 3007 /* POSIX.1b doesn't mention process groups. */ 3008 return kill_proc_info(sig, info, pid); 3009 } 3010 3011 /** 3012 * sys_rt_sigqueueinfo - send signal information to a signal 3013 * @pid: the PID of the thread 3014 * @sig: signal to be sent 3015 * @uinfo: signal info to be sent 3016 */ 3017 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3018 siginfo_t __user *, uinfo) 3019 { 3020 siginfo_t info; 3021 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3022 return -EFAULT; 3023 return do_rt_sigqueueinfo(pid, sig, &info); 3024 } 3025 3026 #ifdef CONFIG_COMPAT 3027 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3028 compat_pid_t, pid, 3029 int, sig, 3030 struct compat_siginfo __user *, uinfo) 3031 { 3032 siginfo_t info; 3033 int ret = copy_siginfo_from_user32(&info, uinfo); 3034 if (unlikely(ret)) 3035 return ret; 3036 return do_rt_sigqueueinfo(pid, sig, &info); 3037 } 3038 #endif 3039 3040 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 3041 { 3042 /* This is only valid for single tasks */ 3043 if (pid <= 0 || tgid <= 0) 3044 return -EINVAL; 3045 3046 /* Not even root can pretend to send signals from the kernel. 3047 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3048 */ 3049 if (((info->si_code >= 0 || info->si_code == SI_TKILL)) && 3050 (task_pid_vnr(current) != pid)) { 3051 /* We used to allow any < 0 si_code */ 3052 WARN_ON_ONCE(info->si_code < 0); 3053 return -EPERM; 3054 } 3055 info->si_signo = sig; 3056 3057 return do_send_specific(tgid, pid, sig, info); 3058 } 3059 3060 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3061 siginfo_t __user *, uinfo) 3062 { 3063 siginfo_t info; 3064 3065 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3066 return -EFAULT; 3067 3068 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3069 } 3070 3071 #ifdef CONFIG_COMPAT 3072 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3073 compat_pid_t, tgid, 3074 compat_pid_t, pid, 3075 int, sig, 3076 struct compat_siginfo __user *, uinfo) 3077 { 3078 siginfo_t info; 3079 3080 if (copy_siginfo_from_user32(&info, uinfo)) 3081 return -EFAULT; 3082 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3083 } 3084 #endif 3085 3086 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 3087 { 3088 struct task_struct *t = current; 3089 struct k_sigaction *k; 3090 sigset_t mask; 3091 3092 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3093 return -EINVAL; 3094 3095 k = &t->sighand->action[sig-1]; 3096 3097 spin_lock_irq(¤t->sighand->siglock); 3098 if (oact) 3099 *oact = *k; 3100 3101 if (act) { 3102 sigdelsetmask(&act->sa.sa_mask, 3103 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3104 *k = *act; 3105 /* 3106 * POSIX 3.3.1.3: 3107 * "Setting a signal action to SIG_IGN for a signal that is 3108 * pending shall cause the pending signal to be discarded, 3109 * whether or not it is blocked." 3110 * 3111 * "Setting a signal action to SIG_DFL for a signal that is 3112 * pending and whose default action is to ignore the signal 3113 * (for example, SIGCHLD), shall cause the pending signal to 3114 * be discarded, whether or not it is blocked" 3115 */ 3116 if (sig_handler_ignored(sig_handler(t, sig), sig)) { 3117 sigemptyset(&mask); 3118 sigaddset(&mask, sig); 3119 rm_from_queue_full(&mask, &t->signal->shared_pending); 3120 do { 3121 rm_from_queue_full(&mask, &t->pending); 3122 t = next_thread(t); 3123 } while (t != current); 3124 } 3125 } 3126 3127 spin_unlock_irq(¤t->sighand->siglock); 3128 return 0; 3129 } 3130 3131 static int 3132 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 3133 { 3134 stack_t oss; 3135 int error; 3136 3137 oss.ss_sp = (void __user *) current->sas_ss_sp; 3138 oss.ss_size = current->sas_ss_size; 3139 oss.ss_flags = sas_ss_flags(sp); 3140 3141 if (uss) { 3142 void __user *ss_sp; 3143 size_t ss_size; 3144 int ss_flags; 3145 3146 error = -EFAULT; 3147 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) 3148 goto out; 3149 error = __get_user(ss_sp, &uss->ss_sp) | 3150 __get_user(ss_flags, &uss->ss_flags) | 3151 __get_user(ss_size, &uss->ss_size); 3152 if (error) 3153 goto out; 3154 3155 error = -EPERM; 3156 if (on_sig_stack(sp)) 3157 goto out; 3158 3159 error = -EINVAL; 3160 /* 3161 * Note - this code used to test ss_flags incorrectly: 3162 * old code may have been written using ss_flags==0 3163 * to mean ss_flags==SS_ONSTACK (as this was the only 3164 * way that worked) - this fix preserves that older 3165 * mechanism. 3166 */ 3167 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 3168 goto out; 3169 3170 if (ss_flags == SS_DISABLE) { 3171 ss_size = 0; 3172 ss_sp = NULL; 3173 } else { 3174 error = -ENOMEM; 3175 if (ss_size < MINSIGSTKSZ) 3176 goto out; 3177 } 3178 3179 current->sas_ss_sp = (unsigned long) ss_sp; 3180 current->sas_ss_size = ss_size; 3181 } 3182 3183 error = 0; 3184 if (uoss) { 3185 error = -EFAULT; 3186 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) 3187 goto out; 3188 error = __put_user(oss.ss_sp, &uoss->ss_sp) | 3189 __put_user(oss.ss_size, &uoss->ss_size) | 3190 __put_user(oss.ss_flags, &uoss->ss_flags); 3191 } 3192 3193 out: 3194 return error; 3195 } 3196 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 3197 { 3198 return do_sigaltstack(uss, uoss, current_user_stack_pointer()); 3199 } 3200 3201 int restore_altstack(const stack_t __user *uss) 3202 { 3203 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer()); 3204 /* squash all but EFAULT for now */ 3205 return err == -EFAULT ? err : 0; 3206 } 3207 3208 int __save_altstack(stack_t __user *uss, unsigned long sp) 3209 { 3210 struct task_struct *t = current; 3211 return __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 3212 __put_user(sas_ss_flags(sp), &uss->ss_flags) | 3213 __put_user(t->sas_ss_size, &uss->ss_size); 3214 } 3215 3216 #ifdef CONFIG_COMPAT 3217 COMPAT_SYSCALL_DEFINE2(sigaltstack, 3218 const compat_stack_t __user *, uss_ptr, 3219 compat_stack_t __user *, uoss_ptr) 3220 { 3221 stack_t uss, uoss; 3222 int ret; 3223 mm_segment_t seg; 3224 3225 if (uss_ptr) { 3226 compat_stack_t uss32; 3227 3228 memset(&uss, 0, sizeof(stack_t)); 3229 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 3230 return -EFAULT; 3231 uss.ss_sp = compat_ptr(uss32.ss_sp); 3232 uss.ss_flags = uss32.ss_flags; 3233 uss.ss_size = uss32.ss_size; 3234 } 3235 seg = get_fs(); 3236 set_fs(KERNEL_DS); 3237 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL), 3238 (stack_t __force __user *) &uoss, 3239 compat_user_stack_pointer()); 3240 set_fs(seg); 3241 if (ret >= 0 && uoss_ptr) { 3242 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) || 3243 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) || 3244 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) || 3245 __put_user(uoss.ss_size, &uoss_ptr->ss_size)) 3246 ret = -EFAULT; 3247 } 3248 return ret; 3249 } 3250 3251 int compat_restore_altstack(const compat_stack_t __user *uss) 3252 { 3253 int err = compat_sys_sigaltstack(uss, NULL); 3254 /* squash all but -EFAULT for now */ 3255 return err == -EFAULT ? err : 0; 3256 } 3257 3258 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 3259 { 3260 struct task_struct *t = current; 3261 return __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) | 3262 __put_user(sas_ss_flags(sp), &uss->ss_flags) | 3263 __put_user(t->sas_ss_size, &uss->ss_size); 3264 } 3265 #endif 3266 3267 #ifdef __ARCH_WANT_SYS_SIGPENDING 3268 3269 /** 3270 * sys_sigpending - examine pending signals 3271 * @set: where mask of pending signal is returned 3272 */ 3273 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 3274 { 3275 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 3276 } 3277 3278 #endif 3279 3280 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 3281 /** 3282 * sys_sigprocmask - examine and change blocked signals 3283 * @how: whether to add, remove, or set signals 3284 * @nset: signals to add or remove (if non-null) 3285 * @oset: previous value of signal mask if non-null 3286 * 3287 * Some platforms have their own version with special arguments; 3288 * others support only sys_rt_sigprocmask. 3289 */ 3290 3291 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3292 old_sigset_t __user *, oset) 3293 { 3294 old_sigset_t old_set, new_set; 3295 sigset_t new_blocked; 3296 3297 old_set = current->blocked.sig[0]; 3298 3299 if (nset) { 3300 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3301 return -EFAULT; 3302 3303 new_blocked = current->blocked; 3304 3305 switch (how) { 3306 case SIG_BLOCK: 3307 sigaddsetmask(&new_blocked, new_set); 3308 break; 3309 case SIG_UNBLOCK: 3310 sigdelsetmask(&new_blocked, new_set); 3311 break; 3312 case SIG_SETMASK: 3313 new_blocked.sig[0] = new_set; 3314 break; 3315 default: 3316 return -EINVAL; 3317 } 3318 3319 set_current_blocked(&new_blocked); 3320 } 3321 3322 if (oset) { 3323 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3324 return -EFAULT; 3325 } 3326 3327 return 0; 3328 } 3329 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3330 3331 #ifndef CONFIG_ODD_RT_SIGACTION 3332 /** 3333 * sys_rt_sigaction - alter an action taken by a process 3334 * @sig: signal to be sent 3335 * @act: new sigaction 3336 * @oact: used to save the previous sigaction 3337 * @sigsetsize: size of sigset_t type 3338 */ 3339 SYSCALL_DEFINE4(rt_sigaction, int, sig, 3340 const struct sigaction __user *, act, 3341 struct sigaction __user *, oact, 3342 size_t, sigsetsize) 3343 { 3344 struct k_sigaction new_sa, old_sa; 3345 int ret = -EINVAL; 3346 3347 /* XXX: Don't preclude handling different sized sigset_t's. */ 3348 if (sigsetsize != sizeof(sigset_t)) 3349 goto out; 3350 3351 if (act) { 3352 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3353 return -EFAULT; 3354 } 3355 3356 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3357 3358 if (!ret && oact) { 3359 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3360 return -EFAULT; 3361 } 3362 out: 3363 return ret; 3364 } 3365 #ifdef CONFIG_COMPAT 3366 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 3367 const struct compat_sigaction __user *, act, 3368 struct compat_sigaction __user *, oact, 3369 compat_size_t, sigsetsize) 3370 { 3371 struct k_sigaction new_ka, old_ka; 3372 compat_sigset_t mask; 3373 #ifdef __ARCH_HAS_SA_RESTORER 3374 compat_uptr_t restorer; 3375 #endif 3376 int ret; 3377 3378 /* XXX: Don't preclude handling different sized sigset_t's. */ 3379 if (sigsetsize != sizeof(compat_sigset_t)) 3380 return -EINVAL; 3381 3382 if (act) { 3383 compat_uptr_t handler; 3384 ret = get_user(handler, &act->sa_handler); 3385 new_ka.sa.sa_handler = compat_ptr(handler); 3386 #ifdef __ARCH_HAS_SA_RESTORER 3387 ret |= get_user(restorer, &act->sa_restorer); 3388 new_ka.sa.sa_restorer = compat_ptr(restorer); 3389 #endif 3390 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask)); 3391 ret |= __get_user(new_ka.sa.sa_flags, &act->sa_flags); 3392 if (ret) 3393 return -EFAULT; 3394 sigset_from_compat(&new_ka.sa.sa_mask, &mask); 3395 } 3396 3397 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3398 if (!ret && oact) { 3399 sigset_to_compat(&mask, &old_ka.sa.sa_mask); 3400 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 3401 &oact->sa_handler); 3402 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask)); 3403 ret |= __put_user(old_ka.sa.sa_flags, &oact->sa_flags); 3404 #ifdef __ARCH_HAS_SA_RESTORER 3405 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3406 &oact->sa_restorer); 3407 #endif 3408 } 3409 return ret; 3410 } 3411 #endif 3412 #endif /* !CONFIG_ODD_RT_SIGACTION */ 3413 3414 #ifdef CONFIG_OLD_SIGACTION 3415 SYSCALL_DEFINE3(sigaction, int, sig, 3416 const struct old_sigaction __user *, act, 3417 struct old_sigaction __user *, oact) 3418 { 3419 struct k_sigaction new_ka, old_ka; 3420 int ret; 3421 3422 if (act) { 3423 old_sigset_t mask; 3424 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3425 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 3426 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 3427 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3428 __get_user(mask, &act->sa_mask)) 3429 return -EFAULT; 3430 #ifdef __ARCH_HAS_KA_RESTORER 3431 new_ka.ka_restorer = NULL; 3432 #endif 3433 siginitset(&new_ka.sa.sa_mask, mask); 3434 } 3435 3436 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3437 3438 if (!ret && oact) { 3439 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3440 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 3441 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 3442 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3443 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3444 return -EFAULT; 3445 } 3446 3447 return ret; 3448 } 3449 #endif 3450 #ifdef CONFIG_COMPAT_OLD_SIGACTION 3451 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 3452 const struct compat_old_sigaction __user *, act, 3453 struct compat_old_sigaction __user *, oact) 3454 { 3455 struct k_sigaction new_ka, old_ka; 3456 int ret; 3457 compat_old_sigset_t mask; 3458 compat_uptr_t handler, restorer; 3459 3460 if (act) { 3461 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3462 __get_user(handler, &act->sa_handler) || 3463 __get_user(restorer, &act->sa_restorer) || 3464 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3465 __get_user(mask, &act->sa_mask)) 3466 return -EFAULT; 3467 3468 #ifdef __ARCH_HAS_KA_RESTORER 3469 new_ka.ka_restorer = NULL; 3470 #endif 3471 new_ka.sa.sa_handler = compat_ptr(handler); 3472 new_ka.sa.sa_restorer = compat_ptr(restorer); 3473 siginitset(&new_ka.sa.sa_mask, mask); 3474 } 3475 3476 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3477 3478 if (!ret && oact) { 3479 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3480 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 3481 &oact->sa_handler) || 3482 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3483 &oact->sa_restorer) || 3484 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3485 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3486 return -EFAULT; 3487 } 3488 return ret; 3489 } 3490 #endif 3491 3492 #ifdef __ARCH_WANT_SYS_SGETMASK 3493 3494 /* 3495 * For backwards compatibility. Functionality superseded by sigprocmask. 3496 */ 3497 SYSCALL_DEFINE0(sgetmask) 3498 { 3499 /* SMP safe */ 3500 return current->blocked.sig[0]; 3501 } 3502 3503 SYSCALL_DEFINE1(ssetmask, int, newmask) 3504 { 3505 int old = current->blocked.sig[0]; 3506 sigset_t newset; 3507 3508 siginitset(&newset, newmask); 3509 set_current_blocked(&newset); 3510 3511 return old; 3512 } 3513 #endif /* __ARCH_WANT_SGETMASK */ 3514 3515 #ifdef __ARCH_WANT_SYS_SIGNAL 3516 /* 3517 * For backwards compatibility. Functionality superseded by sigaction. 3518 */ 3519 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 3520 { 3521 struct k_sigaction new_sa, old_sa; 3522 int ret; 3523 3524 new_sa.sa.sa_handler = handler; 3525 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 3526 sigemptyset(&new_sa.sa.sa_mask); 3527 3528 ret = do_sigaction(sig, &new_sa, &old_sa); 3529 3530 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 3531 } 3532 #endif /* __ARCH_WANT_SYS_SIGNAL */ 3533 3534 #ifdef __ARCH_WANT_SYS_PAUSE 3535 3536 SYSCALL_DEFINE0(pause) 3537 { 3538 while (!signal_pending(current)) { 3539 current->state = TASK_INTERRUPTIBLE; 3540 schedule(); 3541 } 3542 return -ERESTARTNOHAND; 3543 } 3544 3545 #endif 3546 3547 int sigsuspend(sigset_t *set) 3548 { 3549 current->saved_sigmask = current->blocked; 3550 set_current_blocked(set); 3551 3552 current->state = TASK_INTERRUPTIBLE; 3553 schedule(); 3554 set_restore_sigmask(); 3555 return -ERESTARTNOHAND; 3556 } 3557 3558 /** 3559 * sys_rt_sigsuspend - replace the signal mask for a value with the 3560 * @unewset value until a signal is received 3561 * @unewset: new signal mask value 3562 * @sigsetsize: size of sigset_t type 3563 */ 3564 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 3565 { 3566 sigset_t newset; 3567 3568 /* XXX: Don't preclude handling different sized sigset_t's. */ 3569 if (sigsetsize != sizeof(sigset_t)) 3570 return -EINVAL; 3571 3572 if (copy_from_user(&newset, unewset, sizeof(newset))) 3573 return -EFAULT; 3574 return sigsuspend(&newset); 3575 } 3576 3577 #ifdef CONFIG_COMPAT 3578 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 3579 { 3580 #ifdef __BIG_ENDIAN 3581 sigset_t newset; 3582 compat_sigset_t newset32; 3583 3584 /* XXX: Don't preclude handling different sized sigset_t's. */ 3585 if (sigsetsize != sizeof(sigset_t)) 3586 return -EINVAL; 3587 3588 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t))) 3589 return -EFAULT; 3590 sigset_from_compat(&newset, &newset32); 3591 return sigsuspend(&newset); 3592 #else 3593 /* on little-endian bitmaps don't care about granularity */ 3594 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize); 3595 #endif 3596 } 3597 #endif 3598 3599 #ifdef CONFIG_OLD_SIGSUSPEND 3600 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 3601 { 3602 sigset_t blocked; 3603 siginitset(&blocked, mask); 3604 return sigsuspend(&blocked); 3605 } 3606 #endif 3607 #ifdef CONFIG_OLD_SIGSUSPEND3 3608 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 3609 { 3610 sigset_t blocked; 3611 siginitset(&blocked, mask); 3612 return sigsuspend(&blocked); 3613 } 3614 #endif 3615 3616 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) 3617 { 3618 return NULL; 3619 } 3620 3621 void __init signals_init(void) 3622 { 3623 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 3624 } 3625 3626 #ifdef CONFIG_KGDB_KDB 3627 #include <linux/kdb.h> 3628 /* 3629 * kdb_send_sig_info - Allows kdb to send signals without exposing 3630 * signal internals. This function checks if the required locks are 3631 * available before calling the main signal code, to avoid kdb 3632 * deadlocks. 3633 */ 3634 void 3635 kdb_send_sig_info(struct task_struct *t, struct siginfo *info) 3636 { 3637 static struct task_struct *kdb_prev_t; 3638 int sig, new_t; 3639 if (!spin_trylock(&t->sighand->siglock)) { 3640 kdb_printf("Can't do kill command now.\n" 3641 "The sigmask lock is held somewhere else in " 3642 "kernel, try again later\n"); 3643 return; 3644 } 3645 spin_unlock(&t->sighand->siglock); 3646 new_t = kdb_prev_t != t; 3647 kdb_prev_t = t; 3648 if (t->state != TASK_RUNNING && new_t) { 3649 kdb_printf("Process is not RUNNING, sending a signal from " 3650 "kdb risks deadlock\n" 3651 "on the run queue locks. " 3652 "The signal has _not_ been sent.\n" 3653 "Reissue the kill command if you want to risk " 3654 "the deadlock.\n"); 3655 return; 3656 } 3657 sig = info->si_signo; 3658 if (send_sig_info(sig, info, t)) 3659 kdb_printf("Fail to deliver Signal %d to process %d.\n", 3660 sig, t->pid); 3661 else 3662 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 3663 } 3664 #endif /* CONFIG_KGDB_KDB */ 3665