xref: /openbmc/linux/kernel/signal.c (revision 82ced6fd)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/tracehook.h>
26 #include <linux/capability.h>
27 #include <linux/freezer.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/nsproxy.h>
30 #include <trace/sched.h>
31 
32 #include <asm/param.h>
33 #include <asm/uaccess.h>
34 #include <asm/unistd.h>
35 #include <asm/siginfo.h>
36 #include "audit.h"	/* audit_signal_info() */
37 
38 /*
39  * SLAB caches for signal bits.
40  */
41 
42 static struct kmem_cache *sigqueue_cachep;
43 
44 DEFINE_TRACE(sched_signal_send);
45 
46 static void __user *sig_handler(struct task_struct *t, int sig)
47 {
48 	return t->sighand->action[sig - 1].sa.sa_handler;
49 }
50 
51 static int sig_handler_ignored(void __user *handler, int sig)
52 {
53 	/* Is it explicitly or implicitly ignored? */
54 	return handler == SIG_IGN ||
55 		(handler == SIG_DFL && sig_kernel_ignore(sig));
56 }
57 
58 static int sig_task_ignored(struct task_struct *t, int sig,
59 		int from_ancestor_ns)
60 {
61 	void __user *handler;
62 
63 	handler = sig_handler(t, sig);
64 
65 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
66 			handler == SIG_DFL && !from_ancestor_ns)
67 		return 1;
68 
69 	return sig_handler_ignored(handler, sig);
70 }
71 
72 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
73 {
74 	/*
75 	 * Blocked signals are never ignored, since the
76 	 * signal handler may change by the time it is
77 	 * unblocked.
78 	 */
79 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
80 		return 0;
81 
82 	if (!sig_task_ignored(t, sig, from_ancestor_ns))
83 		return 0;
84 
85 	/*
86 	 * Tracers may want to know about even ignored signals.
87 	 */
88 	return !tracehook_consider_ignored_signal(t, sig);
89 }
90 
91 /*
92  * Re-calculate pending state from the set of locally pending
93  * signals, globally pending signals, and blocked signals.
94  */
95 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
96 {
97 	unsigned long ready;
98 	long i;
99 
100 	switch (_NSIG_WORDS) {
101 	default:
102 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
103 			ready |= signal->sig[i] &~ blocked->sig[i];
104 		break;
105 
106 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
107 		ready |= signal->sig[2] &~ blocked->sig[2];
108 		ready |= signal->sig[1] &~ blocked->sig[1];
109 		ready |= signal->sig[0] &~ blocked->sig[0];
110 		break;
111 
112 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
113 		ready |= signal->sig[0] &~ blocked->sig[0];
114 		break;
115 
116 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
117 	}
118 	return ready !=	0;
119 }
120 
121 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
122 
123 static int recalc_sigpending_tsk(struct task_struct *t)
124 {
125 	if (t->signal->group_stop_count > 0 ||
126 	    PENDING(&t->pending, &t->blocked) ||
127 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
128 		set_tsk_thread_flag(t, TIF_SIGPENDING);
129 		return 1;
130 	}
131 	/*
132 	 * We must never clear the flag in another thread, or in current
133 	 * when it's possible the current syscall is returning -ERESTART*.
134 	 * So we don't clear it here, and only callers who know they should do.
135 	 */
136 	return 0;
137 }
138 
139 /*
140  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
141  * This is superfluous when called on current, the wakeup is a harmless no-op.
142  */
143 void recalc_sigpending_and_wake(struct task_struct *t)
144 {
145 	if (recalc_sigpending_tsk(t))
146 		signal_wake_up(t, 0);
147 }
148 
149 void recalc_sigpending(void)
150 {
151 	if (unlikely(tracehook_force_sigpending()))
152 		set_thread_flag(TIF_SIGPENDING);
153 	else if (!recalc_sigpending_tsk(current) && !freezing(current))
154 		clear_thread_flag(TIF_SIGPENDING);
155 
156 }
157 
158 /* Given the mask, find the first available signal that should be serviced. */
159 
160 int next_signal(struct sigpending *pending, sigset_t *mask)
161 {
162 	unsigned long i, *s, *m, x;
163 	int sig = 0;
164 
165 	s = pending->signal.sig;
166 	m = mask->sig;
167 	switch (_NSIG_WORDS) {
168 	default:
169 		for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
170 			if ((x = *s &~ *m) != 0) {
171 				sig = ffz(~x) + i*_NSIG_BPW + 1;
172 				break;
173 			}
174 		break;
175 
176 	case 2: if ((x = s[0] &~ m[0]) != 0)
177 			sig = 1;
178 		else if ((x = s[1] &~ m[1]) != 0)
179 			sig = _NSIG_BPW + 1;
180 		else
181 			break;
182 		sig += ffz(~x);
183 		break;
184 
185 	case 1: if ((x = *s &~ *m) != 0)
186 			sig = ffz(~x) + 1;
187 		break;
188 	}
189 
190 	return sig;
191 }
192 
193 /*
194  * allocate a new signal queue record
195  * - this may be called without locks if and only if t == current, otherwise an
196  *   appopriate lock must be held to stop the target task from exiting
197  */
198 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
199 					 int override_rlimit)
200 {
201 	struct sigqueue *q = NULL;
202 	struct user_struct *user;
203 
204 	/*
205 	 * We won't get problems with the target's UID changing under us
206 	 * because changing it requires RCU be used, and if t != current, the
207 	 * caller must be holding the RCU readlock (by way of a spinlock) and
208 	 * we use RCU protection here
209 	 */
210 	user = get_uid(__task_cred(t)->user);
211 	atomic_inc(&user->sigpending);
212 	if (override_rlimit ||
213 	    atomic_read(&user->sigpending) <=
214 			t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
215 		q = kmem_cache_alloc(sigqueue_cachep, flags);
216 	if (unlikely(q == NULL)) {
217 		atomic_dec(&user->sigpending);
218 		free_uid(user);
219 	} else {
220 		INIT_LIST_HEAD(&q->list);
221 		q->flags = 0;
222 		q->user = user;
223 	}
224 
225 	return q;
226 }
227 
228 static void __sigqueue_free(struct sigqueue *q)
229 {
230 	if (q->flags & SIGQUEUE_PREALLOC)
231 		return;
232 	atomic_dec(&q->user->sigpending);
233 	free_uid(q->user);
234 	kmem_cache_free(sigqueue_cachep, q);
235 }
236 
237 void flush_sigqueue(struct sigpending *queue)
238 {
239 	struct sigqueue *q;
240 
241 	sigemptyset(&queue->signal);
242 	while (!list_empty(&queue->list)) {
243 		q = list_entry(queue->list.next, struct sigqueue , list);
244 		list_del_init(&q->list);
245 		__sigqueue_free(q);
246 	}
247 }
248 
249 /*
250  * Flush all pending signals for a task.
251  */
252 void flush_signals(struct task_struct *t)
253 {
254 	unsigned long flags;
255 
256 	spin_lock_irqsave(&t->sighand->siglock, flags);
257 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
258 	flush_sigqueue(&t->pending);
259 	flush_sigqueue(&t->signal->shared_pending);
260 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
261 }
262 
263 static void __flush_itimer_signals(struct sigpending *pending)
264 {
265 	sigset_t signal, retain;
266 	struct sigqueue *q, *n;
267 
268 	signal = pending->signal;
269 	sigemptyset(&retain);
270 
271 	list_for_each_entry_safe(q, n, &pending->list, list) {
272 		int sig = q->info.si_signo;
273 
274 		if (likely(q->info.si_code != SI_TIMER)) {
275 			sigaddset(&retain, sig);
276 		} else {
277 			sigdelset(&signal, sig);
278 			list_del_init(&q->list);
279 			__sigqueue_free(q);
280 		}
281 	}
282 
283 	sigorsets(&pending->signal, &signal, &retain);
284 }
285 
286 void flush_itimer_signals(void)
287 {
288 	struct task_struct *tsk = current;
289 	unsigned long flags;
290 
291 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
292 	__flush_itimer_signals(&tsk->pending);
293 	__flush_itimer_signals(&tsk->signal->shared_pending);
294 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
295 }
296 
297 void ignore_signals(struct task_struct *t)
298 {
299 	int i;
300 
301 	for (i = 0; i < _NSIG; ++i)
302 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
303 
304 	flush_signals(t);
305 }
306 
307 /*
308  * Flush all handlers for a task.
309  */
310 
311 void
312 flush_signal_handlers(struct task_struct *t, int force_default)
313 {
314 	int i;
315 	struct k_sigaction *ka = &t->sighand->action[0];
316 	for (i = _NSIG ; i != 0 ; i--) {
317 		if (force_default || ka->sa.sa_handler != SIG_IGN)
318 			ka->sa.sa_handler = SIG_DFL;
319 		ka->sa.sa_flags = 0;
320 		sigemptyset(&ka->sa.sa_mask);
321 		ka++;
322 	}
323 }
324 
325 int unhandled_signal(struct task_struct *tsk, int sig)
326 {
327 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
328 	if (is_global_init(tsk))
329 		return 1;
330 	if (handler != SIG_IGN && handler != SIG_DFL)
331 		return 0;
332 	return !tracehook_consider_fatal_signal(tsk, sig);
333 }
334 
335 
336 /* Notify the system that a driver wants to block all signals for this
337  * process, and wants to be notified if any signals at all were to be
338  * sent/acted upon.  If the notifier routine returns non-zero, then the
339  * signal will be acted upon after all.  If the notifier routine returns 0,
340  * then then signal will be blocked.  Only one block per process is
341  * allowed.  priv is a pointer to private data that the notifier routine
342  * can use to determine if the signal should be blocked or not.  */
343 
344 void
345 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
346 {
347 	unsigned long flags;
348 
349 	spin_lock_irqsave(&current->sighand->siglock, flags);
350 	current->notifier_mask = mask;
351 	current->notifier_data = priv;
352 	current->notifier = notifier;
353 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
354 }
355 
356 /* Notify the system that blocking has ended. */
357 
358 void
359 unblock_all_signals(void)
360 {
361 	unsigned long flags;
362 
363 	spin_lock_irqsave(&current->sighand->siglock, flags);
364 	current->notifier = NULL;
365 	current->notifier_data = NULL;
366 	recalc_sigpending();
367 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
368 }
369 
370 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
371 {
372 	struct sigqueue *q, *first = NULL;
373 
374 	/*
375 	 * Collect the siginfo appropriate to this signal.  Check if
376 	 * there is another siginfo for the same signal.
377 	*/
378 	list_for_each_entry(q, &list->list, list) {
379 		if (q->info.si_signo == sig) {
380 			if (first)
381 				goto still_pending;
382 			first = q;
383 		}
384 	}
385 
386 	sigdelset(&list->signal, sig);
387 
388 	if (first) {
389 still_pending:
390 		list_del_init(&first->list);
391 		copy_siginfo(info, &first->info);
392 		__sigqueue_free(first);
393 	} else {
394 		/* Ok, it wasn't in the queue.  This must be
395 		   a fast-pathed signal or we must have been
396 		   out of queue space.  So zero out the info.
397 		 */
398 		info->si_signo = sig;
399 		info->si_errno = 0;
400 		info->si_code = 0;
401 		info->si_pid = 0;
402 		info->si_uid = 0;
403 	}
404 }
405 
406 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
407 			siginfo_t *info)
408 {
409 	int sig = next_signal(pending, mask);
410 
411 	if (sig) {
412 		if (current->notifier) {
413 			if (sigismember(current->notifier_mask, sig)) {
414 				if (!(current->notifier)(current->notifier_data)) {
415 					clear_thread_flag(TIF_SIGPENDING);
416 					return 0;
417 				}
418 			}
419 		}
420 
421 		collect_signal(sig, pending, info);
422 	}
423 
424 	return sig;
425 }
426 
427 /*
428  * Dequeue a signal and return the element to the caller, which is
429  * expected to free it.
430  *
431  * All callers have to hold the siglock.
432  */
433 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
434 {
435 	int signr;
436 
437 	/* We only dequeue private signals from ourselves, we don't let
438 	 * signalfd steal them
439 	 */
440 	signr = __dequeue_signal(&tsk->pending, mask, info);
441 	if (!signr) {
442 		signr = __dequeue_signal(&tsk->signal->shared_pending,
443 					 mask, info);
444 		/*
445 		 * itimer signal ?
446 		 *
447 		 * itimers are process shared and we restart periodic
448 		 * itimers in the signal delivery path to prevent DoS
449 		 * attacks in the high resolution timer case. This is
450 		 * compliant with the old way of self restarting
451 		 * itimers, as the SIGALRM is a legacy signal and only
452 		 * queued once. Changing the restart behaviour to
453 		 * restart the timer in the signal dequeue path is
454 		 * reducing the timer noise on heavy loaded !highres
455 		 * systems too.
456 		 */
457 		if (unlikely(signr == SIGALRM)) {
458 			struct hrtimer *tmr = &tsk->signal->real_timer;
459 
460 			if (!hrtimer_is_queued(tmr) &&
461 			    tsk->signal->it_real_incr.tv64 != 0) {
462 				hrtimer_forward(tmr, tmr->base->get_time(),
463 						tsk->signal->it_real_incr);
464 				hrtimer_restart(tmr);
465 			}
466 		}
467 	}
468 
469 	recalc_sigpending();
470 	if (!signr)
471 		return 0;
472 
473 	if (unlikely(sig_kernel_stop(signr))) {
474 		/*
475 		 * Set a marker that we have dequeued a stop signal.  Our
476 		 * caller might release the siglock and then the pending
477 		 * stop signal it is about to process is no longer in the
478 		 * pending bitmasks, but must still be cleared by a SIGCONT
479 		 * (and overruled by a SIGKILL).  So those cases clear this
480 		 * shared flag after we've set it.  Note that this flag may
481 		 * remain set after the signal we return is ignored or
482 		 * handled.  That doesn't matter because its only purpose
483 		 * is to alert stop-signal processing code when another
484 		 * processor has come along and cleared the flag.
485 		 */
486 		tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
487 	}
488 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
489 		/*
490 		 * Release the siglock to ensure proper locking order
491 		 * of timer locks outside of siglocks.  Note, we leave
492 		 * irqs disabled here, since the posix-timers code is
493 		 * about to disable them again anyway.
494 		 */
495 		spin_unlock(&tsk->sighand->siglock);
496 		do_schedule_next_timer(info);
497 		spin_lock(&tsk->sighand->siglock);
498 	}
499 	return signr;
500 }
501 
502 /*
503  * Tell a process that it has a new active signal..
504  *
505  * NOTE! we rely on the previous spin_lock to
506  * lock interrupts for us! We can only be called with
507  * "siglock" held, and the local interrupt must
508  * have been disabled when that got acquired!
509  *
510  * No need to set need_resched since signal event passing
511  * goes through ->blocked
512  */
513 void signal_wake_up(struct task_struct *t, int resume)
514 {
515 	unsigned int mask;
516 
517 	set_tsk_thread_flag(t, TIF_SIGPENDING);
518 
519 	/*
520 	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
521 	 * case. We don't check t->state here because there is a race with it
522 	 * executing another processor and just now entering stopped state.
523 	 * By using wake_up_state, we ensure the process will wake up and
524 	 * handle its death signal.
525 	 */
526 	mask = TASK_INTERRUPTIBLE;
527 	if (resume)
528 		mask |= TASK_WAKEKILL;
529 	if (!wake_up_state(t, mask))
530 		kick_process(t);
531 }
532 
533 /*
534  * Remove signals in mask from the pending set and queue.
535  * Returns 1 if any signals were found.
536  *
537  * All callers must be holding the siglock.
538  *
539  * This version takes a sigset mask and looks at all signals,
540  * not just those in the first mask word.
541  */
542 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
543 {
544 	struct sigqueue *q, *n;
545 	sigset_t m;
546 
547 	sigandsets(&m, mask, &s->signal);
548 	if (sigisemptyset(&m))
549 		return 0;
550 
551 	signandsets(&s->signal, &s->signal, mask);
552 	list_for_each_entry_safe(q, n, &s->list, list) {
553 		if (sigismember(mask, q->info.si_signo)) {
554 			list_del_init(&q->list);
555 			__sigqueue_free(q);
556 		}
557 	}
558 	return 1;
559 }
560 /*
561  * Remove signals in mask from the pending set and queue.
562  * Returns 1 if any signals were found.
563  *
564  * All callers must be holding the siglock.
565  */
566 static int rm_from_queue(unsigned long mask, struct sigpending *s)
567 {
568 	struct sigqueue *q, *n;
569 
570 	if (!sigtestsetmask(&s->signal, mask))
571 		return 0;
572 
573 	sigdelsetmask(&s->signal, mask);
574 	list_for_each_entry_safe(q, n, &s->list, list) {
575 		if (q->info.si_signo < SIGRTMIN &&
576 		    (mask & sigmask(q->info.si_signo))) {
577 			list_del_init(&q->list);
578 			__sigqueue_free(q);
579 		}
580 	}
581 	return 1;
582 }
583 
584 /*
585  * Bad permissions for sending the signal
586  * - the caller must hold at least the RCU read lock
587  */
588 static int check_kill_permission(int sig, struct siginfo *info,
589 				 struct task_struct *t)
590 {
591 	const struct cred *cred = current_cred(), *tcred;
592 	struct pid *sid;
593 	int error;
594 
595 	if (!valid_signal(sig))
596 		return -EINVAL;
597 
598 	if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
599 		return 0;
600 
601 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
602 	if (error)
603 		return error;
604 
605 	tcred = __task_cred(t);
606 	if ((cred->euid ^ tcred->suid) &&
607 	    (cred->euid ^ tcred->uid) &&
608 	    (cred->uid  ^ tcred->suid) &&
609 	    (cred->uid  ^ tcred->uid) &&
610 	    !capable(CAP_KILL)) {
611 		switch (sig) {
612 		case SIGCONT:
613 			sid = task_session(t);
614 			/*
615 			 * We don't return the error if sid == NULL. The
616 			 * task was unhashed, the caller must notice this.
617 			 */
618 			if (!sid || sid == task_session(current))
619 				break;
620 		default:
621 			return -EPERM;
622 		}
623 	}
624 
625 	return security_task_kill(t, info, sig, 0);
626 }
627 
628 /*
629  * Handle magic process-wide effects of stop/continue signals. Unlike
630  * the signal actions, these happen immediately at signal-generation
631  * time regardless of blocking, ignoring, or handling.  This does the
632  * actual continuing for SIGCONT, but not the actual stopping for stop
633  * signals. The process stop is done as a signal action for SIG_DFL.
634  *
635  * Returns true if the signal should be actually delivered, otherwise
636  * it should be dropped.
637  */
638 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
639 {
640 	struct signal_struct *signal = p->signal;
641 	struct task_struct *t;
642 
643 	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
644 		/*
645 		 * The process is in the middle of dying, nothing to do.
646 		 */
647 	} else if (sig_kernel_stop(sig)) {
648 		/*
649 		 * This is a stop signal.  Remove SIGCONT from all queues.
650 		 */
651 		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
652 		t = p;
653 		do {
654 			rm_from_queue(sigmask(SIGCONT), &t->pending);
655 		} while_each_thread(p, t);
656 	} else if (sig == SIGCONT) {
657 		unsigned int why;
658 		/*
659 		 * Remove all stop signals from all queues,
660 		 * and wake all threads.
661 		 */
662 		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
663 		t = p;
664 		do {
665 			unsigned int state;
666 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
667 			/*
668 			 * If there is a handler for SIGCONT, we must make
669 			 * sure that no thread returns to user mode before
670 			 * we post the signal, in case it was the only
671 			 * thread eligible to run the signal handler--then
672 			 * it must not do anything between resuming and
673 			 * running the handler.  With the TIF_SIGPENDING
674 			 * flag set, the thread will pause and acquire the
675 			 * siglock that we hold now and until we've queued
676 			 * the pending signal.
677 			 *
678 			 * Wake up the stopped thread _after_ setting
679 			 * TIF_SIGPENDING
680 			 */
681 			state = __TASK_STOPPED;
682 			if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
683 				set_tsk_thread_flag(t, TIF_SIGPENDING);
684 				state |= TASK_INTERRUPTIBLE;
685 			}
686 			wake_up_state(t, state);
687 		} while_each_thread(p, t);
688 
689 		/*
690 		 * Notify the parent with CLD_CONTINUED if we were stopped.
691 		 *
692 		 * If we were in the middle of a group stop, we pretend it
693 		 * was already finished, and then continued. Since SIGCHLD
694 		 * doesn't queue we report only CLD_STOPPED, as if the next
695 		 * CLD_CONTINUED was dropped.
696 		 */
697 		why = 0;
698 		if (signal->flags & SIGNAL_STOP_STOPPED)
699 			why |= SIGNAL_CLD_CONTINUED;
700 		else if (signal->group_stop_count)
701 			why |= SIGNAL_CLD_STOPPED;
702 
703 		if (why) {
704 			/*
705 			 * The first thread which returns from finish_stop()
706 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
707 			 * notify its parent. See get_signal_to_deliver().
708 			 */
709 			signal->flags = why | SIGNAL_STOP_CONTINUED;
710 			signal->group_stop_count = 0;
711 			signal->group_exit_code = 0;
712 		} else {
713 			/*
714 			 * We are not stopped, but there could be a stop
715 			 * signal in the middle of being processed after
716 			 * being removed from the queue.  Clear that too.
717 			 */
718 			signal->flags &= ~SIGNAL_STOP_DEQUEUED;
719 		}
720 	}
721 
722 	return !sig_ignored(p, sig, from_ancestor_ns);
723 }
724 
725 /*
726  * Test if P wants to take SIG.  After we've checked all threads with this,
727  * it's equivalent to finding no threads not blocking SIG.  Any threads not
728  * blocking SIG were ruled out because they are not running and already
729  * have pending signals.  Such threads will dequeue from the shared queue
730  * as soon as they're available, so putting the signal on the shared queue
731  * will be equivalent to sending it to one such thread.
732  */
733 static inline int wants_signal(int sig, struct task_struct *p)
734 {
735 	if (sigismember(&p->blocked, sig))
736 		return 0;
737 	if (p->flags & PF_EXITING)
738 		return 0;
739 	if (sig == SIGKILL)
740 		return 1;
741 	if (task_is_stopped_or_traced(p))
742 		return 0;
743 	return task_curr(p) || !signal_pending(p);
744 }
745 
746 static void complete_signal(int sig, struct task_struct *p, int group)
747 {
748 	struct signal_struct *signal = p->signal;
749 	struct task_struct *t;
750 
751 	/*
752 	 * Now find a thread we can wake up to take the signal off the queue.
753 	 *
754 	 * If the main thread wants the signal, it gets first crack.
755 	 * Probably the least surprising to the average bear.
756 	 */
757 	if (wants_signal(sig, p))
758 		t = p;
759 	else if (!group || thread_group_empty(p))
760 		/*
761 		 * There is just one thread and it does not need to be woken.
762 		 * It will dequeue unblocked signals before it runs again.
763 		 */
764 		return;
765 	else {
766 		/*
767 		 * Otherwise try to find a suitable thread.
768 		 */
769 		t = signal->curr_target;
770 		while (!wants_signal(sig, t)) {
771 			t = next_thread(t);
772 			if (t == signal->curr_target)
773 				/*
774 				 * No thread needs to be woken.
775 				 * Any eligible threads will see
776 				 * the signal in the queue soon.
777 				 */
778 				return;
779 		}
780 		signal->curr_target = t;
781 	}
782 
783 	/*
784 	 * Found a killable thread.  If the signal will be fatal,
785 	 * then start taking the whole group down immediately.
786 	 */
787 	if (sig_fatal(p, sig) &&
788 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
789 	    !sigismember(&t->real_blocked, sig) &&
790 	    (sig == SIGKILL ||
791 	     !tracehook_consider_fatal_signal(t, sig))) {
792 		/*
793 		 * This signal will be fatal to the whole group.
794 		 */
795 		if (!sig_kernel_coredump(sig)) {
796 			/*
797 			 * Start a group exit and wake everybody up.
798 			 * This way we don't have other threads
799 			 * running and doing things after a slower
800 			 * thread has the fatal signal pending.
801 			 */
802 			signal->flags = SIGNAL_GROUP_EXIT;
803 			signal->group_exit_code = sig;
804 			signal->group_stop_count = 0;
805 			t = p;
806 			do {
807 				sigaddset(&t->pending.signal, SIGKILL);
808 				signal_wake_up(t, 1);
809 			} while_each_thread(p, t);
810 			return;
811 		}
812 	}
813 
814 	/*
815 	 * The signal is already in the shared-pending queue.
816 	 * Tell the chosen thread to wake up and dequeue it.
817 	 */
818 	signal_wake_up(t, sig == SIGKILL);
819 	return;
820 }
821 
822 static inline int legacy_queue(struct sigpending *signals, int sig)
823 {
824 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
825 }
826 
827 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
828 			int group, int from_ancestor_ns)
829 {
830 	struct sigpending *pending;
831 	struct sigqueue *q;
832 
833 	trace_sched_signal_send(sig, t);
834 
835 	assert_spin_locked(&t->sighand->siglock);
836 
837 	if (!prepare_signal(sig, t, from_ancestor_ns))
838 		return 0;
839 
840 	pending = group ? &t->signal->shared_pending : &t->pending;
841 	/*
842 	 * Short-circuit ignored signals and support queuing
843 	 * exactly one non-rt signal, so that we can get more
844 	 * detailed information about the cause of the signal.
845 	 */
846 	if (legacy_queue(pending, sig))
847 		return 0;
848 	/*
849 	 * fast-pathed signals for kernel-internal things like SIGSTOP
850 	 * or SIGKILL.
851 	 */
852 	if (info == SEND_SIG_FORCED)
853 		goto out_set;
854 
855 	/* Real-time signals must be queued if sent by sigqueue, or
856 	   some other real-time mechanism.  It is implementation
857 	   defined whether kill() does so.  We attempt to do so, on
858 	   the principle of least surprise, but since kill is not
859 	   allowed to fail with EAGAIN when low on memory we just
860 	   make sure at least one signal gets delivered and don't
861 	   pass on the info struct.  */
862 
863 	q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
864 					     (is_si_special(info) ||
865 					      info->si_code >= 0)));
866 	if (q) {
867 		list_add_tail(&q->list, &pending->list);
868 		switch ((unsigned long) info) {
869 		case (unsigned long) SEND_SIG_NOINFO:
870 			q->info.si_signo = sig;
871 			q->info.si_errno = 0;
872 			q->info.si_code = SI_USER;
873 			q->info.si_pid = task_tgid_nr_ns(current,
874 							task_active_pid_ns(t));
875 			q->info.si_uid = current_uid();
876 			break;
877 		case (unsigned long) SEND_SIG_PRIV:
878 			q->info.si_signo = sig;
879 			q->info.si_errno = 0;
880 			q->info.si_code = SI_KERNEL;
881 			q->info.si_pid = 0;
882 			q->info.si_uid = 0;
883 			break;
884 		default:
885 			copy_siginfo(&q->info, info);
886 			if (from_ancestor_ns)
887 				q->info.si_pid = 0;
888 			break;
889 		}
890 	} else if (!is_si_special(info)) {
891 		if (sig >= SIGRTMIN && info->si_code != SI_USER)
892 		/*
893 		 * Queue overflow, abort.  We may abort if the signal was rt
894 		 * and sent by user using something other than kill().
895 		 */
896 			return -EAGAIN;
897 	}
898 
899 out_set:
900 	signalfd_notify(t, sig);
901 	sigaddset(&pending->signal, sig);
902 	complete_signal(sig, t, group);
903 	return 0;
904 }
905 
906 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
907 			int group)
908 {
909 	int from_ancestor_ns = 0;
910 
911 #ifdef CONFIG_PID_NS
912 	if (!is_si_special(info) && SI_FROMUSER(info) &&
913 			task_pid_nr_ns(current, task_active_pid_ns(t)) <= 0)
914 		from_ancestor_ns = 1;
915 #endif
916 
917 	return __send_signal(sig, info, t, group, from_ancestor_ns);
918 }
919 
920 int print_fatal_signals;
921 
922 static void print_fatal_signal(struct pt_regs *regs, int signr)
923 {
924 	printk("%s/%d: potentially unexpected fatal signal %d.\n",
925 		current->comm, task_pid_nr(current), signr);
926 
927 #if defined(__i386__) && !defined(__arch_um__)
928 	printk("code at %08lx: ", regs->ip);
929 	{
930 		int i;
931 		for (i = 0; i < 16; i++) {
932 			unsigned char insn;
933 
934 			__get_user(insn, (unsigned char *)(regs->ip + i));
935 			printk("%02x ", insn);
936 		}
937 	}
938 #endif
939 	printk("\n");
940 	preempt_disable();
941 	show_regs(regs);
942 	preempt_enable();
943 }
944 
945 static int __init setup_print_fatal_signals(char *str)
946 {
947 	get_option (&str, &print_fatal_signals);
948 
949 	return 1;
950 }
951 
952 __setup("print-fatal-signals=", setup_print_fatal_signals);
953 
954 int
955 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
956 {
957 	return send_signal(sig, info, p, 1);
958 }
959 
960 static int
961 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
962 {
963 	return send_signal(sig, info, t, 0);
964 }
965 
966 /*
967  * Force a signal that the process can't ignore: if necessary
968  * we unblock the signal and change any SIG_IGN to SIG_DFL.
969  *
970  * Note: If we unblock the signal, we always reset it to SIG_DFL,
971  * since we do not want to have a signal handler that was blocked
972  * be invoked when user space had explicitly blocked it.
973  *
974  * We don't want to have recursive SIGSEGV's etc, for example,
975  * that is why we also clear SIGNAL_UNKILLABLE.
976  */
977 int
978 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
979 {
980 	unsigned long int flags;
981 	int ret, blocked, ignored;
982 	struct k_sigaction *action;
983 
984 	spin_lock_irqsave(&t->sighand->siglock, flags);
985 	action = &t->sighand->action[sig-1];
986 	ignored = action->sa.sa_handler == SIG_IGN;
987 	blocked = sigismember(&t->blocked, sig);
988 	if (blocked || ignored) {
989 		action->sa.sa_handler = SIG_DFL;
990 		if (blocked) {
991 			sigdelset(&t->blocked, sig);
992 			recalc_sigpending_and_wake(t);
993 		}
994 	}
995 	if (action->sa.sa_handler == SIG_DFL)
996 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
997 	ret = specific_send_sig_info(sig, info, t);
998 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
999 
1000 	return ret;
1001 }
1002 
1003 void
1004 force_sig_specific(int sig, struct task_struct *t)
1005 {
1006 	force_sig_info(sig, SEND_SIG_FORCED, t);
1007 }
1008 
1009 /*
1010  * Nuke all other threads in the group.
1011  */
1012 void zap_other_threads(struct task_struct *p)
1013 {
1014 	struct task_struct *t;
1015 
1016 	p->signal->group_stop_count = 0;
1017 
1018 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1019 		/*
1020 		 * Don't bother with already dead threads
1021 		 */
1022 		if (t->exit_state)
1023 			continue;
1024 
1025 		/* SIGKILL will be handled before any pending SIGSTOP */
1026 		sigaddset(&t->pending.signal, SIGKILL);
1027 		signal_wake_up(t, 1);
1028 	}
1029 }
1030 
1031 int __fatal_signal_pending(struct task_struct *tsk)
1032 {
1033 	return sigismember(&tsk->pending.signal, SIGKILL);
1034 }
1035 EXPORT_SYMBOL(__fatal_signal_pending);
1036 
1037 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1038 {
1039 	struct sighand_struct *sighand;
1040 
1041 	rcu_read_lock();
1042 	for (;;) {
1043 		sighand = rcu_dereference(tsk->sighand);
1044 		if (unlikely(sighand == NULL))
1045 			break;
1046 
1047 		spin_lock_irqsave(&sighand->siglock, *flags);
1048 		if (likely(sighand == tsk->sighand))
1049 			break;
1050 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1051 	}
1052 	rcu_read_unlock();
1053 
1054 	return sighand;
1055 }
1056 
1057 /*
1058  * send signal info to all the members of a group
1059  * - the caller must hold the RCU read lock at least
1060  */
1061 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1062 {
1063 	unsigned long flags;
1064 	int ret;
1065 
1066 	ret = check_kill_permission(sig, info, p);
1067 
1068 	if (!ret && sig) {
1069 		ret = -ESRCH;
1070 		if (lock_task_sighand(p, &flags)) {
1071 			ret = __group_send_sig_info(sig, info, p);
1072 			unlock_task_sighand(p, &flags);
1073 		}
1074 	}
1075 
1076 	return ret;
1077 }
1078 
1079 /*
1080  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1081  * control characters do (^C, ^Z etc)
1082  * - the caller must hold at least a readlock on tasklist_lock
1083  */
1084 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1085 {
1086 	struct task_struct *p = NULL;
1087 	int retval, success;
1088 
1089 	success = 0;
1090 	retval = -ESRCH;
1091 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1092 		int err = group_send_sig_info(sig, info, p);
1093 		success |= !err;
1094 		retval = err;
1095 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1096 	return success ? 0 : retval;
1097 }
1098 
1099 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1100 {
1101 	int error = -ESRCH;
1102 	struct task_struct *p;
1103 
1104 	rcu_read_lock();
1105 retry:
1106 	p = pid_task(pid, PIDTYPE_PID);
1107 	if (p) {
1108 		error = group_send_sig_info(sig, info, p);
1109 		if (unlikely(error == -ESRCH))
1110 			/*
1111 			 * The task was unhashed in between, try again.
1112 			 * If it is dead, pid_task() will return NULL,
1113 			 * if we race with de_thread() it will find the
1114 			 * new leader.
1115 			 */
1116 			goto retry;
1117 	}
1118 	rcu_read_unlock();
1119 
1120 	return error;
1121 }
1122 
1123 int
1124 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1125 {
1126 	int error;
1127 	rcu_read_lock();
1128 	error = kill_pid_info(sig, info, find_vpid(pid));
1129 	rcu_read_unlock();
1130 	return error;
1131 }
1132 
1133 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1134 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1135 		      uid_t uid, uid_t euid, u32 secid)
1136 {
1137 	int ret = -EINVAL;
1138 	struct task_struct *p;
1139 	const struct cred *pcred;
1140 
1141 	if (!valid_signal(sig))
1142 		return ret;
1143 
1144 	read_lock(&tasklist_lock);
1145 	p = pid_task(pid, PIDTYPE_PID);
1146 	if (!p) {
1147 		ret = -ESRCH;
1148 		goto out_unlock;
1149 	}
1150 	pcred = __task_cred(p);
1151 	if ((info == SEND_SIG_NOINFO ||
1152 	     (!is_si_special(info) && SI_FROMUSER(info))) &&
1153 	    euid != pcred->suid && euid != pcred->uid &&
1154 	    uid  != pcred->suid && uid  != pcred->uid) {
1155 		ret = -EPERM;
1156 		goto out_unlock;
1157 	}
1158 	ret = security_task_kill(p, info, sig, secid);
1159 	if (ret)
1160 		goto out_unlock;
1161 	if (sig && p->sighand) {
1162 		unsigned long flags;
1163 		spin_lock_irqsave(&p->sighand->siglock, flags);
1164 		ret = __send_signal(sig, info, p, 1, 0);
1165 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1166 	}
1167 out_unlock:
1168 	read_unlock(&tasklist_lock);
1169 	return ret;
1170 }
1171 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1172 
1173 /*
1174  * kill_something_info() interprets pid in interesting ways just like kill(2).
1175  *
1176  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1177  * is probably wrong.  Should make it like BSD or SYSV.
1178  */
1179 
1180 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1181 {
1182 	int ret;
1183 
1184 	if (pid > 0) {
1185 		rcu_read_lock();
1186 		ret = kill_pid_info(sig, info, find_vpid(pid));
1187 		rcu_read_unlock();
1188 		return ret;
1189 	}
1190 
1191 	read_lock(&tasklist_lock);
1192 	if (pid != -1) {
1193 		ret = __kill_pgrp_info(sig, info,
1194 				pid ? find_vpid(-pid) : task_pgrp(current));
1195 	} else {
1196 		int retval = 0, count = 0;
1197 		struct task_struct * p;
1198 
1199 		for_each_process(p) {
1200 			if (task_pid_vnr(p) > 1 &&
1201 					!same_thread_group(p, current)) {
1202 				int err = group_send_sig_info(sig, info, p);
1203 				++count;
1204 				if (err != -EPERM)
1205 					retval = err;
1206 			}
1207 		}
1208 		ret = count ? retval : -ESRCH;
1209 	}
1210 	read_unlock(&tasklist_lock);
1211 
1212 	return ret;
1213 }
1214 
1215 /*
1216  * These are for backward compatibility with the rest of the kernel source.
1217  */
1218 
1219 /*
1220  * The caller must ensure the task can't exit.
1221  */
1222 int
1223 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1224 {
1225 	int ret;
1226 	unsigned long flags;
1227 
1228 	/*
1229 	 * Make sure legacy kernel users don't send in bad values
1230 	 * (normal paths check this in check_kill_permission).
1231 	 */
1232 	if (!valid_signal(sig))
1233 		return -EINVAL;
1234 
1235 	spin_lock_irqsave(&p->sighand->siglock, flags);
1236 	ret = specific_send_sig_info(sig, info, p);
1237 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1238 	return ret;
1239 }
1240 
1241 #define __si_special(priv) \
1242 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1243 
1244 int
1245 send_sig(int sig, struct task_struct *p, int priv)
1246 {
1247 	return send_sig_info(sig, __si_special(priv), p);
1248 }
1249 
1250 void
1251 force_sig(int sig, struct task_struct *p)
1252 {
1253 	force_sig_info(sig, SEND_SIG_PRIV, p);
1254 }
1255 
1256 /*
1257  * When things go south during signal handling, we
1258  * will force a SIGSEGV. And if the signal that caused
1259  * the problem was already a SIGSEGV, we'll want to
1260  * make sure we don't even try to deliver the signal..
1261  */
1262 int
1263 force_sigsegv(int sig, struct task_struct *p)
1264 {
1265 	if (sig == SIGSEGV) {
1266 		unsigned long flags;
1267 		spin_lock_irqsave(&p->sighand->siglock, flags);
1268 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1269 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1270 	}
1271 	force_sig(SIGSEGV, p);
1272 	return 0;
1273 }
1274 
1275 int kill_pgrp(struct pid *pid, int sig, int priv)
1276 {
1277 	int ret;
1278 
1279 	read_lock(&tasklist_lock);
1280 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1281 	read_unlock(&tasklist_lock);
1282 
1283 	return ret;
1284 }
1285 EXPORT_SYMBOL(kill_pgrp);
1286 
1287 int kill_pid(struct pid *pid, int sig, int priv)
1288 {
1289 	return kill_pid_info(sig, __si_special(priv), pid);
1290 }
1291 EXPORT_SYMBOL(kill_pid);
1292 
1293 /*
1294  * These functions support sending signals using preallocated sigqueue
1295  * structures.  This is needed "because realtime applications cannot
1296  * afford to lose notifications of asynchronous events, like timer
1297  * expirations or I/O completions".  In the case of Posix Timers
1298  * we allocate the sigqueue structure from the timer_create.  If this
1299  * allocation fails we are able to report the failure to the application
1300  * with an EAGAIN error.
1301  */
1302 
1303 struct sigqueue *sigqueue_alloc(void)
1304 {
1305 	struct sigqueue *q;
1306 
1307 	if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1308 		q->flags |= SIGQUEUE_PREALLOC;
1309 	return(q);
1310 }
1311 
1312 void sigqueue_free(struct sigqueue *q)
1313 {
1314 	unsigned long flags;
1315 	spinlock_t *lock = &current->sighand->siglock;
1316 
1317 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1318 	/*
1319 	 * We must hold ->siglock while testing q->list
1320 	 * to serialize with collect_signal() or with
1321 	 * __exit_signal()->flush_sigqueue().
1322 	 */
1323 	spin_lock_irqsave(lock, flags);
1324 	q->flags &= ~SIGQUEUE_PREALLOC;
1325 	/*
1326 	 * If it is queued it will be freed when dequeued,
1327 	 * like the "regular" sigqueue.
1328 	 */
1329 	if (!list_empty(&q->list))
1330 		q = NULL;
1331 	spin_unlock_irqrestore(lock, flags);
1332 
1333 	if (q)
1334 		__sigqueue_free(q);
1335 }
1336 
1337 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1338 {
1339 	int sig = q->info.si_signo;
1340 	struct sigpending *pending;
1341 	unsigned long flags;
1342 	int ret;
1343 
1344 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1345 
1346 	ret = -1;
1347 	if (!likely(lock_task_sighand(t, &flags)))
1348 		goto ret;
1349 
1350 	ret = 1; /* the signal is ignored */
1351 	if (!prepare_signal(sig, t, 0))
1352 		goto out;
1353 
1354 	ret = 0;
1355 	if (unlikely(!list_empty(&q->list))) {
1356 		/*
1357 		 * If an SI_TIMER entry is already queue just increment
1358 		 * the overrun count.
1359 		 */
1360 		BUG_ON(q->info.si_code != SI_TIMER);
1361 		q->info.si_overrun++;
1362 		goto out;
1363 	}
1364 	q->info.si_overrun = 0;
1365 
1366 	signalfd_notify(t, sig);
1367 	pending = group ? &t->signal->shared_pending : &t->pending;
1368 	list_add_tail(&q->list, &pending->list);
1369 	sigaddset(&pending->signal, sig);
1370 	complete_signal(sig, t, group);
1371 out:
1372 	unlock_task_sighand(t, &flags);
1373 ret:
1374 	return ret;
1375 }
1376 
1377 /*
1378  * Wake up any threads in the parent blocked in wait* syscalls.
1379  */
1380 static inline void __wake_up_parent(struct task_struct *p,
1381 				    struct task_struct *parent)
1382 {
1383 	wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1384 }
1385 
1386 /*
1387  * Let a parent know about the death of a child.
1388  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1389  *
1390  * Returns -1 if our parent ignored us and so we've switched to
1391  * self-reaping, or else @sig.
1392  */
1393 int do_notify_parent(struct task_struct *tsk, int sig)
1394 {
1395 	struct siginfo info;
1396 	unsigned long flags;
1397 	struct sighand_struct *psig;
1398 	int ret = sig;
1399 
1400 	BUG_ON(sig == -1);
1401 
1402  	/* do_notify_parent_cldstop should have been called instead.  */
1403  	BUG_ON(task_is_stopped_or_traced(tsk));
1404 
1405 	BUG_ON(!tsk->ptrace &&
1406 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1407 
1408 	info.si_signo = sig;
1409 	info.si_errno = 0;
1410 	/*
1411 	 * we are under tasklist_lock here so our parent is tied to
1412 	 * us and cannot exit and release its namespace.
1413 	 *
1414 	 * the only it can is to switch its nsproxy with sys_unshare,
1415 	 * bu uncharing pid namespaces is not allowed, so we'll always
1416 	 * see relevant namespace
1417 	 *
1418 	 * write_lock() currently calls preempt_disable() which is the
1419 	 * same as rcu_read_lock(), but according to Oleg, this is not
1420 	 * correct to rely on this
1421 	 */
1422 	rcu_read_lock();
1423 	info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1424 	info.si_uid = __task_cred(tsk)->uid;
1425 	rcu_read_unlock();
1426 
1427 	info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1428 				tsk->signal->utime));
1429 	info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1430 				tsk->signal->stime));
1431 
1432 	info.si_status = tsk->exit_code & 0x7f;
1433 	if (tsk->exit_code & 0x80)
1434 		info.si_code = CLD_DUMPED;
1435 	else if (tsk->exit_code & 0x7f)
1436 		info.si_code = CLD_KILLED;
1437 	else {
1438 		info.si_code = CLD_EXITED;
1439 		info.si_status = tsk->exit_code >> 8;
1440 	}
1441 
1442 	psig = tsk->parent->sighand;
1443 	spin_lock_irqsave(&psig->siglock, flags);
1444 	if (!tsk->ptrace && sig == SIGCHLD &&
1445 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1446 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1447 		/*
1448 		 * We are exiting and our parent doesn't care.  POSIX.1
1449 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1450 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1451 		 * automatically and not left for our parent's wait4 call.
1452 		 * Rather than having the parent do it as a magic kind of
1453 		 * signal handler, we just set this to tell do_exit that we
1454 		 * can be cleaned up without becoming a zombie.  Note that
1455 		 * we still call __wake_up_parent in this case, because a
1456 		 * blocked sys_wait4 might now return -ECHILD.
1457 		 *
1458 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1459 		 * is implementation-defined: we do (if you don't want
1460 		 * it, just use SIG_IGN instead).
1461 		 */
1462 		ret = tsk->exit_signal = -1;
1463 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1464 			sig = -1;
1465 	}
1466 	if (valid_signal(sig) && sig > 0)
1467 		__group_send_sig_info(sig, &info, tsk->parent);
1468 	__wake_up_parent(tsk, tsk->parent);
1469 	spin_unlock_irqrestore(&psig->siglock, flags);
1470 
1471 	return ret;
1472 }
1473 
1474 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1475 {
1476 	struct siginfo info;
1477 	unsigned long flags;
1478 	struct task_struct *parent;
1479 	struct sighand_struct *sighand;
1480 
1481 	if (tsk->ptrace & PT_PTRACED)
1482 		parent = tsk->parent;
1483 	else {
1484 		tsk = tsk->group_leader;
1485 		parent = tsk->real_parent;
1486 	}
1487 
1488 	info.si_signo = SIGCHLD;
1489 	info.si_errno = 0;
1490 	/*
1491 	 * see comment in do_notify_parent() abot the following 3 lines
1492 	 */
1493 	rcu_read_lock();
1494 	info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1495 	info.si_uid = __task_cred(tsk)->uid;
1496 	rcu_read_unlock();
1497 
1498 	info.si_utime = cputime_to_clock_t(tsk->utime);
1499 	info.si_stime = cputime_to_clock_t(tsk->stime);
1500 
1501  	info.si_code = why;
1502  	switch (why) {
1503  	case CLD_CONTINUED:
1504  		info.si_status = SIGCONT;
1505  		break;
1506  	case CLD_STOPPED:
1507  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1508  		break;
1509  	case CLD_TRAPPED:
1510  		info.si_status = tsk->exit_code & 0x7f;
1511  		break;
1512  	default:
1513  		BUG();
1514  	}
1515 
1516 	sighand = parent->sighand;
1517 	spin_lock_irqsave(&sighand->siglock, flags);
1518 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1519 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1520 		__group_send_sig_info(SIGCHLD, &info, parent);
1521 	/*
1522 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1523 	 */
1524 	__wake_up_parent(tsk, parent);
1525 	spin_unlock_irqrestore(&sighand->siglock, flags);
1526 }
1527 
1528 static inline int may_ptrace_stop(void)
1529 {
1530 	if (!likely(current->ptrace & PT_PTRACED))
1531 		return 0;
1532 	/*
1533 	 * Are we in the middle of do_coredump?
1534 	 * If so and our tracer is also part of the coredump stopping
1535 	 * is a deadlock situation, and pointless because our tracer
1536 	 * is dead so don't allow us to stop.
1537 	 * If SIGKILL was already sent before the caller unlocked
1538 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1539 	 * is safe to enter schedule().
1540 	 */
1541 	if (unlikely(current->mm->core_state) &&
1542 	    unlikely(current->mm == current->parent->mm))
1543 		return 0;
1544 
1545 	return 1;
1546 }
1547 
1548 /*
1549  * Return nonzero if there is a SIGKILL that should be waking us up.
1550  * Called with the siglock held.
1551  */
1552 static int sigkill_pending(struct task_struct *tsk)
1553 {
1554 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1555 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1556 }
1557 
1558 /*
1559  * This must be called with current->sighand->siglock held.
1560  *
1561  * This should be the path for all ptrace stops.
1562  * We always set current->last_siginfo while stopped here.
1563  * That makes it a way to test a stopped process for
1564  * being ptrace-stopped vs being job-control-stopped.
1565  *
1566  * If we actually decide not to stop at all because the tracer
1567  * is gone, we keep current->exit_code unless clear_code.
1568  */
1569 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1570 {
1571 	if (arch_ptrace_stop_needed(exit_code, info)) {
1572 		/*
1573 		 * The arch code has something special to do before a
1574 		 * ptrace stop.  This is allowed to block, e.g. for faults
1575 		 * on user stack pages.  We can't keep the siglock while
1576 		 * calling arch_ptrace_stop, so we must release it now.
1577 		 * To preserve proper semantics, we must do this before
1578 		 * any signal bookkeeping like checking group_stop_count.
1579 		 * Meanwhile, a SIGKILL could come in before we retake the
1580 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1581 		 * So after regaining the lock, we must check for SIGKILL.
1582 		 */
1583 		spin_unlock_irq(&current->sighand->siglock);
1584 		arch_ptrace_stop(exit_code, info);
1585 		spin_lock_irq(&current->sighand->siglock);
1586 		if (sigkill_pending(current))
1587 			return;
1588 	}
1589 
1590 	/*
1591 	 * If there is a group stop in progress,
1592 	 * we must participate in the bookkeeping.
1593 	 */
1594 	if (current->signal->group_stop_count > 0)
1595 		--current->signal->group_stop_count;
1596 
1597 	current->last_siginfo = info;
1598 	current->exit_code = exit_code;
1599 
1600 	/* Let the debugger run.  */
1601 	__set_current_state(TASK_TRACED);
1602 	spin_unlock_irq(&current->sighand->siglock);
1603 	read_lock(&tasklist_lock);
1604 	if (may_ptrace_stop()) {
1605 		do_notify_parent_cldstop(current, CLD_TRAPPED);
1606 		/*
1607 		 * Don't want to allow preemption here, because
1608 		 * sys_ptrace() needs this task to be inactive.
1609 		 *
1610 		 * XXX: implement read_unlock_no_resched().
1611 		 */
1612 		preempt_disable();
1613 		read_unlock(&tasklist_lock);
1614 		preempt_enable_no_resched();
1615 		schedule();
1616 	} else {
1617 		/*
1618 		 * By the time we got the lock, our tracer went away.
1619 		 * Don't drop the lock yet, another tracer may come.
1620 		 */
1621 		__set_current_state(TASK_RUNNING);
1622 		if (clear_code)
1623 			current->exit_code = 0;
1624 		read_unlock(&tasklist_lock);
1625 	}
1626 
1627 	/*
1628 	 * While in TASK_TRACED, we were considered "frozen enough".
1629 	 * Now that we woke up, it's crucial if we're supposed to be
1630 	 * frozen that we freeze now before running anything substantial.
1631 	 */
1632 	try_to_freeze();
1633 
1634 	/*
1635 	 * We are back.  Now reacquire the siglock before touching
1636 	 * last_siginfo, so that we are sure to have synchronized with
1637 	 * any signal-sending on another CPU that wants to examine it.
1638 	 */
1639 	spin_lock_irq(&current->sighand->siglock);
1640 	current->last_siginfo = NULL;
1641 
1642 	/*
1643 	 * Queued signals ignored us while we were stopped for tracing.
1644 	 * So check for any that we should take before resuming user mode.
1645 	 * This sets TIF_SIGPENDING, but never clears it.
1646 	 */
1647 	recalc_sigpending_tsk(current);
1648 }
1649 
1650 void ptrace_notify(int exit_code)
1651 {
1652 	siginfo_t info;
1653 
1654 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1655 
1656 	memset(&info, 0, sizeof info);
1657 	info.si_signo = SIGTRAP;
1658 	info.si_code = exit_code;
1659 	info.si_pid = task_pid_vnr(current);
1660 	info.si_uid = current_uid();
1661 
1662 	/* Let the debugger run.  */
1663 	spin_lock_irq(&current->sighand->siglock);
1664 	ptrace_stop(exit_code, 1, &info);
1665 	spin_unlock_irq(&current->sighand->siglock);
1666 }
1667 
1668 static void
1669 finish_stop(int stop_count)
1670 {
1671 	/*
1672 	 * If there are no other threads in the group, or if there is
1673 	 * a group stop in progress and we are the last to stop,
1674 	 * report to the parent.  When ptraced, every thread reports itself.
1675 	 */
1676 	if (tracehook_notify_jctl(stop_count == 0, CLD_STOPPED)) {
1677 		read_lock(&tasklist_lock);
1678 		do_notify_parent_cldstop(current, CLD_STOPPED);
1679 		read_unlock(&tasklist_lock);
1680 	}
1681 
1682 	do {
1683 		schedule();
1684 	} while (try_to_freeze());
1685 	/*
1686 	 * Now we don't run again until continued.
1687 	 */
1688 	current->exit_code = 0;
1689 }
1690 
1691 /*
1692  * This performs the stopping for SIGSTOP and other stop signals.
1693  * We have to stop all threads in the thread group.
1694  * Returns nonzero if we've actually stopped and released the siglock.
1695  * Returns zero if we didn't stop and still hold the siglock.
1696  */
1697 static int do_signal_stop(int signr)
1698 {
1699 	struct signal_struct *sig = current->signal;
1700 	int stop_count;
1701 
1702 	if (sig->group_stop_count > 0) {
1703 		/*
1704 		 * There is a group stop in progress.  We don't need to
1705 		 * start another one.
1706 		 */
1707 		stop_count = --sig->group_stop_count;
1708 	} else {
1709 		struct task_struct *t;
1710 
1711 		if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1712 		    unlikely(signal_group_exit(sig)))
1713 			return 0;
1714 		/*
1715 		 * There is no group stop already in progress.
1716 		 * We must initiate one now.
1717 		 */
1718 		sig->group_exit_code = signr;
1719 
1720 		stop_count = 0;
1721 		for (t = next_thread(current); t != current; t = next_thread(t))
1722 			/*
1723 			 * Setting state to TASK_STOPPED for a group
1724 			 * stop is always done with the siglock held,
1725 			 * so this check has no races.
1726 			 */
1727 			if (!(t->flags & PF_EXITING) &&
1728 			    !task_is_stopped_or_traced(t)) {
1729 				stop_count++;
1730 				signal_wake_up(t, 0);
1731 			}
1732 		sig->group_stop_count = stop_count;
1733 	}
1734 
1735 	if (stop_count == 0)
1736 		sig->flags = SIGNAL_STOP_STOPPED;
1737 	current->exit_code = sig->group_exit_code;
1738 	__set_current_state(TASK_STOPPED);
1739 
1740 	spin_unlock_irq(&current->sighand->siglock);
1741 	finish_stop(stop_count);
1742 	return 1;
1743 }
1744 
1745 static int ptrace_signal(int signr, siginfo_t *info,
1746 			 struct pt_regs *regs, void *cookie)
1747 {
1748 	if (!(current->ptrace & PT_PTRACED))
1749 		return signr;
1750 
1751 	ptrace_signal_deliver(regs, cookie);
1752 
1753 	/* Let the debugger run.  */
1754 	ptrace_stop(signr, 0, info);
1755 
1756 	/* We're back.  Did the debugger cancel the sig?  */
1757 	signr = current->exit_code;
1758 	if (signr == 0)
1759 		return signr;
1760 
1761 	current->exit_code = 0;
1762 
1763 	/* Update the siginfo structure if the signal has
1764 	   changed.  If the debugger wanted something
1765 	   specific in the siginfo structure then it should
1766 	   have updated *info via PTRACE_SETSIGINFO.  */
1767 	if (signr != info->si_signo) {
1768 		info->si_signo = signr;
1769 		info->si_errno = 0;
1770 		info->si_code = SI_USER;
1771 		info->si_pid = task_pid_vnr(current->parent);
1772 		info->si_uid = task_uid(current->parent);
1773 	}
1774 
1775 	/* If the (new) signal is now blocked, requeue it.  */
1776 	if (sigismember(&current->blocked, signr)) {
1777 		specific_send_sig_info(signr, info, current);
1778 		signr = 0;
1779 	}
1780 
1781 	return signr;
1782 }
1783 
1784 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1785 			  struct pt_regs *regs, void *cookie)
1786 {
1787 	struct sighand_struct *sighand = current->sighand;
1788 	struct signal_struct *signal = current->signal;
1789 	int signr;
1790 
1791 relock:
1792 	/*
1793 	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1794 	 * While in TASK_STOPPED, we were considered "frozen enough".
1795 	 * Now that we woke up, it's crucial if we're supposed to be
1796 	 * frozen that we freeze now before running anything substantial.
1797 	 */
1798 	try_to_freeze();
1799 
1800 	spin_lock_irq(&sighand->siglock);
1801 	/*
1802 	 * Every stopped thread goes here after wakeup. Check to see if
1803 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
1804 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1805 	 */
1806 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1807 		int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1808 				? CLD_CONTINUED : CLD_STOPPED;
1809 		signal->flags &= ~SIGNAL_CLD_MASK;
1810 		spin_unlock_irq(&sighand->siglock);
1811 
1812 		if (unlikely(!tracehook_notify_jctl(1, why)))
1813 			goto relock;
1814 
1815 		read_lock(&tasklist_lock);
1816 		do_notify_parent_cldstop(current->group_leader, why);
1817 		read_unlock(&tasklist_lock);
1818 		goto relock;
1819 	}
1820 
1821 	for (;;) {
1822 		struct k_sigaction *ka;
1823 
1824 		if (unlikely(signal->group_stop_count > 0) &&
1825 		    do_signal_stop(0))
1826 			goto relock;
1827 
1828 		/*
1829 		 * Tracing can induce an artifical signal and choose sigaction.
1830 		 * The return value in @signr determines the default action,
1831 		 * but @info->si_signo is the signal number we will report.
1832 		 */
1833 		signr = tracehook_get_signal(current, regs, info, return_ka);
1834 		if (unlikely(signr < 0))
1835 			goto relock;
1836 		if (unlikely(signr != 0))
1837 			ka = return_ka;
1838 		else {
1839 			signr = dequeue_signal(current, &current->blocked,
1840 					       info);
1841 
1842 			if (!signr)
1843 				break; /* will return 0 */
1844 
1845 			if (signr != SIGKILL) {
1846 				signr = ptrace_signal(signr, info,
1847 						      regs, cookie);
1848 				if (!signr)
1849 					continue;
1850 			}
1851 
1852 			ka = &sighand->action[signr-1];
1853 		}
1854 
1855 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
1856 			continue;
1857 		if (ka->sa.sa_handler != SIG_DFL) {
1858 			/* Run the handler.  */
1859 			*return_ka = *ka;
1860 
1861 			if (ka->sa.sa_flags & SA_ONESHOT)
1862 				ka->sa.sa_handler = SIG_DFL;
1863 
1864 			break; /* will return non-zero "signr" value */
1865 		}
1866 
1867 		/*
1868 		 * Now we are doing the default action for this signal.
1869 		 */
1870 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
1871 			continue;
1872 
1873 		/*
1874 		 * Global init gets no signals it doesn't want.
1875 		 * Container-init gets no signals it doesn't want from same
1876 		 * container.
1877 		 *
1878 		 * Note that if global/container-init sees a sig_kernel_only()
1879 		 * signal here, the signal must have been generated internally
1880 		 * or must have come from an ancestor namespace. In either
1881 		 * case, the signal cannot be dropped.
1882 		 */
1883 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1884 				!sig_kernel_only(signr))
1885 			continue;
1886 
1887 		if (sig_kernel_stop(signr)) {
1888 			/*
1889 			 * The default action is to stop all threads in
1890 			 * the thread group.  The job control signals
1891 			 * do nothing in an orphaned pgrp, but SIGSTOP
1892 			 * always works.  Note that siglock needs to be
1893 			 * dropped during the call to is_orphaned_pgrp()
1894 			 * because of lock ordering with tasklist_lock.
1895 			 * This allows an intervening SIGCONT to be posted.
1896 			 * We need to check for that and bail out if necessary.
1897 			 */
1898 			if (signr != SIGSTOP) {
1899 				spin_unlock_irq(&sighand->siglock);
1900 
1901 				/* signals can be posted during this window */
1902 
1903 				if (is_current_pgrp_orphaned())
1904 					goto relock;
1905 
1906 				spin_lock_irq(&sighand->siglock);
1907 			}
1908 
1909 			if (likely(do_signal_stop(info->si_signo))) {
1910 				/* It released the siglock.  */
1911 				goto relock;
1912 			}
1913 
1914 			/*
1915 			 * We didn't actually stop, due to a race
1916 			 * with SIGCONT or something like that.
1917 			 */
1918 			continue;
1919 		}
1920 
1921 		spin_unlock_irq(&sighand->siglock);
1922 
1923 		/*
1924 		 * Anything else is fatal, maybe with a core dump.
1925 		 */
1926 		current->flags |= PF_SIGNALED;
1927 
1928 		if (sig_kernel_coredump(signr)) {
1929 			if (print_fatal_signals)
1930 				print_fatal_signal(regs, info->si_signo);
1931 			/*
1932 			 * If it was able to dump core, this kills all
1933 			 * other threads in the group and synchronizes with
1934 			 * their demise.  If we lost the race with another
1935 			 * thread getting here, it set group_exit_code
1936 			 * first and our do_group_exit call below will use
1937 			 * that value and ignore the one we pass it.
1938 			 */
1939 			do_coredump(info->si_signo, info->si_signo, regs);
1940 		}
1941 
1942 		/*
1943 		 * Death signals, no core dump.
1944 		 */
1945 		do_group_exit(info->si_signo);
1946 		/* NOTREACHED */
1947 	}
1948 	spin_unlock_irq(&sighand->siglock);
1949 	return signr;
1950 }
1951 
1952 void exit_signals(struct task_struct *tsk)
1953 {
1954 	int group_stop = 0;
1955 	struct task_struct *t;
1956 
1957 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1958 		tsk->flags |= PF_EXITING;
1959 		return;
1960 	}
1961 
1962 	spin_lock_irq(&tsk->sighand->siglock);
1963 	/*
1964 	 * From now this task is not visible for group-wide signals,
1965 	 * see wants_signal(), do_signal_stop().
1966 	 */
1967 	tsk->flags |= PF_EXITING;
1968 	if (!signal_pending(tsk))
1969 		goto out;
1970 
1971 	/* It could be that __group_complete_signal() choose us to
1972 	 * notify about group-wide signal. Another thread should be
1973 	 * woken now to take the signal since we will not.
1974 	 */
1975 	for (t = tsk; (t = next_thread(t)) != tsk; )
1976 		if (!signal_pending(t) && !(t->flags & PF_EXITING))
1977 			recalc_sigpending_and_wake(t);
1978 
1979 	if (unlikely(tsk->signal->group_stop_count) &&
1980 			!--tsk->signal->group_stop_count) {
1981 		tsk->signal->flags = SIGNAL_STOP_STOPPED;
1982 		group_stop = 1;
1983 	}
1984 out:
1985 	spin_unlock_irq(&tsk->sighand->siglock);
1986 
1987 	if (unlikely(group_stop) && tracehook_notify_jctl(1, CLD_STOPPED)) {
1988 		read_lock(&tasklist_lock);
1989 		do_notify_parent_cldstop(tsk, CLD_STOPPED);
1990 		read_unlock(&tasklist_lock);
1991 	}
1992 }
1993 
1994 EXPORT_SYMBOL(recalc_sigpending);
1995 EXPORT_SYMBOL_GPL(dequeue_signal);
1996 EXPORT_SYMBOL(flush_signals);
1997 EXPORT_SYMBOL(force_sig);
1998 EXPORT_SYMBOL(send_sig);
1999 EXPORT_SYMBOL(send_sig_info);
2000 EXPORT_SYMBOL(sigprocmask);
2001 EXPORT_SYMBOL(block_all_signals);
2002 EXPORT_SYMBOL(unblock_all_signals);
2003 
2004 
2005 /*
2006  * System call entry points.
2007  */
2008 
2009 SYSCALL_DEFINE0(restart_syscall)
2010 {
2011 	struct restart_block *restart = &current_thread_info()->restart_block;
2012 	return restart->fn(restart);
2013 }
2014 
2015 long do_no_restart_syscall(struct restart_block *param)
2016 {
2017 	return -EINTR;
2018 }
2019 
2020 /*
2021  * We don't need to get the kernel lock - this is all local to this
2022  * particular thread.. (and that's good, because this is _heavily_
2023  * used by various programs)
2024  */
2025 
2026 /*
2027  * This is also useful for kernel threads that want to temporarily
2028  * (or permanently) block certain signals.
2029  *
2030  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2031  * interface happily blocks "unblockable" signals like SIGKILL
2032  * and friends.
2033  */
2034 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2035 {
2036 	int error;
2037 
2038 	spin_lock_irq(&current->sighand->siglock);
2039 	if (oldset)
2040 		*oldset = current->blocked;
2041 
2042 	error = 0;
2043 	switch (how) {
2044 	case SIG_BLOCK:
2045 		sigorsets(&current->blocked, &current->blocked, set);
2046 		break;
2047 	case SIG_UNBLOCK:
2048 		signandsets(&current->blocked, &current->blocked, set);
2049 		break;
2050 	case SIG_SETMASK:
2051 		current->blocked = *set;
2052 		break;
2053 	default:
2054 		error = -EINVAL;
2055 	}
2056 	recalc_sigpending();
2057 	spin_unlock_irq(&current->sighand->siglock);
2058 
2059 	return error;
2060 }
2061 
2062 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set,
2063 		sigset_t __user *, oset, size_t, sigsetsize)
2064 {
2065 	int error = -EINVAL;
2066 	sigset_t old_set, new_set;
2067 
2068 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2069 	if (sigsetsize != sizeof(sigset_t))
2070 		goto out;
2071 
2072 	if (set) {
2073 		error = -EFAULT;
2074 		if (copy_from_user(&new_set, set, sizeof(*set)))
2075 			goto out;
2076 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2077 
2078 		error = sigprocmask(how, &new_set, &old_set);
2079 		if (error)
2080 			goto out;
2081 		if (oset)
2082 			goto set_old;
2083 	} else if (oset) {
2084 		spin_lock_irq(&current->sighand->siglock);
2085 		old_set = current->blocked;
2086 		spin_unlock_irq(&current->sighand->siglock);
2087 
2088 	set_old:
2089 		error = -EFAULT;
2090 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2091 			goto out;
2092 	}
2093 	error = 0;
2094 out:
2095 	return error;
2096 }
2097 
2098 long do_sigpending(void __user *set, unsigned long sigsetsize)
2099 {
2100 	long error = -EINVAL;
2101 	sigset_t pending;
2102 
2103 	if (sigsetsize > sizeof(sigset_t))
2104 		goto out;
2105 
2106 	spin_lock_irq(&current->sighand->siglock);
2107 	sigorsets(&pending, &current->pending.signal,
2108 		  &current->signal->shared_pending.signal);
2109 	spin_unlock_irq(&current->sighand->siglock);
2110 
2111 	/* Outside the lock because only this thread touches it.  */
2112 	sigandsets(&pending, &current->blocked, &pending);
2113 
2114 	error = -EFAULT;
2115 	if (!copy_to_user(set, &pending, sigsetsize))
2116 		error = 0;
2117 
2118 out:
2119 	return error;
2120 }
2121 
2122 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2123 {
2124 	return do_sigpending(set, sigsetsize);
2125 }
2126 
2127 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2128 
2129 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2130 {
2131 	int err;
2132 
2133 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2134 		return -EFAULT;
2135 	if (from->si_code < 0)
2136 		return __copy_to_user(to, from, sizeof(siginfo_t))
2137 			? -EFAULT : 0;
2138 	/*
2139 	 * If you change siginfo_t structure, please be sure
2140 	 * this code is fixed accordingly.
2141 	 * Please remember to update the signalfd_copyinfo() function
2142 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2143 	 * It should never copy any pad contained in the structure
2144 	 * to avoid security leaks, but must copy the generic
2145 	 * 3 ints plus the relevant union member.
2146 	 */
2147 	err = __put_user(from->si_signo, &to->si_signo);
2148 	err |= __put_user(from->si_errno, &to->si_errno);
2149 	err |= __put_user((short)from->si_code, &to->si_code);
2150 	switch (from->si_code & __SI_MASK) {
2151 	case __SI_KILL:
2152 		err |= __put_user(from->si_pid, &to->si_pid);
2153 		err |= __put_user(from->si_uid, &to->si_uid);
2154 		break;
2155 	case __SI_TIMER:
2156 		 err |= __put_user(from->si_tid, &to->si_tid);
2157 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2158 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2159 		break;
2160 	case __SI_POLL:
2161 		err |= __put_user(from->si_band, &to->si_band);
2162 		err |= __put_user(from->si_fd, &to->si_fd);
2163 		break;
2164 	case __SI_FAULT:
2165 		err |= __put_user(from->si_addr, &to->si_addr);
2166 #ifdef __ARCH_SI_TRAPNO
2167 		err |= __put_user(from->si_trapno, &to->si_trapno);
2168 #endif
2169 		break;
2170 	case __SI_CHLD:
2171 		err |= __put_user(from->si_pid, &to->si_pid);
2172 		err |= __put_user(from->si_uid, &to->si_uid);
2173 		err |= __put_user(from->si_status, &to->si_status);
2174 		err |= __put_user(from->si_utime, &to->si_utime);
2175 		err |= __put_user(from->si_stime, &to->si_stime);
2176 		break;
2177 	case __SI_RT: /* This is not generated by the kernel as of now. */
2178 	case __SI_MESGQ: /* But this is */
2179 		err |= __put_user(from->si_pid, &to->si_pid);
2180 		err |= __put_user(from->si_uid, &to->si_uid);
2181 		err |= __put_user(from->si_ptr, &to->si_ptr);
2182 		break;
2183 	default: /* this is just in case for now ... */
2184 		err |= __put_user(from->si_pid, &to->si_pid);
2185 		err |= __put_user(from->si_uid, &to->si_uid);
2186 		break;
2187 	}
2188 	return err;
2189 }
2190 
2191 #endif
2192 
2193 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2194 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2195 		size_t, sigsetsize)
2196 {
2197 	int ret, sig;
2198 	sigset_t these;
2199 	struct timespec ts;
2200 	siginfo_t info;
2201 	long timeout = 0;
2202 
2203 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2204 	if (sigsetsize != sizeof(sigset_t))
2205 		return -EINVAL;
2206 
2207 	if (copy_from_user(&these, uthese, sizeof(these)))
2208 		return -EFAULT;
2209 
2210 	/*
2211 	 * Invert the set of allowed signals to get those we
2212 	 * want to block.
2213 	 */
2214 	sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2215 	signotset(&these);
2216 
2217 	if (uts) {
2218 		if (copy_from_user(&ts, uts, sizeof(ts)))
2219 			return -EFAULT;
2220 		if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2221 		    || ts.tv_sec < 0)
2222 			return -EINVAL;
2223 	}
2224 
2225 	spin_lock_irq(&current->sighand->siglock);
2226 	sig = dequeue_signal(current, &these, &info);
2227 	if (!sig) {
2228 		timeout = MAX_SCHEDULE_TIMEOUT;
2229 		if (uts)
2230 			timeout = (timespec_to_jiffies(&ts)
2231 				   + (ts.tv_sec || ts.tv_nsec));
2232 
2233 		if (timeout) {
2234 			/* None ready -- temporarily unblock those we're
2235 			 * interested while we are sleeping in so that we'll
2236 			 * be awakened when they arrive.  */
2237 			current->real_blocked = current->blocked;
2238 			sigandsets(&current->blocked, &current->blocked, &these);
2239 			recalc_sigpending();
2240 			spin_unlock_irq(&current->sighand->siglock);
2241 
2242 			timeout = schedule_timeout_interruptible(timeout);
2243 
2244 			spin_lock_irq(&current->sighand->siglock);
2245 			sig = dequeue_signal(current, &these, &info);
2246 			current->blocked = current->real_blocked;
2247 			siginitset(&current->real_blocked, 0);
2248 			recalc_sigpending();
2249 		}
2250 	}
2251 	spin_unlock_irq(&current->sighand->siglock);
2252 
2253 	if (sig) {
2254 		ret = sig;
2255 		if (uinfo) {
2256 			if (copy_siginfo_to_user(uinfo, &info))
2257 				ret = -EFAULT;
2258 		}
2259 	} else {
2260 		ret = -EAGAIN;
2261 		if (timeout)
2262 			ret = -EINTR;
2263 	}
2264 
2265 	return ret;
2266 }
2267 
2268 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2269 {
2270 	struct siginfo info;
2271 
2272 	info.si_signo = sig;
2273 	info.si_errno = 0;
2274 	info.si_code = SI_USER;
2275 	info.si_pid = task_tgid_vnr(current);
2276 	info.si_uid = current_uid();
2277 
2278 	return kill_something_info(sig, &info, pid);
2279 }
2280 
2281 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2282 {
2283 	int error;
2284 	struct siginfo info;
2285 	struct task_struct *p;
2286 	unsigned long flags;
2287 
2288 	error = -ESRCH;
2289 	info.si_signo = sig;
2290 	info.si_errno = 0;
2291 	info.si_code = SI_TKILL;
2292 	info.si_pid = task_tgid_vnr(current);
2293 	info.si_uid = current_uid();
2294 
2295 	rcu_read_lock();
2296 	p = find_task_by_vpid(pid);
2297 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2298 		error = check_kill_permission(sig, &info, p);
2299 		/*
2300 		 * The null signal is a permissions and process existence
2301 		 * probe.  No signal is actually delivered.
2302 		 *
2303 		 * If lock_task_sighand() fails we pretend the task dies
2304 		 * after receiving the signal. The window is tiny, and the
2305 		 * signal is private anyway.
2306 		 */
2307 		if (!error && sig && lock_task_sighand(p, &flags)) {
2308 			error = specific_send_sig_info(sig, &info, p);
2309 			unlock_task_sighand(p, &flags);
2310 		}
2311 	}
2312 	rcu_read_unlock();
2313 
2314 	return error;
2315 }
2316 
2317 /**
2318  *  sys_tgkill - send signal to one specific thread
2319  *  @tgid: the thread group ID of the thread
2320  *  @pid: the PID of the thread
2321  *  @sig: signal to be sent
2322  *
2323  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2324  *  exists but it's not belonging to the target process anymore. This
2325  *  method solves the problem of threads exiting and PIDs getting reused.
2326  */
2327 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2328 {
2329 	/* This is only valid for single tasks */
2330 	if (pid <= 0 || tgid <= 0)
2331 		return -EINVAL;
2332 
2333 	return do_tkill(tgid, pid, sig);
2334 }
2335 
2336 /*
2337  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2338  */
2339 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2340 {
2341 	/* This is only valid for single tasks */
2342 	if (pid <= 0)
2343 		return -EINVAL;
2344 
2345 	return do_tkill(0, pid, sig);
2346 }
2347 
2348 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2349 		siginfo_t __user *, uinfo)
2350 {
2351 	siginfo_t info;
2352 
2353 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2354 		return -EFAULT;
2355 
2356 	/* Not even root can pretend to send signals from the kernel.
2357 	   Nor can they impersonate a kill(), which adds source info.  */
2358 	if (info.si_code >= 0)
2359 		return -EPERM;
2360 	info.si_signo = sig;
2361 
2362 	/* POSIX.1b doesn't mention process groups.  */
2363 	return kill_proc_info(sig, &info, pid);
2364 }
2365 
2366 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2367 {
2368 	struct task_struct *t = current;
2369 	struct k_sigaction *k;
2370 	sigset_t mask;
2371 
2372 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2373 		return -EINVAL;
2374 
2375 	k = &t->sighand->action[sig-1];
2376 
2377 	spin_lock_irq(&current->sighand->siglock);
2378 	if (oact)
2379 		*oact = *k;
2380 
2381 	if (act) {
2382 		sigdelsetmask(&act->sa.sa_mask,
2383 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2384 		*k = *act;
2385 		/*
2386 		 * POSIX 3.3.1.3:
2387 		 *  "Setting a signal action to SIG_IGN for a signal that is
2388 		 *   pending shall cause the pending signal to be discarded,
2389 		 *   whether or not it is blocked."
2390 		 *
2391 		 *  "Setting a signal action to SIG_DFL for a signal that is
2392 		 *   pending and whose default action is to ignore the signal
2393 		 *   (for example, SIGCHLD), shall cause the pending signal to
2394 		 *   be discarded, whether or not it is blocked"
2395 		 */
2396 		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2397 			sigemptyset(&mask);
2398 			sigaddset(&mask, sig);
2399 			rm_from_queue_full(&mask, &t->signal->shared_pending);
2400 			do {
2401 				rm_from_queue_full(&mask, &t->pending);
2402 				t = next_thread(t);
2403 			} while (t != current);
2404 		}
2405 	}
2406 
2407 	spin_unlock_irq(&current->sighand->siglock);
2408 	return 0;
2409 }
2410 
2411 int
2412 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2413 {
2414 	stack_t oss;
2415 	int error;
2416 
2417 	if (uoss) {
2418 		oss.ss_sp = (void __user *) current->sas_ss_sp;
2419 		oss.ss_size = current->sas_ss_size;
2420 		oss.ss_flags = sas_ss_flags(sp);
2421 	}
2422 
2423 	if (uss) {
2424 		void __user *ss_sp;
2425 		size_t ss_size;
2426 		int ss_flags;
2427 
2428 		error = -EFAULT;
2429 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2430 		    || __get_user(ss_sp, &uss->ss_sp)
2431 		    || __get_user(ss_flags, &uss->ss_flags)
2432 		    || __get_user(ss_size, &uss->ss_size))
2433 			goto out;
2434 
2435 		error = -EPERM;
2436 		if (on_sig_stack(sp))
2437 			goto out;
2438 
2439 		error = -EINVAL;
2440 		/*
2441 		 *
2442 		 * Note - this code used to test ss_flags incorrectly
2443 		 *  	  old code may have been written using ss_flags==0
2444 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2445 		 *	  way that worked) - this fix preserves that older
2446 		 *	  mechanism
2447 		 */
2448 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2449 			goto out;
2450 
2451 		if (ss_flags == SS_DISABLE) {
2452 			ss_size = 0;
2453 			ss_sp = NULL;
2454 		} else {
2455 			error = -ENOMEM;
2456 			if (ss_size < MINSIGSTKSZ)
2457 				goto out;
2458 		}
2459 
2460 		current->sas_ss_sp = (unsigned long) ss_sp;
2461 		current->sas_ss_size = ss_size;
2462 	}
2463 
2464 	if (uoss) {
2465 		error = -EFAULT;
2466 		if (copy_to_user(uoss, &oss, sizeof(oss)))
2467 			goto out;
2468 	}
2469 
2470 	error = 0;
2471 out:
2472 	return error;
2473 }
2474 
2475 #ifdef __ARCH_WANT_SYS_SIGPENDING
2476 
2477 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2478 {
2479 	return do_sigpending(set, sizeof(*set));
2480 }
2481 
2482 #endif
2483 
2484 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2485 /* Some platforms have their own version with special arguments others
2486    support only sys_rt_sigprocmask.  */
2487 
2488 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set,
2489 		old_sigset_t __user *, oset)
2490 {
2491 	int error;
2492 	old_sigset_t old_set, new_set;
2493 
2494 	if (set) {
2495 		error = -EFAULT;
2496 		if (copy_from_user(&new_set, set, sizeof(*set)))
2497 			goto out;
2498 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2499 
2500 		spin_lock_irq(&current->sighand->siglock);
2501 		old_set = current->blocked.sig[0];
2502 
2503 		error = 0;
2504 		switch (how) {
2505 		default:
2506 			error = -EINVAL;
2507 			break;
2508 		case SIG_BLOCK:
2509 			sigaddsetmask(&current->blocked, new_set);
2510 			break;
2511 		case SIG_UNBLOCK:
2512 			sigdelsetmask(&current->blocked, new_set);
2513 			break;
2514 		case SIG_SETMASK:
2515 			current->blocked.sig[0] = new_set;
2516 			break;
2517 		}
2518 
2519 		recalc_sigpending();
2520 		spin_unlock_irq(&current->sighand->siglock);
2521 		if (error)
2522 			goto out;
2523 		if (oset)
2524 			goto set_old;
2525 	} else if (oset) {
2526 		old_set = current->blocked.sig[0];
2527 	set_old:
2528 		error = -EFAULT;
2529 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2530 			goto out;
2531 	}
2532 	error = 0;
2533 out:
2534 	return error;
2535 }
2536 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2537 
2538 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2539 SYSCALL_DEFINE4(rt_sigaction, int, sig,
2540 		const struct sigaction __user *, act,
2541 		struct sigaction __user *, oact,
2542 		size_t, sigsetsize)
2543 {
2544 	struct k_sigaction new_sa, old_sa;
2545 	int ret = -EINVAL;
2546 
2547 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2548 	if (sigsetsize != sizeof(sigset_t))
2549 		goto out;
2550 
2551 	if (act) {
2552 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2553 			return -EFAULT;
2554 	}
2555 
2556 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2557 
2558 	if (!ret && oact) {
2559 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2560 			return -EFAULT;
2561 	}
2562 out:
2563 	return ret;
2564 }
2565 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2566 
2567 #ifdef __ARCH_WANT_SYS_SGETMASK
2568 
2569 /*
2570  * For backwards compatibility.  Functionality superseded by sigprocmask.
2571  */
2572 SYSCALL_DEFINE0(sgetmask)
2573 {
2574 	/* SMP safe */
2575 	return current->blocked.sig[0];
2576 }
2577 
2578 SYSCALL_DEFINE1(ssetmask, int, newmask)
2579 {
2580 	int old;
2581 
2582 	spin_lock_irq(&current->sighand->siglock);
2583 	old = current->blocked.sig[0];
2584 
2585 	siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2586 						  sigmask(SIGSTOP)));
2587 	recalc_sigpending();
2588 	spin_unlock_irq(&current->sighand->siglock);
2589 
2590 	return old;
2591 }
2592 #endif /* __ARCH_WANT_SGETMASK */
2593 
2594 #ifdef __ARCH_WANT_SYS_SIGNAL
2595 /*
2596  * For backwards compatibility.  Functionality superseded by sigaction.
2597  */
2598 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
2599 {
2600 	struct k_sigaction new_sa, old_sa;
2601 	int ret;
2602 
2603 	new_sa.sa.sa_handler = handler;
2604 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2605 	sigemptyset(&new_sa.sa.sa_mask);
2606 
2607 	ret = do_sigaction(sig, &new_sa, &old_sa);
2608 
2609 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2610 }
2611 #endif /* __ARCH_WANT_SYS_SIGNAL */
2612 
2613 #ifdef __ARCH_WANT_SYS_PAUSE
2614 
2615 SYSCALL_DEFINE0(pause)
2616 {
2617 	current->state = TASK_INTERRUPTIBLE;
2618 	schedule();
2619 	return -ERESTARTNOHAND;
2620 }
2621 
2622 #endif
2623 
2624 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2625 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
2626 {
2627 	sigset_t newset;
2628 
2629 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2630 	if (sigsetsize != sizeof(sigset_t))
2631 		return -EINVAL;
2632 
2633 	if (copy_from_user(&newset, unewset, sizeof(newset)))
2634 		return -EFAULT;
2635 	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2636 
2637 	spin_lock_irq(&current->sighand->siglock);
2638 	current->saved_sigmask = current->blocked;
2639 	current->blocked = newset;
2640 	recalc_sigpending();
2641 	spin_unlock_irq(&current->sighand->siglock);
2642 
2643 	current->state = TASK_INTERRUPTIBLE;
2644 	schedule();
2645 	set_restore_sigmask();
2646 	return -ERESTARTNOHAND;
2647 }
2648 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2649 
2650 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2651 {
2652 	return NULL;
2653 }
2654 
2655 void __init signals_init(void)
2656 {
2657 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2658 }
2659