1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/security.h> 21 #include <linux/syscalls.h> 22 #include <linux/ptrace.h> 23 #include <linux/signal.h> 24 #include <linux/signalfd.h> 25 #include <linux/tracehook.h> 26 #include <linux/capability.h> 27 #include <linux/freezer.h> 28 #include <linux/pid_namespace.h> 29 #include <linux/nsproxy.h> 30 #include <trace/sched.h> 31 32 #include <asm/param.h> 33 #include <asm/uaccess.h> 34 #include <asm/unistd.h> 35 #include <asm/siginfo.h> 36 #include "audit.h" /* audit_signal_info() */ 37 38 /* 39 * SLAB caches for signal bits. 40 */ 41 42 static struct kmem_cache *sigqueue_cachep; 43 44 DEFINE_TRACE(sched_signal_send); 45 46 static void __user *sig_handler(struct task_struct *t, int sig) 47 { 48 return t->sighand->action[sig - 1].sa.sa_handler; 49 } 50 51 static int sig_handler_ignored(void __user *handler, int sig) 52 { 53 /* Is it explicitly or implicitly ignored? */ 54 return handler == SIG_IGN || 55 (handler == SIG_DFL && sig_kernel_ignore(sig)); 56 } 57 58 static int sig_task_ignored(struct task_struct *t, int sig, 59 int from_ancestor_ns) 60 { 61 void __user *handler; 62 63 handler = sig_handler(t, sig); 64 65 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 66 handler == SIG_DFL && !from_ancestor_ns) 67 return 1; 68 69 return sig_handler_ignored(handler, sig); 70 } 71 72 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns) 73 { 74 /* 75 * Blocked signals are never ignored, since the 76 * signal handler may change by the time it is 77 * unblocked. 78 */ 79 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 80 return 0; 81 82 if (!sig_task_ignored(t, sig, from_ancestor_ns)) 83 return 0; 84 85 /* 86 * Tracers may want to know about even ignored signals. 87 */ 88 return !tracehook_consider_ignored_signal(t, sig); 89 } 90 91 /* 92 * Re-calculate pending state from the set of locally pending 93 * signals, globally pending signals, and blocked signals. 94 */ 95 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 96 { 97 unsigned long ready; 98 long i; 99 100 switch (_NSIG_WORDS) { 101 default: 102 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 103 ready |= signal->sig[i] &~ blocked->sig[i]; 104 break; 105 106 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 107 ready |= signal->sig[2] &~ blocked->sig[2]; 108 ready |= signal->sig[1] &~ blocked->sig[1]; 109 ready |= signal->sig[0] &~ blocked->sig[0]; 110 break; 111 112 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 113 ready |= signal->sig[0] &~ blocked->sig[0]; 114 break; 115 116 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 117 } 118 return ready != 0; 119 } 120 121 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 122 123 static int recalc_sigpending_tsk(struct task_struct *t) 124 { 125 if (t->signal->group_stop_count > 0 || 126 PENDING(&t->pending, &t->blocked) || 127 PENDING(&t->signal->shared_pending, &t->blocked)) { 128 set_tsk_thread_flag(t, TIF_SIGPENDING); 129 return 1; 130 } 131 /* 132 * We must never clear the flag in another thread, or in current 133 * when it's possible the current syscall is returning -ERESTART*. 134 * So we don't clear it here, and only callers who know they should do. 135 */ 136 return 0; 137 } 138 139 /* 140 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 141 * This is superfluous when called on current, the wakeup is a harmless no-op. 142 */ 143 void recalc_sigpending_and_wake(struct task_struct *t) 144 { 145 if (recalc_sigpending_tsk(t)) 146 signal_wake_up(t, 0); 147 } 148 149 void recalc_sigpending(void) 150 { 151 if (unlikely(tracehook_force_sigpending())) 152 set_thread_flag(TIF_SIGPENDING); 153 else if (!recalc_sigpending_tsk(current) && !freezing(current)) 154 clear_thread_flag(TIF_SIGPENDING); 155 156 } 157 158 /* Given the mask, find the first available signal that should be serviced. */ 159 160 int next_signal(struct sigpending *pending, sigset_t *mask) 161 { 162 unsigned long i, *s, *m, x; 163 int sig = 0; 164 165 s = pending->signal.sig; 166 m = mask->sig; 167 switch (_NSIG_WORDS) { 168 default: 169 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) 170 if ((x = *s &~ *m) != 0) { 171 sig = ffz(~x) + i*_NSIG_BPW + 1; 172 break; 173 } 174 break; 175 176 case 2: if ((x = s[0] &~ m[0]) != 0) 177 sig = 1; 178 else if ((x = s[1] &~ m[1]) != 0) 179 sig = _NSIG_BPW + 1; 180 else 181 break; 182 sig += ffz(~x); 183 break; 184 185 case 1: if ((x = *s &~ *m) != 0) 186 sig = ffz(~x) + 1; 187 break; 188 } 189 190 return sig; 191 } 192 193 /* 194 * allocate a new signal queue record 195 * - this may be called without locks if and only if t == current, otherwise an 196 * appopriate lock must be held to stop the target task from exiting 197 */ 198 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags, 199 int override_rlimit) 200 { 201 struct sigqueue *q = NULL; 202 struct user_struct *user; 203 204 /* 205 * We won't get problems with the target's UID changing under us 206 * because changing it requires RCU be used, and if t != current, the 207 * caller must be holding the RCU readlock (by way of a spinlock) and 208 * we use RCU protection here 209 */ 210 user = get_uid(__task_cred(t)->user); 211 atomic_inc(&user->sigpending); 212 if (override_rlimit || 213 atomic_read(&user->sigpending) <= 214 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) 215 q = kmem_cache_alloc(sigqueue_cachep, flags); 216 if (unlikely(q == NULL)) { 217 atomic_dec(&user->sigpending); 218 free_uid(user); 219 } else { 220 INIT_LIST_HEAD(&q->list); 221 q->flags = 0; 222 q->user = user; 223 } 224 225 return q; 226 } 227 228 static void __sigqueue_free(struct sigqueue *q) 229 { 230 if (q->flags & SIGQUEUE_PREALLOC) 231 return; 232 atomic_dec(&q->user->sigpending); 233 free_uid(q->user); 234 kmem_cache_free(sigqueue_cachep, q); 235 } 236 237 void flush_sigqueue(struct sigpending *queue) 238 { 239 struct sigqueue *q; 240 241 sigemptyset(&queue->signal); 242 while (!list_empty(&queue->list)) { 243 q = list_entry(queue->list.next, struct sigqueue , list); 244 list_del_init(&q->list); 245 __sigqueue_free(q); 246 } 247 } 248 249 /* 250 * Flush all pending signals for a task. 251 */ 252 void flush_signals(struct task_struct *t) 253 { 254 unsigned long flags; 255 256 spin_lock_irqsave(&t->sighand->siglock, flags); 257 clear_tsk_thread_flag(t, TIF_SIGPENDING); 258 flush_sigqueue(&t->pending); 259 flush_sigqueue(&t->signal->shared_pending); 260 spin_unlock_irqrestore(&t->sighand->siglock, flags); 261 } 262 263 static void __flush_itimer_signals(struct sigpending *pending) 264 { 265 sigset_t signal, retain; 266 struct sigqueue *q, *n; 267 268 signal = pending->signal; 269 sigemptyset(&retain); 270 271 list_for_each_entry_safe(q, n, &pending->list, list) { 272 int sig = q->info.si_signo; 273 274 if (likely(q->info.si_code != SI_TIMER)) { 275 sigaddset(&retain, sig); 276 } else { 277 sigdelset(&signal, sig); 278 list_del_init(&q->list); 279 __sigqueue_free(q); 280 } 281 } 282 283 sigorsets(&pending->signal, &signal, &retain); 284 } 285 286 void flush_itimer_signals(void) 287 { 288 struct task_struct *tsk = current; 289 unsigned long flags; 290 291 spin_lock_irqsave(&tsk->sighand->siglock, flags); 292 __flush_itimer_signals(&tsk->pending); 293 __flush_itimer_signals(&tsk->signal->shared_pending); 294 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 295 } 296 297 void ignore_signals(struct task_struct *t) 298 { 299 int i; 300 301 for (i = 0; i < _NSIG; ++i) 302 t->sighand->action[i].sa.sa_handler = SIG_IGN; 303 304 flush_signals(t); 305 } 306 307 /* 308 * Flush all handlers for a task. 309 */ 310 311 void 312 flush_signal_handlers(struct task_struct *t, int force_default) 313 { 314 int i; 315 struct k_sigaction *ka = &t->sighand->action[0]; 316 for (i = _NSIG ; i != 0 ; i--) { 317 if (force_default || ka->sa.sa_handler != SIG_IGN) 318 ka->sa.sa_handler = SIG_DFL; 319 ka->sa.sa_flags = 0; 320 sigemptyset(&ka->sa.sa_mask); 321 ka++; 322 } 323 } 324 325 int unhandled_signal(struct task_struct *tsk, int sig) 326 { 327 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 328 if (is_global_init(tsk)) 329 return 1; 330 if (handler != SIG_IGN && handler != SIG_DFL) 331 return 0; 332 return !tracehook_consider_fatal_signal(tsk, sig); 333 } 334 335 336 /* Notify the system that a driver wants to block all signals for this 337 * process, and wants to be notified if any signals at all were to be 338 * sent/acted upon. If the notifier routine returns non-zero, then the 339 * signal will be acted upon after all. If the notifier routine returns 0, 340 * then then signal will be blocked. Only one block per process is 341 * allowed. priv is a pointer to private data that the notifier routine 342 * can use to determine if the signal should be blocked or not. */ 343 344 void 345 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 346 { 347 unsigned long flags; 348 349 spin_lock_irqsave(¤t->sighand->siglock, flags); 350 current->notifier_mask = mask; 351 current->notifier_data = priv; 352 current->notifier = notifier; 353 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 354 } 355 356 /* Notify the system that blocking has ended. */ 357 358 void 359 unblock_all_signals(void) 360 { 361 unsigned long flags; 362 363 spin_lock_irqsave(¤t->sighand->siglock, flags); 364 current->notifier = NULL; 365 current->notifier_data = NULL; 366 recalc_sigpending(); 367 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 368 } 369 370 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) 371 { 372 struct sigqueue *q, *first = NULL; 373 374 /* 375 * Collect the siginfo appropriate to this signal. Check if 376 * there is another siginfo for the same signal. 377 */ 378 list_for_each_entry(q, &list->list, list) { 379 if (q->info.si_signo == sig) { 380 if (first) 381 goto still_pending; 382 first = q; 383 } 384 } 385 386 sigdelset(&list->signal, sig); 387 388 if (first) { 389 still_pending: 390 list_del_init(&first->list); 391 copy_siginfo(info, &first->info); 392 __sigqueue_free(first); 393 } else { 394 /* Ok, it wasn't in the queue. This must be 395 a fast-pathed signal or we must have been 396 out of queue space. So zero out the info. 397 */ 398 info->si_signo = sig; 399 info->si_errno = 0; 400 info->si_code = 0; 401 info->si_pid = 0; 402 info->si_uid = 0; 403 } 404 } 405 406 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 407 siginfo_t *info) 408 { 409 int sig = next_signal(pending, mask); 410 411 if (sig) { 412 if (current->notifier) { 413 if (sigismember(current->notifier_mask, sig)) { 414 if (!(current->notifier)(current->notifier_data)) { 415 clear_thread_flag(TIF_SIGPENDING); 416 return 0; 417 } 418 } 419 } 420 421 collect_signal(sig, pending, info); 422 } 423 424 return sig; 425 } 426 427 /* 428 * Dequeue a signal and return the element to the caller, which is 429 * expected to free it. 430 * 431 * All callers have to hold the siglock. 432 */ 433 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 434 { 435 int signr; 436 437 /* We only dequeue private signals from ourselves, we don't let 438 * signalfd steal them 439 */ 440 signr = __dequeue_signal(&tsk->pending, mask, info); 441 if (!signr) { 442 signr = __dequeue_signal(&tsk->signal->shared_pending, 443 mask, info); 444 /* 445 * itimer signal ? 446 * 447 * itimers are process shared and we restart periodic 448 * itimers in the signal delivery path to prevent DoS 449 * attacks in the high resolution timer case. This is 450 * compliant with the old way of self restarting 451 * itimers, as the SIGALRM is a legacy signal and only 452 * queued once. Changing the restart behaviour to 453 * restart the timer in the signal dequeue path is 454 * reducing the timer noise on heavy loaded !highres 455 * systems too. 456 */ 457 if (unlikely(signr == SIGALRM)) { 458 struct hrtimer *tmr = &tsk->signal->real_timer; 459 460 if (!hrtimer_is_queued(tmr) && 461 tsk->signal->it_real_incr.tv64 != 0) { 462 hrtimer_forward(tmr, tmr->base->get_time(), 463 tsk->signal->it_real_incr); 464 hrtimer_restart(tmr); 465 } 466 } 467 } 468 469 recalc_sigpending(); 470 if (!signr) 471 return 0; 472 473 if (unlikely(sig_kernel_stop(signr))) { 474 /* 475 * Set a marker that we have dequeued a stop signal. Our 476 * caller might release the siglock and then the pending 477 * stop signal it is about to process is no longer in the 478 * pending bitmasks, but must still be cleared by a SIGCONT 479 * (and overruled by a SIGKILL). So those cases clear this 480 * shared flag after we've set it. Note that this flag may 481 * remain set after the signal we return is ignored or 482 * handled. That doesn't matter because its only purpose 483 * is to alert stop-signal processing code when another 484 * processor has come along and cleared the flag. 485 */ 486 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; 487 } 488 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { 489 /* 490 * Release the siglock to ensure proper locking order 491 * of timer locks outside of siglocks. Note, we leave 492 * irqs disabled here, since the posix-timers code is 493 * about to disable them again anyway. 494 */ 495 spin_unlock(&tsk->sighand->siglock); 496 do_schedule_next_timer(info); 497 spin_lock(&tsk->sighand->siglock); 498 } 499 return signr; 500 } 501 502 /* 503 * Tell a process that it has a new active signal.. 504 * 505 * NOTE! we rely on the previous spin_lock to 506 * lock interrupts for us! We can only be called with 507 * "siglock" held, and the local interrupt must 508 * have been disabled when that got acquired! 509 * 510 * No need to set need_resched since signal event passing 511 * goes through ->blocked 512 */ 513 void signal_wake_up(struct task_struct *t, int resume) 514 { 515 unsigned int mask; 516 517 set_tsk_thread_flag(t, TIF_SIGPENDING); 518 519 /* 520 * For SIGKILL, we want to wake it up in the stopped/traced/killable 521 * case. We don't check t->state here because there is a race with it 522 * executing another processor and just now entering stopped state. 523 * By using wake_up_state, we ensure the process will wake up and 524 * handle its death signal. 525 */ 526 mask = TASK_INTERRUPTIBLE; 527 if (resume) 528 mask |= TASK_WAKEKILL; 529 if (!wake_up_state(t, mask)) 530 kick_process(t); 531 } 532 533 /* 534 * Remove signals in mask from the pending set and queue. 535 * Returns 1 if any signals were found. 536 * 537 * All callers must be holding the siglock. 538 * 539 * This version takes a sigset mask and looks at all signals, 540 * not just those in the first mask word. 541 */ 542 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 543 { 544 struct sigqueue *q, *n; 545 sigset_t m; 546 547 sigandsets(&m, mask, &s->signal); 548 if (sigisemptyset(&m)) 549 return 0; 550 551 signandsets(&s->signal, &s->signal, mask); 552 list_for_each_entry_safe(q, n, &s->list, list) { 553 if (sigismember(mask, q->info.si_signo)) { 554 list_del_init(&q->list); 555 __sigqueue_free(q); 556 } 557 } 558 return 1; 559 } 560 /* 561 * Remove signals in mask from the pending set and queue. 562 * Returns 1 if any signals were found. 563 * 564 * All callers must be holding the siglock. 565 */ 566 static int rm_from_queue(unsigned long mask, struct sigpending *s) 567 { 568 struct sigqueue *q, *n; 569 570 if (!sigtestsetmask(&s->signal, mask)) 571 return 0; 572 573 sigdelsetmask(&s->signal, mask); 574 list_for_each_entry_safe(q, n, &s->list, list) { 575 if (q->info.si_signo < SIGRTMIN && 576 (mask & sigmask(q->info.si_signo))) { 577 list_del_init(&q->list); 578 __sigqueue_free(q); 579 } 580 } 581 return 1; 582 } 583 584 /* 585 * Bad permissions for sending the signal 586 * - the caller must hold at least the RCU read lock 587 */ 588 static int check_kill_permission(int sig, struct siginfo *info, 589 struct task_struct *t) 590 { 591 const struct cred *cred = current_cred(), *tcred; 592 struct pid *sid; 593 int error; 594 595 if (!valid_signal(sig)) 596 return -EINVAL; 597 598 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info))) 599 return 0; 600 601 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 602 if (error) 603 return error; 604 605 tcred = __task_cred(t); 606 if ((cred->euid ^ tcred->suid) && 607 (cred->euid ^ tcred->uid) && 608 (cred->uid ^ tcred->suid) && 609 (cred->uid ^ tcred->uid) && 610 !capable(CAP_KILL)) { 611 switch (sig) { 612 case SIGCONT: 613 sid = task_session(t); 614 /* 615 * We don't return the error if sid == NULL. The 616 * task was unhashed, the caller must notice this. 617 */ 618 if (!sid || sid == task_session(current)) 619 break; 620 default: 621 return -EPERM; 622 } 623 } 624 625 return security_task_kill(t, info, sig, 0); 626 } 627 628 /* 629 * Handle magic process-wide effects of stop/continue signals. Unlike 630 * the signal actions, these happen immediately at signal-generation 631 * time regardless of blocking, ignoring, or handling. This does the 632 * actual continuing for SIGCONT, but not the actual stopping for stop 633 * signals. The process stop is done as a signal action for SIG_DFL. 634 * 635 * Returns true if the signal should be actually delivered, otherwise 636 * it should be dropped. 637 */ 638 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns) 639 { 640 struct signal_struct *signal = p->signal; 641 struct task_struct *t; 642 643 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) { 644 /* 645 * The process is in the middle of dying, nothing to do. 646 */ 647 } else if (sig_kernel_stop(sig)) { 648 /* 649 * This is a stop signal. Remove SIGCONT from all queues. 650 */ 651 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending); 652 t = p; 653 do { 654 rm_from_queue(sigmask(SIGCONT), &t->pending); 655 } while_each_thread(p, t); 656 } else if (sig == SIGCONT) { 657 unsigned int why; 658 /* 659 * Remove all stop signals from all queues, 660 * and wake all threads. 661 */ 662 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending); 663 t = p; 664 do { 665 unsigned int state; 666 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 667 /* 668 * If there is a handler for SIGCONT, we must make 669 * sure that no thread returns to user mode before 670 * we post the signal, in case it was the only 671 * thread eligible to run the signal handler--then 672 * it must not do anything between resuming and 673 * running the handler. With the TIF_SIGPENDING 674 * flag set, the thread will pause and acquire the 675 * siglock that we hold now and until we've queued 676 * the pending signal. 677 * 678 * Wake up the stopped thread _after_ setting 679 * TIF_SIGPENDING 680 */ 681 state = __TASK_STOPPED; 682 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { 683 set_tsk_thread_flag(t, TIF_SIGPENDING); 684 state |= TASK_INTERRUPTIBLE; 685 } 686 wake_up_state(t, state); 687 } while_each_thread(p, t); 688 689 /* 690 * Notify the parent with CLD_CONTINUED if we were stopped. 691 * 692 * If we were in the middle of a group stop, we pretend it 693 * was already finished, and then continued. Since SIGCHLD 694 * doesn't queue we report only CLD_STOPPED, as if the next 695 * CLD_CONTINUED was dropped. 696 */ 697 why = 0; 698 if (signal->flags & SIGNAL_STOP_STOPPED) 699 why |= SIGNAL_CLD_CONTINUED; 700 else if (signal->group_stop_count) 701 why |= SIGNAL_CLD_STOPPED; 702 703 if (why) { 704 /* 705 * The first thread which returns from finish_stop() 706 * will take ->siglock, notice SIGNAL_CLD_MASK, and 707 * notify its parent. See get_signal_to_deliver(). 708 */ 709 signal->flags = why | SIGNAL_STOP_CONTINUED; 710 signal->group_stop_count = 0; 711 signal->group_exit_code = 0; 712 } else { 713 /* 714 * We are not stopped, but there could be a stop 715 * signal in the middle of being processed after 716 * being removed from the queue. Clear that too. 717 */ 718 signal->flags &= ~SIGNAL_STOP_DEQUEUED; 719 } 720 } 721 722 return !sig_ignored(p, sig, from_ancestor_ns); 723 } 724 725 /* 726 * Test if P wants to take SIG. After we've checked all threads with this, 727 * it's equivalent to finding no threads not blocking SIG. Any threads not 728 * blocking SIG were ruled out because they are not running and already 729 * have pending signals. Such threads will dequeue from the shared queue 730 * as soon as they're available, so putting the signal on the shared queue 731 * will be equivalent to sending it to one such thread. 732 */ 733 static inline int wants_signal(int sig, struct task_struct *p) 734 { 735 if (sigismember(&p->blocked, sig)) 736 return 0; 737 if (p->flags & PF_EXITING) 738 return 0; 739 if (sig == SIGKILL) 740 return 1; 741 if (task_is_stopped_or_traced(p)) 742 return 0; 743 return task_curr(p) || !signal_pending(p); 744 } 745 746 static void complete_signal(int sig, struct task_struct *p, int group) 747 { 748 struct signal_struct *signal = p->signal; 749 struct task_struct *t; 750 751 /* 752 * Now find a thread we can wake up to take the signal off the queue. 753 * 754 * If the main thread wants the signal, it gets first crack. 755 * Probably the least surprising to the average bear. 756 */ 757 if (wants_signal(sig, p)) 758 t = p; 759 else if (!group || thread_group_empty(p)) 760 /* 761 * There is just one thread and it does not need to be woken. 762 * It will dequeue unblocked signals before it runs again. 763 */ 764 return; 765 else { 766 /* 767 * Otherwise try to find a suitable thread. 768 */ 769 t = signal->curr_target; 770 while (!wants_signal(sig, t)) { 771 t = next_thread(t); 772 if (t == signal->curr_target) 773 /* 774 * No thread needs to be woken. 775 * Any eligible threads will see 776 * the signal in the queue soon. 777 */ 778 return; 779 } 780 signal->curr_target = t; 781 } 782 783 /* 784 * Found a killable thread. If the signal will be fatal, 785 * then start taking the whole group down immediately. 786 */ 787 if (sig_fatal(p, sig) && 788 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 789 !sigismember(&t->real_blocked, sig) && 790 (sig == SIGKILL || 791 !tracehook_consider_fatal_signal(t, sig))) { 792 /* 793 * This signal will be fatal to the whole group. 794 */ 795 if (!sig_kernel_coredump(sig)) { 796 /* 797 * Start a group exit and wake everybody up. 798 * This way we don't have other threads 799 * running and doing things after a slower 800 * thread has the fatal signal pending. 801 */ 802 signal->flags = SIGNAL_GROUP_EXIT; 803 signal->group_exit_code = sig; 804 signal->group_stop_count = 0; 805 t = p; 806 do { 807 sigaddset(&t->pending.signal, SIGKILL); 808 signal_wake_up(t, 1); 809 } while_each_thread(p, t); 810 return; 811 } 812 } 813 814 /* 815 * The signal is already in the shared-pending queue. 816 * Tell the chosen thread to wake up and dequeue it. 817 */ 818 signal_wake_up(t, sig == SIGKILL); 819 return; 820 } 821 822 static inline int legacy_queue(struct sigpending *signals, int sig) 823 { 824 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 825 } 826 827 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 828 int group, int from_ancestor_ns) 829 { 830 struct sigpending *pending; 831 struct sigqueue *q; 832 833 trace_sched_signal_send(sig, t); 834 835 assert_spin_locked(&t->sighand->siglock); 836 837 if (!prepare_signal(sig, t, from_ancestor_ns)) 838 return 0; 839 840 pending = group ? &t->signal->shared_pending : &t->pending; 841 /* 842 * Short-circuit ignored signals and support queuing 843 * exactly one non-rt signal, so that we can get more 844 * detailed information about the cause of the signal. 845 */ 846 if (legacy_queue(pending, sig)) 847 return 0; 848 /* 849 * fast-pathed signals for kernel-internal things like SIGSTOP 850 * or SIGKILL. 851 */ 852 if (info == SEND_SIG_FORCED) 853 goto out_set; 854 855 /* Real-time signals must be queued if sent by sigqueue, or 856 some other real-time mechanism. It is implementation 857 defined whether kill() does so. We attempt to do so, on 858 the principle of least surprise, but since kill is not 859 allowed to fail with EAGAIN when low on memory we just 860 make sure at least one signal gets delivered and don't 861 pass on the info struct. */ 862 863 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN && 864 (is_si_special(info) || 865 info->si_code >= 0))); 866 if (q) { 867 list_add_tail(&q->list, &pending->list); 868 switch ((unsigned long) info) { 869 case (unsigned long) SEND_SIG_NOINFO: 870 q->info.si_signo = sig; 871 q->info.si_errno = 0; 872 q->info.si_code = SI_USER; 873 q->info.si_pid = task_tgid_nr_ns(current, 874 task_active_pid_ns(t)); 875 q->info.si_uid = current_uid(); 876 break; 877 case (unsigned long) SEND_SIG_PRIV: 878 q->info.si_signo = sig; 879 q->info.si_errno = 0; 880 q->info.si_code = SI_KERNEL; 881 q->info.si_pid = 0; 882 q->info.si_uid = 0; 883 break; 884 default: 885 copy_siginfo(&q->info, info); 886 if (from_ancestor_ns) 887 q->info.si_pid = 0; 888 break; 889 } 890 } else if (!is_si_special(info)) { 891 if (sig >= SIGRTMIN && info->si_code != SI_USER) 892 /* 893 * Queue overflow, abort. We may abort if the signal was rt 894 * and sent by user using something other than kill(). 895 */ 896 return -EAGAIN; 897 } 898 899 out_set: 900 signalfd_notify(t, sig); 901 sigaddset(&pending->signal, sig); 902 complete_signal(sig, t, group); 903 return 0; 904 } 905 906 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 907 int group) 908 { 909 int from_ancestor_ns = 0; 910 911 #ifdef CONFIG_PID_NS 912 if (!is_si_special(info) && SI_FROMUSER(info) && 913 task_pid_nr_ns(current, task_active_pid_ns(t)) <= 0) 914 from_ancestor_ns = 1; 915 #endif 916 917 return __send_signal(sig, info, t, group, from_ancestor_ns); 918 } 919 920 int print_fatal_signals; 921 922 static void print_fatal_signal(struct pt_regs *regs, int signr) 923 { 924 printk("%s/%d: potentially unexpected fatal signal %d.\n", 925 current->comm, task_pid_nr(current), signr); 926 927 #if defined(__i386__) && !defined(__arch_um__) 928 printk("code at %08lx: ", regs->ip); 929 { 930 int i; 931 for (i = 0; i < 16; i++) { 932 unsigned char insn; 933 934 __get_user(insn, (unsigned char *)(regs->ip + i)); 935 printk("%02x ", insn); 936 } 937 } 938 #endif 939 printk("\n"); 940 preempt_disable(); 941 show_regs(regs); 942 preempt_enable(); 943 } 944 945 static int __init setup_print_fatal_signals(char *str) 946 { 947 get_option (&str, &print_fatal_signals); 948 949 return 1; 950 } 951 952 __setup("print-fatal-signals=", setup_print_fatal_signals); 953 954 int 955 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 956 { 957 return send_signal(sig, info, p, 1); 958 } 959 960 static int 961 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 962 { 963 return send_signal(sig, info, t, 0); 964 } 965 966 /* 967 * Force a signal that the process can't ignore: if necessary 968 * we unblock the signal and change any SIG_IGN to SIG_DFL. 969 * 970 * Note: If we unblock the signal, we always reset it to SIG_DFL, 971 * since we do not want to have a signal handler that was blocked 972 * be invoked when user space had explicitly blocked it. 973 * 974 * We don't want to have recursive SIGSEGV's etc, for example, 975 * that is why we also clear SIGNAL_UNKILLABLE. 976 */ 977 int 978 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 979 { 980 unsigned long int flags; 981 int ret, blocked, ignored; 982 struct k_sigaction *action; 983 984 spin_lock_irqsave(&t->sighand->siglock, flags); 985 action = &t->sighand->action[sig-1]; 986 ignored = action->sa.sa_handler == SIG_IGN; 987 blocked = sigismember(&t->blocked, sig); 988 if (blocked || ignored) { 989 action->sa.sa_handler = SIG_DFL; 990 if (blocked) { 991 sigdelset(&t->blocked, sig); 992 recalc_sigpending_and_wake(t); 993 } 994 } 995 if (action->sa.sa_handler == SIG_DFL) 996 t->signal->flags &= ~SIGNAL_UNKILLABLE; 997 ret = specific_send_sig_info(sig, info, t); 998 spin_unlock_irqrestore(&t->sighand->siglock, flags); 999 1000 return ret; 1001 } 1002 1003 void 1004 force_sig_specific(int sig, struct task_struct *t) 1005 { 1006 force_sig_info(sig, SEND_SIG_FORCED, t); 1007 } 1008 1009 /* 1010 * Nuke all other threads in the group. 1011 */ 1012 void zap_other_threads(struct task_struct *p) 1013 { 1014 struct task_struct *t; 1015 1016 p->signal->group_stop_count = 0; 1017 1018 for (t = next_thread(p); t != p; t = next_thread(t)) { 1019 /* 1020 * Don't bother with already dead threads 1021 */ 1022 if (t->exit_state) 1023 continue; 1024 1025 /* SIGKILL will be handled before any pending SIGSTOP */ 1026 sigaddset(&t->pending.signal, SIGKILL); 1027 signal_wake_up(t, 1); 1028 } 1029 } 1030 1031 int __fatal_signal_pending(struct task_struct *tsk) 1032 { 1033 return sigismember(&tsk->pending.signal, SIGKILL); 1034 } 1035 EXPORT_SYMBOL(__fatal_signal_pending); 1036 1037 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) 1038 { 1039 struct sighand_struct *sighand; 1040 1041 rcu_read_lock(); 1042 for (;;) { 1043 sighand = rcu_dereference(tsk->sighand); 1044 if (unlikely(sighand == NULL)) 1045 break; 1046 1047 spin_lock_irqsave(&sighand->siglock, *flags); 1048 if (likely(sighand == tsk->sighand)) 1049 break; 1050 spin_unlock_irqrestore(&sighand->siglock, *flags); 1051 } 1052 rcu_read_unlock(); 1053 1054 return sighand; 1055 } 1056 1057 /* 1058 * send signal info to all the members of a group 1059 * - the caller must hold the RCU read lock at least 1060 */ 1061 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1062 { 1063 unsigned long flags; 1064 int ret; 1065 1066 ret = check_kill_permission(sig, info, p); 1067 1068 if (!ret && sig) { 1069 ret = -ESRCH; 1070 if (lock_task_sighand(p, &flags)) { 1071 ret = __group_send_sig_info(sig, info, p); 1072 unlock_task_sighand(p, &flags); 1073 } 1074 } 1075 1076 return ret; 1077 } 1078 1079 /* 1080 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1081 * control characters do (^C, ^Z etc) 1082 * - the caller must hold at least a readlock on tasklist_lock 1083 */ 1084 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1085 { 1086 struct task_struct *p = NULL; 1087 int retval, success; 1088 1089 success = 0; 1090 retval = -ESRCH; 1091 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1092 int err = group_send_sig_info(sig, info, p); 1093 success |= !err; 1094 retval = err; 1095 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1096 return success ? 0 : retval; 1097 } 1098 1099 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1100 { 1101 int error = -ESRCH; 1102 struct task_struct *p; 1103 1104 rcu_read_lock(); 1105 retry: 1106 p = pid_task(pid, PIDTYPE_PID); 1107 if (p) { 1108 error = group_send_sig_info(sig, info, p); 1109 if (unlikely(error == -ESRCH)) 1110 /* 1111 * The task was unhashed in between, try again. 1112 * If it is dead, pid_task() will return NULL, 1113 * if we race with de_thread() it will find the 1114 * new leader. 1115 */ 1116 goto retry; 1117 } 1118 rcu_read_unlock(); 1119 1120 return error; 1121 } 1122 1123 int 1124 kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1125 { 1126 int error; 1127 rcu_read_lock(); 1128 error = kill_pid_info(sig, info, find_vpid(pid)); 1129 rcu_read_unlock(); 1130 return error; 1131 } 1132 1133 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1134 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid, 1135 uid_t uid, uid_t euid, u32 secid) 1136 { 1137 int ret = -EINVAL; 1138 struct task_struct *p; 1139 const struct cred *pcred; 1140 1141 if (!valid_signal(sig)) 1142 return ret; 1143 1144 read_lock(&tasklist_lock); 1145 p = pid_task(pid, PIDTYPE_PID); 1146 if (!p) { 1147 ret = -ESRCH; 1148 goto out_unlock; 1149 } 1150 pcred = __task_cred(p); 1151 if ((info == SEND_SIG_NOINFO || 1152 (!is_si_special(info) && SI_FROMUSER(info))) && 1153 euid != pcred->suid && euid != pcred->uid && 1154 uid != pcred->suid && uid != pcred->uid) { 1155 ret = -EPERM; 1156 goto out_unlock; 1157 } 1158 ret = security_task_kill(p, info, sig, secid); 1159 if (ret) 1160 goto out_unlock; 1161 if (sig && p->sighand) { 1162 unsigned long flags; 1163 spin_lock_irqsave(&p->sighand->siglock, flags); 1164 ret = __send_signal(sig, info, p, 1, 0); 1165 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1166 } 1167 out_unlock: 1168 read_unlock(&tasklist_lock); 1169 return ret; 1170 } 1171 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid); 1172 1173 /* 1174 * kill_something_info() interprets pid in interesting ways just like kill(2). 1175 * 1176 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1177 * is probably wrong. Should make it like BSD or SYSV. 1178 */ 1179 1180 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1181 { 1182 int ret; 1183 1184 if (pid > 0) { 1185 rcu_read_lock(); 1186 ret = kill_pid_info(sig, info, find_vpid(pid)); 1187 rcu_read_unlock(); 1188 return ret; 1189 } 1190 1191 read_lock(&tasklist_lock); 1192 if (pid != -1) { 1193 ret = __kill_pgrp_info(sig, info, 1194 pid ? find_vpid(-pid) : task_pgrp(current)); 1195 } else { 1196 int retval = 0, count = 0; 1197 struct task_struct * p; 1198 1199 for_each_process(p) { 1200 if (task_pid_vnr(p) > 1 && 1201 !same_thread_group(p, current)) { 1202 int err = group_send_sig_info(sig, info, p); 1203 ++count; 1204 if (err != -EPERM) 1205 retval = err; 1206 } 1207 } 1208 ret = count ? retval : -ESRCH; 1209 } 1210 read_unlock(&tasklist_lock); 1211 1212 return ret; 1213 } 1214 1215 /* 1216 * These are for backward compatibility with the rest of the kernel source. 1217 */ 1218 1219 /* 1220 * The caller must ensure the task can't exit. 1221 */ 1222 int 1223 send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1224 { 1225 int ret; 1226 unsigned long flags; 1227 1228 /* 1229 * Make sure legacy kernel users don't send in bad values 1230 * (normal paths check this in check_kill_permission). 1231 */ 1232 if (!valid_signal(sig)) 1233 return -EINVAL; 1234 1235 spin_lock_irqsave(&p->sighand->siglock, flags); 1236 ret = specific_send_sig_info(sig, info, p); 1237 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1238 return ret; 1239 } 1240 1241 #define __si_special(priv) \ 1242 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1243 1244 int 1245 send_sig(int sig, struct task_struct *p, int priv) 1246 { 1247 return send_sig_info(sig, __si_special(priv), p); 1248 } 1249 1250 void 1251 force_sig(int sig, struct task_struct *p) 1252 { 1253 force_sig_info(sig, SEND_SIG_PRIV, p); 1254 } 1255 1256 /* 1257 * When things go south during signal handling, we 1258 * will force a SIGSEGV. And if the signal that caused 1259 * the problem was already a SIGSEGV, we'll want to 1260 * make sure we don't even try to deliver the signal.. 1261 */ 1262 int 1263 force_sigsegv(int sig, struct task_struct *p) 1264 { 1265 if (sig == SIGSEGV) { 1266 unsigned long flags; 1267 spin_lock_irqsave(&p->sighand->siglock, flags); 1268 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1269 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1270 } 1271 force_sig(SIGSEGV, p); 1272 return 0; 1273 } 1274 1275 int kill_pgrp(struct pid *pid, int sig, int priv) 1276 { 1277 int ret; 1278 1279 read_lock(&tasklist_lock); 1280 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1281 read_unlock(&tasklist_lock); 1282 1283 return ret; 1284 } 1285 EXPORT_SYMBOL(kill_pgrp); 1286 1287 int kill_pid(struct pid *pid, int sig, int priv) 1288 { 1289 return kill_pid_info(sig, __si_special(priv), pid); 1290 } 1291 EXPORT_SYMBOL(kill_pid); 1292 1293 /* 1294 * These functions support sending signals using preallocated sigqueue 1295 * structures. This is needed "because realtime applications cannot 1296 * afford to lose notifications of asynchronous events, like timer 1297 * expirations or I/O completions". In the case of Posix Timers 1298 * we allocate the sigqueue structure from the timer_create. If this 1299 * allocation fails we are able to report the failure to the application 1300 * with an EAGAIN error. 1301 */ 1302 1303 struct sigqueue *sigqueue_alloc(void) 1304 { 1305 struct sigqueue *q; 1306 1307 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) 1308 q->flags |= SIGQUEUE_PREALLOC; 1309 return(q); 1310 } 1311 1312 void sigqueue_free(struct sigqueue *q) 1313 { 1314 unsigned long flags; 1315 spinlock_t *lock = ¤t->sighand->siglock; 1316 1317 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1318 /* 1319 * We must hold ->siglock while testing q->list 1320 * to serialize with collect_signal() or with 1321 * __exit_signal()->flush_sigqueue(). 1322 */ 1323 spin_lock_irqsave(lock, flags); 1324 q->flags &= ~SIGQUEUE_PREALLOC; 1325 /* 1326 * If it is queued it will be freed when dequeued, 1327 * like the "regular" sigqueue. 1328 */ 1329 if (!list_empty(&q->list)) 1330 q = NULL; 1331 spin_unlock_irqrestore(lock, flags); 1332 1333 if (q) 1334 __sigqueue_free(q); 1335 } 1336 1337 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1338 { 1339 int sig = q->info.si_signo; 1340 struct sigpending *pending; 1341 unsigned long flags; 1342 int ret; 1343 1344 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1345 1346 ret = -1; 1347 if (!likely(lock_task_sighand(t, &flags))) 1348 goto ret; 1349 1350 ret = 1; /* the signal is ignored */ 1351 if (!prepare_signal(sig, t, 0)) 1352 goto out; 1353 1354 ret = 0; 1355 if (unlikely(!list_empty(&q->list))) { 1356 /* 1357 * If an SI_TIMER entry is already queue just increment 1358 * the overrun count. 1359 */ 1360 BUG_ON(q->info.si_code != SI_TIMER); 1361 q->info.si_overrun++; 1362 goto out; 1363 } 1364 q->info.si_overrun = 0; 1365 1366 signalfd_notify(t, sig); 1367 pending = group ? &t->signal->shared_pending : &t->pending; 1368 list_add_tail(&q->list, &pending->list); 1369 sigaddset(&pending->signal, sig); 1370 complete_signal(sig, t, group); 1371 out: 1372 unlock_task_sighand(t, &flags); 1373 ret: 1374 return ret; 1375 } 1376 1377 /* 1378 * Wake up any threads in the parent blocked in wait* syscalls. 1379 */ 1380 static inline void __wake_up_parent(struct task_struct *p, 1381 struct task_struct *parent) 1382 { 1383 wake_up_interruptible_sync(&parent->signal->wait_chldexit); 1384 } 1385 1386 /* 1387 * Let a parent know about the death of a child. 1388 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1389 * 1390 * Returns -1 if our parent ignored us and so we've switched to 1391 * self-reaping, or else @sig. 1392 */ 1393 int do_notify_parent(struct task_struct *tsk, int sig) 1394 { 1395 struct siginfo info; 1396 unsigned long flags; 1397 struct sighand_struct *psig; 1398 int ret = sig; 1399 1400 BUG_ON(sig == -1); 1401 1402 /* do_notify_parent_cldstop should have been called instead. */ 1403 BUG_ON(task_is_stopped_or_traced(tsk)); 1404 1405 BUG_ON(!tsk->ptrace && 1406 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1407 1408 info.si_signo = sig; 1409 info.si_errno = 0; 1410 /* 1411 * we are under tasklist_lock here so our parent is tied to 1412 * us and cannot exit and release its namespace. 1413 * 1414 * the only it can is to switch its nsproxy with sys_unshare, 1415 * bu uncharing pid namespaces is not allowed, so we'll always 1416 * see relevant namespace 1417 * 1418 * write_lock() currently calls preempt_disable() which is the 1419 * same as rcu_read_lock(), but according to Oleg, this is not 1420 * correct to rely on this 1421 */ 1422 rcu_read_lock(); 1423 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns); 1424 info.si_uid = __task_cred(tsk)->uid; 1425 rcu_read_unlock(); 1426 1427 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime, 1428 tsk->signal->utime)); 1429 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime, 1430 tsk->signal->stime)); 1431 1432 info.si_status = tsk->exit_code & 0x7f; 1433 if (tsk->exit_code & 0x80) 1434 info.si_code = CLD_DUMPED; 1435 else if (tsk->exit_code & 0x7f) 1436 info.si_code = CLD_KILLED; 1437 else { 1438 info.si_code = CLD_EXITED; 1439 info.si_status = tsk->exit_code >> 8; 1440 } 1441 1442 psig = tsk->parent->sighand; 1443 spin_lock_irqsave(&psig->siglock, flags); 1444 if (!tsk->ptrace && sig == SIGCHLD && 1445 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1446 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1447 /* 1448 * We are exiting and our parent doesn't care. POSIX.1 1449 * defines special semantics for setting SIGCHLD to SIG_IGN 1450 * or setting the SA_NOCLDWAIT flag: we should be reaped 1451 * automatically and not left for our parent's wait4 call. 1452 * Rather than having the parent do it as a magic kind of 1453 * signal handler, we just set this to tell do_exit that we 1454 * can be cleaned up without becoming a zombie. Note that 1455 * we still call __wake_up_parent in this case, because a 1456 * blocked sys_wait4 might now return -ECHILD. 1457 * 1458 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1459 * is implementation-defined: we do (if you don't want 1460 * it, just use SIG_IGN instead). 1461 */ 1462 ret = tsk->exit_signal = -1; 1463 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1464 sig = -1; 1465 } 1466 if (valid_signal(sig) && sig > 0) 1467 __group_send_sig_info(sig, &info, tsk->parent); 1468 __wake_up_parent(tsk, tsk->parent); 1469 spin_unlock_irqrestore(&psig->siglock, flags); 1470 1471 return ret; 1472 } 1473 1474 static void do_notify_parent_cldstop(struct task_struct *tsk, int why) 1475 { 1476 struct siginfo info; 1477 unsigned long flags; 1478 struct task_struct *parent; 1479 struct sighand_struct *sighand; 1480 1481 if (tsk->ptrace & PT_PTRACED) 1482 parent = tsk->parent; 1483 else { 1484 tsk = tsk->group_leader; 1485 parent = tsk->real_parent; 1486 } 1487 1488 info.si_signo = SIGCHLD; 1489 info.si_errno = 0; 1490 /* 1491 * see comment in do_notify_parent() abot the following 3 lines 1492 */ 1493 rcu_read_lock(); 1494 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns); 1495 info.si_uid = __task_cred(tsk)->uid; 1496 rcu_read_unlock(); 1497 1498 info.si_utime = cputime_to_clock_t(tsk->utime); 1499 info.si_stime = cputime_to_clock_t(tsk->stime); 1500 1501 info.si_code = why; 1502 switch (why) { 1503 case CLD_CONTINUED: 1504 info.si_status = SIGCONT; 1505 break; 1506 case CLD_STOPPED: 1507 info.si_status = tsk->signal->group_exit_code & 0x7f; 1508 break; 1509 case CLD_TRAPPED: 1510 info.si_status = tsk->exit_code & 0x7f; 1511 break; 1512 default: 1513 BUG(); 1514 } 1515 1516 sighand = parent->sighand; 1517 spin_lock_irqsave(&sighand->siglock, flags); 1518 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1519 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1520 __group_send_sig_info(SIGCHLD, &info, parent); 1521 /* 1522 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1523 */ 1524 __wake_up_parent(tsk, parent); 1525 spin_unlock_irqrestore(&sighand->siglock, flags); 1526 } 1527 1528 static inline int may_ptrace_stop(void) 1529 { 1530 if (!likely(current->ptrace & PT_PTRACED)) 1531 return 0; 1532 /* 1533 * Are we in the middle of do_coredump? 1534 * If so and our tracer is also part of the coredump stopping 1535 * is a deadlock situation, and pointless because our tracer 1536 * is dead so don't allow us to stop. 1537 * If SIGKILL was already sent before the caller unlocked 1538 * ->siglock we must see ->core_state != NULL. Otherwise it 1539 * is safe to enter schedule(). 1540 */ 1541 if (unlikely(current->mm->core_state) && 1542 unlikely(current->mm == current->parent->mm)) 1543 return 0; 1544 1545 return 1; 1546 } 1547 1548 /* 1549 * Return nonzero if there is a SIGKILL that should be waking us up. 1550 * Called with the siglock held. 1551 */ 1552 static int sigkill_pending(struct task_struct *tsk) 1553 { 1554 return sigismember(&tsk->pending.signal, SIGKILL) || 1555 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1556 } 1557 1558 /* 1559 * This must be called with current->sighand->siglock held. 1560 * 1561 * This should be the path for all ptrace stops. 1562 * We always set current->last_siginfo while stopped here. 1563 * That makes it a way to test a stopped process for 1564 * being ptrace-stopped vs being job-control-stopped. 1565 * 1566 * If we actually decide not to stop at all because the tracer 1567 * is gone, we keep current->exit_code unless clear_code. 1568 */ 1569 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info) 1570 { 1571 if (arch_ptrace_stop_needed(exit_code, info)) { 1572 /* 1573 * The arch code has something special to do before a 1574 * ptrace stop. This is allowed to block, e.g. for faults 1575 * on user stack pages. We can't keep the siglock while 1576 * calling arch_ptrace_stop, so we must release it now. 1577 * To preserve proper semantics, we must do this before 1578 * any signal bookkeeping like checking group_stop_count. 1579 * Meanwhile, a SIGKILL could come in before we retake the 1580 * siglock. That must prevent us from sleeping in TASK_TRACED. 1581 * So after regaining the lock, we must check for SIGKILL. 1582 */ 1583 spin_unlock_irq(¤t->sighand->siglock); 1584 arch_ptrace_stop(exit_code, info); 1585 spin_lock_irq(¤t->sighand->siglock); 1586 if (sigkill_pending(current)) 1587 return; 1588 } 1589 1590 /* 1591 * If there is a group stop in progress, 1592 * we must participate in the bookkeeping. 1593 */ 1594 if (current->signal->group_stop_count > 0) 1595 --current->signal->group_stop_count; 1596 1597 current->last_siginfo = info; 1598 current->exit_code = exit_code; 1599 1600 /* Let the debugger run. */ 1601 __set_current_state(TASK_TRACED); 1602 spin_unlock_irq(¤t->sighand->siglock); 1603 read_lock(&tasklist_lock); 1604 if (may_ptrace_stop()) { 1605 do_notify_parent_cldstop(current, CLD_TRAPPED); 1606 /* 1607 * Don't want to allow preemption here, because 1608 * sys_ptrace() needs this task to be inactive. 1609 * 1610 * XXX: implement read_unlock_no_resched(). 1611 */ 1612 preempt_disable(); 1613 read_unlock(&tasklist_lock); 1614 preempt_enable_no_resched(); 1615 schedule(); 1616 } else { 1617 /* 1618 * By the time we got the lock, our tracer went away. 1619 * Don't drop the lock yet, another tracer may come. 1620 */ 1621 __set_current_state(TASK_RUNNING); 1622 if (clear_code) 1623 current->exit_code = 0; 1624 read_unlock(&tasklist_lock); 1625 } 1626 1627 /* 1628 * While in TASK_TRACED, we were considered "frozen enough". 1629 * Now that we woke up, it's crucial if we're supposed to be 1630 * frozen that we freeze now before running anything substantial. 1631 */ 1632 try_to_freeze(); 1633 1634 /* 1635 * We are back. Now reacquire the siglock before touching 1636 * last_siginfo, so that we are sure to have synchronized with 1637 * any signal-sending on another CPU that wants to examine it. 1638 */ 1639 spin_lock_irq(¤t->sighand->siglock); 1640 current->last_siginfo = NULL; 1641 1642 /* 1643 * Queued signals ignored us while we were stopped for tracing. 1644 * So check for any that we should take before resuming user mode. 1645 * This sets TIF_SIGPENDING, but never clears it. 1646 */ 1647 recalc_sigpending_tsk(current); 1648 } 1649 1650 void ptrace_notify(int exit_code) 1651 { 1652 siginfo_t info; 1653 1654 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1655 1656 memset(&info, 0, sizeof info); 1657 info.si_signo = SIGTRAP; 1658 info.si_code = exit_code; 1659 info.si_pid = task_pid_vnr(current); 1660 info.si_uid = current_uid(); 1661 1662 /* Let the debugger run. */ 1663 spin_lock_irq(¤t->sighand->siglock); 1664 ptrace_stop(exit_code, 1, &info); 1665 spin_unlock_irq(¤t->sighand->siglock); 1666 } 1667 1668 static void 1669 finish_stop(int stop_count) 1670 { 1671 /* 1672 * If there are no other threads in the group, or if there is 1673 * a group stop in progress and we are the last to stop, 1674 * report to the parent. When ptraced, every thread reports itself. 1675 */ 1676 if (tracehook_notify_jctl(stop_count == 0, CLD_STOPPED)) { 1677 read_lock(&tasklist_lock); 1678 do_notify_parent_cldstop(current, CLD_STOPPED); 1679 read_unlock(&tasklist_lock); 1680 } 1681 1682 do { 1683 schedule(); 1684 } while (try_to_freeze()); 1685 /* 1686 * Now we don't run again until continued. 1687 */ 1688 current->exit_code = 0; 1689 } 1690 1691 /* 1692 * This performs the stopping for SIGSTOP and other stop signals. 1693 * We have to stop all threads in the thread group. 1694 * Returns nonzero if we've actually stopped and released the siglock. 1695 * Returns zero if we didn't stop and still hold the siglock. 1696 */ 1697 static int do_signal_stop(int signr) 1698 { 1699 struct signal_struct *sig = current->signal; 1700 int stop_count; 1701 1702 if (sig->group_stop_count > 0) { 1703 /* 1704 * There is a group stop in progress. We don't need to 1705 * start another one. 1706 */ 1707 stop_count = --sig->group_stop_count; 1708 } else { 1709 struct task_struct *t; 1710 1711 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) || 1712 unlikely(signal_group_exit(sig))) 1713 return 0; 1714 /* 1715 * There is no group stop already in progress. 1716 * We must initiate one now. 1717 */ 1718 sig->group_exit_code = signr; 1719 1720 stop_count = 0; 1721 for (t = next_thread(current); t != current; t = next_thread(t)) 1722 /* 1723 * Setting state to TASK_STOPPED for a group 1724 * stop is always done with the siglock held, 1725 * so this check has no races. 1726 */ 1727 if (!(t->flags & PF_EXITING) && 1728 !task_is_stopped_or_traced(t)) { 1729 stop_count++; 1730 signal_wake_up(t, 0); 1731 } 1732 sig->group_stop_count = stop_count; 1733 } 1734 1735 if (stop_count == 0) 1736 sig->flags = SIGNAL_STOP_STOPPED; 1737 current->exit_code = sig->group_exit_code; 1738 __set_current_state(TASK_STOPPED); 1739 1740 spin_unlock_irq(¤t->sighand->siglock); 1741 finish_stop(stop_count); 1742 return 1; 1743 } 1744 1745 static int ptrace_signal(int signr, siginfo_t *info, 1746 struct pt_regs *regs, void *cookie) 1747 { 1748 if (!(current->ptrace & PT_PTRACED)) 1749 return signr; 1750 1751 ptrace_signal_deliver(regs, cookie); 1752 1753 /* Let the debugger run. */ 1754 ptrace_stop(signr, 0, info); 1755 1756 /* We're back. Did the debugger cancel the sig? */ 1757 signr = current->exit_code; 1758 if (signr == 0) 1759 return signr; 1760 1761 current->exit_code = 0; 1762 1763 /* Update the siginfo structure if the signal has 1764 changed. If the debugger wanted something 1765 specific in the siginfo structure then it should 1766 have updated *info via PTRACE_SETSIGINFO. */ 1767 if (signr != info->si_signo) { 1768 info->si_signo = signr; 1769 info->si_errno = 0; 1770 info->si_code = SI_USER; 1771 info->si_pid = task_pid_vnr(current->parent); 1772 info->si_uid = task_uid(current->parent); 1773 } 1774 1775 /* If the (new) signal is now blocked, requeue it. */ 1776 if (sigismember(¤t->blocked, signr)) { 1777 specific_send_sig_info(signr, info, current); 1778 signr = 0; 1779 } 1780 1781 return signr; 1782 } 1783 1784 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 1785 struct pt_regs *regs, void *cookie) 1786 { 1787 struct sighand_struct *sighand = current->sighand; 1788 struct signal_struct *signal = current->signal; 1789 int signr; 1790 1791 relock: 1792 /* 1793 * We'll jump back here after any time we were stopped in TASK_STOPPED. 1794 * While in TASK_STOPPED, we were considered "frozen enough". 1795 * Now that we woke up, it's crucial if we're supposed to be 1796 * frozen that we freeze now before running anything substantial. 1797 */ 1798 try_to_freeze(); 1799 1800 spin_lock_irq(&sighand->siglock); 1801 /* 1802 * Every stopped thread goes here after wakeup. Check to see if 1803 * we should notify the parent, prepare_signal(SIGCONT) encodes 1804 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 1805 */ 1806 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 1807 int why = (signal->flags & SIGNAL_STOP_CONTINUED) 1808 ? CLD_CONTINUED : CLD_STOPPED; 1809 signal->flags &= ~SIGNAL_CLD_MASK; 1810 spin_unlock_irq(&sighand->siglock); 1811 1812 if (unlikely(!tracehook_notify_jctl(1, why))) 1813 goto relock; 1814 1815 read_lock(&tasklist_lock); 1816 do_notify_parent_cldstop(current->group_leader, why); 1817 read_unlock(&tasklist_lock); 1818 goto relock; 1819 } 1820 1821 for (;;) { 1822 struct k_sigaction *ka; 1823 1824 if (unlikely(signal->group_stop_count > 0) && 1825 do_signal_stop(0)) 1826 goto relock; 1827 1828 /* 1829 * Tracing can induce an artifical signal and choose sigaction. 1830 * The return value in @signr determines the default action, 1831 * but @info->si_signo is the signal number we will report. 1832 */ 1833 signr = tracehook_get_signal(current, regs, info, return_ka); 1834 if (unlikely(signr < 0)) 1835 goto relock; 1836 if (unlikely(signr != 0)) 1837 ka = return_ka; 1838 else { 1839 signr = dequeue_signal(current, ¤t->blocked, 1840 info); 1841 1842 if (!signr) 1843 break; /* will return 0 */ 1844 1845 if (signr != SIGKILL) { 1846 signr = ptrace_signal(signr, info, 1847 regs, cookie); 1848 if (!signr) 1849 continue; 1850 } 1851 1852 ka = &sighand->action[signr-1]; 1853 } 1854 1855 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 1856 continue; 1857 if (ka->sa.sa_handler != SIG_DFL) { 1858 /* Run the handler. */ 1859 *return_ka = *ka; 1860 1861 if (ka->sa.sa_flags & SA_ONESHOT) 1862 ka->sa.sa_handler = SIG_DFL; 1863 1864 break; /* will return non-zero "signr" value */ 1865 } 1866 1867 /* 1868 * Now we are doing the default action for this signal. 1869 */ 1870 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 1871 continue; 1872 1873 /* 1874 * Global init gets no signals it doesn't want. 1875 * Container-init gets no signals it doesn't want from same 1876 * container. 1877 * 1878 * Note that if global/container-init sees a sig_kernel_only() 1879 * signal here, the signal must have been generated internally 1880 * or must have come from an ancestor namespace. In either 1881 * case, the signal cannot be dropped. 1882 */ 1883 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 1884 !sig_kernel_only(signr)) 1885 continue; 1886 1887 if (sig_kernel_stop(signr)) { 1888 /* 1889 * The default action is to stop all threads in 1890 * the thread group. The job control signals 1891 * do nothing in an orphaned pgrp, but SIGSTOP 1892 * always works. Note that siglock needs to be 1893 * dropped during the call to is_orphaned_pgrp() 1894 * because of lock ordering with tasklist_lock. 1895 * This allows an intervening SIGCONT to be posted. 1896 * We need to check for that and bail out if necessary. 1897 */ 1898 if (signr != SIGSTOP) { 1899 spin_unlock_irq(&sighand->siglock); 1900 1901 /* signals can be posted during this window */ 1902 1903 if (is_current_pgrp_orphaned()) 1904 goto relock; 1905 1906 spin_lock_irq(&sighand->siglock); 1907 } 1908 1909 if (likely(do_signal_stop(info->si_signo))) { 1910 /* It released the siglock. */ 1911 goto relock; 1912 } 1913 1914 /* 1915 * We didn't actually stop, due to a race 1916 * with SIGCONT or something like that. 1917 */ 1918 continue; 1919 } 1920 1921 spin_unlock_irq(&sighand->siglock); 1922 1923 /* 1924 * Anything else is fatal, maybe with a core dump. 1925 */ 1926 current->flags |= PF_SIGNALED; 1927 1928 if (sig_kernel_coredump(signr)) { 1929 if (print_fatal_signals) 1930 print_fatal_signal(regs, info->si_signo); 1931 /* 1932 * If it was able to dump core, this kills all 1933 * other threads in the group and synchronizes with 1934 * their demise. If we lost the race with another 1935 * thread getting here, it set group_exit_code 1936 * first and our do_group_exit call below will use 1937 * that value and ignore the one we pass it. 1938 */ 1939 do_coredump(info->si_signo, info->si_signo, regs); 1940 } 1941 1942 /* 1943 * Death signals, no core dump. 1944 */ 1945 do_group_exit(info->si_signo); 1946 /* NOTREACHED */ 1947 } 1948 spin_unlock_irq(&sighand->siglock); 1949 return signr; 1950 } 1951 1952 void exit_signals(struct task_struct *tsk) 1953 { 1954 int group_stop = 0; 1955 struct task_struct *t; 1956 1957 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 1958 tsk->flags |= PF_EXITING; 1959 return; 1960 } 1961 1962 spin_lock_irq(&tsk->sighand->siglock); 1963 /* 1964 * From now this task is not visible for group-wide signals, 1965 * see wants_signal(), do_signal_stop(). 1966 */ 1967 tsk->flags |= PF_EXITING; 1968 if (!signal_pending(tsk)) 1969 goto out; 1970 1971 /* It could be that __group_complete_signal() choose us to 1972 * notify about group-wide signal. Another thread should be 1973 * woken now to take the signal since we will not. 1974 */ 1975 for (t = tsk; (t = next_thread(t)) != tsk; ) 1976 if (!signal_pending(t) && !(t->flags & PF_EXITING)) 1977 recalc_sigpending_and_wake(t); 1978 1979 if (unlikely(tsk->signal->group_stop_count) && 1980 !--tsk->signal->group_stop_count) { 1981 tsk->signal->flags = SIGNAL_STOP_STOPPED; 1982 group_stop = 1; 1983 } 1984 out: 1985 spin_unlock_irq(&tsk->sighand->siglock); 1986 1987 if (unlikely(group_stop) && tracehook_notify_jctl(1, CLD_STOPPED)) { 1988 read_lock(&tasklist_lock); 1989 do_notify_parent_cldstop(tsk, CLD_STOPPED); 1990 read_unlock(&tasklist_lock); 1991 } 1992 } 1993 1994 EXPORT_SYMBOL(recalc_sigpending); 1995 EXPORT_SYMBOL_GPL(dequeue_signal); 1996 EXPORT_SYMBOL(flush_signals); 1997 EXPORT_SYMBOL(force_sig); 1998 EXPORT_SYMBOL(send_sig); 1999 EXPORT_SYMBOL(send_sig_info); 2000 EXPORT_SYMBOL(sigprocmask); 2001 EXPORT_SYMBOL(block_all_signals); 2002 EXPORT_SYMBOL(unblock_all_signals); 2003 2004 2005 /* 2006 * System call entry points. 2007 */ 2008 2009 SYSCALL_DEFINE0(restart_syscall) 2010 { 2011 struct restart_block *restart = ¤t_thread_info()->restart_block; 2012 return restart->fn(restart); 2013 } 2014 2015 long do_no_restart_syscall(struct restart_block *param) 2016 { 2017 return -EINTR; 2018 } 2019 2020 /* 2021 * We don't need to get the kernel lock - this is all local to this 2022 * particular thread.. (and that's good, because this is _heavily_ 2023 * used by various programs) 2024 */ 2025 2026 /* 2027 * This is also useful for kernel threads that want to temporarily 2028 * (or permanently) block certain signals. 2029 * 2030 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2031 * interface happily blocks "unblockable" signals like SIGKILL 2032 * and friends. 2033 */ 2034 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2035 { 2036 int error; 2037 2038 spin_lock_irq(¤t->sighand->siglock); 2039 if (oldset) 2040 *oldset = current->blocked; 2041 2042 error = 0; 2043 switch (how) { 2044 case SIG_BLOCK: 2045 sigorsets(¤t->blocked, ¤t->blocked, set); 2046 break; 2047 case SIG_UNBLOCK: 2048 signandsets(¤t->blocked, ¤t->blocked, set); 2049 break; 2050 case SIG_SETMASK: 2051 current->blocked = *set; 2052 break; 2053 default: 2054 error = -EINVAL; 2055 } 2056 recalc_sigpending(); 2057 spin_unlock_irq(¤t->sighand->siglock); 2058 2059 return error; 2060 } 2061 2062 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set, 2063 sigset_t __user *, oset, size_t, sigsetsize) 2064 { 2065 int error = -EINVAL; 2066 sigset_t old_set, new_set; 2067 2068 /* XXX: Don't preclude handling different sized sigset_t's. */ 2069 if (sigsetsize != sizeof(sigset_t)) 2070 goto out; 2071 2072 if (set) { 2073 error = -EFAULT; 2074 if (copy_from_user(&new_set, set, sizeof(*set))) 2075 goto out; 2076 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2077 2078 error = sigprocmask(how, &new_set, &old_set); 2079 if (error) 2080 goto out; 2081 if (oset) 2082 goto set_old; 2083 } else if (oset) { 2084 spin_lock_irq(¤t->sighand->siglock); 2085 old_set = current->blocked; 2086 spin_unlock_irq(¤t->sighand->siglock); 2087 2088 set_old: 2089 error = -EFAULT; 2090 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2091 goto out; 2092 } 2093 error = 0; 2094 out: 2095 return error; 2096 } 2097 2098 long do_sigpending(void __user *set, unsigned long sigsetsize) 2099 { 2100 long error = -EINVAL; 2101 sigset_t pending; 2102 2103 if (sigsetsize > sizeof(sigset_t)) 2104 goto out; 2105 2106 spin_lock_irq(¤t->sighand->siglock); 2107 sigorsets(&pending, ¤t->pending.signal, 2108 ¤t->signal->shared_pending.signal); 2109 spin_unlock_irq(¤t->sighand->siglock); 2110 2111 /* Outside the lock because only this thread touches it. */ 2112 sigandsets(&pending, ¤t->blocked, &pending); 2113 2114 error = -EFAULT; 2115 if (!copy_to_user(set, &pending, sigsetsize)) 2116 error = 0; 2117 2118 out: 2119 return error; 2120 } 2121 2122 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize) 2123 { 2124 return do_sigpending(set, sigsetsize); 2125 } 2126 2127 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2128 2129 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2130 { 2131 int err; 2132 2133 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2134 return -EFAULT; 2135 if (from->si_code < 0) 2136 return __copy_to_user(to, from, sizeof(siginfo_t)) 2137 ? -EFAULT : 0; 2138 /* 2139 * If you change siginfo_t structure, please be sure 2140 * this code is fixed accordingly. 2141 * Please remember to update the signalfd_copyinfo() function 2142 * inside fs/signalfd.c too, in case siginfo_t changes. 2143 * It should never copy any pad contained in the structure 2144 * to avoid security leaks, but must copy the generic 2145 * 3 ints plus the relevant union member. 2146 */ 2147 err = __put_user(from->si_signo, &to->si_signo); 2148 err |= __put_user(from->si_errno, &to->si_errno); 2149 err |= __put_user((short)from->si_code, &to->si_code); 2150 switch (from->si_code & __SI_MASK) { 2151 case __SI_KILL: 2152 err |= __put_user(from->si_pid, &to->si_pid); 2153 err |= __put_user(from->si_uid, &to->si_uid); 2154 break; 2155 case __SI_TIMER: 2156 err |= __put_user(from->si_tid, &to->si_tid); 2157 err |= __put_user(from->si_overrun, &to->si_overrun); 2158 err |= __put_user(from->si_ptr, &to->si_ptr); 2159 break; 2160 case __SI_POLL: 2161 err |= __put_user(from->si_band, &to->si_band); 2162 err |= __put_user(from->si_fd, &to->si_fd); 2163 break; 2164 case __SI_FAULT: 2165 err |= __put_user(from->si_addr, &to->si_addr); 2166 #ifdef __ARCH_SI_TRAPNO 2167 err |= __put_user(from->si_trapno, &to->si_trapno); 2168 #endif 2169 break; 2170 case __SI_CHLD: 2171 err |= __put_user(from->si_pid, &to->si_pid); 2172 err |= __put_user(from->si_uid, &to->si_uid); 2173 err |= __put_user(from->si_status, &to->si_status); 2174 err |= __put_user(from->si_utime, &to->si_utime); 2175 err |= __put_user(from->si_stime, &to->si_stime); 2176 break; 2177 case __SI_RT: /* This is not generated by the kernel as of now. */ 2178 case __SI_MESGQ: /* But this is */ 2179 err |= __put_user(from->si_pid, &to->si_pid); 2180 err |= __put_user(from->si_uid, &to->si_uid); 2181 err |= __put_user(from->si_ptr, &to->si_ptr); 2182 break; 2183 default: /* this is just in case for now ... */ 2184 err |= __put_user(from->si_pid, &to->si_pid); 2185 err |= __put_user(from->si_uid, &to->si_uid); 2186 break; 2187 } 2188 return err; 2189 } 2190 2191 #endif 2192 2193 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 2194 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 2195 size_t, sigsetsize) 2196 { 2197 int ret, sig; 2198 sigset_t these; 2199 struct timespec ts; 2200 siginfo_t info; 2201 long timeout = 0; 2202 2203 /* XXX: Don't preclude handling different sized sigset_t's. */ 2204 if (sigsetsize != sizeof(sigset_t)) 2205 return -EINVAL; 2206 2207 if (copy_from_user(&these, uthese, sizeof(these))) 2208 return -EFAULT; 2209 2210 /* 2211 * Invert the set of allowed signals to get those we 2212 * want to block. 2213 */ 2214 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2215 signotset(&these); 2216 2217 if (uts) { 2218 if (copy_from_user(&ts, uts, sizeof(ts))) 2219 return -EFAULT; 2220 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 2221 || ts.tv_sec < 0) 2222 return -EINVAL; 2223 } 2224 2225 spin_lock_irq(¤t->sighand->siglock); 2226 sig = dequeue_signal(current, &these, &info); 2227 if (!sig) { 2228 timeout = MAX_SCHEDULE_TIMEOUT; 2229 if (uts) 2230 timeout = (timespec_to_jiffies(&ts) 2231 + (ts.tv_sec || ts.tv_nsec)); 2232 2233 if (timeout) { 2234 /* None ready -- temporarily unblock those we're 2235 * interested while we are sleeping in so that we'll 2236 * be awakened when they arrive. */ 2237 current->real_blocked = current->blocked; 2238 sigandsets(¤t->blocked, ¤t->blocked, &these); 2239 recalc_sigpending(); 2240 spin_unlock_irq(¤t->sighand->siglock); 2241 2242 timeout = schedule_timeout_interruptible(timeout); 2243 2244 spin_lock_irq(¤t->sighand->siglock); 2245 sig = dequeue_signal(current, &these, &info); 2246 current->blocked = current->real_blocked; 2247 siginitset(¤t->real_blocked, 0); 2248 recalc_sigpending(); 2249 } 2250 } 2251 spin_unlock_irq(¤t->sighand->siglock); 2252 2253 if (sig) { 2254 ret = sig; 2255 if (uinfo) { 2256 if (copy_siginfo_to_user(uinfo, &info)) 2257 ret = -EFAULT; 2258 } 2259 } else { 2260 ret = -EAGAIN; 2261 if (timeout) 2262 ret = -EINTR; 2263 } 2264 2265 return ret; 2266 } 2267 2268 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 2269 { 2270 struct siginfo info; 2271 2272 info.si_signo = sig; 2273 info.si_errno = 0; 2274 info.si_code = SI_USER; 2275 info.si_pid = task_tgid_vnr(current); 2276 info.si_uid = current_uid(); 2277 2278 return kill_something_info(sig, &info, pid); 2279 } 2280 2281 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2282 { 2283 int error; 2284 struct siginfo info; 2285 struct task_struct *p; 2286 unsigned long flags; 2287 2288 error = -ESRCH; 2289 info.si_signo = sig; 2290 info.si_errno = 0; 2291 info.si_code = SI_TKILL; 2292 info.si_pid = task_tgid_vnr(current); 2293 info.si_uid = current_uid(); 2294 2295 rcu_read_lock(); 2296 p = find_task_by_vpid(pid); 2297 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2298 error = check_kill_permission(sig, &info, p); 2299 /* 2300 * The null signal is a permissions and process existence 2301 * probe. No signal is actually delivered. 2302 * 2303 * If lock_task_sighand() fails we pretend the task dies 2304 * after receiving the signal. The window is tiny, and the 2305 * signal is private anyway. 2306 */ 2307 if (!error && sig && lock_task_sighand(p, &flags)) { 2308 error = specific_send_sig_info(sig, &info, p); 2309 unlock_task_sighand(p, &flags); 2310 } 2311 } 2312 rcu_read_unlock(); 2313 2314 return error; 2315 } 2316 2317 /** 2318 * sys_tgkill - send signal to one specific thread 2319 * @tgid: the thread group ID of the thread 2320 * @pid: the PID of the thread 2321 * @sig: signal to be sent 2322 * 2323 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2324 * exists but it's not belonging to the target process anymore. This 2325 * method solves the problem of threads exiting and PIDs getting reused. 2326 */ 2327 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 2328 { 2329 /* This is only valid for single tasks */ 2330 if (pid <= 0 || tgid <= 0) 2331 return -EINVAL; 2332 2333 return do_tkill(tgid, pid, sig); 2334 } 2335 2336 /* 2337 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2338 */ 2339 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 2340 { 2341 /* This is only valid for single tasks */ 2342 if (pid <= 0) 2343 return -EINVAL; 2344 2345 return do_tkill(0, pid, sig); 2346 } 2347 2348 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 2349 siginfo_t __user *, uinfo) 2350 { 2351 siginfo_t info; 2352 2353 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2354 return -EFAULT; 2355 2356 /* Not even root can pretend to send signals from the kernel. 2357 Nor can they impersonate a kill(), which adds source info. */ 2358 if (info.si_code >= 0) 2359 return -EPERM; 2360 info.si_signo = sig; 2361 2362 /* POSIX.1b doesn't mention process groups. */ 2363 return kill_proc_info(sig, &info, pid); 2364 } 2365 2366 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2367 { 2368 struct task_struct *t = current; 2369 struct k_sigaction *k; 2370 sigset_t mask; 2371 2372 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2373 return -EINVAL; 2374 2375 k = &t->sighand->action[sig-1]; 2376 2377 spin_lock_irq(¤t->sighand->siglock); 2378 if (oact) 2379 *oact = *k; 2380 2381 if (act) { 2382 sigdelsetmask(&act->sa.sa_mask, 2383 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2384 *k = *act; 2385 /* 2386 * POSIX 3.3.1.3: 2387 * "Setting a signal action to SIG_IGN for a signal that is 2388 * pending shall cause the pending signal to be discarded, 2389 * whether or not it is blocked." 2390 * 2391 * "Setting a signal action to SIG_DFL for a signal that is 2392 * pending and whose default action is to ignore the signal 2393 * (for example, SIGCHLD), shall cause the pending signal to 2394 * be discarded, whether or not it is blocked" 2395 */ 2396 if (sig_handler_ignored(sig_handler(t, sig), sig)) { 2397 sigemptyset(&mask); 2398 sigaddset(&mask, sig); 2399 rm_from_queue_full(&mask, &t->signal->shared_pending); 2400 do { 2401 rm_from_queue_full(&mask, &t->pending); 2402 t = next_thread(t); 2403 } while (t != current); 2404 } 2405 } 2406 2407 spin_unlock_irq(¤t->sighand->siglock); 2408 return 0; 2409 } 2410 2411 int 2412 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 2413 { 2414 stack_t oss; 2415 int error; 2416 2417 if (uoss) { 2418 oss.ss_sp = (void __user *) current->sas_ss_sp; 2419 oss.ss_size = current->sas_ss_size; 2420 oss.ss_flags = sas_ss_flags(sp); 2421 } 2422 2423 if (uss) { 2424 void __user *ss_sp; 2425 size_t ss_size; 2426 int ss_flags; 2427 2428 error = -EFAULT; 2429 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) 2430 || __get_user(ss_sp, &uss->ss_sp) 2431 || __get_user(ss_flags, &uss->ss_flags) 2432 || __get_user(ss_size, &uss->ss_size)) 2433 goto out; 2434 2435 error = -EPERM; 2436 if (on_sig_stack(sp)) 2437 goto out; 2438 2439 error = -EINVAL; 2440 /* 2441 * 2442 * Note - this code used to test ss_flags incorrectly 2443 * old code may have been written using ss_flags==0 2444 * to mean ss_flags==SS_ONSTACK (as this was the only 2445 * way that worked) - this fix preserves that older 2446 * mechanism 2447 */ 2448 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 2449 goto out; 2450 2451 if (ss_flags == SS_DISABLE) { 2452 ss_size = 0; 2453 ss_sp = NULL; 2454 } else { 2455 error = -ENOMEM; 2456 if (ss_size < MINSIGSTKSZ) 2457 goto out; 2458 } 2459 2460 current->sas_ss_sp = (unsigned long) ss_sp; 2461 current->sas_ss_size = ss_size; 2462 } 2463 2464 if (uoss) { 2465 error = -EFAULT; 2466 if (copy_to_user(uoss, &oss, sizeof(oss))) 2467 goto out; 2468 } 2469 2470 error = 0; 2471 out: 2472 return error; 2473 } 2474 2475 #ifdef __ARCH_WANT_SYS_SIGPENDING 2476 2477 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 2478 { 2479 return do_sigpending(set, sizeof(*set)); 2480 } 2481 2482 #endif 2483 2484 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 2485 /* Some platforms have their own version with special arguments others 2486 support only sys_rt_sigprocmask. */ 2487 2488 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set, 2489 old_sigset_t __user *, oset) 2490 { 2491 int error; 2492 old_sigset_t old_set, new_set; 2493 2494 if (set) { 2495 error = -EFAULT; 2496 if (copy_from_user(&new_set, set, sizeof(*set))) 2497 goto out; 2498 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 2499 2500 spin_lock_irq(¤t->sighand->siglock); 2501 old_set = current->blocked.sig[0]; 2502 2503 error = 0; 2504 switch (how) { 2505 default: 2506 error = -EINVAL; 2507 break; 2508 case SIG_BLOCK: 2509 sigaddsetmask(¤t->blocked, new_set); 2510 break; 2511 case SIG_UNBLOCK: 2512 sigdelsetmask(¤t->blocked, new_set); 2513 break; 2514 case SIG_SETMASK: 2515 current->blocked.sig[0] = new_set; 2516 break; 2517 } 2518 2519 recalc_sigpending(); 2520 spin_unlock_irq(¤t->sighand->siglock); 2521 if (error) 2522 goto out; 2523 if (oset) 2524 goto set_old; 2525 } else if (oset) { 2526 old_set = current->blocked.sig[0]; 2527 set_old: 2528 error = -EFAULT; 2529 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2530 goto out; 2531 } 2532 error = 0; 2533 out: 2534 return error; 2535 } 2536 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 2537 2538 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 2539 SYSCALL_DEFINE4(rt_sigaction, int, sig, 2540 const struct sigaction __user *, act, 2541 struct sigaction __user *, oact, 2542 size_t, sigsetsize) 2543 { 2544 struct k_sigaction new_sa, old_sa; 2545 int ret = -EINVAL; 2546 2547 /* XXX: Don't preclude handling different sized sigset_t's. */ 2548 if (sigsetsize != sizeof(sigset_t)) 2549 goto out; 2550 2551 if (act) { 2552 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 2553 return -EFAULT; 2554 } 2555 2556 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 2557 2558 if (!ret && oact) { 2559 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 2560 return -EFAULT; 2561 } 2562 out: 2563 return ret; 2564 } 2565 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 2566 2567 #ifdef __ARCH_WANT_SYS_SGETMASK 2568 2569 /* 2570 * For backwards compatibility. Functionality superseded by sigprocmask. 2571 */ 2572 SYSCALL_DEFINE0(sgetmask) 2573 { 2574 /* SMP safe */ 2575 return current->blocked.sig[0]; 2576 } 2577 2578 SYSCALL_DEFINE1(ssetmask, int, newmask) 2579 { 2580 int old; 2581 2582 spin_lock_irq(¤t->sighand->siglock); 2583 old = current->blocked.sig[0]; 2584 2585 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| 2586 sigmask(SIGSTOP))); 2587 recalc_sigpending(); 2588 spin_unlock_irq(¤t->sighand->siglock); 2589 2590 return old; 2591 } 2592 #endif /* __ARCH_WANT_SGETMASK */ 2593 2594 #ifdef __ARCH_WANT_SYS_SIGNAL 2595 /* 2596 * For backwards compatibility. Functionality superseded by sigaction. 2597 */ 2598 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 2599 { 2600 struct k_sigaction new_sa, old_sa; 2601 int ret; 2602 2603 new_sa.sa.sa_handler = handler; 2604 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 2605 sigemptyset(&new_sa.sa.sa_mask); 2606 2607 ret = do_sigaction(sig, &new_sa, &old_sa); 2608 2609 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 2610 } 2611 #endif /* __ARCH_WANT_SYS_SIGNAL */ 2612 2613 #ifdef __ARCH_WANT_SYS_PAUSE 2614 2615 SYSCALL_DEFINE0(pause) 2616 { 2617 current->state = TASK_INTERRUPTIBLE; 2618 schedule(); 2619 return -ERESTARTNOHAND; 2620 } 2621 2622 #endif 2623 2624 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 2625 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 2626 { 2627 sigset_t newset; 2628 2629 /* XXX: Don't preclude handling different sized sigset_t's. */ 2630 if (sigsetsize != sizeof(sigset_t)) 2631 return -EINVAL; 2632 2633 if (copy_from_user(&newset, unewset, sizeof(newset))) 2634 return -EFAULT; 2635 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2636 2637 spin_lock_irq(¤t->sighand->siglock); 2638 current->saved_sigmask = current->blocked; 2639 current->blocked = newset; 2640 recalc_sigpending(); 2641 spin_unlock_irq(¤t->sighand->siglock); 2642 2643 current->state = TASK_INTERRUPTIBLE; 2644 schedule(); 2645 set_restore_sigmask(); 2646 return -ERESTARTNOHAND; 2647 } 2648 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 2649 2650 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) 2651 { 2652 return NULL; 2653 } 2654 2655 void __init signals_init(void) 2656 { 2657 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 2658 } 2659