1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/security.h> 21 #include <linux/syscalls.h> 22 #include <linux/ptrace.h> 23 #include <linux/signal.h> 24 #include <linux/signalfd.h> 25 #include <linux/ratelimit.h> 26 #include <linux/tracehook.h> 27 #include <linux/capability.h> 28 #include <linux/freezer.h> 29 #include <linux/pid_namespace.h> 30 #include <linux/nsproxy.h> 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/signal.h> 33 34 #include <asm/param.h> 35 #include <asm/uaccess.h> 36 #include <asm/unistd.h> 37 #include <asm/siginfo.h> 38 #include "audit.h" /* audit_signal_info() */ 39 40 /* 41 * SLAB caches for signal bits. 42 */ 43 44 static struct kmem_cache *sigqueue_cachep; 45 46 int print_fatal_signals __read_mostly; 47 48 static void __user *sig_handler(struct task_struct *t, int sig) 49 { 50 return t->sighand->action[sig - 1].sa.sa_handler; 51 } 52 53 static int sig_handler_ignored(void __user *handler, int sig) 54 { 55 /* Is it explicitly or implicitly ignored? */ 56 return handler == SIG_IGN || 57 (handler == SIG_DFL && sig_kernel_ignore(sig)); 58 } 59 60 static int sig_task_ignored(struct task_struct *t, int sig, 61 int from_ancestor_ns) 62 { 63 void __user *handler; 64 65 handler = sig_handler(t, sig); 66 67 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 68 handler == SIG_DFL && !from_ancestor_ns) 69 return 1; 70 71 return sig_handler_ignored(handler, sig); 72 } 73 74 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns) 75 { 76 /* 77 * Blocked signals are never ignored, since the 78 * signal handler may change by the time it is 79 * unblocked. 80 */ 81 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 82 return 0; 83 84 if (!sig_task_ignored(t, sig, from_ancestor_ns)) 85 return 0; 86 87 /* 88 * Tracers may want to know about even ignored signals. 89 */ 90 return !tracehook_consider_ignored_signal(t, sig); 91 } 92 93 /* 94 * Re-calculate pending state from the set of locally pending 95 * signals, globally pending signals, and blocked signals. 96 */ 97 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 98 { 99 unsigned long ready; 100 long i; 101 102 switch (_NSIG_WORDS) { 103 default: 104 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 105 ready |= signal->sig[i] &~ blocked->sig[i]; 106 break; 107 108 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 109 ready |= signal->sig[2] &~ blocked->sig[2]; 110 ready |= signal->sig[1] &~ blocked->sig[1]; 111 ready |= signal->sig[0] &~ blocked->sig[0]; 112 break; 113 114 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 115 ready |= signal->sig[0] &~ blocked->sig[0]; 116 break; 117 118 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 119 } 120 return ready != 0; 121 } 122 123 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 124 125 static int recalc_sigpending_tsk(struct task_struct *t) 126 { 127 if (t->signal->group_stop_count > 0 || 128 PENDING(&t->pending, &t->blocked) || 129 PENDING(&t->signal->shared_pending, &t->blocked)) { 130 set_tsk_thread_flag(t, TIF_SIGPENDING); 131 return 1; 132 } 133 /* 134 * We must never clear the flag in another thread, or in current 135 * when it's possible the current syscall is returning -ERESTART*. 136 * So we don't clear it here, and only callers who know they should do. 137 */ 138 return 0; 139 } 140 141 /* 142 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 143 * This is superfluous when called on current, the wakeup is a harmless no-op. 144 */ 145 void recalc_sigpending_and_wake(struct task_struct *t) 146 { 147 if (recalc_sigpending_tsk(t)) 148 signal_wake_up(t, 0); 149 } 150 151 void recalc_sigpending(void) 152 { 153 if (unlikely(tracehook_force_sigpending())) 154 set_thread_flag(TIF_SIGPENDING); 155 else if (!recalc_sigpending_tsk(current) && !freezing(current)) 156 clear_thread_flag(TIF_SIGPENDING); 157 158 } 159 160 /* Given the mask, find the first available signal that should be serviced. */ 161 162 int next_signal(struct sigpending *pending, sigset_t *mask) 163 { 164 unsigned long i, *s, *m, x; 165 int sig = 0; 166 167 s = pending->signal.sig; 168 m = mask->sig; 169 switch (_NSIG_WORDS) { 170 default: 171 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) 172 if ((x = *s &~ *m) != 0) { 173 sig = ffz(~x) + i*_NSIG_BPW + 1; 174 break; 175 } 176 break; 177 178 case 2: if ((x = s[0] &~ m[0]) != 0) 179 sig = 1; 180 else if ((x = s[1] &~ m[1]) != 0) 181 sig = _NSIG_BPW + 1; 182 else 183 break; 184 sig += ffz(~x); 185 break; 186 187 case 1: if ((x = *s &~ *m) != 0) 188 sig = ffz(~x) + 1; 189 break; 190 } 191 192 return sig; 193 } 194 195 static inline void print_dropped_signal(int sig) 196 { 197 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 198 199 if (!print_fatal_signals) 200 return; 201 202 if (!__ratelimit(&ratelimit_state)) 203 return; 204 205 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 206 current->comm, current->pid, sig); 207 } 208 209 /* 210 * allocate a new signal queue record 211 * - this may be called without locks if and only if t == current, otherwise an 212 * appopriate lock must be held to stop the target task from exiting 213 */ 214 static struct sigqueue * 215 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 216 { 217 struct sigqueue *q = NULL; 218 struct user_struct *user; 219 220 /* 221 * Protect access to @t credentials. This can go away when all 222 * callers hold rcu read lock. 223 */ 224 rcu_read_lock(); 225 user = get_uid(__task_cred(t)->user); 226 atomic_inc(&user->sigpending); 227 rcu_read_unlock(); 228 229 if (override_rlimit || 230 atomic_read(&user->sigpending) <= 231 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) { 232 q = kmem_cache_alloc(sigqueue_cachep, flags); 233 } else { 234 print_dropped_signal(sig); 235 } 236 237 if (unlikely(q == NULL)) { 238 atomic_dec(&user->sigpending); 239 free_uid(user); 240 } else { 241 INIT_LIST_HEAD(&q->list); 242 q->flags = 0; 243 q->user = user; 244 } 245 246 return q; 247 } 248 249 static void __sigqueue_free(struct sigqueue *q) 250 { 251 if (q->flags & SIGQUEUE_PREALLOC) 252 return; 253 atomic_dec(&q->user->sigpending); 254 free_uid(q->user); 255 kmem_cache_free(sigqueue_cachep, q); 256 } 257 258 void flush_sigqueue(struct sigpending *queue) 259 { 260 struct sigqueue *q; 261 262 sigemptyset(&queue->signal); 263 while (!list_empty(&queue->list)) { 264 q = list_entry(queue->list.next, struct sigqueue , list); 265 list_del_init(&q->list); 266 __sigqueue_free(q); 267 } 268 } 269 270 /* 271 * Flush all pending signals for a task. 272 */ 273 void __flush_signals(struct task_struct *t) 274 { 275 clear_tsk_thread_flag(t, TIF_SIGPENDING); 276 flush_sigqueue(&t->pending); 277 flush_sigqueue(&t->signal->shared_pending); 278 } 279 280 void flush_signals(struct task_struct *t) 281 { 282 unsigned long flags; 283 284 spin_lock_irqsave(&t->sighand->siglock, flags); 285 __flush_signals(t); 286 spin_unlock_irqrestore(&t->sighand->siglock, flags); 287 } 288 289 static void __flush_itimer_signals(struct sigpending *pending) 290 { 291 sigset_t signal, retain; 292 struct sigqueue *q, *n; 293 294 signal = pending->signal; 295 sigemptyset(&retain); 296 297 list_for_each_entry_safe(q, n, &pending->list, list) { 298 int sig = q->info.si_signo; 299 300 if (likely(q->info.si_code != SI_TIMER)) { 301 sigaddset(&retain, sig); 302 } else { 303 sigdelset(&signal, sig); 304 list_del_init(&q->list); 305 __sigqueue_free(q); 306 } 307 } 308 309 sigorsets(&pending->signal, &signal, &retain); 310 } 311 312 void flush_itimer_signals(void) 313 { 314 struct task_struct *tsk = current; 315 unsigned long flags; 316 317 spin_lock_irqsave(&tsk->sighand->siglock, flags); 318 __flush_itimer_signals(&tsk->pending); 319 __flush_itimer_signals(&tsk->signal->shared_pending); 320 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 321 } 322 323 void ignore_signals(struct task_struct *t) 324 { 325 int i; 326 327 for (i = 0; i < _NSIG; ++i) 328 t->sighand->action[i].sa.sa_handler = SIG_IGN; 329 330 flush_signals(t); 331 } 332 333 /* 334 * Flush all handlers for a task. 335 */ 336 337 void 338 flush_signal_handlers(struct task_struct *t, int force_default) 339 { 340 int i; 341 struct k_sigaction *ka = &t->sighand->action[0]; 342 for (i = _NSIG ; i != 0 ; i--) { 343 if (force_default || ka->sa.sa_handler != SIG_IGN) 344 ka->sa.sa_handler = SIG_DFL; 345 ka->sa.sa_flags = 0; 346 sigemptyset(&ka->sa.sa_mask); 347 ka++; 348 } 349 } 350 351 int unhandled_signal(struct task_struct *tsk, int sig) 352 { 353 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 354 if (is_global_init(tsk)) 355 return 1; 356 if (handler != SIG_IGN && handler != SIG_DFL) 357 return 0; 358 return !tracehook_consider_fatal_signal(tsk, sig); 359 } 360 361 362 /* Notify the system that a driver wants to block all signals for this 363 * process, and wants to be notified if any signals at all were to be 364 * sent/acted upon. If the notifier routine returns non-zero, then the 365 * signal will be acted upon after all. If the notifier routine returns 0, 366 * then then signal will be blocked. Only one block per process is 367 * allowed. priv is a pointer to private data that the notifier routine 368 * can use to determine if the signal should be blocked or not. */ 369 370 void 371 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 372 { 373 unsigned long flags; 374 375 spin_lock_irqsave(¤t->sighand->siglock, flags); 376 current->notifier_mask = mask; 377 current->notifier_data = priv; 378 current->notifier = notifier; 379 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 380 } 381 382 /* Notify the system that blocking has ended. */ 383 384 void 385 unblock_all_signals(void) 386 { 387 unsigned long flags; 388 389 spin_lock_irqsave(¤t->sighand->siglock, flags); 390 current->notifier = NULL; 391 current->notifier_data = NULL; 392 recalc_sigpending(); 393 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 394 } 395 396 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) 397 { 398 struct sigqueue *q, *first = NULL; 399 400 /* 401 * Collect the siginfo appropriate to this signal. Check if 402 * there is another siginfo for the same signal. 403 */ 404 list_for_each_entry(q, &list->list, list) { 405 if (q->info.si_signo == sig) { 406 if (first) 407 goto still_pending; 408 first = q; 409 } 410 } 411 412 sigdelset(&list->signal, sig); 413 414 if (first) { 415 still_pending: 416 list_del_init(&first->list); 417 copy_siginfo(info, &first->info); 418 __sigqueue_free(first); 419 } else { 420 /* Ok, it wasn't in the queue. This must be 421 a fast-pathed signal or we must have been 422 out of queue space. So zero out the info. 423 */ 424 info->si_signo = sig; 425 info->si_errno = 0; 426 info->si_code = SI_USER; 427 info->si_pid = 0; 428 info->si_uid = 0; 429 } 430 } 431 432 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 433 siginfo_t *info) 434 { 435 int sig = next_signal(pending, mask); 436 437 if (sig) { 438 if (current->notifier) { 439 if (sigismember(current->notifier_mask, sig)) { 440 if (!(current->notifier)(current->notifier_data)) { 441 clear_thread_flag(TIF_SIGPENDING); 442 return 0; 443 } 444 } 445 } 446 447 collect_signal(sig, pending, info); 448 } 449 450 return sig; 451 } 452 453 /* 454 * Dequeue a signal and return the element to the caller, which is 455 * expected to free it. 456 * 457 * All callers have to hold the siglock. 458 */ 459 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 460 { 461 int signr; 462 463 /* We only dequeue private signals from ourselves, we don't let 464 * signalfd steal them 465 */ 466 signr = __dequeue_signal(&tsk->pending, mask, info); 467 if (!signr) { 468 signr = __dequeue_signal(&tsk->signal->shared_pending, 469 mask, info); 470 /* 471 * itimer signal ? 472 * 473 * itimers are process shared and we restart periodic 474 * itimers in the signal delivery path to prevent DoS 475 * attacks in the high resolution timer case. This is 476 * compliant with the old way of self restarting 477 * itimers, as the SIGALRM is a legacy signal and only 478 * queued once. Changing the restart behaviour to 479 * restart the timer in the signal dequeue path is 480 * reducing the timer noise on heavy loaded !highres 481 * systems too. 482 */ 483 if (unlikely(signr == SIGALRM)) { 484 struct hrtimer *tmr = &tsk->signal->real_timer; 485 486 if (!hrtimer_is_queued(tmr) && 487 tsk->signal->it_real_incr.tv64 != 0) { 488 hrtimer_forward(tmr, tmr->base->get_time(), 489 tsk->signal->it_real_incr); 490 hrtimer_restart(tmr); 491 } 492 } 493 } 494 495 recalc_sigpending(); 496 if (!signr) 497 return 0; 498 499 if (unlikely(sig_kernel_stop(signr))) { 500 /* 501 * Set a marker that we have dequeued a stop signal. Our 502 * caller might release the siglock and then the pending 503 * stop signal it is about to process is no longer in the 504 * pending bitmasks, but must still be cleared by a SIGCONT 505 * (and overruled by a SIGKILL). So those cases clear this 506 * shared flag after we've set it. Note that this flag may 507 * remain set after the signal we return is ignored or 508 * handled. That doesn't matter because its only purpose 509 * is to alert stop-signal processing code when another 510 * processor has come along and cleared the flag. 511 */ 512 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; 513 } 514 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { 515 /* 516 * Release the siglock to ensure proper locking order 517 * of timer locks outside of siglocks. Note, we leave 518 * irqs disabled here, since the posix-timers code is 519 * about to disable them again anyway. 520 */ 521 spin_unlock(&tsk->sighand->siglock); 522 do_schedule_next_timer(info); 523 spin_lock(&tsk->sighand->siglock); 524 } 525 return signr; 526 } 527 528 /* 529 * Tell a process that it has a new active signal.. 530 * 531 * NOTE! we rely on the previous spin_lock to 532 * lock interrupts for us! We can only be called with 533 * "siglock" held, and the local interrupt must 534 * have been disabled when that got acquired! 535 * 536 * No need to set need_resched since signal event passing 537 * goes through ->blocked 538 */ 539 void signal_wake_up(struct task_struct *t, int resume) 540 { 541 unsigned int mask; 542 543 set_tsk_thread_flag(t, TIF_SIGPENDING); 544 545 /* 546 * For SIGKILL, we want to wake it up in the stopped/traced/killable 547 * case. We don't check t->state here because there is a race with it 548 * executing another processor and just now entering stopped state. 549 * By using wake_up_state, we ensure the process will wake up and 550 * handle its death signal. 551 */ 552 mask = TASK_INTERRUPTIBLE; 553 if (resume) 554 mask |= TASK_WAKEKILL; 555 if (!wake_up_state(t, mask)) 556 kick_process(t); 557 } 558 559 /* 560 * Remove signals in mask from the pending set and queue. 561 * Returns 1 if any signals were found. 562 * 563 * All callers must be holding the siglock. 564 * 565 * This version takes a sigset mask and looks at all signals, 566 * not just those in the first mask word. 567 */ 568 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 569 { 570 struct sigqueue *q, *n; 571 sigset_t m; 572 573 sigandsets(&m, mask, &s->signal); 574 if (sigisemptyset(&m)) 575 return 0; 576 577 signandsets(&s->signal, &s->signal, mask); 578 list_for_each_entry_safe(q, n, &s->list, list) { 579 if (sigismember(mask, q->info.si_signo)) { 580 list_del_init(&q->list); 581 __sigqueue_free(q); 582 } 583 } 584 return 1; 585 } 586 /* 587 * Remove signals in mask from the pending set and queue. 588 * Returns 1 if any signals were found. 589 * 590 * All callers must be holding the siglock. 591 */ 592 static int rm_from_queue(unsigned long mask, struct sigpending *s) 593 { 594 struct sigqueue *q, *n; 595 596 if (!sigtestsetmask(&s->signal, mask)) 597 return 0; 598 599 sigdelsetmask(&s->signal, mask); 600 list_for_each_entry_safe(q, n, &s->list, list) { 601 if (q->info.si_signo < SIGRTMIN && 602 (mask & sigmask(q->info.si_signo))) { 603 list_del_init(&q->list); 604 __sigqueue_free(q); 605 } 606 } 607 return 1; 608 } 609 610 static inline int is_si_special(const struct siginfo *info) 611 { 612 return info <= SEND_SIG_FORCED; 613 } 614 615 static inline bool si_fromuser(const struct siginfo *info) 616 { 617 return info == SEND_SIG_NOINFO || 618 (!is_si_special(info) && SI_FROMUSER(info)); 619 } 620 621 /* 622 * Bad permissions for sending the signal 623 * - the caller must hold at least the RCU read lock 624 */ 625 static int check_kill_permission(int sig, struct siginfo *info, 626 struct task_struct *t) 627 { 628 const struct cred *cred = current_cred(), *tcred; 629 struct pid *sid; 630 int error; 631 632 if (!valid_signal(sig)) 633 return -EINVAL; 634 635 if (!si_fromuser(info)) 636 return 0; 637 638 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 639 if (error) 640 return error; 641 642 tcred = __task_cred(t); 643 if ((cred->euid ^ tcred->suid) && 644 (cred->euid ^ tcred->uid) && 645 (cred->uid ^ tcred->suid) && 646 (cred->uid ^ tcred->uid) && 647 !capable(CAP_KILL)) { 648 switch (sig) { 649 case SIGCONT: 650 sid = task_session(t); 651 /* 652 * We don't return the error if sid == NULL. The 653 * task was unhashed, the caller must notice this. 654 */ 655 if (!sid || sid == task_session(current)) 656 break; 657 default: 658 return -EPERM; 659 } 660 } 661 662 return security_task_kill(t, info, sig, 0); 663 } 664 665 /* 666 * Handle magic process-wide effects of stop/continue signals. Unlike 667 * the signal actions, these happen immediately at signal-generation 668 * time regardless of blocking, ignoring, or handling. This does the 669 * actual continuing for SIGCONT, but not the actual stopping for stop 670 * signals. The process stop is done as a signal action for SIG_DFL. 671 * 672 * Returns true if the signal should be actually delivered, otherwise 673 * it should be dropped. 674 */ 675 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns) 676 { 677 struct signal_struct *signal = p->signal; 678 struct task_struct *t; 679 680 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) { 681 /* 682 * The process is in the middle of dying, nothing to do. 683 */ 684 } else if (sig_kernel_stop(sig)) { 685 /* 686 * This is a stop signal. Remove SIGCONT from all queues. 687 */ 688 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending); 689 t = p; 690 do { 691 rm_from_queue(sigmask(SIGCONT), &t->pending); 692 } while_each_thread(p, t); 693 } else if (sig == SIGCONT) { 694 unsigned int why; 695 /* 696 * Remove all stop signals from all queues, 697 * and wake all threads. 698 */ 699 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending); 700 t = p; 701 do { 702 unsigned int state; 703 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 704 /* 705 * If there is a handler for SIGCONT, we must make 706 * sure that no thread returns to user mode before 707 * we post the signal, in case it was the only 708 * thread eligible to run the signal handler--then 709 * it must not do anything between resuming and 710 * running the handler. With the TIF_SIGPENDING 711 * flag set, the thread will pause and acquire the 712 * siglock that we hold now and until we've queued 713 * the pending signal. 714 * 715 * Wake up the stopped thread _after_ setting 716 * TIF_SIGPENDING 717 */ 718 state = __TASK_STOPPED; 719 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { 720 set_tsk_thread_flag(t, TIF_SIGPENDING); 721 state |= TASK_INTERRUPTIBLE; 722 } 723 wake_up_state(t, state); 724 } while_each_thread(p, t); 725 726 /* 727 * Notify the parent with CLD_CONTINUED if we were stopped. 728 * 729 * If we were in the middle of a group stop, we pretend it 730 * was already finished, and then continued. Since SIGCHLD 731 * doesn't queue we report only CLD_STOPPED, as if the next 732 * CLD_CONTINUED was dropped. 733 */ 734 why = 0; 735 if (signal->flags & SIGNAL_STOP_STOPPED) 736 why |= SIGNAL_CLD_CONTINUED; 737 else if (signal->group_stop_count) 738 why |= SIGNAL_CLD_STOPPED; 739 740 if (why) { 741 /* 742 * The first thread which returns from do_signal_stop() 743 * will take ->siglock, notice SIGNAL_CLD_MASK, and 744 * notify its parent. See get_signal_to_deliver(). 745 */ 746 signal->flags = why | SIGNAL_STOP_CONTINUED; 747 signal->group_stop_count = 0; 748 signal->group_exit_code = 0; 749 } else { 750 /* 751 * We are not stopped, but there could be a stop 752 * signal in the middle of being processed after 753 * being removed from the queue. Clear that too. 754 */ 755 signal->flags &= ~SIGNAL_STOP_DEQUEUED; 756 } 757 } 758 759 return !sig_ignored(p, sig, from_ancestor_ns); 760 } 761 762 /* 763 * Test if P wants to take SIG. After we've checked all threads with this, 764 * it's equivalent to finding no threads not blocking SIG. Any threads not 765 * blocking SIG were ruled out because they are not running and already 766 * have pending signals. Such threads will dequeue from the shared queue 767 * as soon as they're available, so putting the signal on the shared queue 768 * will be equivalent to sending it to one such thread. 769 */ 770 static inline int wants_signal(int sig, struct task_struct *p) 771 { 772 if (sigismember(&p->blocked, sig)) 773 return 0; 774 if (p->flags & PF_EXITING) 775 return 0; 776 if (sig == SIGKILL) 777 return 1; 778 if (task_is_stopped_or_traced(p)) 779 return 0; 780 return task_curr(p) || !signal_pending(p); 781 } 782 783 static void complete_signal(int sig, struct task_struct *p, int group) 784 { 785 struct signal_struct *signal = p->signal; 786 struct task_struct *t; 787 788 /* 789 * Now find a thread we can wake up to take the signal off the queue. 790 * 791 * If the main thread wants the signal, it gets first crack. 792 * Probably the least surprising to the average bear. 793 */ 794 if (wants_signal(sig, p)) 795 t = p; 796 else if (!group || thread_group_empty(p)) 797 /* 798 * There is just one thread and it does not need to be woken. 799 * It will dequeue unblocked signals before it runs again. 800 */ 801 return; 802 else { 803 /* 804 * Otherwise try to find a suitable thread. 805 */ 806 t = signal->curr_target; 807 while (!wants_signal(sig, t)) { 808 t = next_thread(t); 809 if (t == signal->curr_target) 810 /* 811 * No thread needs to be woken. 812 * Any eligible threads will see 813 * the signal in the queue soon. 814 */ 815 return; 816 } 817 signal->curr_target = t; 818 } 819 820 /* 821 * Found a killable thread. If the signal will be fatal, 822 * then start taking the whole group down immediately. 823 */ 824 if (sig_fatal(p, sig) && 825 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 826 !sigismember(&t->real_blocked, sig) && 827 (sig == SIGKILL || 828 !tracehook_consider_fatal_signal(t, sig))) { 829 /* 830 * This signal will be fatal to the whole group. 831 */ 832 if (!sig_kernel_coredump(sig)) { 833 /* 834 * Start a group exit and wake everybody up. 835 * This way we don't have other threads 836 * running and doing things after a slower 837 * thread has the fatal signal pending. 838 */ 839 signal->flags = SIGNAL_GROUP_EXIT; 840 signal->group_exit_code = sig; 841 signal->group_stop_count = 0; 842 t = p; 843 do { 844 sigaddset(&t->pending.signal, SIGKILL); 845 signal_wake_up(t, 1); 846 } while_each_thread(p, t); 847 return; 848 } 849 } 850 851 /* 852 * The signal is already in the shared-pending queue. 853 * Tell the chosen thread to wake up and dequeue it. 854 */ 855 signal_wake_up(t, sig == SIGKILL); 856 return; 857 } 858 859 static inline int legacy_queue(struct sigpending *signals, int sig) 860 { 861 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 862 } 863 864 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 865 int group, int from_ancestor_ns) 866 { 867 struct sigpending *pending; 868 struct sigqueue *q; 869 int override_rlimit; 870 871 trace_signal_generate(sig, info, t); 872 873 assert_spin_locked(&t->sighand->siglock); 874 875 if (!prepare_signal(sig, t, from_ancestor_ns)) 876 return 0; 877 878 pending = group ? &t->signal->shared_pending : &t->pending; 879 /* 880 * Short-circuit ignored signals and support queuing 881 * exactly one non-rt signal, so that we can get more 882 * detailed information about the cause of the signal. 883 */ 884 if (legacy_queue(pending, sig)) 885 return 0; 886 /* 887 * fast-pathed signals for kernel-internal things like SIGSTOP 888 * or SIGKILL. 889 */ 890 if (info == SEND_SIG_FORCED) 891 goto out_set; 892 893 /* Real-time signals must be queued if sent by sigqueue, or 894 some other real-time mechanism. It is implementation 895 defined whether kill() does so. We attempt to do so, on 896 the principle of least surprise, but since kill is not 897 allowed to fail with EAGAIN when low on memory we just 898 make sure at least one signal gets delivered and don't 899 pass on the info struct. */ 900 901 if (sig < SIGRTMIN) 902 override_rlimit = (is_si_special(info) || info->si_code >= 0); 903 else 904 override_rlimit = 0; 905 906 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, 907 override_rlimit); 908 if (q) { 909 list_add_tail(&q->list, &pending->list); 910 switch ((unsigned long) info) { 911 case (unsigned long) SEND_SIG_NOINFO: 912 q->info.si_signo = sig; 913 q->info.si_errno = 0; 914 q->info.si_code = SI_USER; 915 q->info.si_pid = task_tgid_nr_ns(current, 916 task_active_pid_ns(t)); 917 q->info.si_uid = current_uid(); 918 break; 919 case (unsigned long) SEND_SIG_PRIV: 920 q->info.si_signo = sig; 921 q->info.si_errno = 0; 922 q->info.si_code = SI_KERNEL; 923 q->info.si_pid = 0; 924 q->info.si_uid = 0; 925 break; 926 default: 927 copy_siginfo(&q->info, info); 928 if (from_ancestor_ns) 929 q->info.si_pid = 0; 930 break; 931 } 932 } else if (!is_si_special(info)) { 933 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 934 /* 935 * Queue overflow, abort. We may abort if the 936 * signal was rt and sent by user using something 937 * other than kill(). 938 */ 939 trace_signal_overflow_fail(sig, group, info); 940 return -EAGAIN; 941 } else { 942 /* 943 * This is a silent loss of information. We still 944 * send the signal, but the *info bits are lost. 945 */ 946 trace_signal_lose_info(sig, group, info); 947 } 948 } 949 950 out_set: 951 signalfd_notify(t, sig); 952 sigaddset(&pending->signal, sig); 953 complete_signal(sig, t, group); 954 return 0; 955 } 956 957 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 958 int group) 959 { 960 int from_ancestor_ns = 0; 961 962 #ifdef CONFIG_PID_NS 963 from_ancestor_ns = si_fromuser(info) && 964 !task_pid_nr_ns(current, task_active_pid_ns(t)); 965 #endif 966 967 return __send_signal(sig, info, t, group, from_ancestor_ns); 968 } 969 970 static void print_fatal_signal(struct pt_regs *regs, int signr) 971 { 972 printk("%s/%d: potentially unexpected fatal signal %d.\n", 973 current->comm, task_pid_nr(current), signr); 974 975 #if defined(__i386__) && !defined(__arch_um__) 976 printk("code at %08lx: ", regs->ip); 977 { 978 int i; 979 for (i = 0; i < 16; i++) { 980 unsigned char insn; 981 982 __get_user(insn, (unsigned char *)(regs->ip + i)); 983 printk("%02x ", insn); 984 } 985 } 986 #endif 987 printk("\n"); 988 preempt_disable(); 989 show_regs(regs); 990 preempt_enable(); 991 } 992 993 static int __init setup_print_fatal_signals(char *str) 994 { 995 get_option (&str, &print_fatal_signals); 996 997 return 1; 998 } 999 1000 __setup("print-fatal-signals=", setup_print_fatal_signals); 1001 1002 int 1003 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1004 { 1005 return send_signal(sig, info, p, 1); 1006 } 1007 1008 static int 1009 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1010 { 1011 return send_signal(sig, info, t, 0); 1012 } 1013 1014 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1015 bool group) 1016 { 1017 unsigned long flags; 1018 int ret = -ESRCH; 1019 1020 if (lock_task_sighand(p, &flags)) { 1021 ret = send_signal(sig, info, p, group); 1022 unlock_task_sighand(p, &flags); 1023 } 1024 1025 return ret; 1026 } 1027 1028 /* 1029 * Force a signal that the process can't ignore: if necessary 1030 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1031 * 1032 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1033 * since we do not want to have a signal handler that was blocked 1034 * be invoked when user space had explicitly blocked it. 1035 * 1036 * We don't want to have recursive SIGSEGV's etc, for example, 1037 * that is why we also clear SIGNAL_UNKILLABLE. 1038 */ 1039 int 1040 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1041 { 1042 unsigned long int flags; 1043 int ret, blocked, ignored; 1044 struct k_sigaction *action; 1045 1046 spin_lock_irqsave(&t->sighand->siglock, flags); 1047 action = &t->sighand->action[sig-1]; 1048 ignored = action->sa.sa_handler == SIG_IGN; 1049 blocked = sigismember(&t->blocked, sig); 1050 if (blocked || ignored) { 1051 action->sa.sa_handler = SIG_DFL; 1052 if (blocked) { 1053 sigdelset(&t->blocked, sig); 1054 recalc_sigpending_and_wake(t); 1055 } 1056 } 1057 if (action->sa.sa_handler == SIG_DFL) 1058 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1059 ret = specific_send_sig_info(sig, info, t); 1060 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1061 1062 return ret; 1063 } 1064 1065 /* 1066 * Nuke all other threads in the group. 1067 */ 1068 void zap_other_threads(struct task_struct *p) 1069 { 1070 struct task_struct *t; 1071 1072 p->signal->group_stop_count = 0; 1073 1074 for (t = next_thread(p); t != p; t = next_thread(t)) { 1075 /* 1076 * Don't bother with already dead threads 1077 */ 1078 if (t->exit_state) 1079 continue; 1080 1081 /* SIGKILL will be handled before any pending SIGSTOP */ 1082 sigaddset(&t->pending.signal, SIGKILL); 1083 signal_wake_up(t, 1); 1084 } 1085 } 1086 1087 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) 1088 { 1089 struct sighand_struct *sighand; 1090 1091 rcu_read_lock(); 1092 for (;;) { 1093 sighand = rcu_dereference(tsk->sighand); 1094 if (unlikely(sighand == NULL)) 1095 break; 1096 1097 spin_lock_irqsave(&sighand->siglock, *flags); 1098 if (likely(sighand == tsk->sighand)) 1099 break; 1100 spin_unlock_irqrestore(&sighand->siglock, *flags); 1101 } 1102 rcu_read_unlock(); 1103 1104 return sighand; 1105 } 1106 1107 /* 1108 * send signal info to all the members of a group 1109 * - the caller must hold the RCU read lock at least 1110 */ 1111 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1112 { 1113 int ret = check_kill_permission(sig, info, p); 1114 1115 if (!ret && sig) 1116 ret = do_send_sig_info(sig, info, p, true); 1117 1118 return ret; 1119 } 1120 1121 /* 1122 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1123 * control characters do (^C, ^Z etc) 1124 * - the caller must hold at least a readlock on tasklist_lock 1125 */ 1126 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1127 { 1128 struct task_struct *p = NULL; 1129 int retval, success; 1130 1131 success = 0; 1132 retval = -ESRCH; 1133 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1134 int err = group_send_sig_info(sig, info, p); 1135 success |= !err; 1136 retval = err; 1137 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1138 return success ? 0 : retval; 1139 } 1140 1141 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1142 { 1143 int error = -ESRCH; 1144 struct task_struct *p; 1145 1146 rcu_read_lock(); 1147 retry: 1148 p = pid_task(pid, PIDTYPE_PID); 1149 if (p) { 1150 error = group_send_sig_info(sig, info, p); 1151 if (unlikely(error == -ESRCH)) 1152 /* 1153 * The task was unhashed in between, try again. 1154 * If it is dead, pid_task() will return NULL, 1155 * if we race with de_thread() it will find the 1156 * new leader. 1157 */ 1158 goto retry; 1159 } 1160 rcu_read_unlock(); 1161 1162 return error; 1163 } 1164 1165 int 1166 kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1167 { 1168 int error; 1169 rcu_read_lock(); 1170 error = kill_pid_info(sig, info, find_vpid(pid)); 1171 rcu_read_unlock(); 1172 return error; 1173 } 1174 1175 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1176 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid, 1177 uid_t uid, uid_t euid, u32 secid) 1178 { 1179 int ret = -EINVAL; 1180 struct task_struct *p; 1181 const struct cred *pcred; 1182 unsigned long flags; 1183 1184 if (!valid_signal(sig)) 1185 return ret; 1186 1187 rcu_read_lock(); 1188 p = pid_task(pid, PIDTYPE_PID); 1189 if (!p) { 1190 ret = -ESRCH; 1191 goto out_unlock; 1192 } 1193 pcred = __task_cred(p); 1194 if (si_fromuser(info) && 1195 euid != pcred->suid && euid != pcred->uid && 1196 uid != pcred->suid && uid != pcred->uid) { 1197 ret = -EPERM; 1198 goto out_unlock; 1199 } 1200 ret = security_task_kill(p, info, sig, secid); 1201 if (ret) 1202 goto out_unlock; 1203 1204 if (sig) { 1205 if (lock_task_sighand(p, &flags)) { 1206 ret = __send_signal(sig, info, p, 1, 0); 1207 unlock_task_sighand(p, &flags); 1208 } else 1209 ret = -ESRCH; 1210 } 1211 out_unlock: 1212 rcu_read_unlock(); 1213 return ret; 1214 } 1215 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid); 1216 1217 /* 1218 * kill_something_info() interprets pid in interesting ways just like kill(2). 1219 * 1220 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1221 * is probably wrong. Should make it like BSD or SYSV. 1222 */ 1223 1224 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1225 { 1226 int ret; 1227 1228 if (pid > 0) { 1229 rcu_read_lock(); 1230 ret = kill_pid_info(sig, info, find_vpid(pid)); 1231 rcu_read_unlock(); 1232 return ret; 1233 } 1234 1235 read_lock(&tasklist_lock); 1236 if (pid != -1) { 1237 ret = __kill_pgrp_info(sig, info, 1238 pid ? find_vpid(-pid) : task_pgrp(current)); 1239 } else { 1240 int retval = 0, count = 0; 1241 struct task_struct * p; 1242 1243 for_each_process(p) { 1244 if (task_pid_vnr(p) > 1 && 1245 !same_thread_group(p, current)) { 1246 int err = group_send_sig_info(sig, info, p); 1247 ++count; 1248 if (err != -EPERM) 1249 retval = err; 1250 } 1251 } 1252 ret = count ? retval : -ESRCH; 1253 } 1254 read_unlock(&tasklist_lock); 1255 1256 return ret; 1257 } 1258 1259 /* 1260 * These are for backward compatibility with the rest of the kernel source. 1261 */ 1262 1263 int 1264 send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1265 { 1266 /* 1267 * Make sure legacy kernel users don't send in bad values 1268 * (normal paths check this in check_kill_permission). 1269 */ 1270 if (!valid_signal(sig)) 1271 return -EINVAL; 1272 1273 return do_send_sig_info(sig, info, p, false); 1274 } 1275 1276 #define __si_special(priv) \ 1277 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1278 1279 int 1280 send_sig(int sig, struct task_struct *p, int priv) 1281 { 1282 return send_sig_info(sig, __si_special(priv), p); 1283 } 1284 1285 void 1286 force_sig(int sig, struct task_struct *p) 1287 { 1288 force_sig_info(sig, SEND_SIG_PRIV, p); 1289 } 1290 1291 /* 1292 * When things go south during signal handling, we 1293 * will force a SIGSEGV. And if the signal that caused 1294 * the problem was already a SIGSEGV, we'll want to 1295 * make sure we don't even try to deliver the signal.. 1296 */ 1297 int 1298 force_sigsegv(int sig, struct task_struct *p) 1299 { 1300 if (sig == SIGSEGV) { 1301 unsigned long flags; 1302 spin_lock_irqsave(&p->sighand->siglock, flags); 1303 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1304 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1305 } 1306 force_sig(SIGSEGV, p); 1307 return 0; 1308 } 1309 1310 int kill_pgrp(struct pid *pid, int sig, int priv) 1311 { 1312 int ret; 1313 1314 read_lock(&tasklist_lock); 1315 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1316 read_unlock(&tasklist_lock); 1317 1318 return ret; 1319 } 1320 EXPORT_SYMBOL(kill_pgrp); 1321 1322 int kill_pid(struct pid *pid, int sig, int priv) 1323 { 1324 return kill_pid_info(sig, __si_special(priv), pid); 1325 } 1326 EXPORT_SYMBOL(kill_pid); 1327 1328 /* 1329 * These functions support sending signals using preallocated sigqueue 1330 * structures. This is needed "because realtime applications cannot 1331 * afford to lose notifications of asynchronous events, like timer 1332 * expirations or I/O completions". In the case of Posix Timers 1333 * we allocate the sigqueue structure from the timer_create. If this 1334 * allocation fails we are able to report the failure to the application 1335 * with an EAGAIN error. 1336 */ 1337 struct sigqueue *sigqueue_alloc(void) 1338 { 1339 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1340 1341 if (q) 1342 q->flags |= SIGQUEUE_PREALLOC; 1343 1344 return q; 1345 } 1346 1347 void sigqueue_free(struct sigqueue *q) 1348 { 1349 unsigned long flags; 1350 spinlock_t *lock = ¤t->sighand->siglock; 1351 1352 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1353 /* 1354 * We must hold ->siglock while testing q->list 1355 * to serialize with collect_signal() or with 1356 * __exit_signal()->flush_sigqueue(). 1357 */ 1358 spin_lock_irqsave(lock, flags); 1359 q->flags &= ~SIGQUEUE_PREALLOC; 1360 /* 1361 * If it is queued it will be freed when dequeued, 1362 * like the "regular" sigqueue. 1363 */ 1364 if (!list_empty(&q->list)) 1365 q = NULL; 1366 spin_unlock_irqrestore(lock, flags); 1367 1368 if (q) 1369 __sigqueue_free(q); 1370 } 1371 1372 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1373 { 1374 int sig = q->info.si_signo; 1375 struct sigpending *pending; 1376 unsigned long flags; 1377 int ret; 1378 1379 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1380 1381 ret = -1; 1382 if (!likely(lock_task_sighand(t, &flags))) 1383 goto ret; 1384 1385 ret = 1; /* the signal is ignored */ 1386 if (!prepare_signal(sig, t, 0)) 1387 goto out; 1388 1389 ret = 0; 1390 if (unlikely(!list_empty(&q->list))) { 1391 /* 1392 * If an SI_TIMER entry is already queue just increment 1393 * the overrun count. 1394 */ 1395 BUG_ON(q->info.si_code != SI_TIMER); 1396 q->info.si_overrun++; 1397 goto out; 1398 } 1399 q->info.si_overrun = 0; 1400 1401 signalfd_notify(t, sig); 1402 pending = group ? &t->signal->shared_pending : &t->pending; 1403 list_add_tail(&q->list, &pending->list); 1404 sigaddset(&pending->signal, sig); 1405 complete_signal(sig, t, group); 1406 out: 1407 unlock_task_sighand(t, &flags); 1408 ret: 1409 return ret; 1410 } 1411 1412 /* 1413 * Let a parent know about the death of a child. 1414 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1415 * 1416 * Returns -1 if our parent ignored us and so we've switched to 1417 * self-reaping, or else @sig. 1418 */ 1419 int do_notify_parent(struct task_struct *tsk, int sig) 1420 { 1421 struct siginfo info; 1422 unsigned long flags; 1423 struct sighand_struct *psig; 1424 int ret = sig; 1425 1426 BUG_ON(sig == -1); 1427 1428 /* do_notify_parent_cldstop should have been called instead. */ 1429 BUG_ON(task_is_stopped_or_traced(tsk)); 1430 1431 BUG_ON(!task_ptrace(tsk) && 1432 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1433 1434 info.si_signo = sig; 1435 info.si_errno = 0; 1436 /* 1437 * we are under tasklist_lock here so our parent is tied to 1438 * us and cannot exit and release its namespace. 1439 * 1440 * the only it can is to switch its nsproxy with sys_unshare, 1441 * bu uncharing pid namespaces is not allowed, so we'll always 1442 * see relevant namespace 1443 * 1444 * write_lock() currently calls preempt_disable() which is the 1445 * same as rcu_read_lock(), but according to Oleg, this is not 1446 * correct to rely on this 1447 */ 1448 rcu_read_lock(); 1449 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns); 1450 info.si_uid = __task_cred(tsk)->uid; 1451 rcu_read_unlock(); 1452 1453 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime, 1454 tsk->signal->utime)); 1455 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime, 1456 tsk->signal->stime)); 1457 1458 info.si_status = tsk->exit_code & 0x7f; 1459 if (tsk->exit_code & 0x80) 1460 info.si_code = CLD_DUMPED; 1461 else if (tsk->exit_code & 0x7f) 1462 info.si_code = CLD_KILLED; 1463 else { 1464 info.si_code = CLD_EXITED; 1465 info.si_status = tsk->exit_code >> 8; 1466 } 1467 1468 psig = tsk->parent->sighand; 1469 spin_lock_irqsave(&psig->siglock, flags); 1470 if (!task_ptrace(tsk) && sig == SIGCHLD && 1471 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1472 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1473 /* 1474 * We are exiting and our parent doesn't care. POSIX.1 1475 * defines special semantics for setting SIGCHLD to SIG_IGN 1476 * or setting the SA_NOCLDWAIT flag: we should be reaped 1477 * automatically and not left for our parent's wait4 call. 1478 * Rather than having the parent do it as a magic kind of 1479 * signal handler, we just set this to tell do_exit that we 1480 * can be cleaned up without becoming a zombie. Note that 1481 * we still call __wake_up_parent in this case, because a 1482 * blocked sys_wait4 might now return -ECHILD. 1483 * 1484 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1485 * is implementation-defined: we do (if you don't want 1486 * it, just use SIG_IGN instead). 1487 */ 1488 ret = tsk->exit_signal = -1; 1489 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1490 sig = -1; 1491 } 1492 if (valid_signal(sig) && sig > 0) 1493 __group_send_sig_info(sig, &info, tsk->parent); 1494 __wake_up_parent(tsk, tsk->parent); 1495 spin_unlock_irqrestore(&psig->siglock, flags); 1496 1497 return ret; 1498 } 1499 1500 static void do_notify_parent_cldstop(struct task_struct *tsk, int why) 1501 { 1502 struct siginfo info; 1503 unsigned long flags; 1504 struct task_struct *parent; 1505 struct sighand_struct *sighand; 1506 1507 if (task_ptrace(tsk)) 1508 parent = tsk->parent; 1509 else { 1510 tsk = tsk->group_leader; 1511 parent = tsk->real_parent; 1512 } 1513 1514 info.si_signo = SIGCHLD; 1515 info.si_errno = 0; 1516 /* 1517 * see comment in do_notify_parent() abot the following 3 lines 1518 */ 1519 rcu_read_lock(); 1520 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns); 1521 info.si_uid = __task_cred(tsk)->uid; 1522 rcu_read_unlock(); 1523 1524 info.si_utime = cputime_to_clock_t(tsk->utime); 1525 info.si_stime = cputime_to_clock_t(tsk->stime); 1526 1527 info.si_code = why; 1528 switch (why) { 1529 case CLD_CONTINUED: 1530 info.si_status = SIGCONT; 1531 break; 1532 case CLD_STOPPED: 1533 info.si_status = tsk->signal->group_exit_code & 0x7f; 1534 break; 1535 case CLD_TRAPPED: 1536 info.si_status = tsk->exit_code & 0x7f; 1537 break; 1538 default: 1539 BUG(); 1540 } 1541 1542 sighand = parent->sighand; 1543 spin_lock_irqsave(&sighand->siglock, flags); 1544 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1545 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1546 __group_send_sig_info(SIGCHLD, &info, parent); 1547 /* 1548 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1549 */ 1550 __wake_up_parent(tsk, parent); 1551 spin_unlock_irqrestore(&sighand->siglock, flags); 1552 } 1553 1554 static inline int may_ptrace_stop(void) 1555 { 1556 if (!likely(task_ptrace(current))) 1557 return 0; 1558 /* 1559 * Are we in the middle of do_coredump? 1560 * If so and our tracer is also part of the coredump stopping 1561 * is a deadlock situation, and pointless because our tracer 1562 * is dead so don't allow us to stop. 1563 * If SIGKILL was already sent before the caller unlocked 1564 * ->siglock we must see ->core_state != NULL. Otherwise it 1565 * is safe to enter schedule(). 1566 */ 1567 if (unlikely(current->mm->core_state) && 1568 unlikely(current->mm == current->parent->mm)) 1569 return 0; 1570 1571 return 1; 1572 } 1573 1574 /* 1575 * Return nonzero if there is a SIGKILL that should be waking us up. 1576 * Called with the siglock held. 1577 */ 1578 static int sigkill_pending(struct task_struct *tsk) 1579 { 1580 return sigismember(&tsk->pending.signal, SIGKILL) || 1581 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1582 } 1583 1584 /* 1585 * This must be called with current->sighand->siglock held. 1586 * 1587 * This should be the path for all ptrace stops. 1588 * We always set current->last_siginfo while stopped here. 1589 * That makes it a way to test a stopped process for 1590 * being ptrace-stopped vs being job-control-stopped. 1591 * 1592 * If we actually decide not to stop at all because the tracer 1593 * is gone, we keep current->exit_code unless clear_code. 1594 */ 1595 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info) 1596 { 1597 if (arch_ptrace_stop_needed(exit_code, info)) { 1598 /* 1599 * The arch code has something special to do before a 1600 * ptrace stop. This is allowed to block, e.g. for faults 1601 * on user stack pages. We can't keep the siglock while 1602 * calling arch_ptrace_stop, so we must release it now. 1603 * To preserve proper semantics, we must do this before 1604 * any signal bookkeeping like checking group_stop_count. 1605 * Meanwhile, a SIGKILL could come in before we retake the 1606 * siglock. That must prevent us from sleeping in TASK_TRACED. 1607 * So after regaining the lock, we must check for SIGKILL. 1608 */ 1609 spin_unlock_irq(¤t->sighand->siglock); 1610 arch_ptrace_stop(exit_code, info); 1611 spin_lock_irq(¤t->sighand->siglock); 1612 if (sigkill_pending(current)) 1613 return; 1614 } 1615 1616 /* 1617 * If there is a group stop in progress, 1618 * we must participate in the bookkeeping. 1619 */ 1620 if (current->signal->group_stop_count > 0) 1621 --current->signal->group_stop_count; 1622 1623 current->last_siginfo = info; 1624 current->exit_code = exit_code; 1625 1626 /* Let the debugger run. */ 1627 __set_current_state(TASK_TRACED); 1628 spin_unlock_irq(¤t->sighand->siglock); 1629 read_lock(&tasklist_lock); 1630 if (may_ptrace_stop()) { 1631 do_notify_parent_cldstop(current, CLD_TRAPPED); 1632 /* 1633 * Don't want to allow preemption here, because 1634 * sys_ptrace() needs this task to be inactive. 1635 * 1636 * XXX: implement read_unlock_no_resched(). 1637 */ 1638 preempt_disable(); 1639 read_unlock(&tasklist_lock); 1640 preempt_enable_no_resched(); 1641 schedule(); 1642 } else { 1643 /* 1644 * By the time we got the lock, our tracer went away. 1645 * Don't drop the lock yet, another tracer may come. 1646 */ 1647 __set_current_state(TASK_RUNNING); 1648 if (clear_code) 1649 current->exit_code = 0; 1650 read_unlock(&tasklist_lock); 1651 } 1652 1653 /* 1654 * While in TASK_TRACED, we were considered "frozen enough". 1655 * Now that we woke up, it's crucial if we're supposed to be 1656 * frozen that we freeze now before running anything substantial. 1657 */ 1658 try_to_freeze(); 1659 1660 /* 1661 * We are back. Now reacquire the siglock before touching 1662 * last_siginfo, so that we are sure to have synchronized with 1663 * any signal-sending on another CPU that wants to examine it. 1664 */ 1665 spin_lock_irq(¤t->sighand->siglock); 1666 current->last_siginfo = NULL; 1667 1668 /* 1669 * Queued signals ignored us while we were stopped for tracing. 1670 * So check for any that we should take before resuming user mode. 1671 * This sets TIF_SIGPENDING, but never clears it. 1672 */ 1673 recalc_sigpending_tsk(current); 1674 } 1675 1676 void ptrace_notify(int exit_code) 1677 { 1678 siginfo_t info; 1679 1680 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1681 1682 memset(&info, 0, sizeof info); 1683 info.si_signo = SIGTRAP; 1684 info.si_code = exit_code; 1685 info.si_pid = task_pid_vnr(current); 1686 info.si_uid = current_uid(); 1687 1688 /* Let the debugger run. */ 1689 spin_lock_irq(¤t->sighand->siglock); 1690 ptrace_stop(exit_code, 1, &info); 1691 spin_unlock_irq(¤t->sighand->siglock); 1692 } 1693 1694 /* 1695 * This performs the stopping for SIGSTOP and other stop signals. 1696 * We have to stop all threads in the thread group. 1697 * Returns nonzero if we've actually stopped and released the siglock. 1698 * Returns zero if we didn't stop and still hold the siglock. 1699 */ 1700 static int do_signal_stop(int signr) 1701 { 1702 struct signal_struct *sig = current->signal; 1703 int notify; 1704 1705 if (!sig->group_stop_count) { 1706 struct task_struct *t; 1707 1708 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) || 1709 unlikely(signal_group_exit(sig))) 1710 return 0; 1711 /* 1712 * There is no group stop already in progress. 1713 * We must initiate one now. 1714 */ 1715 sig->group_exit_code = signr; 1716 1717 sig->group_stop_count = 1; 1718 for (t = next_thread(current); t != current; t = next_thread(t)) 1719 /* 1720 * Setting state to TASK_STOPPED for a group 1721 * stop is always done with the siglock held, 1722 * so this check has no races. 1723 */ 1724 if (!(t->flags & PF_EXITING) && 1725 !task_is_stopped_or_traced(t)) { 1726 sig->group_stop_count++; 1727 signal_wake_up(t, 0); 1728 } 1729 } 1730 /* 1731 * If there are no other threads in the group, or if there is 1732 * a group stop in progress and we are the last to stop, report 1733 * to the parent. When ptraced, every thread reports itself. 1734 */ 1735 notify = sig->group_stop_count == 1 ? CLD_STOPPED : 0; 1736 notify = tracehook_notify_jctl(notify, CLD_STOPPED); 1737 /* 1738 * tracehook_notify_jctl() can drop and reacquire siglock, so 1739 * we keep ->group_stop_count != 0 before the call. If SIGCONT 1740 * or SIGKILL comes in between ->group_stop_count == 0. 1741 */ 1742 if (sig->group_stop_count) { 1743 if (!--sig->group_stop_count) 1744 sig->flags = SIGNAL_STOP_STOPPED; 1745 current->exit_code = sig->group_exit_code; 1746 __set_current_state(TASK_STOPPED); 1747 } 1748 spin_unlock_irq(¤t->sighand->siglock); 1749 1750 if (notify) { 1751 read_lock(&tasklist_lock); 1752 do_notify_parent_cldstop(current, notify); 1753 read_unlock(&tasklist_lock); 1754 } 1755 1756 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 1757 do { 1758 schedule(); 1759 } while (try_to_freeze()); 1760 1761 tracehook_finish_jctl(); 1762 current->exit_code = 0; 1763 1764 return 1; 1765 } 1766 1767 static int ptrace_signal(int signr, siginfo_t *info, 1768 struct pt_regs *regs, void *cookie) 1769 { 1770 if (!task_ptrace(current)) 1771 return signr; 1772 1773 ptrace_signal_deliver(regs, cookie); 1774 1775 /* Let the debugger run. */ 1776 ptrace_stop(signr, 0, info); 1777 1778 /* We're back. Did the debugger cancel the sig? */ 1779 signr = current->exit_code; 1780 if (signr == 0) 1781 return signr; 1782 1783 current->exit_code = 0; 1784 1785 /* Update the siginfo structure if the signal has 1786 changed. If the debugger wanted something 1787 specific in the siginfo structure then it should 1788 have updated *info via PTRACE_SETSIGINFO. */ 1789 if (signr != info->si_signo) { 1790 info->si_signo = signr; 1791 info->si_errno = 0; 1792 info->si_code = SI_USER; 1793 info->si_pid = task_pid_vnr(current->parent); 1794 info->si_uid = task_uid(current->parent); 1795 } 1796 1797 /* If the (new) signal is now blocked, requeue it. */ 1798 if (sigismember(¤t->blocked, signr)) { 1799 specific_send_sig_info(signr, info, current); 1800 signr = 0; 1801 } 1802 1803 return signr; 1804 } 1805 1806 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 1807 struct pt_regs *regs, void *cookie) 1808 { 1809 struct sighand_struct *sighand = current->sighand; 1810 struct signal_struct *signal = current->signal; 1811 int signr; 1812 1813 relock: 1814 /* 1815 * We'll jump back here after any time we were stopped in TASK_STOPPED. 1816 * While in TASK_STOPPED, we were considered "frozen enough". 1817 * Now that we woke up, it's crucial if we're supposed to be 1818 * frozen that we freeze now before running anything substantial. 1819 */ 1820 try_to_freeze(); 1821 1822 spin_lock_irq(&sighand->siglock); 1823 /* 1824 * Every stopped thread goes here after wakeup. Check to see if 1825 * we should notify the parent, prepare_signal(SIGCONT) encodes 1826 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 1827 */ 1828 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 1829 int why = (signal->flags & SIGNAL_STOP_CONTINUED) 1830 ? CLD_CONTINUED : CLD_STOPPED; 1831 signal->flags &= ~SIGNAL_CLD_MASK; 1832 1833 why = tracehook_notify_jctl(why, CLD_CONTINUED); 1834 spin_unlock_irq(&sighand->siglock); 1835 1836 if (why) { 1837 read_lock(&tasklist_lock); 1838 do_notify_parent_cldstop(current->group_leader, why); 1839 read_unlock(&tasklist_lock); 1840 } 1841 goto relock; 1842 } 1843 1844 for (;;) { 1845 struct k_sigaction *ka; 1846 /* 1847 * Tracing can induce an artifical signal and choose sigaction. 1848 * The return value in @signr determines the default action, 1849 * but @info->si_signo is the signal number we will report. 1850 */ 1851 signr = tracehook_get_signal(current, regs, info, return_ka); 1852 if (unlikely(signr < 0)) 1853 goto relock; 1854 if (unlikely(signr != 0)) 1855 ka = return_ka; 1856 else { 1857 if (unlikely(signal->group_stop_count > 0) && 1858 do_signal_stop(0)) 1859 goto relock; 1860 1861 signr = dequeue_signal(current, ¤t->blocked, 1862 info); 1863 1864 if (!signr) 1865 break; /* will return 0 */ 1866 1867 if (signr != SIGKILL) { 1868 signr = ptrace_signal(signr, info, 1869 regs, cookie); 1870 if (!signr) 1871 continue; 1872 } 1873 1874 ka = &sighand->action[signr-1]; 1875 } 1876 1877 /* Trace actually delivered signals. */ 1878 trace_signal_deliver(signr, info, ka); 1879 1880 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 1881 continue; 1882 if (ka->sa.sa_handler != SIG_DFL) { 1883 /* Run the handler. */ 1884 *return_ka = *ka; 1885 1886 if (ka->sa.sa_flags & SA_ONESHOT) 1887 ka->sa.sa_handler = SIG_DFL; 1888 1889 break; /* will return non-zero "signr" value */ 1890 } 1891 1892 /* 1893 * Now we are doing the default action for this signal. 1894 */ 1895 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 1896 continue; 1897 1898 /* 1899 * Global init gets no signals it doesn't want. 1900 * Container-init gets no signals it doesn't want from same 1901 * container. 1902 * 1903 * Note that if global/container-init sees a sig_kernel_only() 1904 * signal here, the signal must have been generated internally 1905 * or must have come from an ancestor namespace. In either 1906 * case, the signal cannot be dropped. 1907 */ 1908 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 1909 !sig_kernel_only(signr)) 1910 continue; 1911 1912 if (sig_kernel_stop(signr)) { 1913 /* 1914 * The default action is to stop all threads in 1915 * the thread group. The job control signals 1916 * do nothing in an orphaned pgrp, but SIGSTOP 1917 * always works. Note that siglock needs to be 1918 * dropped during the call to is_orphaned_pgrp() 1919 * because of lock ordering with tasklist_lock. 1920 * This allows an intervening SIGCONT to be posted. 1921 * We need to check for that and bail out if necessary. 1922 */ 1923 if (signr != SIGSTOP) { 1924 spin_unlock_irq(&sighand->siglock); 1925 1926 /* signals can be posted during this window */ 1927 1928 if (is_current_pgrp_orphaned()) 1929 goto relock; 1930 1931 spin_lock_irq(&sighand->siglock); 1932 } 1933 1934 if (likely(do_signal_stop(info->si_signo))) { 1935 /* It released the siglock. */ 1936 goto relock; 1937 } 1938 1939 /* 1940 * We didn't actually stop, due to a race 1941 * with SIGCONT or something like that. 1942 */ 1943 continue; 1944 } 1945 1946 spin_unlock_irq(&sighand->siglock); 1947 1948 /* 1949 * Anything else is fatal, maybe with a core dump. 1950 */ 1951 current->flags |= PF_SIGNALED; 1952 1953 if (sig_kernel_coredump(signr)) { 1954 if (print_fatal_signals) 1955 print_fatal_signal(regs, info->si_signo); 1956 /* 1957 * If it was able to dump core, this kills all 1958 * other threads in the group and synchronizes with 1959 * their demise. If we lost the race with another 1960 * thread getting here, it set group_exit_code 1961 * first and our do_group_exit call below will use 1962 * that value and ignore the one we pass it. 1963 */ 1964 do_coredump(info->si_signo, info->si_signo, regs); 1965 } 1966 1967 /* 1968 * Death signals, no core dump. 1969 */ 1970 do_group_exit(info->si_signo); 1971 /* NOTREACHED */ 1972 } 1973 spin_unlock_irq(&sighand->siglock); 1974 return signr; 1975 } 1976 1977 void exit_signals(struct task_struct *tsk) 1978 { 1979 int group_stop = 0; 1980 struct task_struct *t; 1981 1982 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 1983 tsk->flags |= PF_EXITING; 1984 return; 1985 } 1986 1987 spin_lock_irq(&tsk->sighand->siglock); 1988 /* 1989 * From now this task is not visible for group-wide signals, 1990 * see wants_signal(), do_signal_stop(). 1991 */ 1992 tsk->flags |= PF_EXITING; 1993 if (!signal_pending(tsk)) 1994 goto out; 1995 1996 /* It could be that __group_complete_signal() choose us to 1997 * notify about group-wide signal. Another thread should be 1998 * woken now to take the signal since we will not. 1999 */ 2000 for (t = tsk; (t = next_thread(t)) != tsk; ) 2001 if (!signal_pending(t) && !(t->flags & PF_EXITING)) 2002 recalc_sigpending_and_wake(t); 2003 2004 if (unlikely(tsk->signal->group_stop_count) && 2005 !--tsk->signal->group_stop_count) { 2006 tsk->signal->flags = SIGNAL_STOP_STOPPED; 2007 group_stop = tracehook_notify_jctl(CLD_STOPPED, CLD_STOPPED); 2008 } 2009 out: 2010 spin_unlock_irq(&tsk->sighand->siglock); 2011 2012 if (unlikely(group_stop)) { 2013 read_lock(&tasklist_lock); 2014 do_notify_parent_cldstop(tsk, group_stop); 2015 read_unlock(&tasklist_lock); 2016 } 2017 } 2018 2019 EXPORT_SYMBOL(recalc_sigpending); 2020 EXPORT_SYMBOL_GPL(dequeue_signal); 2021 EXPORT_SYMBOL(flush_signals); 2022 EXPORT_SYMBOL(force_sig); 2023 EXPORT_SYMBOL(send_sig); 2024 EXPORT_SYMBOL(send_sig_info); 2025 EXPORT_SYMBOL(sigprocmask); 2026 EXPORT_SYMBOL(block_all_signals); 2027 EXPORT_SYMBOL(unblock_all_signals); 2028 2029 2030 /* 2031 * System call entry points. 2032 */ 2033 2034 SYSCALL_DEFINE0(restart_syscall) 2035 { 2036 struct restart_block *restart = ¤t_thread_info()->restart_block; 2037 return restart->fn(restart); 2038 } 2039 2040 long do_no_restart_syscall(struct restart_block *param) 2041 { 2042 return -EINTR; 2043 } 2044 2045 /* 2046 * We don't need to get the kernel lock - this is all local to this 2047 * particular thread.. (and that's good, because this is _heavily_ 2048 * used by various programs) 2049 */ 2050 2051 /* 2052 * This is also useful for kernel threads that want to temporarily 2053 * (or permanently) block certain signals. 2054 * 2055 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2056 * interface happily blocks "unblockable" signals like SIGKILL 2057 * and friends. 2058 */ 2059 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2060 { 2061 int error; 2062 2063 spin_lock_irq(¤t->sighand->siglock); 2064 if (oldset) 2065 *oldset = current->blocked; 2066 2067 error = 0; 2068 switch (how) { 2069 case SIG_BLOCK: 2070 sigorsets(¤t->blocked, ¤t->blocked, set); 2071 break; 2072 case SIG_UNBLOCK: 2073 signandsets(¤t->blocked, ¤t->blocked, set); 2074 break; 2075 case SIG_SETMASK: 2076 current->blocked = *set; 2077 break; 2078 default: 2079 error = -EINVAL; 2080 } 2081 recalc_sigpending(); 2082 spin_unlock_irq(¤t->sighand->siglock); 2083 2084 return error; 2085 } 2086 2087 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set, 2088 sigset_t __user *, oset, size_t, sigsetsize) 2089 { 2090 int error = -EINVAL; 2091 sigset_t old_set, new_set; 2092 2093 /* XXX: Don't preclude handling different sized sigset_t's. */ 2094 if (sigsetsize != sizeof(sigset_t)) 2095 goto out; 2096 2097 if (set) { 2098 error = -EFAULT; 2099 if (copy_from_user(&new_set, set, sizeof(*set))) 2100 goto out; 2101 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2102 2103 error = sigprocmask(how, &new_set, &old_set); 2104 if (error) 2105 goto out; 2106 if (oset) 2107 goto set_old; 2108 } else if (oset) { 2109 spin_lock_irq(¤t->sighand->siglock); 2110 old_set = current->blocked; 2111 spin_unlock_irq(¤t->sighand->siglock); 2112 2113 set_old: 2114 error = -EFAULT; 2115 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2116 goto out; 2117 } 2118 error = 0; 2119 out: 2120 return error; 2121 } 2122 2123 long do_sigpending(void __user *set, unsigned long sigsetsize) 2124 { 2125 long error = -EINVAL; 2126 sigset_t pending; 2127 2128 if (sigsetsize > sizeof(sigset_t)) 2129 goto out; 2130 2131 spin_lock_irq(¤t->sighand->siglock); 2132 sigorsets(&pending, ¤t->pending.signal, 2133 ¤t->signal->shared_pending.signal); 2134 spin_unlock_irq(¤t->sighand->siglock); 2135 2136 /* Outside the lock because only this thread touches it. */ 2137 sigandsets(&pending, ¤t->blocked, &pending); 2138 2139 error = -EFAULT; 2140 if (!copy_to_user(set, &pending, sigsetsize)) 2141 error = 0; 2142 2143 out: 2144 return error; 2145 } 2146 2147 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize) 2148 { 2149 return do_sigpending(set, sigsetsize); 2150 } 2151 2152 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2153 2154 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2155 { 2156 int err; 2157 2158 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2159 return -EFAULT; 2160 if (from->si_code < 0) 2161 return __copy_to_user(to, from, sizeof(siginfo_t)) 2162 ? -EFAULT : 0; 2163 /* 2164 * If you change siginfo_t structure, please be sure 2165 * this code is fixed accordingly. 2166 * Please remember to update the signalfd_copyinfo() function 2167 * inside fs/signalfd.c too, in case siginfo_t changes. 2168 * It should never copy any pad contained in the structure 2169 * to avoid security leaks, but must copy the generic 2170 * 3 ints plus the relevant union member. 2171 */ 2172 err = __put_user(from->si_signo, &to->si_signo); 2173 err |= __put_user(from->si_errno, &to->si_errno); 2174 err |= __put_user((short)from->si_code, &to->si_code); 2175 switch (from->si_code & __SI_MASK) { 2176 case __SI_KILL: 2177 err |= __put_user(from->si_pid, &to->si_pid); 2178 err |= __put_user(from->si_uid, &to->si_uid); 2179 break; 2180 case __SI_TIMER: 2181 err |= __put_user(from->si_tid, &to->si_tid); 2182 err |= __put_user(from->si_overrun, &to->si_overrun); 2183 err |= __put_user(from->si_ptr, &to->si_ptr); 2184 break; 2185 case __SI_POLL: 2186 err |= __put_user(from->si_band, &to->si_band); 2187 err |= __put_user(from->si_fd, &to->si_fd); 2188 break; 2189 case __SI_FAULT: 2190 err |= __put_user(from->si_addr, &to->si_addr); 2191 #ifdef __ARCH_SI_TRAPNO 2192 err |= __put_user(from->si_trapno, &to->si_trapno); 2193 #endif 2194 break; 2195 case __SI_CHLD: 2196 err |= __put_user(from->si_pid, &to->si_pid); 2197 err |= __put_user(from->si_uid, &to->si_uid); 2198 err |= __put_user(from->si_status, &to->si_status); 2199 err |= __put_user(from->si_utime, &to->si_utime); 2200 err |= __put_user(from->si_stime, &to->si_stime); 2201 break; 2202 case __SI_RT: /* This is not generated by the kernel as of now. */ 2203 case __SI_MESGQ: /* But this is */ 2204 err |= __put_user(from->si_pid, &to->si_pid); 2205 err |= __put_user(from->si_uid, &to->si_uid); 2206 err |= __put_user(from->si_ptr, &to->si_ptr); 2207 break; 2208 default: /* this is just in case for now ... */ 2209 err |= __put_user(from->si_pid, &to->si_pid); 2210 err |= __put_user(from->si_uid, &to->si_uid); 2211 break; 2212 } 2213 return err; 2214 } 2215 2216 #endif 2217 2218 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 2219 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 2220 size_t, sigsetsize) 2221 { 2222 int ret, sig; 2223 sigset_t these; 2224 struct timespec ts; 2225 siginfo_t info; 2226 long timeout = 0; 2227 2228 /* XXX: Don't preclude handling different sized sigset_t's. */ 2229 if (sigsetsize != sizeof(sigset_t)) 2230 return -EINVAL; 2231 2232 if (copy_from_user(&these, uthese, sizeof(these))) 2233 return -EFAULT; 2234 2235 /* 2236 * Invert the set of allowed signals to get those we 2237 * want to block. 2238 */ 2239 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2240 signotset(&these); 2241 2242 if (uts) { 2243 if (copy_from_user(&ts, uts, sizeof(ts))) 2244 return -EFAULT; 2245 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 2246 || ts.tv_sec < 0) 2247 return -EINVAL; 2248 } 2249 2250 spin_lock_irq(¤t->sighand->siglock); 2251 sig = dequeue_signal(current, &these, &info); 2252 if (!sig) { 2253 timeout = MAX_SCHEDULE_TIMEOUT; 2254 if (uts) 2255 timeout = (timespec_to_jiffies(&ts) 2256 + (ts.tv_sec || ts.tv_nsec)); 2257 2258 if (timeout) { 2259 /* None ready -- temporarily unblock those we're 2260 * interested while we are sleeping in so that we'll 2261 * be awakened when they arrive. */ 2262 current->real_blocked = current->blocked; 2263 sigandsets(¤t->blocked, ¤t->blocked, &these); 2264 recalc_sigpending(); 2265 spin_unlock_irq(¤t->sighand->siglock); 2266 2267 timeout = schedule_timeout_interruptible(timeout); 2268 2269 spin_lock_irq(¤t->sighand->siglock); 2270 sig = dequeue_signal(current, &these, &info); 2271 current->blocked = current->real_blocked; 2272 siginitset(¤t->real_blocked, 0); 2273 recalc_sigpending(); 2274 } 2275 } 2276 spin_unlock_irq(¤t->sighand->siglock); 2277 2278 if (sig) { 2279 ret = sig; 2280 if (uinfo) { 2281 if (copy_siginfo_to_user(uinfo, &info)) 2282 ret = -EFAULT; 2283 } 2284 } else { 2285 ret = -EAGAIN; 2286 if (timeout) 2287 ret = -EINTR; 2288 } 2289 2290 return ret; 2291 } 2292 2293 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 2294 { 2295 struct siginfo info; 2296 2297 info.si_signo = sig; 2298 info.si_errno = 0; 2299 info.si_code = SI_USER; 2300 info.si_pid = task_tgid_vnr(current); 2301 info.si_uid = current_uid(); 2302 2303 return kill_something_info(sig, &info, pid); 2304 } 2305 2306 static int 2307 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 2308 { 2309 struct task_struct *p; 2310 int error = -ESRCH; 2311 2312 rcu_read_lock(); 2313 p = find_task_by_vpid(pid); 2314 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2315 error = check_kill_permission(sig, info, p); 2316 /* 2317 * The null signal is a permissions and process existence 2318 * probe. No signal is actually delivered. 2319 */ 2320 if (!error && sig) { 2321 error = do_send_sig_info(sig, info, p, false); 2322 /* 2323 * If lock_task_sighand() failed we pretend the task 2324 * dies after receiving the signal. The window is tiny, 2325 * and the signal is private anyway. 2326 */ 2327 if (unlikely(error == -ESRCH)) 2328 error = 0; 2329 } 2330 } 2331 rcu_read_unlock(); 2332 2333 return error; 2334 } 2335 2336 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2337 { 2338 struct siginfo info; 2339 2340 info.si_signo = sig; 2341 info.si_errno = 0; 2342 info.si_code = SI_TKILL; 2343 info.si_pid = task_tgid_vnr(current); 2344 info.si_uid = current_uid(); 2345 2346 return do_send_specific(tgid, pid, sig, &info); 2347 } 2348 2349 /** 2350 * sys_tgkill - send signal to one specific thread 2351 * @tgid: the thread group ID of the thread 2352 * @pid: the PID of the thread 2353 * @sig: signal to be sent 2354 * 2355 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2356 * exists but it's not belonging to the target process anymore. This 2357 * method solves the problem of threads exiting and PIDs getting reused. 2358 */ 2359 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 2360 { 2361 /* This is only valid for single tasks */ 2362 if (pid <= 0 || tgid <= 0) 2363 return -EINVAL; 2364 2365 return do_tkill(tgid, pid, sig); 2366 } 2367 2368 /* 2369 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2370 */ 2371 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 2372 { 2373 /* This is only valid for single tasks */ 2374 if (pid <= 0) 2375 return -EINVAL; 2376 2377 return do_tkill(0, pid, sig); 2378 } 2379 2380 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 2381 siginfo_t __user *, uinfo) 2382 { 2383 siginfo_t info; 2384 2385 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2386 return -EFAULT; 2387 2388 /* Not even root can pretend to send signals from the kernel. 2389 Nor can they impersonate a kill(), which adds source info. */ 2390 if (info.si_code >= 0) 2391 return -EPERM; 2392 info.si_signo = sig; 2393 2394 /* POSIX.1b doesn't mention process groups. */ 2395 return kill_proc_info(sig, &info, pid); 2396 } 2397 2398 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 2399 { 2400 /* This is only valid for single tasks */ 2401 if (pid <= 0 || tgid <= 0) 2402 return -EINVAL; 2403 2404 /* Not even root can pretend to send signals from the kernel. 2405 Nor can they impersonate a kill(), which adds source info. */ 2406 if (info->si_code >= 0) 2407 return -EPERM; 2408 info->si_signo = sig; 2409 2410 return do_send_specific(tgid, pid, sig, info); 2411 } 2412 2413 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 2414 siginfo_t __user *, uinfo) 2415 { 2416 siginfo_t info; 2417 2418 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2419 return -EFAULT; 2420 2421 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 2422 } 2423 2424 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2425 { 2426 struct task_struct *t = current; 2427 struct k_sigaction *k; 2428 sigset_t mask; 2429 2430 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2431 return -EINVAL; 2432 2433 k = &t->sighand->action[sig-1]; 2434 2435 spin_lock_irq(¤t->sighand->siglock); 2436 if (oact) 2437 *oact = *k; 2438 2439 if (act) { 2440 sigdelsetmask(&act->sa.sa_mask, 2441 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2442 *k = *act; 2443 /* 2444 * POSIX 3.3.1.3: 2445 * "Setting a signal action to SIG_IGN for a signal that is 2446 * pending shall cause the pending signal to be discarded, 2447 * whether or not it is blocked." 2448 * 2449 * "Setting a signal action to SIG_DFL for a signal that is 2450 * pending and whose default action is to ignore the signal 2451 * (for example, SIGCHLD), shall cause the pending signal to 2452 * be discarded, whether or not it is blocked" 2453 */ 2454 if (sig_handler_ignored(sig_handler(t, sig), sig)) { 2455 sigemptyset(&mask); 2456 sigaddset(&mask, sig); 2457 rm_from_queue_full(&mask, &t->signal->shared_pending); 2458 do { 2459 rm_from_queue_full(&mask, &t->pending); 2460 t = next_thread(t); 2461 } while (t != current); 2462 } 2463 } 2464 2465 spin_unlock_irq(¤t->sighand->siglock); 2466 return 0; 2467 } 2468 2469 int 2470 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 2471 { 2472 stack_t oss; 2473 int error; 2474 2475 oss.ss_sp = (void __user *) current->sas_ss_sp; 2476 oss.ss_size = current->sas_ss_size; 2477 oss.ss_flags = sas_ss_flags(sp); 2478 2479 if (uss) { 2480 void __user *ss_sp; 2481 size_t ss_size; 2482 int ss_flags; 2483 2484 error = -EFAULT; 2485 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) 2486 goto out; 2487 error = __get_user(ss_sp, &uss->ss_sp) | 2488 __get_user(ss_flags, &uss->ss_flags) | 2489 __get_user(ss_size, &uss->ss_size); 2490 if (error) 2491 goto out; 2492 2493 error = -EPERM; 2494 if (on_sig_stack(sp)) 2495 goto out; 2496 2497 error = -EINVAL; 2498 /* 2499 * 2500 * Note - this code used to test ss_flags incorrectly 2501 * old code may have been written using ss_flags==0 2502 * to mean ss_flags==SS_ONSTACK (as this was the only 2503 * way that worked) - this fix preserves that older 2504 * mechanism 2505 */ 2506 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 2507 goto out; 2508 2509 if (ss_flags == SS_DISABLE) { 2510 ss_size = 0; 2511 ss_sp = NULL; 2512 } else { 2513 error = -ENOMEM; 2514 if (ss_size < MINSIGSTKSZ) 2515 goto out; 2516 } 2517 2518 current->sas_ss_sp = (unsigned long) ss_sp; 2519 current->sas_ss_size = ss_size; 2520 } 2521 2522 error = 0; 2523 if (uoss) { 2524 error = -EFAULT; 2525 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) 2526 goto out; 2527 error = __put_user(oss.ss_sp, &uoss->ss_sp) | 2528 __put_user(oss.ss_size, &uoss->ss_size) | 2529 __put_user(oss.ss_flags, &uoss->ss_flags); 2530 } 2531 2532 out: 2533 return error; 2534 } 2535 2536 #ifdef __ARCH_WANT_SYS_SIGPENDING 2537 2538 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 2539 { 2540 return do_sigpending(set, sizeof(*set)); 2541 } 2542 2543 #endif 2544 2545 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 2546 /* Some platforms have their own version with special arguments others 2547 support only sys_rt_sigprocmask. */ 2548 2549 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set, 2550 old_sigset_t __user *, oset) 2551 { 2552 int error; 2553 old_sigset_t old_set, new_set; 2554 2555 if (set) { 2556 error = -EFAULT; 2557 if (copy_from_user(&new_set, set, sizeof(*set))) 2558 goto out; 2559 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 2560 2561 spin_lock_irq(¤t->sighand->siglock); 2562 old_set = current->blocked.sig[0]; 2563 2564 error = 0; 2565 switch (how) { 2566 default: 2567 error = -EINVAL; 2568 break; 2569 case SIG_BLOCK: 2570 sigaddsetmask(¤t->blocked, new_set); 2571 break; 2572 case SIG_UNBLOCK: 2573 sigdelsetmask(¤t->blocked, new_set); 2574 break; 2575 case SIG_SETMASK: 2576 current->blocked.sig[0] = new_set; 2577 break; 2578 } 2579 2580 recalc_sigpending(); 2581 spin_unlock_irq(¤t->sighand->siglock); 2582 if (error) 2583 goto out; 2584 if (oset) 2585 goto set_old; 2586 } else if (oset) { 2587 old_set = current->blocked.sig[0]; 2588 set_old: 2589 error = -EFAULT; 2590 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2591 goto out; 2592 } 2593 error = 0; 2594 out: 2595 return error; 2596 } 2597 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 2598 2599 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 2600 SYSCALL_DEFINE4(rt_sigaction, int, sig, 2601 const struct sigaction __user *, act, 2602 struct sigaction __user *, oact, 2603 size_t, sigsetsize) 2604 { 2605 struct k_sigaction new_sa, old_sa; 2606 int ret = -EINVAL; 2607 2608 /* XXX: Don't preclude handling different sized sigset_t's. */ 2609 if (sigsetsize != sizeof(sigset_t)) 2610 goto out; 2611 2612 if (act) { 2613 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 2614 return -EFAULT; 2615 } 2616 2617 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 2618 2619 if (!ret && oact) { 2620 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 2621 return -EFAULT; 2622 } 2623 out: 2624 return ret; 2625 } 2626 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 2627 2628 #ifdef __ARCH_WANT_SYS_SGETMASK 2629 2630 /* 2631 * For backwards compatibility. Functionality superseded by sigprocmask. 2632 */ 2633 SYSCALL_DEFINE0(sgetmask) 2634 { 2635 /* SMP safe */ 2636 return current->blocked.sig[0]; 2637 } 2638 2639 SYSCALL_DEFINE1(ssetmask, int, newmask) 2640 { 2641 int old; 2642 2643 spin_lock_irq(¤t->sighand->siglock); 2644 old = current->blocked.sig[0]; 2645 2646 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| 2647 sigmask(SIGSTOP))); 2648 recalc_sigpending(); 2649 spin_unlock_irq(¤t->sighand->siglock); 2650 2651 return old; 2652 } 2653 #endif /* __ARCH_WANT_SGETMASK */ 2654 2655 #ifdef __ARCH_WANT_SYS_SIGNAL 2656 /* 2657 * For backwards compatibility. Functionality superseded by sigaction. 2658 */ 2659 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 2660 { 2661 struct k_sigaction new_sa, old_sa; 2662 int ret; 2663 2664 new_sa.sa.sa_handler = handler; 2665 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 2666 sigemptyset(&new_sa.sa.sa_mask); 2667 2668 ret = do_sigaction(sig, &new_sa, &old_sa); 2669 2670 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 2671 } 2672 #endif /* __ARCH_WANT_SYS_SIGNAL */ 2673 2674 #ifdef __ARCH_WANT_SYS_PAUSE 2675 2676 SYSCALL_DEFINE0(pause) 2677 { 2678 current->state = TASK_INTERRUPTIBLE; 2679 schedule(); 2680 return -ERESTARTNOHAND; 2681 } 2682 2683 #endif 2684 2685 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 2686 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 2687 { 2688 sigset_t newset; 2689 2690 /* XXX: Don't preclude handling different sized sigset_t's. */ 2691 if (sigsetsize != sizeof(sigset_t)) 2692 return -EINVAL; 2693 2694 if (copy_from_user(&newset, unewset, sizeof(newset))) 2695 return -EFAULT; 2696 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2697 2698 spin_lock_irq(¤t->sighand->siglock); 2699 current->saved_sigmask = current->blocked; 2700 current->blocked = newset; 2701 recalc_sigpending(); 2702 spin_unlock_irq(¤t->sighand->siglock); 2703 2704 current->state = TASK_INTERRUPTIBLE; 2705 schedule(); 2706 set_restore_sigmask(); 2707 return -ERESTARTNOHAND; 2708 } 2709 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 2710 2711 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) 2712 { 2713 return NULL; 2714 } 2715 2716 void __init signals_init(void) 2717 { 2718 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 2719 } 2720