1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/proc_fs.h> 26 #include <linux/tty.h> 27 #include <linux/binfmts.h> 28 #include <linux/coredump.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/ptrace.h> 32 #include <linux/signal.h> 33 #include <linux/signalfd.h> 34 #include <linux/ratelimit.h> 35 #include <linux/tracehook.h> 36 #include <linux/capability.h> 37 #include <linux/freezer.h> 38 #include <linux/pid_namespace.h> 39 #include <linux/nsproxy.h> 40 #include <linux/user_namespace.h> 41 #include <linux/uprobes.h> 42 #include <linux/compat.h> 43 #include <linux/cn_proc.h> 44 #include <linux/compiler.h> 45 #include <linux/posix-timers.h> 46 #include <linux/cgroup.h> 47 #include <linux/audit.h> 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/signal.h> 51 52 #include <asm/param.h> 53 #include <linux/uaccess.h> 54 #include <asm/unistd.h> 55 #include <asm/siginfo.h> 56 #include <asm/cacheflush.h> 57 #include <asm/syscall.h> /* for syscall_get_* */ 58 59 /* 60 * SLAB caches for signal bits. 61 */ 62 63 static struct kmem_cache *sigqueue_cachep; 64 65 int print_fatal_signals __read_mostly; 66 67 static void __user *sig_handler(struct task_struct *t, int sig) 68 { 69 return t->sighand->action[sig - 1].sa.sa_handler; 70 } 71 72 static inline bool sig_handler_ignored(void __user *handler, int sig) 73 { 74 /* Is it explicitly or implicitly ignored? */ 75 return handler == SIG_IGN || 76 (handler == SIG_DFL && sig_kernel_ignore(sig)); 77 } 78 79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 80 { 81 void __user *handler; 82 83 handler = sig_handler(t, sig); 84 85 /* SIGKILL and SIGSTOP may not be sent to the global init */ 86 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 87 return true; 88 89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 90 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 91 return true; 92 93 /* Only allow kernel generated signals to this kthread */ 94 if (unlikely((t->flags & PF_KTHREAD) && 95 (handler == SIG_KTHREAD_KERNEL) && !force)) 96 return true; 97 98 return sig_handler_ignored(handler, sig); 99 } 100 101 static bool sig_ignored(struct task_struct *t, int sig, bool force) 102 { 103 /* 104 * Blocked signals are never ignored, since the 105 * signal handler may change by the time it is 106 * unblocked. 107 */ 108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 109 return false; 110 111 /* 112 * Tracers may want to know about even ignored signal unless it 113 * is SIGKILL which can't be reported anyway but can be ignored 114 * by SIGNAL_UNKILLABLE task. 115 */ 116 if (t->ptrace && sig != SIGKILL) 117 return false; 118 119 return sig_task_ignored(t, sig, force); 120 } 121 122 /* 123 * Re-calculate pending state from the set of locally pending 124 * signals, globally pending signals, and blocked signals. 125 */ 126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 127 { 128 unsigned long ready; 129 long i; 130 131 switch (_NSIG_WORDS) { 132 default: 133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 134 ready |= signal->sig[i] &~ blocked->sig[i]; 135 break; 136 137 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 138 ready |= signal->sig[2] &~ blocked->sig[2]; 139 ready |= signal->sig[1] &~ blocked->sig[1]; 140 ready |= signal->sig[0] &~ blocked->sig[0]; 141 break; 142 143 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 144 ready |= signal->sig[0] &~ blocked->sig[0]; 145 break; 146 147 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 148 } 149 return ready != 0; 150 } 151 152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 153 154 static bool recalc_sigpending_tsk(struct task_struct *t) 155 { 156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 157 PENDING(&t->pending, &t->blocked) || 158 PENDING(&t->signal->shared_pending, &t->blocked) || 159 cgroup_task_frozen(t)) { 160 set_tsk_thread_flag(t, TIF_SIGPENDING); 161 return true; 162 } 163 164 /* 165 * We must never clear the flag in another thread, or in current 166 * when it's possible the current syscall is returning -ERESTART*. 167 * So we don't clear it here, and only callers who know they should do. 168 */ 169 return false; 170 } 171 172 /* 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 174 * This is superfluous when called on current, the wakeup is a harmless no-op. 175 */ 176 void recalc_sigpending_and_wake(struct task_struct *t) 177 { 178 if (recalc_sigpending_tsk(t)) 179 signal_wake_up(t, 0); 180 } 181 182 void recalc_sigpending(void) 183 { 184 if (!recalc_sigpending_tsk(current) && !freezing(current)) 185 clear_thread_flag(TIF_SIGPENDING); 186 187 } 188 EXPORT_SYMBOL(recalc_sigpending); 189 190 void calculate_sigpending(void) 191 { 192 /* Have any signals or users of TIF_SIGPENDING been delayed 193 * until after fork? 194 */ 195 spin_lock_irq(¤t->sighand->siglock); 196 set_tsk_thread_flag(current, TIF_SIGPENDING); 197 recalc_sigpending(); 198 spin_unlock_irq(¤t->sighand->siglock); 199 } 200 201 /* Given the mask, find the first available signal that should be serviced. */ 202 203 #define SYNCHRONOUS_MASK \ 204 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 205 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 206 207 int next_signal(struct sigpending *pending, sigset_t *mask) 208 { 209 unsigned long i, *s, *m, x; 210 int sig = 0; 211 212 s = pending->signal.sig; 213 m = mask->sig; 214 215 /* 216 * Handle the first word specially: it contains the 217 * synchronous signals that need to be dequeued first. 218 */ 219 x = *s &~ *m; 220 if (x) { 221 if (x & SYNCHRONOUS_MASK) 222 x &= SYNCHRONOUS_MASK; 223 sig = ffz(~x) + 1; 224 return sig; 225 } 226 227 switch (_NSIG_WORDS) { 228 default: 229 for (i = 1; i < _NSIG_WORDS; ++i) { 230 x = *++s &~ *++m; 231 if (!x) 232 continue; 233 sig = ffz(~x) + i*_NSIG_BPW + 1; 234 break; 235 } 236 break; 237 238 case 2: 239 x = s[1] &~ m[1]; 240 if (!x) 241 break; 242 sig = ffz(~x) + _NSIG_BPW + 1; 243 break; 244 245 case 1: 246 /* Nothing to do */ 247 break; 248 } 249 250 return sig; 251 } 252 253 static inline void print_dropped_signal(int sig) 254 { 255 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 256 257 if (!print_fatal_signals) 258 return; 259 260 if (!__ratelimit(&ratelimit_state)) 261 return; 262 263 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 264 current->comm, current->pid, sig); 265 } 266 267 /** 268 * task_set_jobctl_pending - set jobctl pending bits 269 * @task: target task 270 * @mask: pending bits to set 271 * 272 * Clear @mask from @task->jobctl. @mask must be subset of 273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 274 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 275 * cleared. If @task is already being killed or exiting, this function 276 * becomes noop. 277 * 278 * CONTEXT: 279 * Must be called with @task->sighand->siglock held. 280 * 281 * RETURNS: 282 * %true if @mask is set, %false if made noop because @task was dying. 283 */ 284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 285 { 286 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 287 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 288 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 289 290 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 291 return false; 292 293 if (mask & JOBCTL_STOP_SIGMASK) 294 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 295 296 task->jobctl |= mask; 297 return true; 298 } 299 300 /** 301 * task_clear_jobctl_trapping - clear jobctl trapping bit 302 * @task: target task 303 * 304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 305 * Clear it and wake up the ptracer. Note that we don't need any further 306 * locking. @task->siglock guarantees that @task->parent points to the 307 * ptracer. 308 * 309 * CONTEXT: 310 * Must be called with @task->sighand->siglock held. 311 */ 312 void task_clear_jobctl_trapping(struct task_struct *task) 313 { 314 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 315 task->jobctl &= ~JOBCTL_TRAPPING; 316 smp_mb(); /* advised by wake_up_bit() */ 317 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 318 } 319 } 320 321 /** 322 * task_clear_jobctl_pending - clear jobctl pending bits 323 * @task: target task 324 * @mask: pending bits to clear 325 * 326 * Clear @mask from @task->jobctl. @mask must be subset of 327 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 328 * STOP bits are cleared together. 329 * 330 * If clearing of @mask leaves no stop or trap pending, this function calls 331 * task_clear_jobctl_trapping(). 332 * 333 * CONTEXT: 334 * Must be called with @task->sighand->siglock held. 335 */ 336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 337 { 338 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 339 340 if (mask & JOBCTL_STOP_PENDING) 341 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 342 343 task->jobctl &= ~mask; 344 345 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 346 task_clear_jobctl_trapping(task); 347 } 348 349 /** 350 * task_participate_group_stop - participate in a group stop 351 * @task: task participating in a group stop 352 * 353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 354 * Group stop states are cleared and the group stop count is consumed if 355 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 356 * stop, the appropriate `SIGNAL_*` flags are set. 357 * 358 * CONTEXT: 359 * Must be called with @task->sighand->siglock held. 360 * 361 * RETURNS: 362 * %true if group stop completion should be notified to the parent, %false 363 * otherwise. 364 */ 365 static bool task_participate_group_stop(struct task_struct *task) 366 { 367 struct signal_struct *sig = task->signal; 368 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 369 370 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 371 372 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 373 374 if (!consume) 375 return false; 376 377 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 378 sig->group_stop_count--; 379 380 /* 381 * Tell the caller to notify completion iff we are entering into a 382 * fresh group stop. Read comment in do_signal_stop() for details. 383 */ 384 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 385 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 386 return true; 387 } 388 return false; 389 } 390 391 void task_join_group_stop(struct task_struct *task) 392 { 393 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 394 struct signal_struct *sig = current->signal; 395 396 if (sig->group_stop_count) { 397 sig->group_stop_count++; 398 mask |= JOBCTL_STOP_CONSUME; 399 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 400 return; 401 402 /* Have the new thread join an on-going signal group stop */ 403 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 404 } 405 406 /* 407 * allocate a new signal queue record 408 * - this may be called without locks if and only if t == current, otherwise an 409 * appropriate lock must be held to stop the target task from exiting 410 */ 411 static struct sigqueue * 412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 413 int override_rlimit, const unsigned int sigqueue_flags) 414 { 415 struct sigqueue *q = NULL; 416 struct ucounts *ucounts = NULL; 417 long sigpending; 418 419 /* 420 * Protect access to @t credentials. This can go away when all 421 * callers hold rcu read lock. 422 * 423 * NOTE! A pending signal will hold on to the user refcount, 424 * and we get/put the refcount only when the sigpending count 425 * changes from/to zero. 426 */ 427 rcu_read_lock(); 428 ucounts = task_ucounts(t); 429 sigpending = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 1); 430 switch (sigpending) { 431 case 1: 432 if (likely(get_ucounts(ucounts))) 433 break; 434 fallthrough; 435 case LONG_MAX: 436 /* 437 * we need to decrease the ucount in the userns tree on any 438 * failure to avoid counts leaking. 439 */ 440 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 1); 441 rcu_read_unlock(); 442 return NULL; 443 } 444 rcu_read_unlock(); 445 446 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 447 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 448 } else { 449 print_dropped_signal(sig); 450 } 451 452 if (unlikely(q == NULL)) { 453 if (dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 1)) 454 put_ucounts(ucounts); 455 } else { 456 INIT_LIST_HEAD(&q->list); 457 q->flags = sigqueue_flags; 458 q->ucounts = ucounts; 459 } 460 return q; 461 } 462 463 static void __sigqueue_free(struct sigqueue *q) 464 { 465 if (q->flags & SIGQUEUE_PREALLOC) 466 return; 467 if (q->ucounts && dec_rlimit_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING, 1)) { 468 put_ucounts(q->ucounts); 469 q->ucounts = NULL; 470 } 471 kmem_cache_free(sigqueue_cachep, q); 472 } 473 474 void flush_sigqueue(struct sigpending *queue) 475 { 476 struct sigqueue *q; 477 478 sigemptyset(&queue->signal); 479 while (!list_empty(&queue->list)) { 480 q = list_entry(queue->list.next, struct sigqueue , list); 481 list_del_init(&q->list); 482 __sigqueue_free(q); 483 } 484 } 485 486 /* 487 * Flush all pending signals for this kthread. 488 */ 489 void flush_signals(struct task_struct *t) 490 { 491 unsigned long flags; 492 493 spin_lock_irqsave(&t->sighand->siglock, flags); 494 clear_tsk_thread_flag(t, TIF_SIGPENDING); 495 flush_sigqueue(&t->pending); 496 flush_sigqueue(&t->signal->shared_pending); 497 spin_unlock_irqrestore(&t->sighand->siglock, flags); 498 } 499 EXPORT_SYMBOL(flush_signals); 500 501 #ifdef CONFIG_POSIX_TIMERS 502 static void __flush_itimer_signals(struct sigpending *pending) 503 { 504 sigset_t signal, retain; 505 struct sigqueue *q, *n; 506 507 signal = pending->signal; 508 sigemptyset(&retain); 509 510 list_for_each_entry_safe(q, n, &pending->list, list) { 511 int sig = q->info.si_signo; 512 513 if (likely(q->info.si_code != SI_TIMER)) { 514 sigaddset(&retain, sig); 515 } else { 516 sigdelset(&signal, sig); 517 list_del_init(&q->list); 518 __sigqueue_free(q); 519 } 520 } 521 522 sigorsets(&pending->signal, &signal, &retain); 523 } 524 525 void flush_itimer_signals(void) 526 { 527 struct task_struct *tsk = current; 528 unsigned long flags; 529 530 spin_lock_irqsave(&tsk->sighand->siglock, flags); 531 __flush_itimer_signals(&tsk->pending); 532 __flush_itimer_signals(&tsk->signal->shared_pending); 533 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 534 } 535 #endif 536 537 void ignore_signals(struct task_struct *t) 538 { 539 int i; 540 541 for (i = 0; i < _NSIG; ++i) 542 t->sighand->action[i].sa.sa_handler = SIG_IGN; 543 544 flush_signals(t); 545 } 546 547 /* 548 * Flush all handlers for a task. 549 */ 550 551 void 552 flush_signal_handlers(struct task_struct *t, int force_default) 553 { 554 int i; 555 struct k_sigaction *ka = &t->sighand->action[0]; 556 for (i = _NSIG ; i != 0 ; i--) { 557 if (force_default || ka->sa.sa_handler != SIG_IGN) 558 ka->sa.sa_handler = SIG_DFL; 559 ka->sa.sa_flags = 0; 560 #ifdef __ARCH_HAS_SA_RESTORER 561 ka->sa.sa_restorer = NULL; 562 #endif 563 sigemptyset(&ka->sa.sa_mask); 564 ka++; 565 } 566 } 567 568 bool unhandled_signal(struct task_struct *tsk, int sig) 569 { 570 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 571 if (is_global_init(tsk)) 572 return true; 573 574 if (handler != SIG_IGN && handler != SIG_DFL) 575 return false; 576 577 /* if ptraced, let the tracer determine */ 578 return !tsk->ptrace; 579 } 580 581 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 582 bool *resched_timer) 583 { 584 struct sigqueue *q, *first = NULL; 585 586 /* 587 * Collect the siginfo appropriate to this signal. Check if 588 * there is another siginfo for the same signal. 589 */ 590 list_for_each_entry(q, &list->list, list) { 591 if (q->info.si_signo == sig) { 592 if (first) 593 goto still_pending; 594 first = q; 595 } 596 } 597 598 sigdelset(&list->signal, sig); 599 600 if (first) { 601 still_pending: 602 list_del_init(&first->list); 603 copy_siginfo(info, &first->info); 604 605 *resched_timer = 606 (first->flags & SIGQUEUE_PREALLOC) && 607 (info->si_code == SI_TIMER) && 608 (info->si_sys_private); 609 610 __sigqueue_free(first); 611 } else { 612 /* 613 * Ok, it wasn't in the queue. This must be 614 * a fast-pathed signal or we must have been 615 * out of queue space. So zero out the info. 616 */ 617 clear_siginfo(info); 618 info->si_signo = sig; 619 info->si_errno = 0; 620 info->si_code = SI_USER; 621 info->si_pid = 0; 622 info->si_uid = 0; 623 } 624 } 625 626 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 627 kernel_siginfo_t *info, bool *resched_timer) 628 { 629 int sig = next_signal(pending, mask); 630 631 if (sig) 632 collect_signal(sig, pending, info, resched_timer); 633 return sig; 634 } 635 636 /* 637 * Dequeue a signal and return the element to the caller, which is 638 * expected to free it. 639 * 640 * All callers have to hold the siglock. 641 */ 642 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info) 643 { 644 bool resched_timer = false; 645 int signr; 646 647 /* We only dequeue private signals from ourselves, we don't let 648 * signalfd steal them 649 */ 650 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 651 if (!signr) { 652 signr = __dequeue_signal(&tsk->signal->shared_pending, 653 mask, info, &resched_timer); 654 #ifdef CONFIG_POSIX_TIMERS 655 /* 656 * itimer signal ? 657 * 658 * itimers are process shared and we restart periodic 659 * itimers in the signal delivery path to prevent DoS 660 * attacks in the high resolution timer case. This is 661 * compliant with the old way of self-restarting 662 * itimers, as the SIGALRM is a legacy signal and only 663 * queued once. Changing the restart behaviour to 664 * restart the timer in the signal dequeue path is 665 * reducing the timer noise on heavy loaded !highres 666 * systems too. 667 */ 668 if (unlikely(signr == SIGALRM)) { 669 struct hrtimer *tmr = &tsk->signal->real_timer; 670 671 if (!hrtimer_is_queued(tmr) && 672 tsk->signal->it_real_incr != 0) { 673 hrtimer_forward(tmr, tmr->base->get_time(), 674 tsk->signal->it_real_incr); 675 hrtimer_restart(tmr); 676 } 677 } 678 #endif 679 } 680 681 recalc_sigpending(); 682 if (!signr) 683 return 0; 684 685 if (unlikely(sig_kernel_stop(signr))) { 686 /* 687 * Set a marker that we have dequeued a stop signal. Our 688 * caller might release the siglock and then the pending 689 * stop signal it is about to process is no longer in the 690 * pending bitmasks, but must still be cleared by a SIGCONT 691 * (and overruled by a SIGKILL). So those cases clear this 692 * shared flag after we've set it. Note that this flag may 693 * remain set after the signal we return is ignored or 694 * handled. That doesn't matter because its only purpose 695 * is to alert stop-signal processing code when another 696 * processor has come along and cleared the flag. 697 */ 698 current->jobctl |= JOBCTL_STOP_DEQUEUED; 699 } 700 #ifdef CONFIG_POSIX_TIMERS 701 if (resched_timer) { 702 /* 703 * Release the siglock to ensure proper locking order 704 * of timer locks outside of siglocks. Note, we leave 705 * irqs disabled here, since the posix-timers code is 706 * about to disable them again anyway. 707 */ 708 spin_unlock(&tsk->sighand->siglock); 709 posixtimer_rearm(info); 710 spin_lock(&tsk->sighand->siglock); 711 712 /* Don't expose the si_sys_private value to userspace */ 713 info->si_sys_private = 0; 714 } 715 #endif 716 return signr; 717 } 718 EXPORT_SYMBOL_GPL(dequeue_signal); 719 720 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 721 { 722 struct task_struct *tsk = current; 723 struct sigpending *pending = &tsk->pending; 724 struct sigqueue *q, *sync = NULL; 725 726 /* 727 * Might a synchronous signal be in the queue? 728 */ 729 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 730 return 0; 731 732 /* 733 * Return the first synchronous signal in the queue. 734 */ 735 list_for_each_entry(q, &pending->list, list) { 736 /* Synchronous signals have a positive si_code */ 737 if ((q->info.si_code > SI_USER) && 738 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 739 sync = q; 740 goto next; 741 } 742 } 743 return 0; 744 next: 745 /* 746 * Check if there is another siginfo for the same signal. 747 */ 748 list_for_each_entry_continue(q, &pending->list, list) { 749 if (q->info.si_signo == sync->info.si_signo) 750 goto still_pending; 751 } 752 753 sigdelset(&pending->signal, sync->info.si_signo); 754 recalc_sigpending(); 755 still_pending: 756 list_del_init(&sync->list); 757 copy_siginfo(info, &sync->info); 758 __sigqueue_free(sync); 759 return info->si_signo; 760 } 761 762 /* 763 * Tell a process that it has a new active signal.. 764 * 765 * NOTE! we rely on the previous spin_lock to 766 * lock interrupts for us! We can only be called with 767 * "siglock" held, and the local interrupt must 768 * have been disabled when that got acquired! 769 * 770 * No need to set need_resched since signal event passing 771 * goes through ->blocked 772 */ 773 void signal_wake_up_state(struct task_struct *t, unsigned int state) 774 { 775 set_tsk_thread_flag(t, TIF_SIGPENDING); 776 /* 777 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 778 * case. We don't check t->state here because there is a race with it 779 * executing another processor and just now entering stopped state. 780 * By using wake_up_state, we ensure the process will wake up and 781 * handle its death signal. 782 */ 783 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 784 kick_process(t); 785 } 786 787 /* 788 * Remove signals in mask from the pending set and queue. 789 * Returns 1 if any signals were found. 790 * 791 * All callers must be holding the siglock. 792 */ 793 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 794 { 795 struct sigqueue *q, *n; 796 sigset_t m; 797 798 sigandsets(&m, mask, &s->signal); 799 if (sigisemptyset(&m)) 800 return; 801 802 sigandnsets(&s->signal, &s->signal, mask); 803 list_for_each_entry_safe(q, n, &s->list, list) { 804 if (sigismember(mask, q->info.si_signo)) { 805 list_del_init(&q->list); 806 __sigqueue_free(q); 807 } 808 } 809 } 810 811 static inline int is_si_special(const struct kernel_siginfo *info) 812 { 813 return info <= SEND_SIG_PRIV; 814 } 815 816 static inline bool si_fromuser(const struct kernel_siginfo *info) 817 { 818 return info == SEND_SIG_NOINFO || 819 (!is_si_special(info) && SI_FROMUSER(info)); 820 } 821 822 /* 823 * called with RCU read lock from check_kill_permission() 824 */ 825 static bool kill_ok_by_cred(struct task_struct *t) 826 { 827 const struct cred *cred = current_cred(); 828 const struct cred *tcred = __task_cred(t); 829 830 return uid_eq(cred->euid, tcred->suid) || 831 uid_eq(cred->euid, tcred->uid) || 832 uid_eq(cred->uid, tcred->suid) || 833 uid_eq(cred->uid, tcred->uid) || 834 ns_capable(tcred->user_ns, CAP_KILL); 835 } 836 837 /* 838 * Bad permissions for sending the signal 839 * - the caller must hold the RCU read lock 840 */ 841 static int check_kill_permission(int sig, struct kernel_siginfo *info, 842 struct task_struct *t) 843 { 844 struct pid *sid; 845 int error; 846 847 if (!valid_signal(sig)) 848 return -EINVAL; 849 850 if (!si_fromuser(info)) 851 return 0; 852 853 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 854 if (error) 855 return error; 856 857 if (!same_thread_group(current, t) && 858 !kill_ok_by_cred(t)) { 859 switch (sig) { 860 case SIGCONT: 861 sid = task_session(t); 862 /* 863 * We don't return the error if sid == NULL. The 864 * task was unhashed, the caller must notice this. 865 */ 866 if (!sid || sid == task_session(current)) 867 break; 868 fallthrough; 869 default: 870 return -EPERM; 871 } 872 } 873 874 return security_task_kill(t, info, sig, NULL); 875 } 876 877 /** 878 * ptrace_trap_notify - schedule trap to notify ptracer 879 * @t: tracee wanting to notify tracer 880 * 881 * This function schedules sticky ptrace trap which is cleared on the next 882 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 883 * ptracer. 884 * 885 * If @t is running, STOP trap will be taken. If trapped for STOP and 886 * ptracer is listening for events, tracee is woken up so that it can 887 * re-trap for the new event. If trapped otherwise, STOP trap will be 888 * eventually taken without returning to userland after the existing traps 889 * are finished by PTRACE_CONT. 890 * 891 * CONTEXT: 892 * Must be called with @task->sighand->siglock held. 893 */ 894 static void ptrace_trap_notify(struct task_struct *t) 895 { 896 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 897 assert_spin_locked(&t->sighand->siglock); 898 899 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 900 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 901 } 902 903 /* 904 * Handle magic process-wide effects of stop/continue signals. Unlike 905 * the signal actions, these happen immediately at signal-generation 906 * time regardless of blocking, ignoring, or handling. This does the 907 * actual continuing for SIGCONT, but not the actual stopping for stop 908 * signals. The process stop is done as a signal action for SIG_DFL. 909 * 910 * Returns true if the signal should be actually delivered, otherwise 911 * it should be dropped. 912 */ 913 static bool prepare_signal(int sig, struct task_struct *p, bool force) 914 { 915 struct signal_struct *signal = p->signal; 916 struct task_struct *t; 917 sigset_t flush; 918 919 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 920 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 921 return sig == SIGKILL; 922 /* 923 * The process is in the middle of dying, nothing to do. 924 */ 925 } else if (sig_kernel_stop(sig)) { 926 /* 927 * This is a stop signal. Remove SIGCONT from all queues. 928 */ 929 siginitset(&flush, sigmask(SIGCONT)); 930 flush_sigqueue_mask(&flush, &signal->shared_pending); 931 for_each_thread(p, t) 932 flush_sigqueue_mask(&flush, &t->pending); 933 } else if (sig == SIGCONT) { 934 unsigned int why; 935 /* 936 * Remove all stop signals from all queues, wake all threads. 937 */ 938 siginitset(&flush, SIG_KERNEL_STOP_MASK); 939 flush_sigqueue_mask(&flush, &signal->shared_pending); 940 for_each_thread(p, t) { 941 flush_sigqueue_mask(&flush, &t->pending); 942 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 943 if (likely(!(t->ptrace & PT_SEIZED))) 944 wake_up_state(t, __TASK_STOPPED); 945 else 946 ptrace_trap_notify(t); 947 } 948 949 /* 950 * Notify the parent with CLD_CONTINUED if we were stopped. 951 * 952 * If we were in the middle of a group stop, we pretend it 953 * was already finished, and then continued. Since SIGCHLD 954 * doesn't queue we report only CLD_STOPPED, as if the next 955 * CLD_CONTINUED was dropped. 956 */ 957 why = 0; 958 if (signal->flags & SIGNAL_STOP_STOPPED) 959 why |= SIGNAL_CLD_CONTINUED; 960 else if (signal->group_stop_count) 961 why |= SIGNAL_CLD_STOPPED; 962 963 if (why) { 964 /* 965 * The first thread which returns from do_signal_stop() 966 * will take ->siglock, notice SIGNAL_CLD_MASK, and 967 * notify its parent. See get_signal(). 968 */ 969 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 970 signal->group_stop_count = 0; 971 signal->group_exit_code = 0; 972 } 973 } 974 975 return !sig_ignored(p, sig, force); 976 } 977 978 /* 979 * Test if P wants to take SIG. After we've checked all threads with this, 980 * it's equivalent to finding no threads not blocking SIG. Any threads not 981 * blocking SIG were ruled out because they are not running and already 982 * have pending signals. Such threads will dequeue from the shared queue 983 * as soon as they're available, so putting the signal on the shared queue 984 * will be equivalent to sending it to one such thread. 985 */ 986 static inline bool wants_signal(int sig, struct task_struct *p) 987 { 988 if (sigismember(&p->blocked, sig)) 989 return false; 990 991 if (p->flags & PF_EXITING) 992 return false; 993 994 if (sig == SIGKILL) 995 return true; 996 997 if (task_is_stopped_or_traced(p)) 998 return false; 999 1000 return task_curr(p) || !task_sigpending(p); 1001 } 1002 1003 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 1004 { 1005 struct signal_struct *signal = p->signal; 1006 struct task_struct *t; 1007 1008 /* 1009 * Now find a thread we can wake up to take the signal off the queue. 1010 * 1011 * If the main thread wants the signal, it gets first crack. 1012 * Probably the least surprising to the average bear. 1013 */ 1014 if (wants_signal(sig, p)) 1015 t = p; 1016 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1017 /* 1018 * There is just one thread and it does not need to be woken. 1019 * It will dequeue unblocked signals before it runs again. 1020 */ 1021 return; 1022 else { 1023 /* 1024 * Otherwise try to find a suitable thread. 1025 */ 1026 t = signal->curr_target; 1027 while (!wants_signal(sig, t)) { 1028 t = next_thread(t); 1029 if (t == signal->curr_target) 1030 /* 1031 * No thread needs to be woken. 1032 * Any eligible threads will see 1033 * the signal in the queue soon. 1034 */ 1035 return; 1036 } 1037 signal->curr_target = t; 1038 } 1039 1040 /* 1041 * Found a killable thread. If the signal will be fatal, 1042 * then start taking the whole group down immediately. 1043 */ 1044 if (sig_fatal(p, sig) && 1045 !(signal->flags & SIGNAL_GROUP_EXIT) && 1046 !sigismember(&t->real_blocked, sig) && 1047 (sig == SIGKILL || !p->ptrace)) { 1048 /* 1049 * This signal will be fatal to the whole group. 1050 */ 1051 if (!sig_kernel_coredump(sig)) { 1052 /* 1053 * Start a group exit and wake everybody up. 1054 * This way we don't have other threads 1055 * running and doing things after a slower 1056 * thread has the fatal signal pending. 1057 */ 1058 signal->flags = SIGNAL_GROUP_EXIT; 1059 signal->group_exit_code = sig; 1060 signal->group_stop_count = 0; 1061 t = p; 1062 do { 1063 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1064 sigaddset(&t->pending.signal, SIGKILL); 1065 signal_wake_up(t, 1); 1066 } while_each_thread(p, t); 1067 return; 1068 } 1069 } 1070 1071 /* 1072 * The signal is already in the shared-pending queue. 1073 * Tell the chosen thread to wake up and dequeue it. 1074 */ 1075 signal_wake_up(t, sig == SIGKILL); 1076 return; 1077 } 1078 1079 static inline bool legacy_queue(struct sigpending *signals, int sig) 1080 { 1081 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1082 } 1083 1084 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1085 enum pid_type type, bool force) 1086 { 1087 struct sigpending *pending; 1088 struct sigqueue *q; 1089 int override_rlimit; 1090 int ret = 0, result; 1091 1092 assert_spin_locked(&t->sighand->siglock); 1093 1094 result = TRACE_SIGNAL_IGNORED; 1095 if (!prepare_signal(sig, t, force)) 1096 goto ret; 1097 1098 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1099 /* 1100 * Short-circuit ignored signals and support queuing 1101 * exactly one non-rt signal, so that we can get more 1102 * detailed information about the cause of the signal. 1103 */ 1104 result = TRACE_SIGNAL_ALREADY_PENDING; 1105 if (legacy_queue(pending, sig)) 1106 goto ret; 1107 1108 result = TRACE_SIGNAL_DELIVERED; 1109 /* 1110 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1111 */ 1112 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1113 goto out_set; 1114 1115 /* 1116 * Real-time signals must be queued if sent by sigqueue, or 1117 * some other real-time mechanism. It is implementation 1118 * defined whether kill() does so. We attempt to do so, on 1119 * the principle of least surprise, but since kill is not 1120 * allowed to fail with EAGAIN when low on memory we just 1121 * make sure at least one signal gets delivered and don't 1122 * pass on the info struct. 1123 */ 1124 if (sig < SIGRTMIN) 1125 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1126 else 1127 override_rlimit = 0; 1128 1129 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1130 1131 if (q) { 1132 list_add_tail(&q->list, &pending->list); 1133 switch ((unsigned long) info) { 1134 case (unsigned long) SEND_SIG_NOINFO: 1135 clear_siginfo(&q->info); 1136 q->info.si_signo = sig; 1137 q->info.si_errno = 0; 1138 q->info.si_code = SI_USER; 1139 q->info.si_pid = task_tgid_nr_ns(current, 1140 task_active_pid_ns(t)); 1141 rcu_read_lock(); 1142 q->info.si_uid = 1143 from_kuid_munged(task_cred_xxx(t, user_ns), 1144 current_uid()); 1145 rcu_read_unlock(); 1146 break; 1147 case (unsigned long) SEND_SIG_PRIV: 1148 clear_siginfo(&q->info); 1149 q->info.si_signo = sig; 1150 q->info.si_errno = 0; 1151 q->info.si_code = SI_KERNEL; 1152 q->info.si_pid = 0; 1153 q->info.si_uid = 0; 1154 break; 1155 default: 1156 copy_siginfo(&q->info, info); 1157 break; 1158 } 1159 } else if (!is_si_special(info) && 1160 sig >= SIGRTMIN && info->si_code != SI_USER) { 1161 /* 1162 * Queue overflow, abort. We may abort if the 1163 * signal was rt and sent by user using something 1164 * other than kill(). 1165 */ 1166 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1167 ret = -EAGAIN; 1168 goto ret; 1169 } else { 1170 /* 1171 * This is a silent loss of information. We still 1172 * send the signal, but the *info bits are lost. 1173 */ 1174 result = TRACE_SIGNAL_LOSE_INFO; 1175 } 1176 1177 out_set: 1178 signalfd_notify(t, sig); 1179 sigaddset(&pending->signal, sig); 1180 1181 /* Let multiprocess signals appear after on-going forks */ 1182 if (type > PIDTYPE_TGID) { 1183 struct multiprocess_signals *delayed; 1184 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1185 sigset_t *signal = &delayed->signal; 1186 /* Can't queue both a stop and a continue signal */ 1187 if (sig == SIGCONT) 1188 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1189 else if (sig_kernel_stop(sig)) 1190 sigdelset(signal, SIGCONT); 1191 sigaddset(signal, sig); 1192 } 1193 } 1194 1195 complete_signal(sig, t, type); 1196 ret: 1197 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1198 return ret; 1199 } 1200 1201 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1202 { 1203 bool ret = false; 1204 switch (siginfo_layout(info->si_signo, info->si_code)) { 1205 case SIL_KILL: 1206 case SIL_CHLD: 1207 case SIL_RT: 1208 ret = true; 1209 break; 1210 case SIL_TIMER: 1211 case SIL_POLL: 1212 case SIL_FAULT: 1213 case SIL_FAULT_TRAPNO: 1214 case SIL_FAULT_MCEERR: 1215 case SIL_FAULT_BNDERR: 1216 case SIL_FAULT_PKUERR: 1217 case SIL_FAULT_PERF_EVENT: 1218 case SIL_SYS: 1219 ret = false; 1220 break; 1221 } 1222 return ret; 1223 } 1224 1225 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1226 enum pid_type type) 1227 { 1228 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1229 bool force = false; 1230 1231 if (info == SEND_SIG_NOINFO) { 1232 /* Force if sent from an ancestor pid namespace */ 1233 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1234 } else if (info == SEND_SIG_PRIV) { 1235 /* Don't ignore kernel generated signals */ 1236 force = true; 1237 } else if (has_si_pid_and_uid(info)) { 1238 /* SIGKILL and SIGSTOP is special or has ids */ 1239 struct user_namespace *t_user_ns; 1240 1241 rcu_read_lock(); 1242 t_user_ns = task_cred_xxx(t, user_ns); 1243 if (current_user_ns() != t_user_ns) { 1244 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1245 info->si_uid = from_kuid_munged(t_user_ns, uid); 1246 } 1247 rcu_read_unlock(); 1248 1249 /* A kernel generated signal? */ 1250 force = (info->si_code == SI_KERNEL); 1251 1252 /* From an ancestor pid namespace? */ 1253 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1254 info->si_pid = 0; 1255 force = true; 1256 } 1257 } 1258 return __send_signal(sig, info, t, type, force); 1259 } 1260 1261 static void print_fatal_signal(int signr) 1262 { 1263 struct pt_regs *regs = signal_pt_regs(); 1264 pr_info("potentially unexpected fatal signal %d.\n", signr); 1265 1266 #if defined(__i386__) && !defined(__arch_um__) 1267 pr_info("code at %08lx: ", regs->ip); 1268 { 1269 int i; 1270 for (i = 0; i < 16; i++) { 1271 unsigned char insn; 1272 1273 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1274 break; 1275 pr_cont("%02x ", insn); 1276 } 1277 } 1278 pr_cont("\n"); 1279 #endif 1280 preempt_disable(); 1281 show_regs(regs); 1282 preempt_enable(); 1283 } 1284 1285 static int __init setup_print_fatal_signals(char *str) 1286 { 1287 get_option (&str, &print_fatal_signals); 1288 1289 return 1; 1290 } 1291 1292 __setup("print-fatal-signals=", setup_print_fatal_signals); 1293 1294 int 1295 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1296 { 1297 return send_signal(sig, info, p, PIDTYPE_TGID); 1298 } 1299 1300 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1301 enum pid_type type) 1302 { 1303 unsigned long flags; 1304 int ret = -ESRCH; 1305 1306 if (lock_task_sighand(p, &flags)) { 1307 ret = send_signal(sig, info, p, type); 1308 unlock_task_sighand(p, &flags); 1309 } 1310 1311 return ret; 1312 } 1313 1314 /* 1315 * Force a signal that the process can't ignore: if necessary 1316 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1317 * 1318 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1319 * since we do not want to have a signal handler that was blocked 1320 * be invoked when user space had explicitly blocked it. 1321 * 1322 * We don't want to have recursive SIGSEGV's etc, for example, 1323 * that is why we also clear SIGNAL_UNKILLABLE. 1324 */ 1325 static int 1326 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, bool sigdfl) 1327 { 1328 unsigned long int flags; 1329 int ret, blocked, ignored; 1330 struct k_sigaction *action; 1331 int sig = info->si_signo; 1332 1333 spin_lock_irqsave(&t->sighand->siglock, flags); 1334 action = &t->sighand->action[sig-1]; 1335 ignored = action->sa.sa_handler == SIG_IGN; 1336 blocked = sigismember(&t->blocked, sig); 1337 if (blocked || ignored || sigdfl) { 1338 action->sa.sa_handler = SIG_DFL; 1339 if (blocked) { 1340 sigdelset(&t->blocked, sig); 1341 recalc_sigpending_and_wake(t); 1342 } 1343 } 1344 /* 1345 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1346 * debugging to leave init killable. 1347 */ 1348 if (action->sa.sa_handler == SIG_DFL && !t->ptrace) 1349 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1350 ret = send_signal(sig, info, t, PIDTYPE_PID); 1351 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1352 1353 return ret; 1354 } 1355 1356 int force_sig_info(struct kernel_siginfo *info) 1357 { 1358 return force_sig_info_to_task(info, current, false); 1359 } 1360 1361 /* 1362 * Nuke all other threads in the group. 1363 */ 1364 int zap_other_threads(struct task_struct *p) 1365 { 1366 struct task_struct *t = p; 1367 int count = 0; 1368 1369 p->signal->group_stop_count = 0; 1370 1371 while_each_thread(p, t) { 1372 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1373 count++; 1374 1375 /* Don't bother with already dead threads */ 1376 if (t->exit_state) 1377 continue; 1378 sigaddset(&t->pending.signal, SIGKILL); 1379 signal_wake_up(t, 1); 1380 } 1381 1382 return count; 1383 } 1384 1385 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1386 unsigned long *flags) 1387 { 1388 struct sighand_struct *sighand; 1389 1390 rcu_read_lock(); 1391 for (;;) { 1392 sighand = rcu_dereference(tsk->sighand); 1393 if (unlikely(sighand == NULL)) 1394 break; 1395 1396 /* 1397 * This sighand can be already freed and even reused, but 1398 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1399 * initializes ->siglock: this slab can't go away, it has 1400 * the same object type, ->siglock can't be reinitialized. 1401 * 1402 * We need to ensure that tsk->sighand is still the same 1403 * after we take the lock, we can race with de_thread() or 1404 * __exit_signal(). In the latter case the next iteration 1405 * must see ->sighand == NULL. 1406 */ 1407 spin_lock_irqsave(&sighand->siglock, *flags); 1408 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1409 break; 1410 spin_unlock_irqrestore(&sighand->siglock, *flags); 1411 } 1412 rcu_read_unlock(); 1413 1414 return sighand; 1415 } 1416 1417 #ifdef CONFIG_LOCKDEP 1418 void lockdep_assert_task_sighand_held(struct task_struct *task) 1419 { 1420 struct sighand_struct *sighand; 1421 1422 rcu_read_lock(); 1423 sighand = rcu_dereference(task->sighand); 1424 if (sighand) 1425 lockdep_assert_held(&sighand->siglock); 1426 else 1427 WARN_ON_ONCE(1); 1428 rcu_read_unlock(); 1429 } 1430 #endif 1431 1432 /* 1433 * send signal info to all the members of a group 1434 */ 1435 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1436 struct task_struct *p, enum pid_type type) 1437 { 1438 int ret; 1439 1440 rcu_read_lock(); 1441 ret = check_kill_permission(sig, info, p); 1442 rcu_read_unlock(); 1443 1444 if (!ret && sig) 1445 ret = do_send_sig_info(sig, info, p, type); 1446 1447 return ret; 1448 } 1449 1450 /* 1451 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1452 * control characters do (^C, ^Z etc) 1453 * - the caller must hold at least a readlock on tasklist_lock 1454 */ 1455 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1456 { 1457 struct task_struct *p = NULL; 1458 int retval, success; 1459 1460 success = 0; 1461 retval = -ESRCH; 1462 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1463 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1464 success |= !err; 1465 retval = err; 1466 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1467 return success ? 0 : retval; 1468 } 1469 1470 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1471 { 1472 int error = -ESRCH; 1473 struct task_struct *p; 1474 1475 for (;;) { 1476 rcu_read_lock(); 1477 p = pid_task(pid, PIDTYPE_PID); 1478 if (p) 1479 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1480 rcu_read_unlock(); 1481 if (likely(!p || error != -ESRCH)) 1482 return error; 1483 1484 /* 1485 * The task was unhashed in between, try again. If it 1486 * is dead, pid_task() will return NULL, if we race with 1487 * de_thread() it will find the new leader. 1488 */ 1489 } 1490 } 1491 1492 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1493 { 1494 int error; 1495 rcu_read_lock(); 1496 error = kill_pid_info(sig, info, find_vpid(pid)); 1497 rcu_read_unlock(); 1498 return error; 1499 } 1500 1501 static inline bool kill_as_cred_perm(const struct cred *cred, 1502 struct task_struct *target) 1503 { 1504 const struct cred *pcred = __task_cred(target); 1505 1506 return uid_eq(cred->euid, pcred->suid) || 1507 uid_eq(cred->euid, pcred->uid) || 1508 uid_eq(cred->uid, pcred->suid) || 1509 uid_eq(cred->uid, pcred->uid); 1510 } 1511 1512 /* 1513 * The usb asyncio usage of siginfo is wrong. The glibc support 1514 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1515 * AKA after the generic fields: 1516 * kernel_pid_t si_pid; 1517 * kernel_uid32_t si_uid; 1518 * sigval_t si_value; 1519 * 1520 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1521 * after the generic fields is: 1522 * void __user *si_addr; 1523 * 1524 * This is a practical problem when there is a 64bit big endian kernel 1525 * and a 32bit userspace. As the 32bit address will encoded in the low 1526 * 32bits of the pointer. Those low 32bits will be stored at higher 1527 * address than appear in a 32 bit pointer. So userspace will not 1528 * see the address it was expecting for it's completions. 1529 * 1530 * There is nothing in the encoding that can allow 1531 * copy_siginfo_to_user32 to detect this confusion of formats, so 1532 * handle this by requiring the caller of kill_pid_usb_asyncio to 1533 * notice when this situration takes place and to store the 32bit 1534 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1535 * parameter. 1536 */ 1537 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1538 struct pid *pid, const struct cred *cred) 1539 { 1540 struct kernel_siginfo info; 1541 struct task_struct *p; 1542 unsigned long flags; 1543 int ret = -EINVAL; 1544 1545 if (!valid_signal(sig)) 1546 return ret; 1547 1548 clear_siginfo(&info); 1549 info.si_signo = sig; 1550 info.si_errno = errno; 1551 info.si_code = SI_ASYNCIO; 1552 *((sigval_t *)&info.si_pid) = addr; 1553 1554 rcu_read_lock(); 1555 p = pid_task(pid, PIDTYPE_PID); 1556 if (!p) { 1557 ret = -ESRCH; 1558 goto out_unlock; 1559 } 1560 if (!kill_as_cred_perm(cred, p)) { 1561 ret = -EPERM; 1562 goto out_unlock; 1563 } 1564 ret = security_task_kill(p, &info, sig, cred); 1565 if (ret) 1566 goto out_unlock; 1567 1568 if (sig) { 1569 if (lock_task_sighand(p, &flags)) { 1570 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false); 1571 unlock_task_sighand(p, &flags); 1572 } else 1573 ret = -ESRCH; 1574 } 1575 out_unlock: 1576 rcu_read_unlock(); 1577 return ret; 1578 } 1579 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1580 1581 /* 1582 * kill_something_info() interprets pid in interesting ways just like kill(2). 1583 * 1584 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1585 * is probably wrong. Should make it like BSD or SYSV. 1586 */ 1587 1588 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1589 { 1590 int ret; 1591 1592 if (pid > 0) 1593 return kill_proc_info(sig, info, pid); 1594 1595 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1596 if (pid == INT_MIN) 1597 return -ESRCH; 1598 1599 read_lock(&tasklist_lock); 1600 if (pid != -1) { 1601 ret = __kill_pgrp_info(sig, info, 1602 pid ? find_vpid(-pid) : task_pgrp(current)); 1603 } else { 1604 int retval = 0, count = 0; 1605 struct task_struct * p; 1606 1607 for_each_process(p) { 1608 if (task_pid_vnr(p) > 1 && 1609 !same_thread_group(p, current)) { 1610 int err = group_send_sig_info(sig, info, p, 1611 PIDTYPE_MAX); 1612 ++count; 1613 if (err != -EPERM) 1614 retval = err; 1615 } 1616 } 1617 ret = count ? retval : -ESRCH; 1618 } 1619 read_unlock(&tasklist_lock); 1620 1621 return ret; 1622 } 1623 1624 /* 1625 * These are for backward compatibility with the rest of the kernel source. 1626 */ 1627 1628 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1629 { 1630 /* 1631 * Make sure legacy kernel users don't send in bad values 1632 * (normal paths check this in check_kill_permission). 1633 */ 1634 if (!valid_signal(sig)) 1635 return -EINVAL; 1636 1637 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1638 } 1639 EXPORT_SYMBOL(send_sig_info); 1640 1641 #define __si_special(priv) \ 1642 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1643 1644 int 1645 send_sig(int sig, struct task_struct *p, int priv) 1646 { 1647 return send_sig_info(sig, __si_special(priv), p); 1648 } 1649 EXPORT_SYMBOL(send_sig); 1650 1651 void force_sig(int sig) 1652 { 1653 struct kernel_siginfo info; 1654 1655 clear_siginfo(&info); 1656 info.si_signo = sig; 1657 info.si_errno = 0; 1658 info.si_code = SI_KERNEL; 1659 info.si_pid = 0; 1660 info.si_uid = 0; 1661 force_sig_info(&info); 1662 } 1663 EXPORT_SYMBOL(force_sig); 1664 1665 /* 1666 * When things go south during signal handling, we 1667 * will force a SIGSEGV. And if the signal that caused 1668 * the problem was already a SIGSEGV, we'll want to 1669 * make sure we don't even try to deliver the signal.. 1670 */ 1671 void force_sigsegv(int sig) 1672 { 1673 struct task_struct *p = current; 1674 1675 if (sig == SIGSEGV) { 1676 unsigned long flags; 1677 spin_lock_irqsave(&p->sighand->siglock, flags); 1678 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1679 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1680 } 1681 force_sig(SIGSEGV); 1682 } 1683 1684 int force_sig_fault_to_task(int sig, int code, void __user *addr 1685 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1686 , struct task_struct *t) 1687 { 1688 struct kernel_siginfo info; 1689 1690 clear_siginfo(&info); 1691 info.si_signo = sig; 1692 info.si_errno = 0; 1693 info.si_code = code; 1694 info.si_addr = addr; 1695 #ifdef __ia64__ 1696 info.si_imm = imm; 1697 info.si_flags = flags; 1698 info.si_isr = isr; 1699 #endif 1700 return force_sig_info_to_task(&info, t, false); 1701 } 1702 1703 int force_sig_fault(int sig, int code, void __user *addr 1704 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1705 { 1706 return force_sig_fault_to_task(sig, code, addr 1707 ___ARCH_SI_IA64(imm, flags, isr), current); 1708 } 1709 1710 int send_sig_fault(int sig, int code, void __user *addr 1711 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1712 , struct task_struct *t) 1713 { 1714 struct kernel_siginfo info; 1715 1716 clear_siginfo(&info); 1717 info.si_signo = sig; 1718 info.si_errno = 0; 1719 info.si_code = code; 1720 info.si_addr = addr; 1721 #ifdef __ia64__ 1722 info.si_imm = imm; 1723 info.si_flags = flags; 1724 info.si_isr = isr; 1725 #endif 1726 return send_sig_info(info.si_signo, &info, t); 1727 } 1728 1729 int force_sig_mceerr(int code, void __user *addr, short lsb) 1730 { 1731 struct kernel_siginfo info; 1732 1733 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1734 clear_siginfo(&info); 1735 info.si_signo = SIGBUS; 1736 info.si_errno = 0; 1737 info.si_code = code; 1738 info.si_addr = addr; 1739 info.si_addr_lsb = lsb; 1740 return force_sig_info(&info); 1741 } 1742 1743 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1744 { 1745 struct kernel_siginfo info; 1746 1747 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1748 clear_siginfo(&info); 1749 info.si_signo = SIGBUS; 1750 info.si_errno = 0; 1751 info.si_code = code; 1752 info.si_addr = addr; 1753 info.si_addr_lsb = lsb; 1754 return send_sig_info(info.si_signo, &info, t); 1755 } 1756 EXPORT_SYMBOL(send_sig_mceerr); 1757 1758 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1759 { 1760 struct kernel_siginfo info; 1761 1762 clear_siginfo(&info); 1763 info.si_signo = SIGSEGV; 1764 info.si_errno = 0; 1765 info.si_code = SEGV_BNDERR; 1766 info.si_addr = addr; 1767 info.si_lower = lower; 1768 info.si_upper = upper; 1769 return force_sig_info(&info); 1770 } 1771 1772 #ifdef SEGV_PKUERR 1773 int force_sig_pkuerr(void __user *addr, u32 pkey) 1774 { 1775 struct kernel_siginfo info; 1776 1777 clear_siginfo(&info); 1778 info.si_signo = SIGSEGV; 1779 info.si_errno = 0; 1780 info.si_code = SEGV_PKUERR; 1781 info.si_addr = addr; 1782 info.si_pkey = pkey; 1783 return force_sig_info(&info); 1784 } 1785 #endif 1786 1787 int force_sig_perf(void __user *addr, u32 type, u64 sig_data) 1788 { 1789 struct kernel_siginfo info; 1790 1791 clear_siginfo(&info); 1792 info.si_signo = SIGTRAP; 1793 info.si_errno = 0; 1794 info.si_code = TRAP_PERF; 1795 info.si_addr = addr; 1796 info.si_perf_data = sig_data; 1797 info.si_perf_type = type; 1798 1799 return force_sig_info(&info); 1800 } 1801 1802 /** 1803 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1804 * @syscall: syscall number to send to userland 1805 * @reason: filter-supplied reason code to send to userland (via si_errno) 1806 * 1807 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1808 */ 1809 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1810 { 1811 struct kernel_siginfo info; 1812 1813 clear_siginfo(&info); 1814 info.si_signo = SIGSYS; 1815 info.si_code = SYS_SECCOMP; 1816 info.si_call_addr = (void __user *)KSTK_EIP(current); 1817 info.si_errno = reason; 1818 info.si_arch = syscall_get_arch(current); 1819 info.si_syscall = syscall; 1820 return force_sig_info_to_task(&info, current, force_coredump); 1821 } 1822 1823 /* For the crazy architectures that include trap information in 1824 * the errno field, instead of an actual errno value. 1825 */ 1826 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1827 { 1828 struct kernel_siginfo info; 1829 1830 clear_siginfo(&info); 1831 info.si_signo = SIGTRAP; 1832 info.si_errno = errno; 1833 info.si_code = TRAP_HWBKPT; 1834 info.si_addr = addr; 1835 return force_sig_info(&info); 1836 } 1837 1838 /* For the rare architectures that include trap information using 1839 * si_trapno. 1840 */ 1841 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1842 { 1843 struct kernel_siginfo info; 1844 1845 clear_siginfo(&info); 1846 info.si_signo = sig; 1847 info.si_errno = 0; 1848 info.si_code = code; 1849 info.si_addr = addr; 1850 info.si_trapno = trapno; 1851 return force_sig_info(&info); 1852 } 1853 1854 /* For the rare architectures that include trap information using 1855 * si_trapno. 1856 */ 1857 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1858 struct task_struct *t) 1859 { 1860 struct kernel_siginfo info; 1861 1862 clear_siginfo(&info); 1863 info.si_signo = sig; 1864 info.si_errno = 0; 1865 info.si_code = code; 1866 info.si_addr = addr; 1867 info.si_trapno = trapno; 1868 return send_sig_info(info.si_signo, &info, t); 1869 } 1870 1871 int kill_pgrp(struct pid *pid, int sig, int priv) 1872 { 1873 int ret; 1874 1875 read_lock(&tasklist_lock); 1876 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1877 read_unlock(&tasklist_lock); 1878 1879 return ret; 1880 } 1881 EXPORT_SYMBOL(kill_pgrp); 1882 1883 int kill_pid(struct pid *pid, int sig, int priv) 1884 { 1885 return kill_pid_info(sig, __si_special(priv), pid); 1886 } 1887 EXPORT_SYMBOL(kill_pid); 1888 1889 /* 1890 * These functions support sending signals using preallocated sigqueue 1891 * structures. This is needed "because realtime applications cannot 1892 * afford to lose notifications of asynchronous events, like timer 1893 * expirations or I/O completions". In the case of POSIX Timers 1894 * we allocate the sigqueue structure from the timer_create. If this 1895 * allocation fails we are able to report the failure to the application 1896 * with an EAGAIN error. 1897 */ 1898 struct sigqueue *sigqueue_alloc(void) 1899 { 1900 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1901 } 1902 1903 void sigqueue_free(struct sigqueue *q) 1904 { 1905 unsigned long flags; 1906 spinlock_t *lock = ¤t->sighand->siglock; 1907 1908 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1909 /* 1910 * We must hold ->siglock while testing q->list 1911 * to serialize with collect_signal() or with 1912 * __exit_signal()->flush_sigqueue(). 1913 */ 1914 spin_lock_irqsave(lock, flags); 1915 q->flags &= ~SIGQUEUE_PREALLOC; 1916 /* 1917 * If it is queued it will be freed when dequeued, 1918 * like the "regular" sigqueue. 1919 */ 1920 if (!list_empty(&q->list)) 1921 q = NULL; 1922 spin_unlock_irqrestore(lock, flags); 1923 1924 if (q) 1925 __sigqueue_free(q); 1926 } 1927 1928 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1929 { 1930 int sig = q->info.si_signo; 1931 struct sigpending *pending; 1932 struct task_struct *t; 1933 unsigned long flags; 1934 int ret, result; 1935 1936 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1937 1938 ret = -1; 1939 rcu_read_lock(); 1940 t = pid_task(pid, type); 1941 if (!t || !likely(lock_task_sighand(t, &flags))) 1942 goto ret; 1943 1944 ret = 1; /* the signal is ignored */ 1945 result = TRACE_SIGNAL_IGNORED; 1946 if (!prepare_signal(sig, t, false)) 1947 goto out; 1948 1949 ret = 0; 1950 if (unlikely(!list_empty(&q->list))) { 1951 /* 1952 * If an SI_TIMER entry is already queue just increment 1953 * the overrun count. 1954 */ 1955 BUG_ON(q->info.si_code != SI_TIMER); 1956 q->info.si_overrun++; 1957 result = TRACE_SIGNAL_ALREADY_PENDING; 1958 goto out; 1959 } 1960 q->info.si_overrun = 0; 1961 1962 signalfd_notify(t, sig); 1963 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1964 list_add_tail(&q->list, &pending->list); 1965 sigaddset(&pending->signal, sig); 1966 complete_signal(sig, t, type); 1967 result = TRACE_SIGNAL_DELIVERED; 1968 out: 1969 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 1970 unlock_task_sighand(t, &flags); 1971 ret: 1972 rcu_read_unlock(); 1973 return ret; 1974 } 1975 1976 static void do_notify_pidfd(struct task_struct *task) 1977 { 1978 struct pid *pid; 1979 1980 WARN_ON(task->exit_state == 0); 1981 pid = task_pid(task); 1982 wake_up_all(&pid->wait_pidfd); 1983 } 1984 1985 /* 1986 * Let a parent know about the death of a child. 1987 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1988 * 1989 * Returns true if our parent ignored us and so we've switched to 1990 * self-reaping. 1991 */ 1992 bool do_notify_parent(struct task_struct *tsk, int sig) 1993 { 1994 struct kernel_siginfo info; 1995 unsigned long flags; 1996 struct sighand_struct *psig; 1997 bool autoreap = false; 1998 u64 utime, stime; 1999 2000 BUG_ON(sig == -1); 2001 2002 /* do_notify_parent_cldstop should have been called instead. */ 2003 BUG_ON(task_is_stopped_or_traced(tsk)); 2004 2005 BUG_ON(!tsk->ptrace && 2006 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2007 2008 /* Wake up all pidfd waiters */ 2009 do_notify_pidfd(tsk); 2010 2011 if (sig != SIGCHLD) { 2012 /* 2013 * This is only possible if parent == real_parent. 2014 * Check if it has changed security domain. 2015 */ 2016 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2017 sig = SIGCHLD; 2018 } 2019 2020 clear_siginfo(&info); 2021 info.si_signo = sig; 2022 info.si_errno = 0; 2023 /* 2024 * We are under tasklist_lock here so our parent is tied to 2025 * us and cannot change. 2026 * 2027 * task_active_pid_ns will always return the same pid namespace 2028 * until a task passes through release_task. 2029 * 2030 * write_lock() currently calls preempt_disable() which is the 2031 * same as rcu_read_lock(), but according to Oleg, this is not 2032 * correct to rely on this 2033 */ 2034 rcu_read_lock(); 2035 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2036 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2037 task_uid(tsk)); 2038 rcu_read_unlock(); 2039 2040 task_cputime(tsk, &utime, &stime); 2041 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2042 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2043 2044 info.si_status = tsk->exit_code & 0x7f; 2045 if (tsk->exit_code & 0x80) 2046 info.si_code = CLD_DUMPED; 2047 else if (tsk->exit_code & 0x7f) 2048 info.si_code = CLD_KILLED; 2049 else { 2050 info.si_code = CLD_EXITED; 2051 info.si_status = tsk->exit_code >> 8; 2052 } 2053 2054 psig = tsk->parent->sighand; 2055 spin_lock_irqsave(&psig->siglock, flags); 2056 if (!tsk->ptrace && sig == SIGCHLD && 2057 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2058 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2059 /* 2060 * We are exiting and our parent doesn't care. POSIX.1 2061 * defines special semantics for setting SIGCHLD to SIG_IGN 2062 * or setting the SA_NOCLDWAIT flag: we should be reaped 2063 * automatically and not left for our parent's wait4 call. 2064 * Rather than having the parent do it as a magic kind of 2065 * signal handler, we just set this to tell do_exit that we 2066 * can be cleaned up without becoming a zombie. Note that 2067 * we still call __wake_up_parent in this case, because a 2068 * blocked sys_wait4 might now return -ECHILD. 2069 * 2070 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2071 * is implementation-defined: we do (if you don't want 2072 * it, just use SIG_IGN instead). 2073 */ 2074 autoreap = true; 2075 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2076 sig = 0; 2077 } 2078 /* 2079 * Send with __send_signal as si_pid and si_uid are in the 2080 * parent's namespaces. 2081 */ 2082 if (valid_signal(sig) && sig) 2083 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2084 __wake_up_parent(tsk, tsk->parent); 2085 spin_unlock_irqrestore(&psig->siglock, flags); 2086 2087 return autoreap; 2088 } 2089 2090 /** 2091 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2092 * @tsk: task reporting the state change 2093 * @for_ptracer: the notification is for ptracer 2094 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2095 * 2096 * Notify @tsk's parent that the stopped/continued state has changed. If 2097 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2098 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2099 * 2100 * CONTEXT: 2101 * Must be called with tasklist_lock at least read locked. 2102 */ 2103 static void do_notify_parent_cldstop(struct task_struct *tsk, 2104 bool for_ptracer, int why) 2105 { 2106 struct kernel_siginfo info; 2107 unsigned long flags; 2108 struct task_struct *parent; 2109 struct sighand_struct *sighand; 2110 u64 utime, stime; 2111 2112 if (for_ptracer) { 2113 parent = tsk->parent; 2114 } else { 2115 tsk = tsk->group_leader; 2116 parent = tsk->real_parent; 2117 } 2118 2119 clear_siginfo(&info); 2120 info.si_signo = SIGCHLD; 2121 info.si_errno = 0; 2122 /* 2123 * see comment in do_notify_parent() about the following 4 lines 2124 */ 2125 rcu_read_lock(); 2126 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2127 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2128 rcu_read_unlock(); 2129 2130 task_cputime(tsk, &utime, &stime); 2131 info.si_utime = nsec_to_clock_t(utime); 2132 info.si_stime = nsec_to_clock_t(stime); 2133 2134 info.si_code = why; 2135 switch (why) { 2136 case CLD_CONTINUED: 2137 info.si_status = SIGCONT; 2138 break; 2139 case CLD_STOPPED: 2140 info.si_status = tsk->signal->group_exit_code & 0x7f; 2141 break; 2142 case CLD_TRAPPED: 2143 info.si_status = tsk->exit_code & 0x7f; 2144 break; 2145 default: 2146 BUG(); 2147 } 2148 2149 sighand = parent->sighand; 2150 spin_lock_irqsave(&sighand->siglock, flags); 2151 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2152 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2153 __group_send_sig_info(SIGCHLD, &info, parent); 2154 /* 2155 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2156 */ 2157 __wake_up_parent(tsk, parent); 2158 spin_unlock_irqrestore(&sighand->siglock, flags); 2159 } 2160 2161 static inline bool may_ptrace_stop(void) 2162 { 2163 if (!likely(current->ptrace)) 2164 return false; 2165 /* 2166 * Are we in the middle of do_coredump? 2167 * If so and our tracer is also part of the coredump stopping 2168 * is a deadlock situation, and pointless because our tracer 2169 * is dead so don't allow us to stop. 2170 * If SIGKILL was already sent before the caller unlocked 2171 * ->siglock we must see ->core_state != NULL. Otherwise it 2172 * is safe to enter schedule(). 2173 * 2174 * This is almost outdated, a task with the pending SIGKILL can't 2175 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 2176 * after SIGKILL was already dequeued. 2177 */ 2178 if (unlikely(current->mm->core_state) && 2179 unlikely(current->mm == current->parent->mm)) 2180 return false; 2181 2182 return true; 2183 } 2184 2185 /* 2186 * Return non-zero if there is a SIGKILL that should be waking us up. 2187 * Called with the siglock held. 2188 */ 2189 static bool sigkill_pending(struct task_struct *tsk) 2190 { 2191 return sigismember(&tsk->pending.signal, SIGKILL) || 2192 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 2193 } 2194 2195 /* 2196 * This must be called with current->sighand->siglock held. 2197 * 2198 * This should be the path for all ptrace stops. 2199 * We always set current->last_siginfo while stopped here. 2200 * That makes it a way to test a stopped process for 2201 * being ptrace-stopped vs being job-control-stopped. 2202 * 2203 * If we actually decide not to stop at all because the tracer 2204 * is gone, we keep current->exit_code unless clear_code. 2205 */ 2206 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info) 2207 __releases(¤t->sighand->siglock) 2208 __acquires(¤t->sighand->siglock) 2209 { 2210 bool gstop_done = false; 2211 2212 if (arch_ptrace_stop_needed(exit_code, info)) { 2213 /* 2214 * The arch code has something special to do before a 2215 * ptrace stop. This is allowed to block, e.g. for faults 2216 * on user stack pages. We can't keep the siglock while 2217 * calling arch_ptrace_stop, so we must release it now. 2218 * To preserve proper semantics, we must do this before 2219 * any signal bookkeeping like checking group_stop_count. 2220 * Meanwhile, a SIGKILL could come in before we retake the 2221 * siglock. That must prevent us from sleeping in TASK_TRACED. 2222 * So after regaining the lock, we must check for SIGKILL. 2223 */ 2224 spin_unlock_irq(¤t->sighand->siglock); 2225 arch_ptrace_stop(exit_code, info); 2226 spin_lock_irq(¤t->sighand->siglock); 2227 if (sigkill_pending(current)) 2228 return; 2229 } 2230 2231 set_special_state(TASK_TRACED); 2232 2233 /* 2234 * We're committing to trapping. TRACED should be visible before 2235 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2236 * Also, transition to TRACED and updates to ->jobctl should be 2237 * atomic with respect to siglock and should be done after the arch 2238 * hook as siglock is released and regrabbed across it. 2239 * 2240 * TRACER TRACEE 2241 * 2242 * ptrace_attach() 2243 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2244 * do_wait() 2245 * set_current_state() smp_wmb(); 2246 * ptrace_do_wait() 2247 * wait_task_stopped() 2248 * task_stopped_code() 2249 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2250 */ 2251 smp_wmb(); 2252 2253 current->last_siginfo = info; 2254 current->exit_code = exit_code; 2255 2256 /* 2257 * If @why is CLD_STOPPED, we're trapping to participate in a group 2258 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2259 * across siglock relocks since INTERRUPT was scheduled, PENDING 2260 * could be clear now. We act as if SIGCONT is received after 2261 * TASK_TRACED is entered - ignore it. 2262 */ 2263 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2264 gstop_done = task_participate_group_stop(current); 2265 2266 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2267 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2268 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2269 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2270 2271 /* entering a trap, clear TRAPPING */ 2272 task_clear_jobctl_trapping(current); 2273 2274 spin_unlock_irq(¤t->sighand->siglock); 2275 read_lock(&tasklist_lock); 2276 if (may_ptrace_stop()) { 2277 /* 2278 * Notify parents of the stop. 2279 * 2280 * While ptraced, there are two parents - the ptracer and 2281 * the real_parent of the group_leader. The ptracer should 2282 * know about every stop while the real parent is only 2283 * interested in the completion of group stop. The states 2284 * for the two don't interact with each other. Notify 2285 * separately unless they're gonna be duplicates. 2286 */ 2287 do_notify_parent_cldstop(current, true, why); 2288 if (gstop_done && ptrace_reparented(current)) 2289 do_notify_parent_cldstop(current, false, why); 2290 2291 /* 2292 * Don't want to allow preemption here, because 2293 * sys_ptrace() needs this task to be inactive. 2294 * 2295 * XXX: implement read_unlock_no_resched(). 2296 */ 2297 preempt_disable(); 2298 read_unlock(&tasklist_lock); 2299 cgroup_enter_frozen(); 2300 preempt_enable_no_resched(); 2301 freezable_schedule(); 2302 cgroup_leave_frozen(true); 2303 } else { 2304 /* 2305 * By the time we got the lock, our tracer went away. 2306 * Don't drop the lock yet, another tracer may come. 2307 * 2308 * If @gstop_done, the ptracer went away between group stop 2309 * completion and here. During detach, it would have set 2310 * JOBCTL_STOP_PENDING on us and we'll re-enter 2311 * TASK_STOPPED in do_signal_stop() on return, so notifying 2312 * the real parent of the group stop completion is enough. 2313 */ 2314 if (gstop_done) 2315 do_notify_parent_cldstop(current, false, why); 2316 2317 /* tasklist protects us from ptrace_freeze_traced() */ 2318 __set_current_state(TASK_RUNNING); 2319 if (clear_code) 2320 current->exit_code = 0; 2321 read_unlock(&tasklist_lock); 2322 } 2323 2324 /* 2325 * We are back. Now reacquire the siglock before touching 2326 * last_siginfo, so that we are sure to have synchronized with 2327 * any signal-sending on another CPU that wants to examine it. 2328 */ 2329 spin_lock_irq(¤t->sighand->siglock); 2330 current->last_siginfo = NULL; 2331 2332 /* LISTENING can be set only during STOP traps, clear it */ 2333 current->jobctl &= ~JOBCTL_LISTENING; 2334 2335 /* 2336 * Queued signals ignored us while we were stopped for tracing. 2337 * So check for any that we should take before resuming user mode. 2338 * This sets TIF_SIGPENDING, but never clears it. 2339 */ 2340 recalc_sigpending_tsk(current); 2341 } 2342 2343 static void ptrace_do_notify(int signr, int exit_code, int why) 2344 { 2345 kernel_siginfo_t info; 2346 2347 clear_siginfo(&info); 2348 info.si_signo = signr; 2349 info.si_code = exit_code; 2350 info.si_pid = task_pid_vnr(current); 2351 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2352 2353 /* Let the debugger run. */ 2354 ptrace_stop(exit_code, why, 1, &info); 2355 } 2356 2357 void ptrace_notify(int exit_code) 2358 { 2359 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2360 if (unlikely(current->task_works)) 2361 task_work_run(); 2362 2363 spin_lock_irq(¤t->sighand->siglock); 2364 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 2365 spin_unlock_irq(¤t->sighand->siglock); 2366 } 2367 2368 /** 2369 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2370 * @signr: signr causing group stop if initiating 2371 * 2372 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2373 * and participate in it. If already set, participate in the existing 2374 * group stop. If participated in a group stop (and thus slept), %true is 2375 * returned with siglock released. 2376 * 2377 * If ptraced, this function doesn't handle stop itself. Instead, 2378 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2379 * untouched. The caller must ensure that INTERRUPT trap handling takes 2380 * places afterwards. 2381 * 2382 * CONTEXT: 2383 * Must be called with @current->sighand->siglock held, which is released 2384 * on %true return. 2385 * 2386 * RETURNS: 2387 * %false if group stop is already cancelled or ptrace trap is scheduled. 2388 * %true if participated in group stop. 2389 */ 2390 static bool do_signal_stop(int signr) 2391 __releases(¤t->sighand->siglock) 2392 { 2393 struct signal_struct *sig = current->signal; 2394 2395 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2396 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2397 struct task_struct *t; 2398 2399 /* signr will be recorded in task->jobctl for retries */ 2400 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2401 2402 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2403 unlikely(signal_group_exit(sig))) 2404 return false; 2405 /* 2406 * There is no group stop already in progress. We must 2407 * initiate one now. 2408 * 2409 * While ptraced, a task may be resumed while group stop is 2410 * still in effect and then receive a stop signal and 2411 * initiate another group stop. This deviates from the 2412 * usual behavior as two consecutive stop signals can't 2413 * cause two group stops when !ptraced. That is why we 2414 * also check !task_is_stopped(t) below. 2415 * 2416 * The condition can be distinguished by testing whether 2417 * SIGNAL_STOP_STOPPED is already set. Don't generate 2418 * group_exit_code in such case. 2419 * 2420 * This is not necessary for SIGNAL_STOP_CONTINUED because 2421 * an intervening stop signal is required to cause two 2422 * continued events regardless of ptrace. 2423 */ 2424 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2425 sig->group_exit_code = signr; 2426 2427 sig->group_stop_count = 0; 2428 2429 if (task_set_jobctl_pending(current, signr | gstop)) 2430 sig->group_stop_count++; 2431 2432 t = current; 2433 while_each_thread(current, t) { 2434 /* 2435 * Setting state to TASK_STOPPED for a group 2436 * stop is always done with the siglock held, 2437 * so this check has no races. 2438 */ 2439 if (!task_is_stopped(t) && 2440 task_set_jobctl_pending(t, signr | gstop)) { 2441 sig->group_stop_count++; 2442 if (likely(!(t->ptrace & PT_SEIZED))) 2443 signal_wake_up(t, 0); 2444 else 2445 ptrace_trap_notify(t); 2446 } 2447 } 2448 } 2449 2450 if (likely(!current->ptrace)) { 2451 int notify = 0; 2452 2453 /* 2454 * If there are no other threads in the group, or if there 2455 * is a group stop in progress and we are the last to stop, 2456 * report to the parent. 2457 */ 2458 if (task_participate_group_stop(current)) 2459 notify = CLD_STOPPED; 2460 2461 set_special_state(TASK_STOPPED); 2462 spin_unlock_irq(¤t->sighand->siglock); 2463 2464 /* 2465 * Notify the parent of the group stop completion. Because 2466 * we're not holding either the siglock or tasklist_lock 2467 * here, ptracer may attach inbetween; however, this is for 2468 * group stop and should always be delivered to the real 2469 * parent of the group leader. The new ptracer will get 2470 * its notification when this task transitions into 2471 * TASK_TRACED. 2472 */ 2473 if (notify) { 2474 read_lock(&tasklist_lock); 2475 do_notify_parent_cldstop(current, false, notify); 2476 read_unlock(&tasklist_lock); 2477 } 2478 2479 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2480 cgroup_enter_frozen(); 2481 freezable_schedule(); 2482 return true; 2483 } else { 2484 /* 2485 * While ptraced, group stop is handled by STOP trap. 2486 * Schedule it and let the caller deal with it. 2487 */ 2488 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2489 return false; 2490 } 2491 } 2492 2493 /** 2494 * do_jobctl_trap - take care of ptrace jobctl traps 2495 * 2496 * When PT_SEIZED, it's used for both group stop and explicit 2497 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2498 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2499 * the stop signal; otherwise, %SIGTRAP. 2500 * 2501 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2502 * number as exit_code and no siginfo. 2503 * 2504 * CONTEXT: 2505 * Must be called with @current->sighand->siglock held, which may be 2506 * released and re-acquired before returning with intervening sleep. 2507 */ 2508 static void do_jobctl_trap(void) 2509 { 2510 struct signal_struct *signal = current->signal; 2511 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2512 2513 if (current->ptrace & PT_SEIZED) { 2514 if (!signal->group_stop_count && 2515 !(signal->flags & SIGNAL_STOP_STOPPED)) 2516 signr = SIGTRAP; 2517 WARN_ON_ONCE(!signr); 2518 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2519 CLD_STOPPED); 2520 } else { 2521 WARN_ON_ONCE(!signr); 2522 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2523 current->exit_code = 0; 2524 } 2525 } 2526 2527 /** 2528 * do_freezer_trap - handle the freezer jobctl trap 2529 * 2530 * Puts the task into frozen state, if only the task is not about to quit. 2531 * In this case it drops JOBCTL_TRAP_FREEZE. 2532 * 2533 * CONTEXT: 2534 * Must be called with @current->sighand->siglock held, 2535 * which is always released before returning. 2536 */ 2537 static void do_freezer_trap(void) 2538 __releases(¤t->sighand->siglock) 2539 { 2540 /* 2541 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2542 * let's make another loop to give it a chance to be handled. 2543 * In any case, we'll return back. 2544 */ 2545 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2546 JOBCTL_TRAP_FREEZE) { 2547 spin_unlock_irq(¤t->sighand->siglock); 2548 return; 2549 } 2550 2551 /* 2552 * Now we're sure that there is no pending fatal signal and no 2553 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2554 * immediately (if there is a non-fatal signal pending), and 2555 * put the task into sleep. 2556 */ 2557 __set_current_state(TASK_INTERRUPTIBLE); 2558 clear_thread_flag(TIF_SIGPENDING); 2559 spin_unlock_irq(¤t->sighand->siglock); 2560 cgroup_enter_frozen(); 2561 freezable_schedule(); 2562 } 2563 2564 static int ptrace_signal(int signr, kernel_siginfo_t *info) 2565 { 2566 /* 2567 * We do not check sig_kernel_stop(signr) but set this marker 2568 * unconditionally because we do not know whether debugger will 2569 * change signr. This flag has no meaning unless we are going 2570 * to stop after return from ptrace_stop(). In this case it will 2571 * be checked in do_signal_stop(), we should only stop if it was 2572 * not cleared by SIGCONT while we were sleeping. See also the 2573 * comment in dequeue_signal(). 2574 */ 2575 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2576 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2577 2578 /* We're back. Did the debugger cancel the sig? */ 2579 signr = current->exit_code; 2580 if (signr == 0) 2581 return signr; 2582 2583 current->exit_code = 0; 2584 2585 /* 2586 * Update the siginfo structure if the signal has 2587 * changed. If the debugger wanted something 2588 * specific in the siginfo structure then it should 2589 * have updated *info via PTRACE_SETSIGINFO. 2590 */ 2591 if (signr != info->si_signo) { 2592 clear_siginfo(info); 2593 info->si_signo = signr; 2594 info->si_errno = 0; 2595 info->si_code = SI_USER; 2596 rcu_read_lock(); 2597 info->si_pid = task_pid_vnr(current->parent); 2598 info->si_uid = from_kuid_munged(current_user_ns(), 2599 task_uid(current->parent)); 2600 rcu_read_unlock(); 2601 } 2602 2603 /* If the (new) signal is now blocked, requeue it. */ 2604 if (sigismember(¤t->blocked, signr)) { 2605 send_signal(signr, info, current, PIDTYPE_PID); 2606 signr = 0; 2607 } 2608 2609 return signr; 2610 } 2611 2612 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2613 { 2614 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2615 case SIL_FAULT: 2616 case SIL_FAULT_TRAPNO: 2617 case SIL_FAULT_MCEERR: 2618 case SIL_FAULT_BNDERR: 2619 case SIL_FAULT_PKUERR: 2620 case SIL_FAULT_PERF_EVENT: 2621 ksig->info.si_addr = arch_untagged_si_addr( 2622 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2623 break; 2624 case SIL_KILL: 2625 case SIL_TIMER: 2626 case SIL_POLL: 2627 case SIL_CHLD: 2628 case SIL_RT: 2629 case SIL_SYS: 2630 break; 2631 } 2632 } 2633 2634 bool get_signal(struct ksignal *ksig) 2635 { 2636 struct sighand_struct *sighand = current->sighand; 2637 struct signal_struct *signal = current->signal; 2638 int signr; 2639 2640 if (unlikely(current->task_works)) 2641 task_work_run(); 2642 2643 /* 2644 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so 2645 * that the arch handlers don't all have to do it. If we get here 2646 * without TIF_SIGPENDING, just exit after running signal work. 2647 */ 2648 if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) { 2649 if (test_thread_flag(TIF_NOTIFY_SIGNAL)) 2650 tracehook_notify_signal(); 2651 if (!task_sigpending(current)) 2652 return false; 2653 } 2654 2655 if (unlikely(uprobe_deny_signal())) 2656 return false; 2657 2658 /* 2659 * Do this once, we can't return to user-mode if freezing() == T. 2660 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2661 * thus do not need another check after return. 2662 */ 2663 try_to_freeze(); 2664 2665 relock: 2666 spin_lock_irq(&sighand->siglock); 2667 2668 /* 2669 * Every stopped thread goes here after wakeup. Check to see if 2670 * we should notify the parent, prepare_signal(SIGCONT) encodes 2671 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2672 */ 2673 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2674 int why; 2675 2676 if (signal->flags & SIGNAL_CLD_CONTINUED) 2677 why = CLD_CONTINUED; 2678 else 2679 why = CLD_STOPPED; 2680 2681 signal->flags &= ~SIGNAL_CLD_MASK; 2682 2683 spin_unlock_irq(&sighand->siglock); 2684 2685 /* 2686 * Notify the parent that we're continuing. This event is 2687 * always per-process and doesn't make whole lot of sense 2688 * for ptracers, who shouldn't consume the state via 2689 * wait(2) either, but, for backward compatibility, notify 2690 * the ptracer of the group leader too unless it's gonna be 2691 * a duplicate. 2692 */ 2693 read_lock(&tasklist_lock); 2694 do_notify_parent_cldstop(current, false, why); 2695 2696 if (ptrace_reparented(current->group_leader)) 2697 do_notify_parent_cldstop(current->group_leader, 2698 true, why); 2699 read_unlock(&tasklist_lock); 2700 2701 goto relock; 2702 } 2703 2704 /* Has this task already been marked for death? */ 2705 if (signal_group_exit(signal)) { 2706 ksig->info.si_signo = signr = SIGKILL; 2707 sigdelset(¤t->pending.signal, SIGKILL); 2708 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2709 &sighand->action[SIGKILL - 1]); 2710 recalc_sigpending(); 2711 goto fatal; 2712 } 2713 2714 for (;;) { 2715 struct k_sigaction *ka; 2716 2717 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2718 do_signal_stop(0)) 2719 goto relock; 2720 2721 if (unlikely(current->jobctl & 2722 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2723 if (current->jobctl & JOBCTL_TRAP_MASK) { 2724 do_jobctl_trap(); 2725 spin_unlock_irq(&sighand->siglock); 2726 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2727 do_freezer_trap(); 2728 2729 goto relock; 2730 } 2731 2732 /* 2733 * If the task is leaving the frozen state, let's update 2734 * cgroup counters and reset the frozen bit. 2735 */ 2736 if (unlikely(cgroup_task_frozen(current))) { 2737 spin_unlock_irq(&sighand->siglock); 2738 cgroup_leave_frozen(false); 2739 goto relock; 2740 } 2741 2742 /* 2743 * Signals generated by the execution of an instruction 2744 * need to be delivered before any other pending signals 2745 * so that the instruction pointer in the signal stack 2746 * frame points to the faulting instruction. 2747 */ 2748 signr = dequeue_synchronous_signal(&ksig->info); 2749 if (!signr) 2750 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2751 2752 if (!signr) 2753 break; /* will return 0 */ 2754 2755 if (unlikely(current->ptrace) && signr != SIGKILL) { 2756 signr = ptrace_signal(signr, &ksig->info); 2757 if (!signr) 2758 continue; 2759 } 2760 2761 ka = &sighand->action[signr-1]; 2762 2763 /* Trace actually delivered signals. */ 2764 trace_signal_deliver(signr, &ksig->info, ka); 2765 2766 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2767 continue; 2768 if (ka->sa.sa_handler != SIG_DFL) { 2769 /* Run the handler. */ 2770 ksig->ka = *ka; 2771 2772 if (ka->sa.sa_flags & SA_ONESHOT) 2773 ka->sa.sa_handler = SIG_DFL; 2774 2775 break; /* will return non-zero "signr" value */ 2776 } 2777 2778 /* 2779 * Now we are doing the default action for this signal. 2780 */ 2781 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2782 continue; 2783 2784 /* 2785 * Global init gets no signals it doesn't want. 2786 * Container-init gets no signals it doesn't want from same 2787 * container. 2788 * 2789 * Note that if global/container-init sees a sig_kernel_only() 2790 * signal here, the signal must have been generated internally 2791 * or must have come from an ancestor namespace. In either 2792 * case, the signal cannot be dropped. 2793 */ 2794 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2795 !sig_kernel_only(signr)) 2796 continue; 2797 2798 if (sig_kernel_stop(signr)) { 2799 /* 2800 * The default action is to stop all threads in 2801 * the thread group. The job control signals 2802 * do nothing in an orphaned pgrp, but SIGSTOP 2803 * always works. Note that siglock needs to be 2804 * dropped during the call to is_orphaned_pgrp() 2805 * because of lock ordering with tasklist_lock. 2806 * This allows an intervening SIGCONT to be posted. 2807 * We need to check for that and bail out if necessary. 2808 */ 2809 if (signr != SIGSTOP) { 2810 spin_unlock_irq(&sighand->siglock); 2811 2812 /* signals can be posted during this window */ 2813 2814 if (is_current_pgrp_orphaned()) 2815 goto relock; 2816 2817 spin_lock_irq(&sighand->siglock); 2818 } 2819 2820 if (likely(do_signal_stop(ksig->info.si_signo))) { 2821 /* It released the siglock. */ 2822 goto relock; 2823 } 2824 2825 /* 2826 * We didn't actually stop, due to a race 2827 * with SIGCONT or something like that. 2828 */ 2829 continue; 2830 } 2831 2832 fatal: 2833 spin_unlock_irq(&sighand->siglock); 2834 if (unlikely(cgroup_task_frozen(current))) 2835 cgroup_leave_frozen(true); 2836 2837 /* 2838 * Anything else is fatal, maybe with a core dump. 2839 */ 2840 current->flags |= PF_SIGNALED; 2841 2842 if (sig_kernel_coredump(signr)) { 2843 if (print_fatal_signals) 2844 print_fatal_signal(ksig->info.si_signo); 2845 proc_coredump_connector(current); 2846 /* 2847 * If it was able to dump core, this kills all 2848 * other threads in the group and synchronizes with 2849 * their demise. If we lost the race with another 2850 * thread getting here, it set group_exit_code 2851 * first and our do_group_exit call below will use 2852 * that value and ignore the one we pass it. 2853 */ 2854 do_coredump(&ksig->info); 2855 } 2856 2857 /* 2858 * PF_IO_WORKER threads will catch and exit on fatal signals 2859 * themselves. They have cleanup that must be performed, so 2860 * we cannot call do_exit() on their behalf. 2861 */ 2862 if (current->flags & PF_IO_WORKER) 2863 goto out; 2864 2865 /* 2866 * Death signals, no core dump. 2867 */ 2868 do_group_exit(ksig->info.si_signo); 2869 /* NOTREACHED */ 2870 } 2871 spin_unlock_irq(&sighand->siglock); 2872 out: 2873 ksig->sig = signr; 2874 2875 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2876 hide_si_addr_tag_bits(ksig); 2877 2878 return ksig->sig > 0; 2879 } 2880 2881 /** 2882 * signal_delivered - 2883 * @ksig: kernel signal struct 2884 * @stepping: nonzero if debugger single-step or block-step in use 2885 * 2886 * This function should be called when a signal has successfully been 2887 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2888 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2889 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2890 */ 2891 static void signal_delivered(struct ksignal *ksig, int stepping) 2892 { 2893 sigset_t blocked; 2894 2895 /* A signal was successfully delivered, and the 2896 saved sigmask was stored on the signal frame, 2897 and will be restored by sigreturn. So we can 2898 simply clear the restore sigmask flag. */ 2899 clear_restore_sigmask(); 2900 2901 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2902 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2903 sigaddset(&blocked, ksig->sig); 2904 set_current_blocked(&blocked); 2905 if (current->sas_ss_flags & SS_AUTODISARM) 2906 sas_ss_reset(current); 2907 tracehook_signal_handler(stepping); 2908 } 2909 2910 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2911 { 2912 if (failed) 2913 force_sigsegv(ksig->sig); 2914 else 2915 signal_delivered(ksig, stepping); 2916 } 2917 2918 /* 2919 * It could be that complete_signal() picked us to notify about the 2920 * group-wide signal. Other threads should be notified now to take 2921 * the shared signals in @which since we will not. 2922 */ 2923 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2924 { 2925 sigset_t retarget; 2926 struct task_struct *t; 2927 2928 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2929 if (sigisemptyset(&retarget)) 2930 return; 2931 2932 t = tsk; 2933 while_each_thread(tsk, t) { 2934 if (t->flags & PF_EXITING) 2935 continue; 2936 2937 if (!has_pending_signals(&retarget, &t->blocked)) 2938 continue; 2939 /* Remove the signals this thread can handle. */ 2940 sigandsets(&retarget, &retarget, &t->blocked); 2941 2942 if (!task_sigpending(t)) 2943 signal_wake_up(t, 0); 2944 2945 if (sigisemptyset(&retarget)) 2946 break; 2947 } 2948 } 2949 2950 void exit_signals(struct task_struct *tsk) 2951 { 2952 int group_stop = 0; 2953 sigset_t unblocked; 2954 2955 /* 2956 * @tsk is about to have PF_EXITING set - lock out users which 2957 * expect stable threadgroup. 2958 */ 2959 cgroup_threadgroup_change_begin(tsk); 2960 2961 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2962 tsk->flags |= PF_EXITING; 2963 cgroup_threadgroup_change_end(tsk); 2964 return; 2965 } 2966 2967 spin_lock_irq(&tsk->sighand->siglock); 2968 /* 2969 * From now this task is not visible for group-wide signals, 2970 * see wants_signal(), do_signal_stop(). 2971 */ 2972 tsk->flags |= PF_EXITING; 2973 2974 cgroup_threadgroup_change_end(tsk); 2975 2976 if (!task_sigpending(tsk)) 2977 goto out; 2978 2979 unblocked = tsk->blocked; 2980 signotset(&unblocked); 2981 retarget_shared_pending(tsk, &unblocked); 2982 2983 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2984 task_participate_group_stop(tsk)) 2985 group_stop = CLD_STOPPED; 2986 out: 2987 spin_unlock_irq(&tsk->sighand->siglock); 2988 2989 /* 2990 * If group stop has completed, deliver the notification. This 2991 * should always go to the real parent of the group leader. 2992 */ 2993 if (unlikely(group_stop)) { 2994 read_lock(&tasklist_lock); 2995 do_notify_parent_cldstop(tsk, false, group_stop); 2996 read_unlock(&tasklist_lock); 2997 } 2998 } 2999 3000 /* 3001 * System call entry points. 3002 */ 3003 3004 /** 3005 * sys_restart_syscall - restart a system call 3006 */ 3007 SYSCALL_DEFINE0(restart_syscall) 3008 { 3009 struct restart_block *restart = ¤t->restart_block; 3010 return restart->fn(restart); 3011 } 3012 3013 long do_no_restart_syscall(struct restart_block *param) 3014 { 3015 return -EINTR; 3016 } 3017 3018 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3019 { 3020 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3021 sigset_t newblocked; 3022 /* A set of now blocked but previously unblocked signals. */ 3023 sigandnsets(&newblocked, newset, ¤t->blocked); 3024 retarget_shared_pending(tsk, &newblocked); 3025 } 3026 tsk->blocked = *newset; 3027 recalc_sigpending(); 3028 } 3029 3030 /** 3031 * set_current_blocked - change current->blocked mask 3032 * @newset: new mask 3033 * 3034 * It is wrong to change ->blocked directly, this helper should be used 3035 * to ensure the process can't miss a shared signal we are going to block. 3036 */ 3037 void set_current_blocked(sigset_t *newset) 3038 { 3039 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3040 __set_current_blocked(newset); 3041 } 3042 3043 void __set_current_blocked(const sigset_t *newset) 3044 { 3045 struct task_struct *tsk = current; 3046 3047 /* 3048 * In case the signal mask hasn't changed, there is nothing we need 3049 * to do. The current->blocked shouldn't be modified by other task. 3050 */ 3051 if (sigequalsets(&tsk->blocked, newset)) 3052 return; 3053 3054 spin_lock_irq(&tsk->sighand->siglock); 3055 __set_task_blocked(tsk, newset); 3056 spin_unlock_irq(&tsk->sighand->siglock); 3057 } 3058 3059 /* 3060 * This is also useful for kernel threads that want to temporarily 3061 * (or permanently) block certain signals. 3062 * 3063 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3064 * interface happily blocks "unblockable" signals like SIGKILL 3065 * and friends. 3066 */ 3067 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3068 { 3069 struct task_struct *tsk = current; 3070 sigset_t newset; 3071 3072 /* Lockless, only current can change ->blocked, never from irq */ 3073 if (oldset) 3074 *oldset = tsk->blocked; 3075 3076 switch (how) { 3077 case SIG_BLOCK: 3078 sigorsets(&newset, &tsk->blocked, set); 3079 break; 3080 case SIG_UNBLOCK: 3081 sigandnsets(&newset, &tsk->blocked, set); 3082 break; 3083 case SIG_SETMASK: 3084 newset = *set; 3085 break; 3086 default: 3087 return -EINVAL; 3088 } 3089 3090 __set_current_blocked(&newset); 3091 return 0; 3092 } 3093 EXPORT_SYMBOL(sigprocmask); 3094 3095 /* 3096 * The api helps set app-provided sigmasks. 3097 * 3098 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3099 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3100 * 3101 * Note that it does set_restore_sigmask() in advance, so it must be always 3102 * paired with restore_saved_sigmask_unless() before return from syscall. 3103 */ 3104 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3105 { 3106 sigset_t kmask; 3107 3108 if (!umask) 3109 return 0; 3110 if (sigsetsize != sizeof(sigset_t)) 3111 return -EINVAL; 3112 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3113 return -EFAULT; 3114 3115 set_restore_sigmask(); 3116 current->saved_sigmask = current->blocked; 3117 set_current_blocked(&kmask); 3118 3119 return 0; 3120 } 3121 3122 #ifdef CONFIG_COMPAT 3123 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3124 size_t sigsetsize) 3125 { 3126 sigset_t kmask; 3127 3128 if (!umask) 3129 return 0; 3130 if (sigsetsize != sizeof(compat_sigset_t)) 3131 return -EINVAL; 3132 if (get_compat_sigset(&kmask, umask)) 3133 return -EFAULT; 3134 3135 set_restore_sigmask(); 3136 current->saved_sigmask = current->blocked; 3137 set_current_blocked(&kmask); 3138 3139 return 0; 3140 } 3141 #endif 3142 3143 /** 3144 * sys_rt_sigprocmask - change the list of currently blocked signals 3145 * @how: whether to add, remove, or set signals 3146 * @nset: stores pending signals 3147 * @oset: previous value of signal mask if non-null 3148 * @sigsetsize: size of sigset_t type 3149 */ 3150 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3151 sigset_t __user *, oset, size_t, sigsetsize) 3152 { 3153 sigset_t old_set, new_set; 3154 int error; 3155 3156 /* XXX: Don't preclude handling different sized sigset_t's. */ 3157 if (sigsetsize != sizeof(sigset_t)) 3158 return -EINVAL; 3159 3160 old_set = current->blocked; 3161 3162 if (nset) { 3163 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3164 return -EFAULT; 3165 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3166 3167 error = sigprocmask(how, &new_set, NULL); 3168 if (error) 3169 return error; 3170 } 3171 3172 if (oset) { 3173 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3174 return -EFAULT; 3175 } 3176 3177 return 0; 3178 } 3179 3180 #ifdef CONFIG_COMPAT 3181 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3182 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3183 { 3184 sigset_t old_set = current->blocked; 3185 3186 /* XXX: Don't preclude handling different sized sigset_t's. */ 3187 if (sigsetsize != sizeof(sigset_t)) 3188 return -EINVAL; 3189 3190 if (nset) { 3191 sigset_t new_set; 3192 int error; 3193 if (get_compat_sigset(&new_set, nset)) 3194 return -EFAULT; 3195 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3196 3197 error = sigprocmask(how, &new_set, NULL); 3198 if (error) 3199 return error; 3200 } 3201 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3202 } 3203 #endif 3204 3205 static void do_sigpending(sigset_t *set) 3206 { 3207 spin_lock_irq(¤t->sighand->siglock); 3208 sigorsets(set, ¤t->pending.signal, 3209 ¤t->signal->shared_pending.signal); 3210 spin_unlock_irq(¤t->sighand->siglock); 3211 3212 /* Outside the lock because only this thread touches it. */ 3213 sigandsets(set, ¤t->blocked, set); 3214 } 3215 3216 /** 3217 * sys_rt_sigpending - examine a pending signal that has been raised 3218 * while blocked 3219 * @uset: stores pending signals 3220 * @sigsetsize: size of sigset_t type or larger 3221 */ 3222 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3223 { 3224 sigset_t set; 3225 3226 if (sigsetsize > sizeof(*uset)) 3227 return -EINVAL; 3228 3229 do_sigpending(&set); 3230 3231 if (copy_to_user(uset, &set, sigsetsize)) 3232 return -EFAULT; 3233 3234 return 0; 3235 } 3236 3237 #ifdef CONFIG_COMPAT 3238 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3239 compat_size_t, sigsetsize) 3240 { 3241 sigset_t set; 3242 3243 if (sigsetsize > sizeof(*uset)) 3244 return -EINVAL; 3245 3246 do_sigpending(&set); 3247 3248 return put_compat_sigset(uset, &set, sigsetsize); 3249 } 3250 #endif 3251 3252 static const struct { 3253 unsigned char limit, layout; 3254 } sig_sicodes[] = { 3255 [SIGILL] = { NSIGILL, SIL_FAULT }, 3256 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3257 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3258 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3259 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3260 #if defined(SIGEMT) 3261 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3262 #endif 3263 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3264 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3265 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3266 }; 3267 3268 static bool known_siginfo_layout(unsigned sig, int si_code) 3269 { 3270 if (si_code == SI_KERNEL) 3271 return true; 3272 else if ((si_code > SI_USER)) { 3273 if (sig_specific_sicodes(sig)) { 3274 if (si_code <= sig_sicodes[sig].limit) 3275 return true; 3276 } 3277 else if (si_code <= NSIGPOLL) 3278 return true; 3279 } 3280 else if (si_code >= SI_DETHREAD) 3281 return true; 3282 else if (si_code == SI_ASYNCNL) 3283 return true; 3284 return false; 3285 } 3286 3287 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3288 { 3289 enum siginfo_layout layout = SIL_KILL; 3290 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3291 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3292 (si_code <= sig_sicodes[sig].limit)) { 3293 layout = sig_sicodes[sig].layout; 3294 /* Handle the exceptions */ 3295 if ((sig == SIGBUS) && 3296 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3297 layout = SIL_FAULT_MCEERR; 3298 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3299 layout = SIL_FAULT_BNDERR; 3300 #ifdef SEGV_PKUERR 3301 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3302 layout = SIL_FAULT_PKUERR; 3303 #endif 3304 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3305 layout = SIL_FAULT_PERF_EVENT; 3306 else if (IS_ENABLED(CONFIG_SPARC) && 3307 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3308 layout = SIL_FAULT_TRAPNO; 3309 else if (IS_ENABLED(CONFIG_ALPHA) && 3310 ((sig == SIGFPE) || 3311 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3312 layout = SIL_FAULT_TRAPNO; 3313 } 3314 else if (si_code <= NSIGPOLL) 3315 layout = SIL_POLL; 3316 } else { 3317 if (si_code == SI_TIMER) 3318 layout = SIL_TIMER; 3319 else if (si_code == SI_SIGIO) 3320 layout = SIL_POLL; 3321 else if (si_code < 0) 3322 layout = SIL_RT; 3323 } 3324 return layout; 3325 } 3326 3327 static inline char __user *si_expansion(const siginfo_t __user *info) 3328 { 3329 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3330 } 3331 3332 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3333 { 3334 char __user *expansion = si_expansion(to); 3335 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3336 return -EFAULT; 3337 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3338 return -EFAULT; 3339 return 0; 3340 } 3341 3342 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3343 const siginfo_t __user *from) 3344 { 3345 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3346 char __user *expansion = si_expansion(from); 3347 char buf[SI_EXPANSION_SIZE]; 3348 int i; 3349 /* 3350 * An unknown si_code might need more than 3351 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3352 * extra bytes are 0. This guarantees copy_siginfo_to_user 3353 * will return this data to userspace exactly. 3354 */ 3355 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3356 return -EFAULT; 3357 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3358 if (buf[i] != 0) 3359 return -E2BIG; 3360 } 3361 } 3362 return 0; 3363 } 3364 3365 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3366 const siginfo_t __user *from) 3367 { 3368 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3369 return -EFAULT; 3370 to->si_signo = signo; 3371 return post_copy_siginfo_from_user(to, from); 3372 } 3373 3374 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3375 { 3376 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3377 return -EFAULT; 3378 return post_copy_siginfo_from_user(to, from); 3379 } 3380 3381 #ifdef CONFIG_COMPAT 3382 /** 3383 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3384 * @to: compat siginfo destination 3385 * @from: kernel siginfo source 3386 * 3387 * Note: This function does not work properly for the SIGCHLD on x32, but 3388 * fortunately it doesn't have to. The only valid callers for this function are 3389 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3390 * The latter does not care because SIGCHLD will never cause a coredump. 3391 */ 3392 void copy_siginfo_to_external32(struct compat_siginfo *to, 3393 const struct kernel_siginfo *from) 3394 { 3395 memset(to, 0, sizeof(*to)); 3396 3397 to->si_signo = from->si_signo; 3398 to->si_errno = from->si_errno; 3399 to->si_code = from->si_code; 3400 switch(siginfo_layout(from->si_signo, from->si_code)) { 3401 case SIL_KILL: 3402 to->si_pid = from->si_pid; 3403 to->si_uid = from->si_uid; 3404 break; 3405 case SIL_TIMER: 3406 to->si_tid = from->si_tid; 3407 to->si_overrun = from->si_overrun; 3408 to->si_int = from->si_int; 3409 break; 3410 case SIL_POLL: 3411 to->si_band = from->si_band; 3412 to->si_fd = from->si_fd; 3413 break; 3414 case SIL_FAULT: 3415 to->si_addr = ptr_to_compat(from->si_addr); 3416 break; 3417 case SIL_FAULT_TRAPNO: 3418 to->si_addr = ptr_to_compat(from->si_addr); 3419 to->si_trapno = from->si_trapno; 3420 break; 3421 case SIL_FAULT_MCEERR: 3422 to->si_addr = ptr_to_compat(from->si_addr); 3423 to->si_addr_lsb = from->si_addr_lsb; 3424 break; 3425 case SIL_FAULT_BNDERR: 3426 to->si_addr = ptr_to_compat(from->si_addr); 3427 to->si_lower = ptr_to_compat(from->si_lower); 3428 to->si_upper = ptr_to_compat(from->si_upper); 3429 break; 3430 case SIL_FAULT_PKUERR: 3431 to->si_addr = ptr_to_compat(from->si_addr); 3432 to->si_pkey = from->si_pkey; 3433 break; 3434 case SIL_FAULT_PERF_EVENT: 3435 to->si_addr = ptr_to_compat(from->si_addr); 3436 to->si_perf_data = from->si_perf_data; 3437 to->si_perf_type = from->si_perf_type; 3438 break; 3439 case SIL_CHLD: 3440 to->si_pid = from->si_pid; 3441 to->si_uid = from->si_uid; 3442 to->si_status = from->si_status; 3443 to->si_utime = from->si_utime; 3444 to->si_stime = from->si_stime; 3445 break; 3446 case SIL_RT: 3447 to->si_pid = from->si_pid; 3448 to->si_uid = from->si_uid; 3449 to->si_int = from->si_int; 3450 break; 3451 case SIL_SYS: 3452 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3453 to->si_syscall = from->si_syscall; 3454 to->si_arch = from->si_arch; 3455 break; 3456 } 3457 } 3458 3459 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3460 const struct kernel_siginfo *from) 3461 { 3462 struct compat_siginfo new; 3463 3464 copy_siginfo_to_external32(&new, from); 3465 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3466 return -EFAULT; 3467 return 0; 3468 } 3469 3470 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3471 const struct compat_siginfo *from) 3472 { 3473 clear_siginfo(to); 3474 to->si_signo = from->si_signo; 3475 to->si_errno = from->si_errno; 3476 to->si_code = from->si_code; 3477 switch(siginfo_layout(from->si_signo, from->si_code)) { 3478 case SIL_KILL: 3479 to->si_pid = from->si_pid; 3480 to->si_uid = from->si_uid; 3481 break; 3482 case SIL_TIMER: 3483 to->si_tid = from->si_tid; 3484 to->si_overrun = from->si_overrun; 3485 to->si_int = from->si_int; 3486 break; 3487 case SIL_POLL: 3488 to->si_band = from->si_band; 3489 to->si_fd = from->si_fd; 3490 break; 3491 case SIL_FAULT: 3492 to->si_addr = compat_ptr(from->si_addr); 3493 break; 3494 case SIL_FAULT_TRAPNO: 3495 to->si_addr = compat_ptr(from->si_addr); 3496 to->si_trapno = from->si_trapno; 3497 break; 3498 case SIL_FAULT_MCEERR: 3499 to->si_addr = compat_ptr(from->si_addr); 3500 to->si_addr_lsb = from->si_addr_lsb; 3501 break; 3502 case SIL_FAULT_BNDERR: 3503 to->si_addr = compat_ptr(from->si_addr); 3504 to->si_lower = compat_ptr(from->si_lower); 3505 to->si_upper = compat_ptr(from->si_upper); 3506 break; 3507 case SIL_FAULT_PKUERR: 3508 to->si_addr = compat_ptr(from->si_addr); 3509 to->si_pkey = from->si_pkey; 3510 break; 3511 case SIL_FAULT_PERF_EVENT: 3512 to->si_addr = compat_ptr(from->si_addr); 3513 to->si_perf_data = from->si_perf_data; 3514 to->si_perf_type = from->si_perf_type; 3515 break; 3516 case SIL_CHLD: 3517 to->si_pid = from->si_pid; 3518 to->si_uid = from->si_uid; 3519 to->si_status = from->si_status; 3520 #ifdef CONFIG_X86_X32_ABI 3521 if (in_x32_syscall()) { 3522 to->si_utime = from->_sifields._sigchld_x32._utime; 3523 to->si_stime = from->_sifields._sigchld_x32._stime; 3524 } else 3525 #endif 3526 { 3527 to->si_utime = from->si_utime; 3528 to->si_stime = from->si_stime; 3529 } 3530 break; 3531 case SIL_RT: 3532 to->si_pid = from->si_pid; 3533 to->si_uid = from->si_uid; 3534 to->si_int = from->si_int; 3535 break; 3536 case SIL_SYS: 3537 to->si_call_addr = compat_ptr(from->si_call_addr); 3538 to->si_syscall = from->si_syscall; 3539 to->si_arch = from->si_arch; 3540 break; 3541 } 3542 return 0; 3543 } 3544 3545 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3546 const struct compat_siginfo __user *ufrom) 3547 { 3548 struct compat_siginfo from; 3549 3550 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3551 return -EFAULT; 3552 3553 from.si_signo = signo; 3554 return post_copy_siginfo_from_user32(to, &from); 3555 } 3556 3557 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3558 const struct compat_siginfo __user *ufrom) 3559 { 3560 struct compat_siginfo from; 3561 3562 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3563 return -EFAULT; 3564 3565 return post_copy_siginfo_from_user32(to, &from); 3566 } 3567 #endif /* CONFIG_COMPAT */ 3568 3569 /** 3570 * do_sigtimedwait - wait for queued signals specified in @which 3571 * @which: queued signals to wait for 3572 * @info: if non-null, the signal's siginfo is returned here 3573 * @ts: upper bound on process time suspension 3574 */ 3575 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3576 const struct timespec64 *ts) 3577 { 3578 ktime_t *to = NULL, timeout = KTIME_MAX; 3579 struct task_struct *tsk = current; 3580 sigset_t mask = *which; 3581 int sig, ret = 0; 3582 3583 if (ts) { 3584 if (!timespec64_valid(ts)) 3585 return -EINVAL; 3586 timeout = timespec64_to_ktime(*ts); 3587 to = &timeout; 3588 } 3589 3590 /* 3591 * Invert the set of allowed signals to get those we want to block. 3592 */ 3593 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3594 signotset(&mask); 3595 3596 spin_lock_irq(&tsk->sighand->siglock); 3597 sig = dequeue_signal(tsk, &mask, info); 3598 if (!sig && timeout) { 3599 /* 3600 * None ready, temporarily unblock those we're interested 3601 * while we are sleeping in so that we'll be awakened when 3602 * they arrive. Unblocking is always fine, we can avoid 3603 * set_current_blocked(). 3604 */ 3605 tsk->real_blocked = tsk->blocked; 3606 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3607 recalc_sigpending(); 3608 spin_unlock_irq(&tsk->sighand->siglock); 3609 3610 __set_current_state(TASK_INTERRUPTIBLE); 3611 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3612 HRTIMER_MODE_REL); 3613 spin_lock_irq(&tsk->sighand->siglock); 3614 __set_task_blocked(tsk, &tsk->real_blocked); 3615 sigemptyset(&tsk->real_blocked); 3616 sig = dequeue_signal(tsk, &mask, info); 3617 } 3618 spin_unlock_irq(&tsk->sighand->siglock); 3619 3620 if (sig) 3621 return sig; 3622 return ret ? -EINTR : -EAGAIN; 3623 } 3624 3625 /** 3626 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3627 * in @uthese 3628 * @uthese: queued signals to wait for 3629 * @uinfo: if non-null, the signal's siginfo is returned here 3630 * @uts: upper bound on process time suspension 3631 * @sigsetsize: size of sigset_t type 3632 */ 3633 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3634 siginfo_t __user *, uinfo, 3635 const struct __kernel_timespec __user *, uts, 3636 size_t, sigsetsize) 3637 { 3638 sigset_t these; 3639 struct timespec64 ts; 3640 kernel_siginfo_t info; 3641 int ret; 3642 3643 /* XXX: Don't preclude handling different sized sigset_t's. */ 3644 if (sigsetsize != sizeof(sigset_t)) 3645 return -EINVAL; 3646 3647 if (copy_from_user(&these, uthese, sizeof(these))) 3648 return -EFAULT; 3649 3650 if (uts) { 3651 if (get_timespec64(&ts, uts)) 3652 return -EFAULT; 3653 } 3654 3655 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3656 3657 if (ret > 0 && uinfo) { 3658 if (copy_siginfo_to_user(uinfo, &info)) 3659 ret = -EFAULT; 3660 } 3661 3662 return ret; 3663 } 3664 3665 #ifdef CONFIG_COMPAT_32BIT_TIME 3666 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3667 siginfo_t __user *, uinfo, 3668 const struct old_timespec32 __user *, uts, 3669 size_t, sigsetsize) 3670 { 3671 sigset_t these; 3672 struct timespec64 ts; 3673 kernel_siginfo_t info; 3674 int ret; 3675 3676 if (sigsetsize != sizeof(sigset_t)) 3677 return -EINVAL; 3678 3679 if (copy_from_user(&these, uthese, sizeof(these))) 3680 return -EFAULT; 3681 3682 if (uts) { 3683 if (get_old_timespec32(&ts, uts)) 3684 return -EFAULT; 3685 } 3686 3687 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3688 3689 if (ret > 0 && uinfo) { 3690 if (copy_siginfo_to_user(uinfo, &info)) 3691 ret = -EFAULT; 3692 } 3693 3694 return ret; 3695 } 3696 #endif 3697 3698 #ifdef CONFIG_COMPAT 3699 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3700 struct compat_siginfo __user *, uinfo, 3701 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3702 { 3703 sigset_t s; 3704 struct timespec64 t; 3705 kernel_siginfo_t info; 3706 long ret; 3707 3708 if (sigsetsize != sizeof(sigset_t)) 3709 return -EINVAL; 3710 3711 if (get_compat_sigset(&s, uthese)) 3712 return -EFAULT; 3713 3714 if (uts) { 3715 if (get_timespec64(&t, uts)) 3716 return -EFAULT; 3717 } 3718 3719 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3720 3721 if (ret > 0 && uinfo) { 3722 if (copy_siginfo_to_user32(uinfo, &info)) 3723 ret = -EFAULT; 3724 } 3725 3726 return ret; 3727 } 3728 3729 #ifdef CONFIG_COMPAT_32BIT_TIME 3730 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3731 struct compat_siginfo __user *, uinfo, 3732 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3733 { 3734 sigset_t s; 3735 struct timespec64 t; 3736 kernel_siginfo_t info; 3737 long ret; 3738 3739 if (sigsetsize != sizeof(sigset_t)) 3740 return -EINVAL; 3741 3742 if (get_compat_sigset(&s, uthese)) 3743 return -EFAULT; 3744 3745 if (uts) { 3746 if (get_old_timespec32(&t, uts)) 3747 return -EFAULT; 3748 } 3749 3750 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3751 3752 if (ret > 0 && uinfo) { 3753 if (copy_siginfo_to_user32(uinfo, &info)) 3754 ret = -EFAULT; 3755 } 3756 3757 return ret; 3758 } 3759 #endif 3760 #endif 3761 3762 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3763 { 3764 clear_siginfo(info); 3765 info->si_signo = sig; 3766 info->si_errno = 0; 3767 info->si_code = SI_USER; 3768 info->si_pid = task_tgid_vnr(current); 3769 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3770 } 3771 3772 /** 3773 * sys_kill - send a signal to a process 3774 * @pid: the PID of the process 3775 * @sig: signal to be sent 3776 */ 3777 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3778 { 3779 struct kernel_siginfo info; 3780 3781 prepare_kill_siginfo(sig, &info); 3782 3783 return kill_something_info(sig, &info, pid); 3784 } 3785 3786 /* 3787 * Verify that the signaler and signalee either are in the same pid namespace 3788 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3789 * namespace. 3790 */ 3791 static bool access_pidfd_pidns(struct pid *pid) 3792 { 3793 struct pid_namespace *active = task_active_pid_ns(current); 3794 struct pid_namespace *p = ns_of_pid(pid); 3795 3796 for (;;) { 3797 if (!p) 3798 return false; 3799 if (p == active) 3800 break; 3801 p = p->parent; 3802 } 3803 3804 return true; 3805 } 3806 3807 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3808 siginfo_t __user *info) 3809 { 3810 #ifdef CONFIG_COMPAT 3811 /* 3812 * Avoid hooking up compat syscalls and instead handle necessary 3813 * conversions here. Note, this is a stop-gap measure and should not be 3814 * considered a generic solution. 3815 */ 3816 if (in_compat_syscall()) 3817 return copy_siginfo_from_user32( 3818 kinfo, (struct compat_siginfo __user *)info); 3819 #endif 3820 return copy_siginfo_from_user(kinfo, info); 3821 } 3822 3823 static struct pid *pidfd_to_pid(const struct file *file) 3824 { 3825 struct pid *pid; 3826 3827 pid = pidfd_pid(file); 3828 if (!IS_ERR(pid)) 3829 return pid; 3830 3831 return tgid_pidfd_to_pid(file); 3832 } 3833 3834 /** 3835 * sys_pidfd_send_signal - Signal a process through a pidfd 3836 * @pidfd: file descriptor of the process 3837 * @sig: signal to send 3838 * @info: signal info 3839 * @flags: future flags 3840 * 3841 * The syscall currently only signals via PIDTYPE_PID which covers 3842 * kill(<positive-pid>, <signal>. It does not signal threads or process 3843 * groups. 3844 * In order to extend the syscall to threads and process groups the @flags 3845 * argument should be used. In essence, the @flags argument will determine 3846 * what is signaled and not the file descriptor itself. Put in other words, 3847 * grouping is a property of the flags argument not a property of the file 3848 * descriptor. 3849 * 3850 * Return: 0 on success, negative errno on failure 3851 */ 3852 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3853 siginfo_t __user *, info, unsigned int, flags) 3854 { 3855 int ret; 3856 struct fd f; 3857 struct pid *pid; 3858 kernel_siginfo_t kinfo; 3859 3860 /* Enforce flags be set to 0 until we add an extension. */ 3861 if (flags) 3862 return -EINVAL; 3863 3864 f = fdget(pidfd); 3865 if (!f.file) 3866 return -EBADF; 3867 3868 /* Is this a pidfd? */ 3869 pid = pidfd_to_pid(f.file); 3870 if (IS_ERR(pid)) { 3871 ret = PTR_ERR(pid); 3872 goto err; 3873 } 3874 3875 ret = -EINVAL; 3876 if (!access_pidfd_pidns(pid)) 3877 goto err; 3878 3879 if (info) { 3880 ret = copy_siginfo_from_user_any(&kinfo, info); 3881 if (unlikely(ret)) 3882 goto err; 3883 3884 ret = -EINVAL; 3885 if (unlikely(sig != kinfo.si_signo)) 3886 goto err; 3887 3888 /* Only allow sending arbitrary signals to yourself. */ 3889 ret = -EPERM; 3890 if ((task_pid(current) != pid) && 3891 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3892 goto err; 3893 } else { 3894 prepare_kill_siginfo(sig, &kinfo); 3895 } 3896 3897 ret = kill_pid_info(sig, &kinfo, pid); 3898 3899 err: 3900 fdput(f); 3901 return ret; 3902 } 3903 3904 static int 3905 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3906 { 3907 struct task_struct *p; 3908 int error = -ESRCH; 3909 3910 rcu_read_lock(); 3911 p = find_task_by_vpid(pid); 3912 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3913 error = check_kill_permission(sig, info, p); 3914 /* 3915 * The null signal is a permissions and process existence 3916 * probe. No signal is actually delivered. 3917 */ 3918 if (!error && sig) { 3919 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3920 /* 3921 * If lock_task_sighand() failed we pretend the task 3922 * dies after receiving the signal. The window is tiny, 3923 * and the signal is private anyway. 3924 */ 3925 if (unlikely(error == -ESRCH)) 3926 error = 0; 3927 } 3928 } 3929 rcu_read_unlock(); 3930 3931 return error; 3932 } 3933 3934 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3935 { 3936 struct kernel_siginfo info; 3937 3938 clear_siginfo(&info); 3939 info.si_signo = sig; 3940 info.si_errno = 0; 3941 info.si_code = SI_TKILL; 3942 info.si_pid = task_tgid_vnr(current); 3943 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3944 3945 return do_send_specific(tgid, pid, sig, &info); 3946 } 3947 3948 /** 3949 * sys_tgkill - send signal to one specific thread 3950 * @tgid: the thread group ID of the thread 3951 * @pid: the PID of the thread 3952 * @sig: signal to be sent 3953 * 3954 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3955 * exists but it's not belonging to the target process anymore. This 3956 * method solves the problem of threads exiting and PIDs getting reused. 3957 */ 3958 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3959 { 3960 /* This is only valid for single tasks */ 3961 if (pid <= 0 || tgid <= 0) 3962 return -EINVAL; 3963 3964 return do_tkill(tgid, pid, sig); 3965 } 3966 3967 /** 3968 * sys_tkill - send signal to one specific task 3969 * @pid: the PID of the task 3970 * @sig: signal to be sent 3971 * 3972 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3973 */ 3974 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3975 { 3976 /* This is only valid for single tasks */ 3977 if (pid <= 0) 3978 return -EINVAL; 3979 3980 return do_tkill(0, pid, sig); 3981 } 3982 3983 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 3984 { 3985 /* Not even root can pretend to send signals from the kernel. 3986 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3987 */ 3988 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3989 (task_pid_vnr(current) != pid)) 3990 return -EPERM; 3991 3992 /* POSIX.1b doesn't mention process groups. */ 3993 return kill_proc_info(sig, info, pid); 3994 } 3995 3996 /** 3997 * sys_rt_sigqueueinfo - send signal information to a signal 3998 * @pid: the PID of the thread 3999 * @sig: signal to be sent 4000 * @uinfo: signal info to be sent 4001 */ 4002 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 4003 siginfo_t __user *, uinfo) 4004 { 4005 kernel_siginfo_t info; 4006 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4007 if (unlikely(ret)) 4008 return ret; 4009 return do_rt_sigqueueinfo(pid, sig, &info); 4010 } 4011 4012 #ifdef CONFIG_COMPAT 4013 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4014 compat_pid_t, pid, 4015 int, sig, 4016 struct compat_siginfo __user *, uinfo) 4017 { 4018 kernel_siginfo_t info; 4019 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4020 if (unlikely(ret)) 4021 return ret; 4022 return do_rt_sigqueueinfo(pid, sig, &info); 4023 } 4024 #endif 4025 4026 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4027 { 4028 /* This is only valid for single tasks */ 4029 if (pid <= 0 || tgid <= 0) 4030 return -EINVAL; 4031 4032 /* Not even root can pretend to send signals from the kernel. 4033 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4034 */ 4035 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4036 (task_pid_vnr(current) != pid)) 4037 return -EPERM; 4038 4039 return do_send_specific(tgid, pid, sig, info); 4040 } 4041 4042 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4043 siginfo_t __user *, uinfo) 4044 { 4045 kernel_siginfo_t info; 4046 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4047 if (unlikely(ret)) 4048 return ret; 4049 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4050 } 4051 4052 #ifdef CONFIG_COMPAT 4053 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4054 compat_pid_t, tgid, 4055 compat_pid_t, pid, 4056 int, sig, 4057 struct compat_siginfo __user *, uinfo) 4058 { 4059 kernel_siginfo_t info; 4060 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4061 if (unlikely(ret)) 4062 return ret; 4063 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4064 } 4065 #endif 4066 4067 /* 4068 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4069 */ 4070 void kernel_sigaction(int sig, __sighandler_t action) 4071 { 4072 spin_lock_irq(¤t->sighand->siglock); 4073 current->sighand->action[sig - 1].sa.sa_handler = action; 4074 if (action == SIG_IGN) { 4075 sigset_t mask; 4076 4077 sigemptyset(&mask); 4078 sigaddset(&mask, sig); 4079 4080 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4081 flush_sigqueue_mask(&mask, ¤t->pending); 4082 recalc_sigpending(); 4083 } 4084 spin_unlock_irq(¤t->sighand->siglock); 4085 } 4086 EXPORT_SYMBOL(kernel_sigaction); 4087 4088 void __weak sigaction_compat_abi(struct k_sigaction *act, 4089 struct k_sigaction *oact) 4090 { 4091 } 4092 4093 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4094 { 4095 struct task_struct *p = current, *t; 4096 struct k_sigaction *k; 4097 sigset_t mask; 4098 4099 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4100 return -EINVAL; 4101 4102 k = &p->sighand->action[sig-1]; 4103 4104 spin_lock_irq(&p->sighand->siglock); 4105 if (oact) 4106 *oact = *k; 4107 4108 /* 4109 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4110 * e.g. by having an architecture use the bit in their uapi. 4111 */ 4112 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4113 4114 /* 4115 * Clear unknown flag bits in order to allow userspace to detect missing 4116 * support for flag bits and to allow the kernel to use non-uapi bits 4117 * internally. 4118 */ 4119 if (act) 4120 act->sa.sa_flags &= UAPI_SA_FLAGS; 4121 if (oact) 4122 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4123 4124 sigaction_compat_abi(act, oact); 4125 4126 if (act) { 4127 sigdelsetmask(&act->sa.sa_mask, 4128 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4129 *k = *act; 4130 /* 4131 * POSIX 3.3.1.3: 4132 * "Setting a signal action to SIG_IGN for a signal that is 4133 * pending shall cause the pending signal to be discarded, 4134 * whether or not it is blocked." 4135 * 4136 * "Setting a signal action to SIG_DFL for a signal that is 4137 * pending and whose default action is to ignore the signal 4138 * (for example, SIGCHLD), shall cause the pending signal to 4139 * be discarded, whether or not it is blocked" 4140 */ 4141 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4142 sigemptyset(&mask); 4143 sigaddset(&mask, sig); 4144 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4145 for_each_thread(p, t) 4146 flush_sigqueue_mask(&mask, &t->pending); 4147 } 4148 } 4149 4150 spin_unlock_irq(&p->sighand->siglock); 4151 return 0; 4152 } 4153 4154 static int 4155 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4156 size_t min_ss_size) 4157 { 4158 struct task_struct *t = current; 4159 4160 if (oss) { 4161 memset(oss, 0, sizeof(stack_t)); 4162 oss->ss_sp = (void __user *) t->sas_ss_sp; 4163 oss->ss_size = t->sas_ss_size; 4164 oss->ss_flags = sas_ss_flags(sp) | 4165 (current->sas_ss_flags & SS_FLAG_BITS); 4166 } 4167 4168 if (ss) { 4169 void __user *ss_sp = ss->ss_sp; 4170 size_t ss_size = ss->ss_size; 4171 unsigned ss_flags = ss->ss_flags; 4172 int ss_mode; 4173 4174 if (unlikely(on_sig_stack(sp))) 4175 return -EPERM; 4176 4177 ss_mode = ss_flags & ~SS_FLAG_BITS; 4178 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4179 ss_mode != 0)) 4180 return -EINVAL; 4181 4182 if (ss_mode == SS_DISABLE) { 4183 ss_size = 0; 4184 ss_sp = NULL; 4185 } else { 4186 if (unlikely(ss_size < min_ss_size)) 4187 return -ENOMEM; 4188 } 4189 4190 t->sas_ss_sp = (unsigned long) ss_sp; 4191 t->sas_ss_size = ss_size; 4192 t->sas_ss_flags = ss_flags; 4193 } 4194 return 0; 4195 } 4196 4197 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4198 { 4199 stack_t new, old; 4200 int err; 4201 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4202 return -EFAULT; 4203 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4204 current_user_stack_pointer(), 4205 MINSIGSTKSZ); 4206 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4207 err = -EFAULT; 4208 return err; 4209 } 4210 4211 int restore_altstack(const stack_t __user *uss) 4212 { 4213 stack_t new; 4214 if (copy_from_user(&new, uss, sizeof(stack_t))) 4215 return -EFAULT; 4216 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4217 MINSIGSTKSZ); 4218 /* squash all but EFAULT for now */ 4219 return 0; 4220 } 4221 4222 int __save_altstack(stack_t __user *uss, unsigned long sp) 4223 { 4224 struct task_struct *t = current; 4225 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4226 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4227 __put_user(t->sas_ss_size, &uss->ss_size); 4228 return err; 4229 } 4230 4231 #ifdef CONFIG_COMPAT 4232 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4233 compat_stack_t __user *uoss_ptr) 4234 { 4235 stack_t uss, uoss; 4236 int ret; 4237 4238 if (uss_ptr) { 4239 compat_stack_t uss32; 4240 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4241 return -EFAULT; 4242 uss.ss_sp = compat_ptr(uss32.ss_sp); 4243 uss.ss_flags = uss32.ss_flags; 4244 uss.ss_size = uss32.ss_size; 4245 } 4246 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4247 compat_user_stack_pointer(), 4248 COMPAT_MINSIGSTKSZ); 4249 if (ret >= 0 && uoss_ptr) { 4250 compat_stack_t old; 4251 memset(&old, 0, sizeof(old)); 4252 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4253 old.ss_flags = uoss.ss_flags; 4254 old.ss_size = uoss.ss_size; 4255 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4256 ret = -EFAULT; 4257 } 4258 return ret; 4259 } 4260 4261 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4262 const compat_stack_t __user *, uss_ptr, 4263 compat_stack_t __user *, uoss_ptr) 4264 { 4265 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4266 } 4267 4268 int compat_restore_altstack(const compat_stack_t __user *uss) 4269 { 4270 int err = do_compat_sigaltstack(uss, NULL); 4271 /* squash all but -EFAULT for now */ 4272 return err == -EFAULT ? err : 0; 4273 } 4274 4275 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4276 { 4277 int err; 4278 struct task_struct *t = current; 4279 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4280 &uss->ss_sp) | 4281 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4282 __put_user(t->sas_ss_size, &uss->ss_size); 4283 return err; 4284 } 4285 #endif 4286 4287 #ifdef __ARCH_WANT_SYS_SIGPENDING 4288 4289 /** 4290 * sys_sigpending - examine pending signals 4291 * @uset: where mask of pending signal is returned 4292 */ 4293 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4294 { 4295 sigset_t set; 4296 4297 if (sizeof(old_sigset_t) > sizeof(*uset)) 4298 return -EINVAL; 4299 4300 do_sigpending(&set); 4301 4302 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4303 return -EFAULT; 4304 4305 return 0; 4306 } 4307 4308 #ifdef CONFIG_COMPAT 4309 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4310 { 4311 sigset_t set; 4312 4313 do_sigpending(&set); 4314 4315 return put_user(set.sig[0], set32); 4316 } 4317 #endif 4318 4319 #endif 4320 4321 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4322 /** 4323 * sys_sigprocmask - examine and change blocked signals 4324 * @how: whether to add, remove, or set signals 4325 * @nset: signals to add or remove (if non-null) 4326 * @oset: previous value of signal mask if non-null 4327 * 4328 * Some platforms have their own version with special arguments; 4329 * others support only sys_rt_sigprocmask. 4330 */ 4331 4332 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4333 old_sigset_t __user *, oset) 4334 { 4335 old_sigset_t old_set, new_set; 4336 sigset_t new_blocked; 4337 4338 old_set = current->blocked.sig[0]; 4339 4340 if (nset) { 4341 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4342 return -EFAULT; 4343 4344 new_blocked = current->blocked; 4345 4346 switch (how) { 4347 case SIG_BLOCK: 4348 sigaddsetmask(&new_blocked, new_set); 4349 break; 4350 case SIG_UNBLOCK: 4351 sigdelsetmask(&new_blocked, new_set); 4352 break; 4353 case SIG_SETMASK: 4354 new_blocked.sig[0] = new_set; 4355 break; 4356 default: 4357 return -EINVAL; 4358 } 4359 4360 set_current_blocked(&new_blocked); 4361 } 4362 4363 if (oset) { 4364 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4365 return -EFAULT; 4366 } 4367 4368 return 0; 4369 } 4370 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4371 4372 #ifndef CONFIG_ODD_RT_SIGACTION 4373 /** 4374 * sys_rt_sigaction - alter an action taken by a process 4375 * @sig: signal to be sent 4376 * @act: new sigaction 4377 * @oact: used to save the previous sigaction 4378 * @sigsetsize: size of sigset_t type 4379 */ 4380 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4381 const struct sigaction __user *, act, 4382 struct sigaction __user *, oact, 4383 size_t, sigsetsize) 4384 { 4385 struct k_sigaction new_sa, old_sa; 4386 int ret; 4387 4388 /* XXX: Don't preclude handling different sized sigset_t's. */ 4389 if (sigsetsize != sizeof(sigset_t)) 4390 return -EINVAL; 4391 4392 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4393 return -EFAULT; 4394 4395 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4396 if (ret) 4397 return ret; 4398 4399 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4400 return -EFAULT; 4401 4402 return 0; 4403 } 4404 #ifdef CONFIG_COMPAT 4405 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4406 const struct compat_sigaction __user *, act, 4407 struct compat_sigaction __user *, oact, 4408 compat_size_t, sigsetsize) 4409 { 4410 struct k_sigaction new_ka, old_ka; 4411 #ifdef __ARCH_HAS_SA_RESTORER 4412 compat_uptr_t restorer; 4413 #endif 4414 int ret; 4415 4416 /* XXX: Don't preclude handling different sized sigset_t's. */ 4417 if (sigsetsize != sizeof(compat_sigset_t)) 4418 return -EINVAL; 4419 4420 if (act) { 4421 compat_uptr_t handler; 4422 ret = get_user(handler, &act->sa_handler); 4423 new_ka.sa.sa_handler = compat_ptr(handler); 4424 #ifdef __ARCH_HAS_SA_RESTORER 4425 ret |= get_user(restorer, &act->sa_restorer); 4426 new_ka.sa.sa_restorer = compat_ptr(restorer); 4427 #endif 4428 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4429 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4430 if (ret) 4431 return -EFAULT; 4432 } 4433 4434 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4435 if (!ret && oact) { 4436 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4437 &oact->sa_handler); 4438 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4439 sizeof(oact->sa_mask)); 4440 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4441 #ifdef __ARCH_HAS_SA_RESTORER 4442 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4443 &oact->sa_restorer); 4444 #endif 4445 } 4446 return ret; 4447 } 4448 #endif 4449 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4450 4451 #ifdef CONFIG_OLD_SIGACTION 4452 SYSCALL_DEFINE3(sigaction, int, sig, 4453 const struct old_sigaction __user *, act, 4454 struct old_sigaction __user *, oact) 4455 { 4456 struct k_sigaction new_ka, old_ka; 4457 int ret; 4458 4459 if (act) { 4460 old_sigset_t mask; 4461 if (!access_ok(act, sizeof(*act)) || 4462 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4463 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4464 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4465 __get_user(mask, &act->sa_mask)) 4466 return -EFAULT; 4467 #ifdef __ARCH_HAS_KA_RESTORER 4468 new_ka.ka_restorer = NULL; 4469 #endif 4470 siginitset(&new_ka.sa.sa_mask, mask); 4471 } 4472 4473 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4474 4475 if (!ret && oact) { 4476 if (!access_ok(oact, sizeof(*oact)) || 4477 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4478 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4479 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4480 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4481 return -EFAULT; 4482 } 4483 4484 return ret; 4485 } 4486 #endif 4487 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4488 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4489 const struct compat_old_sigaction __user *, act, 4490 struct compat_old_sigaction __user *, oact) 4491 { 4492 struct k_sigaction new_ka, old_ka; 4493 int ret; 4494 compat_old_sigset_t mask; 4495 compat_uptr_t handler, restorer; 4496 4497 if (act) { 4498 if (!access_ok(act, sizeof(*act)) || 4499 __get_user(handler, &act->sa_handler) || 4500 __get_user(restorer, &act->sa_restorer) || 4501 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4502 __get_user(mask, &act->sa_mask)) 4503 return -EFAULT; 4504 4505 #ifdef __ARCH_HAS_KA_RESTORER 4506 new_ka.ka_restorer = NULL; 4507 #endif 4508 new_ka.sa.sa_handler = compat_ptr(handler); 4509 new_ka.sa.sa_restorer = compat_ptr(restorer); 4510 siginitset(&new_ka.sa.sa_mask, mask); 4511 } 4512 4513 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4514 4515 if (!ret && oact) { 4516 if (!access_ok(oact, sizeof(*oact)) || 4517 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4518 &oact->sa_handler) || 4519 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4520 &oact->sa_restorer) || 4521 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4522 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4523 return -EFAULT; 4524 } 4525 return ret; 4526 } 4527 #endif 4528 4529 #ifdef CONFIG_SGETMASK_SYSCALL 4530 4531 /* 4532 * For backwards compatibility. Functionality superseded by sigprocmask. 4533 */ 4534 SYSCALL_DEFINE0(sgetmask) 4535 { 4536 /* SMP safe */ 4537 return current->blocked.sig[0]; 4538 } 4539 4540 SYSCALL_DEFINE1(ssetmask, int, newmask) 4541 { 4542 int old = current->blocked.sig[0]; 4543 sigset_t newset; 4544 4545 siginitset(&newset, newmask); 4546 set_current_blocked(&newset); 4547 4548 return old; 4549 } 4550 #endif /* CONFIG_SGETMASK_SYSCALL */ 4551 4552 #ifdef __ARCH_WANT_SYS_SIGNAL 4553 /* 4554 * For backwards compatibility. Functionality superseded by sigaction. 4555 */ 4556 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4557 { 4558 struct k_sigaction new_sa, old_sa; 4559 int ret; 4560 4561 new_sa.sa.sa_handler = handler; 4562 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4563 sigemptyset(&new_sa.sa.sa_mask); 4564 4565 ret = do_sigaction(sig, &new_sa, &old_sa); 4566 4567 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4568 } 4569 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4570 4571 #ifdef __ARCH_WANT_SYS_PAUSE 4572 4573 SYSCALL_DEFINE0(pause) 4574 { 4575 while (!signal_pending(current)) { 4576 __set_current_state(TASK_INTERRUPTIBLE); 4577 schedule(); 4578 } 4579 return -ERESTARTNOHAND; 4580 } 4581 4582 #endif 4583 4584 static int sigsuspend(sigset_t *set) 4585 { 4586 current->saved_sigmask = current->blocked; 4587 set_current_blocked(set); 4588 4589 while (!signal_pending(current)) { 4590 __set_current_state(TASK_INTERRUPTIBLE); 4591 schedule(); 4592 } 4593 set_restore_sigmask(); 4594 return -ERESTARTNOHAND; 4595 } 4596 4597 /** 4598 * sys_rt_sigsuspend - replace the signal mask for a value with the 4599 * @unewset value until a signal is received 4600 * @unewset: new signal mask value 4601 * @sigsetsize: size of sigset_t type 4602 */ 4603 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4604 { 4605 sigset_t newset; 4606 4607 /* XXX: Don't preclude handling different sized sigset_t's. */ 4608 if (sigsetsize != sizeof(sigset_t)) 4609 return -EINVAL; 4610 4611 if (copy_from_user(&newset, unewset, sizeof(newset))) 4612 return -EFAULT; 4613 return sigsuspend(&newset); 4614 } 4615 4616 #ifdef CONFIG_COMPAT 4617 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4618 { 4619 sigset_t newset; 4620 4621 /* XXX: Don't preclude handling different sized sigset_t's. */ 4622 if (sigsetsize != sizeof(sigset_t)) 4623 return -EINVAL; 4624 4625 if (get_compat_sigset(&newset, unewset)) 4626 return -EFAULT; 4627 return sigsuspend(&newset); 4628 } 4629 #endif 4630 4631 #ifdef CONFIG_OLD_SIGSUSPEND 4632 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4633 { 4634 sigset_t blocked; 4635 siginitset(&blocked, mask); 4636 return sigsuspend(&blocked); 4637 } 4638 #endif 4639 #ifdef CONFIG_OLD_SIGSUSPEND3 4640 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4641 { 4642 sigset_t blocked; 4643 siginitset(&blocked, mask); 4644 return sigsuspend(&blocked); 4645 } 4646 #endif 4647 4648 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4649 { 4650 return NULL; 4651 } 4652 4653 static inline void siginfo_buildtime_checks(void) 4654 { 4655 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4656 4657 /* Verify the offsets in the two siginfos match */ 4658 #define CHECK_OFFSET(field) \ 4659 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4660 4661 /* kill */ 4662 CHECK_OFFSET(si_pid); 4663 CHECK_OFFSET(si_uid); 4664 4665 /* timer */ 4666 CHECK_OFFSET(si_tid); 4667 CHECK_OFFSET(si_overrun); 4668 CHECK_OFFSET(si_value); 4669 4670 /* rt */ 4671 CHECK_OFFSET(si_pid); 4672 CHECK_OFFSET(si_uid); 4673 CHECK_OFFSET(si_value); 4674 4675 /* sigchld */ 4676 CHECK_OFFSET(si_pid); 4677 CHECK_OFFSET(si_uid); 4678 CHECK_OFFSET(si_status); 4679 CHECK_OFFSET(si_utime); 4680 CHECK_OFFSET(si_stime); 4681 4682 /* sigfault */ 4683 CHECK_OFFSET(si_addr); 4684 CHECK_OFFSET(si_trapno); 4685 CHECK_OFFSET(si_addr_lsb); 4686 CHECK_OFFSET(si_lower); 4687 CHECK_OFFSET(si_upper); 4688 CHECK_OFFSET(si_pkey); 4689 CHECK_OFFSET(si_perf_data); 4690 CHECK_OFFSET(si_perf_type); 4691 4692 /* sigpoll */ 4693 CHECK_OFFSET(si_band); 4694 CHECK_OFFSET(si_fd); 4695 4696 /* sigsys */ 4697 CHECK_OFFSET(si_call_addr); 4698 CHECK_OFFSET(si_syscall); 4699 CHECK_OFFSET(si_arch); 4700 #undef CHECK_OFFSET 4701 4702 /* usb asyncio */ 4703 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4704 offsetof(struct siginfo, si_addr)); 4705 if (sizeof(int) == sizeof(void __user *)) { 4706 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4707 sizeof(void __user *)); 4708 } else { 4709 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4710 sizeof_field(struct siginfo, si_uid)) != 4711 sizeof(void __user *)); 4712 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4713 offsetof(struct siginfo, si_uid)); 4714 } 4715 #ifdef CONFIG_COMPAT 4716 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4717 offsetof(struct compat_siginfo, si_addr)); 4718 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4719 sizeof(compat_uptr_t)); 4720 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4721 sizeof_field(struct siginfo, si_pid)); 4722 #endif 4723 } 4724 4725 void __init signals_init(void) 4726 { 4727 siginfo_buildtime_checks(); 4728 4729 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4730 } 4731 4732 #ifdef CONFIG_KGDB_KDB 4733 #include <linux/kdb.h> 4734 /* 4735 * kdb_send_sig - Allows kdb to send signals without exposing 4736 * signal internals. This function checks if the required locks are 4737 * available before calling the main signal code, to avoid kdb 4738 * deadlocks. 4739 */ 4740 void kdb_send_sig(struct task_struct *t, int sig) 4741 { 4742 static struct task_struct *kdb_prev_t; 4743 int new_t, ret; 4744 if (!spin_trylock(&t->sighand->siglock)) { 4745 kdb_printf("Can't do kill command now.\n" 4746 "The sigmask lock is held somewhere else in " 4747 "kernel, try again later\n"); 4748 return; 4749 } 4750 new_t = kdb_prev_t != t; 4751 kdb_prev_t = t; 4752 if (!task_is_running(t) && new_t) { 4753 spin_unlock(&t->sighand->siglock); 4754 kdb_printf("Process is not RUNNING, sending a signal from " 4755 "kdb risks deadlock\n" 4756 "on the run queue locks. " 4757 "The signal has _not_ been sent.\n" 4758 "Reissue the kill command if you want to risk " 4759 "the deadlock.\n"); 4760 return; 4761 } 4762 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4763 spin_unlock(&t->sighand->siglock); 4764 if (ret) 4765 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4766 sig, t->pid); 4767 else 4768 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4769 } 4770 #endif /* CONFIG_KGDB_KDB */ 4771