xref: /openbmc/linux/kernel/signal.c (revision 6a108a14)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/signal.h>
33 
34 #include <asm/param.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/siginfo.h>
38 #include "audit.h"	/* audit_signal_info() */
39 
40 /*
41  * SLAB caches for signal bits.
42  */
43 
44 static struct kmem_cache *sigqueue_cachep;
45 
46 int print_fatal_signals __read_mostly;
47 
48 static void __user *sig_handler(struct task_struct *t, int sig)
49 {
50 	return t->sighand->action[sig - 1].sa.sa_handler;
51 }
52 
53 static int sig_handler_ignored(void __user *handler, int sig)
54 {
55 	/* Is it explicitly or implicitly ignored? */
56 	return handler == SIG_IGN ||
57 		(handler == SIG_DFL && sig_kernel_ignore(sig));
58 }
59 
60 static int sig_task_ignored(struct task_struct *t, int sig,
61 		int from_ancestor_ns)
62 {
63 	void __user *handler;
64 
65 	handler = sig_handler(t, sig);
66 
67 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
68 			handler == SIG_DFL && !from_ancestor_ns)
69 		return 1;
70 
71 	return sig_handler_ignored(handler, sig);
72 }
73 
74 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
75 {
76 	/*
77 	 * Blocked signals are never ignored, since the
78 	 * signal handler may change by the time it is
79 	 * unblocked.
80 	 */
81 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
82 		return 0;
83 
84 	if (!sig_task_ignored(t, sig, from_ancestor_ns))
85 		return 0;
86 
87 	/*
88 	 * Tracers may want to know about even ignored signals.
89 	 */
90 	return !tracehook_consider_ignored_signal(t, sig);
91 }
92 
93 /*
94  * Re-calculate pending state from the set of locally pending
95  * signals, globally pending signals, and blocked signals.
96  */
97 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
98 {
99 	unsigned long ready;
100 	long i;
101 
102 	switch (_NSIG_WORDS) {
103 	default:
104 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
105 			ready |= signal->sig[i] &~ blocked->sig[i];
106 		break;
107 
108 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
109 		ready |= signal->sig[2] &~ blocked->sig[2];
110 		ready |= signal->sig[1] &~ blocked->sig[1];
111 		ready |= signal->sig[0] &~ blocked->sig[0];
112 		break;
113 
114 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
115 		ready |= signal->sig[0] &~ blocked->sig[0];
116 		break;
117 
118 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
119 	}
120 	return ready !=	0;
121 }
122 
123 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
124 
125 static int recalc_sigpending_tsk(struct task_struct *t)
126 {
127 	if (t->signal->group_stop_count > 0 ||
128 	    PENDING(&t->pending, &t->blocked) ||
129 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
130 		set_tsk_thread_flag(t, TIF_SIGPENDING);
131 		return 1;
132 	}
133 	/*
134 	 * We must never clear the flag in another thread, or in current
135 	 * when it's possible the current syscall is returning -ERESTART*.
136 	 * So we don't clear it here, and only callers who know they should do.
137 	 */
138 	return 0;
139 }
140 
141 /*
142  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
143  * This is superfluous when called on current, the wakeup is a harmless no-op.
144  */
145 void recalc_sigpending_and_wake(struct task_struct *t)
146 {
147 	if (recalc_sigpending_tsk(t))
148 		signal_wake_up(t, 0);
149 }
150 
151 void recalc_sigpending(void)
152 {
153 	if (unlikely(tracehook_force_sigpending()))
154 		set_thread_flag(TIF_SIGPENDING);
155 	else if (!recalc_sigpending_tsk(current) && !freezing(current))
156 		clear_thread_flag(TIF_SIGPENDING);
157 
158 }
159 
160 /* Given the mask, find the first available signal that should be serviced. */
161 
162 #define SYNCHRONOUS_MASK \
163 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
164 	 sigmask(SIGTRAP) | sigmask(SIGFPE))
165 
166 int next_signal(struct sigpending *pending, sigset_t *mask)
167 {
168 	unsigned long i, *s, *m, x;
169 	int sig = 0;
170 
171 	s = pending->signal.sig;
172 	m = mask->sig;
173 
174 	/*
175 	 * Handle the first word specially: it contains the
176 	 * synchronous signals that need to be dequeued first.
177 	 */
178 	x = *s &~ *m;
179 	if (x) {
180 		if (x & SYNCHRONOUS_MASK)
181 			x &= SYNCHRONOUS_MASK;
182 		sig = ffz(~x) + 1;
183 		return sig;
184 	}
185 
186 	switch (_NSIG_WORDS) {
187 	default:
188 		for (i = 1; i < _NSIG_WORDS; ++i) {
189 			x = *++s &~ *++m;
190 			if (!x)
191 				continue;
192 			sig = ffz(~x) + i*_NSIG_BPW + 1;
193 			break;
194 		}
195 		break;
196 
197 	case 2:
198 		x = s[1] &~ m[1];
199 		if (!x)
200 			break;
201 		sig = ffz(~x) + _NSIG_BPW + 1;
202 		break;
203 
204 	case 1:
205 		/* Nothing to do */
206 		break;
207 	}
208 
209 	return sig;
210 }
211 
212 static inline void print_dropped_signal(int sig)
213 {
214 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
215 
216 	if (!print_fatal_signals)
217 		return;
218 
219 	if (!__ratelimit(&ratelimit_state))
220 		return;
221 
222 	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
223 				current->comm, current->pid, sig);
224 }
225 
226 /*
227  * allocate a new signal queue record
228  * - this may be called without locks if and only if t == current, otherwise an
229  *   appopriate lock must be held to stop the target task from exiting
230  */
231 static struct sigqueue *
232 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
233 {
234 	struct sigqueue *q = NULL;
235 	struct user_struct *user;
236 
237 	/*
238 	 * Protect access to @t credentials. This can go away when all
239 	 * callers hold rcu read lock.
240 	 */
241 	rcu_read_lock();
242 	user = get_uid(__task_cred(t)->user);
243 	atomic_inc(&user->sigpending);
244 	rcu_read_unlock();
245 
246 	if (override_rlimit ||
247 	    atomic_read(&user->sigpending) <=
248 			task_rlimit(t, RLIMIT_SIGPENDING)) {
249 		q = kmem_cache_alloc(sigqueue_cachep, flags);
250 	} else {
251 		print_dropped_signal(sig);
252 	}
253 
254 	if (unlikely(q == NULL)) {
255 		atomic_dec(&user->sigpending);
256 		free_uid(user);
257 	} else {
258 		INIT_LIST_HEAD(&q->list);
259 		q->flags = 0;
260 		q->user = user;
261 	}
262 
263 	return q;
264 }
265 
266 static void __sigqueue_free(struct sigqueue *q)
267 {
268 	if (q->flags & SIGQUEUE_PREALLOC)
269 		return;
270 	atomic_dec(&q->user->sigpending);
271 	free_uid(q->user);
272 	kmem_cache_free(sigqueue_cachep, q);
273 }
274 
275 void flush_sigqueue(struct sigpending *queue)
276 {
277 	struct sigqueue *q;
278 
279 	sigemptyset(&queue->signal);
280 	while (!list_empty(&queue->list)) {
281 		q = list_entry(queue->list.next, struct sigqueue , list);
282 		list_del_init(&q->list);
283 		__sigqueue_free(q);
284 	}
285 }
286 
287 /*
288  * Flush all pending signals for a task.
289  */
290 void __flush_signals(struct task_struct *t)
291 {
292 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
293 	flush_sigqueue(&t->pending);
294 	flush_sigqueue(&t->signal->shared_pending);
295 }
296 
297 void flush_signals(struct task_struct *t)
298 {
299 	unsigned long flags;
300 
301 	spin_lock_irqsave(&t->sighand->siglock, flags);
302 	__flush_signals(t);
303 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
304 }
305 
306 static void __flush_itimer_signals(struct sigpending *pending)
307 {
308 	sigset_t signal, retain;
309 	struct sigqueue *q, *n;
310 
311 	signal = pending->signal;
312 	sigemptyset(&retain);
313 
314 	list_for_each_entry_safe(q, n, &pending->list, list) {
315 		int sig = q->info.si_signo;
316 
317 		if (likely(q->info.si_code != SI_TIMER)) {
318 			sigaddset(&retain, sig);
319 		} else {
320 			sigdelset(&signal, sig);
321 			list_del_init(&q->list);
322 			__sigqueue_free(q);
323 		}
324 	}
325 
326 	sigorsets(&pending->signal, &signal, &retain);
327 }
328 
329 void flush_itimer_signals(void)
330 {
331 	struct task_struct *tsk = current;
332 	unsigned long flags;
333 
334 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
335 	__flush_itimer_signals(&tsk->pending);
336 	__flush_itimer_signals(&tsk->signal->shared_pending);
337 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
338 }
339 
340 void ignore_signals(struct task_struct *t)
341 {
342 	int i;
343 
344 	for (i = 0; i < _NSIG; ++i)
345 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
346 
347 	flush_signals(t);
348 }
349 
350 /*
351  * Flush all handlers for a task.
352  */
353 
354 void
355 flush_signal_handlers(struct task_struct *t, int force_default)
356 {
357 	int i;
358 	struct k_sigaction *ka = &t->sighand->action[0];
359 	for (i = _NSIG ; i != 0 ; i--) {
360 		if (force_default || ka->sa.sa_handler != SIG_IGN)
361 			ka->sa.sa_handler = SIG_DFL;
362 		ka->sa.sa_flags = 0;
363 		sigemptyset(&ka->sa.sa_mask);
364 		ka++;
365 	}
366 }
367 
368 int unhandled_signal(struct task_struct *tsk, int sig)
369 {
370 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
371 	if (is_global_init(tsk))
372 		return 1;
373 	if (handler != SIG_IGN && handler != SIG_DFL)
374 		return 0;
375 	return !tracehook_consider_fatal_signal(tsk, sig);
376 }
377 
378 
379 /* Notify the system that a driver wants to block all signals for this
380  * process, and wants to be notified if any signals at all were to be
381  * sent/acted upon.  If the notifier routine returns non-zero, then the
382  * signal will be acted upon after all.  If the notifier routine returns 0,
383  * then then signal will be blocked.  Only one block per process is
384  * allowed.  priv is a pointer to private data that the notifier routine
385  * can use to determine if the signal should be blocked or not.  */
386 
387 void
388 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
389 {
390 	unsigned long flags;
391 
392 	spin_lock_irqsave(&current->sighand->siglock, flags);
393 	current->notifier_mask = mask;
394 	current->notifier_data = priv;
395 	current->notifier = notifier;
396 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
397 }
398 
399 /* Notify the system that blocking has ended. */
400 
401 void
402 unblock_all_signals(void)
403 {
404 	unsigned long flags;
405 
406 	spin_lock_irqsave(&current->sighand->siglock, flags);
407 	current->notifier = NULL;
408 	current->notifier_data = NULL;
409 	recalc_sigpending();
410 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
411 }
412 
413 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
414 {
415 	struct sigqueue *q, *first = NULL;
416 
417 	/*
418 	 * Collect the siginfo appropriate to this signal.  Check if
419 	 * there is another siginfo for the same signal.
420 	*/
421 	list_for_each_entry(q, &list->list, list) {
422 		if (q->info.si_signo == sig) {
423 			if (first)
424 				goto still_pending;
425 			first = q;
426 		}
427 	}
428 
429 	sigdelset(&list->signal, sig);
430 
431 	if (first) {
432 still_pending:
433 		list_del_init(&first->list);
434 		copy_siginfo(info, &first->info);
435 		__sigqueue_free(first);
436 	} else {
437 		/* Ok, it wasn't in the queue.  This must be
438 		   a fast-pathed signal or we must have been
439 		   out of queue space.  So zero out the info.
440 		 */
441 		info->si_signo = sig;
442 		info->si_errno = 0;
443 		info->si_code = SI_USER;
444 		info->si_pid = 0;
445 		info->si_uid = 0;
446 	}
447 }
448 
449 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
450 			siginfo_t *info)
451 {
452 	int sig = next_signal(pending, mask);
453 
454 	if (sig) {
455 		if (current->notifier) {
456 			if (sigismember(current->notifier_mask, sig)) {
457 				if (!(current->notifier)(current->notifier_data)) {
458 					clear_thread_flag(TIF_SIGPENDING);
459 					return 0;
460 				}
461 			}
462 		}
463 
464 		collect_signal(sig, pending, info);
465 	}
466 
467 	return sig;
468 }
469 
470 /*
471  * Dequeue a signal and return the element to the caller, which is
472  * expected to free it.
473  *
474  * All callers have to hold the siglock.
475  */
476 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
477 {
478 	int signr;
479 
480 	/* We only dequeue private signals from ourselves, we don't let
481 	 * signalfd steal them
482 	 */
483 	signr = __dequeue_signal(&tsk->pending, mask, info);
484 	if (!signr) {
485 		signr = __dequeue_signal(&tsk->signal->shared_pending,
486 					 mask, info);
487 		/*
488 		 * itimer signal ?
489 		 *
490 		 * itimers are process shared and we restart periodic
491 		 * itimers in the signal delivery path to prevent DoS
492 		 * attacks in the high resolution timer case. This is
493 		 * compliant with the old way of self restarting
494 		 * itimers, as the SIGALRM is a legacy signal and only
495 		 * queued once. Changing the restart behaviour to
496 		 * restart the timer in the signal dequeue path is
497 		 * reducing the timer noise on heavy loaded !highres
498 		 * systems too.
499 		 */
500 		if (unlikely(signr == SIGALRM)) {
501 			struct hrtimer *tmr = &tsk->signal->real_timer;
502 
503 			if (!hrtimer_is_queued(tmr) &&
504 			    tsk->signal->it_real_incr.tv64 != 0) {
505 				hrtimer_forward(tmr, tmr->base->get_time(),
506 						tsk->signal->it_real_incr);
507 				hrtimer_restart(tmr);
508 			}
509 		}
510 	}
511 
512 	recalc_sigpending();
513 	if (!signr)
514 		return 0;
515 
516 	if (unlikely(sig_kernel_stop(signr))) {
517 		/*
518 		 * Set a marker that we have dequeued a stop signal.  Our
519 		 * caller might release the siglock and then the pending
520 		 * stop signal it is about to process is no longer in the
521 		 * pending bitmasks, but must still be cleared by a SIGCONT
522 		 * (and overruled by a SIGKILL).  So those cases clear this
523 		 * shared flag after we've set it.  Note that this flag may
524 		 * remain set after the signal we return is ignored or
525 		 * handled.  That doesn't matter because its only purpose
526 		 * is to alert stop-signal processing code when another
527 		 * processor has come along and cleared the flag.
528 		 */
529 		tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
530 	}
531 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
532 		/*
533 		 * Release the siglock to ensure proper locking order
534 		 * of timer locks outside of siglocks.  Note, we leave
535 		 * irqs disabled here, since the posix-timers code is
536 		 * about to disable them again anyway.
537 		 */
538 		spin_unlock(&tsk->sighand->siglock);
539 		do_schedule_next_timer(info);
540 		spin_lock(&tsk->sighand->siglock);
541 	}
542 	return signr;
543 }
544 
545 /*
546  * Tell a process that it has a new active signal..
547  *
548  * NOTE! we rely on the previous spin_lock to
549  * lock interrupts for us! We can only be called with
550  * "siglock" held, and the local interrupt must
551  * have been disabled when that got acquired!
552  *
553  * No need to set need_resched since signal event passing
554  * goes through ->blocked
555  */
556 void signal_wake_up(struct task_struct *t, int resume)
557 {
558 	unsigned int mask;
559 
560 	set_tsk_thread_flag(t, TIF_SIGPENDING);
561 
562 	/*
563 	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
564 	 * case. We don't check t->state here because there is a race with it
565 	 * executing another processor and just now entering stopped state.
566 	 * By using wake_up_state, we ensure the process will wake up and
567 	 * handle its death signal.
568 	 */
569 	mask = TASK_INTERRUPTIBLE;
570 	if (resume)
571 		mask |= TASK_WAKEKILL;
572 	if (!wake_up_state(t, mask))
573 		kick_process(t);
574 }
575 
576 /*
577  * Remove signals in mask from the pending set and queue.
578  * Returns 1 if any signals were found.
579  *
580  * All callers must be holding the siglock.
581  *
582  * This version takes a sigset mask and looks at all signals,
583  * not just those in the first mask word.
584  */
585 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
586 {
587 	struct sigqueue *q, *n;
588 	sigset_t m;
589 
590 	sigandsets(&m, mask, &s->signal);
591 	if (sigisemptyset(&m))
592 		return 0;
593 
594 	signandsets(&s->signal, &s->signal, mask);
595 	list_for_each_entry_safe(q, n, &s->list, list) {
596 		if (sigismember(mask, q->info.si_signo)) {
597 			list_del_init(&q->list);
598 			__sigqueue_free(q);
599 		}
600 	}
601 	return 1;
602 }
603 /*
604  * Remove signals in mask from the pending set and queue.
605  * Returns 1 if any signals were found.
606  *
607  * All callers must be holding the siglock.
608  */
609 static int rm_from_queue(unsigned long mask, struct sigpending *s)
610 {
611 	struct sigqueue *q, *n;
612 
613 	if (!sigtestsetmask(&s->signal, mask))
614 		return 0;
615 
616 	sigdelsetmask(&s->signal, mask);
617 	list_for_each_entry_safe(q, n, &s->list, list) {
618 		if (q->info.si_signo < SIGRTMIN &&
619 		    (mask & sigmask(q->info.si_signo))) {
620 			list_del_init(&q->list);
621 			__sigqueue_free(q);
622 		}
623 	}
624 	return 1;
625 }
626 
627 static inline int is_si_special(const struct siginfo *info)
628 {
629 	return info <= SEND_SIG_FORCED;
630 }
631 
632 static inline bool si_fromuser(const struct siginfo *info)
633 {
634 	return info == SEND_SIG_NOINFO ||
635 		(!is_si_special(info) && SI_FROMUSER(info));
636 }
637 
638 /*
639  * Bad permissions for sending the signal
640  * - the caller must hold the RCU read lock
641  */
642 static int check_kill_permission(int sig, struct siginfo *info,
643 				 struct task_struct *t)
644 {
645 	const struct cred *cred, *tcred;
646 	struct pid *sid;
647 	int error;
648 
649 	if (!valid_signal(sig))
650 		return -EINVAL;
651 
652 	if (!si_fromuser(info))
653 		return 0;
654 
655 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
656 	if (error)
657 		return error;
658 
659 	cred = current_cred();
660 	tcred = __task_cred(t);
661 	if (!same_thread_group(current, t) &&
662 	    (cred->euid ^ tcred->suid) &&
663 	    (cred->euid ^ tcred->uid) &&
664 	    (cred->uid  ^ tcred->suid) &&
665 	    (cred->uid  ^ tcred->uid) &&
666 	    !capable(CAP_KILL)) {
667 		switch (sig) {
668 		case SIGCONT:
669 			sid = task_session(t);
670 			/*
671 			 * We don't return the error if sid == NULL. The
672 			 * task was unhashed, the caller must notice this.
673 			 */
674 			if (!sid || sid == task_session(current))
675 				break;
676 		default:
677 			return -EPERM;
678 		}
679 	}
680 
681 	return security_task_kill(t, info, sig, 0);
682 }
683 
684 /*
685  * Handle magic process-wide effects of stop/continue signals. Unlike
686  * the signal actions, these happen immediately at signal-generation
687  * time regardless of blocking, ignoring, or handling.  This does the
688  * actual continuing for SIGCONT, but not the actual stopping for stop
689  * signals. The process stop is done as a signal action for SIG_DFL.
690  *
691  * Returns true if the signal should be actually delivered, otherwise
692  * it should be dropped.
693  */
694 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
695 {
696 	struct signal_struct *signal = p->signal;
697 	struct task_struct *t;
698 
699 	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
700 		/*
701 		 * The process is in the middle of dying, nothing to do.
702 		 */
703 	} else if (sig_kernel_stop(sig)) {
704 		/*
705 		 * This is a stop signal.  Remove SIGCONT from all queues.
706 		 */
707 		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
708 		t = p;
709 		do {
710 			rm_from_queue(sigmask(SIGCONT), &t->pending);
711 		} while_each_thread(p, t);
712 	} else if (sig == SIGCONT) {
713 		unsigned int why;
714 		/*
715 		 * Remove all stop signals from all queues,
716 		 * and wake all threads.
717 		 */
718 		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
719 		t = p;
720 		do {
721 			unsigned int state;
722 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
723 			/*
724 			 * If there is a handler for SIGCONT, we must make
725 			 * sure that no thread returns to user mode before
726 			 * we post the signal, in case it was the only
727 			 * thread eligible to run the signal handler--then
728 			 * it must not do anything between resuming and
729 			 * running the handler.  With the TIF_SIGPENDING
730 			 * flag set, the thread will pause and acquire the
731 			 * siglock that we hold now and until we've queued
732 			 * the pending signal.
733 			 *
734 			 * Wake up the stopped thread _after_ setting
735 			 * TIF_SIGPENDING
736 			 */
737 			state = __TASK_STOPPED;
738 			if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
739 				set_tsk_thread_flag(t, TIF_SIGPENDING);
740 				state |= TASK_INTERRUPTIBLE;
741 			}
742 			wake_up_state(t, state);
743 		} while_each_thread(p, t);
744 
745 		/*
746 		 * Notify the parent with CLD_CONTINUED if we were stopped.
747 		 *
748 		 * If we were in the middle of a group stop, we pretend it
749 		 * was already finished, and then continued. Since SIGCHLD
750 		 * doesn't queue we report only CLD_STOPPED, as if the next
751 		 * CLD_CONTINUED was dropped.
752 		 */
753 		why = 0;
754 		if (signal->flags & SIGNAL_STOP_STOPPED)
755 			why |= SIGNAL_CLD_CONTINUED;
756 		else if (signal->group_stop_count)
757 			why |= SIGNAL_CLD_STOPPED;
758 
759 		if (why) {
760 			/*
761 			 * The first thread which returns from do_signal_stop()
762 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
763 			 * notify its parent. See get_signal_to_deliver().
764 			 */
765 			signal->flags = why | SIGNAL_STOP_CONTINUED;
766 			signal->group_stop_count = 0;
767 			signal->group_exit_code = 0;
768 		} else {
769 			/*
770 			 * We are not stopped, but there could be a stop
771 			 * signal in the middle of being processed after
772 			 * being removed from the queue.  Clear that too.
773 			 */
774 			signal->flags &= ~SIGNAL_STOP_DEQUEUED;
775 		}
776 	}
777 
778 	return !sig_ignored(p, sig, from_ancestor_ns);
779 }
780 
781 /*
782  * Test if P wants to take SIG.  After we've checked all threads with this,
783  * it's equivalent to finding no threads not blocking SIG.  Any threads not
784  * blocking SIG were ruled out because they are not running and already
785  * have pending signals.  Such threads will dequeue from the shared queue
786  * as soon as they're available, so putting the signal on the shared queue
787  * will be equivalent to sending it to one such thread.
788  */
789 static inline int wants_signal(int sig, struct task_struct *p)
790 {
791 	if (sigismember(&p->blocked, sig))
792 		return 0;
793 	if (p->flags & PF_EXITING)
794 		return 0;
795 	if (sig == SIGKILL)
796 		return 1;
797 	if (task_is_stopped_or_traced(p))
798 		return 0;
799 	return task_curr(p) || !signal_pending(p);
800 }
801 
802 static void complete_signal(int sig, struct task_struct *p, int group)
803 {
804 	struct signal_struct *signal = p->signal;
805 	struct task_struct *t;
806 
807 	/*
808 	 * Now find a thread we can wake up to take the signal off the queue.
809 	 *
810 	 * If the main thread wants the signal, it gets first crack.
811 	 * Probably the least surprising to the average bear.
812 	 */
813 	if (wants_signal(sig, p))
814 		t = p;
815 	else if (!group || thread_group_empty(p))
816 		/*
817 		 * There is just one thread and it does not need to be woken.
818 		 * It will dequeue unblocked signals before it runs again.
819 		 */
820 		return;
821 	else {
822 		/*
823 		 * Otherwise try to find a suitable thread.
824 		 */
825 		t = signal->curr_target;
826 		while (!wants_signal(sig, t)) {
827 			t = next_thread(t);
828 			if (t == signal->curr_target)
829 				/*
830 				 * No thread needs to be woken.
831 				 * Any eligible threads will see
832 				 * the signal in the queue soon.
833 				 */
834 				return;
835 		}
836 		signal->curr_target = t;
837 	}
838 
839 	/*
840 	 * Found a killable thread.  If the signal will be fatal,
841 	 * then start taking the whole group down immediately.
842 	 */
843 	if (sig_fatal(p, sig) &&
844 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
845 	    !sigismember(&t->real_blocked, sig) &&
846 	    (sig == SIGKILL ||
847 	     !tracehook_consider_fatal_signal(t, sig))) {
848 		/*
849 		 * This signal will be fatal to the whole group.
850 		 */
851 		if (!sig_kernel_coredump(sig)) {
852 			/*
853 			 * Start a group exit and wake everybody up.
854 			 * This way we don't have other threads
855 			 * running and doing things after a slower
856 			 * thread has the fatal signal pending.
857 			 */
858 			signal->flags = SIGNAL_GROUP_EXIT;
859 			signal->group_exit_code = sig;
860 			signal->group_stop_count = 0;
861 			t = p;
862 			do {
863 				sigaddset(&t->pending.signal, SIGKILL);
864 				signal_wake_up(t, 1);
865 			} while_each_thread(p, t);
866 			return;
867 		}
868 	}
869 
870 	/*
871 	 * The signal is already in the shared-pending queue.
872 	 * Tell the chosen thread to wake up and dequeue it.
873 	 */
874 	signal_wake_up(t, sig == SIGKILL);
875 	return;
876 }
877 
878 static inline int legacy_queue(struct sigpending *signals, int sig)
879 {
880 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
881 }
882 
883 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
884 			int group, int from_ancestor_ns)
885 {
886 	struct sigpending *pending;
887 	struct sigqueue *q;
888 	int override_rlimit;
889 
890 	trace_signal_generate(sig, info, t);
891 
892 	assert_spin_locked(&t->sighand->siglock);
893 
894 	if (!prepare_signal(sig, t, from_ancestor_ns))
895 		return 0;
896 
897 	pending = group ? &t->signal->shared_pending : &t->pending;
898 	/*
899 	 * Short-circuit ignored signals and support queuing
900 	 * exactly one non-rt signal, so that we can get more
901 	 * detailed information about the cause of the signal.
902 	 */
903 	if (legacy_queue(pending, sig))
904 		return 0;
905 	/*
906 	 * fast-pathed signals for kernel-internal things like SIGSTOP
907 	 * or SIGKILL.
908 	 */
909 	if (info == SEND_SIG_FORCED)
910 		goto out_set;
911 
912 	/* Real-time signals must be queued if sent by sigqueue, or
913 	   some other real-time mechanism.  It is implementation
914 	   defined whether kill() does so.  We attempt to do so, on
915 	   the principle of least surprise, but since kill is not
916 	   allowed to fail with EAGAIN when low on memory we just
917 	   make sure at least one signal gets delivered and don't
918 	   pass on the info struct.  */
919 
920 	if (sig < SIGRTMIN)
921 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
922 	else
923 		override_rlimit = 0;
924 
925 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
926 		override_rlimit);
927 	if (q) {
928 		list_add_tail(&q->list, &pending->list);
929 		switch ((unsigned long) info) {
930 		case (unsigned long) SEND_SIG_NOINFO:
931 			q->info.si_signo = sig;
932 			q->info.si_errno = 0;
933 			q->info.si_code = SI_USER;
934 			q->info.si_pid = task_tgid_nr_ns(current,
935 							task_active_pid_ns(t));
936 			q->info.si_uid = current_uid();
937 			break;
938 		case (unsigned long) SEND_SIG_PRIV:
939 			q->info.si_signo = sig;
940 			q->info.si_errno = 0;
941 			q->info.si_code = SI_KERNEL;
942 			q->info.si_pid = 0;
943 			q->info.si_uid = 0;
944 			break;
945 		default:
946 			copy_siginfo(&q->info, info);
947 			if (from_ancestor_ns)
948 				q->info.si_pid = 0;
949 			break;
950 		}
951 	} else if (!is_si_special(info)) {
952 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
953 			/*
954 			 * Queue overflow, abort.  We may abort if the
955 			 * signal was rt and sent by user using something
956 			 * other than kill().
957 			 */
958 			trace_signal_overflow_fail(sig, group, info);
959 			return -EAGAIN;
960 		} else {
961 			/*
962 			 * This is a silent loss of information.  We still
963 			 * send the signal, but the *info bits are lost.
964 			 */
965 			trace_signal_lose_info(sig, group, info);
966 		}
967 	}
968 
969 out_set:
970 	signalfd_notify(t, sig);
971 	sigaddset(&pending->signal, sig);
972 	complete_signal(sig, t, group);
973 	return 0;
974 }
975 
976 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
977 			int group)
978 {
979 	int from_ancestor_ns = 0;
980 
981 #ifdef CONFIG_PID_NS
982 	from_ancestor_ns = si_fromuser(info) &&
983 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
984 #endif
985 
986 	return __send_signal(sig, info, t, group, from_ancestor_ns);
987 }
988 
989 static void print_fatal_signal(struct pt_regs *regs, int signr)
990 {
991 	printk("%s/%d: potentially unexpected fatal signal %d.\n",
992 		current->comm, task_pid_nr(current), signr);
993 
994 #if defined(__i386__) && !defined(__arch_um__)
995 	printk("code at %08lx: ", regs->ip);
996 	{
997 		int i;
998 		for (i = 0; i < 16; i++) {
999 			unsigned char insn;
1000 
1001 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1002 				break;
1003 			printk("%02x ", insn);
1004 		}
1005 	}
1006 #endif
1007 	printk("\n");
1008 	preempt_disable();
1009 	show_regs(regs);
1010 	preempt_enable();
1011 }
1012 
1013 static int __init setup_print_fatal_signals(char *str)
1014 {
1015 	get_option (&str, &print_fatal_signals);
1016 
1017 	return 1;
1018 }
1019 
1020 __setup("print-fatal-signals=", setup_print_fatal_signals);
1021 
1022 int
1023 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1024 {
1025 	return send_signal(sig, info, p, 1);
1026 }
1027 
1028 static int
1029 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1030 {
1031 	return send_signal(sig, info, t, 0);
1032 }
1033 
1034 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1035 			bool group)
1036 {
1037 	unsigned long flags;
1038 	int ret = -ESRCH;
1039 
1040 	if (lock_task_sighand(p, &flags)) {
1041 		ret = send_signal(sig, info, p, group);
1042 		unlock_task_sighand(p, &flags);
1043 	}
1044 
1045 	return ret;
1046 }
1047 
1048 /*
1049  * Force a signal that the process can't ignore: if necessary
1050  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1051  *
1052  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1053  * since we do not want to have a signal handler that was blocked
1054  * be invoked when user space had explicitly blocked it.
1055  *
1056  * We don't want to have recursive SIGSEGV's etc, for example,
1057  * that is why we also clear SIGNAL_UNKILLABLE.
1058  */
1059 int
1060 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1061 {
1062 	unsigned long int flags;
1063 	int ret, blocked, ignored;
1064 	struct k_sigaction *action;
1065 
1066 	spin_lock_irqsave(&t->sighand->siglock, flags);
1067 	action = &t->sighand->action[sig-1];
1068 	ignored = action->sa.sa_handler == SIG_IGN;
1069 	blocked = sigismember(&t->blocked, sig);
1070 	if (blocked || ignored) {
1071 		action->sa.sa_handler = SIG_DFL;
1072 		if (blocked) {
1073 			sigdelset(&t->blocked, sig);
1074 			recalc_sigpending_and_wake(t);
1075 		}
1076 	}
1077 	if (action->sa.sa_handler == SIG_DFL)
1078 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1079 	ret = specific_send_sig_info(sig, info, t);
1080 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1081 
1082 	return ret;
1083 }
1084 
1085 /*
1086  * Nuke all other threads in the group.
1087  */
1088 int zap_other_threads(struct task_struct *p)
1089 {
1090 	struct task_struct *t = p;
1091 	int count = 0;
1092 
1093 	p->signal->group_stop_count = 0;
1094 
1095 	while_each_thread(p, t) {
1096 		count++;
1097 
1098 		/* Don't bother with already dead threads */
1099 		if (t->exit_state)
1100 			continue;
1101 		sigaddset(&t->pending.signal, SIGKILL);
1102 		signal_wake_up(t, 1);
1103 	}
1104 
1105 	return count;
1106 }
1107 
1108 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1109 					   unsigned long *flags)
1110 {
1111 	struct sighand_struct *sighand;
1112 
1113 	rcu_read_lock();
1114 	for (;;) {
1115 		sighand = rcu_dereference(tsk->sighand);
1116 		if (unlikely(sighand == NULL))
1117 			break;
1118 
1119 		spin_lock_irqsave(&sighand->siglock, *flags);
1120 		if (likely(sighand == tsk->sighand))
1121 			break;
1122 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1123 	}
1124 	rcu_read_unlock();
1125 
1126 	return sighand;
1127 }
1128 
1129 /*
1130  * send signal info to all the members of a group
1131  */
1132 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1133 {
1134 	int ret;
1135 
1136 	rcu_read_lock();
1137 	ret = check_kill_permission(sig, info, p);
1138 	rcu_read_unlock();
1139 
1140 	if (!ret && sig)
1141 		ret = do_send_sig_info(sig, info, p, true);
1142 
1143 	return ret;
1144 }
1145 
1146 /*
1147  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1148  * control characters do (^C, ^Z etc)
1149  * - the caller must hold at least a readlock on tasklist_lock
1150  */
1151 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1152 {
1153 	struct task_struct *p = NULL;
1154 	int retval, success;
1155 
1156 	success = 0;
1157 	retval = -ESRCH;
1158 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1159 		int err = group_send_sig_info(sig, info, p);
1160 		success |= !err;
1161 		retval = err;
1162 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1163 	return success ? 0 : retval;
1164 }
1165 
1166 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1167 {
1168 	int error = -ESRCH;
1169 	struct task_struct *p;
1170 
1171 	rcu_read_lock();
1172 retry:
1173 	p = pid_task(pid, PIDTYPE_PID);
1174 	if (p) {
1175 		error = group_send_sig_info(sig, info, p);
1176 		if (unlikely(error == -ESRCH))
1177 			/*
1178 			 * The task was unhashed in between, try again.
1179 			 * If it is dead, pid_task() will return NULL,
1180 			 * if we race with de_thread() it will find the
1181 			 * new leader.
1182 			 */
1183 			goto retry;
1184 	}
1185 	rcu_read_unlock();
1186 
1187 	return error;
1188 }
1189 
1190 int
1191 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1192 {
1193 	int error;
1194 	rcu_read_lock();
1195 	error = kill_pid_info(sig, info, find_vpid(pid));
1196 	rcu_read_unlock();
1197 	return error;
1198 }
1199 
1200 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1201 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1202 		      uid_t uid, uid_t euid, u32 secid)
1203 {
1204 	int ret = -EINVAL;
1205 	struct task_struct *p;
1206 	const struct cred *pcred;
1207 	unsigned long flags;
1208 
1209 	if (!valid_signal(sig))
1210 		return ret;
1211 
1212 	rcu_read_lock();
1213 	p = pid_task(pid, PIDTYPE_PID);
1214 	if (!p) {
1215 		ret = -ESRCH;
1216 		goto out_unlock;
1217 	}
1218 	pcred = __task_cred(p);
1219 	if (si_fromuser(info) &&
1220 	    euid != pcred->suid && euid != pcred->uid &&
1221 	    uid  != pcred->suid && uid  != pcred->uid) {
1222 		ret = -EPERM;
1223 		goto out_unlock;
1224 	}
1225 	ret = security_task_kill(p, info, sig, secid);
1226 	if (ret)
1227 		goto out_unlock;
1228 
1229 	if (sig) {
1230 		if (lock_task_sighand(p, &flags)) {
1231 			ret = __send_signal(sig, info, p, 1, 0);
1232 			unlock_task_sighand(p, &flags);
1233 		} else
1234 			ret = -ESRCH;
1235 	}
1236 out_unlock:
1237 	rcu_read_unlock();
1238 	return ret;
1239 }
1240 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1241 
1242 /*
1243  * kill_something_info() interprets pid in interesting ways just like kill(2).
1244  *
1245  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1246  * is probably wrong.  Should make it like BSD or SYSV.
1247  */
1248 
1249 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1250 {
1251 	int ret;
1252 
1253 	if (pid > 0) {
1254 		rcu_read_lock();
1255 		ret = kill_pid_info(sig, info, find_vpid(pid));
1256 		rcu_read_unlock();
1257 		return ret;
1258 	}
1259 
1260 	read_lock(&tasklist_lock);
1261 	if (pid != -1) {
1262 		ret = __kill_pgrp_info(sig, info,
1263 				pid ? find_vpid(-pid) : task_pgrp(current));
1264 	} else {
1265 		int retval = 0, count = 0;
1266 		struct task_struct * p;
1267 
1268 		for_each_process(p) {
1269 			if (task_pid_vnr(p) > 1 &&
1270 					!same_thread_group(p, current)) {
1271 				int err = group_send_sig_info(sig, info, p);
1272 				++count;
1273 				if (err != -EPERM)
1274 					retval = err;
1275 			}
1276 		}
1277 		ret = count ? retval : -ESRCH;
1278 	}
1279 	read_unlock(&tasklist_lock);
1280 
1281 	return ret;
1282 }
1283 
1284 /*
1285  * These are for backward compatibility with the rest of the kernel source.
1286  */
1287 
1288 int
1289 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1290 {
1291 	/*
1292 	 * Make sure legacy kernel users don't send in bad values
1293 	 * (normal paths check this in check_kill_permission).
1294 	 */
1295 	if (!valid_signal(sig))
1296 		return -EINVAL;
1297 
1298 	return do_send_sig_info(sig, info, p, false);
1299 }
1300 
1301 #define __si_special(priv) \
1302 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1303 
1304 int
1305 send_sig(int sig, struct task_struct *p, int priv)
1306 {
1307 	return send_sig_info(sig, __si_special(priv), p);
1308 }
1309 
1310 void
1311 force_sig(int sig, struct task_struct *p)
1312 {
1313 	force_sig_info(sig, SEND_SIG_PRIV, p);
1314 }
1315 
1316 /*
1317  * When things go south during signal handling, we
1318  * will force a SIGSEGV. And if the signal that caused
1319  * the problem was already a SIGSEGV, we'll want to
1320  * make sure we don't even try to deliver the signal..
1321  */
1322 int
1323 force_sigsegv(int sig, struct task_struct *p)
1324 {
1325 	if (sig == SIGSEGV) {
1326 		unsigned long flags;
1327 		spin_lock_irqsave(&p->sighand->siglock, flags);
1328 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1329 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1330 	}
1331 	force_sig(SIGSEGV, p);
1332 	return 0;
1333 }
1334 
1335 int kill_pgrp(struct pid *pid, int sig, int priv)
1336 {
1337 	int ret;
1338 
1339 	read_lock(&tasklist_lock);
1340 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1341 	read_unlock(&tasklist_lock);
1342 
1343 	return ret;
1344 }
1345 EXPORT_SYMBOL(kill_pgrp);
1346 
1347 int kill_pid(struct pid *pid, int sig, int priv)
1348 {
1349 	return kill_pid_info(sig, __si_special(priv), pid);
1350 }
1351 EXPORT_SYMBOL(kill_pid);
1352 
1353 /*
1354  * These functions support sending signals using preallocated sigqueue
1355  * structures.  This is needed "because realtime applications cannot
1356  * afford to lose notifications of asynchronous events, like timer
1357  * expirations or I/O completions".  In the case of Posix Timers
1358  * we allocate the sigqueue structure from the timer_create.  If this
1359  * allocation fails we are able to report the failure to the application
1360  * with an EAGAIN error.
1361  */
1362 struct sigqueue *sigqueue_alloc(void)
1363 {
1364 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1365 
1366 	if (q)
1367 		q->flags |= SIGQUEUE_PREALLOC;
1368 
1369 	return q;
1370 }
1371 
1372 void sigqueue_free(struct sigqueue *q)
1373 {
1374 	unsigned long flags;
1375 	spinlock_t *lock = &current->sighand->siglock;
1376 
1377 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1378 	/*
1379 	 * We must hold ->siglock while testing q->list
1380 	 * to serialize with collect_signal() or with
1381 	 * __exit_signal()->flush_sigqueue().
1382 	 */
1383 	spin_lock_irqsave(lock, flags);
1384 	q->flags &= ~SIGQUEUE_PREALLOC;
1385 	/*
1386 	 * If it is queued it will be freed when dequeued,
1387 	 * like the "regular" sigqueue.
1388 	 */
1389 	if (!list_empty(&q->list))
1390 		q = NULL;
1391 	spin_unlock_irqrestore(lock, flags);
1392 
1393 	if (q)
1394 		__sigqueue_free(q);
1395 }
1396 
1397 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1398 {
1399 	int sig = q->info.si_signo;
1400 	struct sigpending *pending;
1401 	unsigned long flags;
1402 	int ret;
1403 
1404 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1405 
1406 	ret = -1;
1407 	if (!likely(lock_task_sighand(t, &flags)))
1408 		goto ret;
1409 
1410 	ret = 1; /* the signal is ignored */
1411 	if (!prepare_signal(sig, t, 0))
1412 		goto out;
1413 
1414 	ret = 0;
1415 	if (unlikely(!list_empty(&q->list))) {
1416 		/*
1417 		 * If an SI_TIMER entry is already queue just increment
1418 		 * the overrun count.
1419 		 */
1420 		BUG_ON(q->info.si_code != SI_TIMER);
1421 		q->info.si_overrun++;
1422 		goto out;
1423 	}
1424 	q->info.si_overrun = 0;
1425 
1426 	signalfd_notify(t, sig);
1427 	pending = group ? &t->signal->shared_pending : &t->pending;
1428 	list_add_tail(&q->list, &pending->list);
1429 	sigaddset(&pending->signal, sig);
1430 	complete_signal(sig, t, group);
1431 out:
1432 	unlock_task_sighand(t, &flags);
1433 ret:
1434 	return ret;
1435 }
1436 
1437 /*
1438  * Let a parent know about the death of a child.
1439  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1440  *
1441  * Returns -1 if our parent ignored us and so we've switched to
1442  * self-reaping, or else @sig.
1443  */
1444 int do_notify_parent(struct task_struct *tsk, int sig)
1445 {
1446 	struct siginfo info;
1447 	unsigned long flags;
1448 	struct sighand_struct *psig;
1449 	int ret = sig;
1450 
1451 	BUG_ON(sig == -1);
1452 
1453  	/* do_notify_parent_cldstop should have been called instead.  */
1454  	BUG_ON(task_is_stopped_or_traced(tsk));
1455 
1456 	BUG_ON(!task_ptrace(tsk) &&
1457 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1458 
1459 	info.si_signo = sig;
1460 	info.si_errno = 0;
1461 	/*
1462 	 * we are under tasklist_lock here so our parent is tied to
1463 	 * us and cannot exit and release its namespace.
1464 	 *
1465 	 * the only it can is to switch its nsproxy with sys_unshare,
1466 	 * bu uncharing pid namespaces is not allowed, so we'll always
1467 	 * see relevant namespace
1468 	 *
1469 	 * write_lock() currently calls preempt_disable() which is the
1470 	 * same as rcu_read_lock(), but according to Oleg, this is not
1471 	 * correct to rely on this
1472 	 */
1473 	rcu_read_lock();
1474 	info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1475 	info.si_uid = __task_cred(tsk)->uid;
1476 	rcu_read_unlock();
1477 
1478 	info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1479 				tsk->signal->utime));
1480 	info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1481 				tsk->signal->stime));
1482 
1483 	info.si_status = tsk->exit_code & 0x7f;
1484 	if (tsk->exit_code & 0x80)
1485 		info.si_code = CLD_DUMPED;
1486 	else if (tsk->exit_code & 0x7f)
1487 		info.si_code = CLD_KILLED;
1488 	else {
1489 		info.si_code = CLD_EXITED;
1490 		info.si_status = tsk->exit_code >> 8;
1491 	}
1492 
1493 	psig = tsk->parent->sighand;
1494 	spin_lock_irqsave(&psig->siglock, flags);
1495 	if (!task_ptrace(tsk) && sig == SIGCHLD &&
1496 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1497 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1498 		/*
1499 		 * We are exiting and our parent doesn't care.  POSIX.1
1500 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1501 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1502 		 * automatically and not left for our parent's wait4 call.
1503 		 * Rather than having the parent do it as a magic kind of
1504 		 * signal handler, we just set this to tell do_exit that we
1505 		 * can be cleaned up without becoming a zombie.  Note that
1506 		 * we still call __wake_up_parent in this case, because a
1507 		 * blocked sys_wait4 might now return -ECHILD.
1508 		 *
1509 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1510 		 * is implementation-defined: we do (if you don't want
1511 		 * it, just use SIG_IGN instead).
1512 		 */
1513 		ret = tsk->exit_signal = -1;
1514 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1515 			sig = -1;
1516 	}
1517 	if (valid_signal(sig) && sig > 0)
1518 		__group_send_sig_info(sig, &info, tsk->parent);
1519 	__wake_up_parent(tsk, tsk->parent);
1520 	spin_unlock_irqrestore(&psig->siglock, flags);
1521 
1522 	return ret;
1523 }
1524 
1525 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1526 {
1527 	struct siginfo info;
1528 	unsigned long flags;
1529 	struct task_struct *parent;
1530 	struct sighand_struct *sighand;
1531 
1532 	if (task_ptrace(tsk))
1533 		parent = tsk->parent;
1534 	else {
1535 		tsk = tsk->group_leader;
1536 		parent = tsk->real_parent;
1537 	}
1538 
1539 	info.si_signo = SIGCHLD;
1540 	info.si_errno = 0;
1541 	/*
1542 	 * see comment in do_notify_parent() abot the following 3 lines
1543 	 */
1544 	rcu_read_lock();
1545 	info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1546 	info.si_uid = __task_cred(tsk)->uid;
1547 	rcu_read_unlock();
1548 
1549 	info.si_utime = cputime_to_clock_t(tsk->utime);
1550 	info.si_stime = cputime_to_clock_t(tsk->stime);
1551 
1552  	info.si_code = why;
1553  	switch (why) {
1554  	case CLD_CONTINUED:
1555  		info.si_status = SIGCONT;
1556  		break;
1557  	case CLD_STOPPED:
1558  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1559  		break;
1560  	case CLD_TRAPPED:
1561  		info.si_status = tsk->exit_code & 0x7f;
1562  		break;
1563  	default:
1564  		BUG();
1565  	}
1566 
1567 	sighand = parent->sighand;
1568 	spin_lock_irqsave(&sighand->siglock, flags);
1569 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1570 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1571 		__group_send_sig_info(SIGCHLD, &info, parent);
1572 	/*
1573 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1574 	 */
1575 	__wake_up_parent(tsk, parent);
1576 	spin_unlock_irqrestore(&sighand->siglock, flags);
1577 }
1578 
1579 static inline int may_ptrace_stop(void)
1580 {
1581 	if (!likely(task_ptrace(current)))
1582 		return 0;
1583 	/*
1584 	 * Are we in the middle of do_coredump?
1585 	 * If so and our tracer is also part of the coredump stopping
1586 	 * is a deadlock situation, and pointless because our tracer
1587 	 * is dead so don't allow us to stop.
1588 	 * If SIGKILL was already sent before the caller unlocked
1589 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1590 	 * is safe to enter schedule().
1591 	 */
1592 	if (unlikely(current->mm->core_state) &&
1593 	    unlikely(current->mm == current->parent->mm))
1594 		return 0;
1595 
1596 	return 1;
1597 }
1598 
1599 /*
1600  * Return nonzero if there is a SIGKILL that should be waking us up.
1601  * Called with the siglock held.
1602  */
1603 static int sigkill_pending(struct task_struct *tsk)
1604 {
1605 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1606 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1607 }
1608 
1609 /*
1610  * This must be called with current->sighand->siglock held.
1611  *
1612  * This should be the path for all ptrace stops.
1613  * We always set current->last_siginfo while stopped here.
1614  * That makes it a way to test a stopped process for
1615  * being ptrace-stopped vs being job-control-stopped.
1616  *
1617  * If we actually decide not to stop at all because the tracer
1618  * is gone, we keep current->exit_code unless clear_code.
1619  */
1620 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1621 	__releases(&current->sighand->siglock)
1622 	__acquires(&current->sighand->siglock)
1623 {
1624 	if (arch_ptrace_stop_needed(exit_code, info)) {
1625 		/*
1626 		 * The arch code has something special to do before a
1627 		 * ptrace stop.  This is allowed to block, e.g. for faults
1628 		 * on user stack pages.  We can't keep the siglock while
1629 		 * calling arch_ptrace_stop, so we must release it now.
1630 		 * To preserve proper semantics, we must do this before
1631 		 * any signal bookkeeping like checking group_stop_count.
1632 		 * Meanwhile, a SIGKILL could come in before we retake the
1633 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1634 		 * So after regaining the lock, we must check for SIGKILL.
1635 		 */
1636 		spin_unlock_irq(&current->sighand->siglock);
1637 		arch_ptrace_stop(exit_code, info);
1638 		spin_lock_irq(&current->sighand->siglock);
1639 		if (sigkill_pending(current))
1640 			return;
1641 	}
1642 
1643 	/*
1644 	 * If there is a group stop in progress,
1645 	 * we must participate in the bookkeeping.
1646 	 */
1647 	if (current->signal->group_stop_count > 0)
1648 		--current->signal->group_stop_count;
1649 
1650 	current->last_siginfo = info;
1651 	current->exit_code = exit_code;
1652 
1653 	/* Let the debugger run.  */
1654 	__set_current_state(TASK_TRACED);
1655 	spin_unlock_irq(&current->sighand->siglock);
1656 	read_lock(&tasklist_lock);
1657 	if (may_ptrace_stop()) {
1658 		do_notify_parent_cldstop(current, CLD_TRAPPED);
1659 		/*
1660 		 * Don't want to allow preemption here, because
1661 		 * sys_ptrace() needs this task to be inactive.
1662 		 *
1663 		 * XXX: implement read_unlock_no_resched().
1664 		 */
1665 		preempt_disable();
1666 		read_unlock(&tasklist_lock);
1667 		preempt_enable_no_resched();
1668 		schedule();
1669 	} else {
1670 		/*
1671 		 * By the time we got the lock, our tracer went away.
1672 		 * Don't drop the lock yet, another tracer may come.
1673 		 */
1674 		__set_current_state(TASK_RUNNING);
1675 		if (clear_code)
1676 			current->exit_code = 0;
1677 		read_unlock(&tasklist_lock);
1678 	}
1679 
1680 	/*
1681 	 * While in TASK_TRACED, we were considered "frozen enough".
1682 	 * Now that we woke up, it's crucial if we're supposed to be
1683 	 * frozen that we freeze now before running anything substantial.
1684 	 */
1685 	try_to_freeze();
1686 
1687 	/*
1688 	 * We are back.  Now reacquire the siglock before touching
1689 	 * last_siginfo, so that we are sure to have synchronized with
1690 	 * any signal-sending on another CPU that wants to examine it.
1691 	 */
1692 	spin_lock_irq(&current->sighand->siglock);
1693 	current->last_siginfo = NULL;
1694 
1695 	/*
1696 	 * Queued signals ignored us while we were stopped for tracing.
1697 	 * So check for any that we should take before resuming user mode.
1698 	 * This sets TIF_SIGPENDING, but never clears it.
1699 	 */
1700 	recalc_sigpending_tsk(current);
1701 }
1702 
1703 void ptrace_notify(int exit_code)
1704 {
1705 	siginfo_t info;
1706 
1707 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1708 
1709 	memset(&info, 0, sizeof info);
1710 	info.si_signo = SIGTRAP;
1711 	info.si_code = exit_code;
1712 	info.si_pid = task_pid_vnr(current);
1713 	info.si_uid = current_uid();
1714 
1715 	/* Let the debugger run.  */
1716 	spin_lock_irq(&current->sighand->siglock);
1717 	ptrace_stop(exit_code, 1, &info);
1718 	spin_unlock_irq(&current->sighand->siglock);
1719 }
1720 
1721 /*
1722  * This performs the stopping for SIGSTOP and other stop signals.
1723  * We have to stop all threads in the thread group.
1724  * Returns nonzero if we've actually stopped and released the siglock.
1725  * Returns zero if we didn't stop and still hold the siglock.
1726  */
1727 static int do_signal_stop(int signr)
1728 {
1729 	struct signal_struct *sig = current->signal;
1730 	int notify;
1731 
1732 	if (!sig->group_stop_count) {
1733 		struct task_struct *t;
1734 
1735 		if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1736 		    unlikely(signal_group_exit(sig)))
1737 			return 0;
1738 		/*
1739 		 * There is no group stop already in progress.
1740 		 * We must initiate one now.
1741 		 */
1742 		sig->group_exit_code = signr;
1743 
1744 		sig->group_stop_count = 1;
1745 		for (t = next_thread(current); t != current; t = next_thread(t))
1746 			/*
1747 			 * Setting state to TASK_STOPPED for a group
1748 			 * stop is always done with the siglock held,
1749 			 * so this check has no races.
1750 			 */
1751 			if (!(t->flags & PF_EXITING) &&
1752 			    !task_is_stopped_or_traced(t)) {
1753 				sig->group_stop_count++;
1754 				signal_wake_up(t, 0);
1755 			}
1756 	}
1757 	/*
1758 	 * If there are no other threads in the group, or if there is
1759 	 * a group stop in progress and we are the last to stop, report
1760 	 * to the parent.  When ptraced, every thread reports itself.
1761 	 */
1762 	notify = sig->group_stop_count == 1 ? CLD_STOPPED : 0;
1763 	notify = tracehook_notify_jctl(notify, CLD_STOPPED);
1764 	/*
1765 	 * tracehook_notify_jctl() can drop and reacquire siglock, so
1766 	 * we keep ->group_stop_count != 0 before the call. If SIGCONT
1767 	 * or SIGKILL comes in between ->group_stop_count == 0.
1768 	 */
1769 	if (sig->group_stop_count) {
1770 		if (!--sig->group_stop_count)
1771 			sig->flags = SIGNAL_STOP_STOPPED;
1772 		current->exit_code = sig->group_exit_code;
1773 		__set_current_state(TASK_STOPPED);
1774 	}
1775 	spin_unlock_irq(&current->sighand->siglock);
1776 
1777 	if (notify) {
1778 		read_lock(&tasklist_lock);
1779 		do_notify_parent_cldstop(current, notify);
1780 		read_unlock(&tasklist_lock);
1781 	}
1782 
1783 	/* Now we don't run again until woken by SIGCONT or SIGKILL */
1784 	do {
1785 		schedule();
1786 	} while (try_to_freeze());
1787 
1788 	tracehook_finish_jctl();
1789 	current->exit_code = 0;
1790 
1791 	return 1;
1792 }
1793 
1794 static int ptrace_signal(int signr, siginfo_t *info,
1795 			 struct pt_regs *regs, void *cookie)
1796 {
1797 	if (!task_ptrace(current))
1798 		return signr;
1799 
1800 	ptrace_signal_deliver(regs, cookie);
1801 
1802 	/* Let the debugger run.  */
1803 	ptrace_stop(signr, 0, info);
1804 
1805 	/* We're back.  Did the debugger cancel the sig?  */
1806 	signr = current->exit_code;
1807 	if (signr == 0)
1808 		return signr;
1809 
1810 	current->exit_code = 0;
1811 
1812 	/* Update the siginfo structure if the signal has
1813 	   changed.  If the debugger wanted something
1814 	   specific in the siginfo structure then it should
1815 	   have updated *info via PTRACE_SETSIGINFO.  */
1816 	if (signr != info->si_signo) {
1817 		info->si_signo = signr;
1818 		info->si_errno = 0;
1819 		info->si_code = SI_USER;
1820 		info->si_pid = task_pid_vnr(current->parent);
1821 		info->si_uid = task_uid(current->parent);
1822 	}
1823 
1824 	/* If the (new) signal is now blocked, requeue it.  */
1825 	if (sigismember(&current->blocked, signr)) {
1826 		specific_send_sig_info(signr, info, current);
1827 		signr = 0;
1828 	}
1829 
1830 	return signr;
1831 }
1832 
1833 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1834 			  struct pt_regs *regs, void *cookie)
1835 {
1836 	struct sighand_struct *sighand = current->sighand;
1837 	struct signal_struct *signal = current->signal;
1838 	int signr;
1839 
1840 relock:
1841 	/*
1842 	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1843 	 * While in TASK_STOPPED, we were considered "frozen enough".
1844 	 * Now that we woke up, it's crucial if we're supposed to be
1845 	 * frozen that we freeze now before running anything substantial.
1846 	 */
1847 	try_to_freeze();
1848 
1849 	spin_lock_irq(&sighand->siglock);
1850 	/*
1851 	 * Every stopped thread goes here after wakeup. Check to see if
1852 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
1853 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1854 	 */
1855 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1856 		int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1857 				? CLD_CONTINUED : CLD_STOPPED;
1858 		signal->flags &= ~SIGNAL_CLD_MASK;
1859 
1860 		why = tracehook_notify_jctl(why, CLD_CONTINUED);
1861 		spin_unlock_irq(&sighand->siglock);
1862 
1863 		if (why) {
1864 			read_lock(&tasklist_lock);
1865 			do_notify_parent_cldstop(current->group_leader, why);
1866 			read_unlock(&tasklist_lock);
1867 		}
1868 		goto relock;
1869 	}
1870 
1871 	for (;;) {
1872 		struct k_sigaction *ka;
1873 		/*
1874 		 * Tracing can induce an artifical signal and choose sigaction.
1875 		 * The return value in @signr determines the default action,
1876 		 * but @info->si_signo is the signal number we will report.
1877 		 */
1878 		signr = tracehook_get_signal(current, regs, info, return_ka);
1879 		if (unlikely(signr < 0))
1880 			goto relock;
1881 		if (unlikely(signr != 0))
1882 			ka = return_ka;
1883 		else {
1884 			if (unlikely(signal->group_stop_count > 0) &&
1885 			    do_signal_stop(0))
1886 				goto relock;
1887 
1888 			signr = dequeue_signal(current, &current->blocked,
1889 					       info);
1890 
1891 			if (!signr)
1892 				break; /* will return 0 */
1893 
1894 			if (signr != SIGKILL) {
1895 				signr = ptrace_signal(signr, info,
1896 						      regs, cookie);
1897 				if (!signr)
1898 					continue;
1899 			}
1900 
1901 			ka = &sighand->action[signr-1];
1902 		}
1903 
1904 		/* Trace actually delivered signals. */
1905 		trace_signal_deliver(signr, info, ka);
1906 
1907 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
1908 			continue;
1909 		if (ka->sa.sa_handler != SIG_DFL) {
1910 			/* Run the handler.  */
1911 			*return_ka = *ka;
1912 
1913 			if (ka->sa.sa_flags & SA_ONESHOT)
1914 				ka->sa.sa_handler = SIG_DFL;
1915 
1916 			break; /* will return non-zero "signr" value */
1917 		}
1918 
1919 		/*
1920 		 * Now we are doing the default action for this signal.
1921 		 */
1922 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
1923 			continue;
1924 
1925 		/*
1926 		 * Global init gets no signals it doesn't want.
1927 		 * Container-init gets no signals it doesn't want from same
1928 		 * container.
1929 		 *
1930 		 * Note that if global/container-init sees a sig_kernel_only()
1931 		 * signal here, the signal must have been generated internally
1932 		 * or must have come from an ancestor namespace. In either
1933 		 * case, the signal cannot be dropped.
1934 		 */
1935 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1936 				!sig_kernel_only(signr))
1937 			continue;
1938 
1939 		if (sig_kernel_stop(signr)) {
1940 			/*
1941 			 * The default action is to stop all threads in
1942 			 * the thread group.  The job control signals
1943 			 * do nothing in an orphaned pgrp, but SIGSTOP
1944 			 * always works.  Note that siglock needs to be
1945 			 * dropped during the call to is_orphaned_pgrp()
1946 			 * because of lock ordering with tasklist_lock.
1947 			 * This allows an intervening SIGCONT to be posted.
1948 			 * We need to check for that and bail out if necessary.
1949 			 */
1950 			if (signr != SIGSTOP) {
1951 				spin_unlock_irq(&sighand->siglock);
1952 
1953 				/* signals can be posted during this window */
1954 
1955 				if (is_current_pgrp_orphaned())
1956 					goto relock;
1957 
1958 				spin_lock_irq(&sighand->siglock);
1959 			}
1960 
1961 			if (likely(do_signal_stop(info->si_signo))) {
1962 				/* It released the siglock.  */
1963 				goto relock;
1964 			}
1965 
1966 			/*
1967 			 * We didn't actually stop, due to a race
1968 			 * with SIGCONT or something like that.
1969 			 */
1970 			continue;
1971 		}
1972 
1973 		spin_unlock_irq(&sighand->siglock);
1974 
1975 		/*
1976 		 * Anything else is fatal, maybe with a core dump.
1977 		 */
1978 		current->flags |= PF_SIGNALED;
1979 
1980 		if (sig_kernel_coredump(signr)) {
1981 			if (print_fatal_signals)
1982 				print_fatal_signal(regs, info->si_signo);
1983 			/*
1984 			 * If it was able to dump core, this kills all
1985 			 * other threads in the group and synchronizes with
1986 			 * their demise.  If we lost the race with another
1987 			 * thread getting here, it set group_exit_code
1988 			 * first and our do_group_exit call below will use
1989 			 * that value and ignore the one we pass it.
1990 			 */
1991 			do_coredump(info->si_signo, info->si_signo, regs);
1992 		}
1993 
1994 		/*
1995 		 * Death signals, no core dump.
1996 		 */
1997 		do_group_exit(info->si_signo);
1998 		/* NOTREACHED */
1999 	}
2000 	spin_unlock_irq(&sighand->siglock);
2001 	return signr;
2002 }
2003 
2004 void exit_signals(struct task_struct *tsk)
2005 {
2006 	int group_stop = 0;
2007 	struct task_struct *t;
2008 
2009 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2010 		tsk->flags |= PF_EXITING;
2011 		return;
2012 	}
2013 
2014 	spin_lock_irq(&tsk->sighand->siglock);
2015 	/*
2016 	 * From now this task is not visible for group-wide signals,
2017 	 * see wants_signal(), do_signal_stop().
2018 	 */
2019 	tsk->flags |= PF_EXITING;
2020 	if (!signal_pending(tsk))
2021 		goto out;
2022 
2023 	/* It could be that __group_complete_signal() choose us to
2024 	 * notify about group-wide signal. Another thread should be
2025 	 * woken now to take the signal since we will not.
2026 	 */
2027 	for (t = tsk; (t = next_thread(t)) != tsk; )
2028 		if (!signal_pending(t) && !(t->flags & PF_EXITING))
2029 			recalc_sigpending_and_wake(t);
2030 
2031 	if (unlikely(tsk->signal->group_stop_count) &&
2032 			!--tsk->signal->group_stop_count) {
2033 		tsk->signal->flags = SIGNAL_STOP_STOPPED;
2034 		group_stop = tracehook_notify_jctl(CLD_STOPPED, CLD_STOPPED);
2035 	}
2036 out:
2037 	spin_unlock_irq(&tsk->sighand->siglock);
2038 
2039 	if (unlikely(group_stop)) {
2040 		read_lock(&tasklist_lock);
2041 		do_notify_parent_cldstop(tsk, group_stop);
2042 		read_unlock(&tasklist_lock);
2043 	}
2044 }
2045 
2046 EXPORT_SYMBOL(recalc_sigpending);
2047 EXPORT_SYMBOL_GPL(dequeue_signal);
2048 EXPORT_SYMBOL(flush_signals);
2049 EXPORT_SYMBOL(force_sig);
2050 EXPORT_SYMBOL(send_sig);
2051 EXPORT_SYMBOL(send_sig_info);
2052 EXPORT_SYMBOL(sigprocmask);
2053 EXPORT_SYMBOL(block_all_signals);
2054 EXPORT_SYMBOL(unblock_all_signals);
2055 
2056 
2057 /*
2058  * System call entry points.
2059  */
2060 
2061 SYSCALL_DEFINE0(restart_syscall)
2062 {
2063 	struct restart_block *restart = &current_thread_info()->restart_block;
2064 	return restart->fn(restart);
2065 }
2066 
2067 long do_no_restart_syscall(struct restart_block *param)
2068 {
2069 	return -EINTR;
2070 }
2071 
2072 /*
2073  * We don't need to get the kernel lock - this is all local to this
2074  * particular thread.. (and that's good, because this is _heavily_
2075  * used by various programs)
2076  */
2077 
2078 /*
2079  * This is also useful for kernel threads that want to temporarily
2080  * (or permanently) block certain signals.
2081  *
2082  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2083  * interface happily blocks "unblockable" signals like SIGKILL
2084  * and friends.
2085  */
2086 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2087 {
2088 	int error;
2089 
2090 	spin_lock_irq(&current->sighand->siglock);
2091 	if (oldset)
2092 		*oldset = current->blocked;
2093 
2094 	error = 0;
2095 	switch (how) {
2096 	case SIG_BLOCK:
2097 		sigorsets(&current->blocked, &current->blocked, set);
2098 		break;
2099 	case SIG_UNBLOCK:
2100 		signandsets(&current->blocked, &current->blocked, set);
2101 		break;
2102 	case SIG_SETMASK:
2103 		current->blocked = *set;
2104 		break;
2105 	default:
2106 		error = -EINVAL;
2107 	}
2108 	recalc_sigpending();
2109 	spin_unlock_irq(&current->sighand->siglock);
2110 
2111 	return error;
2112 }
2113 
2114 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set,
2115 		sigset_t __user *, oset, size_t, sigsetsize)
2116 {
2117 	int error = -EINVAL;
2118 	sigset_t old_set, new_set;
2119 
2120 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2121 	if (sigsetsize != sizeof(sigset_t))
2122 		goto out;
2123 
2124 	if (set) {
2125 		error = -EFAULT;
2126 		if (copy_from_user(&new_set, set, sizeof(*set)))
2127 			goto out;
2128 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2129 
2130 		error = sigprocmask(how, &new_set, &old_set);
2131 		if (error)
2132 			goto out;
2133 		if (oset)
2134 			goto set_old;
2135 	} else if (oset) {
2136 		spin_lock_irq(&current->sighand->siglock);
2137 		old_set = current->blocked;
2138 		spin_unlock_irq(&current->sighand->siglock);
2139 
2140 	set_old:
2141 		error = -EFAULT;
2142 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2143 			goto out;
2144 	}
2145 	error = 0;
2146 out:
2147 	return error;
2148 }
2149 
2150 long do_sigpending(void __user *set, unsigned long sigsetsize)
2151 {
2152 	long error = -EINVAL;
2153 	sigset_t pending;
2154 
2155 	if (sigsetsize > sizeof(sigset_t))
2156 		goto out;
2157 
2158 	spin_lock_irq(&current->sighand->siglock);
2159 	sigorsets(&pending, &current->pending.signal,
2160 		  &current->signal->shared_pending.signal);
2161 	spin_unlock_irq(&current->sighand->siglock);
2162 
2163 	/* Outside the lock because only this thread touches it.  */
2164 	sigandsets(&pending, &current->blocked, &pending);
2165 
2166 	error = -EFAULT;
2167 	if (!copy_to_user(set, &pending, sigsetsize))
2168 		error = 0;
2169 
2170 out:
2171 	return error;
2172 }
2173 
2174 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2175 {
2176 	return do_sigpending(set, sigsetsize);
2177 }
2178 
2179 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2180 
2181 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2182 {
2183 	int err;
2184 
2185 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2186 		return -EFAULT;
2187 	if (from->si_code < 0)
2188 		return __copy_to_user(to, from, sizeof(siginfo_t))
2189 			? -EFAULT : 0;
2190 	/*
2191 	 * If you change siginfo_t structure, please be sure
2192 	 * this code is fixed accordingly.
2193 	 * Please remember to update the signalfd_copyinfo() function
2194 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2195 	 * It should never copy any pad contained in the structure
2196 	 * to avoid security leaks, but must copy the generic
2197 	 * 3 ints plus the relevant union member.
2198 	 */
2199 	err = __put_user(from->si_signo, &to->si_signo);
2200 	err |= __put_user(from->si_errno, &to->si_errno);
2201 	err |= __put_user((short)from->si_code, &to->si_code);
2202 	switch (from->si_code & __SI_MASK) {
2203 	case __SI_KILL:
2204 		err |= __put_user(from->si_pid, &to->si_pid);
2205 		err |= __put_user(from->si_uid, &to->si_uid);
2206 		break;
2207 	case __SI_TIMER:
2208 		 err |= __put_user(from->si_tid, &to->si_tid);
2209 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2210 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2211 		break;
2212 	case __SI_POLL:
2213 		err |= __put_user(from->si_band, &to->si_band);
2214 		err |= __put_user(from->si_fd, &to->si_fd);
2215 		break;
2216 	case __SI_FAULT:
2217 		err |= __put_user(from->si_addr, &to->si_addr);
2218 #ifdef __ARCH_SI_TRAPNO
2219 		err |= __put_user(from->si_trapno, &to->si_trapno);
2220 #endif
2221 #ifdef BUS_MCEERR_AO
2222 		/*
2223 		 * Other callers might not initialize the si_lsb field,
2224 	 	 * so check explicitely for the right codes here.
2225 		 */
2226 		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2227 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2228 #endif
2229 		break;
2230 	case __SI_CHLD:
2231 		err |= __put_user(from->si_pid, &to->si_pid);
2232 		err |= __put_user(from->si_uid, &to->si_uid);
2233 		err |= __put_user(from->si_status, &to->si_status);
2234 		err |= __put_user(from->si_utime, &to->si_utime);
2235 		err |= __put_user(from->si_stime, &to->si_stime);
2236 		break;
2237 	case __SI_RT: /* This is not generated by the kernel as of now. */
2238 	case __SI_MESGQ: /* But this is */
2239 		err |= __put_user(from->si_pid, &to->si_pid);
2240 		err |= __put_user(from->si_uid, &to->si_uid);
2241 		err |= __put_user(from->si_ptr, &to->si_ptr);
2242 		break;
2243 	default: /* this is just in case for now ... */
2244 		err |= __put_user(from->si_pid, &to->si_pid);
2245 		err |= __put_user(from->si_uid, &to->si_uid);
2246 		break;
2247 	}
2248 	return err;
2249 }
2250 
2251 #endif
2252 
2253 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2254 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2255 		size_t, sigsetsize)
2256 {
2257 	int ret, sig;
2258 	sigset_t these;
2259 	struct timespec ts;
2260 	siginfo_t info;
2261 	long timeout = 0;
2262 
2263 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2264 	if (sigsetsize != sizeof(sigset_t))
2265 		return -EINVAL;
2266 
2267 	if (copy_from_user(&these, uthese, sizeof(these)))
2268 		return -EFAULT;
2269 
2270 	/*
2271 	 * Invert the set of allowed signals to get those we
2272 	 * want to block.
2273 	 */
2274 	sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2275 	signotset(&these);
2276 
2277 	if (uts) {
2278 		if (copy_from_user(&ts, uts, sizeof(ts)))
2279 			return -EFAULT;
2280 		if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2281 		    || ts.tv_sec < 0)
2282 			return -EINVAL;
2283 	}
2284 
2285 	spin_lock_irq(&current->sighand->siglock);
2286 	sig = dequeue_signal(current, &these, &info);
2287 	if (!sig) {
2288 		timeout = MAX_SCHEDULE_TIMEOUT;
2289 		if (uts)
2290 			timeout = (timespec_to_jiffies(&ts)
2291 				   + (ts.tv_sec || ts.tv_nsec));
2292 
2293 		if (timeout) {
2294 			/* None ready -- temporarily unblock those we're
2295 			 * interested while we are sleeping in so that we'll
2296 			 * be awakened when they arrive.  */
2297 			current->real_blocked = current->blocked;
2298 			sigandsets(&current->blocked, &current->blocked, &these);
2299 			recalc_sigpending();
2300 			spin_unlock_irq(&current->sighand->siglock);
2301 
2302 			timeout = schedule_timeout_interruptible(timeout);
2303 
2304 			spin_lock_irq(&current->sighand->siglock);
2305 			sig = dequeue_signal(current, &these, &info);
2306 			current->blocked = current->real_blocked;
2307 			siginitset(&current->real_blocked, 0);
2308 			recalc_sigpending();
2309 		}
2310 	}
2311 	spin_unlock_irq(&current->sighand->siglock);
2312 
2313 	if (sig) {
2314 		ret = sig;
2315 		if (uinfo) {
2316 			if (copy_siginfo_to_user(uinfo, &info))
2317 				ret = -EFAULT;
2318 		}
2319 	} else {
2320 		ret = -EAGAIN;
2321 		if (timeout)
2322 			ret = -EINTR;
2323 	}
2324 
2325 	return ret;
2326 }
2327 
2328 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2329 {
2330 	struct siginfo info;
2331 
2332 	info.si_signo = sig;
2333 	info.si_errno = 0;
2334 	info.si_code = SI_USER;
2335 	info.si_pid = task_tgid_vnr(current);
2336 	info.si_uid = current_uid();
2337 
2338 	return kill_something_info(sig, &info, pid);
2339 }
2340 
2341 static int
2342 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2343 {
2344 	struct task_struct *p;
2345 	int error = -ESRCH;
2346 
2347 	rcu_read_lock();
2348 	p = find_task_by_vpid(pid);
2349 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2350 		error = check_kill_permission(sig, info, p);
2351 		/*
2352 		 * The null signal is a permissions and process existence
2353 		 * probe.  No signal is actually delivered.
2354 		 */
2355 		if (!error && sig) {
2356 			error = do_send_sig_info(sig, info, p, false);
2357 			/*
2358 			 * If lock_task_sighand() failed we pretend the task
2359 			 * dies after receiving the signal. The window is tiny,
2360 			 * and the signal is private anyway.
2361 			 */
2362 			if (unlikely(error == -ESRCH))
2363 				error = 0;
2364 		}
2365 	}
2366 	rcu_read_unlock();
2367 
2368 	return error;
2369 }
2370 
2371 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2372 {
2373 	struct siginfo info;
2374 
2375 	info.si_signo = sig;
2376 	info.si_errno = 0;
2377 	info.si_code = SI_TKILL;
2378 	info.si_pid = task_tgid_vnr(current);
2379 	info.si_uid = current_uid();
2380 
2381 	return do_send_specific(tgid, pid, sig, &info);
2382 }
2383 
2384 /**
2385  *  sys_tgkill - send signal to one specific thread
2386  *  @tgid: the thread group ID of the thread
2387  *  @pid: the PID of the thread
2388  *  @sig: signal to be sent
2389  *
2390  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2391  *  exists but it's not belonging to the target process anymore. This
2392  *  method solves the problem of threads exiting and PIDs getting reused.
2393  */
2394 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2395 {
2396 	/* This is only valid for single tasks */
2397 	if (pid <= 0 || tgid <= 0)
2398 		return -EINVAL;
2399 
2400 	return do_tkill(tgid, pid, sig);
2401 }
2402 
2403 /*
2404  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2405  */
2406 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2407 {
2408 	/* This is only valid for single tasks */
2409 	if (pid <= 0)
2410 		return -EINVAL;
2411 
2412 	return do_tkill(0, pid, sig);
2413 }
2414 
2415 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2416 		siginfo_t __user *, uinfo)
2417 {
2418 	siginfo_t info;
2419 
2420 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2421 		return -EFAULT;
2422 
2423 	/* Not even root can pretend to send signals from the kernel.
2424 	   Nor can they impersonate a kill(), which adds source info.  */
2425 	if (info.si_code >= 0)
2426 		return -EPERM;
2427 	info.si_signo = sig;
2428 
2429 	/* POSIX.1b doesn't mention process groups.  */
2430 	return kill_proc_info(sig, &info, pid);
2431 }
2432 
2433 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2434 {
2435 	/* This is only valid for single tasks */
2436 	if (pid <= 0 || tgid <= 0)
2437 		return -EINVAL;
2438 
2439 	/* Not even root can pretend to send signals from the kernel.
2440 	   Nor can they impersonate a kill(), which adds source info.  */
2441 	if (info->si_code >= 0)
2442 		return -EPERM;
2443 	info->si_signo = sig;
2444 
2445 	return do_send_specific(tgid, pid, sig, info);
2446 }
2447 
2448 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2449 		siginfo_t __user *, uinfo)
2450 {
2451 	siginfo_t info;
2452 
2453 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2454 		return -EFAULT;
2455 
2456 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2457 }
2458 
2459 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2460 {
2461 	struct task_struct *t = current;
2462 	struct k_sigaction *k;
2463 	sigset_t mask;
2464 
2465 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2466 		return -EINVAL;
2467 
2468 	k = &t->sighand->action[sig-1];
2469 
2470 	spin_lock_irq(&current->sighand->siglock);
2471 	if (oact)
2472 		*oact = *k;
2473 
2474 	if (act) {
2475 		sigdelsetmask(&act->sa.sa_mask,
2476 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2477 		*k = *act;
2478 		/*
2479 		 * POSIX 3.3.1.3:
2480 		 *  "Setting a signal action to SIG_IGN for a signal that is
2481 		 *   pending shall cause the pending signal to be discarded,
2482 		 *   whether or not it is blocked."
2483 		 *
2484 		 *  "Setting a signal action to SIG_DFL for a signal that is
2485 		 *   pending and whose default action is to ignore the signal
2486 		 *   (for example, SIGCHLD), shall cause the pending signal to
2487 		 *   be discarded, whether or not it is blocked"
2488 		 */
2489 		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2490 			sigemptyset(&mask);
2491 			sigaddset(&mask, sig);
2492 			rm_from_queue_full(&mask, &t->signal->shared_pending);
2493 			do {
2494 				rm_from_queue_full(&mask, &t->pending);
2495 				t = next_thread(t);
2496 			} while (t != current);
2497 		}
2498 	}
2499 
2500 	spin_unlock_irq(&current->sighand->siglock);
2501 	return 0;
2502 }
2503 
2504 int
2505 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2506 {
2507 	stack_t oss;
2508 	int error;
2509 
2510 	oss.ss_sp = (void __user *) current->sas_ss_sp;
2511 	oss.ss_size = current->sas_ss_size;
2512 	oss.ss_flags = sas_ss_flags(sp);
2513 
2514 	if (uss) {
2515 		void __user *ss_sp;
2516 		size_t ss_size;
2517 		int ss_flags;
2518 
2519 		error = -EFAULT;
2520 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
2521 			goto out;
2522 		error = __get_user(ss_sp, &uss->ss_sp) |
2523 			__get_user(ss_flags, &uss->ss_flags) |
2524 			__get_user(ss_size, &uss->ss_size);
2525 		if (error)
2526 			goto out;
2527 
2528 		error = -EPERM;
2529 		if (on_sig_stack(sp))
2530 			goto out;
2531 
2532 		error = -EINVAL;
2533 		/*
2534 		 *
2535 		 * Note - this code used to test ss_flags incorrectly
2536 		 *  	  old code may have been written using ss_flags==0
2537 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2538 		 *	  way that worked) - this fix preserves that older
2539 		 *	  mechanism
2540 		 */
2541 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2542 			goto out;
2543 
2544 		if (ss_flags == SS_DISABLE) {
2545 			ss_size = 0;
2546 			ss_sp = NULL;
2547 		} else {
2548 			error = -ENOMEM;
2549 			if (ss_size < MINSIGSTKSZ)
2550 				goto out;
2551 		}
2552 
2553 		current->sas_ss_sp = (unsigned long) ss_sp;
2554 		current->sas_ss_size = ss_size;
2555 	}
2556 
2557 	error = 0;
2558 	if (uoss) {
2559 		error = -EFAULT;
2560 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
2561 			goto out;
2562 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
2563 			__put_user(oss.ss_size, &uoss->ss_size) |
2564 			__put_user(oss.ss_flags, &uoss->ss_flags);
2565 	}
2566 
2567 out:
2568 	return error;
2569 }
2570 
2571 #ifdef __ARCH_WANT_SYS_SIGPENDING
2572 
2573 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2574 {
2575 	return do_sigpending(set, sizeof(*set));
2576 }
2577 
2578 #endif
2579 
2580 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2581 /* Some platforms have their own version with special arguments others
2582    support only sys_rt_sigprocmask.  */
2583 
2584 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set,
2585 		old_sigset_t __user *, oset)
2586 {
2587 	int error;
2588 	old_sigset_t old_set, new_set;
2589 
2590 	if (set) {
2591 		error = -EFAULT;
2592 		if (copy_from_user(&new_set, set, sizeof(*set)))
2593 			goto out;
2594 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2595 
2596 		spin_lock_irq(&current->sighand->siglock);
2597 		old_set = current->blocked.sig[0];
2598 
2599 		error = 0;
2600 		switch (how) {
2601 		default:
2602 			error = -EINVAL;
2603 			break;
2604 		case SIG_BLOCK:
2605 			sigaddsetmask(&current->blocked, new_set);
2606 			break;
2607 		case SIG_UNBLOCK:
2608 			sigdelsetmask(&current->blocked, new_set);
2609 			break;
2610 		case SIG_SETMASK:
2611 			current->blocked.sig[0] = new_set;
2612 			break;
2613 		}
2614 
2615 		recalc_sigpending();
2616 		spin_unlock_irq(&current->sighand->siglock);
2617 		if (error)
2618 			goto out;
2619 		if (oset)
2620 			goto set_old;
2621 	} else if (oset) {
2622 		old_set = current->blocked.sig[0];
2623 	set_old:
2624 		error = -EFAULT;
2625 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2626 			goto out;
2627 	}
2628 	error = 0;
2629 out:
2630 	return error;
2631 }
2632 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2633 
2634 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2635 SYSCALL_DEFINE4(rt_sigaction, int, sig,
2636 		const struct sigaction __user *, act,
2637 		struct sigaction __user *, oact,
2638 		size_t, sigsetsize)
2639 {
2640 	struct k_sigaction new_sa, old_sa;
2641 	int ret = -EINVAL;
2642 
2643 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2644 	if (sigsetsize != sizeof(sigset_t))
2645 		goto out;
2646 
2647 	if (act) {
2648 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2649 			return -EFAULT;
2650 	}
2651 
2652 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2653 
2654 	if (!ret && oact) {
2655 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2656 			return -EFAULT;
2657 	}
2658 out:
2659 	return ret;
2660 }
2661 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2662 
2663 #ifdef __ARCH_WANT_SYS_SGETMASK
2664 
2665 /*
2666  * For backwards compatibility.  Functionality superseded by sigprocmask.
2667  */
2668 SYSCALL_DEFINE0(sgetmask)
2669 {
2670 	/* SMP safe */
2671 	return current->blocked.sig[0];
2672 }
2673 
2674 SYSCALL_DEFINE1(ssetmask, int, newmask)
2675 {
2676 	int old;
2677 
2678 	spin_lock_irq(&current->sighand->siglock);
2679 	old = current->blocked.sig[0];
2680 
2681 	siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2682 						  sigmask(SIGSTOP)));
2683 	recalc_sigpending();
2684 	spin_unlock_irq(&current->sighand->siglock);
2685 
2686 	return old;
2687 }
2688 #endif /* __ARCH_WANT_SGETMASK */
2689 
2690 #ifdef __ARCH_WANT_SYS_SIGNAL
2691 /*
2692  * For backwards compatibility.  Functionality superseded by sigaction.
2693  */
2694 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
2695 {
2696 	struct k_sigaction new_sa, old_sa;
2697 	int ret;
2698 
2699 	new_sa.sa.sa_handler = handler;
2700 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2701 	sigemptyset(&new_sa.sa.sa_mask);
2702 
2703 	ret = do_sigaction(sig, &new_sa, &old_sa);
2704 
2705 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2706 }
2707 #endif /* __ARCH_WANT_SYS_SIGNAL */
2708 
2709 #ifdef __ARCH_WANT_SYS_PAUSE
2710 
2711 SYSCALL_DEFINE0(pause)
2712 {
2713 	current->state = TASK_INTERRUPTIBLE;
2714 	schedule();
2715 	return -ERESTARTNOHAND;
2716 }
2717 
2718 #endif
2719 
2720 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2721 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
2722 {
2723 	sigset_t newset;
2724 
2725 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2726 	if (sigsetsize != sizeof(sigset_t))
2727 		return -EINVAL;
2728 
2729 	if (copy_from_user(&newset, unewset, sizeof(newset)))
2730 		return -EFAULT;
2731 	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2732 
2733 	spin_lock_irq(&current->sighand->siglock);
2734 	current->saved_sigmask = current->blocked;
2735 	current->blocked = newset;
2736 	recalc_sigpending();
2737 	spin_unlock_irq(&current->sighand->siglock);
2738 
2739 	current->state = TASK_INTERRUPTIBLE;
2740 	schedule();
2741 	set_restore_sigmask();
2742 	return -ERESTARTNOHAND;
2743 }
2744 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2745 
2746 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2747 {
2748 	return NULL;
2749 }
2750 
2751 void __init signals_init(void)
2752 {
2753 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2754 }
2755 
2756 #ifdef CONFIG_KGDB_KDB
2757 #include <linux/kdb.h>
2758 /*
2759  * kdb_send_sig_info - Allows kdb to send signals without exposing
2760  * signal internals.  This function checks if the required locks are
2761  * available before calling the main signal code, to avoid kdb
2762  * deadlocks.
2763  */
2764 void
2765 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
2766 {
2767 	static struct task_struct *kdb_prev_t;
2768 	int sig, new_t;
2769 	if (!spin_trylock(&t->sighand->siglock)) {
2770 		kdb_printf("Can't do kill command now.\n"
2771 			   "The sigmask lock is held somewhere else in "
2772 			   "kernel, try again later\n");
2773 		return;
2774 	}
2775 	spin_unlock(&t->sighand->siglock);
2776 	new_t = kdb_prev_t != t;
2777 	kdb_prev_t = t;
2778 	if (t->state != TASK_RUNNING && new_t) {
2779 		kdb_printf("Process is not RUNNING, sending a signal from "
2780 			   "kdb risks deadlock\n"
2781 			   "on the run queue locks. "
2782 			   "The signal has _not_ been sent.\n"
2783 			   "Reissue the kill command if you want to risk "
2784 			   "the deadlock.\n");
2785 		return;
2786 	}
2787 	sig = info->si_signo;
2788 	if (send_sig_info(sig, info, t))
2789 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
2790 			   sig, t->pid);
2791 	else
2792 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
2793 }
2794 #endif	/* CONFIG_KGDB_KDB */
2795