xref: /openbmc/linux/kernel/signal.c (revision 67bf4745)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/livepatch.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/signal.h>
52 
53 #include <asm/param.h>
54 #include <linux/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/siginfo.h>
57 #include <asm/cacheflush.h>
58 
59 /*
60  * SLAB caches for signal bits.
61  */
62 
63 static struct kmem_cache *sigqueue_cachep;
64 
65 int print_fatal_signals __read_mostly;
66 
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 	return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71 
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 	/* Is it explicitly or implicitly ignored? */
75 	return handler == SIG_IGN ||
76 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78 
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 	void __user *handler;
82 
83 	handler = sig_handler(t, sig);
84 
85 	/* SIGKILL and SIGSTOP may not be sent to the global init */
86 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 		return true;
88 
89 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 		return true;
92 
93 	return sig_handler_ignored(handler, sig);
94 }
95 
96 static bool sig_ignored(struct task_struct *t, int sig, bool force)
97 {
98 	/*
99 	 * Blocked signals are never ignored, since the
100 	 * signal handler may change by the time it is
101 	 * unblocked.
102 	 */
103 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
104 		return false;
105 
106 	/*
107 	 * Tracers may want to know about even ignored signal unless it
108 	 * is SIGKILL which can't be reported anyway but can be ignored
109 	 * by SIGNAL_UNKILLABLE task.
110 	 */
111 	if (t->ptrace && sig != SIGKILL)
112 		return false;
113 
114 	return sig_task_ignored(t, sig, force);
115 }
116 
117 /*
118  * Re-calculate pending state from the set of locally pending
119  * signals, globally pending signals, and blocked signals.
120  */
121 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
122 {
123 	unsigned long ready;
124 	long i;
125 
126 	switch (_NSIG_WORDS) {
127 	default:
128 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
129 			ready |= signal->sig[i] &~ blocked->sig[i];
130 		break;
131 
132 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
133 		ready |= signal->sig[2] &~ blocked->sig[2];
134 		ready |= signal->sig[1] &~ blocked->sig[1];
135 		ready |= signal->sig[0] &~ blocked->sig[0];
136 		break;
137 
138 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
139 		ready |= signal->sig[0] &~ blocked->sig[0];
140 		break;
141 
142 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
143 	}
144 	return ready !=	0;
145 }
146 
147 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
148 
149 static bool recalc_sigpending_tsk(struct task_struct *t)
150 {
151 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
152 	    PENDING(&t->pending, &t->blocked) ||
153 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
154 	    cgroup_task_frozen(t)) {
155 		set_tsk_thread_flag(t, TIF_SIGPENDING);
156 		return true;
157 	}
158 
159 	/*
160 	 * We must never clear the flag in another thread, or in current
161 	 * when it's possible the current syscall is returning -ERESTART*.
162 	 * So we don't clear it here, and only callers who know they should do.
163 	 */
164 	return false;
165 }
166 
167 /*
168  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
169  * This is superfluous when called on current, the wakeup is a harmless no-op.
170  */
171 void recalc_sigpending_and_wake(struct task_struct *t)
172 {
173 	if (recalc_sigpending_tsk(t))
174 		signal_wake_up(t, 0);
175 }
176 
177 void recalc_sigpending(void)
178 {
179 	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
180 	    !klp_patch_pending(current))
181 		clear_thread_flag(TIF_SIGPENDING);
182 
183 }
184 EXPORT_SYMBOL(recalc_sigpending);
185 
186 void calculate_sigpending(void)
187 {
188 	/* Have any signals or users of TIF_SIGPENDING been delayed
189 	 * until after fork?
190 	 */
191 	spin_lock_irq(&current->sighand->siglock);
192 	set_tsk_thread_flag(current, TIF_SIGPENDING);
193 	recalc_sigpending();
194 	spin_unlock_irq(&current->sighand->siglock);
195 }
196 
197 /* Given the mask, find the first available signal that should be serviced. */
198 
199 #define SYNCHRONOUS_MASK \
200 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
201 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
202 
203 int next_signal(struct sigpending *pending, sigset_t *mask)
204 {
205 	unsigned long i, *s, *m, x;
206 	int sig = 0;
207 
208 	s = pending->signal.sig;
209 	m = mask->sig;
210 
211 	/*
212 	 * Handle the first word specially: it contains the
213 	 * synchronous signals that need to be dequeued first.
214 	 */
215 	x = *s &~ *m;
216 	if (x) {
217 		if (x & SYNCHRONOUS_MASK)
218 			x &= SYNCHRONOUS_MASK;
219 		sig = ffz(~x) + 1;
220 		return sig;
221 	}
222 
223 	switch (_NSIG_WORDS) {
224 	default:
225 		for (i = 1; i < _NSIG_WORDS; ++i) {
226 			x = *++s &~ *++m;
227 			if (!x)
228 				continue;
229 			sig = ffz(~x) + i*_NSIG_BPW + 1;
230 			break;
231 		}
232 		break;
233 
234 	case 2:
235 		x = s[1] &~ m[1];
236 		if (!x)
237 			break;
238 		sig = ffz(~x) + _NSIG_BPW + 1;
239 		break;
240 
241 	case 1:
242 		/* Nothing to do */
243 		break;
244 	}
245 
246 	return sig;
247 }
248 
249 static inline void print_dropped_signal(int sig)
250 {
251 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
252 
253 	if (!print_fatal_signals)
254 		return;
255 
256 	if (!__ratelimit(&ratelimit_state))
257 		return;
258 
259 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
260 				current->comm, current->pid, sig);
261 }
262 
263 /**
264  * task_set_jobctl_pending - set jobctl pending bits
265  * @task: target task
266  * @mask: pending bits to set
267  *
268  * Clear @mask from @task->jobctl.  @mask must be subset of
269  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
270  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
271  * cleared.  If @task is already being killed or exiting, this function
272  * becomes noop.
273  *
274  * CONTEXT:
275  * Must be called with @task->sighand->siglock held.
276  *
277  * RETURNS:
278  * %true if @mask is set, %false if made noop because @task was dying.
279  */
280 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
281 {
282 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
283 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
284 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
285 
286 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
287 		return false;
288 
289 	if (mask & JOBCTL_STOP_SIGMASK)
290 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
291 
292 	task->jobctl |= mask;
293 	return true;
294 }
295 
296 /**
297  * task_clear_jobctl_trapping - clear jobctl trapping bit
298  * @task: target task
299  *
300  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
301  * Clear it and wake up the ptracer.  Note that we don't need any further
302  * locking.  @task->siglock guarantees that @task->parent points to the
303  * ptracer.
304  *
305  * CONTEXT:
306  * Must be called with @task->sighand->siglock held.
307  */
308 void task_clear_jobctl_trapping(struct task_struct *task)
309 {
310 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
311 		task->jobctl &= ~JOBCTL_TRAPPING;
312 		smp_mb();	/* advised by wake_up_bit() */
313 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
314 	}
315 }
316 
317 /**
318  * task_clear_jobctl_pending - clear jobctl pending bits
319  * @task: target task
320  * @mask: pending bits to clear
321  *
322  * Clear @mask from @task->jobctl.  @mask must be subset of
323  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
324  * STOP bits are cleared together.
325  *
326  * If clearing of @mask leaves no stop or trap pending, this function calls
327  * task_clear_jobctl_trapping().
328  *
329  * CONTEXT:
330  * Must be called with @task->sighand->siglock held.
331  */
332 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
333 {
334 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
335 
336 	if (mask & JOBCTL_STOP_PENDING)
337 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
338 
339 	task->jobctl &= ~mask;
340 
341 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
342 		task_clear_jobctl_trapping(task);
343 }
344 
345 /**
346  * task_participate_group_stop - participate in a group stop
347  * @task: task participating in a group stop
348  *
349  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
350  * Group stop states are cleared and the group stop count is consumed if
351  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
352  * stop, the appropriate %SIGNAL_* flags are set.
353  *
354  * CONTEXT:
355  * Must be called with @task->sighand->siglock held.
356  *
357  * RETURNS:
358  * %true if group stop completion should be notified to the parent, %false
359  * otherwise.
360  */
361 static bool task_participate_group_stop(struct task_struct *task)
362 {
363 	struct signal_struct *sig = task->signal;
364 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
365 
366 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
367 
368 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
369 
370 	if (!consume)
371 		return false;
372 
373 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
374 		sig->group_stop_count--;
375 
376 	/*
377 	 * Tell the caller to notify completion iff we are entering into a
378 	 * fresh group stop.  Read comment in do_signal_stop() for details.
379 	 */
380 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
381 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
382 		return true;
383 	}
384 	return false;
385 }
386 
387 void task_join_group_stop(struct task_struct *task)
388 {
389 	/* Have the new thread join an on-going signal group stop */
390 	unsigned long jobctl = current->jobctl;
391 	if (jobctl & JOBCTL_STOP_PENDING) {
392 		struct signal_struct *sig = current->signal;
393 		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
394 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
395 		if (task_set_jobctl_pending(task, signr | gstop)) {
396 			sig->group_stop_count++;
397 		}
398 	}
399 }
400 
401 /*
402  * allocate a new signal queue record
403  * - this may be called without locks if and only if t == current, otherwise an
404  *   appropriate lock must be held to stop the target task from exiting
405  */
406 static struct sigqueue *
407 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
408 {
409 	struct sigqueue *q = NULL;
410 	struct user_struct *user;
411 
412 	/*
413 	 * Protect access to @t credentials. This can go away when all
414 	 * callers hold rcu read lock.
415 	 */
416 	rcu_read_lock();
417 	user = get_uid(__task_cred(t)->user);
418 	atomic_inc(&user->sigpending);
419 	rcu_read_unlock();
420 
421 	if (override_rlimit ||
422 	    atomic_read(&user->sigpending) <=
423 			task_rlimit(t, RLIMIT_SIGPENDING)) {
424 		q = kmem_cache_alloc(sigqueue_cachep, flags);
425 	} else {
426 		print_dropped_signal(sig);
427 	}
428 
429 	if (unlikely(q == NULL)) {
430 		atomic_dec(&user->sigpending);
431 		free_uid(user);
432 	} else {
433 		INIT_LIST_HEAD(&q->list);
434 		q->flags = 0;
435 		q->user = user;
436 	}
437 
438 	return q;
439 }
440 
441 static void __sigqueue_free(struct sigqueue *q)
442 {
443 	if (q->flags & SIGQUEUE_PREALLOC)
444 		return;
445 	atomic_dec(&q->user->sigpending);
446 	free_uid(q->user);
447 	kmem_cache_free(sigqueue_cachep, q);
448 }
449 
450 void flush_sigqueue(struct sigpending *queue)
451 {
452 	struct sigqueue *q;
453 
454 	sigemptyset(&queue->signal);
455 	while (!list_empty(&queue->list)) {
456 		q = list_entry(queue->list.next, struct sigqueue , list);
457 		list_del_init(&q->list);
458 		__sigqueue_free(q);
459 	}
460 }
461 
462 /*
463  * Flush all pending signals for this kthread.
464  */
465 void flush_signals(struct task_struct *t)
466 {
467 	unsigned long flags;
468 
469 	spin_lock_irqsave(&t->sighand->siglock, flags);
470 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
471 	flush_sigqueue(&t->pending);
472 	flush_sigqueue(&t->signal->shared_pending);
473 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
474 }
475 EXPORT_SYMBOL(flush_signals);
476 
477 #ifdef CONFIG_POSIX_TIMERS
478 static void __flush_itimer_signals(struct sigpending *pending)
479 {
480 	sigset_t signal, retain;
481 	struct sigqueue *q, *n;
482 
483 	signal = pending->signal;
484 	sigemptyset(&retain);
485 
486 	list_for_each_entry_safe(q, n, &pending->list, list) {
487 		int sig = q->info.si_signo;
488 
489 		if (likely(q->info.si_code != SI_TIMER)) {
490 			sigaddset(&retain, sig);
491 		} else {
492 			sigdelset(&signal, sig);
493 			list_del_init(&q->list);
494 			__sigqueue_free(q);
495 		}
496 	}
497 
498 	sigorsets(&pending->signal, &signal, &retain);
499 }
500 
501 void flush_itimer_signals(void)
502 {
503 	struct task_struct *tsk = current;
504 	unsigned long flags;
505 
506 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
507 	__flush_itimer_signals(&tsk->pending);
508 	__flush_itimer_signals(&tsk->signal->shared_pending);
509 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
510 }
511 #endif
512 
513 void ignore_signals(struct task_struct *t)
514 {
515 	int i;
516 
517 	for (i = 0; i < _NSIG; ++i)
518 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
519 
520 	flush_signals(t);
521 }
522 
523 /*
524  * Flush all handlers for a task.
525  */
526 
527 void
528 flush_signal_handlers(struct task_struct *t, int force_default)
529 {
530 	int i;
531 	struct k_sigaction *ka = &t->sighand->action[0];
532 	for (i = _NSIG ; i != 0 ; i--) {
533 		if (force_default || ka->sa.sa_handler != SIG_IGN)
534 			ka->sa.sa_handler = SIG_DFL;
535 		ka->sa.sa_flags = 0;
536 #ifdef __ARCH_HAS_SA_RESTORER
537 		ka->sa.sa_restorer = NULL;
538 #endif
539 		sigemptyset(&ka->sa.sa_mask);
540 		ka++;
541 	}
542 }
543 
544 bool unhandled_signal(struct task_struct *tsk, int sig)
545 {
546 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
547 	if (is_global_init(tsk))
548 		return true;
549 
550 	if (handler != SIG_IGN && handler != SIG_DFL)
551 		return false;
552 
553 	/* if ptraced, let the tracer determine */
554 	return !tsk->ptrace;
555 }
556 
557 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
558 			   bool *resched_timer)
559 {
560 	struct sigqueue *q, *first = NULL;
561 
562 	/*
563 	 * Collect the siginfo appropriate to this signal.  Check if
564 	 * there is another siginfo for the same signal.
565 	*/
566 	list_for_each_entry(q, &list->list, list) {
567 		if (q->info.si_signo == sig) {
568 			if (first)
569 				goto still_pending;
570 			first = q;
571 		}
572 	}
573 
574 	sigdelset(&list->signal, sig);
575 
576 	if (first) {
577 still_pending:
578 		list_del_init(&first->list);
579 		copy_siginfo(info, &first->info);
580 
581 		*resched_timer =
582 			(first->flags & SIGQUEUE_PREALLOC) &&
583 			(info->si_code == SI_TIMER) &&
584 			(info->si_sys_private);
585 
586 		__sigqueue_free(first);
587 	} else {
588 		/*
589 		 * Ok, it wasn't in the queue.  This must be
590 		 * a fast-pathed signal or we must have been
591 		 * out of queue space.  So zero out the info.
592 		 */
593 		clear_siginfo(info);
594 		info->si_signo = sig;
595 		info->si_errno = 0;
596 		info->si_code = SI_USER;
597 		info->si_pid = 0;
598 		info->si_uid = 0;
599 	}
600 }
601 
602 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
603 			kernel_siginfo_t *info, bool *resched_timer)
604 {
605 	int sig = next_signal(pending, mask);
606 
607 	if (sig)
608 		collect_signal(sig, pending, info, resched_timer);
609 	return sig;
610 }
611 
612 /*
613  * Dequeue a signal and return the element to the caller, which is
614  * expected to free it.
615  *
616  * All callers have to hold the siglock.
617  */
618 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
619 {
620 	bool resched_timer = false;
621 	int signr;
622 
623 	/* We only dequeue private signals from ourselves, we don't let
624 	 * signalfd steal them
625 	 */
626 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
627 	if (!signr) {
628 		signr = __dequeue_signal(&tsk->signal->shared_pending,
629 					 mask, info, &resched_timer);
630 #ifdef CONFIG_POSIX_TIMERS
631 		/*
632 		 * itimer signal ?
633 		 *
634 		 * itimers are process shared and we restart periodic
635 		 * itimers in the signal delivery path to prevent DoS
636 		 * attacks in the high resolution timer case. This is
637 		 * compliant with the old way of self-restarting
638 		 * itimers, as the SIGALRM is a legacy signal and only
639 		 * queued once. Changing the restart behaviour to
640 		 * restart the timer in the signal dequeue path is
641 		 * reducing the timer noise on heavy loaded !highres
642 		 * systems too.
643 		 */
644 		if (unlikely(signr == SIGALRM)) {
645 			struct hrtimer *tmr = &tsk->signal->real_timer;
646 
647 			if (!hrtimer_is_queued(tmr) &&
648 			    tsk->signal->it_real_incr != 0) {
649 				hrtimer_forward(tmr, tmr->base->get_time(),
650 						tsk->signal->it_real_incr);
651 				hrtimer_restart(tmr);
652 			}
653 		}
654 #endif
655 	}
656 
657 	recalc_sigpending();
658 	if (!signr)
659 		return 0;
660 
661 	if (unlikely(sig_kernel_stop(signr))) {
662 		/*
663 		 * Set a marker that we have dequeued a stop signal.  Our
664 		 * caller might release the siglock and then the pending
665 		 * stop signal it is about to process is no longer in the
666 		 * pending bitmasks, but must still be cleared by a SIGCONT
667 		 * (and overruled by a SIGKILL).  So those cases clear this
668 		 * shared flag after we've set it.  Note that this flag may
669 		 * remain set after the signal we return is ignored or
670 		 * handled.  That doesn't matter because its only purpose
671 		 * is to alert stop-signal processing code when another
672 		 * processor has come along and cleared the flag.
673 		 */
674 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
675 	}
676 #ifdef CONFIG_POSIX_TIMERS
677 	if (resched_timer) {
678 		/*
679 		 * Release the siglock to ensure proper locking order
680 		 * of timer locks outside of siglocks.  Note, we leave
681 		 * irqs disabled here, since the posix-timers code is
682 		 * about to disable them again anyway.
683 		 */
684 		spin_unlock(&tsk->sighand->siglock);
685 		posixtimer_rearm(info);
686 		spin_lock(&tsk->sighand->siglock);
687 
688 		/* Don't expose the si_sys_private value to userspace */
689 		info->si_sys_private = 0;
690 	}
691 #endif
692 	return signr;
693 }
694 EXPORT_SYMBOL_GPL(dequeue_signal);
695 
696 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
697 {
698 	struct task_struct *tsk = current;
699 	struct sigpending *pending = &tsk->pending;
700 	struct sigqueue *q, *sync = NULL;
701 
702 	/*
703 	 * Might a synchronous signal be in the queue?
704 	 */
705 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
706 		return 0;
707 
708 	/*
709 	 * Return the first synchronous signal in the queue.
710 	 */
711 	list_for_each_entry(q, &pending->list, list) {
712 		/* Synchronous signals have a postive si_code */
713 		if ((q->info.si_code > SI_USER) &&
714 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
715 			sync = q;
716 			goto next;
717 		}
718 	}
719 	return 0;
720 next:
721 	/*
722 	 * Check if there is another siginfo for the same signal.
723 	 */
724 	list_for_each_entry_continue(q, &pending->list, list) {
725 		if (q->info.si_signo == sync->info.si_signo)
726 			goto still_pending;
727 	}
728 
729 	sigdelset(&pending->signal, sync->info.si_signo);
730 	recalc_sigpending();
731 still_pending:
732 	list_del_init(&sync->list);
733 	copy_siginfo(info, &sync->info);
734 	__sigqueue_free(sync);
735 	return info->si_signo;
736 }
737 
738 /*
739  * Tell a process that it has a new active signal..
740  *
741  * NOTE! we rely on the previous spin_lock to
742  * lock interrupts for us! We can only be called with
743  * "siglock" held, and the local interrupt must
744  * have been disabled when that got acquired!
745  *
746  * No need to set need_resched since signal event passing
747  * goes through ->blocked
748  */
749 void signal_wake_up_state(struct task_struct *t, unsigned int state)
750 {
751 	set_tsk_thread_flag(t, TIF_SIGPENDING);
752 	/*
753 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
754 	 * case. We don't check t->state here because there is a race with it
755 	 * executing another processor and just now entering stopped state.
756 	 * By using wake_up_state, we ensure the process will wake up and
757 	 * handle its death signal.
758 	 */
759 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
760 		kick_process(t);
761 }
762 
763 /*
764  * Remove signals in mask from the pending set and queue.
765  * Returns 1 if any signals were found.
766  *
767  * All callers must be holding the siglock.
768  */
769 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
770 {
771 	struct sigqueue *q, *n;
772 	sigset_t m;
773 
774 	sigandsets(&m, mask, &s->signal);
775 	if (sigisemptyset(&m))
776 		return;
777 
778 	sigandnsets(&s->signal, &s->signal, mask);
779 	list_for_each_entry_safe(q, n, &s->list, list) {
780 		if (sigismember(mask, q->info.si_signo)) {
781 			list_del_init(&q->list);
782 			__sigqueue_free(q);
783 		}
784 	}
785 }
786 
787 static inline int is_si_special(const struct kernel_siginfo *info)
788 {
789 	return info <= SEND_SIG_PRIV;
790 }
791 
792 static inline bool si_fromuser(const struct kernel_siginfo *info)
793 {
794 	return info == SEND_SIG_NOINFO ||
795 		(!is_si_special(info) && SI_FROMUSER(info));
796 }
797 
798 /*
799  * called with RCU read lock from check_kill_permission()
800  */
801 static bool kill_ok_by_cred(struct task_struct *t)
802 {
803 	const struct cred *cred = current_cred();
804 	const struct cred *tcred = __task_cred(t);
805 
806 	return uid_eq(cred->euid, tcred->suid) ||
807 	       uid_eq(cred->euid, tcred->uid) ||
808 	       uid_eq(cred->uid, tcred->suid) ||
809 	       uid_eq(cred->uid, tcred->uid) ||
810 	       ns_capable(tcred->user_ns, CAP_KILL);
811 }
812 
813 /*
814  * Bad permissions for sending the signal
815  * - the caller must hold the RCU read lock
816  */
817 static int check_kill_permission(int sig, struct kernel_siginfo *info,
818 				 struct task_struct *t)
819 {
820 	struct pid *sid;
821 	int error;
822 
823 	if (!valid_signal(sig))
824 		return -EINVAL;
825 
826 	if (!si_fromuser(info))
827 		return 0;
828 
829 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
830 	if (error)
831 		return error;
832 
833 	if (!same_thread_group(current, t) &&
834 	    !kill_ok_by_cred(t)) {
835 		switch (sig) {
836 		case SIGCONT:
837 			sid = task_session(t);
838 			/*
839 			 * We don't return the error if sid == NULL. The
840 			 * task was unhashed, the caller must notice this.
841 			 */
842 			if (!sid || sid == task_session(current))
843 				break;
844 			/* fall through */
845 		default:
846 			return -EPERM;
847 		}
848 	}
849 
850 	return security_task_kill(t, info, sig, NULL);
851 }
852 
853 /**
854  * ptrace_trap_notify - schedule trap to notify ptracer
855  * @t: tracee wanting to notify tracer
856  *
857  * This function schedules sticky ptrace trap which is cleared on the next
858  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
859  * ptracer.
860  *
861  * If @t is running, STOP trap will be taken.  If trapped for STOP and
862  * ptracer is listening for events, tracee is woken up so that it can
863  * re-trap for the new event.  If trapped otherwise, STOP trap will be
864  * eventually taken without returning to userland after the existing traps
865  * are finished by PTRACE_CONT.
866  *
867  * CONTEXT:
868  * Must be called with @task->sighand->siglock held.
869  */
870 static void ptrace_trap_notify(struct task_struct *t)
871 {
872 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
873 	assert_spin_locked(&t->sighand->siglock);
874 
875 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
876 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
877 }
878 
879 /*
880  * Handle magic process-wide effects of stop/continue signals. Unlike
881  * the signal actions, these happen immediately at signal-generation
882  * time regardless of blocking, ignoring, or handling.  This does the
883  * actual continuing for SIGCONT, but not the actual stopping for stop
884  * signals. The process stop is done as a signal action for SIG_DFL.
885  *
886  * Returns true if the signal should be actually delivered, otherwise
887  * it should be dropped.
888  */
889 static bool prepare_signal(int sig, struct task_struct *p, bool force)
890 {
891 	struct signal_struct *signal = p->signal;
892 	struct task_struct *t;
893 	sigset_t flush;
894 
895 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
896 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
897 			return sig == SIGKILL;
898 		/*
899 		 * The process is in the middle of dying, nothing to do.
900 		 */
901 	} else if (sig_kernel_stop(sig)) {
902 		/*
903 		 * This is a stop signal.  Remove SIGCONT from all queues.
904 		 */
905 		siginitset(&flush, sigmask(SIGCONT));
906 		flush_sigqueue_mask(&flush, &signal->shared_pending);
907 		for_each_thread(p, t)
908 			flush_sigqueue_mask(&flush, &t->pending);
909 	} else if (sig == SIGCONT) {
910 		unsigned int why;
911 		/*
912 		 * Remove all stop signals from all queues, wake all threads.
913 		 */
914 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
915 		flush_sigqueue_mask(&flush, &signal->shared_pending);
916 		for_each_thread(p, t) {
917 			flush_sigqueue_mask(&flush, &t->pending);
918 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
919 			if (likely(!(t->ptrace & PT_SEIZED)))
920 				wake_up_state(t, __TASK_STOPPED);
921 			else
922 				ptrace_trap_notify(t);
923 		}
924 
925 		/*
926 		 * Notify the parent with CLD_CONTINUED if we were stopped.
927 		 *
928 		 * If we were in the middle of a group stop, we pretend it
929 		 * was already finished, and then continued. Since SIGCHLD
930 		 * doesn't queue we report only CLD_STOPPED, as if the next
931 		 * CLD_CONTINUED was dropped.
932 		 */
933 		why = 0;
934 		if (signal->flags & SIGNAL_STOP_STOPPED)
935 			why |= SIGNAL_CLD_CONTINUED;
936 		else if (signal->group_stop_count)
937 			why |= SIGNAL_CLD_STOPPED;
938 
939 		if (why) {
940 			/*
941 			 * The first thread which returns from do_signal_stop()
942 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
943 			 * notify its parent. See get_signal().
944 			 */
945 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
946 			signal->group_stop_count = 0;
947 			signal->group_exit_code = 0;
948 		}
949 	}
950 
951 	return !sig_ignored(p, sig, force);
952 }
953 
954 /*
955  * Test if P wants to take SIG.  After we've checked all threads with this,
956  * it's equivalent to finding no threads not blocking SIG.  Any threads not
957  * blocking SIG were ruled out because they are not running and already
958  * have pending signals.  Such threads will dequeue from the shared queue
959  * as soon as they're available, so putting the signal on the shared queue
960  * will be equivalent to sending it to one such thread.
961  */
962 static inline bool wants_signal(int sig, struct task_struct *p)
963 {
964 	if (sigismember(&p->blocked, sig))
965 		return false;
966 
967 	if (p->flags & PF_EXITING)
968 		return false;
969 
970 	if (sig == SIGKILL)
971 		return true;
972 
973 	if (task_is_stopped_or_traced(p))
974 		return false;
975 
976 	return task_curr(p) || !signal_pending(p);
977 }
978 
979 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
980 {
981 	struct signal_struct *signal = p->signal;
982 	struct task_struct *t;
983 
984 	/*
985 	 * Now find a thread we can wake up to take the signal off the queue.
986 	 *
987 	 * If the main thread wants the signal, it gets first crack.
988 	 * Probably the least surprising to the average bear.
989 	 */
990 	if (wants_signal(sig, p))
991 		t = p;
992 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
993 		/*
994 		 * There is just one thread and it does not need to be woken.
995 		 * It will dequeue unblocked signals before it runs again.
996 		 */
997 		return;
998 	else {
999 		/*
1000 		 * Otherwise try to find a suitable thread.
1001 		 */
1002 		t = signal->curr_target;
1003 		while (!wants_signal(sig, t)) {
1004 			t = next_thread(t);
1005 			if (t == signal->curr_target)
1006 				/*
1007 				 * No thread needs to be woken.
1008 				 * Any eligible threads will see
1009 				 * the signal in the queue soon.
1010 				 */
1011 				return;
1012 		}
1013 		signal->curr_target = t;
1014 	}
1015 
1016 	/*
1017 	 * Found a killable thread.  If the signal will be fatal,
1018 	 * then start taking the whole group down immediately.
1019 	 */
1020 	if (sig_fatal(p, sig) &&
1021 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1022 	    !sigismember(&t->real_blocked, sig) &&
1023 	    (sig == SIGKILL || !p->ptrace)) {
1024 		/*
1025 		 * This signal will be fatal to the whole group.
1026 		 */
1027 		if (!sig_kernel_coredump(sig)) {
1028 			/*
1029 			 * Start a group exit and wake everybody up.
1030 			 * This way we don't have other threads
1031 			 * running and doing things after a slower
1032 			 * thread has the fatal signal pending.
1033 			 */
1034 			signal->flags = SIGNAL_GROUP_EXIT;
1035 			signal->group_exit_code = sig;
1036 			signal->group_stop_count = 0;
1037 			t = p;
1038 			do {
1039 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1040 				sigaddset(&t->pending.signal, SIGKILL);
1041 				signal_wake_up(t, 1);
1042 			} while_each_thread(p, t);
1043 			return;
1044 		}
1045 	}
1046 
1047 	/*
1048 	 * The signal is already in the shared-pending queue.
1049 	 * Tell the chosen thread to wake up and dequeue it.
1050 	 */
1051 	signal_wake_up(t, sig == SIGKILL);
1052 	return;
1053 }
1054 
1055 static inline bool legacy_queue(struct sigpending *signals, int sig)
1056 {
1057 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1058 }
1059 
1060 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1061 			enum pid_type type, bool force)
1062 {
1063 	struct sigpending *pending;
1064 	struct sigqueue *q;
1065 	int override_rlimit;
1066 	int ret = 0, result;
1067 
1068 	assert_spin_locked(&t->sighand->siglock);
1069 
1070 	result = TRACE_SIGNAL_IGNORED;
1071 	if (!prepare_signal(sig, t, force))
1072 		goto ret;
1073 
1074 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1075 	/*
1076 	 * Short-circuit ignored signals and support queuing
1077 	 * exactly one non-rt signal, so that we can get more
1078 	 * detailed information about the cause of the signal.
1079 	 */
1080 	result = TRACE_SIGNAL_ALREADY_PENDING;
1081 	if (legacy_queue(pending, sig))
1082 		goto ret;
1083 
1084 	result = TRACE_SIGNAL_DELIVERED;
1085 	/*
1086 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1087 	 */
1088 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1089 		goto out_set;
1090 
1091 	/*
1092 	 * Real-time signals must be queued if sent by sigqueue, or
1093 	 * some other real-time mechanism.  It is implementation
1094 	 * defined whether kill() does so.  We attempt to do so, on
1095 	 * the principle of least surprise, but since kill is not
1096 	 * allowed to fail with EAGAIN when low on memory we just
1097 	 * make sure at least one signal gets delivered and don't
1098 	 * pass on the info struct.
1099 	 */
1100 	if (sig < SIGRTMIN)
1101 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1102 	else
1103 		override_rlimit = 0;
1104 
1105 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1106 	if (q) {
1107 		list_add_tail(&q->list, &pending->list);
1108 		switch ((unsigned long) info) {
1109 		case (unsigned long) SEND_SIG_NOINFO:
1110 			clear_siginfo(&q->info);
1111 			q->info.si_signo = sig;
1112 			q->info.si_errno = 0;
1113 			q->info.si_code = SI_USER;
1114 			q->info.si_pid = task_tgid_nr_ns(current,
1115 							task_active_pid_ns(t));
1116 			rcu_read_lock();
1117 			q->info.si_uid =
1118 				from_kuid_munged(task_cred_xxx(t, user_ns),
1119 						 current_uid());
1120 			rcu_read_unlock();
1121 			break;
1122 		case (unsigned long) SEND_SIG_PRIV:
1123 			clear_siginfo(&q->info);
1124 			q->info.si_signo = sig;
1125 			q->info.si_errno = 0;
1126 			q->info.si_code = SI_KERNEL;
1127 			q->info.si_pid = 0;
1128 			q->info.si_uid = 0;
1129 			break;
1130 		default:
1131 			copy_siginfo(&q->info, info);
1132 			break;
1133 		}
1134 	} else if (!is_si_special(info) &&
1135 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1136 		/*
1137 		 * Queue overflow, abort.  We may abort if the
1138 		 * signal was rt and sent by user using something
1139 		 * other than kill().
1140 		 */
1141 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1142 		ret = -EAGAIN;
1143 		goto ret;
1144 	} else {
1145 		/*
1146 		 * This is a silent loss of information.  We still
1147 		 * send the signal, but the *info bits are lost.
1148 		 */
1149 		result = TRACE_SIGNAL_LOSE_INFO;
1150 	}
1151 
1152 out_set:
1153 	signalfd_notify(t, sig);
1154 	sigaddset(&pending->signal, sig);
1155 
1156 	/* Let multiprocess signals appear after on-going forks */
1157 	if (type > PIDTYPE_TGID) {
1158 		struct multiprocess_signals *delayed;
1159 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1160 			sigset_t *signal = &delayed->signal;
1161 			/* Can't queue both a stop and a continue signal */
1162 			if (sig == SIGCONT)
1163 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1164 			else if (sig_kernel_stop(sig))
1165 				sigdelset(signal, SIGCONT);
1166 			sigaddset(signal, sig);
1167 		}
1168 	}
1169 
1170 	complete_signal(sig, t, type);
1171 ret:
1172 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1173 	return ret;
1174 }
1175 
1176 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1177 {
1178 	bool ret = false;
1179 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1180 	case SIL_KILL:
1181 	case SIL_CHLD:
1182 	case SIL_RT:
1183 		ret = true;
1184 		break;
1185 	case SIL_TIMER:
1186 	case SIL_POLL:
1187 	case SIL_FAULT:
1188 	case SIL_FAULT_MCEERR:
1189 	case SIL_FAULT_BNDERR:
1190 	case SIL_FAULT_PKUERR:
1191 	case SIL_SYS:
1192 		ret = false;
1193 		break;
1194 	}
1195 	return ret;
1196 }
1197 
1198 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1199 			enum pid_type type)
1200 {
1201 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1202 	bool force = false;
1203 
1204 	if (info == SEND_SIG_NOINFO) {
1205 		/* Force if sent from an ancestor pid namespace */
1206 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1207 	} else if (info == SEND_SIG_PRIV) {
1208 		/* Don't ignore kernel generated signals */
1209 		force = true;
1210 	} else if (has_si_pid_and_uid(info)) {
1211 		/* SIGKILL and SIGSTOP is special or has ids */
1212 		struct user_namespace *t_user_ns;
1213 
1214 		rcu_read_lock();
1215 		t_user_ns = task_cred_xxx(t, user_ns);
1216 		if (current_user_ns() != t_user_ns) {
1217 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1218 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1219 		}
1220 		rcu_read_unlock();
1221 
1222 		/* A kernel generated signal? */
1223 		force = (info->si_code == SI_KERNEL);
1224 
1225 		/* From an ancestor pid namespace? */
1226 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1227 			info->si_pid = 0;
1228 			force = true;
1229 		}
1230 	}
1231 	return __send_signal(sig, info, t, type, force);
1232 }
1233 
1234 static void print_fatal_signal(int signr)
1235 {
1236 	struct pt_regs *regs = signal_pt_regs();
1237 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1238 
1239 #if defined(__i386__) && !defined(__arch_um__)
1240 	pr_info("code at %08lx: ", regs->ip);
1241 	{
1242 		int i;
1243 		for (i = 0; i < 16; i++) {
1244 			unsigned char insn;
1245 
1246 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1247 				break;
1248 			pr_cont("%02x ", insn);
1249 		}
1250 	}
1251 	pr_cont("\n");
1252 #endif
1253 	preempt_disable();
1254 	show_regs(regs);
1255 	preempt_enable();
1256 }
1257 
1258 static int __init setup_print_fatal_signals(char *str)
1259 {
1260 	get_option (&str, &print_fatal_signals);
1261 
1262 	return 1;
1263 }
1264 
1265 __setup("print-fatal-signals=", setup_print_fatal_signals);
1266 
1267 int
1268 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1269 {
1270 	return send_signal(sig, info, p, PIDTYPE_TGID);
1271 }
1272 
1273 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1274 			enum pid_type type)
1275 {
1276 	unsigned long flags;
1277 	int ret = -ESRCH;
1278 
1279 	if (lock_task_sighand(p, &flags)) {
1280 		ret = send_signal(sig, info, p, type);
1281 		unlock_task_sighand(p, &flags);
1282 	}
1283 
1284 	return ret;
1285 }
1286 
1287 /*
1288  * Force a signal that the process can't ignore: if necessary
1289  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1290  *
1291  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1292  * since we do not want to have a signal handler that was blocked
1293  * be invoked when user space had explicitly blocked it.
1294  *
1295  * We don't want to have recursive SIGSEGV's etc, for example,
1296  * that is why we also clear SIGNAL_UNKILLABLE.
1297  */
1298 static int
1299 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1300 {
1301 	unsigned long int flags;
1302 	int ret, blocked, ignored;
1303 	struct k_sigaction *action;
1304 	int sig = info->si_signo;
1305 
1306 	spin_lock_irqsave(&t->sighand->siglock, flags);
1307 	action = &t->sighand->action[sig-1];
1308 	ignored = action->sa.sa_handler == SIG_IGN;
1309 	blocked = sigismember(&t->blocked, sig);
1310 	if (blocked || ignored) {
1311 		action->sa.sa_handler = SIG_DFL;
1312 		if (blocked) {
1313 			sigdelset(&t->blocked, sig);
1314 			recalc_sigpending_and_wake(t);
1315 		}
1316 	}
1317 	/*
1318 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1319 	 * debugging to leave init killable.
1320 	 */
1321 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1322 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1323 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1324 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1325 
1326 	return ret;
1327 }
1328 
1329 int force_sig_info(struct kernel_siginfo *info)
1330 {
1331 	return force_sig_info_to_task(info, current);
1332 }
1333 
1334 /*
1335  * Nuke all other threads in the group.
1336  */
1337 int zap_other_threads(struct task_struct *p)
1338 {
1339 	struct task_struct *t = p;
1340 	int count = 0;
1341 
1342 	p->signal->group_stop_count = 0;
1343 
1344 	while_each_thread(p, t) {
1345 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1346 		count++;
1347 
1348 		/* Don't bother with already dead threads */
1349 		if (t->exit_state)
1350 			continue;
1351 		sigaddset(&t->pending.signal, SIGKILL);
1352 		signal_wake_up(t, 1);
1353 	}
1354 
1355 	return count;
1356 }
1357 
1358 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1359 					   unsigned long *flags)
1360 {
1361 	struct sighand_struct *sighand;
1362 
1363 	rcu_read_lock();
1364 	for (;;) {
1365 		sighand = rcu_dereference(tsk->sighand);
1366 		if (unlikely(sighand == NULL))
1367 			break;
1368 
1369 		/*
1370 		 * This sighand can be already freed and even reused, but
1371 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1372 		 * initializes ->siglock: this slab can't go away, it has
1373 		 * the same object type, ->siglock can't be reinitialized.
1374 		 *
1375 		 * We need to ensure that tsk->sighand is still the same
1376 		 * after we take the lock, we can race with de_thread() or
1377 		 * __exit_signal(). In the latter case the next iteration
1378 		 * must see ->sighand == NULL.
1379 		 */
1380 		spin_lock_irqsave(&sighand->siglock, *flags);
1381 		if (likely(sighand == tsk->sighand))
1382 			break;
1383 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1384 	}
1385 	rcu_read_unlock();
1386 
1387 	return sighand;
1388 }
1389 
1390 /*
1391  * send signal info to all the members of a group
1392  */
1393 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1394 			struct task_struct *p, enum pid_type type)
1395 {
1396 	int ret;
1397 
1398 	rcu_read_lock();
1399 	ret = check_kill_permission(sig, info, p);
1400 	rcu_read_unlock();
1401 
1402 	if (!ret && sig)
1403 		ret = do_send_sig_info(sig, info, p, type);
1404 
1405 	return ret;
1406 }
1407 
1408 /*
1409  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1410  * control characters do (^C, ^Z etc)
1411  * - the caller must hold at least a readlock on tasklist_lock
1412  */
1413 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1414 {
1415 	struct task_struct *p = NULL;
1416 	int retval, success;
1417 
1418 	success = 0;
1419 	retval = -ESRCH;
1420 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1421 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1422 		success |= !err;
1423 		retval = err;
1424 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1425 	return success ? 0 : retval;
1426 }
1427 
1428 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1429 {
1430 	int error = -ESRCH;
1431 	struct task_struct *p;
1432 
1433 	for (;;) {
1434 		rcu_read_lock();
1435 		p = pid_task(pid, PIDTYPE_PID);
1436 		if (p)
1437 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1438 		rcu_read_unlock();
1439 		if (likely(!p || error != -ESRCH))
1440 			return error;
1441 
1442 		/*
1443 		 * The task was unhashed in between, try again.  If it
1444 		 * is dead, pid_task() will return NULL, if we race with
1445 		 * de_thread() it will find the new leader.
1446 		 */
1447 	}
1448 }
1449 
1450 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1451 {
1452 	int error;
1453 	rcu_read_lock();
1454 	error = kill_pid_info(sig, info, find_vpid(pid));
1455 	rcu_read_unlock();
1456 	return error;
1457 }
1458 
1459 static inline bool kill_as_cred_perm(const struct cred *cred,
1460 				     struct task_struct *target)
1461 {
1462 	const struct cred *pcred = __task_cred(target);
1463 
1464 	return uid_eq(cred->euid, pcred->suid) ||
1465 	       uid_eq(cred->euid, pcred->uid) ||
1466 	       uid_eq(cred->uid, pcred->suid) ||
1467 	       uid_eq(cred->uid, pcred->uid);
1468 }
1469 
1470 /*
1471  * The usb asyncio usage of siginfo is wrong.  The glibc support
1472  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1473  * AKA after the generic fields:
1474  *	kernel_pid_t	si_pid;
1475  *	kernel_uid32_t	si_uid;
1476  *	sigval_t	si_value;
1477  *
1478  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1479  * after the generic fields is:
1480  *	void __user 	*si_addr;
1481  *
1482  * This is a practical problem when there is a 64bit big endian kernel
1483  * and a 32bit userspace.  As the 32bit address will encoded in the low
1484  * 32bits of the pointer.  Those low 32bits will be stored at higher
1485  * address than appear in a 32 bit pointer.  So userspace will not
1486  * see the address it was expecting for it's completions.
1487  *
1488  * There is nothing in the encoding that can allow
1489  * copy_siginfo_to_user32 to detect this confusion of formats, so
1490  * handle this by requiring the caller of kill_pid_usb_asyncio to
1491  * notice when this situration takes place and to store the 32bit
1492  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1493  * parameter.
1494  */
1495 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1496 			 struct pid *pid, const struct cred *cred)
1497 {
1498 	struct kernel_siginfo info;
1499 	struct task_struct *p;
1500 	unsigned long flags;
1501 	int ret = -EINVAL;
1502 
1503 	clear_siginfo(&info);
1504 	info.si_signo = sig;
1505 	info.si_errno = errno;
1506 	info.si_code = SI_ASYNCIO;
1507 	*((sigval_t *)&info.si_pid) = addr;
1508 
1509 	if (!valid_signal(sig))
1510 		return ret;
1511 
1512 	rcu_read_lock();
1513 	p = pid_task(pid, PIDTYPE_PID);
1514 	if (!p) {
1515 		ret = -ESRCH;
1516 		goto out_unlock;
1517 	}
1518 	if (!kill_as_cred_perm(cred, p)) {
1519 		ret = -EPERM;
1520 		goto out_unlock;
1521 	}
1522 	ret = security_task_kill(p, &info, sig, cred);
1523 	if (ret)
1524 		goto out_unlock;
1525 
1526 	if (sig) {
1527 		if (lock_task_sighand(p, &flags)) {
1528 			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1529 			unlock_task_sighand(p, &flags);
1530 		} else
1531 			ret = -ESRCH;
1532 	}
1533 out_unlock:
1534 	rcu_read_unlock();
1535 	return ret;
1536 }
1537 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1538 
1539 /*
1540  * kill_something_info() interprets pid in interesting ways just like kill(2).
1541  *
1542  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1543  * is probably wrong.  Should make it like BSD or SYSV.
1544  */
1545 
1546 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1547 {
1548 	int ret;
1549 
1550 	if (pid > 0) {
1551 		rcu_read_lock();
1552 		ret = kill_pid_info(sig, info, find_vpid(pid));
1553 		rcu_read_unlock();
1554 		return ret;
1555 	}
1556 
1557 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1558 	if (pid == INT_MIN)
1559 		return -ESRCH;
1560 
1561 	read_lock(&tasklist_lock);
1562 	if (pid != -1) {
1563 		ret = __kill_pgrp_info(sig, info,
1564 				pid ? find_vpid(-pid) : task_pgrp(current));
1565 	} else {
1566 		int retval = 0, count = 0;
1567 		struct task_struct * p;
1568 
1569 		for_each_process(p) {
1570 			if (task_pid_vnr(p) > 1 &&
1571 					!same_thread_group(p, current)) {
1572 				int err = group_send_sig_info(sig, info, p,
1573 							      PIDTYPE_MAX);
1574 				++count;
1575 				if (err != -EPERM)
1576 					retval = err;
1577 			}
1578 		}
1579 		ret = count ? retval : -ESRCH;
1580 	}
1581 	read_unlock(&tasklist_lock);
1582 
1583 	return ret;
1584 }
1585 
1586 /*
1587  * These are for backward compatibility with the rest of the kernel source.
1588  */
1589 
1590 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1591 {
1592 	/*
1593 	 * Make sure legacy kernel users don't send in bad values
1594 	 * (normal paths check this in check_kill_permission).
1595 	 */
1596 	if (!valid_signal(sig))
1597 		return -EINVAL;
1598 
1599 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1600 }
1601 EXPORT_SYMBOL(send_sig_info);
1602 
1603 #define __si_special(priv) \
1604 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1605 
1606 int
1607 send_sig(int sig, struct task_struct *p, int priv)
1608 {
1609 	return send_sig_info(sig, __si_special(priv), p);
1610 }
1611 EXPORT_SYMBOL(send_sig);
1612 
1613 void force_sig(int sig)
1614 {
1615 	struct kernel_siginfo info;
1616 
1617 	clear_siginfo(&info);
1618 	info.si_signo = sig;
1619 	info.si_errno = 0;
1620 	info.si_code = SI_KERNEL;
1621 	info.si_pid = 0;
1622 	info.si_uid = 0;
1623 	force_sig_info(&info);
1624 }
1625 EXPORT_SYMBOL(force_sig);
1626 
1627 /*
1628  * When things go south during signal handling, we
1629  * will force a SIGSEGV. And if the signal that caused
1630  * the problem was already a SIGSEGV, we'll want to
1631  * make sure we don't even try to deliver the signal..
1632  */
1633 void force_sigsegv(int sig)
1634 {
1635 	struct task_struct *p = current;
1636 
1637 	if (sig == SIGSEGV) {
1638 		unsigned long flags;
1639 		spin_lock_irqsave(&p->sighand->siglock, flags);
1640 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1641 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1642 	}
1643 	force_sig(SIGSEGV);
1644 }
1645 
1646 int force_sig_fault_to_task(int sig, int code, void __user *addr
1647 	___ARCH_SI_TRAPNO(int trapno)
1648 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1649 	, struct task_struct *t)
1650 {
1651 	struct kernel_siginfo info;
1652 
1653 	clear_siginfo(&info);
1654 	info.si_signo = sig;
1655 	info.si_errno = 0;
1656 	info.si_code  = code;
1657 	info.si_addr  = addr;
1658 #ifdef __ARCH_SI_TRAPNO
1659 	info.si_trapno = trapno;
1660 #endif
1661 #ifdef __ia64__
1662 	info.si_imm = imm;
1663 	info.si_flags = flags;
1664 	info.si_isr = isr;
1665 #endif
1666 	return force_sig_info_to_task(&info, t);
1667 }
1668 
1669 int force_sig_fault(int sig, int code, void __user *addr
1670 	___ARCH_SI_TRAPNO(int trapno)
1671 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1672 {
1673 	return force_sig_fault_to_task(sig, code, addr
1674 				       ___ARCH_SI_TRAPNO(trapno)
1675 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1676 }
1677 
1678 int send_sig_fault(int sig, int code, void __user *addr
1679 	___ARCH_SI_TRAPNO(int trapno)
1680 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1681 	, struct task_struct *t)
1682 {
1683 	struct kernel_siginfo info;
1684 
1685 	clear_siginfo(&info);
1686 	info.si_signo = sig;
1687 	info.si_errno = 0;
1688 	info.si_code  = code;
1689 	info.si_addr  = addr;
1690 #ifdef __ARCH_SI_TRAPNO
1691 	info.si_trapno = trapno;
1692 #endif
1693 #ifdef __ia64__
1694 	info.si_imm = imm;
1695 	info.si_flags = flags;
1696 	info.si_isr = isr;
1697 #endif
1698 	return send_sig_info(info.si_signo, &info, t);
1699 }
1700 
1701 int force_sig_mceerr(int code, void __user *addr, short lsb)
1702 {
1703 	struct kernel_siginfo info;
1704 
1705 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1706 	clear_siginfo(&info);
1707 	info.si_signo = SIGBUS;
1708 	info.si_errno = 0;
1709 	info.si_code = code;
1710 	info.si_addr = addr;
1711 	info.si_addr_lsb = lsb;
1712 	return force_sig_info(&info);
1713 }
1714 
1715 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1716 {
1717 	struct kernel_siginfo info;
1718 
1719 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1720 	clear_siginfo(&info);
1721 	info.si_signo = SIGBUS;
1722 	info.si_errno = 0;
1723 	info.si_code = code;
1724 	info.si_addr = addr;
1725 	info.si_addr_lsb = lsb;
1726 	return send_sig_info(info.si_signo, &info, t);
1727 }
1728 EXPORT_SYMBOL(send_sig_mceerr);
1729 
1730 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1731 {
1732 	struct kernel_siginfo info;
1733 
1734 	clear_siginfo(&info);
1735 	info.si_signo = SIGSEGV;
1736 	info.si_errno = 0;
1737 	info.si_code  = SEGV_BNDERR;
1738 	info.si_addr  = addr;
1739 	info.si_lower = lower;
1740 	info.si_upper = upper;
1741 	return force_sig_info(&info);
1742 }
1743 
1744 #ifdef SEGV_PKUERR
1745 int force_sig_pkuerr(void __user *addr, u32 pkey)
1746 {
1747 	struct kernel_siginfo info;
1748 
1749 	clear_siginfo(&info);
1750 	info.si_signo = SIGSEGV;
1751 	info.si_errno = 0;
1752 	info.si_code  = SEGV_PKUERR;
1753 	info.si_addr  = addr;
1754 	info.si_pkey  = pkey;
1755 	return force_sig_info(&info);
1756 }
1757 #endif
1758 
1759 /* For the crazy architectures that include trap information in
1760  * the errno field, instead of an actual errno value.
1761  */
1762 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1763 {
1764 	struct kernel_siginfo info;
1765 
1766 	clear_siginfo(&info);
1767 	info.si_signo = SIGTRAP;
1768 	info.si_errno = errno;
1769 	info.si_code  = TRAP_HWBKPT;
1770 	info.si_addr  = addr;
1771 	return force_sig_info(&info);
1772 }
1773 
1774 int kill_pgrp(struct pid *pid, int sig, int priv)
1775 {
1776 	int ret;
1777 
1778 	read_lock(&tasklist_lock);
1779 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1780 	read_unlock(&tasklist_lock);
1781 
1782 	return ret;
1783 }
1784 EXPORT_SYMBOL(kill_pgrp);
1785 
1786 int kill_pid(struct pid *pid, int sig, int priv)
1787 {
1788 	return kill_pid_info(sig, __si_special(priv), pid);
1789 }
1790 EXPORT_SYMBOL(kill_pid);
1791 
1792 /*
1793  * These functions support sending signals using preallocated sigqueue
1794  * structures.  This is needed "because realtime applications cannot
1795  * afford to lose notifications of asynchronous events, like timer
1796  * expirations or I/O completions".  In the case of POSIX Timers
1797  * we allocate the sigqueue structure from the timer_create.  If this
1798  * allocation fails we are able to report the failure to the application
1799  * with an EAGAIN error.
1800  */
1801 struct sigqueue *sigqueue_alloc(void)
1802 {
1803 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1804 
1805 	if (q)
1806 		q->flags |= SIGQUEUE_PREALLOC;
1807 
1808 	return q;
1809 }
1810 
1811 void sigqueue_free(struct sigqueue *q)
1812 {
1813 	unsigned long flags;
1814 	spinlock_t *lock = &current->sighand->siglock;
1815 
1816 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1817 	/*
1818 	 * We must hold ->siglock while testing q->list
1819 	 * to serialize with collect_signal() or with
1820 	 * __exit_signal()->flush_sigqueue().
1821 	 */
1822 	spin_lock_irqsave(lock, flags);
1823 	q->flags &= ~SIGQUEUE_PREALLOC;
1824 	/*
1825 	 * If it is queued it will be freed when dequeued,
1826 	 * like the "regular" sigqueue.
1827 	 */
1828 	if (!list_empty(&q->list))
1829 		q = NULL;
1830 	spin_unlock_irqrestore(lock, flags);
1831 
1832 	if (q)
1833 		__sigqueue_free(q);
1834 }
1835 
1836 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1837 {
1838 	int sig = q->info.si_signo;
1839 	struct sigpending *pending;
1840 	struct task_struct *t;
1841 	unsigned long flags;
1842 	int ret, result;
1843 
1844 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1845 
1846 	ret = -1;
1847 	rcu_read_lock();
1848 	t = pid_task(pid, type);
1849 	if (!t || !likely(lock_task_sighand(t, &flags)))
1850 		goto ret;
1851 
1852 	ret = 1; /* the signal is ignored */
1853 	result = TRACE_SIGNAL_IGNORED;
1854 	if (!prepare_signal(sig, t, false))
1855 		goto out;
1856 
1857 	ret = 0;
1858 	if (unlikely(!list_empty(&q->list))) {
1859 		/*
1860 		 * If an SI_TIMER entry is already queue just increment
1861 		 * the overrun count.
1862 		 */
1863 		BUG_ON(q->info.si_code != SI_TIMER);
1864 		q->info.si_overrun++;
1865 		result = TRACE_SIGNAL_ALREADY_PENDING;
1866 		goto out;
1867 	}
1868 	q->info.si_overrun = 0;
1869 
1870 	signalfd_notify(t, sig);
1871 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1872 	list_add_tail(&q->list, &pending->list);
1873 	sigaddset(&pending->signal, sig);
1874 	complete_signal(sig, t, type);
1875 	result = TRACE_SIGNAL_DELIVERED;
1876 out:
1877 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1878 	unlock_task_sighand(t, &flags);
1879 ret:
1880 	rcu_read_unlock();
1881 	return ret;
1882 }
1883 
1884 static void do_notify_pidfd(struct task_struct *task)
1885 {
1886 	struct pid *pid;
1887 
1888 	pid = task_pid(task);
1889 	wake_up_all(&pid->wait_pidfd);
1890 }
1891 
1892 /*
1893  * Let a parent know about the death of a child.
1894  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1895  *
1896  * Returns true if our parent ignored us and so we've switched to
1897  * self-reaping.
1898  */
1899 bool do_notify_parent(struct task_struct *tsk, int sig)
1900 {
1901 	struct kernel_siginfo info;
1902 	unsigned long flags;
1903 	struct sighand_struct *psig;
1904 	bool autoreap = false;
1905 	u64 utime, stime;
1906 
1907 	BUG_ON(sig == -1);
1908 
1909  	/* do_notify_parent_cldstop should have been called instead.  */
1910  	BUG_ON(task_is_stopped_or_traced(tsk));
1911 
1912 	BUG_ON(!tsk->ptrace &&
1913 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1914 
1915 	/* Wake up all pidfd waiters */
1916 	do_notify_pidfd(tsk);
1917 
1918 	if (sig != SIGCHLD) {
1919 		/*
1920 		 * This is only possible if parent == real_parent.
1921 		 * Check if it has changed security domain.
1922 		 */
1923 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1924 			sig = SIGCHLD;
1925 	}
1926 
1927 	clear_siginfo(&info);
1928 	info.si_signo = sig;
1929 	info.si_errno = 0;
1930 	/*
1931 	 * We are under tasklist_lock here so our parent is tied to
1932 	 * us and cannot change.
1933 	 *
1934 	 * task_active_pid_ns will always return the same pid namespace
1935 	 * until a task passes through release_task.
1936 	 *
1937 	 * write_lock() currently calls preempt_disable() which is the
1938 	 * same as rcu_read_lock(), but according to Oleg, this is not
1939 	 * correct to rely on this
1940 	 */
1941 	rcu_read_lock();
1942 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1943 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1944 				       task_uid(tsk));
1945 	rcu_read_unlock();
1946 
1947 	task_cputime(tsk, &utime, &stime);
1948 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1949 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1950 
1951 	info.si_status = tsk->exit_code & 0x7f;
1952 	if (tsk->exit_code & 0x80)
1953 		info.si_code = CLD_DUMPED;
1954 	else if (tsk->exit_code & 0x7f)
1955 		info.si_code = CLD_KILLED;
1956 	else {
1957 		info.si_code = CLD_EXITED;
1958 		info.si_status = tsk->exit_code >> 8;
1959 	}
1960 
1961 	psig = tsk->parent->sighand;
1962 	spin_lock_irqsave(&psig->siglock, flags);
1963 	if (!tsk->ptrace && sig == SIGCHLD &&
1964 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1965 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1966 		/*
1967 		 * We are exiting and our parent doesn't care.  POSIX.1
1968 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1969 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1970 		 * automatically and not left for our parent's wait4 call.
1971 		 * Rather than having the parent do it as a magic kind of
1972 		 * signal handler, we just set this to tell do_exit that we
1973 		 * can be cleaned up without becoming a zombie.  Note that
1974 		 * we still call __wake_up_parent in this case, because a
1975 		 * blocked sys_wait4 might now return -ECHILD.
1976 		 *
1977 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1978 		 * is implementation-defined: we do (if you don't want
1979 		 * it, just use SIG_IGN instead).
1980 		 */
1981 		autoreap = true;
1982 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1983 			sig = 0;
1984 	}
1985 	if (valid_signal(sig) && sig)
1986 		__group_send_sig_info(sig, &info, tsk->parent);
1987 	__wake_up_parent(tsk, tsk->parent);
1988 	spin_unlock_irqrestore(&psig->siglock, flags);
1989 
1990 	return autoreap;
1991 }
1992 
1993 /**
1994  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1995  * @tsk: task reporting the state change
1996  * @for_ptracer: the notification is for ptracer
1997  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1998  *
1999  * Notify @tsk's parent that the stopped/continued state has changed.  If
2000  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2001  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2002  *
2003  * CONTEXT:
2004  * Must be called with tasklist_lock at least read locked.
2005  */
2006 static void do_notify_parent_cldstop(struct task_struct *tsk,
2007 				     bool for_ptracer, int why)
2008 {
2009 	struct kernel_siginfo info;
2010 	unsigned long flags;
2011 	struct task_struct *parent;
2012 	struct sighand_struct *sighand;
2013 	u64 utime, stime;
2014 
2015 	if (for_ptracer) {
2016 		parent = tsk->parent;
2017 	} else {
2018 		tsk = tsk->group_leader;
2019 		parent = tsk->real_parent;
2020 	}
2021 
2022 	clear_siginfo(&info);
2023 	info.si_signo = SIGCHLD;
2024 	info.si_errno = 0;
2025 	/*
2026 	 * see comment in do_notify_parent() about the following 4 lines
2027 	 */
2028 	rcu_read_lock();
2029 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2030 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2031 	rcu_read_unlock();
2032 
2033 	task_cputime(tsk, &utime, &stime);
2034 	info.si_utime = nsec_to_clock_t(utime);
2035 	info.si_stime = nsec_to_clock_t(stime);
2036 
2037  	info.si_code = why;
2038  	switch (why) {
2039  	case CLD_CONTINUED:
2040  		info.si_status = SIGCONT;
2041  		break;
2042  	case CLD_STOPPED:
2043  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2044  		break;
2045  	case CLD_TRAPPED:
2046  		info.si_status = tsk->exit_code & 0x7f;
2047  		break;
2048  	default:
2049  		BUG();
2050  	}
2051 
2052 	sighand = parent->sighand;
2053 	spin_lock_irqsave(&sighand->siglock, flags);
2054 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2055 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2056 		__group_send_sig_info(SIGCHLD, &info, parent);
2057 	/*
2058 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2059 	 */
2060 	__wake_up_parent(tsk, parent);
2061 	spin_unlock_irqrestore(&sighand->siglock, flags);
2062 }
2063 
2064 static inline bool may_ptrace_stop(void)
2065 {
2066 	if (!likely(current->ptrace))
2067 		return false;
2068 	/*
2069 	 * Are we in the middle of do_coredump?
2070 	 * If so and our tracer is also part of the coredump stopping
2071 	 * is a deadlock situation, and pointless because our tracer
2072 	 * is dead so don't allow us to stop.
2073 	 * If SIGKILL was already sent before the caller unlocked
2074 	 * ->siglock we must see ->core_state != NULL. Otherwise it
2075 	 * is safe to enter schedule().
2076 	 *
2077 	 * This is almost outdated, a task with the pending SIGKILL can't
2078 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2079 	 * after SIGKILL was already dequeued.
2080 	 */
2081 	if (unlikely(current->mm->core_state) &&
2082 	    unlikely(current->mm == current->parent->mm))
2083 		return false;
2084 
2085 	return true;
2086 }
2087 
2088 /*
2089  * Return non-zero if there is a SIGKILL that should be waking us up.
2090  * Called with the siglock held.
2091  */
2092 static bool sigkill_pending(struct task_struct *tsk)
2093 {
2094 	return sigismember(&tsk->pending.signal, SIGKILL) ||
2095 	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2096 }
2097 
2098 /*
2099  * This must be called with current->sighand->siglock held.
2100  *
2101  * This should be the path for all ptrace stops.
2102  * We always set current->last_siginfo while stopped here.
2103  * That makes it a way to test a stopped process for
2104  * being ptrace-stopped vs being job-control-stopped.
2105  *
2106  * If we actually decide not to stop at all because the tracer
2107  * is gone, we keep current->exit_code unless clear_code.
2108  */
2109 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2110 	__releases(&current->sighand->siglock)
2111 	__acquires(&current->sighand->siglock)
2112 {
2113 	bool gstop_done = false;
2114 
2115 	if (arch_ptrace_stop_needed(exit_code, info)) {
2116 		/*
2117 		 * The arch code has something special to do before a
2118 		 * ptrace stop.  This is allowed to block, e.g. for faults
2119 		 * on user stack pages.  We can't keep the siglock while
2120 		 * calling arch_ptrace_stop, so we must release it now.
2121 		 * To preserve proper semantics, we must do this before
2122 		 * any signal bookkeeping like checking group_stop_count.
2123 		 * Meanwhile, a SIGKILL could come in before we retake the
2124 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2125 		 * So after regaining the lock, we must check for SIGKILL.
2126 		 */
2127 		spin_unlock_irq(&current->sighand->siglock);
2128 		arch_ptrace_stop(exit_code, info);
2129 		spin_lock_irq(&current->sighand->siglock);
2130 		if (sigkill_pending(current))
2131 			return;
2132 	}
2133 
2134 	set_special_state(TASK_TRACED);
2135 
2136 	/*
2137 	 * We're committing to trapping.  TRACED should be visible before
2138 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2139 	 * Also, transition to TRACED and updates to ->jobctl should be
2140 	 * atomic with respect to siglock and should be done after the arch
2141 	 * hook as siglock is released and regrabbed across it.
2142 	 *
2143 	 *     TRACER				    TRACEE
2144 	 *
2145 	 *     ptrace_attach()
2146 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2147 	 *     do_wait()
2148 	 *       set_current_state()                smp_wmb();
2149 	 *       ptrace_do_wait()
2150 	 *         wait_task_stopped()
2151 	 *           task_stopped_code()
2152 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2153 	 */
2154 	smp_wmb();
2155 
2156 	current->last_siginfo = info;
2157 	current->exit_code = exit_code;
2158 
2159 	/*
2160 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2161 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2162 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2163 	 * could be clear now.  We act as if SIGCONT is received after
2164 	 * TASK_TRACED is entered - ignore it.
2165 	 */
2166 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2167 		gstop_done = task_participate_group_stop(current);
2168 
2169 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2170 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2171 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2172 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2173 
2174 	/* entering a trap, clear TRAPPING */
2175 	task_clear_jobctl_trapping(current);
2176 
2177 	spin_unlock_irq(&current->sighand->siglock);
2178 	read_lock(&tasklist_lock);
2179 	if (may_ptrace_stop()) {
2180 		/*
2181 		 * Notify parents of the stop.
2182 		 *
2183 		 * While ptraced, there are two parents - the ptracer and
2184 		 * the real_parent of the group_leader.  The ptracer should
2185 		 * know about every stop while the real parent is only
2186 		 * interested in the completion of group stop.  The states
2187 		 * for the two don't interact with each other.  Notify
2188 		 * separately unless they're gonna be duplicates.
2189 		 */
2190 		do_notify_parent_cldstop(current, true, why);
2191 		if (gstop_done && ptrace_reparented(current))
2192 			do_notify_parent_cldstop(current, false, why);
2193 
2194 		/*
2195 		 * Don't want to allow preemption here, because
2196 		 * sys_ptrace() needs this task to be inactive.
2197 		 *
2198 		 * XXX: implement read_unlock_no_resched().
2199 		 */
2200 		preempt_disable();
2201 		read_unlock(&tasklist_lock);
2202 		preempt_enable_no_resched();
2203 		cgroup_enter_frozen();
2204 		freezable_schedule();
2205 		cgroup_leave_frozen(true);
2206 	} else {
2207 		/*
2208 		 * By the time we got the lock, our tracer went away.
2209 		 * Don't drop the lock yet, another tracer may come.
2210 		 *
2211 		 * If @gstop_done, the ptracer went away between group stop
2212 		 * completion and here.  During detach, it would have set
2213 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2214 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2215 		 * the real parent of the group stop completion is enough.
2216 		 */
2217 		if (gstop_done)
2218 			do_notify_parent_cldstop(current, false, why);
2219 
2220 		/* tasklist protects us from ptrace_freeze_traced() */
2221 		__set_current_state(TASK_RUNNING);
2222 		if (clear_code)
2223 			current->exit_code = 0;
2224 		read_unlock(&tasklist_lock);
2225 	}
2226 
2227 	/*
2228 	 * We are back.  Now reacquire the siglock before touching
2229 	 * last_siginfo, so that we are sure to have synchronized with
2230 	 * any signal-sending on another CPU that wants to examine it.
2231 	 */
2232 	spin_lock_irq(&current->sighand->siglock);
2233 	current->last_siginfo = NULL;
2234 
2235 	/* LISTENING can be set only during STOP traps, clear it */
2236 	current->jobctl &= ~JOBCTL_LISTENING;
2237 
2238 	/*
2239 	 * Queued signals ignored us while we were stopped for tracing.
2240 	 * So check for any that we should take before resuming user mode.
2241 	 * This sets TIF_SIGPENDING, but never clears it.
2242 	 */
2243 	recalc_sigpending_tsk(current);
2244 }
2245 
2246 static void ptrace_do_notify(int signr, int exit_code, int why)
2247 {
2248 	kernel_siginfo_t info;
2249 
2250 	clear_siginfo(&info);
2251 	info.si_signo = signr;
2252 	info.si_code = exit_code;
2253 	info.si_pid = task_pid_vnr(current);
2254 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2255 
2256 	/* Let the debugger run.  */
2257 	ptrace_stop(exit_code, why, 1, &info);
2258 }
2259 
2260 void ptrace_notify(int exit_code)
2261 {
2262 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2263 	if (unlikely(current->task_works))
2264 		task_work_run();
2265 
2266 	spin_lock_irq(&current->sighand->siglock);
2267 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2268 	spin_unlock_irq(&current->sighand->siglock);
2269 }
2270 
2271 /**
2272  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2273  * @signr: signr causing group stop if initiating
2274  *
2275  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2276  * and participate in it.  If already set, participate in the existing
2277  * group stop.  If participated in a group stop (and thus slept), %true is
2278  * returned with siglock released.
2279  *
2280  * If ptraced, this function doesn't handle stop itself.  Instead,
2281  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2282  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2283  * places afterwards.
2284  *
2285  * CONTEXT:
2286  * Must be called with @current->sighand->siglock held, which is released
2287  * on %true return.
2288  *
2289  * RETURNS:
2290  * %false if group stop is already cancelled or ptrace trap is scheduled.
2291  * %true if participated in group stop.
2292  */
2293 static bool do_signal_stop(int signr)
2294 	__releases(&current->sighand->siglock)
2295 {
2296 	struct signal_struct *sig = current->signal;
2297 
2298 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2299 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2300 		struct task_struct *t;
2301 
2302 		/* signr will be recorded in task->jobctl for retries */
2303 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2304 
2305 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2306 		    unlikely(signal_group_exit(sig)))
2307 			return false;
2308 		/*
2309 		 * There is no group stop already in progress.  We must
2310 		 * initiate one now.
2311 		 *
2312 		 * While ptraced, a task may be resumed while group stop is
2313 		 * still in effect and then receive a stop signal and
2314 		 * initiate another group stop.  This deviates from the
2315 		 * usual behavior as two consecutive stop signals can't
2316 		 * cause two group stops when !ptraced.  That is why we
2317 		 * also check !task_is_stopped(t) below.
2318 		 *
2319 		 * The condition can be distinguished by testing whether
2320 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2321 		 * group_exit_code in such case.
2322 		 *
2323 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2324 		 * an intervening stop signal is required to cause two
2325 		 * continued events regardless of ptrace.
2326 		 */
2327 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2328 			sig->group_exit_code = signr;
2329 
2330 		sig->group_stop_count = 0;
2331 
2332 		if (task_set_jobctl_pending(current, signr | gstop))
2333 			sig->group_stop_count++;
2334 
2335 		t = current;
2336 		while_each_thread(current, t) {
2337 			/*
2338 			 * Setting state to TASK_STOPPED for a group
2339 			 * stop is always done with the siglock held,
2340 			 * so this check has no races.
2341 			 */
2342 			if (!task_is_stopped(t) &&
2343 			    task_set_jobctl_pending(t, signr | gstop)) {
2344 				sig->group_stop_count++;
2345 				if (likely(!(t->ptrace & PT_SEIZED)))
2346 					signal_wake_up(t, 0);
2347 				else
2348 					ptrace_trap_notify(t);
2349 			}
2350 		}
2351 	}
2352 
2353 	if (likely(!current->ptrace)) {
2354 		int notify = 0;
2355 
2356 		/*
2357 		 * If there are no other threads in the group, or if there
2358 		 * is a group stop in progress and we are the last to stop,
2359 		 * report to the parent.
2360 		 */
2361 		if (task_participate_group_stop(current))
2362 			notify = CLD_STOPPED;
2363 
2364 		set_special_state(TASK_STOPPED);
2365 		spin_unlock_irq(&current->sighand->siglock);
2366 
2367 		/*
2368 		 * Notify the parent of the group stop completion.  Because
2369 		 * we're not holding either the siglock or tasklist_lock
2370 		 * here, ptracer may attach inbetween; however, this is for
2371 		 * group stop and should always be delivered to the real
2372 		 * parent of the group leader.  The new ptracer will get
2373 		 * its notification when this task transitions into
2374 		 * TASK_TRACED.
2375 		 */
2376 		if (notify) {
2377 			read_lock(&tasklist_lock);
2378 			do_notify_parent_cldstop(current, false, notify);
2379 			read_unlock(&tasklist_lock);
2380 		}
2381 
2382 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2383 		cgroup_enter_frozen();
2384 		freezable_schedule();
2385 		return true;
2386 	} else {
2387 		/*
2388 		 * While ptraced, group stop is handled by STOP trap.
2389 		 * Schedule it and let the caller deal with it.
2390 		 */
2391 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2392 		return false;
2393 	}
2394 }
2395 
2396 /**
2397  * do_jobctl_trap - take care of ptrace jobctl traps
2398  *
2399  * When PT_SEIZED, it's used for both group stop and explicit
2400  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2401  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2402  * the stop signal; otherwise, %SIGTRAP.
2403  *
2404  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2405  * number as exit_code and no siginfo.
2406  *
2407  * CONTEXT:
2408  * Must be called with @current->sighand->siglock held, which may be
2409  * released and re-acquired before returning with intervening sleep.
2410  */
2411 static void do_jobctl_trap(void)
2412 {
2413 	struct signal_struct *signal = current->signal;
2414 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2415 
2416 	if (current->ptrace & PT_SEIZED) {
2417 		if (!signal->group_stop_count &&
2418 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2419 			signr = SIGTRAP;
2420 		WARN_ON_ONCE(!signr);
2421 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2422 				 CLD_STOPPED);
2423 	} else {
2424 		WARN_ON_ONCE(!signr);
2425 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2426 		current->exit_code = 0;
2427 	}
2428 }
2429 
2430 /**
2431  * do_freezer_trap - handle the freezer jobctl trap
2432  *
2433  * Puts the task into frozen state, if only the task is not about to quit.
2434  * In this case it drops JOBCTL_TRAP_FREEZE.
2435  *
2436  * CONTEXT:
2437  * Must be called with @current->sighand->siglock held,
2438  * which is always released before returning.
2439  */
2440 static void do_freezer_trap(void)
2441 	__releases(&current->sighand->siglock)
2442 {
2443 	/*
2444 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2445 	 * let's make another loop to give it a chance to be handled.
2446 	 * In any case, we'll return back.
2447 	 */
2448 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2449 	     JOBCTL_TRAP_FREEZE) {
2450 		spin_unlock_irq(&current->sighand->siglock);
2451 		return;
2452 	}
2453 
2454 	/*
2455 	 * Now we're sure that there is no pending fatal signal and no
2456 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2457 	 * immediately (if there is a non-fatal signal pending), and
2458 	 * put the task into sleep.
2459 	 */
2460 	__set_current_state(TASK_INTERRUPTIBLE);
2461 	clear_thread_flag(TIF_SIGPENDING);
2462 	spin_unlock_irq(&current->sighand->siglock);
2463 	cgroup_enter_frozen();
2464 	freezable_schedule();
2465 }
2466 
2467 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2468 {
2469 	/*
2470 	 * We do not check sig_kernel_stop(signr) but set this marker
2471 	 * unconditionally because we do not know whether debugger will
2472 	 * change signr. This flag has no meaning unless we are going
2473 	 * to stop after return from ptrace_stop(). In this case it will
2474 	 * be checked in do_signal_stop(), we should only stop if it was
2475 	 * not cleared by SIGCONT while we were sleeping. See also the
2476 	 * comment in dequeue_signal().
2477 	 */
2478 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2479 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2480 
2481 	/* We're back.  Did the debugger cancel the sig?  */
2482 	signr = current->exit_code;
2483 	if (signr == 0)
2484 		return signr;
2485 
2486 	current->exit_code = 0;
2487 
2488 	/*
2489 	 * Update the siginfo structure if the signal has
2490 	 * changed.  If the debugger wanted something
2491 	 * specific in the siginfo structure then it should
2492 	 * have updated *info via PTRACE_SETSIGINFO.
2493 	 */
2494 	if (signr != info->si_signo) {
2495 		clear_siginfo(info);
2496 		info->si_signo = signr;
2497 		info->si_errno = 0;
2498 		info->si_code = SI_USER;
2499 		rcu_read_lock();
2500 		info->si_pid = task_pid_vnr(current->parent);
2501 		info->si_uid = from_kuid_munged(current_user_ns(),
2502 						task_uid(current->parent));
2503 		rcu_read_unlock();
2504 	}
2505 
2506 	/* If the (new) signal is now blocked, requeue it.  */
2507 	if (sigismember(&current->blocked, signr)) {
2508 		send_signal(signr, info, current, PIDTYPE_PID);
2509 		signr = 0;
2510 	}
2511 
2512 	return signr;
2513 }
2514 
2515 bool get_signal(struct ksignal *ksig)
2516 {
2517 	struct sighand_struct *sighand = current->sighand;
2518 	struct signal_struct *signal = current->signal;
2519 	int signr;
2520 
2521 	if (unlikely(current->task_works))
2522 		task_work_run();
2523 
2524 	if (unlikely(uprobe_deny_signal()))
2525 		return false;
2526 
2527 	/*
2528 	 * Do this once, we can't return to user-mode if freezing() == T.
2529 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2530 	 * thus do not need another check after return.
2531 	 */
2532 	try_to_freeze();
2533 
2534 relock:
2535 	spin_lock_irq(&sighand->siglock);
2536 	/*
2537 	 * Every stopped thread goes here after wakeup. Check to see if
2538 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2539 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2540 	 */
2541 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2542 		int why;
2543 
2544 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2545 			why = CLD_CONTINUED;
2546 		else
2547 			why = CLD_STOPPED;
2548 
2549 		signal->flags &= ~SIGNAL_CLD_MASK;
2550 
2551 		spin_unlock_irq(&sighand->siglock);
2552 
2553 		/*
2554 		 * Notify the parent that we're continuing.  This event is
2555 		 * always per-process and doesn't make whole lot of sense
2556 		 * for ptracers, who shouldn't consume the state via
2557 		 * wait(2) either, but, for backward compatibility, notify
2558 		 * the ptracer of the group leader too unless it's gonna be
2559 		 * a duplicate.
2560 		 */
2561 		read_lock(&tasklist_lock);
2562 		do_notify_parent_cldstop(current, false, why);
2563 
2564 		if (ptrace_reparented(current->group_leader))
2565 			do_notify_parent_cldstop(current->group_leader,
2566 						true, why);
2567 		read_unlock(&tasklist_lock);
2568 
2569 		goto relock;
2570 	}
2571 
2572 	/* Has this task already been marked for death? */
2573 	if (signal_group_exit(signal)) {
2574 		ksig->info.si_signo = signr = SIGKILL;
2575 		sigdelset(&current->pending.signal, SIGKILL);
2576 		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2577 				&sighand->action[SIGKILL - 1]);
2578 		recalc_sigpending();
2579 		goto fatal;
2580 	}
2581 
2582 	for (;;) {
2583 		struct k_sigaction *ka;
2584 
2585 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2586 		    do_signal_stop(0))
2587 			goto relock;
2588 
2589 		if (unlikely(current->jobctl &
2590 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2591 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2592 				do_jobctl_trap();
2593 				spin_unlock_irq(&sighand->siglock);
2594 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2595 				do_freezer_trap();
2596 
2597 			goto relock;
2598 		}
2599 
2600 		/*
2601 		 * If the task is leaving the frozen state, let's update
2602 		 * cgroup counters and reset the frozen bit.
2603 		 */
2604 		if (unlikely(cgroup_task_frozen(current))) {
2605 			spin_unlock_irq(&sighand->siglock);
2606 			cgroup_leave_frozen(false);
2607 			goto relock;
2608 		}
2609 
2610 		/*
2611 		 * Signals generated by the execution of an instruction
2612 		 * need to be delivered before any other pending signals
2613 		 * so that the instruction pointer in the signal stack
2614 		 * frame points to the faulting instruction.
2615 		 */
2616 		signr = dequeue_synchronous_signal(&ksig->info);
2617 		if (!signr)
2618 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2619 
2620 		if (!signr)
2621 			break; /* will return 0 */
2622 
2623 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2624 			signr = ptrace_signal(signr, &ksig->info);
2625 			if (!signr)
2626 				continue;
2627 		}
2628 
2629 		ka = &sighand->action[signr-1];
2630 
2631 		/* Trace actually delivered signals. */
2632 		trace_signal_deliver(signr, &ksig->info, ka);
2633 
2634 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2635 			continue;
2636 		if (ka->sa.sa_handler != SIG_DFL) {
2637 			/* Run the handler.  */
2638 			ksig->ka = *ka;
2639 
2640 			if (ka->sa.sa_flags & SA_ONESHOT)
2641 				ka->sa.sa_handler = SIG_DFL;
2642 
2643 			break; /* will return non-zero "signr" value */
2644 		}
2645 
2646 		/*
2647 		 * Now we are doing the default action for this signal.
2648 		 */
2649 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2650 			continue;
2651 
2652 		/*
2653 		 * Global init gets no signals it doesn't want.
2654 		 * Container-init gets no signals it doesn't want from same
2655 		 * container.
2656 		 *
2657 		 * Note that if global/container-init sees a sig_kernel_only()
2658 		 * signal here, the signal must have been generated internally
2659 		 * or must have come from an ancestor namespace. In either
2660 		 * case, the signal cannot be dropped.
2661 		 */
2662 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2663 				!sig_kernel_only(signr))
2664 			continue;
2665 
2666 		if (sig_kernel_stop(signr)) {
2667 			/*
2668 			 * The default action is to stop all threads in
2669 			 * the thread group.  The job control signals
2670 			 * do nothing in an orphaned pgrp, but SIGSTOP
2671 			 * always works.  Note that siglock needs to be
2672 			 * dropped during the call to is_orphaned_pgrp()
2673 			 * because of lock ordering with tasklist_lock.
2674 			 * This allows an intervening SIGCONT to be posted.
2675 			 * We need to check for that and bail out if necessary.
2676 			 */
2677 			if (signr != SIGSTOP) {
2678 				spin_unlock_irq(&sighand->siglock);
2679 
2680 				/* signals can be posted during this window */
2681 
2682 				if (is_current_pgrp_orphaned())
2683 					goto relock;
2684 
2685 				spin_lock_irq(&sighand->siglock);
2686 			}
2687 
2688 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2689 				/* It released the siglock.  */
2690 				goto relock;
2691 			}
2692 
2693 			/*
2694 			 * We didn't actually stop, due to a race
2695 			 * with SIGCONT or something like that.
2696 			 */
2697 			continue;
2698 		}
2699 
2700 	fatal:
2701 		spin_unlock_irq(&sighand->siglock);
2702 		if (unlikely(cgroup_task_frozen(current)))
2703 			cgroup_leave_frozen(true);
2704 
2705 		/*
2706 		 * Anything else is fatal, maybe with a core dump.
2707 		 */
2708 		current->flags |= PF_SIGNALED;
2709 
2710 		if (sig_kernel_coredump(signr)) {
2711 			if (print_fatal_signals)
2712 				print_fatal_signal(ksig->info.si_signo);
2713 			proc_coredump_connector(current);
2714 			/*
2715 			 * If it was able to dump core, this kills all
2716 			 * other threads in the group and synchronizes with
2717 			 * their demise.  If we lost the race with another
2718 			 * thread getting here, it set group_exit_code
2719 			 * first and our do_group_exit call below will use
2720 			 * that value and ignore the one we pass it.
2721 			 */
2722 			do_coredump(&ksig->info);
2723 		}
2724 
2725 		/*
2726 		 * Death signals, no core dump.
2727 		 */
2728 		do_group_exit(ksig->info.si_signo);
2729 		/* NOTREACHED */
2730 	}
2731 	spin_unlock_irq(&sighand->siglock);
2732 
2733 	ksig->sig = signr;
2734 	return ksig->sig > 0;
2735 }
2736 
2737 /**
2738  * signal_delivered -
2739  * @ksig:		kernel signal struct
2740  * @stepping:		nonzero if debugger single-step or block-step in use
2741  *
2742  * This function should be called when a signal has successfully been
2743  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2744  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2745  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2746  */
2747 static void signal_delivered(struct ksignal *ksig, int stepping)
2748 {
2749 	sigset_t blocked;
2750 
2751 	/* A signal was successfully delivered, and the
2752 	   saved sigmask was stored on the signal frame,
2753 	   and will be restored by sigreturn.  So we can
2754 	   simply clear the restore sigmask flag.  */
2755 	clear_restore_sigmask();
2756 
2757 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2758 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2759 		sigaddset(&blocked, ksig->sig);
2760 	set_current_blocked(&blocked);
2761 	tracehook_signal_handler(stepping);
2762 }
2763 
2764 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2765 {
2766 	if (failed)
2767 		force_sigsegv(ksig->sig);
2768 	else
2769 		signal_delivered(ksig, stepping);
2770 }
2771 
2772 /*
2773  * It could be that complete_signal() picked us to notify about the
2774  * group-wide signal. Other threads should be notified now to take
2775  * the shared signals in @which since we will not.
2776  */
2777 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2778 {
2779 	sigset_t retarget;
2780 	struct task_struct *t;
2781 
2782 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2783 	if (sigisemptyset(&retarget))
2784 		return;
2785 
2786 	t = tsk;
2787 	while_each_thread(tsk, t) {
2788 		if (t->flags & PF_EXITING)
2789 			continue;
2790 
2791 		if (!has_pending_signals(&retarget, &t->blocked))
2792 			continue;
2793 		/* Remove the signals this thread can handle. */
2794 		sigandsets(&retarget, &retarget, &t->blocked);
2795 
2796 		if (!signal_pending(t))
2797 			signal_wake_up(t, 0);
2798 
2799 		if (sigisemptyset(&retarget))
2800 			break;
2801 	}
2802 }
2803 
2804 void exit_signals(struct task_struct *tsk)
2805 {
2806 	int group_stop = 0;
2807 	sigset_t unblocked;
2808 
2809 	/*
2810 	 * @tsk is about to have PF_EXITING set - lock out users which
2811 	 * expect stable threadgroup.
2812 	 */
2813 	cgroup_threadgroup_change_begin(tsk);
2814 
2815 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2816 		tsk->flags |= PF_EXITING;
2817 		cgroup_threadgroup_change_end(tsk);
2818 		return;
2819 	}
2820 
2821 	spin_lock_irq(&tsk->sighand->siglock);
2822 	/*
2823 	 * From now this task is not visible for group-wide signals,
2824 	 * see wants_signal(), do_signal_stop().
2825 	 */
2826 	tsk->flags |= PF_EXITING;
2827 
2828 	cgroup_threadgroup_change_end(tsk);
2829 
2830 	if (!signal_pending(tsk))
2831 		goto out;
2832 
2833 	unblocked = tsk->blocked;
2834 	signotset(&unblocked);
2835 	retarget_shared_pending(tsk, &unblocked);
2836 
2837 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2838 	    task_participate_group_stop(tsk))
2839 		group_stop = CLD_STOPPED;
2840 out:
2841 	spin_unlock_irq(&tsk->sighand->siglock);
2842 
2843 	/*
2844 	 * If group stop has completed, deliver the notification.  This
2845 	 * should always go to the real parent of the group leader.
2846 	 */
2847 	if (unlikely(group_stop)) {
2848 		read_lock(&tasklist_lock);
2849 		do_notify_parent_cldstop(tsk, false, group_stop);
2850 		read_unlock(&tasklist_lock);
2851 	}
2852 }
2853 
2854 /*
2855  * System call entry points.
2856  */
2857 
2858 /**
2859  *  sys_restart_syscall - restart a system call
2860  */
2861 SYSCALL_DEFINE0(restart_syscall)
2862 {
2863 	struct restart_block *restart = &current->restart_block;
2864 	return restart->fn(restart);
2865 }
2866 
2867 long do_no_restart_syscall(struct restart_block *param)
2868 {
2869 	return -EINTR;
2870 }
2871 
2872 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2873 {
2874 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2875 		sigset_t newblocked;
2876 		/* A set of now blocked but previously unblocked signals. */
2877 		sigandnsets(&newblocked, newset, &current->blocked);
2878 		retarget_shared_pending(tsk, &newblocked);
2879 	}
2880 	tsk->blocked = *newset;
2881 	recalc_sigpending();
2882 }
2883 
2884 /**
2885  * set_current_blocked - change current->blocked mask
2886  * @newset: new mask
2887  *
2888  * It is wrong to change ->blocked directly, this helper should be used
2889  * to ensure the process can't miss a shared signal we are going to block.
2890  */
2891 void set_current_blocked(sigset_t *newset)
2892 {
2893 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2894 	__set_current_blocked(newset);
2895 }
2896 
2897 void __set_current_blocked(const sigset_t *newset)
2898 {
2899 	struct task_struct *tsk = current;
2900 
2901 	/*
2902 	 * In case the signal mask hasn't changed, there is nothing we need
2903 	 * to do. The current->blocked shouldn't be modified by other task.
2904 	 */
2905 	if (sigequalsets(&tsk->blocked, newset))
2906 		return;
2907 
2908 	spin_lock_irq(&tsk->sighand->siglock);
2909 	__set_task_blocked(tsk, newset);
2910 	spin_unlock_irq(&tsk->sighand->siglock);
2911 }
2912 
2913 /*
2914  * This is also useful for kernel threads that want to temporarily
2915  * (or permanently) block certain signals.
2916  *
2917  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2918  * interface happily blocks "unblockable" signals like SIGKILL
2919  * and friends.
2920  */
2921 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2922 {
2923 	struct task_struct *tsk = current;
2924 	sigset_t newset;
2925 
2926 	/* Lockless, only current can change ->blocked, never from irq */
2927 	if (oldset)
2928 		*oldset = tsk->blocked;
2929 
2930 	switch (how) {
2931 	case SIG_BLOCK:
2932 		sigorsets(&newset, &tsk->blocked, set);
2933 		break;
2934 	case SIG_UNBLOCK:
2935 		sigandnsets(&newset, &tsk->blocked, set);
2936 		break;
2937 	case SIG_SETMASK:
2938 		newset = *set;
2939 		break;
2940 	default:
2941 		return -EINVAL;
2942 	}
2943 
2944 	__set_current_blocked(&newset);
2945 	return 0;
2946 }
2947 EXPORT_SYMBOL(sigprocmask);
2948 
2949 /*
2950  * The api helps set app-provided sigmasks.
2951  *
2952  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2953  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2954  */
2955 int set_user_sigmask(const sigset_t __user *usigmask, sigset_t *set,
2956 		     sigset_t *oldset, size_t sigsetsize)
2957 {
2958 	if (!usigmask)
2959 		return 0;
2960 
2961 	if (sigsetsize != sizeof(sigset_t))
2962 		return -EINVAL;
2963 	if (copy_from_user(set, usigmask, sizeof(sigset_t)))
2964 		return -EFAULT;
2965 
2966 	*oldset = current->blocked;
2967 	set_current_blocked(set);
2968 
2969 	return 0;
2970 }
2971 EXPORT_SYMBOL(set_user_sigmask);
2972 
2973 #ifdef CONFIG_COMPAT
2974 int set_compat_user_sigmask(const compat_sigset_t __user *usigmask,
2975 			    sigset_t *set, sigset_t *oldset,
2976 			    size_t sigsetsize)
2977 {
2978 	if (!usigmask)
2979 		return 0;
2980 
2981 	if (sigsetsize != sizeof(compat_sigset_t))
2982 		return -EINVAL;
2983 	if (get_compat_sigset(set, usigmask))
2984 		return -EFAULT;
2985 
2986 	*oldset = current->blocked;
2987 	set_current_blocked(set);
2988 
2989 	return 0;
2990 }
2991 EXPORT_SYMBOL(set_compat_user_sigmask);
2992 #endif
2993 
2994 /*
2995  * restore_user_sigmask:
2996  * usigmask: sigmask passed in from userland.
2997  * sigsaved: saved sigmask when the syscall started and changed the sigmask to
2998  *           usigmask.
2999  *
3000  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3001  * epoll_pwait where a new sigmask is passed in from userland for the syscalls.
3002  */
3003 void restore_user_sigmask(const void __user *usigmask, sigset_t *sigsaved,
3004 				bool interrupted)
3005 {
3006 
3007 	if (!usigmask)
3008 		return;
3009 	/*
3010 	 * When signals are pending, do not restore them here.
3011 	 * Restoring sigmask here can lead to delivering signals that the above
3012 	 * syscalls are intended to block because of the sigmask passed in.
3013 	 */
3014 	if (interrupted) {
3015 		current->saved_sigmask = *sigsaved;
3016 		set_restore_sigmask();
3017 		return;
3018 	}
3019 
3020 	/*
3021 	 * This is needed because the fast syscall return path does not restore
3022 	 * saved_sigmask when signals are not pending.
3023 	 */
3024 	set_current_blocked(sigsaved);
3025 }
3026 EXPORT_SYMBOL(restore_user_sigmask);
3027 
3028 /**
3029  *  sys_rt_sigprocmask - change the list of currently blocked signals
3030  *  @how: whether to add, remove, or set signals
3031  *  @nset: stores pending signals
3032  *  @oset: previous value of signal mask if non-null
3033  *  @sigsetsize: size of sigset_t type
3034  */
3035 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3036 		sigset_t __user *, oset, size_t, sigsetsize)
3037 {
3038 	sigset_t old_set, new_set;
3039 	int error;
3040 
3041 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3042 	if (sigsetsize != sizeof(sigset_t))
3043 		return -EINVAL;
3044 
3045 	old_set = current->blocked;
3046 
3047 	if (nset) {
3048 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3049 			return -EFAULT;
3050 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3051 
3052 		error = sigprocmask(how, &new_set, NULL);
3053 		if (error)
3054 			return error;
3055 	}
3056 
3057 	if (oset) {
3058 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3059 			return -EFAULT;
3060 	}
3061 
3062 	return 0;
3063 }
3064 
3065 #ifdef CONFIG_COMPAT
3066 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3067 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3068 {
3069 	sigset_t old_set = current->blocked;
3070 
3071 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3072 	if (sigsetsize != sizeof(sigset_t))
3073 		return -EINVAL;
3074 
3075 	if (nset) {
3076 		sigset_t new_set;
3077 		int error;
3078 		if (get_compat_sigset(&new_set, nset))
3079 			return -EFAULT;
3080 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3081 
3082 		error = sigprocmask(how, &new_set, NULL);
3083 		if (error)
3084 			return error;
3085 	}
3086 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3087 }
3088 #endif
3089 
3090 static void do_sigpending(sigset_t *set)
3091 {
3092 	spin_lock_irq(&current->sighand->siglock);
3093 	sigorsets(set, &current->pending.signal,
3094 		  &current->signal->shared_pending.signal);
3095 	spin_unlock_irq(&current->sighand->siglock);
3096 
3097 	/* Outside the lock because only this thread touches it.  */
3098 	sigandsets(set, &current->blocked, set);
3099 }
3100 
3101 /**
3102  *  sys_rt_sigpending - examine a pending signal that has been raised
3103  *			while blocked
3104  *  @uset: stores pending signals
3105  *  @sigsetsize: size of sigset_t type or larger
3106  */
3107 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3108 {
3109 	sigset_t set;
3110 
3111 	if (sigsetsize > sizeof(*uset))
3112 		return -EINVAL;
3113 
3114 	do_sigpending(&set);
3115 
3116 	if (copy_to_user(uset, &set, sigsetsize))
3117 		return -EFAULT;
3118 
3119 	return 0;
3120 }
3121 
3122 #ifdef CONFIG_COMPAT
3123 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3124 		compat_size_t, sigsetsize)
3125 {
3126 	sigset_t set;
3127 
3128 	if (sigsetsize > sizeof(*uset))
3129 		return -EINVAL;
3130 
3131 	do_sigpending(&set);
3132 
3133 	return put_compat_sigset(uset, &set, sigsetsize);
3134 }
3135 #endif
3136 
3137 static const struct {
3138 	unsigned char limit, layout;
3139 } sig_sicodes[] = {
3140 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3141 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3142 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3143 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3144 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3145 #if defined(SIGEMT)
3146 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3147 #endif
3148 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3149 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3150 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3151 };
3152 
3153 static bool known_siginfo_layout(unsigned sig, int si_code)
3154 {
3155 	if (si_code == SI_KERNEL)
3156 		return true;
3157 	else if ((si_code > SI_USER)) {
3158 		if (sig_specific_sicodes(sig)) {
3159 			if (si_code <= sig_sicodes[sig].limit)
3160 				return true;
3161 		}
3162 		else if (si_code <= NSIGPOLL)
3163 			return true;
3164 	}
3165 	else if (si_code >= SI_DETHREAD)
3166 		return true;
3167 	else if (si_code == SI_ASYNCNL)
3168 		return true;
3169 	return false;
3170 }
3171 
3172 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3173 {
3174 	enum siginfo_layout layout = SIL_KILL;
3175 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3176 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3177 		    (si_code <= sig_sicodes[sig].limit)) {
3178 			layout = sig_sicodes[sig].layout;
3179 			/* Handle the exceptions */
3180 			if ((sig == SIGBUS) &&
3181 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3182 				layout = SIL_FAULT_MCEERR;
3183 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3184 				layout = SIL_FAULT_BNDERR;
3185 #ifdef SEGV_PKUERR
3186 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3187 				layout = SIL_FAULT_PKUERR;
3188 #endif
3189 		}
3190 		else if (si_code <= NSIGPOLL)
3191 			layout = SIL_POLL;
3192 	} else {
3193 		if (si_code == SI_TIMER)
3194 			layout = SIL_TIMER;
3195 		else if (si_code == SI_SIGIO)
3196 			layout = SIL_POLL;
3197 		else if (si_code < 0)
3198 			layout = SIL_RT;
3199 	}
3200 	return layout;
3201 }
3202 
3203 static inline char __user *si_expansion(const siginfo_t __user *info)
3204 {
3205 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3206 }
3207 
3208 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3209 {
3210 	char __user *expansion = si_expansion(to);
3211 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3212 		return -EFAULT;
3213 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3214 		return -EFAULT;
3215 	return 0;
3216 }
3217 
3218 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3219 				       const siginfo_t __user *from)
3220 {
3221 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3222 		char __user *expansion = si_expansion(from);
3223 		char buf[SI_EXPANSION_SIZE];
3224 		int i;
3225 		/*
3226 		 * An unknown si_code might need more than
3227 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3228 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3229 		 * will return this data to userspace exactly.
3230 		 */
3231 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3232 			return -EFAULT;
3233 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3234 			if (buf[i] != 0)
3235 				return -E2BIG;
3236 		}
3237 	}
3238 	return 0;
3239 }
3240 
3241 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3242 				    const siginfo_t __user *from)
3243 {
3244 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3245 		return -EFAULT;
3246 	to->si_signo = signo;
3247 	return post_copy_siginfo_from_user(to, from);
3248 }
3249 
3250 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3251 {
3252 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3253 		return -EFAULT;
3254 	return post_copy_siginfo_from_user(to, from);
3255 }
3256 
3257 #ifdef CONFIG_COMPAT
3258 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3259 			   const struct kernel_siginfo *from)
3260 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3261 {
3262 	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3263 }
3264 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3265 			     const struct kernel_siginfo *from, bool x32_ABI)
3266 #endif
3267 {
3268 	struct compat_siginfo new;
3269 	memset(&new, 0, sizeof(new));
3270 
3271 	new.si_signo = from->si_signo;
3272 	new.si_errno = from->si_errno;
3273 	new.si_code  = from->si_code;
3274 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3275 	case SIL_KILL:
3276 		new.si_pid = from->si_pid;
3277 		new.si_uid = from->si_uid;
3278 		break;
3279 	case SIL_TIMER:
3280 		new.si_tid     = from->si_tid;
3281 		new.si_overrun = from->si_overrun;
3282 		new.si_int     = from->si_int;
3283 		break;
3284 	case SIL_POLL:
3285 		new.si_band = from->si_band;
3286 		new.si_fd   = from->si_fd;
3287 		break;
3288 	case SIL_FAULT:
3289 		new.si_addr = ptr_to_compat(from->si_addr);
3290 #ifdef __ARCH_SI_TRAPNO
3291 		new.si_trapno = from->si_trapno;
3292 #endif
3293 		break;
3294 	case SIL_FAULT_MCEERR:
3295 		new.si_addr = ptr_to_compat(from->si_addr);
3296 #ifdef __ARCH_SI_TRAPNO
3297 		new.si_trapno = from->si_trapno;
3298 #endif
3299 		new.si_addr_lsb = from->si_addr_lsb;
3300 		break;
3301 	case SIL_FAULT_BNDERR:
3302 		new.si_addr = ptr_to_compat(from->si_addr);
3303 #ifdef __ARCH_SI_TRAPNO
3304 		new.si_trapno = from->si_trapno;
3305 #endif
3306 		new.si_lower = ptr_to_compat(from->si_lower);
3307 		new.si_upper = ptr_to_compat(from->si_upper);
3308 		break;
3309 	case SIL_FAULT_PKUERR:
3310 		new.si_addr = ptr_to_compat(from->si_addr);
3311 #ifdef __ARCH_SI_TRAPNO
3312 		new.si_trapno = from->si_trapno;
3313 #endif
3314 		new.si_pkey = from->si_pkey;
3315 		break;
3316 	case SIL_CHLD:
3317 		new.si_pid    = from->si_pid;
3318 		new.si_uid    = from->si_uid;
3319 		new.si_status = from->si_status;
3320 #ifdef CONFIG_X86_X32_ABI
3321 		if (x32_ABI) {
3322 			new._sifields._sigchld_x32._utime = from->si_utime;
3323 			new._sifields._sigchld_x32._stime = from->si_stime;
3324 		} else
3325 #endif
3326 		{
3327 			new.si_utime = from->si_utime;
3328 			new.si_stime = from->si_stime;
3329 		}
3330 		break;
3331 	case SIL_RT:
3332 		new.si_pid = from->si_pid;
3333 		new.si_uid = from->si_uid;
3334 		new.si_int = from->si_int;
3335 		break;
3336 	case SIL_SYS:
3337 		new.si_call_addr = ptr_to_compat(from->si_call_addr);
3338 		new.si_syscall   = from->si_syscall;
3339 		new.si_arch      = from->si_arch;
3340 		break;
3341 	}
3342 
3343 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3344 		return -EFAULT;
3345 
3346 	return 0;
3347 }
3348 
3349 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3350 					 const struct compat_siginfo *from)
3351 {
3352 	clear_siginfo(to);
3353 	to->si_signo = from->si_signo;
3354 	to->si_errno = from->si_errno;
3355 	to->si_code  = from->si_code;
3356 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3357 	case SIL_KILL:
3358 		to->si_pid = from->si_pid;
3359 		to->si_uid = from->si_uid;
3360 		break;
3361 	case SIL_TIMER:
3362 		to->si_tid     = from->si_tid;
3363 		to->si_overrun = from->si_overrun;
3364 		to->si_int     = from->si_int;
3365 		break;
3366 	case SIL_POLL:
3367 		to->si_band = from->si_band;
3368 		to->si_fd   = from->si_fd;
3369 		break;
3370 	case SIL_FAULT:
3371 		to->si_addr = compat_ptr(from->si_addr);
3372 #ifdef __ARCH_SI_TRAPNO
3373 		to->si_trapno = from->si_trapno;
3374 #endif
3375 		break;
3376 	case SIL_FAULT_MCEERR:
3377 		to->si_addr = compat_ptr(from->si_addr);
3378 #ifdef __ARCH_SI_TRAPNO
3379 		to->si_trapno = from->si_trapno;
3380 #endif
3381 		to->si_addr_lsb = from->si_addr_lsb;
3382 		break;
3383 	case SIL_FAULT_BNDERR:
3384 		to->si_addr = compat_ptr(from->si_addr);
3385 #ifdef __ARCH_SI_TRAPNO
3386 		to->si_trapno = from->si_trapno;
3387 #endif
3388 		to->si_lower = compat_ptr(from->si_lower);
3389 		to->si_upper = compat_ptr(from->si_upper);
3390 		break;
3391 	case SIL_FAULT_PKUERR:
3392 		to->si_addr = compat_ptr(from->si_addr);
3393 #ifdef __ARCH_SI_TRAPNO
3394 		to->si_trapno = from->si_trapno;
3395 #endif
3396 		to->si_pkey = from->si_pkey;
3397 		break;
3398 	case SIL_CHLD:
3399 		to->si_pid    = from->si_pid;
3400 		to->si_uid    = from->si_uid;
3401 		to->si_status = from->si_status;
3402 #ifdef CONFIG_X86_X32_ABI
3403 		if (in_x32_syscall()) {
3404 			to->si_utime = from->_sifields._sigchld_x32._utime;
3405 			to->si_stime = from->_sifields._sigchld_x32._stime;
3406 		} else
3407 #endif
3408 		{
3409 			to->si_utime = from->si_utime;
3410 			to->si_stime = from->si_stime;
3411 		}
3412 		break;
3413 	case SIL_RT:
3414 		to->si_pid = from->si_pid;
3415 		to->si_uid = from->si_uid;
3416 		to->si_int = from->si_int;
3417 		break;
3418 	case SIL_SYS:
3419 		to->si_call_addr = compat_ptr(from->si_call_addr);
3420 		to->si_syscall   = from->si_syscall;
3421 		to->si_arch      = from->si_arch;
3422 		break;
3423 	}
3424 	return 0;
3425 }
3426 
3427 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3428 				      const struct compat_siginfo __user *ufrom)
3429 {
3430 	struct compat_siginfo from;
3431 
3432 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3433 		return -EFAULT;
3434 
3435 	from.si_signo = signo;
3436 	return post_copy_siginfo_from_user32(to, &from);
3437 }
3438 
3439 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3440 			     const struct compat_siginfo __user *ufrom)
3441 {
3442 	struct compat_siginfo from;
3443 
3444 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3445 		return -EFAULT;
3446 
3447 	return post_copy_siginfo_from_user32(to, &from);
3448 }
3449 #endif /* CONFIG_COMPAT */
3450 
3451 /**
3452  *  do_sigtimedwait - wait for queued signals specified in @which
3453  *  @which: queued signals to wait for
3454  *  @info: if non-null, the signal's siginfo is returned here
3455  *  @ts: upper bound on process time suspension
3456  */
3457 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3458 		    const struct timespec64 *ts)
3459 {
3460 	ktime_t *to = NULL, timeout = KTIME_MAX;
3461 	struct task_struct *tsk = current;
3462 	sigset_t mask = *which;
3463 	int sig, ret = 0;
3464 
3465 	if (ts) {
3466 		if (!timespec64_valid(ts))
3467 			return -EINVAL;
3468 		timeout = timespec64_to_ktime(*ts);
3469 		to = &timeout;
3470 	}
3471 
3472 	/*
3473 	 * Invert the set of allowed signals to get those we want to block.
3474 	 */
3475 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3476 	signotset(&mask);
3477 
3478 	spin_lock_irq(&tsk->sighand->siglock);
3479 	sig = dequeue_signal(tsk, &mask, info);
3480 	if (!sig && timeout) {
3481 		/*
3482 		 * None ready, temporarily unblock those we're interested
3483 		 * while we are sleeping in so that we'll be awakened when
3484 		 * they arrive. Unblocking is always fine, we can avoid
3485 		 * set_current_blocked().
3486 		 */
3487 		tsk->real_blocked = tsk->blocked;
3488 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3489 		recalc_sigpending();
3490 		spin_unlock_irq(&tsk->sighand->siglock);
3491 
3492 		__set_current_state(TASK_INTERRUPTIBLE);
3493 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3494 							 HRTIMER_MODE_REL);
3495 		spin_lock_irq(&tsk->sighand->siglock);
3496 		__set_task_blocked(tsk, &tsk->real_blocked);
3497 		sigemptyset(&tsk->real_blocked);
3498 		sig = dequeue_signal(tsk, &mask, info);
3499 	}
3500 	spin_unlock_irq(&tsk->sighand->siglock);
3501 
3502 	if (sig)
3503 		return sig;
3504 	return ret ? -EINTR : -EAGAIN;
3505 }
3506 
3507 /**
3508  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3509  *			in @uthese
3510  *  @uthese: queued signals to wait for
3511  *  @uinfo: if non-null, the signal's siginfo is returned here
3512  *  @uts: upper bound on process time suspension
3513  *  @sigsetsize: size of sigset_t type
3514  */
3515 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3516 		siginfo_t __user *, uinfo,
3517 		const struct __kernel_timespec __user *, uts,
3518 		size_t, sigsetsize)
3519 {
3520 	sigset_t these;
3521 	struct timespec64 ts;
3522 	kernel_siginfo_t info;
3523 	int ret;
3524 
3525 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3526 	if (sigsetsize != sizeof(sigset_t))
3527 		return -EINVAL;
3528 
3529 	if (copy_from_user(&these, uthese, sizeof(these)))
3530 		return -EFAULT;
3531 
3532 	if (uts) {
3533 		if (get_timespec64(&ts, uts))
3534 			return -EFAULT;
3535 	}
3536 
3537 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3538 
3539 	if (ret > 0 && uinfo) {
3540 		if (copy_siginfo_to_user(uinfo, &info))
3541 			ret = -EFAULT;
3542 	}
3543 
3544 	return ret;
3545 }
3546 
3547 #ifdef CONFIG_COMPAT_32BIT_TIME
3548 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3549 		siginfo_t __user *, uinfo,
3550 		const struct old_timespec32 __user *, uts,
3551 		size_t, sigsetsize)
3552 {
3553 	sigset_t these;
3554 	struct timespec64 ts;
3555 	kernel_siginfo_t info;
3556 	int ret;
3557 
3558 	if (sigsetsize != sizeof(sigset_t))
3559 		return -EINVAL;
3560 
3561 	if (copy_from_user(&these, uthese, sizeof(these)))
3562 		return -EFAULT;
3563 
3564 	if (uts) {
3565 		if (get_old_timespec32(&ts, uts))
3566 			return -EFAULT;
3567 	}
3568 
3569 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3570 
3571 	if (ret > 0 && uinfo) {
3572 		if (copy_siginfo_to_user(uinfo, &info))
3573 			ret = -EFAULT;
3574 	}
3575 
3576 	return ret;
3577 }
3578 #endif
3579 
3580 #ifdef CONFIG_COMPAT
3581 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3582 		struct compat_siginfo __user *, uinfo,
3583 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3584 {
3585 	sigset_t s;
3586 	struct timespec64 t;
3587 	kernel_siginfo_t info;
3588 	long ret;
3589 
3590 	if (sigsetsize != sizeof(sigset_t))
3591 		return -EINVAL;
3592 
3593 	if (get_compat_sigset(&s, uthese))
3594 		return -EFAULT;
3595 
3596 	if (uts) {
3597 		if (get_timespec64(&t, uts))
3598 			return -EFAULT;
3599 	}
3600 
3601 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3602 
3603 	if (ret > 0 && uinfo) {
3604 		if (copy_siginfo_to_user32(uinfo, &info))
3605 			ret = -EFAULT;
3606 	}
3607 
3608 	return ret;
3609 }
3610 
3611 #ifdef CONFIG_COMPAT_32BIT_TIME
3612 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3613 		struct compat_siginfo __user *, uinfo,
3614 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3615 {
3616 	sigset_t s;
3617 	struct timespec64 t;
3618 	kernel_siginfo_t info;
3619 	long ret;
3620 
3621 	if (sigsetsize != sizeof(sigset_t))
3622 		return -EINVAL;
3623 
3624 	if (get_compat_sigset(&s, uthese))
3625 		return -EFAULT;
3626 
3627 	if (uts) {
3628 		if (get_old_timespec32(&t, uts))
3629 			return -EFAULT;
3630 	}
3631 
3632 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3633 
3634 	if (ret > 0 && uinfo) {
3635 		if (copy_siginfo_to_user32(uinfo, &info))
3636 			ret = -EFAULT;
3637 	}
3638 
3639 	return ret;
3640 }
3641 #endif
3642 #endif
3643 
3644 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3645 {
3646 	clear_siginfo(info);
3647 	info->si_signo = sig;
3648 	info->si_errno = 0;
3649 	info->si_code = SI_USER;
3650 	info->si_pid = task_tgid_vnr(current);
3651 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3652 }
3653 
3654 /**
3655  *  sys_kill - send a signal to a process
3656  *  @pid: the PID of the process
3657  *  @sig: signal to be sent
3658  */
3659 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3660 {
3661 	struct kernel_siginfo info;
3662 
3663 	prepare_kill_siginfo(sig, &info);
3664 
3665 	return kill_something_info(sig, &info, pid);
3666 }
3667 
3668 /*
3669  * Verify that the signaler and signalee either are in the same pid namespace
3670  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3671  * namespace.
3672  */
3673 static bool access_pidfd_pidns(struct pid *pid)
3674 {
3675 	struct pid_namespace *active = task_active_pid_ns(current);
3676 	struct pid_namespace *p = ns_of_pid(pid);
3677 
3678 	for (;;) {
3679 		if (!p)
3680 			return false;
3681 		if (p == active)
3682 			break;
3683 		p = p->parent;
3684 	}
3685 
3686 	return true;
3687 }
3688 
3689 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3690 {
3691 #ifdef CONFIG_COMPAT
3692 	/*
3693 	 * Avoid hooking up compat syscalls and instead handle necessary
3694 	 * conversions here. Note, this is a stop-gap measure and should not be
3695 	 * considered a generic solution.
3696 	 */
3697 	if (in_compat_syscall())
3698 		return copy_siginfo_from_user32(
3699 			kinfo, (struct compat_siginfo __user *)info);
3700 #endif
3701 	return copy_siginfo_from_user(kinfo, info);
3702 }
3703 
3704 static struct pid *pidfd_to_pid(const struct file *file)
3705 {
3706 	if (file->f_op == &pidfd_fops)
3707 		return file->private_data;
3708 
3709 	return tgid_pidfd_to_pid(file);
3710 }
3711 
3712 /**
3713  * sys_pidfd_send_signal - Signal a process through a pidfd
3714  * @pidfd:  file descriptor of the process
3715  * @sig:    signal to send
3716  * @info:   signal info
3717  * @flags:  future flags
3718  *
3719  * The syscall currently only signals via PIDTYPE_PID which covers
3720  * kill(<positive-pid>, <signal>. It does not signal threads or process
3721  * groups.
3722  * In order to extend the syscall to threads and process groups the @flags
3723  * argument should be used. In essence, the @flags argument will determine
3724  * what is signaled and not the file descriptor itself. Put in other words,
3725  * grouping is a property of the flags argument not a property of the file
3726  * descriptor.
3727  *
3728  * Return: 0 on success, negative errno on failure
3729  */
3730 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3731 		siginfo_t __user *, info, unsigned int, flags)
3732 {
3733 	int ret;
3734 	struct fd f;
3735 	struct pid *pid;
3736 	kernel_siginfo_t kinfo;
3737 
3738 	/* Enforce flags be set to 0 until we add an extension. */
3739 	if (flags)
3740 		return -EINVAL;
3741 
3742 	f = fdget(pidfd);
3743 	if (!f.file)
3744 		return -EBADF;
3745 
3746 	/* Is this a pidfd? */
3747 	pid = pidfd_to_pid(f.file);
3748 	if (IS_ERR(pid)) {
3749 		ret = PTR_ERR(pid);
3750 		goto err;
3751 	}
3752 
3753 	ret = -EINVAL;
3754 	if (!access_pidfd_pidns(pid))
3755 		goto err;
3756 
3757 	if (info) {
3758 		ret = copy_siginfo_from_user_any(&kinfo, info);
3759 		if (unlikely(ret))
3760 			goto err;
3761 
3762 		ret = -EINVAL;
3763 		if (unlikely(sig != kinfo.si_signo))
3764 			goto err;
3765 
3766 		/* Only allow sending arbitrary signals to yourself. */
3767 		ret = -EPERM;
3768 		if ((task_pid(current) != pid) &&
3769 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3770 			goto err;
3771 	} else {
3772 		prepare_kill_siginfo(sig, &kinfo);
3773 	}
3774 
3775 	ret = kill_pid_info(sig, &kinfo, pid);
3776 
3777 err:
3778 	fdput(f);
3779 	return ret;
3780 }
3781 
3782 static int
3783 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3784 {
3785 	struct task_struct *p;
3786 	int error = -ESRCH;
3787 
3788 	rcu_read_lock();
3789 	p = find_task_by_vpid(pid);
3790 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3791 		error = check_kill_permission(sig, info, p);
3792 		/*
3793 		 * The null signal is a permissions and process existence
3794 		 * probe.  No signal is actually delivered.
3795 		 */
3796 		if (!error && sig) {
3797 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3798 			/*
3799 			 * If lock_task_sighand() failed we pretend the task
3800 			 * dies after receiving the signal. The window is tiny,
3801 			 * and the signal is private anyway.
3802 			 */
3803 			if (unlikely(error == -ESRCH))
3804 				error = 0;
3805 		}
3806 	}
3807 	rcu_read_unlock();
3808 
3809 	return error;
3810 }
3811 
3812 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3813 {
3814 	struct kernel_siginfo info;
3815 
3816 	clear_siginfo(&info);
3817 	info.si_signo = sig;
3818 	info.si_errno = 0;
3819 	info.si_code = SI_TKILL;
3820 	info.si_pid = task_tgid_vnr(current);
3821 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3822 
3823 	return do_send_specific(tgid, pid, sig, &info);
3824 }
3825 
3826 /**
3827  *  sys_tgkill - send signal to one specific thread
3828  *  @tgid: the thread group ID of the thread
3829  *  @pid: the PID of the thread
3830  *  @sig: signal to be sent
3831  *
3832  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3833  *  exists but it's not belonging to the target process anymore. This
3834  *  method solves the problem of threads exiting and PIDs getting reused.
3835  */
3836 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3837 {
3838 	/* This is only valid for single tasks */
3839 	if (pid <= 0 || tgid <= 0)
3840 		return -EINVAL;
3841 
3842 	return do_tkill(tgid, pid, sig);
3843 }
3844 
3845 /**
3846  *  sys_tkill - send signal to one specific task
3847  *  @pid: the PID of the task
3848  *  @sig: signal to be sent
3849  *
3850  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3851  */
3852 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3853 {
3854 	/* This is only valid for single tasks */
3855 	if (pid <= 0)
3856 		return -EINVAL;
3857 
3858 	return do_tkill(0, pid, sig);
3859 }
3860 
3861 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3862 {
3863 	/* Not even root can pretend to send signals from the kernel.
3864 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3865 	 */
3866 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3867 	    (task_pid_vnr(current) != pid))
3868 		return -EPERM;
3869 
3870 	/* POSIX.1b doesn't mention process groups.  */
3871 	return kill_proc_info(sig, info, pid);
3872 }
3873 
3874 /**
3875  *  sys_rt_sigqueueinfo - send signal information to a signal
3876  *  @pid: the PID of the thread
3877  *  @sig: signal to be sent
3878  *  @uinfo: signal info to be sent
3879  */
3880 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3881 		siginfo_t __user *, uinfo)
3882 {
3883 	kernel_siginfo_t info;
3884 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3885 	if (unlikely(ret))
3886 		return ret;
3887 	return do_rt_sigqueueinfo(pid, sig, &info);
3888 }
3889 
3890 #ifdef CONFIG_COMPAT
3891 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3892 			compat_pid_t, pid,
3893 			int, sig,
3894 			struct compat_siginfo __user *, uinfo)
3895 {
3896 	kernel_siginfo_t info;
3897 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3898 	if (unlikely(ret))
3899 		return ret;
3900 	return do_rt_sigqueueinfo(pid, sig, &info);
3901 }
3902 #endif
3903 
3904 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3905 {
3906 	/* This is only valid for single tasks */
3907 	if (pid <= 0 || tgid <= 0)
3908 		return -EINVAL;
3909 
3910 	/* Not even root can pretend to send signals from the kernel.
3911 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3912 	 */
3913 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3914 	    (task_pid_vnr(current) != pid))
3915 		return -EPERM;
3916 
3917 	return do_send_specific(tgid, pid, sig, info);
3918 }
3919 
3920 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3921 		siginfo_t __user *, uinfo)
3922 {
3923 	kernel_siginfo_t info;
3924 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3925 	if (unlikely(ret))
3926 		return ret;
3927 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3928 }
3929 
3930 #ifdef CONFIG_COMPAT
3931 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3932 			compat_pid_t, tgid,
3933 			compat_pid_t, pid,
3934 			int, sig,
3935 			struct compat_siginfo __user *, uinfo)
3936 {
3937 	kernel_siginfo_t info;
3938 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3939 	if (unlikely(ret))
3940 		return ret;
3941 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3942 }
3943 #endif
3944 
3945 /*
3946  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3947  */
3948 void kernel_sigaction(int sig, __sighandler_t action)
3949 {
3950 	spin_lock_irq(&current->sighand->siglock);
3951 	current->sighand->action[sig - 1].sa.sa_handler = action;
3952 	if (action == SIG_IGN) {
3953 		sigset_t mask;
3954 
3955 		sigemptyset(&mask);
3956 		sigaddset(&mask, sig);
3957 
3958 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3959 		flush_sigqueue_mask(&mask, &current->pending);
3960 		recalc_sigpending();
3961 	}
3962 	spin_unlock_irq(&current->sighand->siglock);
3963 }
3964 EXPORT_SYMBOL(kernel_sigaction);
3965 
3966 void __weak sigaction_compat_abi(struct k_sigaction *act,
3967 		struct k_sigaction *oact)
3968 {
3969 }
3970 
3971 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3972 {
3973 	struct task_struct *p = current, *t;
3974 	struct k_sigaction *k;
3975 	sigset_t mask;
3976 
3977 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3978 		return -EINVAL;
3979 
3980 	k = &p->sighand->action[sig-1];
3981 
3982 	spin_lock_irq(&p->sighand->siglock);
3983 	if (oact)
3984 		*oact = *k;
3985 
3986 	sigaction_compat_abi(act, oact);
3987 
3988 	if (act) {
3989 		sigdelsetmask(&act->sa.sa_mask,
3990 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3991 		*k = *act;
3992 		/*
3993 		 * POSIX 3.3.1.3:
3994 		 *  "Setting a signal action to SIG_IGN for a signal that is
3995 		 *   pending shall cause the pending signal to be discarded,
3996 		 *   whether or not it is blocked."
3997 		 *
3998 		 *  "Setting a signal action to SIG_DFL for a signal that is
3999 		 *   pending and whose default action is to ignore the signal
4000 		 *   (for example, SIGCHLD), shall cause the pending signal to
4001 		 *   be discarded, whether or not it is blocked"
4002 		 */
4003 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4004 			sigemptyset(&mask);
4005 			sigaddset(&mask, sig);
4006 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4007 			for_each_thread(p, t)
4008 				flush_sigqueue_mask(&mask, &t->pending);
4009 		}
4010 	}
4011 
4012 	spin_unlock_irq(&p->sighand->siglock);
4013 	return 0;
4014 }
4015 
4016 static int
4017 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4018 		size_t min_ss_size)
4019 {
4020 	struct task_struct *t = current;
4021 
4022 	if (oss) {
4023 		memset(oss, 0, sizeof(stack_t));
4024 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4025 		oss->ss_size = t->sas_ss_size;
4026 		oss->ss_flags = sas_ss_flags(sp) |
4027 			(current->sas_ss_flags & SS_FLAG_BITS);
4028 	}
4029 
4030 	if (ss) {
4031 		void __user *ss_sp = ss->ss_sp;
4032 		size_t ss_size = ss->ss_size;
4033 		unsigned ss_flags = ss->ss_flags;
4034 		int ss_mode;
4035 
4036 		if (unlikely(on_sig_stack(sp)))
4037 			return -EPERM;
4038 
4039 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4040 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4041 				ss_mode != 0))
4042 			return -EINVAL;
4043 
4044 		if (ss_mode == SS_DISABLE) {
4045 			ss_size = 0;
4046 			ss_sp = NULL;
4047 		} else {
4048 			if (unlikely(ss_size < min_ss_size))
4049 				return -ENOMEM;
4050 		}
4051 
4052 		t->sas_ss_sp = (unsigned long) ss_sp;
4053 		t->sas_ss_size = ss_size;
4054 		t->sas_ss_flags = ss_flags;
4055 	}
4056 	return 0;
4057 }
4058 
4059 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4060 {
4061 	stack_t new, old;
4062 	int err;
4063 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4064 		return -EFAULT;
4065 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4066 			      current_user_stack_pointer(),
4067 			      MINSIGSTKSZ);
4068 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4069 		err = -EFAULT;
4070 	return err;
4071 }
4072 
4073 int restore_altstack(const stack_t __user *uss)
4074 {
4075 	stack_t new;
4076 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4077 		return -EFAULT;
4078 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4079 			     MINSIGSTKSZ);
4080 	/* squash all but EFAULT for now */
4081 	return 0;
4082 }
4083 
4084 int __save_altstack(stack_t __user *uss, unsigned long sp)
4085 {
4086 	struct task_struct *t = current;
4087 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4088 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4089 		__put_user(t->sas_ss_size, &uss->ss_size);
4090 	if (err)
4091 		return err;
4092 	if (t->sas_ss_flags & SS_AUTODISARM)
4093 		sas_ss_reset(t);
4094 	return 0;
4095 }
4096 
4097 #ifdef CONFIG_COMPAT
4098 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4099 				 compat_stack_t __user *uoss_ptr)
4100 {
4101 	stack_t uss, uoss;
4102 	int ret;
4103 
4104 	if (uss_ptr) {
4105 		compat_stack_t uss32;
4106 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4107 			return -EFAULT;
4108 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4109 		uss.ss_flags = uss32.ss_flags;
4110 		uss.ss_size = uss32.ss_size;
4111 	}
4112 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4113 			     compat_user_stack_pointer(),
4114 			     COMPAT_MINSIGSTKSZ);
4115 	if (ret >= 0 && uoss_ptr)  {
4116 		compat_stack_t old;
4117 		memset(&old, 0, sizeof(old));
4118 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4119 		old.ss_flags = uoss.ss_flags;
4120 		old.ss_size = uoss.ss_size;
4121 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4122 			ret = -EFAULT;
4123 	}
4124 	return ret;
4125 }
4126 
4127 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4128 			const compat_stack_t __user *, uss_ptr,
4129 			compat_stack_t __user *, uoss_ptr)
4130 {
4131 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4132 }
4133 
4134 int compat_restore_altstack(const compat_stack_t __user *uss)
4135 {
4136 	int err = do_compat_sigaltstack(uss, NULL);
4137 	/* squash all but -EFAULT for now */
4138 	return err == -EFAULT ? err : 0;
4139 }
4140 
4141 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4142 {
4143 	int err;
4144 	struct task_struct *t = current;
4145 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4146 			 &uss->ss_sp) |
4147 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4148 		__put_user(t->sas_ss_size, &uss->ss_size);
4149 	if (err)
4150 		return err;
4151 	if (t->sas_ss_flags & SS_AUTODISARM)
4152 		sas_ss_reset(t);
4153 	return 0;
4154 }
4155 #endif
4156 
4157 #ifdef __ARCH_WANT_SYS_SIGPENDING
4158 
4159 /**
4160  *  sys_sigpending - examine pending signals
4161  *  @uset: where mask of pending signal is returned
4162  */
4163 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4164 {
4165 	sigset_t set;
4166 
4167 	if (sizeof(old_sigset_t) > sizeof(*uset))
4168 		return -EINVAL;
4169 
4170 	do_sigpending(&set);
4171 
4172 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4173 		return -EFAULT;
4174 
4175 	return 0;
4176 }
4177 
4178 #ifdef CONFIG_COMPAT
4179 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4180 {
4181 	sigset_t set;
4182 
4183 	do_sigpending(&set);
4184 
4185 	return put_user(set.sig[0], set32);
4186 }
4187 #endif
4188 
4189 #endif
4190 
4191 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4192 /**
4193  *  sys_sigprocmask - examine and change blocked signals
4194  *  @how: whether to add, remove, or set signals
4195  *  @nset: signals to add or remove (if non-null)
4196  *  @oset: previous value of signal mask if non-null
4197  *
4198  * Some platforms have their own version with special arguments;
4199  * others support only sys_rt_sigprocmask.
4200  */
4201 
4202 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4203 		old_sigset_t __user *, oset)
4204 {
4205 	old_sigset_t old_set, new_set;
4206 	sigset_t new_blocked;
4207 
4208 	old_set = current->blocked.sig[0];
4209 
4210 	if (nset) {
4211 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4212 			return -EFAULT;
4213 
4214 		new_blocked = current->blocked;
4215 
4216 		switch (how) {
4217 		case SIG_BLOCK:
4218 			sigaddsetmask(&new_blocked, new_set);
4219 			break;
4220 		case SIG_UNBLOCK:
4221 			sigdelsetmask(&new_blocked, new_set);
4222 			break;
4223 		case SIG_SETMASK:
4224 			new_blocked.sig[0] = new_set;
4225 			break;
4226 		default:
4227 			return -EINVAL;
4228 		}
4229 
4230 		set_current_blocked(&new_blocked);
4231 	}
4232 
4233 	if (oset) {
4234 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4235 			return -EFAULT;
4236 	}
4237 
4238 	return 0;
4239 }
4240 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4241 
4242 #ifndef CONFIG_ODD_RT_SIGACTION
4243 /**
4244  *  sys_rt_sigaction - alter an action taken by a process
4245  *  @sig: signal to be sent
4246  *  @act: new sigaction
4247  *  @oact: used to save the previous sigaction
4248  *  @sigsetsize: size of sigset_t type
4249  */
4250 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4251 		const struct sigaction __user *, act,
4252 		struct sigaction __user *, oact,
4253 		size_t, sigsetsize)
4254 {
4255 	struct k_sigaction new_sa, old_sa;
4256 	int ret;
4257 
4258 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4259 	if (sigsetsize != sizeof(sigset_t))
4260 		return -EINVAL;
4261 
4262 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4263 		return -EFAULT;
4264 
4265 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4266 	if (ret)
4267 		return ret;
4268 
4269 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4270 		return -EFAULT;
4271 
4272 	return 0;
4273 }
4274 #ifdef CONFIG_COMPAT
4275 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4276 		const struct compat_sigaction __user *, act,
4277 		struct compat_sigaction __user *, oact,
4278 		compat_size_t, sigsetsize)
4279 {
4280 	struct k_sigaction new_ka, old_ka;
4281 #ifdef __ARCH_HAS_SA_RESTORER
4282 	compat_uptr_t restorer;
4283 #endif
4284 	int ret;
4285 
4286 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4287 	if (sigsetsize != sizeof(compat_sigset_t))
4288 		return -EINVAL;
4289 
4290 	if (act) {
4291 		compat_uptr_t handler;
4292 		ret = get_user(handler, &act->sa_handler);
4293 		new_ka.sa.sa_handler = compat_ptr(handler);
4294 #ifdef __ARCH_HAS_SA_RESTORER
4295 		ret |= get_user(restorer, &act->sa_restorer);
4296 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4297 #endif
4298 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4299 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4300 		if (ret)
4301 			return -EFAULT;
4302 	}
4303 
4304 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4305 	if (!ret && oact) {
4306 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4307 			       &oact->sa_handler);
4308 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4309 					 sizeof(oact->sa_mask));
4310 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4311 #ifdef __ARCH_HAS_SA_RESTORER
4312 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4313 				&oact->sa_restorer);
4314 #endif
4315 	}
4316 	return ret;
4317 }
4318 #endif
4319 #endif /* !CONFIG_ODD_RT_SIGACTION */
4320 
4321 #ifdef CONFIG_OLD_SIGACTION
4322 SYSCALL_DEFINE3(sigaction, int, sig,
4323 		const struct old_sigaction __user *, act,
4324 	        struct old_sigaction __user *, oact)
4325 {
4326 	struct k_sigaction new_ka, old_ka;
4327 	int ret;
4328 
4329 	if (act) {
4330 		old_sigset_t mask;
4331 		if (!access_ok(act, sizeof(*act)) ||
4332 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4333 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4334 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4335 		    __get_user(mask, &act->sa_mask))
4336 			return -EFAULT;
4337 #ifdef __ARCH_HAS_KA_RESTORER
4338 		new_ka.ka_restorer = NULL;
4339 #endif
4340 		siginitset(&new_ka.sa.sa_mask, mask);
4341 	}
4342 
4343 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4344 
4345 	if (!ret && oact) {
4346 		if (!access_ok(oact, sizeof(*oact)) ||
4347 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4348 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4349 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4350 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4351 			return -EFAULT;
4352 	}
4353 
4354 	return ret;
4355 }
4356 #endif
4357 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4358 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4359 		const struct compat_old_sigaction __user *, act,
4360 	        struct compat_old_sigaction __user *, oact)
4361 {
4362 	struct k_sigaction new_ka, old_ka;
4363 	int ret;
4364 	compat_old_sigset_t mask;
4365 	compat_uptr_t handler, restorer;
4366 
4367 	if (act) {
4368 		if (!access_ok(act, sizeof(*act)) ||
4369 		    __get_user(handler, &act->sa_handler) ||
4370 		    __get_user(restorer, &act->sa_restorer) ||
4371 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4372 		    __get_user(mask, &act->sa_mask))
4373 			return -EFAULT;
4374 
4375 #ifdef __ARCH_HAS_KA_RESTORER
4376 		new_ka.ka_restorer = NULL;
4377 #endif
4378 		new_ka.sa.sa_handler = compat_ptr(handler);
4379 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4380 		siginitset(&new_ka.sa.sa_mask, mask);
4381 	}
4382 
4383 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4384 
4385 	if (!ret && oact) {
4386 		if (!access_ok(oact, sizeof(*oact)) ||
4387 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4388 			       &oact->sa_handler) ||
4389 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4390 			       &oact->sa_restorer) ||
4391 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4392 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4393 			return -EFAULT;
4394 	}
4395 	return ret;
4396 }
4397 #endif
4398 
4399 #ifdef CONFIG_SGETMASK_SYSCALL
4400 
4401 /*
4402  * For backwards compatibility.  Functionality superseded by sigprocmask.
4403  */
4404 SYSCALL_DEFINE0(sgetmask)
4405 {
4406 	/* SMP safe */
4407 	return current->blocked.sig[0];
4408 }
4409 
4410 SYSCALL_DEFINE1(ssetmask, int, newmask)
4411 {
4412 	int old = current->blocked.sig[0];
4413 	sigset_t newset;
4414 
4415 	siginitset(&newset, newmask);
4416 	set_current_blocked(&newset);
4417 
4418 	return old;
4419 }
4420 #endif /* CONFIG_SGETMASK_SYSCALL */
4421 
4422 #ifdef __ARCH_WANT_SYS_SIGNAL
4423 /*
4424  * For backwards compatibility.  Functionality superseded by sigaction.
4425  */
4426 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4427 {
4428 	struct k_sigaction new_sa, old_sa;
4429 	int ret;
4430 
4431 	new_sa.sa.sa_handler = handler;
4432 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4433 	sigemptyset(&new_sa.sa.sa_mask);
4434 
4435 	ret = do_sigaction(sig, &new_sa, &old_sa);
4436 
4437 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4438 }
4439 #endif /* __ARCH_WANT_SYS_SIGNAL */
4440 
4441 #ifdef __ARCH_WANT_SYS_PAUSE
4442 
4443 SYSCALL_DEFINE0(pause)
4444 {
4445 	while (!signal_pending(current)) {
4446 		__set_current_state(TASK_INTERRUPTIBLE);
4447 		schedule();
4448 	}
4449 	return -ERESTARTNOHAND;
4450 }
4451 
4452 #endif
4453 
4454 static int sigsuspend(sigset_t *set)
4455 {
4456 	current->saved_sigmask = current->blocked;
4457 	set_current_blocked(set);
4458 
4459 	while (!signal_pending(current)) {
4460 		__set_current_state(TASK_INTERRUPTIBLE);
4461 		schedule();
4462 	}
4463 	set_restore_sigmask();
4464 	return -ERESTARTNOHAND;
4465 }
4466 
4467 /**
4468  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4469  *	@unewset value until a signal is received
4470  *  @unewset: new signal mask value
4471  *  @sigsetsize: size of sigset_t type
4472  */
4473 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4474 {
4475 	sigset_t newset;
4476 
4477 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4478 	if (sigsetsize != sizeof(sigset_t))
4479 		return -EINVAL;
4480 
4481 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4482 		return -EFAULT;
4483 	return sigsuspend(&newset);
4484 }
4485 
4486 #ifdef CONFIG_COMPAT
4487 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4488 {
4489 	sigset_t newset;
4490 
4491 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4492 	if (sigsetsize != sizeof(sigset_t))
4493 		return -EINVAL;
4494 
4495 	if (get_compat_sigset(&newset, unewset))
4496 		return -EFAULT;
4497 	return sigsuspend(&newset);
4498 }
4499 #endif
4500 
4501 #ifdef CONFIG_OLD_SIGSUSPEND
4502 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4503 {
4504 	sigset_t blocked;
4505 	siginitset(&blocked, mask);
4506 	return sigsuspend(&blocked);
4507 }
4508 #endif
4509 #ifdef CONFIG_OLD_SIGSUSPEND3
4510 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4511 {
4512 	sigset_t blocked;
4513 	siginitset(&blocked, mask);
4514 	return sigsuspend(&blocked);
4515 }
4516 #endif
4517 
4518 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4519 {
4520 	return NULL;
4521 }
4522 
4523 static inline void siginfo_buildtime_checks(void)
4524 {
4525 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4526 
4527 	/* Verify the offsets in the two siginfos match */
4528 #define CHECK_OFFSET(field) \
4529 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4530 
4531 	/* kill */
4532 	CHECK_OFFSET(si_pid);
4533 	CHECK_OFFSET(si_uid);
4534 
4535 	/* timer */
4536 	CHECK_OFFSET(si_tid);
4537 	CHECK_OFFSET(si_overrun);
4538 	CHECK_OFFSET(si_value);
4539 
4540 	/* rt */
4541 	CHECK_OFFSET(si_pid);
4542 	CHECK_OFFSET(si_uid);
4543 	CHECK_OFFSET(si_value);
4544 
4545 	/* sigchld */
4546 	CHECK_OFFSET(si_pid);
4547 	CHECK_OFFSET(si_uid);
4548 	CHECK_OFFSET(si_status);
4549 	CHECK_OFFSET(si_utime);
4550 	CHECK_OFFSET(si_stime);
4551 
4552 	/* sigfault */
4553 	CHECK_OFFSET(si_addr);
4554 	CHECK_OFFSET(si_addr_lsb);
4555 	CHECK_OFFSET(si_lower);
4556 	CHECK_OFFSET(si_upper);
4557 	CHECK_OFFSET(si_pkey);
4558 
4559 	/* sigpoll */
4560 	CHECK_OFFSET(si_band);
4561 	CHECK_OFFSET(si_fd);
4562 
4563 	/* sigsys */
4564 	CHECK_OFFSET(si_call_addr);
4565 	CHECK_OFFSET(si_syscall);
4566 	CHECK_OFFSET(si_arch);
4567 #undef CHECK_OFFSET
4568 
4569 	/* usb asyncio */
4570 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4571 		     offsetof(struct siginfo, si_addr));
4572 	if (sizeof(int) == sizeof(void __user *)) {
4573 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4574 			     sizeof(void __user *));
4575 	} else {
4576 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4577 			      sizeof_field(struct siginfo, si_uid)) !=
4578 			     sizeof(void __user *));
4579 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4580 			     offsetof(struct siginfo, si_uid));
4581 	}
4582 #ifdef CONFIG_COMPAT
4583 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4584 		     offsetof(struct compat_siginfo, si_addr));
4585 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4586 		     sizeof(compat_uptr_t));
4587 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4588 		     sizeof_field(struct siginfo, si_pid));
4589 #endif
4590 }
4591 
4592 void __init signals_init(void)
4593 {
4594 	siginfo_buildtime_checks();
4595 
4596 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4597 }
4598 
4599 #ifdef CONFIG_KGDB_KDB
4600 #include <linux/kdb.h>
4601 /*
4602  * kdb_send_sig - Allows kdb to send signals without exposing
4603  * signal internals.  This function checks if the required locks are
4604  * available before calling the main signal code, to avoid kdb
4605  * deadlocks.
4606  */
4607 void kdb_send_sig(struct task_struct *t, int sig)
4608 {
4609 	static struct task_struct *kdb_prev_t;
4610 	int new_t, ret;
4611 	if (!spin_trylock(&t->sighand->siglock)) {
4612 		kdb_printf("Can't do kill command now.\n"
4613 			   "The sigmask lock is held somewhere else in "
4614 			   "kernel, try again later\n");
4615 		return;
4616 	}
4617 	new_t = kdb_prev_t != t;
4618 	kdb_prev_t = t;
4619 	if (t->state != TASK_RUNNING && new_t) {
4620 		spin_unlock(&t->sighand->siglock);
4621 		kdb_printf("Process is not RUNNING, sending a signal from "
4622 			   "kdb risks deadlock\n"
4623 			   "on the run queue locks. "
4624 			   "The signal has _not_ been sent.\n"
4625 			   "Reissue the kill command if you want to risk "
4626 			   "the deadlock.\n");
4627 		return;
4628 	}
4629 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4630 	spin_unlock(&t->sighand->siglock);
4631 	if (ret)
4632 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4633 			   sig, t->pid);
4634 	else
4635 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4636 }
4637 #endif	/* CONFIG_KGDB_KDB */
4638