xref: /openbmc/linux/kernel/signal.c (revision 65a0d3c1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
51 
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
57 
58 /*
59  * SLAB caches for signal bits.
60  */
61 
62 static struct kmem_cache *sigqueue_cachep;
63 
64 int print_fatal_signals __read_mostly;
65 
66 static void __user *sig_handler(struct task_struct *t, int sig)
67 {
68 	return t->sighand->action[sig - 1].sa.sa_handler;
69 }
70 
71 static inline bool sig_handler_ignored(void __user *handler, int sig)
72 {
73 	/* Is it explicitly or implicitly ignored? */
74 	return handler == SIG_IGN ||
75 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
76 }
77 
78 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
79 {
80 	void __user *handler;
81 
82 	handler = sig_handler(t, sig);
83 
84 	/* SIGKILL and SIGSTOP may not be sent to the global init */
85 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
86 		return true;
87 
88 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
89 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
90 		return true;
91 
92 	/* Only allow kernel generated signals to this kthread */
93 	if (unlikely((t->flags & PF_KTHREAD) &&
94 		     (handler == SIG_KTHREAD_KERNEL) && !force))
95 		return true;
96 
97 	return sig_handler_ignored(handler, sig);
98 }
99 
100 static bool sig_ignored(struct task_struct *t, int sig, bool force)
101 {
102 	/*
103 	 * Blocked signals are never ignored, since the
104 	 * signal handler may change by the time it is
105 	 * unblocked.
106 	 */
107 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
108 		return false;
109 
110 	/*
111 	 * Tracers may want to know about even ignored signal unless it
112 	 * is SIGKILL which can't be reported anyway but can be ignored
113 	 * by SIGNAL_UNKILLABLE task.
114 	 */
115 	if (t->ptrace && sig != SIGKILL)
116 		return false;
117 
118 	return sig_task_ignored(t, sig, force);
119 }
120 
121 /*
122  * Re-calculate pending state from the set of locally pending
123  * signals, globally pending signals, and blocked signals.
124  */
125 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
126 {
127 	unsigned long ready;
128 	long i;
129 
130 	switch (_NSIG_WORDS) {
131 	default:
132 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
133 			ready |= signal->sig[i] &~ blocked->sig[i];
134 		break;
135 
136 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
137 		ready |= signal->sig[2] &~ blocked->sig[2];
138 		ready |= signal->sig[1] &~ blocked->sig[1];
139 		ready |= signal->sig[0] &~ blocked->sig[0];
140 		break;
141 
142 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
143 		ready |= signal->sig[0] &~ blocked->sig[0];
144 		break;
145 
146 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
147 	}
148 	return ready !=	0;
149 }
150 
151 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
152 
153 static bool recalc_sigpending_tsk(struct task_struct *t)
154 {
155 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
156 	    PENDING(&t->pending, &t->blocked) ||
157 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
158 	    cgroup_task_frozen(t)) {
159 		set_tsk_thread_flag(t, TIF_SIGPENDING);
160 		return true;
161 	}
162 
163 	/*
164 	 * We must never clear the flag in another thread, or in current
165 	 * when it's possible the current syscall is returning -ERESTART*.
166 	 * So we don't clear it here, and only callers who know they should do.
167 	 */
168 	return false;
169 }
170 
171 /*
172  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
173  * This is superfluous when called on current, the wakeup is a harmless no-op.
174  */
175 void recalc_sigpending_and_wake(struct task_struct *t)
176 {
177 	if (recalc_sigpending_tsk(t))
178 		signal_wake_up(t, 0);
179 }
180 
181 void recalc_sigpending(void)
182 {
183 	if (!recalc_sigpending_tsk(current) && !freezing(current))
184 		clear_thread_flag(TIF_SIGPENDING);
185 
186 }
187 EXPORT_SYMBOL(recalc_sigpending);
188 
189 void calculate_sigpending(void)
190 {
191 	/* Have any signals or users of TIF_SIGPENDING been delayed
192 	 * until after fork?
193 	 */
194 	spin_lock_irq(&current->sighand->siglock);
195 	set_tsk_thread_flag(current, TIF_SIGPENDING);
196 	recalc_sigpending();
197 	spin_unlock_irq(&current->sighand->siglock);
198 }
199 
200 /* Given the mask, find the first available signal that should be serviced. */
201 
202 #define SYNCHRONOUS_MASK \
203 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
204 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
205 
206 int next_signal(struct sigpending *pending, sigset_t *mask)
207 {
208 	unsigned long i, *s, *m, x;
209 	int sig = 0;
210 
211 	s = pending->signal.sig;
212 	m = mask->sig;
213 
214 	/*
215 	 * Handle the first word specially: it contains the
216 	 * synchronous signals that need to be dequeued first.
217 	 */
218 	x = *s &~ *m;
219 	if (x) {
220 		if (x & SYNCHRONOUS_MASK)
221 			x &= SYNCHRONOUS_MASK;
222 		sig = ffz(~x) + 1;
223 		return sig;
224 	}
225 
226 	switch (_NSIG_WORDS) {
227 	default:
228 		for (i = 1; i < _NSIG_WORDS; ++i) {
229 			x = *++s &~ *++m;
230 			if (!x)
231 				continue;
232 			sig = ffz(~x) + i*_NSIG_BPW + 1;
233 			break;
234 		}
235 		break;
236 
237 	case 2:
238 		x = s[1] &~ m[1];
239 		if (!x)
240 			break;
241 		sig = ffz(~x) + _NSIG_BPW + 1;
242 		break;
243 
244 	case 1:
245 		/* Nothing to do */
246 		break;
247 	}
248 
249 	return sig;
250 }
251 
252 static inline void print_dropped_signal(int sig)
253 {
254 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
255 
256 	if (!print_fatal_signals)
257 		return;
258 
259 	if (!__ratelimit(&ratelimit_state))
260 		return;
261 
262 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
263 				current->comm, current->pid, sig);
264 }
265 
266 /**
267  * task_set_jobctl_pending - set jobctl pending bits
268  * @task: target task
269  * @mask: pending bits to set
270  *
271  * Clear @mask from @task->jobctl.  @mask must be subset of
272  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
273  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
274  * cleared.  If @task is already being killed or exiting, this function
275  * becomes noop.
276  *
277  * CONTEXT:
278  * Must be called with @task->sighand->siglock held.
279  *
280  * RETURNS:
281  * %true if @mask is set, %false if made noop because @task was dying.
282  */
283 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
284 {
285 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
286 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
287 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
288 
289 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
290 		return false;
291 
292 	if (mask & JOBCTL_STOP_SIGMASK)
293 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
294 
295 	task->jobctl |= mask;
296 	return true;
297 }
298 
299 /**
300  * task_clear_jobctl_trapping - clear jobctl trapping bit
301  * @task: target task
302  *
303  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
304  * Clear it and wake up the ptracer.  Note that we don't need any further
305  * locking.  @task->siglock guarantees that @task->parent points to the
306  * ptracer.
307  *
308  * CONTEXT:
309  * Must be called with @task->sighand->siglock held.
310  */
311 void task_clear_jobctl_trapping(struct task_struct *task)
312 {
313 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
314 		task->jobctl &= ~JOBCTL_TRAPPING;
315 		smp_mb();	/* advised by wake_up_bit() */
316 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
317 	}
318 }
319 
320 /**
321  * task_clear_jobctl_pending - clear jobctl pending bits
322  * @task: target task
323  * @mask: pending bits to clear
324  *
325  * Clear @mask from @task->jobctl.  @mask must be subset of
326  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
327  * STOP bits are cleared together.
328  *
329  * If clearing of @mask leaves no stop or trap pending, this function calls
330  * task_clear_jobctl_trapping().
331  *
332  * CONTEXT:
333  * Must be called with @task->sighand->siglock held.
334  */
335 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
336 {
337 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
338 
339 	if (mask & JOBCTL_STOP_PENDING)
340 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
341 
342 	task->jobctl &= ~mask;
343 
344 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
345 		task_clear_jobctl_trapping(task);
346 }
347 
348 /**
349  * task_participate_group_stop - participate in a group stop
350  * @task: task participating in a group stop
351  *
352  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
353  * Group stop states are cleared and the group stop count is consumed if
354  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
355  * stop, the appropriate `SIGNAL_*` flags are set.
356  *
357  * CONTEXT:
358  * Must be called with @task->sighand->siglock held.
359  *
360  * RETURNS:
361  * %true if group stop completion should be notified to the parent, %false
362  * otherwise.
363  */
364 static bool task_participate_group_stop(struct task_struct *task)
365 {
366 	struct signal_struct *sig = task->signal;
367 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
368 
369 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
370 
371 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
372 
373 	if (!consume)
374 		return false;
375 
376 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
377 		sig->group_stop_count--;
378 
379 	/*
380 	 * Tell the caller to notify completion iff we are entering into a
381 	 * fresh group stop.  Read comment in do_signal_stop() for details.
382 	 */
383 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
384 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
385 		return true;
386 	}
387 	return false;
388 }
389 
390 void task_join_group_stop(struct task_struct *task)
391 {
392 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
393 	struct signal_struct *sig = current->signal;
394 
395 	if (sig->group_stop_count) {
396 		sig->group_stop_count++;
397 		mask |= JOBCTL_STOP_CONSUME;
398 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
399 		return;
400 
401 	/* Have the new thread join an on-going signal group stop */
402 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
403 }
404 
405 /*
406  * allocate a new signal queue record
407  * - this may be called without locks if and only if t == current, otherwise an
408  *   appropriate lock must be held to stop the target task from exiting
409  */
410 static struct sigqueue *
411 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
412 		 int override_rlimit, const unsigned int sigqueue_flags)
413 {
414 	struct sigqueue *q = NULL;
415 	struct user_struct *user;
416 	int sigpending;
417 
418 	/*
419 	 * Protect access to @t credentials. This can go away when all
420 	 * callers hold rcu read lock.
421 	 *
422 	 * NOTE! A pending signal will hold on to the user refcount,
423 	 * and we get/put the refcount only when the sigpending count
424 	 * changes from/to zero.
425 	 */
426 	rcu_read_lock();
427 	user = __task_cred(t)->user;
428 	sigpending = atomic_inc_return(&user->sigpending);
429 	if (sigpending == 1)
430 		get_uid(user);
431 	rcu_read_unlock();
432 
433 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
434 		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
435 	} else {
436 		print_dropped_signal(sig);
437 	}
438 
439 	if (unlikely(q == NULL)) {
440 		if (atomic_dec_and_test(&user->sigpending))
441 			free_uid(user);
442 	} else {
443 		INIT_LIST_HEAD(&q->list);
444 		q->flags = sigqueue_flags;
445 		q->user = user;
446 	}
447 
448 	return q;
449 }
450 
451 static void __sigqueue_free(struct sigqueue *q)
452 {
453 	if (q->flags & SIGQUEUE_PREALLOC)
454 		return;
455 	if (atomic_dec_and_test(&q->user->sigpending))
456 		free_uid(q->user);
457 	kmem_cache_free(sigqueue_cachep, q);
458 }
459 
460 void flush_sigqueue(struct sigpending *queue)
461 {
462 	struct sigqueue *q;
463 
464 	sigemptyset(&queue->signal);
465 	while (!list_empty(&queue->list)) {
466 		q = list_entry(queue->list.next, struct sigqueue , list);
467 		list_del_init(&q->list);
468 		__sigqueue_free(q);
469 	}
470 }
471 
472 /*
473  * Flush all pending signals for this kthread.
474  */
475 void flush_signals(struct task_struct *t)
476 {
477 	unsigned long flags;
478 
479 	spin_lock_irqsave(&t->sighand->siglock, flags);
480 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
481 	flush_sigqueue(&t->pending);
482 	flush_sigqueue(&t->signal->shared_pending);
483 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
484 }
485 EXPORT_SYMBOL(flush_signals);
486 
487 #ifdef CONFIG_POSIX_TIMERS
488 static void __flush_itimer_signals(struct sigpending *pending)
489 {
490 	sigset_t signal, retain;
491 	struct sigqueue *q, *n;
492 
493 	signal = pending->signal;
494 	sigemptyset(&retain);
495 
496 	list_for_each_entry_safe(q, n, &pending->list, list) {
497 		int sig = q->info.si_signo;
498 
499 		if (likely(q->info.si_code != SI_TIMER)) {
500 			sigaddset(&retain, sig);
501 		} else {
502 			sigdelset(&signal, sig);
503 			list_del_init(&q->list);
504 			__sigqueue_free(q);
505 		}
506 	}
507 
508 	sigorsets(&pending->signal, &signal, &retain);
509 }
510 
511 void flush_itimer_signals(void)
512 {
513 	struct task_struct *tsk = current;
514 	unsigned long flags;
515 
516 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
517 	__flush_itimer_signals(&tsk->pending);
518 	__flush_itimer_signals(&tsk->signal->shared_pending);
519 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
520 }
521 #endif
522 
523 void ignore_signals(struct task_struct *t)
524 {
525 	int i;
526 
527 	for (i = 0; i < _NSIG; ++i)
528 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
529 
530 	flush_signals(t);
531 }
532 
533 /*
534  * Flush all handlers for a task.
535  */
536 
537 void
538 flush_signal_handlers(struct task_struct *t, int force_default)
539 {
540 	int i;
541 	struct k_sigaction *ka = &t->sighand->action[0];
542 	for (i = _NSIG ; i != 0 ; i--) {
543 		if (force_default || ka->sa.sa_handler != SIG_IGN)
544 			ka->sa.sa_handler = SIG_DFL;
545 		ka->sa.sa_flags = 0;
546 #ifdef __ARCH_HAS_SA_RESTORER
547 		ka->sa.sa_restorer = NULL;
548 #endif
549 		sigemptyset(&ka->sa.sa_mask);
550 		ka++;
551 	}
552 }
553 
554 bool unhandled_signal(struct task_struct *tsk, int sig)
555 {
556 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
557 	if (is_global_init(tsk))
558 		return true;
559 
560 	if (handler != SIG_IGN && handler != SIG_DFL)
561 		return false;
562 
563 	/* if ptraced, let the tracer determine */
564 	return !tsk->ptrace;
565 }
566 
567 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
568 			   bool *resched_timer)
569 {
570 	struct sigqueue *q, *first = NULL;
571 
572 	/*
573 	 * Collect the siginfo appropriate to this signal.  Check if
574 	 * there is another siginfo for the same signal.
575 	*/
576 	list_for_each_entry(q, &list->list, list) {
577 		if (q->info.si_signo == sig) {
578 			if (first)
579 				goto still_pending;
580 			first = q;
581 		}
582 	}
583 
584 	sigdelset(&list->signal, sig);
585 
586 	if (first) {
587 still_pending:
588 		list_del_init(&first->list);
589 		copy_siginfo(info, &first->info);
590 
591 		*resched_timer =
592 			(first->flags & SIGQUEUE_PREALLOC) &&
593 			(info->si_code == SI_TIMER) &&
594 			(info->si_sys_private);
595 
596 		__sigqueue_free(first);
597 	} else {
598 		/*
599 		 * Ok, it wasn't in the queue.  This must be
600 		 * a fast-pathed signal or we must have been
601 		 * out of queue space.  So zero out the info.
602 		 */
603 		clear_siginfo(info);
604 		info->si_signo = sig;
605 		info->si_errno = 0;
606 		info->si_code = SI_USER;
607 		info->si_pid = 0;
608 		info->si_uid = 0;
609 	}
610 }
611 
612 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
613 			kernel_siginfo_t *info, bool *resched_timer)
614 {
615 	int sig = next_signal(pending, mask);
616 
617 	if (sig)
618 		collect_signal(sig, pending, info, resched_timer);
619 	return sig;
620 }
621 
622 /*
623  * Dequeue a signal and return the element to the caller, which is
624  * expected to free it.
625  *
626  * All callers have to hold the siglock.
627  */
628 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
629 {
630 	bool resched_timer = false;
631 	int signr;
632 
633 	/* We only dequeue private signals from ourselves, we don't let
634 	 * signalfd steal them
635 	 */
636 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
637 	if (!signr) {
638 		signr = __dequeue_signal(&tsk->signal->shared_pending,
639 					 mask, info, &resched_timer);
640 #ifdef CONFIG_POSIX_TIMERS
641 		/*
642 		 * itimer signal ?
643 		 *
644 		 * itimers are process shared and we restart periodic
645 		 * itimers in the signal delivery path to prevent DoS
646 		 * attacks in the high resolution timer case. This is
647 		 * compliant with the old way of self-restarting
648 		 * itimers, as the SIGALRM is a legacy signal and only
649 		 * queued once. Changing the restart behaviour to
650 		 * restart the timer in the signal dequeue path is
651 		 * reducing the timer noise on heavy loaded !highres
652 		 * systems too.
653 		 */
654 		if (unlikely(signr == SIGALRM)) {
655 			struct hrtimer *tmr = &tsk->signal->real_timer;
656 
657 			if (!hrtimer_is_queued(tmr) &&
658 			    tsk->signal->it_real_incr != 0) {
659 				hrtimer_forward(tmr, tmr->base->get_time(),
660 						tsk->signal->it_real_incr);
661 				hrtimer_restart(tmr);
662 			}
663 		}
664 #endif
665 	}
666 
667 	recalc_sigpending();
668 	if (!signr)
669 		return 0;
670 
671 	if (unlikely(sig_kernel_stop(signr))) {
672 		/*
673 		 * Set a marker that we have dequeued a stop signal.  Our
674 		 * caller might release the siglock and then the pending
675 		 * stop signal it is about to process is no longer in the
676 		 * pending bitmasks, but must still be cleared by a SIGCONT
677 		 * (and overruled by a SIGKILL).  So those cases clear this
678 		 * shared flag after we've set it.  Note that this flag may
679 		 * remain set after the signal we return is ignored or
680 		 * handled.  That doesn't matter because its only purpose
681 		 * is to alert stop-signal processing code when another
682 		 * processor has come along and cleared the flag.
683 		 */
684 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
685 	}
686 #ifdef CONFIG_POSIX_TIMERS
687 	if (resched_timer) {
688 		/*
689 		 * Release the siglock to ensure proper locking order
690 		 * of timer locks outside of siglocks.  Note, we leave
691 		 * irqs disabled here, since the posix-timers code is
692 		 * about to disable them again anyway.
693 		 */
694 		spin_unlock(&tsk->sighand->siglock);
695 		posixtimer_rearm(info);
696 		spin_lock(&tsk->sighand->siglock);
697 
698 		/* Don't expose the si_sys_private value to userspace */
699 		info->si_sys_private = 0;
700 	}
701 #endif
702 	return signr;
703 }
704 EXPORT_SYMBOL_GPL(dequeue_signal);
705 
706 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
707 {
708 	struct task_struct *tsk = current;
709 	struct sigpending *pending = &tsk->pending;
710 	struct sigqueue *q, *sync = NULL;
711 
712 	/*
713 	 * Might a synchronous signal be in the queue?
714 	 */
715 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
716 		return 0;
717 
718 	/*
719 	 * Return the first synchronous signal in the queue.
720 	 */
721 	list_for_each_entry(q, &pending->list, list) {
722 		/* Synchronous signals have a positive si_code */
723 		if ((q->info.si_code > SI_USER) &&
724 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
725 			sync = q;
726 			goto next;
727 		}
728 	}
729 	return 0;
730 next:
731 	/*
732 	 * Check if there is another siginfo for the same signal.
733 	 */
734 	list_for_each_entry_continue(q, &pending->list, list) {
735 		if (q->info.si_signo == sync->info.si_signo)
736 			goto still_pending;
737 	}
738 
739 	sigdelset(&pending->signal, sync->info.si_signo);
740 	recalc_sigpending();
741 still_pending:
742 	list_del_init(&sync->list);
743 	copy_siginfo(info, &sync->info);
744 	__sigqueue_free(sync);
745 	return info->si_signo;
746 }
747 
748 /*
749  * Tell a process that it has a new active signal..
750  *
751  * NOTE! we rely on the previous spin_lock to
752  * lock interrupts for us! We can only be called with
753  * "siglock" held, and the local interrupt must
754  * have been disabled when that got acquired!
755  *
756  * No need to set need_resched since signal event passing
757  * goes through ->blocked
758  */
759 void signal_wake_up_state(struct task_struct *t, unsigned int state)
760 {
761 	set_tsk_thread_flag(t, TIF_SIGPENDING);
762 	/*
763 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
764 	 * case. We don't check t->state here because there is a race with it
765 	 * executing another processor and just now entering stopped state.
766 	 * By using wake_up_state, we ensure the process will wake up and
767 	 * handle its death signal.
768 	 */
769 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
770 		kick_process(t);
771 }
772 
773 /*
774  * Remove signals in mask from the pending set and queue.
775  * Returns 1 if any signals were found.
776  *
777  * All callers must be holding the siglock.
778  */
779 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
780 {
781 	struct sigqueue *q, *n;
782 	sigset_t m;
783 
784 	sigandsets(&m, mask, &s->signal);
785 	if (sigisemptyset(&m))
786 		return;
787 
788 	sigandnsets(&s->signal, &s->signal, mask);
789 	list_for_each_entry_safe(q, n, &s->list, list) {
790 		if (sigismember(mask, q->info.si_signo)) {
791 			list_del_init(&q->list);
792 			__sigqueue_free(q);
793 		}
794 	}
795 }
796 
797 static inline int is_si_special(const struct kernel_siginfo *info)
798 {
799 	return info <= SEND_SIG_PRIV;
800 }
801 
802 static inline bool si_fromuser(const struct kernel_siginfo *info)
803 {
804 	return info == SEND_SIG_NOINFO ||
805 		(!is_si_special(info) && SI_FROMUSER(info));
806 }
807 
808 /*
809  * called with RCU read lock from check_kill_permission()
810  */
811 static bool kill_ok_by_cred(struct task_struct *t)
812 {
813 	const struct cred *cred = current_cred();
814 	const struct cred *tcred = __task_cred(t);
815 
816 	return uid_eq(cred->euid, tcred->suid) ||
817 	       uid_eq(cred->euid, tcred->uid) ||
818 	       uid_eq(cred->uid, tcred->suid) ||
819 	       uid_eq(cred->uid, tcred->uid) ||
820 	       ns_capable(tcred->user_ns, CAP_KILL);
821 }
822 
823 /*
824  * Bad permissions for sending the signal
825  * - the caller must hold the RCU read lock
826  */
827 static int check_kill_permission(int sig, struct kernel_siginfo *info,
828 				 struct task_struct *t)
829 {
830 	struct pid *sid;
831 	int error;
832 
833 	if (!valid_signal(sig))
834 		return -EINVAL;
835 
836 	if (!si_fromuser(info))
837 		return 0;
838 
839 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
840 	if (error)
841 		return error;
842 
843 	if (!same_thread_group(current, t) &&
844 	    !kill_ok_by_cred(t)) {
845 		switch (sig) {
846 		case SIGCONT:
847 			sid = task_session(t);
848 			/*
849 			 * We don't return the error if sid == NULL. The
850 			 * task was unhashed, the caller must notice this.
851 			 */
852 			if (!sid || sid == task_session(current))
853 				break;
854 			fallthrough;
855 		default:
856 			return -EPERM;
857 		}
858 	}
859 
860 	return security_task_kill(t, info, sig, NULL);
861 }
862 
863 /**
864  * ptrace_trap_notify - schedule trap to notify ptracer
865  * @t: tracee wanting to notify tracer
866  *
867  * This function schedules sticky ptrace trap which is cleared on the next
868  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
869  * ptracer.
870  *
871  * If @t is running, STOP trap will be taken.  If trapped for STOP and
872  * ptracer is listening for events, tracee is woken up so that it can
873  * re-trap for the new event.  If trapped otherwise, STOP trap will be
874  * eventually taken without returning to userland after the existing traps
875  * are finished by PTRACE_CONT.
876  *
877  * CONTEXT:
878  * Must be called with @task->sighand->siglock held.
879  */
880 static void ptrace_trap_notify(struct task_struct *t)
881 {
882 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
883 	assert_spin_locked(&t->sighand->siglock);
884 
885 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
886 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
887 }
888 
889 /*
890  * Handle magic process-wide effects of stop/continue signals. Unlike
891  * the signal actions, these happen immediately at signal-generation
892  * time regardless of blocking, ignoring, or handling.  This does the
893  * actual continuing for SIGCONT, but not the actual stopping for stop
894  * signals. The process stop is done as a signal action for SIG_DFL.
895  *
896  * Returns true if the signal should be actually delivered, otherwise
897  * it should be dropped.
898  */
899 static bool prepare_signal(int sig, struct task_struct *p, bool force)
900 {
901 	struct signal_struct *signal = p->signal;
902 	struct task_struct *t;
903 	sigset_t flush;
904 
905 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
906 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
907 			return sig == SIGKILL;
908 		/*
909 		 * The process is in the middle of dying, nothing to do.
910 		 */
911 	} else if (sig_kernel_stop(sig)) {
912 		/*
913 		 * This is a stop signal.  Remove SIGCONT from all queues.
914 		 */
915 		siginitset(&flush, sigmask(SIGCONT));
916 		flush_sigqueue_mask(&flush, &signal->shared_pending);
917 		for_each_thread(p, t)
918 			flush_sigqueue_mask(&flush, &t->pending);
919 	} else if (sig == SIGCONT) {
920 		unsigned int why;
921 		/*
922 		 * Remove all stop signals from all queues, wake all threads.
923 		 */
924 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
925 		flush_sigqueue_mask(&flush, &signal->shared_pending);
926 		for_each_thread(p, t) {
927 			flush_sigqueue_mask(&flush, &t->pending);
928 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
929 			if (likely(!(t->ptrace & PT_SEIZED)))
930 				wake_up_state(t, __TASK_STOPPED);
931 			else
932 				ptrace_trap_notify(t);
933 		}
934 
935 		/*
936 		 * Notify the parent with CLD_CONTINUED if we were stopped.
937 		 *
938 		 * If we were in the middle of a group stop, we pretend it
939 		 * was already finished, and then continued. Since SIGCHLD
940 		 * doesn't queue we report only CLD_STOPPED, as if the next
941 		 * CLD_CONTINUED was dropped.
942 		 */
943 		why = 0;
944 		if (signal->flags & SIGNAL_STOP_STOPPED)
945 			why |= SIGNAL_CLD_CONTINUED;
946 		else if (signal->group_stop_count)
947 			why |= SIGNAL_CLD_STOPPED;
948 
949 		if (why) {
950 			/*
951 			 * The first thread which returns from do_signal_stop()
952 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
953 			 * notify its parent. See get_signal().
954 			 */
955 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
956 			signal->group_stop_count = 0;
957 			signal->group_exit_code = 0;
958 		}
959 	}
960 
961 	return !sig_ignored(p, sig, force);
962 }
963 
964 /*
965  * Test if P wants to take SIG.  After we've checked all threads with this,
966  * it's equivalent to finding no threads not blocking SIG.  Any threads not
967  * blocking SIG were ruled out because they are not running and already
968  * have pending signals.  Such threads will dequeue from the shared queue
969  * as soon as they're available, so putting the signal on the shared queue
970  * will be equivalent to sending it to one such thread.
971  */
972 static inline bool wants_signal(int sig, struct task_struct *p)
973 {
974 	if (sigismember(&p->blocked, sig))
975 		return false;
976 
977 	if (p->flags & PF_EXITING)
978 		return false;
979 
980 	if (sig == SIGKILL)
981 		return true;
982 
983 	if (task_is_stopped_or_traced(p))
984 		return false;
985 
986 	return task_curr(p) || !task_sigpending(p);
987 }
988 
989 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
990 {
991 	struct signal_struct *signal = p->signal;
992 	struct task_struct *t;
993 
994 	/*
995 	 * Now find a thread we can wake up to take the signal off the queue.
996 	 *
997 	 * If the main thread wants the signal, it gets first crack.
998 	 * Probably the least surprising to the average bear.
999 	 */
1000 	if (wants_signal(sig, p))
1001 		t = p;
1002 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1003 		/*
1004 		 * There is just one thread and it does not need to be woken.
1005 		 * It will dequeue unblocked signals before it runs again.
1006 		 */
1007 		return;
1008 	else {
1009 		/*
1010 		 * Otherwise try to find a suitable thread.
1011 		 */
1012 		t = signal->curr_target;
1013 		while (!wants_signal(sig, t)) {
1014 			t = next_thread(t);
1015 			if (t == signal->curr_target)
1016 				/*
1017 				 * No thread needs to be woken.
1018 				 * Any eligible threads will see
1019 				 * the signal in the queue soon.
1020 				 */
1021 				return;
1022 		}
1023 		signal->curr_target = t;
1024 	}
1025 
1026 	/*
1027 	 * Found a killable thread.  If the signal will be fatal,
1028 	 * then start taking the whole group down immediately.
1029 	 */
1030 	if (sig_fatal(p, sig) &&
1031 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1032 	    !sigismember(&t->real_blocked, sig) &&
1033 	    (sig == SIGKILL || !p->ptrace)) {
1034 		/*
1035 		 * This signal will be fatal to the whole group.
1036 		 */
1037 		if (!sig_kernel_coredump(sig)) {
1038 			/*
1039 			 * Start a group exit and wake everybody up.
1040 			 * This way we don't have other threads
1041 			 * running and doing things after a slower
1042 			 * thread has the fatal signal pending.
1043 			 */
1044 			signal->flags = SIGNAL_GROUP_EXIT;
1045 			signal->group_exit_code = sig;
1046 			signal->group_stop_count = 0;
1047 			t = p;
1048 			do {
1049 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1050 				sigaddset(&t->pending.signal, SIGKILL);
1051 				signal_wake_up(t, 1);
1052 			} while_each_thread(p, t);
1053 			return;
1054 		}
1055 	}
1056 
1057 	/*
1058 	 * The signal is already in the shared-pending queue.
1059 	 * Tell the chosen thread to wake up and dequeue it.
1060 	 */
1061 	signal_wake_up(t, sig == SIGKILL);
1062 	return;
1063 }
1064 
1065 static inline bool legacy_queue(struct sigpending *signals, int sig)
1066 {
1067 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1068 }
1069 
1070 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1071 			enum pid_type type, bool force)
1072 {
1073 	struct sigpending *pending;
1074 	struct sigqueue *q;
1075 	int override_rlimit;
1076 	int ret = 0, result;
1077 
1078 	assert_spin_locked(&t->sighand->siglock);
1079 
1080 	result = TRACE_SIGNAL_IGNORED;
1081 	if (!prepare_signal(sig, t, force))
1082 		goto ret;
1083 
1084 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1085 	/*
1086 	 * Short-circuit ignored signals and support queuing
1087 	 * exactly one non-rt signal, so that we can get more
1088 	 * detailed information about the cause of the signal.
1089 	 */
1090 	result = TRACE_SIGNAL_ALREADY_PENDING;
1091 	if (legacy_queue(pending, sig))
1092 		goto ret;
1093 
1094 	result = TRACE_SIGNAL_DELIVERED;
1095 	/*
1096 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1097 	 */
1098 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1099 		goto out_set;
1100 
1101 	/*
1102 	 * Real-time signals must be queued if sent by sigqueue, or
1103 	 * some other real-time mechanism.  It is implementation
1104 	 * defined whether kill() does so.  We attempt to do so, on
1105 	 * the principle of least surprise, but since kill is not
1106 	 * allowed to fail with EAGAIN when low on memory we just
1107 	 * make sure at least one signal gets delivered and don't
1108 	 * pass on the info struct.
1109 	 */
1110 	if (sig < SIGRTMIN)
1111 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1112 	else
1113 		override_rlimit = 0;
1114 
1115 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1116 
1117 	if (q) {
1118 		list_add_tail(&q->list, &pending->list);
1119 		switch ((unsigned long) info) {
1120 		case (unsigned long) SEND_SIG_NOINFO:
1121 			clear_siginfo(&q->info);
1122 			q->info.si_signo = sig;
1123 			q->info.si_errno = 0;
1124 			q->info.si_code = SI_USER;
1125 			q->info.si_pid = task_tgid_nr_ns(current,
1126 							task_active_pid_ns(t));
1127 			rcu_read_lock();
1128 			q->info.si_uid =
1129 				from_kuid_munged(task_cred_xxx(t, user_ns),
1130 						 current_uid());
1131 			rcu_read_unlock();
1132 			break;
1133 		case (unsigned long) SEND_SIG_PRIV:
1134 			clear_siginfo(&q->info);
1135 			q->info.si_signo = sig;
1136 			q->info.si_errno = 0;
1137 			q->info.si_code = SI_KERNEL;
1138 			q->info.si_pid = 0;
1139 			q->info.si_uid = 0;
1140 			break;
1141 		default:
1142 			copy_siginfo(&q->info, info);
1143 			break;
1144 		}
1145 	} else if (!is_si_special(info) &&
1146 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1147 		/*
1148 		 * Queue overflow, abort.  We may abort if the
1149 		 * signal was rt and sent by user using something
1150 		 * other than kill().
1151 		 */
1152 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1153 		ret = -EAGAIN;
1154 		goto ret;
1155 	} else {
1156 		/*
1157 		 * This is a silent loss of information.  We still
1158 		 * send the signal, but the *info bits are lost.
1159 		 */
1160 		result = TRACE_SIGNAL_LOSE_INFO;
1161 	}
1162 
1163 out_set:
1164 	signalfd_notify(t, sig);
1165 	sigaddset(&pending->signal, sig);
1166 
1167 	/* Let multiprocess signals appear after on-going forks */
1168 	if (type > PIDTYPE_TGID) {
1169 		struct multiprocess_signals *delayed;
1170 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1171 			sigset_t *signal = &delayed->signal;
1172 			/* Can't queue both a stop and a continue signal */
1173 			if (sig == SIGCONT)
1174 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1175 			else if (sig_kernel_stop(sig))
1176 				sigdelset(signal, SIGCONT);
1177 			sigaddset(signal, sig);
1178 		}
1179 	}
1180 
1181 	complete_signal(sig, t, type);
1182 ret:
1183 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1184 	return ret;
1185 }
1186 
1187 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1188 {
1189 	bool ret = false;
1190 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1191 	case SIL_KILL:
1192 	case SIL_CHLD:
1193 	case SIL_RT:
1194 		ret = true;
1195 		break;
1196 	case SIL_TIMER:
1197 	case SIL_POLL:
1198 	case SIL_FAULT:
1199 	case SIL_FAULT_TRAPNO:
1200 	case SIL_FAULT_MCEERR:
1201 	case SIL_FAULT_BNDERR:
1202 	case SIL_FAULT_PKUERR:
1203 	case SIL_PERF_EVENT:
1204 	case SIL_SYS:
1205 		ret = false;
1206 		break;
1207 	}
1208 	return ret;
1209 }
1210 
1211 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1212 			enum pid_type type)
1213 {
1214 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1215 	bool force = false;
1216 
1217 	if (info == SEND_SIG_NOINFO) {
1218 		/* Force if sent from an ancestor pid namespace */
1219 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1220 	} else if (info == SEND_SIG_PRIV) {
1221 		/* Don't ignore kernel generated signals */
1222 		force = true;
1223 	} else if (has_si_pid_and_uid(info)) {
1224 		/* SIGKILL and SIGSTOP is special or has ids */
1225 		struct user_namespace *t_user_ns;
1226 
1227 		rcu_read_lock();
1228 		t_user_ns = task_cred_xxx(t, user_ns);
1229 		if (current_user_ns() != t_user_ns) {
1230 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1231 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1232 		}
1233 		rcu_read_unlock();
1234 
1235 		/* A kernel generated signal? */
1236 		force = (info->si_code == SI_KERNEL);
1237 
1238 		/* From an ancestor pid namespace? */
1239 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1240 			info->si_pid = 0;
1241 			force = true;
1242 		}
1243 	}
1244 	return __send_signal(sig, info, t, type, force);
1245 }
1246 
1247 static void print_fatal_signal(int signr)
1248 {
1249 	struct pt_regs *regs = signal_pt_regs();
1250 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1251 
1252 #if defined(__i386__) && !defined(__arch_um__)
1253 	pr_info("code at %08lx: ", regs->ip);
1254 	{
1255 		int i;
1256 		for (i = 0; i < 16; i++) {
1257 			unsigned char insn;
1258 
1259 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1260 				break;
1261 			pr_cont("%02x ", insn);
1262 		}
1263 	}
1264 	pr_cont("\n");
1265 #endif
1266 	preempt_disable();
1267 	show_regs(regs);
1268 	preempt_enable();
1269 }
1270 
1271 static int __init setup_print_fatal_signals(char *str)
1272 {
1273 	get_option (&str, &print_fatal_signals);
1274 
1275 	return 1;
1276 }
1277 
1278 __setup("print-fatal-signals=", setup_print_fatal_signals);
1279 
1280 int
1281 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1282 {
1283 	return send_signal(sig, info, p, PIDTYPE_TGID);
1284 }
1285 
1286 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1287 			enum pid_type type)
1288 {
1289 	unsigned long flags;
1290 	int ret = -ESRCH;
1291 
1292 	if (lock_task_sighand(p, &flags)) {
1293 		ret = send_signal(sig, info, p, type);
1294 		unlock_task_sighand(p, &flags);
1295 	}
1296 
1297 	return ret;
1298 }
1299 
1300 /*
1301  * Force a signal that the process can't ignore: if necessary
1302  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1303  *
1304  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1305  * since we do not want to have a signal handler that was blocked
1306  * be invoked when user space had explicitly blocked it.
1307  *
1308  * We don't want to have recursive SIGSEGV's etc, for example,
1309  * that is why we also clear SIGNAL_UNKILLABLE.
1310  */
1311 static int
1312 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1313 {
1314 	unsigned long int flags;
1315 	int ret, blocked, ignored;
1316 	struct k_sigaction *action;
1317 	int sig = info->si_signo;
1318 
1319 	spin_lock_irqsave(&t->sighand->siglock, flags);
1320 	action = &t->sighand->action[sig-1];
1321 	ignored = action->sa.sa_handler == SIG_IGN;
1322 	blocked = sigismember(&t->blocked, sig);
1323 	if (blocked || ignored) {
1324 		action->sa.sa_handler = SIG_DFL;
1325 		if (blocked) {
1326 			sigdelset(&t->blocked, sig);
1327 			recalc_sigpending_and_wake(t);
1328 		}
1329 	}
1330 	/*
1331 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1332 	 * debugging to leave init killable.
1333 	 */
1334 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1335 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1336 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1337 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1338 
1339 	return ret;
1340 }
1341 
1342 int force_sig_info(struct kernel_siginfo *info)
1343 {
1344 	return force_sig_info_to_task(info, current);
1345 }
1346 
1347 /*
1348  * Nuke all other threads in the group.
1349  */
1350 int zap_other_threads(struct task_struct *p)
1351 {
1352 	struct task_struct *t = p;
1353 	int count = 0;
1354 
1355 	p->signal->group_stop_count = 0;
1356 
1357 	while_each_thread(p, t) {
1358 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1359 		count++;
1360 
1361 		/* Don't bother with already dead threads */
1362 		if (t->exit_state)
1363 			continue;
1364 		sigaddset(&t->pending.signal, SIGKILL);
1365 		signal_wake_up(t, 1);
1366 	}
1367 
1368 	return count;
1369 }
1370 
1371 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1372 					   unsigned long *flags)
1373 {
1374 	struct sighand_struct *sighand;
1375 
1376 	rcu_read_lock();
1377 	for (;;) {
1378 		sighand = rcu_dereference(tsk->sighand);
1379 		if (unlikely(sighand == NULL))
1380 			break;
1381 
1382 		/*
1383 		 * This sighand can be already freed and even reused, but
1384 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1385 		 * initializes ->siglock: this slab can't go away, it has
1386 		 * the same object type, ->siglock can't be reinitialized.
1387 		 *
1388 		 * We need to ensure that tsk->sighand is still the same
1389 		 * after we take the lock, we can race with de_thread() or
1390 		 * __exit_signal(). In the latter case the next iteration
1391 		 * must see ->sighand == NULL.
1392 		 */
1393 		spin_lock_irqsave(&sighand->siglock, *flags);
1394 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1395 			break;
1396 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1397 	}
1398 	rcu_read_unlock();
1399 
1400 	return sighand;
1401 }
1402 
1403 /*
1404  * send signal info to all the members of a group
1405  */
1406 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1407 			struct task_struct *p, enum pid_type type)
1408 {
1409 	int ret;
1410 
1411 	rcu_read_lock();
1412 	ret = check_kill_permission(sig, info, p);
1413 	rcu_read_unlock();
1414 
1415 	if (!ret && sig)
1416 		ret = do_send_sig_info(sig, info, p, type);
1417 
1418 	return ret;
1419 }
1420 
1421 /*
1422  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1423  * control characters do (^C, ^Z etc)
1424  * - the caller must hold at least a readlock on tasklist_lock
1425  */
1426 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1427 {
1428 	struct task_struct *p = NULL;
1429 	int retval, success;
1430 
1431 	success = 0;
1432 	retval = -ESRCH;
1433 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1434 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1435 		success |= !err;
1436 		retval = err;
1437 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1438 	return success ? 0 : retval;
1439 }
1440 
1441 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1442 {
1443 	int error = -ESRCH;
1444 	struct task_struct *p;
1445 
1446 	for (;;) {
1447 		rcu_read_lock();
1448 		p = pid_task(pid, PIDTYPE_PID);
1449 		if (p)
1450 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1451 		rcu_read_unlock();
1452 		if (likely(!p || error != -ESRCH))
1453 			return error;
1454 
1455 		/*
1456 		 * The task was unhashed in between, try again.  If it
1457 		 * is dead, pid_task() will return NULL, if we race with
1458 		 * de_thread() it will find the new leader.
1459 		 */
1460 	}
1461 }
1462 
1463 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1464 {
1465 	int error;
1466 	rcu_read_lock();
1467 	error = kill_pid_info(sig, info, find_vpid(pid));
1468 	rcu_read_unlock();
1469 	return error;
1470 }
1471 
1472 static inline bool kill_as_cred_perm(const struct cred *cred,
1473 				     struct task_struct *target)
1474 {
1475 	const struct cred *pcred = __task_cred(target);
1476 
1477 	return uid_eq(cred->euid, pcred->suid) ||
1478 	       uid_eq(cred->euid, pcred->uid) ||
1479 	       uid_eq(cred->uid, pcred->suid) ||
1480 	       uid_eq(cred->uid, pcred->uid);
1481 }
1482 
1483 /*
1484  * The usb asyncio usage of siginfo is wrong.  The glibc support
1485  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1486  * AKA after the generic fields:
1487  *	kernel_pid_t	si_pid;
1488  *	kernel_uid32_t	si_uid;
1489  *	sigval_t	si_value;
1490  *
1491  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1492  * after the generic fields is:
1493  *	void __user 	*si_addr;
1494  *
1495  * This is a practical problem when there is a 64bit big endian kernel
1496  * and a 32bit userspace.  As the 32bit address will encoded in the low
1497  * 32bits of the pointer.  Those low 32bits will be stored at higher
1498  * address than appear in a 32 bit pointer.  So userspace will not
1499  * see the address it was expecting for it's completions.
1500  *
1501  * There is nothing in the encoding that can allow
1502  * copy_siginfo_to_user32 to detect this confusion of formats, so
1503  * handle this by requiring the caller of kill_pid_usb_asyncio to
1504  * notice when this situration takes place and to store the 32bit
1505  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1506  * parameter.
1507  */
1508 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1509 			 struct pid *pid, const struct cred *cred)
1510 {
1511 	struct kernel_siginfo info;
1512 	struct task_struct *p;
1513 	unsigned long flags;
1514 	int ret = -EINVAL;
1515 
1516 	if (!valid_signal(sig))
1517 		return ret;
1518 
1519 	clear_siginfo(&info);
1520 	info.si_signo = sig;
1521 	info.si_errno = errno;
1522 	info.si_code = SI_ASYNCIO;
1523 	*((sigval_t *)&info.si_pid) = addr;
1524 
1525 	rcu_read_lock();
1526 	p = pid_task(pid, PIDTYPE_PID);
1527 	if (!p) {
1528 		ret = -ESRCH;
1529 		goto out_unlock;
1530 	}
1531 	if (!kill_as_cred_perm(cred, p)) {
1532 		ret = -EPERM;
1533 		goto out_unlock;
1534 	}
1535 	ret = security_task_kill(p, &info, sig, cred);
1536 	if (ret)
1537 		goto out_unlock;
1538 
1539 	if (sig) {
1540 		if (lock_task_sighand(p, &flags)) {
1541 			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1542 			unlock_task_sighand(p, &flags);
1543 		} else
1544 			ret = -ESRCH;
1545 	}
1546 out_unlock:
1547 	rcu_read_unlock();
1548 	return ret;
1549 }
1550 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1551 
1552 /*
1553  * kill_something_info() interprets pid in interesting ways just like kill(2).
1554  *
1555  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1556  * is probably wrong.  Should make it like BSD or SYSV.
1557  */
1558 
1559 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1560 {
1561 	int ret;
1562 
1563 	if (pid > 0)
1564 		return kill_proc_info(sig, info, pid);
1565 
1566 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1567 	if (pid == INT_MIN)
1568 		return -ESRCH;
1569 
1570 	read_lock(&tasklist_lock);
1571 	if (pid != -1) {
1572 		ret = __kill_pgrp_info(sig, info,
1573 				pid ? find_vpid(-pid) : task_pgrp(current));
1574 	} else {
1575 		int retval = 0, count = 0;
1576 		struct task_struct * p;
1577 
1578 		for_each_process(p) {
1579 			if (task_pid_vnr(p) > 1 &&
1580 					!same_thread_group(p, current)) {
1581 				int err = group_send_sig_info(sig, info, p,
1582 							      PIDTYPE_MAX);
1583 				++count;
1584 				if (err != -EPERM)
1585 					retval = err;
1586 			}
1587 		}
1588 		ret = count ? retval : -ESRCH;
1589 	}
1590 	read_unlock(&tasklist_lock);
1591 
1592 	return ret;
1593 }
1594 
1595 /*
1596  * These are for backward compatibility with the rest of the kernel source.
1597  */
1598 
1599 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1600 {
1601 	/*
1602 	 * Make sure legacy kernel users don't send in bad values
1603 	 * (normal paths check this in check_kill_permission).
1604 	 */
1605 	if (!valid_signal(sig))
1606 		return -EINVAL;
1607 
1608 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1609 }
1610 EXPORT_SYMBOL(send_sig_info);
1611 
1612 #define __si_special(priv) \
1613 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1614 
1615 int
1616 send_sig(int sig, struct task_struct *p, int priv)
1617 {
1618 	return send_sig_info(sig, __si_special(priv), p);
1619 }
1620 EXPORT_SYMBOL(send_sig);
1621 
1622 void force_sig(int sig)
1623 {
1624 	struct kernel_siginfo info;
1625 
1626 	clear_siginfo(&info);
1627 	info.si_signo = sig;
1628 	info.si_errno = 0;
1629 	info.si_code = SI_KERNEL;
1630 	info.si_pid = 0;
1631 	info.si_uid = 0;
1632 	force_sig_info(&info);
1633 }
1634 EXPORT_SYMBOL(force_sig);
1635 
1636 /*
1637  * When things go south during signal handling, we
1638  * will force a SIGSEGV. And if the signal that caused
1639  * the problem was already a SIGSEGV, we'll want to
1640  * make sure we don't even try to deliver the signal..
1641  */
1642 void force_sigsegv(int sig)
1643 {
1644 	struct task_struct *p = current;
1645 
1646 	if (sig == SIGSEGV) {
1647 		unsigned long flags;
1648 		spin_lock_irqsave(&p->sighand->siglock, flags);
1649 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1650 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1651 	}
1652 	force_sig(SIGSEGV);
1653 }
1654 
1655 int force_sig_fault_to_task(int sig, int code, void __user *addr
1656 	___ARCH_SI_TRAPNO(int trapno)
1657 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1658 	, struct task_struct *t)
1659 {
1660 	struct kernel_siginfo info;
1661 
1662 	clear_siginfo(&info);
1663 	info.si_signo = sig;
1664 	info.si_errno = 0;
1665 	info.si_code  = code;
1666 	info.si_addr  = addr;
1667 #ifdef __ARCH_SI_TRAPNO
1668 	info.si_trapno = trapno;
1669 #endif
1670 #ifdef __ia64__
1671 	info.si_imm = imm;
1672 	info.si_flags = flags;
1673 	info.si_isr = isr;
1674 #endif
1675 	return force_sig_info_to_task(&info, t);
1676 }
1677 
1678 int force_sig_fault(int sig, int code, void __user *addr
1679 	___ARCH_SI_TRAPNO(int trapno)
1680 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1681 {
1682 	return force_sig_fault_to_task(sig, code, addr
1683 				       ___ARCH_SI_TRAPNO(trapno)
1684 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1685 }
1686 
1687 int send_sig_fault(int sig, int code, void __user *addr
1688 	___ARCH_SI_TRAPNO(int trapno)
1689 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1690 	, struct task_struct *t)
1691 {
1692 	struct kernel_siginfo info;
1693 
1694 	clear_siginfo(&info);
1695 	info.si_signo = sig;
1696 	info.si_errno = 0;
1697 	info.si_code  = code;
1698 	info.si_addr  = addr;
1699 #ifdef __ARCH_SI_TRAPNO
1700 	info.si_trapno = trapno;
1701 #endif
1702 #ifdef __ia64__
1703 	info.si_imm = imm;
1704 	info.si_flags = flags;
1705 	info.si_isr = isr;
1706 #endif
1707 	return send_sig_info(info.si_signo, &info, t);
1708 }
1709 
1710 int force_sig_mceerr(int code, void __user *addr, short lsb)
1711 {
1712 	struct kernel_siginfo info;
1713 
1714 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1715 	clear_siginfo(&info);
1716 	info.si_signo = SIGBUS;
1717 	info.si_errno = 0;
1718 	info.si_code = code;
1719 	info.si_addr = addr;
1720 	info.si_addr_lsb = lsb;
1721 	return force_sig_info(&info);
1722 }
1723 
1724 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1725 {
1726 	struct kernel_siginfo info;
1727 
1728 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1729 	clear_siginfo(&info);
1730 	info.si_signo = SIGBUS;
1731 	info.si_errno = 0;
1732 	info.si_code = code;
1733 	info.si_addr = addr;
1734 	info.si_addr_lsb = lsb;
1735 	return send_sig_info(info.si_signo, &info, t);
1736 }
1737 EXPORT_SYMBOL(send_sig_mceerr);
1738 
1739 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1740 {
1741 	struct kernel_siginfo info;
1742 
1743 	clear_siginfo(&info);
1744 	info.si_signo = SIGSEGV;
1745 	info.si_errno = 0;
1746 	info.si_code  = SEGV_BNDERR;
1747 	info.si_addr  = addr;
1748 	info.si_lower = lower;
1749 	info.si_upper = upper;
1750 	return force_sig_info(&info);
1751 }
1752 
1753 #ifdef SEGV_PKUERR
1754 int force_sig_pkuerr(void __user *addr, u32 pkey)
1755 {
1756 	struct kernel_siginfo info;
1757 
1758 	clear_siginfo(&info);
1759 	info.si_signo = SIGSEGV;
1760 	info.si_errno = 0;
1761 	info.si_code  = SEGV_PKUERR;
1762 	info.si_addr  = addr;
1763 	info.si_pkey  = pkey;
1764 	return force_sig_info(&info);
1765 }
1766 #endif
1767 
1768 int force_sig_perf(void __user *addr, u32 type, u64 sig_data)
1769 {
1770 	struct kernel_siginfo info;
1771 
1772 	clear_siginfo(&info);
1773 	info.si_signo     = SIGTRAP;
1774 	info.si_errno     = 0;
1775 	info.si_code      = TRAP_PERF;
1776 	info.si_addr      = addr;
1777 	info.si_perf_data = sig_data;
1778 	info.si_perf_type = type;
1779 
1780 	return force_sig_info(&info);
1781 }
1782 
1783 /* For the crazy architectures that include trap information in
1784  * the errno field, instead of an actual errno value.
1785  */
1786 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1787 {
1788 	struct kernel_siginfo info;
1789 
1790 	clear_siginfo(&info);
1791 	info.si_signo = SIGTRAP;
1792 	info.si_errno = errno;
1793 	info.si_code  = TRAP_HWBKPT;
1794 	info.si_addr  = addr;
1795 	return force_sig_info(&info);
1796 }
1797 
1798 int kill_pgrp(struct pid *pid, int sig, int priv)
1799 {
1800 	int ret;
1801 
1802 	read_lock(&tasklist_lock);
1803 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1804 	read_unlock(&tasklist_lock);
1805 
1806 	return ret;
1807 }
1808 EXPORT_SYMBOL(kill_pgrp);
1809 
1810 int kill_pid(struct pid *pid, int sig, int priv)
1811 {
1812 	return kill_pid_info(sig, __si_special(priv), pid);
1813 }
1814 EXPORT_SYMBOL(kill_pid);
1815 
1816 /*
1817  * These functions support sending signals using preallocated sigqueue
1818  * structures.  This is needed "because realtime applications cannot
1819  * afford to lose notifications of asynchronous events, like timer
1820  * expirations or I/O completions".  In the case of POSIX Timers
1821  * we allocate the sigqueue structure from the timer_create.  If this
1822  * allocation fails we are able to report the failure to the application
1823  * with an EAGAIN error.
1824  */
1825 struct sigqueue *sigqueue_alloc(void)
1826 {
1827 	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1828 }
1829 
1830 void sigqueue_free(struct sigqueue *q)
1831 {
1832 	unsigned long flags;
1833 	spinlock_t *lock = &current->sighand->siglock;
1834 
1835 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1836 	/*
1837 	 * We must hold ->siglock while testing q->list
1838 	 * to serialize with collect_signal() or with
1839 	 * __exit_signal()->flush_sigqueue().
1840 	 */
1841 	spin_lock_irqsave(lock, flags);
1842 	q->flags &= ~SIGQUEUE_PREALLOC;
1843 	/*
1844 	 * If it is queued it will be freed when dequeued,
1845 	 * like the "regular" sigqueue.
1846 	 */
1847 	if (!list_empty(&q->list))
1848 		q = NULL;
1849 	spin_unlock_irqrestore(lock, flags);
1850 
1851 	if (q)
1852 		__sigqueue_free(q);
1853 }
1854 
1855 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1856 {
1857 	int sig = q->info.si_signo;
1858 	struct sigpending *pending;
1859 	struct task_struct *t;
1860 	unsigned long flags;
1861 	int ret, result;
1862 
1863 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1864 
1865 	ret = -1;
1866 	rcu_read_lock();
1867 	t = pid_task(pid, type);
1868 	if (!t || !likely(lock_task_sighand(t, &flags)))
1869 		goto ret;
1870 
1871 	ret = 1; /* the signal is ignored */
1872 	result = TRACE_SIGNAL_IGNORED;
1873 	if (!prepare_signal(sig, t, false))
1874 		goto out;
1875 
1876 	ret = 0;
1877 	if (unlikely(!list_empty(&q->list))) {
1878 		/*
1879 		 * If an SI_TIMER entry is already queue just increment
1880 		 * the overrun count.
1881 		 */
1882 		BUG_ON(q->info.si_code != SI_TIMER);
1883 		q->info.si_overrun++;
1884 		result = TRACE_SIGNAL_ALREADY_PENDING;
1885 		goto out;
1886 	}
1887 	q->info.si_overrun = 0;
1888 
1889 	signalfd_notify(t, sig);
1890 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1891 	list_add_tail(&q->list, &pending->list);
1892 	sigaddset(&pending->signal, sig);
1893 	complete_signal(sig, t, type);
1894 	result = TRACE_SIGNAL_DELIVERED;
1895 out:
1896 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1897 	unlock_task_sighand(t, &flags);
1898 ret:
1899 	rcu_read_unlock();
1900 	return ret;
1901 }
1902 
1903 static void do_notify_pidfd(struct task_struct *task)
1904 {
1905 	struct pid *pid;
1906 
1907 	WARN_ON(task->exit_state == 0);
1908 	pid = task_pid(task);
1909 	wake_up_all(&pid->wait_pidfd);
1910 }
1911 
1912 /*
1913  * Let a parent know about the death of a child.
1914  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1915  *
1916  * Returns true if our parent ignored us and so we've switched to
1917  * self-reaping.
1918  */
1919 bool do_notify_parent(struct task_struct *tsk, int sig)
1920 {
1921 	struct kernel_siginfo info;
1922 	unsigned long flags;
1923 	struct sighand_struct *psig;
1924 	bool autoreap = false;
1925 	u64 utime, stime;
1926 
1927 	BUG_ON(sig == -1);
1928 
1929  	/* do_notify_parent_cldstop should have been called instead.  */
1930  	BUG_ON(task_is_stopped_or_traced(tsk));
1931 
1932 	BUG_ON(!tsk->ptrace &&
1933 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1934 
1935 	/* Wake up all pidfd waiters */
1936 	do_notify_pidfd(tsk);
1937 
1938 	if (sig != SIGCHLD) {
1939 		/*
1940 		 * This is only possible if parent == real_parent.
1941 		 * Check if it has changed security domain.
1942 		 */
1943 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1944 			sig = SIGCHLD;
1945 	}
1946 
1947 	clear_siginfo(&info);
1948 	info.si_signo = sig;
1949 	info.si_errno = 0;
1950 	/*
1951 	 * We are under tasklist_lock here so our parent is tied to
1952 	 * us and cannot change.
1953 	 *
1954 	 * task_active_pid_ns will always return the same pid namespace
1955 	 * until a task passes through release_task.
1956 	 *
1957 	 * write_lock() currently calls preempt_disable() which is the
1958 	 * same as rcu_read_lock(), but according to Oleg, this is not
1959 	 * correct to rely on this
1960 	 */
1961 	rcu_read_lock();
1962 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1963 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1964 				       task_uid(tsk));
1965 	rcu_read_unlock();
1966 
1967 	task_cputime(tsk, &utime, &stime);
1968 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1969 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1970 
1971 	info.si_status = tsk->exit_code & 0x7f;
1972 	if (tsk->exit_code & 0x80)
1973 		info.si_code = CLD_DUMPED;
1974 	else if (tsk->exit_code & 0x7f)
1975 		info.si_code = CLD_KILLED;
1976 	else {
1977 		info.si_code = CLD_EXITED;
1978 		info.si_status = tsk->exit_code >> 8;
1979 	}
1980 
1981 	psig = tsk->parent->sighand;
1982 	spin_lock_irqsave(&psig->siglock, flags);
1983 	if (!tsk->ptrace && sig == SIGCHLD &&
1984 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1985 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1986 		/*
1987 		 * We are exiting and our parent doesn't care.  POSIX.1
1988 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1989 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1990 		 * automatically and not left for our parent's wait4 call.
1991 		 * Rather than having the parent do it as a magic kind of
1992 		 * signal handler, we just set this to tell do_exit that we
1993 		 * can be cleaned up without becoming a zombie.  Note that
1994 		 * we still call __wake_up_parent in this case, because a
1995 		 * blocked sys_wait4 might now return -ECHILD.
1996 		 *
1997 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1998 		 * is implementation-defined: we do (if you don't want
1999 		 * it, just use SIG_IGN instead).
2000 		 */
2001 		autoreap = true;
2002 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2003 			sig = 0;
2004 	}
2005 	/*
2006 	 * Send with __send_signal as si_pid and si_uid are in the
2007 	 * parent's namespaces.
2008 	 */
2009 	if (valid_signal(sig) && sig)
2010 		__send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2011 	__wake_up_parent(tsk, tsk->parent);
2012 	spin_unlock_irqrestore(&psig->siglock, flags);
2013 
2014 	return autoreap;
2015 }
2016 
2017 /**
2018  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2019  * @tsk: task reporting the state change
2020  * @for_ptracer: the notification is for ptracer
2021  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2022  *
2023  * Notify @tsk's parent that the stopped/continued state has changed.  If
2024  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2025  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2026  *
2027  * CONTEXT:
2028  * Must be called with tasklist_lock at least read locked.
2029  */
2030 static void do_notify_parent_cldstop(struct task_struct *tsk,
2031 				     bool for_ptracer, int why)
2032 {
2033 	struct kernel_siginfo info;
2034 	unsigned long flags;
2035 	struct task_struct *parent;
2036 	struct sighand_struct *sighand;
2037 	u64 utime, stime;
2038 
2039 	if (for_ptracer) {
2040 		parent = tsk->parent;
2041 	} else {
2042 		tsk = tsk->group_leader;
2043 		parent = tsk->real_parent;
2044 	}
2045 
2046 	clear_siginfo(&info);
2047 	info.si_signo = SIGCHLD;
2048 	info.si_errno = 0;
2049 	/*
2050 	 * see comment in do_notify_parent() about the following 4 lines
2051 	 */
2052 	rcu_read_lock();
2053 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2054 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2055 	rcu_read_unlock();
2056 
2057 	task_cputime(tsk, &utime, &stime);
2058 	info.si_utime = nsec_to_clock_t(utime);
2059 	info.si_stime = nsec_to_clock_t(stime);
2060 
2061  	info.si_code = why;
2062  	switch (why) {
2063  	case CLD_CONTINUED:
2064  		info.si_status = SIGCONT;
2065  		break;
2066  	case CLD_STOPPED:
2067  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2068  		break;
2069  	case CLD_TRAPPED:
2070  		info.si_status = tsk->exit_code & 0x7f;
2071  		break;
2072  	default:
2073  		BUG();
2074  	}
2075 
2076 	sighand = parent->sighand;
2077 	spin_lock_irqsave(&sighand->siglock, flags);
2078 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2079 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2080 		__group_send_sig_info(SIGCHLD, &info, parent);
2081 	/*
2082 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2083 	 */
2084 	__wake_up_parent(tsk, parent);
2085 	spin_unlock_irqrestore(&sighand->siglock, flags);
2086 }
2087 
2088 static inline bool may_ptrace_stop(void)
2089 {
2090 	if (!likely(current->ptrace))
2091 		return false;
2092 	/*
2093 	 * Are we in the middle of do_coredump?
2094 	 * If so and our tracer is also part of the coredump stopping
2095 	 * is a deadlock situation, and pointless because our tracer
2096 	 * is dead so don't allow us to stop.
2097 	 * If SIGKILL was already sent before the caller unlocked
2098 	 * ->siglock we must see ->core_state != NULL. Otherwise it
2099 	 * is safe to enter schedule().
2100 	 *
2101 	 * This is almost outdated, a task with the pending SIGKILL can't
2102 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2103 	 * after SIGKILL was already dequeued.
2104 	 */
2105 	if (unlikely(current->mm->core_state) &&
2106 	    unlikely(current->mm == current->parent->mm))
2107 		return false;
2108 
2109 	return true;
2110 }
2111 
2112 /*
2113  * Return non-zero if there is a SIGKILL that should be waking us up.
2114  * Called with the siglock held.
2115  */
2116 static bool sigkill_pending(struct task_struct *tsk)
2117 {
2118 	return sigismember(&tsk->pending.signal, SIGKILL) ||
2119 	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2120 }
2121 
2122 /*
2123  * This must be called with current->sighand->siglock held.
2124  *
2125  * This should be the path for all ptrace stops.
2126  * We always set current->last_siginfo while stopped here.
2127  * That makes it a way to test a stopped process for
2128  * being ptrace-stopped vs being job-control-stopped.
2129  *
2130  * If we actually decide not to stop at all because the tracer
2131  * is gone, we keep current->exit_code unless clear_code.
2132  */
2133 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2134 	__releases(&current->sighand->siglock)
2135 	__acquires(&current->sighand->siglock)
2136 {
2137 	bool gstop_done = false;
2138 
2139 	if (arch_ptrace_stop_needed(exit_code, info)) {
2140 		/*
2141 		 * The arch code has something special to do before a
2142 		 * ptrace stop.  This is allowed to block, e.g. for faults
2143 		 * on user stack pages.  We can't keep the siglock while
2144 		 * calling arch_ptrace_stop, so we must release it now.
2145 		 * To preserve proper semantics, we must do this before
2146 		 * any signal bookkeeping like checking group_stop_count.
2147 		 * Meanwhile, a SIGKILL could come in before we retake the
2148 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2149 		 * So after regaining the lock, we must check for SIGKILL.
2150 		 */
2151 		spin_unlock_irq(&current->sighand->siglock);
2152 		arch_ptrace_stop(exit_code, info);
2153 		spin_lock_irq(&current->sighand->siglock);
2154 		if (sigkill_pending(current))
2155 			return;
2156 	}
2157 
2158 	set_special_state(TASK_TRACED);
2159 
2160 	/*
2161 	 * We're committing to trapping.  TRACED should be visible before
2162 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2163 	 * Also, transition to TRACED and updates to ->jobctl should be
2164 	 * atomic with respect to siglock and should be done after the arch
2165 	 * hook as siglock is released and regrabbed across it.
2166 	 *
2167 	 *     TRACER				    TRACEE
2168 	 *
2169 	 *     ptrace_attach()
2170 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2171 	 *     do_wait()
2172 	 *       set_current_state()                smp_wmb();
2173 	 *       ptrace_do_wait()
2174 	 *         wait_task_stopped()
2175 	 *           task_stopped_code()
2176 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2177 	 */
2178 	smp_wmb();
2179 
2180 	current->last_siginfo = info;
2181 	current->exit_code = exit_code;
2182 
2183 	/*
2184 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2185 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2186 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2187 	 * could be clear now.  We act as if SIGCONT is received after
2188 	 * TASK_TRACED is entered - ignore it.
2189 	 */
2190 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2191 		gstop_done = task_participate_group_stop(current);
2192 
2193 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2194 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2195 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2196 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2197 
2198 	/* entering a trap, clear TRAPPING */
2199 	task_clear_jobctl_trapping(current);
2200 
2201 	spin_unlock_irq(&current->sighand->siglock);
2202 	read_lock(&tasklist_lock);
2203 	if (may_ptrace_stop()) {
2204 		/*
2205 		 * Notify parents of the stop.
2206 		 *
2207 		 * While ptraced, there are two parents - the ptracer and
2208 		 * the real_parent of the group_leader.  The ptracer should
2209 		 * know about every stop while the real parent is only
2210 		 * interested in the completion of group stop.  The states
2211 		 * for the two don't interact with each other.  Notify
2212 		 * separately unless they're gonna be duplicates.
2213 		 */
2214 		do_notify_parent_cldstop(current, true, why);
2215 		if (gstop_done && ptrace_reparented(current))
2216 			do_notify_parent_cldstop(current, false, why);
2217 
2218 		/*
2219 		 * Don't want to allow preemption here, because
2220 		 * sys_ptrace() needs this task to be inactive.
2221 		 *
2222 		 * XXX: implement read_unlock_no_resched().
2223 		 */
2224 		preempt_disable();
2225 		read_unlock(&tasklist_lock);
2226 		cgroup_enter_frozen();
2227 		preempt_enable_no_resched();
2228 		freezable_schedule();
2229 		cgroup_leave_frozen(true);
2230 	} else {
2231 		/*
2232 		 * By the time we got the lock, our tracer went away.
2233 		 * Don't drop the lock yet, another tracer may come.
2234 		 *
2235 		 * If @gstop_done, the ptracer went away between group stop
2236 		 * completion and here.  During detach, it would have set
2237 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2238 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2239 		 * the real parent of the group stop completion is enough.
2240 		 */
2241 		if (gstop_done)
2242 			do_notify_parent_cldstop(current, false, why);
2243 
2244 		/* tasklist protects us from ptrace_freeze_traced() */
2245 		__set_current_state(TASK_RUNNING);
2246 		if (clear_code)
2247 			current->exit_code = 0;
2248 		read_unlock(&tasklist_lock);
2249 	}
2250 
2251 	/*
2252 	 * We are back.  Now reacquire the siglock before touching
2253 	 * last_siginfo, so that we are sure to have synchronized with
2254 	 * any signal-sending on another CPU that wants to examine it.
2255 	 */
2256 	spin_lock_irq(&current->sighand->siglock);
2257 	current->last_siginfo = NULL;
2258 
2259 	/* LISTENING can be set only during STOP traps, clear it */
2260 	current->jobctl &= ~JOBCTL_LISTENING;
2261 
2262 	/*
2263 	 * Queued signals ignored us while we were stopped for tracing.
2264 	 * So check for any that we should take before resuming user mode.
2265 	 * This sets TIF_SIGPENDING, but never clears it.
2266 	 */
2267 	recalc_sigpending_tsk(current);
2268 }
2269 
2270 static void ptrace_do_notify(int signr, int exit_code, int why)
2271 {
2272 	kernel_siginfo_t info;
2273 
2274 	clear_siginfo(&info);
2275 	info.si_signo = signr;
2276 	info.si_code = exit_code;
2277 	info.si_pid = task_pid_vnr(current);
2278 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2279 
2280 	/* Let the debugger run.  */
2281 	ptrace_stop(exit_code, why, 1, &info);
2282 }
2283 
2284 void ptrace_notify(int exit_code)
2285 {
2286 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2287 	if (unlikely(current->task_works))
2288 		task_work_run();
2289 
2290 	spin_lock_irq(&current->sighand->siglock);
2291 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2292 	spin_unlock_irq(&current->sighand->siglock);
2293 }
2294 
2295 /**
2296  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2297  * @signr: signr causing group stop if initiating
2298  *
2299  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2300  * and participate in it.  If already set, participate in the existing
2301  * group stop.  If participated in a group stop (and thus slept), %true is
2302  * returned with siglock released.
2303  *
2304  * If ptraced, this function doesn't handle stop itself.  Instead,
2305  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2306  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2307  * places afterwards.
2308  *
2309  * CONTEXT:
2310  * Must be called with @current->sighand->siglock held, which is released
2311  * on %true return.
2312  *
2313  * RETURNS:
2314  * %false if group stop is already cancelled or ptrace trap is scheduled.
2315  * %true if participated in group stop.
2316  */
2317 static bool do_signal_stop(int signr)
2318 	__releases(&current->sighand->siglock)
2319 {
2320 	struct signal_struct *sig = current->signal;
2321 
2322 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2323 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2324 		struct task_struct *t;
2325 
2326 		/* signr will be recorded in task->jobctl for retries */
2327 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2328 
2329 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2330 		    unlikely(signal_group_exit(sig)))
2331 			return false;
2332 		/*
2333 		 * There is no group stop already in progress.  We must
2334 		 * initiate one now.
2335 		 *
2336 		 * While ptraced, a task may be resumed while group stop is
2337 		 * still in effect and then receive a stop signal and
2338 		 * initiate another group stop.  This deviates from the
2339 		 * usual behavior as two consecutive stop signals can't
2340 		 * cause two group stops when !ptraced.  That is why we
2341 		 * also check !task_is_stopped(t) below.
2342 		 *
2343 		 * The condition can be distinguished by testing whether
2344 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2345 		 * group_exit_code in such case.
2346 		 *
2347 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2348 		 * an intervening stop signal is required to cause two
2349 		 * continued events regardless of ptrace.
2350 		 */
2351 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2352 			sig->group_exit_code = signr;
2353 
2354 		sig->group_stop_count = 0;
2355 
2356 		if (task_set_jobctl_pending(current, signr | gstop))
2357 			sig->group_stop_count++;
2358 
2359 		t = current;
2360 		while_each_thread(current, t) {
2361 			/*
2362 			 * Setting state to TASK_STOPPED for a group
2363 			 * stop is always done with the siglock held,
2364 			 * so this check has no races.
2365 			 */
2366 			if (!task_is_stopped(t) &&
2367 			    task_set_jobctl_pending(t, signr | gstop)) {
2368 				sig->group_stop_count++;
2369 				if (likely(!(t->ptrace & PT_SEIZED)))
2370 					signal_wake_up(t, 0);
2371 				else
2372 					ptrace_trap_notify(t);
2373 			}
2374 		}
2375 	}
2376 
2377 	if (likely(!current->ptrace)) {
2378 		int notify = 0;
2379 
2380 		/*
2381 		 * If there are no other threads in the group, or if there
2382 		 * is a group stop in progress and we are the last to stop,
2383 		 * report to the parent.
2384 		 */
2385 		if (task_participate_group_stop(current))
2386 			notify = CLD_STOPPED;
2387 
2388 		set_special_state(TASK_STOPPED);
2389 		spin_unlock_irq(&current->sighand->siglock);
2390 
2391 		/*
2392 		 * Notify the parent of the group stop completion.  Because
2393 		 * we're not holding either the siglock or tasklist_lock
2394 		 * here, ptracer may attach inbetween; however, this is for
2395 		 * group stop and should always be delivered to the real
2396 		 * parent of the group leader.  The new ptracer will get
2397 		 * its notification when this task transitions into
2398 		 * TASK_TRACED.
2399 		 */
2400 		if (notify) {
2401 			read_lock(&tasklist_lock);
2402 			do_notify_parent_cldstop(current, false, notify);
2403 			read_unlock(&tasklist_lock);
2404 		}
2405 
2406 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2407 		cgroup_enter_frozen();
2408 		freezable_schedule();
2409 		return true;
2410 	} else {
2411 		/*
2412 		 * While ptraced, group stop is handled by STOP trap.
2413 		 * Schedule it and let the caller deal with it.
2414 		 */
2415 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2416 		return false;
2417 	}
2418 }
2419 
2420 /**
2421  * do_jobctl_trap - take care of ptrace jobctl traps
2422  *
2423  * When PT_SEIZED, it's used for both group stop and explicit
2424  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2425  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2426  * the stop signal; otherwise, %SIGTRAP.
2427  *
2428  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2429  * number as exit_code and no siginfo.
2430  *
2431  * CONTEXT:
2432  * Must be called with @current->sighand->siglock held, which may be
2433  * released and re-acquired before returning with intervening sleep.
2434  */
2435 static void do_jobctl_trap(void)
2436 {
2437 	struct signal_struct *signal = current->signal;
2438 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2439 
2440 	if (current->ptrace & PT_SEIZED) {
2441 		if (!signal->group_stop_count &&
2442 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2443 			signr = SIGTRAP;
2444 		WARN_ON_ONCE(!signr);
2445 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2446 				 CLD_STOPPED);
2447 	} else {
2448 		WARN_ON_ONCE(!signr);
2449 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2450 		current->exit_code = 0;
2451 	}
2452 }
2453 
2454 /**
2455  * do_freezer_trap - handle the freezer jobctl trap
2456  *
2457  * Puts the task into frozen state, if only the task is not about to quit.
2458  * In this case it drops JOBCTL_TRAP_FREEZE.
2459  *
2460  * CONTEXT:
2461  * Must be called with @current->sighand->siglock held,
2462  * which is always released before returning.
2463  */
2464 static void do_freezer_trap(void)
2465 	__releases(&current->sighand->siglock)
2466 {
2467 	/*
2468 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2469 	 * let's make another loop to give it a chance to be handled.
2470 	 * In any case, we'll return back.
2471 	 */
2472 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2473 	     JOBCTL_TRAP_FREEZE) {
2474 		spin_unlock_irq(&current->sighand->siglock);
2475 		return;
2476 	}
2477 
2478 	/*
2479 	 * Now we're sure that there is no pending fatal signal and no
2480 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2481 	 * immediately (if there is a non-fatal signal pending), and
2482 	 * put the task into sleep.
2483 	 */
2484 	__set_current_state(TASK_INTERRUPTIBLE);
2485 	clear_thread_flag(TIF_SIGPENDING);
2486 	spin_unlock_irq(&current->sighand->siglock);
2487 	cgroup_enter_frozen();
2488 	freezable_schedule();
2489 }
2490 
2491 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2492 {
2493 	/*
2494 	 * We do not check sig_kernel_stop(signr) but set this marker
2495 	 * unconditionally because we do not know whether debugger will
2496 	 * change signr. This flag has no meaning unless we are going
2497 	 * to stop after return from ptrace_stop(). In this case it will
2498 	 * be checked in do_signal_stop(), we should only stop if it was
2499 	 * not cleared by SIGCONT while we were sleeping. See also the
2500 	 * comment in dequeue_signal().
2501 	 */
2502 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2503 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2504 
2505 	/* We're back.  Did the debugger cancel the sig?  */
2506 	signr = current->exit_code;
2507 	if (signr == 0)
2508 		return signr;
2509 
2510 	current->exit_code = 0;
2511 
2512 	/*
2513 	 * Update the siginfo structure if the signal has
2514 	 * changed.  If the debugger wanted something
2515 	 * specific in the siginfo structure then it should
2516 	 * have updated *info via PTRACE_SETSIGINFO.
2517 	 */
2518 	if (signr != info->si_signo) {
2519 		clear_siginfo(info);
2520 		info->si_signo = signr;
2521 		info->si_errno = 0;
2522 		info->si_code = SI_USER;
2523 		rcu_read_lock();
2524 		info->si_pid = task_pid_vnr(current->parent);
2525 		info->si_uid = from_kuid_munged(current_user_ns(),
2526 						task_uid(current->parent));
2527 		rcu_read_unlock();
2528 	}
2529 
2530 	/* If the (new) signal is now blocked, requeue it.  */
2531 	if (sigismember(&current->blocked, signr)) {
2532 		send_signal(signr, info, current, PIDTYPE_PID);
2533 		signr = 0;
2534 	}
2535 
2536 	return signr;
2537 }
2538 
2539 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2540 {
2541 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2542 	case SIL_FAULT:
2543 	case SIL_FAULT_TRAPNO:
2544 	case SIL_FAULT_MCEERR:
2545 	case SIL_FAULT_BNDERR:
2546 	case SIL_FAULT_PKUERR:
2547 	case SIL_PERF_EVENT:
2548 		ksig->info.si_addr = arch_untagged_si_addr(
2549 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2550 		break;
2551 	case SIL_KILL:
2552 	case SIL_TIMER:
2553 	case SIL_POLL:
2554 	case SIL_CHLD:
2555 	case SIL_RT:
2556 	case SIL_SYS:
2557 		break;
2558 	}
2559 }
2560 
2561 bool get_signal(struct ksignal *ksig)
2562 {
2563 	struct sighand_struct *sighand = current->sighand;
2564 	struct signal_struct *signal = current->signal;
2565 	int signr;
2566 
2567 	if (unlikely(current->task_works))
2568 		task_work_run();
2569 
2570 	/*
2571 	 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2572 	 * that the arch handlers don't all have to do it. If we get here
2573 	 * without TIF_SIGPENDING, just exit after running signal work.
2574 	 */
2575 	if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2576 		if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2577 			tracehook_notify_signal();
2578 		if (!task_sigpending(current))
2579 			return false;
2580 	}
2581 
2582 	if (unlikely(uprobe_deny_signal()))
2583 		return false;
2584 
2585 	/*
2586 	 * Do this once, we can't return to user-mode if freezing() == T.
2587 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2588 	 * thus do not need another check after return.
2589 	 */
2590 	try_to_freeze();
2591 
2592 relock:
2593 	spin_lock_irq(&sighand->siglock);
2594 
2595 	/*
2596 	 * Every stopped thread goes here after wakeup. Check to see if
2597 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2598 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2599 	 */
2600 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2601 		int why;
2602 
2603 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2604 			why = CLD_CONTINUED;
2605 		else
2606 			why = CLD_STOPPED;
2607 
2608 		signal->flags &= ~SIGNAL_CLD_MASK;
2609 
2610 		spin_unlock_irq(&sighand->siglock);
2611 
2612 		/*
2613 		 * Notify the parent that we're continuing.  This event is
2614 		 * always per-process and doesn't make whole lot of sense
2615 		 * for ptracers, who shouldn't consume the state via
2616 		 * wait(2) either, but, for backward compatibility, notify
2617 		 * the ptracer of the group leader too unless it's gonna be
2618 		 * a duplicate.
2619 		 */
2620 		read_lock(&tasklist_lock);
2621 		do_notify_parent_cldstop(current, false, why);
2622 
2623 		if (ptrace_reparented(current->group_leader))
2624 			do_notify_parent_cldstop(current->group_leader,
2625 						true, why);
2626 		read_unlock(&tasklist_lock);
2627 
2628 		goto relock;
2629 	}
2630 
2631 	/* Has this task already been marked for death? */
2632 	if (signal_group_exit(signal)) {
2633 		ksig->info.si_signo = signr = SIGKILL;
2634 		sigdelset(&current->pending.signal, SIGKILL);
2635 		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2636 				&sighand->action[SIGKILL - 1]);
2637 		recalc_sigpending();
2638 		goto fatal;
2639 	}
2640 
2641 	for (;;) {
2642 		struct k_sigaction *ka;
2643 
2644 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2645 		    do_signal_stop(0))
2646 			goto relock;
2647 
2648 		if (unlikely(current->jobctl &
2649 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2650 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2651 				do_jobctl_trap();
2652 				spin_unlock_irq(&sighand->siglock);
2653 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2654 				do_freezer_trap();
2655 
2656 			goto relock;
2657 		}
2658 
2659 		/*
2660 		 * If the task is leaving the frozen state, let's update
2661 		 * cgroup counters and reset the frozen bit.
2662 		 */
2663 		if (unlikely(cgroup_task_frozen(current))) {
2664 			spin_unlock_irq(&sighand->siglock);
2665 			cgroup_leave_frozen(false);
2666 			goto relock;
2667 		}
2668 
2669 		/*
2670 		 * Signals generated by the execution of an instruction
2671 		 * need to be delivered before any other pending signals
2672 		 * so that the instruction pointer in the signal stack
2673 		 * frame points to the faulting instruction.
2674 		 */
2675 		signr = dequeue_synchronous_signal(&ksig->info);
2676 		if (!signr)
2677 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2678 
2679 		if (!signr)
2680 			break; /* will return 0 */
2681 
2682 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2683 			signr = ptrace_signal(signr, &ksig->info);
2684 			if (!signr)
2685 				continue;
2686 		}
2687 
2688 		ka = &sighand->action[signr-1];
2689 
2690 		/* Trace actually delivered signals. */
2691 		trace_signal_deliver(signr, &ksig->info, ka);
2692 
2693 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2694 			continue;
2695 		if (ka->sa.sa_handler != SIG_DFL) {
2696 			/* Run the handler.  */
2697 			ksig->ka = *ka;
2698 
2699 			if (ka->sa.sa_flags & SA_ONESHOT)
2700 				ka->sa.sa_handler = SIG_DFL;
2701 
2702 			break; /* will return non-zero "signr" value */
2703 		}
2704 
2705 		/*
2706 		 * Now we are doing the default action for this signal.
2707 		 */
2708 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2709 			continue;
2710 
2711 		/*
2712 		 * Global init gets no signals it doesn't want.
2713 		 * Container-init gets no signals it doesn't want from same
2714 		 * container.
2715 		 *
2716 		 * Note that if global/container-init sees a sig_kernel_only()
2717 		 * signal here, the signal must have been generated internally
2718 		 * or must have come from an ancestor namespace. In either
2719 		 * case, the signal cannot be dropped.
2720 		 */
2721 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2722 				!sig_kernel_only(signr))
2723 			continue;
2724 
2725 		if (sig_kernel_stop(signr)) {
2726 			/*
2727 			 * The default action is to stop all threads in
2728 			 * the thread group.  The job control signals
2729 			 * do nothing in an orphaned pgrp, but SIGSTOP
2730 			 * always works.  Note that siglock needs to be
2731 			 * dropped during the call to is_orphaned_pgrp()
2732 			 * because of lock ordering with tasklist_lock.
2733 			 * This allows an intervening SIGCONT to be posted.
2734 			 * We need to check for that and bail out if necessary.
2735 			 */
2736 			if (signr != SIGSTOP) {
2737 				spin_unlock_irq(&sighand->siglock);
2738 
2739 				/* signals can be posted during this window */
2740 
2741 				if (is_current_pgrp_orphaned())
2742 					goto relock;
2743 
2744 				spin_lock_irq(&sighand->siglock);
2745 			}
2746 
2747 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2748 				/* It released the siglock.  */
2749 				goto relock;
2750 			}
2751 
2752 			/*
2753 			 * We didn't actually stop, due to a race
2754 			 * with SIGCONT or something like that.
2755 			 */
2756 			continue;
2757 		}
2758 
2759 	fatal:
2760 		spin_unlock_irq(&sighand->siglock);
2761 		if (unlikely(cgroup_task_frozen(current)))
2762 			cgroup_leave_frozen(true);
2763 
2764 		/*
2765 		 * Anything else is fatal, maybe with a core dump.
2766 		 */
2767 		current->flags |= PF_SIGNALED;
2768 
2769 		if (sig_kernel_coredump(signr)) {
2770 			if (print_fatal_signals)
2771 				print_fatal_signal(ksig->info.si_signo);
2772 			proc_coredump_connector(current);
2773 			/*
2774 			 * If it was able to dump core, this kills all
2775 			 * other threads in the group and synchronizes with
2776 			 * their demise.  If we lost the race with another
2777 			 * thread getting here, it set group_exit_code
2778 			 * first and our do_group_exit call below will use
2779 			 * that value and ignore the one we pass it.
2780 			 */
2781 			do_coredump(&ksig->info);
2782 		}
2783 
2784 		/*
2785 		 * PF_IO_WORKER threads will catch and exit on fatal signals
2786 		 * themselves. They have cleanup that must be performed, so
2787 		 * we cannot call do_exit() on their behalf.
2788 		 */
2789 		if (current->flags & PF_IO_WORKER)
2790 			goto out;
2791 
2792 		/*
2793 		 * Death signals, no core dump.
2794 		 */
2795 		do_group_exit(ksig->info.si_signo);
2796 		/* NOTREACHED */
2797 	}
2798 	spin_unlock_irq(&sighand->siglock);
2799 out:
2800 	ksig->sig = signr;
2801 
2802 	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2803 		hide_si_addr_tag_bits(ksig);
2804 
2805 	return ksig->sig > 0;
2806 }
2807 
2808 /**
2809  * signal_delivered -
2810  * @ksig:		kernel signal struct
2811  * @stepping:		nonzero if debugger single-step or block-step in use
2812  *
2813  * This function should be called when a signal has successfully been
2814  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2815  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2816  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2817  */
2818 static void signal_delivered(struct ksignal *ksig, int stepping)
2819 {
2820 	sigset_t blocked;
2821 
2822 	/* A signal was successfully delivered, and the
2823 	   saved sigmask was stored on the signal frame,
2824 	   and will be restored by sigreturn.  So we can
2825 	   simply clear the restore sigmask flag.  */
2826 	clear_restore_sigmask();
2827 
2828 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2829 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2830 		sigaddset(&blocked, ksig->sig);
2831 	set_current_blocked(&blocked);
2832 	tracehook_signal_handler(stepping);
2833 }
2834 
2835 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2836 {
2837 	if (failed)
2838 		force_sigsegv(ksig->sig);
2839 	else
2840 		signal_delivered(ksig, stepping);
2841 }
2842 
2843 /*
2844  * It could be that complete_signal() picked us to notify about the
2845  * group-wide signal. Other threads should be notified now to take
2846  * the shared signals in @which since we will not.
2847  */
2848 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2849 {
2850 	sigset_t retarget;
2851 	struct task_struct *t;
2852 
2853 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2854 	if (sigisemptyset(&retarget))
2855 		return;
2856 
2857 	t = tsk;
2858 	while_each_thread(tsk, t) {
2859 		if (t->flags & PF_EXITING)
2860 			continue;
2861 
2862 		if (!has_pending_signals(&retarget, &t->blocked))
2863 			continue;
2864 		/* Remove the signals this thread can handle. */
2865 		sigandsets(&retarget, &retarget, &t->blocked);
2866 
2867 		if (!task_sigpending(t))
2868 			signal_wake_up(t, 0);
2869 
2870 		if (sigisemptyset(&retarget))
2871 			break;
2872 	}
2873 }
2874 
2875 void exit_signals(struct task_struct *tsk)
2876 {
2877 	int group_stop = 0;
2878 	sigset_t unblocked;
2879 
2880 	/*
2881 	 * @tsk is about to have PF_EXITING set - lock out users which
2882 	 * expect stable threadgroup.
2883 	 */
2884 	cgroup_threadgroup_change_begin(tsk);
2885 
2886 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2887 		tsk->flags |= PF_EXITING;
2888 		cgroup_threadgroup_change_end(tsk);
2889 		return;
2890 	}
2891 
2892 	spin_lock_irq(&tsk->sighand->siglock);
2893 	/*
2894 	 * From now this task is not visible for group-wide signals,
2895 	 * see wants_signal(), do_signal_stop().
2896 	 */
2897 	tsk->flags |= PF_EXITING;
2898 
2899 	cgroup_threadgroup_change_end(tsk);
2900 
2901 	if (!task_sigpending(tsk))
2902 		goto out;
2903 
2904 	unblocked = tsk->blocked;
2905 	signotset(&unblocked);
2906 	retarget_shared_pending(tsk, &unblocked);
2907 
2908 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2909 	    task_participate_group_stop(tsk))
2910 		group_stop = CLD_STOPPED;
2911 out:
2912 	spin_unlock_irq(&tsk->sighand->siglock);
2913 
2914 	/*
2915 	 * If group stop has completed, deliver the notification.  This
2916 	 * should always go to the real parent of the group leader.
2917 	 */
2918 	if (unlikely(group_stop)) {
2919 		read_lock(&tasklist_lock);
2920 		do_notify_parent_cldstop(tsk, false, group_stop);
2921 		read_unlock(&tasklist_lock);
2922 	}
2923 }
2924 
2925 /*
2926  * System call entry points.
2927  */
2928 
2929 /**
2930  *  sys_restart_syscall - restart a system call
2931  */
2932 SYSCALL_DEFINE0(restart_syscall)
2933 {
2934 	struct restart_block *restart = &current->restart_block;
2935 	return restart->fn(restart);
2936 }
2937 
2938 long do_no_restart_syscall(struct restart_block *param)
2939 {
2940 	return -EINTR;
2941 }
2942 
2943 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2944 {
2945 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
2946 		sigset_t newblocked;
2947 		/* A set of now blocked but previously unblocked signals. */
2948 		sigandnsets(&newblocked, newset, &current->blocked);
2949 		retarget_shared_pending(tsk, &newblocked);
2950 	}
2951 	tsk->blocked = *newset;
2952 	recalc_sigpending();
2953 }
2954 
2955 /**
2956  * set_current_blocked - change current->blocked mask
2957  * @newset: new mask
2958  *
2959  * It is wrong to change ->blocked directly, this helper should be used
2960  * to ensure the process can't miss a shared signal we are going to block.
2961  */
2962 void set_current_blocked(sigset_t *newset)
2963 {
2964 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2965 	__set_current_blocked(newset);
2966 }
2967 
2968 void __set_current_blocked(const sigset_t *newset)
2969 {
2970 	struct task_struct *tsk = current;
2971 
2972 	/*
2973 	 * In case the signal mask hasn't changed, there is nothing we need
2974 	 * to do. The current->blocked shouldn't be modified by other task.
2975 	 */
2976 	if (sigequalsets(&tsk->blocked, newset))
2977 		return;
2978 
2979 	spin_lock_irq(&tsk->sighand->siglock);
2980 	__set_task_blocked(tsk, newset);
2981 	spin_unlock_irq(&tsk->sighand->siglock);
2982 }
2983 
2984 /*
2985  * This is also useful for kernel threads that want to temporarily
2986  * (or permanently) block certain signals.
2987  *
2988  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2989  * interface happily blocks "unblockable" signals like SIGKILL
2990  * and friends.
2991  */
2992 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2993 {
2994 	struct task_struct *tsk = current;
2995 	sigset_t newset;
2996 
2997 	/* Lockless, only current can change ->blocked, never from irq */
2998 	if (oldset)
2999 		*oldset = tsk->blocked;
3000 
3001 	switch (how) {
3002 	case SIG_BLOCK:
3003 		sigorsets(&newset, &tsk->blocked, set);
3004 		break;
3005 	case SIG_UNBLOCK:
3006 		sigandnsets(&newset, &tsk->blocked, set);
3007 		break;
3008 	case SIG_SETMASK:
3009 		newset = *set;
3010 		break;
3011 	default:
3012 		return -EINVAL;
3013 	}
3014 
3015 	__set_current_blocked(&newset);
3016 	return 0;
3017 }
3018 EXPORT_SYMBOL(sigprocmask);
3019 
3020 /*
3021  * The api helps set app-provided sigmasks.
3022  *
3023  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3024  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3025  *
3026  * Note that it does set_restore_sigmask() in advance, so it must be always
3027  * paired with restore_saved_sigmask_unless() before return from syscall.
3028  */
3029 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3030 {
3031 	sigset_t kmask;
3032 
3033 	if (!umask)
3034 		return 0;
3035 	if (sigsetsize != sizeof(sigset_t))
3036 		return -EINVAL;
3037 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3038 		return -EFAULT;
3039 
3040 	set_restore_sigmask();
3041 	current->saved_sigmask = current->blocked;
3042 	set_current_blocked(&kmask);
3043 
3044 	return 0;
3045 }
3046 
3047 #ifdef CONFIG_COMPAT
3048 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3049 			    size_t sigsetsize)
3050 {
3051 	sigset_t kmask;
3052 
3053 	if (!umask)
3054 		return 0;
3055 	if (sigsetsize != sizeof(compat_sigset_t))
3056 		return -EINVAL;
3057 	if (get_compat_sigset(&kmask, umask))
3058 		return -EFAULT;
3059 
3060 	set_restore_sigmask();
3061 	current->saved_sigmask = current->blocked;
3062 	set_current_blocked(&kmask);
3063 
3064 	return 0;
3065 }
3066 #endif
3067 
3068 /**
3069  *  sys_rt_sigprocmask - change the list of currently blocked signals
3070  *  @how: whether to add, remove, or set signals
3071  *  @nset: stores pending signals
3072  *  @oset: previous value of signal mask if non-null
3073  *  @sigsetsize: size of sigset_t type
3074  */
3075 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3076 		sigset_t __user *, oset, size_t, sigsetsize)
3077 {
3078 	sigset_t old_set, new_set;
3079 	int error;
3080 
3081 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3082 	if (sigsetsize != sizeof(sigset_t))
3083 		return -EINVAL;
3084 
3085 	old_set = current->blocked;
3086 
3087 	if (nset) {
3088 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3089 			return -EFAULT;
3090 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3091 
3092 		error = sigprocmask(how, &new_set, NULL);
3093 		if (error)
3094 			return error;
3095 	}
3096 
3097 	if (oset) {
3098 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3099 			return -EFAULT;
3100 	}
3101 
3102 	return 0;
3103 }
3104 
3105 #ifdef CONFIG_COMPAT
3106 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3107 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3108 {
3109 	sigset_t old_set = current->blocked;
3110 
3111 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3112 	if (sigsetsize != sizeof(sigset_t))
3113 		return -EINVAL;
3114 
3115 	if (nset) {
3116 		sigset_t new_set;
3117 		int error;
3118 		if (get_compat_sigset(&new_set, nset))
3119 			return -EFAULT;
3120 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3121 
3122 		error = sigprocmask(how, &new_set, NULL);
3123 		if (error)
3124 			return error;
3125 	}
3126 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3127 }
3128 #endif
3129 
3130 static void do_sigpending(sigset_t *set)
3131 {
3132 	spin_lock_irq(&current->sighand->siglock);
3133 	sigorsets(set, &current->pending.signal,
3134 		  &current->signal->shared_pending.signal);
3135 	spin_unlock_irq(&current->sighand->siglock);
3136 
3137 	/* Outside the lock because only this thread touches it.  */
3138 	sigandsets(set, &current->blocked, set);
3139 }
3140 
3141 /**
3142  *  sys_rt_sigpending - examine a pending signal that has been raised
3143  *			while blocked
3144  *  @uset: stores pending signals
3145  *  @sigsetsize: size of sigset_t type or larger
3146  */
3147 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3148 {
3149 	sigset_t set;
3150 
3151 	if (sigsetsize > sizeof(*uset))
3152 		return -EINVAL;
3153 
3154 	do_sigpending(&set);
3155 
3156 	if (copy_to_user(uset, &set, sigsetsize))
3157 		return -EFAULT;
3158 
3159 	return 0;
3160 }
3161 
3162 #ifdef CONFIG_COMPAT
3163 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3164 		compat_size_t, sigsetsize)
3165 {
3166 	sigset_t set;
3167 
3168 	if (sigsetsize > sizeof(*uset))
3169 		return -EINVAL;
3170 
3171 	do_sigpending(&set);
3172 
3173 	return put_compat_sigset(uset, &set, sigsetsize);
3174 }
3175 #endif
3176 
3177 static const struct {
3178 	unsigned char limit, layout;
3179 } sig_sicodes[] = {
3180 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3181 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3182 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3183 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3184 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3185 #if defined(SIGEMT)
3186 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3187 #endif
3188 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3189 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3190 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3191 };
3192 
3193 static bool known_siginfo_layout(unsigned sig, int si_code)
3194 {
3195 	if (si_code == SI_KERNEL)
3196 		return true;
3197 	else if ((si_code > SI_USER)) {
3198 		if (sig_specific_sicodes(sig)) {
3199 			if (si_code <= sig_sicodes[sig].limit)
3200 				return true;
3201 		}
3202 		else if (si_code <= NSIGPOLL)
3203 			return true;
3204 	}
3205 	else if (si_code >= SI_DETHREAD)
3206 		return true;
3207 	else if (si_code == SI_ASYNCNL)
3208 		return true;
3209 	return false;
3210 }
3211 
3212 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3213 {
3214 	enum siginfo_layout layout = SIL_KILL;
3215 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3216 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3217 		    (si_code <= sig_sicodes[sig].limit)) {
3218 			layout = sig_sicodes[sig].layout;
3219 			/* Handle the exceptions */
3220 			if ((sig == SIGBUS) &&
3221 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3222 				layout = SIL_FAULT_MCEERR;
3223 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3224 				layout = SIL_FAULT_BNDERR;
3225 #ifdef SEGV_PKUERR
3226 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3227 				layout = SIL_FAULT_PKUERR;
3228 #endif
3229 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3230 				layout = SIL_PERF_EVENT;
3231 #ifdef __ARCH_SI_TRAPNO
3232 			else if (layout == SIL_FAULT)
3233 				layout = SIL_FAULT_TRAPNO;
3234 #endif
3235 		}
3236 		else if (si_code <= NSIGPOLL)
3237 			layout = SIL_POLL;
3238 	} else {
3239 		if (si_code == SI_TIMER)
3240 			layout = SIL_TIMER;
3241 		else if (si_code == SI_SIGIO)
3242 			layout = SIL_POLL;
3243 		else if (si_code < 0)
3244 			layout = SIL_RT;
3245 	}
3246 	return layout;
3247 }
3248 
3249 static inline char __user *si_expansion(const siginfo_t __user *info)
3250 {
3251 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3252 }
3253 
3254 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3255 {
3256 	char __user *expansion = si_expansion(to);
3257 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3258 		return -EFAULT;
3259 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3260 		return -EFAULT;
3261 	return 0;
3262 }
3263 
3264 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3265 				       const siginfo_t __user *from)
3266 {
3267 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3268 		char __user *expansion = si_expansion(from);
3269 		char buf[SI_EXPANSION_SIZE];
3270 		int i;
3271 		/*
3272 		 * An unknown si_code might need more than
3273 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3274 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3275 		 * will return this data to userspace exactly.
3276 		 */
3277 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3278 			return -EFAULT;
3279 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3280 			if (buf[i] != 0)
3281 				return -E2BIG;
3282 		}
3283 	}
3284 	return 0;
3285 }
3286 
3287 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3288 				    const siginfo_t __user *from)
3289 {
3290 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3291 		return -EFAULT;
3292 	to->si_signo = signo;
3293 	return post_copy_siginfo_from_user(to, from);
3294 }
3295 
3296 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3297 {
3298 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3299 		return -EFAULT;
3300 	return post_copy_siginfo_from_user(to, from);
3301 }
3302 
3303 #ifdef CONFIG_COMPAT
3304 /**
3305  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3306  * @to: compat siginfo destination
3307  * @from: kernel siginfo source
3308  *
3309  * Note: This function does not work properly for the SIGCHLD on x32, but
3310  * fortunately it doesn't have to.  The only valid callers for this function are
3311  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3312  * The latter does not care because SIGCHLD will never cause a coredump.
3313  */
3314 void copy_siginfo_to_external32(struct compat_siginfo *to,
3315 		const struct kernel_siginfo *from)
3316 {
3317 	memset(to, 0, sizeof(*to));
3318 
3319 	to->si_signo = from->si_signo;
3320 	to->si_errno = from->si_errno;
3321 	to->si_code  = from->si_code;
3322 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3323 	case SIL_KILL:
3324 		to->si_pid = from->si_pid;
3325 		to->si_uid = from->si_uid;
3326 		break;
3327 	case SIL_TIMER:
3328 		to->si_tid     = from->si_tid;
3329 		to->si_overrun = from->si_overrun;
3330 		to->si_int     = from->si_int;
3331 		break;
3332 	case SIL_POLL:
3333 		to->si_band = from->si_band;
3334 		to->si_fd   = from->si_fd;
3335 		break;
3336 	case SIL_FAULT:
3337 		to->si_addr = ptr_to_compat(from->si_addr);
3338 		break;
3339 	case SIL_FAULT_TRAPNO:
3340 		to->si_addr = ptr_to_compat(from->si_addr);
3341 		to->si_trapno = from->si_trapno;
3342 		break;
3343 	case SIL_FAULT_MCEERR:
3344 		to->si_addr = ptr_to_compat(from->si_addr);
3345 		to->si_addr_lsb = from->si_addr_lsb;
3346 		break;
3347 	case SIL_FAULT_BNDERR:
3348 		to->si_addr = ptr_to_compat(from->si_addr);
3349 		to->si_lower = ptr_to_compat(from->si_lower);
3350 		to->si_upper = ptr_to_compat(from->si_upper);
3351 		break;
3352 	case SIL_FAULT_PKUERR:
3353 		to->si_addr = ptr_to_compat(from->si_addr);
3354 		to->si_pkey = from->si_pkey;
3355 		break;
3356 	case SIL_PERF_EVENT:
3357 		to->si_addr = ptr_to_compat(from->si_addr);
3358 		to->si_perf_data = from->si_perf_data;
3359 		to->si_perf_type = from->si_perf_type;
3360 		break;
3361 	case SIL_CHLD:
3362 		to->si_pid = from->si_pid;
3363 		to->si_uid = from->si_uid;
3364 		to->si_status = from->si_status;
3365 		to->si_utime = from->si_utime;
3366 		to->si_stime = from->si_stime;
3367 		break;
3368 	case SIL_RT:
3369 		to->si_pid = from->si_pid;
3370 		to->si_uid = from->si_uid;
3371 		to->si_int = from->si_int;
3372 		break;
3373 	case SIL_SYS:
3374 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3375 		to->si_syscall   = from->si_syscall;
3376 		to->si_arch      = from->si_arch;
3377 		break;
3378 	}
3379 }
3380 
3381 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3382 			   const struct kernel_siginfo *from)
3383 {
3384 	struct compat_siginfo new;
3385 
3386 	copy_siginfo_to_external32(&new, from);
3387 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3388 		return -EFAULT;
3389 	return 0;
3390 }
3391 
3392 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3393 					 const struct compat_siginfo *from)
3394 {
3395 	clear_siginfo(to);
3396 	to->si_signo = from->si_signo;
3397 	to->si_errno = from->si_errno;
3398 	to->si_code  = from->si_code;
3399 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3400 	case SIL_KILL:
3401 		to->si_pid = from->si_pid;
3402 		to->si_uid = from->si_uid;
3403 		break;
3404 	case SIL_TIMER:
3405 		to->si_tid     = from->si_tid;
3406 		to->si_overrun = from->si_overrun;
3407 		to->si_int     = from->si_int;
3408 		break;
3409 	case SIL_POLL:
3410 		to->si_band = from->si_band;
3411 		to->si_fd   = from->si_fd;
3412 		break;
3413 	case SIL_FAULT:
3414 		to->si_addr = compat_ptr(from->si_addr);
3415 		break;
3416 	case SIL_FAULT_TRAPNO:
3417 		to->si_addr = compat_ptr(from->si_addr);
3418 		to->si_trapno = from->si_trapno;
3419 		break;
3420 	case SIL_FAULT_MCEERR:
3421 		to->si_addr = compat_ptr(from->si_addr);
3422 		to->si_addr_lsb = from->si_addr_lsb;
3423 		break;
3424 	case SIL_FAULT_BNDERR:
3425 		to->si_addr = compat_ptr(from->si_addr);
3426 		to->si_lower = compat_ptr(from->si_lower);
3427 		to->si_upper = compat_ptr(from->si_upper);
3428 		break;
3429 	case SIL_FAULT_PKUERR:
3430 		to->si_addr = compat_ptr(from->si_addr);
3431 		to->si_pkey = from->si_pkey;
3432 		break;
3433 	case SIL_PERF_EVENT:
3434 		to->si_addr = compat_ptr(from->si_addr);
3435 		to->si_perf_data = from->si_perf_data;
3436 		to->si_perf_type = from->si_perf_type;
3437 		break;
3438 	case SIL_CHLD:
3439 		to->si_pid    = from->si_pid;
3440 		to->si_uid    = from->si_uid;
3441 		to->si_status = from->si_status;
3442 #ifdef CONFIG_X86_X32_ABI
3443 		if (in_x32_syscall()) {
3444 			to->si_utime = from->_sifields._sigchld_x32._utime;
3445 			to->si_stime = from->_sifields._sigchld_x32._stime;
3446 		} else
3447 #endif
3448 		{
3449 			to->si_utime = from->si_utime;
3450 			to->si_stime = from->si_stime;
3451 		}
3452 		break;
3453 	case SIL_RT:
3454 		to->si_pid = from->si_pid;
3455 		to->si_uid = from->si_uid;
3456 		to->si_int = from->si_int;
3457 		break;
3458 	case SIL_SYS:
3459 		to->si_call_addr = compat_ptr(from->si_call_addr);
3460 		to->si_syscall   = from->si_syscall;
3461 		to->si_arch      = from->si_arch;
3462 		break;
3463 	}
3464 	return 0;
3465 }
3466 
3467 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3468 				      const struct compat_siginfo __user *ufrom)
3469 {
3470 	struct compat_siginfo from;
3471 
3472 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3473 		return -EFAULT;
3474 
3475 	from.si_signo = signo;
3476 	return post_copy_siginfo_from_user32(to, &from);
3477 }
3478 
3479 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3480 			     const struct compat_siginfo __user *ufrom)
3481 {
3482 	struct compat_siginfo from;
3483 
3484 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3485 		return -EFAULT;
3486 
3487 	return post_copy_siginfo_from_user32(to, &from);
3488 }
3489 #endif /* CONFIG_COMPAT */
3490 
3491 /**
3492  *  do_sigtimedwait - wait for queued signals specified in @which
3493  *  @which: queued signals to wait for
3494  *  @info: if non-null, the signal's siginfo is returned here
3495  *  @ts: upper bound on process time suspension
3496  */
3497 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3498 		    const struct timespec64 *ts)
3499 {
3500 	ktime_t *to = NULL, timeout = KTIME_MAX;
3501 	struct task_struct *tsk = current;
3502 	sigset_t mask = *which;
3503 	int sig, ret = 0;
3504 
3505 	if (ts) {
3506 		if (!timespec64_valid(ts))
3507 			return -EINVAL;
3508 		timeout = timespec64_to_ktime(*ts);
3509 		to = &timeout;
3510 	}
3511 
3512 	/*
3513 	 * Invert the set of allowed signals to get those we want to block.
3514 	 */
3515 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3516 	signotset(&mask);
3517 
3518 	spin_lock_irq(&tsk->sighand->siglock);
3519 	sig = dequeue_signal(tsk, &mask, info);
3520 	if (!sig && timeout) {
3521 		/*
3522 		 * None ready, temporarily unblock those we're interested
3523 		 * while we are sleeping in so that we'll be awakened when
3524 		 * they arrive. Unblocking is always fine, we can avoid
3525 		 * set_current_blocked().
3526 		 */
3527 		tsk->real_blocked = tsk->blocked;
3528 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3529 		recalc_sigpending();
3530 		spin_unlock_irq(&tsk->sighand->siglock);
3531 
3532 		__set_current_state(TASK_INTERRUPTIBLE);
3533 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3534 							 HRTIMER_MODE_REL);
3535 		spin_lock_irq(&tsk->sighand->siglock);
3536 		__set_task_blocked(tsk, &tsk->real_blocked);
3537 		sigemptyset(&tsk->real_blocked);
3538 		sig = dequeue_signal(tsk, &mask, info);
3539 	}
3540 	spin_unlock_irq(&tsk->sighand->siglock);
3541 
3542 	if (sig)
3543 		return sig;
3544 	return ret ? -EINTR : -EAGAIN;
3545 }
3546 
3547 /**
3548  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3549  *			in @uthese
3550  *  @uthese: queued signals to wait for
3551  *  @uinfo: if non-null, the signal's siginfo is returned here
3552  *  @uts: upper bound on process time suspension
3553  *  @sigsetsize: size of sigset_t type
3554  */
3555 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3556 		siginfo_t __user *, uinfo,
3557 		const struct __kernel_timespec __user *, uts,
3558 		size_t, sigsetsize)
3559 {
3560 	sigset_t these;
3561 	struct timespec64 ts;
3562 	kernel_siginfo_t info;
3563 	int ret;
3564 
3565 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3566 	if (sigsetsize != sizeof(sigset_t))
3567 		return -EINVAL;
3568 
3569 	if (copy_from_user(&these, uthese, sizeof(these)))
3570 		return -EFAULT;
3571 
3572 	if (uts) {
3573 		if (get_timespec64(&ts, uts))
3574 			return -EFAULT;
3575 	}
3576 
3577 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3578 
3579 	if (ret > 0 && uinfo) {
3580 		if (copy_siginfo_to_user(uinfo, &info))
3581 			ret = -EFAULT;
3582 	}
3583 
3584 	return ret;
3585 }
3586 
3587 #ifdef CONFIG_COMPAT_32BIT_TIME
3588 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3589 		siginfo_t __user *, uinfo,
3590 		const struct old_timespec32 __user *, uts,
3591 		size_t, sigsetsize)
3592 {
3593 	sigset_t these;
3594 	struct timespec64 ts;
3595 	kernel_siginfo_t info;
3596 	int ret;
3597 
3598 	if (sigsetsize != sizeof(sigset_t))
3599 		return -EINVAL;
3600 
3601 	if (copy_from_user(&these, uthese, sizeof(these)))
3602 		return -EFAULT;
3603 
3604 	if (uts) {
3605 		if (get_old_timespec32(&ts, uts))
3606 			return -EFAULT;
3607 	}
3608 
3609 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3610 
3611 	if (ret > 0 && uinfo) {
3612 		if (copy_siginfo_to_user(uinfo, &info))
3613 			ret = -EFAULT;
3614 	}
3615 
3616 	return ret;
3617 }
3618 #endif
3619 
3620 #ifdef CONFIG_COMPAT
3621 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3622 		struct compat_siginfo __user *, uinfo,
3623 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3624 {
3625 	sigset_t s;
3626 	struct timespec64 t;
3627 	kernel_siginfo_t info;
3628 	long ret;
3629 
3630 	if (sigsetsize != sizeof(sigset_t))
3631 		return -EINVAL;
3632 
3633 	if (get_compat_sigset(&s, uthese))
3634 		return -EFAULT;
3635 
3636 	if (uts) {
3637 		if (get_timespec64(&t, uts))
3638 			return -EFAULT;
3639 	}
3640 
3641 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3642 
3643 	if (ret > 0 && uinfo) {
3644 		if (copy_siginfo_to_user32(uinfo, &info))
3645 			ret = -EFAULT;
3646 	}
3647 
3648 	return ret;
3649 }
3650 
3651 #ifdef CONFIG_COMPAT_32BIT_TIME
3652 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3653 		struct compat_siginfo __user *, uinfo,
3654 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3655 {
3656 	sigset_t s;
3657 	struct timespec64 t;
3658 	kernel_siginfo_t info;
3659 	long ret;
3660 
3661 	if (sigsetsize != sizeof(sigset_t))
3662 		return -EINVAL;
3663 
3664 	if (get_compat_sigset(&s, uthese))
3665 		return -EFAULT;
3666 
3667 	if (uts) {
3668 		if (get_old_timespec32(&t, uts))
3669 			return -EFAULT;
3670 	}
3671 
3672 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3673 
3674 	if (ret > 0 && uinfo) {
3675 		if (copy_siginfo_to_user32(uinfo, &info))
3676 			ret = -EFAULT;
3677 	}
3678 
3679 	return ret;
3680 }
3681 #endif
3682 #endif
3683 
3684 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3685 {
3686 	clear_siginfo(info);
3687 	info->si_signo = sig;
3688 	info->si_errno = 0;
3689 	info->si_code = SI_USER;
3690 	info->si_pid = task_tgid_vnr(current);
3691 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3692 }
3693 
3694 /**
3695  *  sys_kill - send a signal to a process
3696  *  @pid: the PID of the process
3697  *  @sig: signal to be sent
3698  */
3699 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3700 {
3701 	struct kernel_siginfo info;
3702 
3703 	prepare_kill_siginfo(sig, &info);
3704 
3705 	return kill_something_info(sig, &info, pid);
3706 }
3707 
3708 /*
3709  * Verify that the signaler and signalee either are in the same pid namespace
3710  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3711  * namespace.
3712  */
3713 static bool access_pidfd_pidns(struct pid *pid)
3714 {
3715 	struct pid_namespace *active = task_active_pid_ns(current);
3716 	struct pid_namespace *p = ns_of_pid(pid);
3717 
3718 	for (;;) {
3719 		if (!p)
3720 			return false;
3721 		if (p == active)
3722 			break;
3723 		p = p->parent;
3724 	}
3725 
3726 	return true;
3727 }
3728 
3729 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3730 		siginfo_t __user *info)
3731 {
3732 #ifdef CONFIG_COMPAT
3733 	/*
3734 	 * Avoid hooking up compat syscalls and instead handle necessary
3735 	 * conversions here. Note, this is a stop-gap measure and should not be
3736 	 * considered a generic solution.
3737 	 */
3738 	if (in_compat_syscall())
3739 		return copy_siginfo_from_user32(
3740 			kinfo, (struct compat_siginfo __user *)info);
3741 #endif
3742 	return copy_siginfo_from_user(kinfo, info);
3743 }
3744 
3745 static struct pid *pidfd_to_pid(const struct file *file)
3746 {
3747 	struct pid *pid;
3748 
3749 	pid = pidfd_pid(file);
3750 	if (!IS_ERR(pid))
3751 		return pid;
3752 
3753 	return tgid_pidfd_to_pid(file);
3754 }
3755 
3756 /**
3757  * sys_pidfd_send_signal - Signal a process through a pidfd
3758  * @pidfd:  file descriptor of the process
3759  * @sig:    signal to send
3760  * @info:   signal info
3761  * @flags:  future flags
3762  *
3763  * The syscall currently only signals via PIDTYPE_PID which covers
3764  * kill(<positive-pid>, <signal>. It does not signal threads or process
3765  * groups.
3766  * In order to extend the syscall to threads and process groups the @flags
3767  * argument should be used. In essence, the @flags argument will determine
3768  * what is signaled and not the file descriptor itself. Put in other words,
3769  * grouping is a property of the flags argument not a property of the file
3770  * descriptor.
3771  *
3772  * Return: 0 on success, negative errno on failure
3773  */
3774 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3775 		siginfo_t __user *, info, unsigned int, flags)
3776 {
3777 	int ret;
3778 	struct fd f;
3779 	struct pid *pid;
3780 	kernel_siginfo_t kinfo;
3781 
3782 	/* Enforce flags be set to 0 until we add an extension. */
3783 	if (flags)
3784 		return -EINVAL;
3785 
3786 	f = fdget(pidfd);
3787 	if (!f.file)
3788 		return -EBADF;
3789 
3790 	/* Is this a pidfd? */
3791 	pid = pidfd_to_pid(f.file);
3792 	if (IS_ERR(pid)) {
3793 		ret = PTR_ERR(pid);
3794 		goto err;
3795 	}
3796 
3797 	ret = -EINVAL;
3798 	if (!access_pidfd_pidns(pid))
3799 		goto err;
3800 
3801 	if (info) {
3802 		ret = copy_siginfo_from_user_any(&kinfo, info);
3803 		if (unlikely(ret))
3804 			goto err;
3805 
3806 		ret = -EINVAL;
3807 		if (unlikely(sig != kinfo.si_signo))
3808 			goto err;
3809 
3810 		/* Only allow sending arbitrary signals to yourself. */
3811 		ret = -EPERM;
3812 		if ((task_pid(current) != pid) &&
3813 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3814 			goto err;
3815 	} else {
3816 		prepare_kill_siginfo(sig, &kinfo);
3817 	}
3818 
3819 	ret = kill_pid_info(sig, &kinfo, pid);
3820 
3821 err:
3822 	fdput(f);
3823 	return ret;
3824 }
3825 
3826 static int
3827 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3828 {
3829 	struct task_struct *p;
3830 	int error = -ESRCH;
3831 
3832 	rcu_read_lock();
3833 	p = find_task_by_vpid(pid);
3834 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3835 		error = check_kill_permission(sig, info, p);
3836 		/*
3837 		 * The null signal is a permissions and process existence
3838 		 * probe.  No signal is actually delivered.
3839 		 */
3840 		if (!error && sig) {
3841 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3842 			/*
3843 			 * If lock_task_sighand() failed we pretend the task
3844 			 * dies after receiving the signal. The window is tiny,
3845 			 * and the signal is private anyway.
3846 			 */
3847 			if (unlikely(error == -ESRCH))
3848 				error = 0;
3849 		}
3850 	}
3851 	rcu_read_unlock();
3852 
3853 	return error;
3854 }
3855 
3856 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3857 {
3858 	struct kernel_siginfo info;
3859 
3860 	clear_siginfo(&info);
3861 	info.si_signo = sig;
3862 	info.si_errno = 0;
3863 	info.si_code = SI_TKILL;
3864 	info.si_pid = task_tgid_vnr(current);
3865 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3866 
3867 	return do_send_specific(tgid, pid, sig, &info);
3868 }
3869 
3870 /**
3871  *  sys_tgkill - send signal to one specific thread
3872  *  @tgid: the thread group ID of the thread
3873  *  @pid: the PID of the thread
3874  *  @sig: signal to be sent
3875  *
3876  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3877  *  exists but it's not belonging to the target process anymore. This
3878  *  method solves the problem of threads exiting and PIDs getting reused.
3879  */
3880 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3881 {
3882 	/* This is only valid for single tasks */
3883 	if (pid <= 0 || tgid <= 0)
3884 		return -EINVAL;
3885 
3886 	return do_tkill(tgid, pid, sig);
3887 }
3888 
3889 /**
3890  *  sys_tkill - send signal to one specific task
3891  *  @pid: the PID of the task
3892  *  @sig: signal to be sent
3893  *
3894  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3895  */
3896 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3897 {
3898 	/* This is only valid for single tasks */
3899 	if (pid <= 0)
3900 		return -EINVAL;
3901 
3902 	return do_tkill(0, pid, sig);
3903 }
3904 
3905 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3906 {
3907 	/* Not even root can pretend to send signals from the kernel.
3908 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3909 	 */
3910 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3911 	    (task_pid_vnr(current) != pid))
3912 		return -EPERM;
3913 
3914 	/* POSIX.1b doesn't mention process groups.  */
3915 	return kill_proc_info(sig, info, pid);
3916 }
3917 
3918 /**
3919  *  sys_rt_sigqueueinfo - send signal information to a signal
3920  *  @pid: the PID of the thread
3921  *  @sig: signal to be sent
3922  *  @uinfo: signal info to be sent
3923  */
3924 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3925 		siginfo_t __user *, uinfo)
3926 {
3927 	kernel_siginfo_t info;
3928 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3929 	if (unlikely(ret))
3930 		return ret;
3931 	return do_rt_sigqueueinfo(pid, sig, &info);
3932 }
3933 
3934 #ifdef CONFIG_COMPAT
3935 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3936 			compat_pid_t, pid,
3937 			int, sig,
3938 			struct compat_siginfo __user *, uinfo)
3939 {
3940 	kernel_siginfo_t info;
3941 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3942 	if (unlikely(ret))
3943 		return ret;
3944 	return do_rt_sigqueueinfo(pid, sig, &info);
3945 }
3946 #endif
3947 
3948 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3949 {
3950 	/* This is only valid for single tasks */
3951 	if (pid <= 0 || tgid <= 0)
3952 		return -EINVAL;
3953 
3954 	/* Not even root can pretend to send signals from the kernel.
3955 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3956 	 */
3957 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3958 	    (task_pid_vnr(current) != pid))
3959 		return -EPERM;
3960 
3961 	return do_send_specific(tgid, pid, sig, info);
3962 }
3963 
3964 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3965 		siginfo_t __user *, uinfo)
3966 {
3967 	kernel_siginfo_t info;
3968 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3969 	if (unlikely(ret))
3970 		return ret;
3971 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3972 }
3973 
3974 #ifdef CONFIG_COMPAT
3975 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3976 			compat_pid_t, tgid,
3977 			compat_pid_t, pid,
3978 			int, sig,
3979 			struct compat_siginfo __user *, uinfo)
3980 {
3981 	kernel_siginfo_t info;
3982 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3983 	if (unlikely(ret))
3984 		return ret;
3985 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3986 }
3987 #endif
3988 
3989 /*
3990  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3991  */
3992 void kernel_sigaction(int sig, __sighandler_t action)
3993 {
3994 	spin_lock_irq(&current->sighand->siglock);
3995 	current->sighand->action[sig - 1].sa.sa_handler = action;
3996 	if (action == SIG_IGN) {
3997 		sigset_t mask;
3998 
3999 		sigemptyset(&mask);
4000 		sigaddset(&mask, sig);
4001 
4002 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4003 		flush_sigqueue_mask(&mask, &current->pending);
4004 		recalc_sigpending();
4005 	}
4006 	spin_unlock_irq(&current->sighand->siglock);
4007 }
4008 EXPORT_SYMBOL(kernel_sigaction);
4009 
4010 void __weak sigaction_compat_abi(struct k_sigaction *act,
4011 		struct k_sigaction *oact)
4012 {
4013 }
4014 
4015 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4016 {
4017 	struct task_struct *p = current, *t;
4018 	struct k_sigaction *k;
4019 	sigset_t mask;
4020 
4021 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4022 		return -EINVAL;
4023 
4024 	k = &p->sighand->action[sig-1];
4025 
4026 	spin_lock_irq(&p->sighand->siglock);
4027 	if (oact)
4028 		*oact = *k;
4029 
4030 	/*
4031 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4032 	 * e.g. by having an architecture use the bit in their uapi.
4033 	 */
4034 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4035 
4036 	/*
4037 	 * Clear unknown flag bits in order to allow userspace to detect missing
4038 	 * support for flag bits and to allow the kernel to use non-uapi bits
4039 	 * internally.
4040 	 */
4041 	if (act)
4042 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4043 	if (oact)
4044 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4045 
4046 	sigaction_compat_abi(act, oact);
4047 
4048 	if (act) {
4049 		sigdelsetmask(&act->sa.sa_mask,
4050 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4051 		*k = *act;
4052 		/*
4053 		 * POSIX 3.3.1.3:
4054 		 *  "Setting a signal action to SIG_IGN for a signal that is
4055 		 *   pending shall cause the pending signal to be discarded,
4056 		 *   whether or not it is blocked."
4057 		 *
4058 		 *  "Setting a signal action to SIG_DFL for a signal that is
4059 		 *   pending and whose default action is to ignore the signal
4060 		 *   (for example, SIGCHLD), shall cause the pending signal to
4061 		 *   be discarded, whether or not it is blocked"
4062 		 */
4063 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4064 			sigemptyset(&mask);
4065 			sigaddset(&mask, sig);
4066 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4067 			for_each_thread(p, t)
4068 				flush_sigqueue_mask(&mask, &t->pending);
4069 		}
4070 	}
4071 
4072 	spin_unlock_irq(&p->sighand->siglock);
4073 	return 0;
4074 }
4075 
4076 static int
4077 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4078 		size_t min_ss_size)
4079 {
4080 	struct task_struct *t = current;
4081 
4082 	if (oss) {
4083 		memset(oss, 0, sizeof(stack_t));
4084 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4085 		oss->ss_size = t->sas_ss_size;
4086 		oss->ss_flags = sas_ss_flags(sp) |
4087 			(current->sas_ss_flags & SS_FLAG_BITS);
4088 	}
4089 
4090 	if (ss) {
4091 		void __user *ss_sp = ss->ss_sp;
4092 		size_t ss_size = ss->ss_size;
4093 		unsigned ss_flags = ss->ss_flags;
4094 		int ss_mode;
4095 
4096 		if (unlikely(on_sig_stack(sp)))
4097 			return -EPERM;
4098 
4099 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4100 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4101 				ss_mode != 0))
4102 			return -EINVAL;
4103 
4104 		if (ss_mode == SS_DISABLE) {
4105 			ss_size = 0;
4106 			ss_sp = NULL;
4107 		} else {
4108 			if (unlikely(ss_size < min_ss_size))
4109 				return -ENOMEM;
4110 		}
4111 
4112 		t->sas_ss_sp = (unsigned long) ss_sp;
4113 		t->sas_ss_size = ss_size;
4114 		t->sas_ss_flags = ss_flags;
4115 	}
4116 	return 0;
4117 }
4118 
4119 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4120 {
4121 	stack_t new, old;
4122 	int err;
4123 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4124 		return -EFAULT;
4125 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4126 			      current_user_stack_pointer(),
4127 			      MINSIGSTKSZ);
4128 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4129 		err = -EFAULT;
4130 	return err;
4131 }
4132 
4133 int restore_altstack(const stack_t __user *uss)
4134 {
4135 	stack_t new;
4136 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4137 		return -EFAULT;
4138 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4139 			     MINSIGSTKSZ);
4140 	/* squash all but EFAULT for now */
4141 	return 0;
4142 }
4143 
4144 int __save_altstack(stack_t __user *uss, unsigned long sp)
4145 {
4146 	struct task_struct *t = current;
4147 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4148 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4149 		__put_user(t->sas_ss_size, &uss->ss_size);
4150 	if (err)
4151 		return err;
4152 	if (t->sas_ss_flags & SS_AUTODISARM)
4153 		sas_ss_reset(t);
4154 	return 0;
4155 }
4156 
4157 #ifdef CONFIG_COMPAT
4158 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4159 				 compat_stack_t __user *uoss_ptr)
4160 {
4161 	stack_t uss, uoss;
4162 	int ret;
4163 
4164 	if (uss_ptr) {
4165 		compat_stack_t uss32;
4166 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4167 			return -EFAULT;
4168 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4169 		uss.ss_flags = uss32.ss_flags;
4170 		uss.ss_size = uss32.ss_size;
4171 	}
4172 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4173 			     compat_user_stack_pointer(),
4174 			     COMPAT_MINSIGSTKSZ);
4175 	if (ret >= 0 && uoss_ptr)  {
4176 		compat_stack_t old;
4177 		memset(&old, 0, sizeof(old));
4178 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4179 		old.ss_flags = uoss.ss_flags;
4180 		old.ss_size = uoss.ss_size;
4181 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4182 			ret = -EFAULT;
4183 	}
4184 	return ret;
4185 }
4186 
4187 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4188 			const compat_stack_t __user *, uss_ptr,
4189 			compat_stack_t __user *, uoss_ptr)
4190 {
4191 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4192 }
4193 
4194 int compat_restore_altstack(const compat_stack_t __user *uss)
4195 {
4196 	int err = do_compat_sigaltstack(uss, NULL);
4197 	/* squash all but -EFAULT for now */
4198 	return err == -EFAULT ? err : 0;
4199 }
4200 
4201 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4202 {
4203 	int err;
4204 	struct task_struct *t = current;
4205 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4206 			 &uss->ss_sp) |
4207 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4208 		__put_user(t->sas_ss_size, &uss->ss_size);
4209 	if (err)
4210 		return err;
4211 	if (t->sas_ss_flags & SS_AUTODISARM)
4212 		sas_ss_reset(t);
4213 	return 0;
4214 }
4215 #endif
4216 
4217 #ifdef __ARCH_WANT_SYS_SIGPENDING
4218 
4219 /**
4220  *  sys_sigpending - examine pending signals
4221  *  @uset: where mask of pending signal is returned
4222  */
4223 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4224 {
4225 	sigset_t set;
4226 
4227 	if (sizeof(old_sigset_t) > sizeof(*uset))
4228 		return -EINVAL;
4229 
4230 	do_sigpending(&set);
4231 
4232 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4233 		return -EFAULT;
4234 
4235 	return 0;
4236 }
4237 
4238 #ifdef CONFIG_COMPAT
4239 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4240 {
4241 	sigset_t set;
4242 
4243 	do_sigpending(&set);
4244 
4245 	return put_user(set.sig[0], set32);
4246 }
4247 #endif
4248 
4249 #endif
4250 
4251 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4252 /**
4253  *  sys_sigprocmask - examine and change blocked signals
4254  *  @how: whether to add, remove, or set signals
4255  *  @nset: signals to add or remove (if non-null)
4256  *  @oset: previous value of signal mask if non-null
4257  *
4258  * Some platforms have their own version with special arguments;
4259  * others support only sys_rt_sigprocmask.
4260  */
4261 
4262 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4263 		old_sigset_t __user *, oset)
4264 {
4265 	old_sigset_t old_set, new_set;
4266 	sigset_t new_blocked;
4267 
4268 	old_set = current->blocked.sig[0];
4269 
4270 	if (nset) {
4271 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4272 			return -EFAULT;
4273 
4274 		new_blocked = current->blocked;
4275 
4276 		switch (how) {
4277 		case SIG_BLOCK:
4278 			sigaddsetmask(&new_blocked, new_set);
4279 			break;
4280 		case SIG_UNBLOCK:
4281 			sigdelsetmask(&new_blocked, new_set);
4282 			break;
4283 		case SIG_SETMASK:
4284 			new_blocked.sig[0] = new_set;
4285 			break;
4286 		default:
4287 			return -EINVAL;
4288 		}
4289 
4290 		set_current_blocked(&new_blocked);
4291 	}
4292 
4293 	if (oset) {
4294 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4295 			return -EFAULT;
4296 	}
4297 
4298 	return 0;
4299 }
4300 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4301 
4302 #ifndef CONFIG_ODD_RT_SIGACTION
4303 /**
4304  *  sys_rt_sigaction - alter an action taken by a process
4305  *  @sig: signal to be sent
4306  *  @act: new sigaction
4307  *  @oact: used to save the previous sigaction
4308  *  @sigsetsize: size of sigset_t type
4309  */
4310 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4311 		const struct sigaction __user *, act,
4312 		struct sigaction __user *, oact,
4313 		size_t, sigsetsize)
4314 {
4315 	struct k_sigaction new_sa, old_sa;
4316 	int ret;
4317 
4318 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4319 	if (sigsetsize != sizeof(sigset_t))
4320 		return -EINVAL;
4321 
4322 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4323 		return -EFAULT;
4324 
4325 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4326 	if (ret)
4327 		return ret;
4328 
4329 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4330 		return -EFAULT;
4331 
4332 	return 0;
4333 }
4334 #ifdef CONFIG_COMPAT
4335 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4336 		const struct compat_sigaction __user *, act,
4337 		struct compat_sigaction __user *, oact,
4338 		compat_size_t, sigsetsize)
4339 {
4340 	struct k_sigaction new_ka, old_ka;
4341 #ifdef __ARCH_HAS_SA_RESTORER
4342 	compat_uptr_t restorer;
4343 #endif
4344 	int ret;
4345 
4346 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4347 	if (sigsetsize != sizeof(compat_sigset_t))
4348 		return -EINVAL;
4349 
4350 	if (act) {
4351 		compat_uptr_t handler;
4352 		ret = get_user(handler, &act->sa_handler);
4353 		new_ka.sa.sa_handler = compat_ptr(handler);
4354 #ifdef __ARCH_HAS_SA_RESTORER
4355 		ret |= get_user(restorer, &act->sa_restorer);
4356 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4357 #endif
4358 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4359 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4360 		if (ret)
4361 			return -EFAULT;
4362 	}
4363 
4364 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4365 	if (!ret && oact) {
4366 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4367 			       &oact->sa_handler);
4368 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4369 					 sizeof(oact->sa_mask));
4370 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4371 #ifdef __ARCH_HAS_SA_RESTORER
4372 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4373 				&oact->sa_restorer);
4374 #endif
4375 	}
4376 	return ret;
4377 }
4378 #endif
4379 #endif /* !CONFIG_ODD_RT_SIGACTION */
4380 
4381 #ifdef CONFIG_OLD_SIGACTION
4382 SYSCALL_DEFINE3(sigaction, int, sig,
4383 		const struct old_sigaction __user *, act,
4384 	        struct old_sigaction __user *, oact)
4385 {
4386 	struct k_sigaction new_ka, old_ka;
4387 	int ret;
4388 
4389 	if (act) {
4390 		old_sigset_t mask;
4391 		if (!access_ok(act, sizeof(*act)) ||
4392 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4393 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4394 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4395 		    __get_user(mask, &act->sa_mask))
4396 			return -EFAULT;
4397 #ifdef __ARCH_HAS_KA_RESTORER
4398 		new_ka.ka_restorer = NULL;
4399 #endif
4400 		siginitset(&new_ka.sa.sa_mask, mask);
4401 	}
4402 
4403 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4404 
4405 	if (!ret && oact) {
4406 		if (!access_ok(oact, sizeof(*oact)) ||
4407 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4408 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4409 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4410 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4411 			return -EFAULT;
4412 	}
4413 
4414 	return ret;
4415 }
4416 #endif
4417 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4418 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4419 		const struct compat_old_sigaction __user *, act,
4420 	        struct compat_old_sigaction __user *, oact)
4421 {
4422 	struct k_sigaction new_ka, old_ka;
4423 	int ret;
4424 	compat_old_sigset_t mask;
4425 	compat_uptr_t handler, restorer;
4426 
4427 	if (act) {
4428 		if (!access_ok(act, sizeof(*act)) ||
4429 		    __get_user(handler, &act->sa_handler) ||
4430 		    __get_user(restorer, &act->sa_restorer) ||
4431 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4432 		    __get_user(mask, &act->sa_mask))
4433 			return -EFAULT;
4434 
4435 #ifdef __ARCH_HAS_KA_RESTORER
4436 		new_ka.ka_restorer = NULL;
4437 #endif
4438 		new_ka.sa.sa_handler = compat_ptr(handler);
4439 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4440 		siginitset(&new_ka.sa.sa_mask, mask);
4441 	}
4442 
4443 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4444 
4445 	if (!ret && oact) {
4446 		if (!access_ok(oact, sizeof(*oact)) ||
4447 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4448 			       &oact->sa_handler) ||
4449 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4450 			       &oact->sa_restorer) ||
4451 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4452 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4453 			return -EFAULT;
4454 	}
4455 	return ret;
4456 }
4457 #endif
4458 
4459 #ifdef CONFIG_SGETMASK_SYSCALL
4460 
4461 /*
4462  * For backwards compatibility.  Functionality superseded by sigprocmask.
4463  */
4464 SYSCALL_DEFINE0(sgetmask)
4465 {
4466 	/* SMP safe */
4467 	return current->blocked.sig[0];
4468 }
4469 
4470 SYSCALL_DEFINE1(ssetmask, int, newmask)
4471 {
4472 	int old = current->blocked.sig[0];
4473 	sigset_t newset;
4474 
4475 	siginitset(&newset, newmask);
4476 	set_current_blocked(&newset);
4477 
4478 	return old;
4479 }
4480 #endif /* CONFIG_SGETMASK_SYSCALL */
4481 
4482 #ifdef __ARCH_WANT_SYS_SIGNAL
4483 /*
4484  * For backwards compatibility.  Functionality superseded by sigaction.
4485  */
4486 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4487 {
4488 	struct k_sigaction new_sa, old_sa;
4489 	int ret;
4490 
4491 	new_sa.sa.sa_handler = handler;
4492 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4493 	sigemptyset(&new_sa.sa.sa_mask);
4494 
4495 	ret = do_sigaction(sig, &new_sa, &old_sa);
4496 
4497 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4498 }
4499 #endif /* __ARCH_WANT_SYS_SIGNAL */
4500 
4501 #ifdef __ARCH_WANT_SYS_PAUSE
4502 
4503 SYSCALL_DEFINE0(pause)
4504 {
4505 	while (!signal_pending(current)) {
4506 		__set_current_state(TASK_INTERRUPTIBLE);
4507 		schedule();
4508 	}
4509 	return -ERESTARTNOHAND;
4510 }
4511 
4512 #endif
4513 
4514 static int sigsuspend(sigset_t *set)
4515 {
4516 	current->saved_sigmask = current->blocked;
4517 	set_current_blocked(set);
4518 
4519 	while (!signal_pending(current)) {
4520 		__set_current_state(TASK_INTERRUPTIBLE);
4521 		schedule();
4522 	}
4523 	set_restore_sigmask();
4524 	return -ERESTARTNOHAND;
4525 }
4526 
4527 /**
4528  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4529  *	@unewset value until a signal is received
4530  *  @unewset: new signal mask value
4531  *  @sigsetsize: size of sigset_t type
4532  */
4533 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4534 {
4535 	sigset_t newset;
4536 
4537 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4538 	if (sigsetsize != sizeof(sigset_t))
4539 		return -EINVAL;
4540 
4541 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4542 		return -EFAULT;
4543 	return sigsuspend(&newset);
4544 }
4545 
4546 #ifdef CONFIG_COMPAT
4547 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4548 {
4549 	sigset_t newset;
4550 
4551 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4552 	if (sigsetsize != sizeof(sigset_t))
4553 		return -EINVAL;
4554 
4555 	if (get_compat_sigset(&newset, unewset))
4556 		return -EFAULT;
4557 	return sigsuspend(&newset);
4558 }
4559 #endif
4560 
4561 #ifdef CONFIG_OLD_SIGSUSPEND
4562 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4563 {
4564 	sigset_t blocked;
4565 	siginitset(&blocked, mask);
4566 	return sigsuspend(&blocked);
4567 }
4568 #endif
4569 #ifdef CONFIG_OLD_SIGSUSPEND3
4570 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4571 {
4572 	sigset_t blocked;
4573 	siginitset(&blocked, mask);
4574 	return sigsuspend(&blocked);
4575 }
4576 #endif
4577 
4578 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4579 {
4580 	return NULL;
4581 }
4582 
4583 static inline void siginfo_buildtime_checks(void)
4584 {
4585 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4586 
4587 	/* Verify the offsets in the two siginfos match */
4588 #define CHECK_OFFSET(field) \
4589 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4590 
4591 	/* kill */
4592 	CHECK_OFFSET(si_pid);
4593 	CHECK_OFFSET(si_uid);
4594 
4595 	/* timer */
4596 	CHECK_OFFSET(si_tid);
4597 	CHECK_OFFSET(si_overrun);
4598 	CHECK_OFFSET(si_value);
4599 
4600 	/* rt */
4601 	CHECK_OFFSET(si_pid);
4602 	CHECK_OFFSET(si_uid);
4603 	CHECK_OFFSET(si_value);
4604 
4605 	/* sigchld */
4606 	CHECK_OFFSET(si_pid);
4607 	CHECK_OFFSET(si_uid);
4608 	CHECK_OFFSET(si_status);
4609 	CHECK_OFFSET(si_utime);
4610 	CHECK_OFFSET(si_stime);
4611 
4612 	/* sigfault */
4613 	CHECK_OFFSET(si_addr);
4614 	CHECK_OFFSET(si_trapno);
4615 	CHECK_OFFSET(si_addr_lsb);
4616 	CHECK_OFFSET(si_lower);
4617 	CHECK_OFFSET(si_upper);
4618 	CHECK_OFFSET(si_pkey);
4619 	CHECK_OFFSET(si_perf_data);
4620 	CHECK_OFFSET(si_perf_type);
4621 
4622 	/* sigpoll */
4623 	CHECK_OFFSET(si_band);
4624 	CHECK_OFFSET(si_fd);
4625 
4626 	/* sigsys */
4627 	CHECK_OFFSET(si_call_addr);
4628 	CHECK_OFFSET(si_syscall);
4629 	CHECK_OFFSET(si_arch);
4630 #undef CHECK_OFFSET
4631 
4632 	/* usb asyncio */
4633 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4634 		     offsetof(struct siginfo, si_addr));
4635 	if (sizeof(int) == sizeof(void __user *)) {
4636 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4637 			     sizeof(void __user *));
4638 	} else {
4639 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4640 			      sizeof_field(struct siginfo, si_uid)) !=
4641 			     sizeof(void __user *));
4642 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4643 			     offsetof(struct siginfo, si_uid));
4644 	}
4645 #ifdef CONFIG_COMPAT
4646 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4647 		     offsetof(struct compat_siginfo, si_addr));
4648 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4649 		     sizeof(compat_uptr_t));
4650 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4651 		     sizeof_field(struct siginfo, si_pid));
4652 #endif
4653 }
4654 
4655 void __init signals_init(void)
4656 {
4657 	siginfo_buildtime_checks();
4658 
4659 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4660 }
4661 
4662 #ifdef CONFIG_KGDB_KDB
4663 #include <linux/kdb.h>
4664 /*
4665  * kdb_send_sig - Allows kdb to send signals without exposing
4666  * signal internals.  This function checks if the required locks are
4667  * available before calling the main signal code, to avoid kdb
4668  * deadlocks.
4669  */
4670 void kdb_send_sig(struct task_struct *t, int sig)
4671 {
4672 	static struct task_struct *kdb_prev_t;
4673 	int new_t, ret;
4674 	if (!spin_trylock(&t->sighand->siglock)) {
4675 		kdb_printf("Can't do kill command now.\n"
4676 			   "The sigmask lock is held somewhere else in "
4677 			   "kernel, try again later\n");
4678 		return;
4679 	}
4680 	new_t = kdb_prev_t != t;
4681 	kdb_prev_t = t;
4682 	if (t->state != TASK_RUNNING && new_t) {
4683 		spin_unlock(&t->sighand->siglock);
4684 		kdb_printf("Process is not RUNNING, sending a signal from "
4685 			   "kdb risks deadlock\n"
4686 			   "on the run queue locks. "
4687 			   "The signal has _not_ been sent.\n"
4688 			   "Reissue the kill command if you want to risk "
4689 			   "the deadlock.\n");
4690 		return;
4691 	}
4692 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4693 	spin_unlock(&t->sighand->siglock);
4694 	if (ret)
4695 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4696 			   sig, t->pid);
4697 	else
4698 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4699 }
4700 #endif	/* CONFIG_KGDB_KDB */
4701