xref: /openbmc/linux/kernel/signal.c (revision 63dc02bd)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #include <linux/user_namespace.h>
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/signal.h>
34 
35 #include <asm/param.h>
36 #include <asm/uaccess.h>
37 #include <asm/unistd.h>
38 #include <asm/siginfo.h>
39 #include <asm/cacheflush.h>
40 #include "audit.h"	/* audit_signal_info() */
41 
42 /*
43  * SLAB caches for signal bits.
44  */
45 
46 static struct kmem_cache *sigqueue_cachep;
47 
48 int print_fatal_signals __read_mostly;
49 
50 static void __user *sig_handler(struct task_struct *t, int sig)
51 {
52 	return t->sighand->action[sig - 1].sa.sa_handler;
53 }
54 
55 static int sig_handler_ignored(void __user *handler, int sig)
56 {
57 	/* Is it explicitly or implicitly ignored? */
58 	return handler == SIG_IGN ||
59 		(handler == SIG_DFL && sig_kernel_ignore(sig));
60 }
61 
62 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
63 {
64 	void __user *handler;
65 
66 	handler = sig_handler(t, sig);
67 
68 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
69 			handler == SIG_DFL && !force)
70 		return 1;
71 
72 	return sig_handler_ignored(handler, sig);
73 }
74 
75 static int sig_ignored(struct task_struct *t, int sig, bool force)
76 {
77 	/*
78 	 * Blocked signals are never ignored, since the
79 	 * signal handler may change by the time it is
80 	 * unblocked.
81 	 */
82 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
83 		return 0;
84 
85 	if (!sig_task_ignored(t, sig, force))
86 		return 0;
87 
88 	/*
89 	 * Tracers may want to know about even ignored signals.
90 	 */
91 	return !t->ptrace;
92 }
93 
94 /*
95  * Re-calculate pending state from the set of locally pending
96  * signals, globally pending signals, and blocked signals.
97  */
98 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
99 {
100 	unsigned long ready;
101 	long i;
102 
103 	switch (_NSIG_WORDS) {
104 	default:
105 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
106 			ready |= signal->sig[i] &~ blocked->sig[i];
107 		break;
108 
109 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
110 		ready |= signal->sig[2] &~ blocked->sig[2];
111 		ready |= signal->sig[1] &~ blocked->sig[1];
112 		ready |= signal->sig[0] &~ blocked->sig[0];
113 		break;
114 
115 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
116 		ready |= signal->sig[0] &~ blocked->sig[0];
117 		break;
118 
119 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
120 	}
121 	return ready !=	0;
122 }
123 
124 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
125 
126 static int recalc_sigpending_tsk(struct task_struct *t)
127 {
128 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
129 	    PENDING(&t->pending, &t->blocked) ||
130 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
131 		set_tsk_thread_flag(t, TIF_SIGPENDING);
132 		return 1;
133 	}
134 	/*
135 	 * We must never clear the flag in another thread, or in current
136 	 * when it's possible the current syscall is returning -ERESTART*.
137 	 * So we don't clear it here, and only callers who know they should do.
138 	 */
139 	return 0;
140 }
141 
142 /*
143  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
144  * This is superfluous when called on current, the wakeup is a harmless no-op.
145  */
146 void recalc_sigpending_and_wake(struct task_struct *t)
147 {
148 	if (recalc_sigpending_tsk(t))
149 		signal_wake_up(t, 0);
150 }
151 
152 void recalc_sigpending(void)
153 {
154 	if (!recalc_sigpending_tsk(current) && !freezing(current))
155 		clear_thread_flag(TIF_SIGPENDING);
156 
157 }
158 
159 /* Given the mask, find the first available signal that should be serviced. */
160 
161 #define SYNCHRONOUS_MASK \
162 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
163 	 sigmask(SIGTRAP) | sigmask(SIGFPE))
164 
165 int next_signal(struct sigpending *pending, sigset_t *mask)
166 {
167 	unsigned long i, *s, *m, x;
168 	int sig = 0;
169 
170 	s = pending->signal.sig;
171 	m = mask->sig;
172 
173 	/*
174 	 * Handle the first word specially: it contains the
175 	 * synchronous signals that need to be dequeued first.
176 	 */
177 	x = *s &~ *m;
178 	if (x) {
179 		if (x & SYNCHRONOUS_MASK)
180 			x &= SYNCHRONOUS_MASK;
181 		sig = ffz(~x) + 1;
182 		return sig;
183 	}
184 
185 	switch (_NSIG_WORDS) {
186 	default:
187 		for (i = 1; i < _NSIG_WORDS; ++i) {
188 			x = *++s &~ *++m;
189 			if (!x)
190 				continue;
191 			sig = ffz(~x) + i*_NSIG_BPW + 1;
192 			break;
193 		}
194 		break;
195 
196 	case 2:
197 		x = s[1] &~ m[1];
198 		if (!x)
199 			break;
200 		sig = ffz(~x) + _NSIG_BPW + 1;
201 		break;
202 
203 	case 1:
204 		/* Nothing to do */
205 		break;
206 	}
207 
208 	return sig;
209 }
210 
211 static inline void print_dropped_signal(int sig)
212 {
213 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
214 
215 	if (!print_fatal_signals)
216 		return;
217 
218 	if (!__ratelimit(&ratelimit_state))
219 		return;
220 
221 	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
222 				current->comm, current->pid, sig);
223 }
224 
225 /**
226  * task_set_jobctl_pending - set jobctl pending bits
227  * @task: target task
228  * @mask: pending bits to set
229  *
230  * Clear @mask from @task->jobctl.  @mask must be subset of
231  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
232  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
233  * cleared.  If @task is already being killed or exiting, this function
234  * becomes noop.
235  *
236  * CONTEXT:
237  * Must be called with @task->sighand->siglock held.
238  *
239  * RETURNS:
240  * %true if @mask is set, %false if made noop because @task was dying.
241  */
242 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
243 {
244 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
245 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
246 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
247 
248 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
249 		return false;
250 
251 	if (mask & JOBCTL_STOP_SIGMASK)
252 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
253 
254 	task->jobctl |= mask;
255 	return true;
256 }
257 
258 /**
259  * task_clear_jobctl_trapping - clear jobctl trapping bit
260  * @task: target task
261  *
262  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
263  * Clear it and wake up the ptracer.  Note that we don't need any further
264  * locking.  @task->siglock guarantees that @task->parent points to the
265  * ptracer.
266  *
267  * CONTEXT:
268  * Must be called with @task->sighand->siglock held.
269  */
270 void task_clear_jobctl_trapping(struct task_struct *task)
271 {
272 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
273 		task->jobctl &= ~JOBCTL_TRAPPING;
274 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
275 	}
276 }
277 
278 /**
279  * task_clear_jobctl_pending - clear jobctl pending bits
280  * @task: target task
281  * @mask: pending bits to clear
282  *
283  * Clear @mask from @task->jobctl.  @mask must be subset of
284  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
285  * STOP bits are cleared together.
286  *
287  * If clearing of @mask leaves no stop or trap pending, this function calls
288  * task_clear_jobctl_trapping().
289  *
290  * CONTEXT:
291  * Must be called with @task->sighand->siglock held.
292  */
293 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
294 {
295 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
296 
297 	if (mask & JOBCTL_STOP_PENDING)
298 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
299 
300 	task->jobctl &= ~mask;
301 
302 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
303 		task_clear_jobctl_trapping(task);
304 }
305 
306 /**
307  * task_participate_group_stop - participate in a group stop
308  * @task: task participating in a group stop
309  *
310  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
311  * Group stop states are cleared and the group stop count is consumed if
312  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
313  * stop, the appropriate %SIGNAL_* flags are set.
314  *
315  * CONTEXT:
316  * Must be called with @task->sighand->siglock held.
317  *
318  * RETURNS:
319  * %true if group stop completion should be notified to the parent, %false
320  * otherwise.
321  */
322 static bool task_participate_group_stop(struct task_struct *task)
323 {
324 	struct signal_struct *sig = task->signal;
325 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
326 
327 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
328 
329 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
330 
331 	if (!consume)
332 		return false;
333 
334 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
335 		sig->group_stop_count--;
336 
337 	/*
338 	 * Tell the caller to notify completion iff we are entering into a
339 	 * fresh group stop.  Read comment in do_signal_stop() for details.
340 	 */
341 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
342 		sig->flags = SIGNAL_STOP_STOPPED;
343 		return true;
344 	}
345 	return false;
346 }
347 
348 /*
349  * allocate a new signal queue record
350  * - this may be called without locks if and only if t == current, otherwise an
351  *   appropriate lock must be held to stop the target task from exiting
352  */
353 static struct sigqueue *
354 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
355 {
356 	struct sigqueue *q = NULL;
357 	struct user_struct *user;
358 
359 	/*
360 	 * Protect access to @t credentials. This can go away when all
361 	 * callers hold rcu read lock.
362 	 */
363 	rcu_read_lock();
364 	user = get_uid(__task_cred(t)->user);
365 	atomic_inc(&user->sigpending);
366 	rcu_read_unlock();
367 
368 	if (override_rlimit ||
369 	    atomic_read(&user->sigpending) <=
370 			task_rlimit(t, RLIMIT_SIGPENDING)) {
371 		q = kmem_cache_alloc(sigqueue_cachep, flags);
372 	} else {
373 		print_dropped_signal(sig);
374 	}
375 
376 	if (unlikely(q == NULL)) {
377 		atomic_dec(&user->sigpending);
378 		free_uid(user);
379 	} else {
380 		INIT_LIST_HEAD(&q->list);
381 		q->flags = 0;
382 		q->user = user;
383 	}
384 
385 	return q;
386 }
387 
388 static void __sigqueue_free(struct sigqueue *q)
389 {
390 	if (q->flags & SIGQUEUE_PREALLOC)
391 		return;
392 	atomic_dec(&q->user->sigpending);
393 	free_uid(q->user);
394 	kmem_cache_free(sigqueue_cachep, q);
395 }
396 
397 void flush_sigqueue(struct sigpending *queue)
398 {
399 	struct sigqueue *q;
400 
401 	sigemptyset(&queue->signal);
402 	while (!list_empty(&queue->list)) {
403 		q = list_entry(queue->list.next, struct sigqueue , list);
404 		list_del_init(&q->list);
405 		__sigqueue_free(q);
406 	}
407 }
408 
409 /*
410  * Flush all pending signals for a task.
411  */
412 void __flush_signals(struct task_struct *t)
413 {
414 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
415 	flush_sigqueue(&t->pending);
416 	flush_sigqueue(&t->signal->shared_pending);
417 }
418 
419 void flush_signals(struct task_struct *t)
420 {
421 	unsigned long flags;
422 
423 	spin_lock_irqsave(&t->sighand->siglock, flags);
424 	__flush_signals(t);
425 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
426 }
427 
428 static void __flush_itimer_signals(struct sigpending *pending)
429 {
430 	sigset_t signal, retain;
431 	struct sigqueue *q, *n;
432 
433 	signal = pending->signal;
434 	sigemptyset(&retain);
435 
436 	list_for_each_entry_safe(q, n, &pending->list, list) {
437 		int sig = q->info.si_signo;
438 
439 		if (likely(q->info.si_code != SI_TIMER)) {
440 			sigaddset(&retain, sig);
441 		} else {
442 			sigdelset(&signal, sig);
443 			list_del_init(&q->list);
444 			__sigqueue_free(q);
445 		}
446 	}
447 
448 	sigorsets(&pending->signal, &signal, &retain);
449 }
450 
451 void flush_itimer_signals(void)
452 {
453 	struct task_struct *tsk = current;
454 	unsigned long flags;
455 
456 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
457 	__flush_itimer_signals(&tsk->pending);
458 	__flush_itimer_signals(&tsk->signal->shared_pending);
459 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
460 }
461 
462 void ignore_signals(struct task_struct *t)
463 {
464 	int i;
465 
466 	for (i = 0; i < _NSIG; ++i)
467 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
468 
469 	flush_signals(t);
470 }
471 
472 /*
473  * Flush all handlers for a task.
474  */
475 
476 void
477 flush_signal_handlers(struct task_struct *t, int force_default)
478 {
479 	int i;
480 	struct k_sigaction *ka = &t->sighand->action[0];
481 	for (i = _NSIG ; i != 0 ; i--) {
482 		if (force_default || ka->sa.sa_handler != SIG_IGN)
483 			ka->sa.sa_handler = SIG_DFL;
484 		ka->sa.sa_flags = 0;
485 		sigemptyset(&ka->sa.sa_mask);
486 		ka++;
487 	}
488 }
489 
490 int unhandled_signal(struct task_struct *tsk, int sig)
491 {
492 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
493 	if (is_global_init(tsk))
494 		return 1;
495 	if (handler != SIG_IGN && handler != SIG_DFL)
496 		return 0;
497 	/* if ptraced, let the tracer determine */
498 	return !tsk->ptrace;
499 }
500 
501 /*
502  * Notify the system that a driver wants to block all signals for this
503  * process, and wants to be notified if any signals at all were to be
504  * sent/acted upon.  If the notifier routine returns non-zero, then the
505  * signal will be acted upon after all.  If the notifier routine returns 0,
506  * then then signal will be blocked.  Only one block per process is
507  * allowed.  priv is a pointer to private data that the notifier routine
508  * can use to determine if the signal should be blocked or not.
509  */
510 void
511 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
512 {
513 	unsigned long flags;
514 
515 	spin_lock_irqsave(&current->sighand->siglock, flags);
516 	current->notifier_mask = mask;
517 	current->notifier_data = priv;
518 	current->notifier = notifier;
519 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
520 }
521 
522 /* Notify the system that blocking has ended. */
523 
524 void
525 unblock_all_signals(void)
526 {
527 	unsigned long flags;
528 
529 	spin_lock_irqsave(&current->sighand->siglock, flags);
530 	current->notifier = NULL;
531 	current->notifier_data = NULL;
532 	recalc_sigpending();
533 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
534 }
535 
536 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
537 {
538 	struct sigqueue *q, *first = NULL;
539 
540 	/*
541 	 * Collect the siginfo appropriate to this signal.  Check if
542 	 * there is another siginfo for the same signal.
543 	*/
544 	list_for_each_entry(q, &list->list, list) {
545 		if (q->info.si_signo == sig) {
546 			if (first)
547 				goto still_pending;
548 			first = q;
549 		}
550 	}
551 
552 	sigdelset(&list->signal, sig);
553 
554 	if (first) {
555 still_pending:
556 		list_del_init(&first->list);
557 		copy_siginfo(info, &first->info);
558 		__sigqueue_free(first);
559 	} else {
560 		/*
561 		 * Ok, it wasn't in the queue.  This must be
562 		 * a fast-pathed signal or we must have been
563 		 * out of queue space.  So zero out the info.
564 		 */
565 		info->si_signo = sig;
566 		info->si_errno = 0;
567 		info->si_code = SI_USER;
568 		info->si_pid = 0;
569 		info->si_uid = 0;
570 	}
571 }
572 
573 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
574 			siginfo_t *info)
575 {
576 	int sig = next_signal(pending, mask);
577 
578 	if (sig) {
579 		if (current->notifier) {
580 			if (sigismember(current->notifier_mask, sig)) {
581 				if (!(current->notifier)(current->notifier_data)) {
582 					clear_thread_flag(TIF_SIGPENDING);
583 					return 0;
584 				}
585 			}
586 		}
587 
588 		collect_signal(sig, pending, info);
589 	}
590 
591 	return sig;
592 }
593 
594 /*
595  * Dequeue a signal and return the element to the caller, which is
596  * expected to free it.
597  *
598  * All callers have to hold the siglock.
599  */
600 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
601 {
602 	int signr;
603 
604 	/* We only dequeue private signals from ourselves, we don't let
605 	 * signalfd steal them
606 	 */
607 	signr = __dequeue_signal(&tsk->pending, mask, info);
608 	if (!signr) {
609 		signr = __dequeue_signal(&tsk->signal->shared_pending,
610 					 mask, info);
611 		/*
612 		 * itimer signal ?
613 		 *
614 		 * itimers are process shared and we restart periodic
615 		 * itimers in the signal delivery path to prevent DoS
616 		 * attacks in the high resolution timer case. This is
617 		 * compliant with the old way of self-restarting
618 		 * itimers, as the SIGALRM is a legacy signal and only
619 		 * queued once. Changing the restart behaviour to
620 		 * restart the timer in the signal dequeue path is
621 		 * reducing the timer noise on heavy loaded !highres
622 		 * systems too.
623 		 */
624 		if (unlikely(signr == SIGALRM)) {
625 			struct hrtimer *tmr = &tsk->signal->real_timer;
626 
627 			if (!hrtimer_is_queued(tmr) &&
628 			    tsk->signal->it_real_incr.tv64 != 0) {
629 				hrtimer_forward(tmr, tmr->base->get_time(),
630 						tsk->signal->it_real_incr);
631 				hrtimer_restart(tmr);
632 			}
633 		}
634 	}
635 
636 	recalc_sigpending();
637 	if (!signr)
638 		return 0;
639 
640 	if (unlikely(sig_kernel_stop(signr))) {
641 		/*
642 		 * Set a marker that we have dequeued a stop signal.  Our
643 		 * caller might release the siglock and then the pending
644 		 * stop signal it is about to process is no longer in the
645 		 * pending bitmasks, but must still be cleared by a SIGCONT
646 		 * (and overruled by a SIGKILL).  So those cases clear this
647 		 * shared flag after we've set it.  Note that this flag may
648 		 * remain set after the signal we return is ignored or
649 		 * handled.  That doesn't matter because its only purpose
650 		 * is to alert stop-signal processing code when another
651 		 * processor has come along and cleared the flag.
652 		 */
653 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
654 	}
655 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
656 		/*
657 		 * Release the siglock to ensure proper locking order
658 		 * of timer locks outside of siglocks.  Note, we leave
659 		 * irqs disabled here, since the posix-timers code is
660 		 * about to disable them again anyway.
661 		 */
662 		spin_unlock(&tsk->sighand->siglock);
663 		do_schedule_next_timer(info);
664 		spin_lock(&tsk->sighand->siglock);
665 	}
666 	return signr;
667 }
668 
669 /*
670  * Tell a process that it has a new active signal..
671  *
672  * NOTE! we rely on the previous spin_lock to
673  * lock interrupts for us! We can only be called with
674  * "siglock" held, and the local interrupt must
675  * have been disabled when that got acquired!
676  *
677  * No need to set need_resched since signal event passing
678  * goes through ->blocked
679  */
680 void signal_wake_up(struct task_struct *t, int resume)
681 {
682 	unsigned int mask;
683 
684 	set_tsk_thread_flag(t, TIF_SIGPENDING);
685 
686 	/*
687 	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
688 	 * case. We don't check t->state here because there is a race with it
689 	 * executing another processor and just now entering stopped state.
690 	 * By using wake_up_state, we ensure the process will wake up and
691 	 * handle its death signal.
692 	 */
693 	mask = TASK_INTERRUPTIBLE;
694 	if (resume)
695 		mask |= TASK_WAKEKILL;
696 	if (!wake_up_state(t, mask))
697 		kick_process(t);
698 }
699 
700 /*
701  * Remove signals in mask from the pending set and queue.
702  * Returns 1 if any signals were found.
703  *
704  * All callers must be holding the siglock.
705  *
706  * This version takes a sigset mask and looks at all signals,
707  * not just those in the first mask word.
708  */
709 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
710 {
711 	struct sigqueue *q, *n;
712 	sigset_t m;
713 
714 	sigandsets(&m, mask, &s->signal);
715 	if (sigisemptyset(&m))
716 		return 0;
717 
718 	sigandnsets(&s->signal, &s->signal, mask);
719 	list_for_each_entry_safe(q, n, &s->list, list) {
720 		if (sigismember(mask, q->info.si_signo)) {
721 			list_del_init(&q->list);
722 			__sigqueue_free(q);
723 		}
724 	}
725 	return 1;
726 }
727 /*
728  * Remove signals in mask from the pending set and queue.
729  * Returns 1 if any signals were found.
730  *
731  * All callers must be holding the siglock.
732  */
733 static int rm_from_queue(unsigned long mask, struct sigpending *s)
734 {
735 	struct sigqueue *q, *n;
736 
737 	if (!sigtestsetmask(&s->signal, mask))
738 		return 0;
739 
740 	sigdelsetmask(&s->signal, mask);
741 	list_for_each_entry_safe(q, n, &s->list, list) {
742 		if (q->info.si_signo < SIGRTMIN &&
743 		    (mask & sigmask(q->info.si_signo))) {
744 			list_del_init(&q->list);
745 			__sigqueue_free(q);
746 		}
747 	}
748 	return 1;
749 }
750 
751 static inline int is_si_special(const struct siginfo *info)
752 {
753 	return info <= SEND_SIG_FORCED;
754 }
755 
756 static inline bool si_fromuser(const struct siginfo *info)
757 {
758 	return info == SEND_SIG_NOINFO ||
759 		(!is_si_special(info) && SI_FROMUSER(info));
760 }
761 
762 /*
763  * called with RCU read lock from check_kill_permission()
764  */
765 static int kill_ok_by_cred(struct task_struct *t)
766 {
767 	const struct cred *cred = current_cred();
768 	const struct cred *tcred = __task_cred(t);
769 
770 	if (cred->user->user_ns == tcred->user->user_ns &&
771 	    (cred->euid == tcred->suid ||
772 	     cred->euid == tcred->uid ||
773 	     cred->uid  == tcred->suid ||
774 	     cred->uid  == tcred->uid))
775 		return 1;
776 
777 	if (ns_capable(tcred->user->user_ns, CAP_KILL))
778 		return 1;
779 
780 	return 0;
781 }
782 
783 /*
784  * Bad permissions for sending the signal
785  * - the caller must hold the RCU read lock
786  */
787 static int check_kill_permission(int sig, struct siginfo *info,
788 				 struct task_struct *t)
789 {
790 	struct pid *sid;
791 	int error;
792 
793 	if (!valid_signal(sig))
794 		return -EINVAL;
795 
796 	if (!si_fromuser(info))
797 		return 0;
798 
799 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
800 	if (error)
801 		return error;
802 
803 	if (!same_thread_group(current, t) &&
804 	    !kill_ok_by_cred(t)) {
805 		switch (sig) {
806 		case SIGCONT:
807 			sid = task_session(t);
808 			/*
809 			 * We don't return the error if sid == NULL. The
810 			 * task was unhashed, the caller must notice this.
811 			 */
812 			if (!sid || sid == task_session(current))
813 				break;
814 		default:
815 			return -EPERM;
816 		}
817 	}
818 
819 	return security_task_kill(t, info, sig, 0);
820 }
821 
822 /**
823  * ptrace_trap_notify - schedule trap to notify ptracer
824  * @t: tracee wanting to notify tracer
825  *
826  * This function schedules sticky ptrace trap which is cleared on the next
827  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
828  * ptracer.
829  *
830  * If @t is running, STOP trap will be taken.  If trapped for STOP and
831  * ptracer is listening for events, tracee is woken up so that it can
832  * re-trap for the new event.  If trapped otherwise, STOP trap will be
833  * eventually taken without returning to userland after the existing traps
834  * are finished by PTRACE_CONT.
835  *
836  * CONTEXT:
837  * Must be called with @task->sighand->siglock held.
838  */
839 static void ptrace_trap_notify(struct task_struct *t)
840 {
841 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
842 	assert_spin_locked(&t->sighand->siglock);
843 
844 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
845 	signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
846 }
847 
848 /*
849  * Handle magic process-wide effects of stop/continue signals. Unlike
850  * the signal actions, these happen immediately at signal-generation
851  * time regardless of blocking, ignoring, or handling.  This does the
852  * actual continuing for SIGCONT, but not the actual stopping for stop
853  * signals. The process stop is done as a signal action for SIG_DFL.
854  *
855  * Returns true if the signal should be actually delivered, otherwise
856  * it should be dropped.
857  */
858 static int prepare_signal(int sig, struct task_struct *p, bool force)
859 {
860 	struct signal_struct *signal = p->signal;
861 	struct task_struct *t;
862 
863 	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
864 		/*
865 		 * The process is in the middle of dying, nothing to do.
866 		 */
867 	} else if (sig_kernel_stop(sig)) {
868 		/*
869 		 * This is a stop signal.  Remove SIGCONT from all queues.
870 		 */
871 		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
872 		t = p;
873 		do {
874 			rm_from_queue(sigmask(SIGCONT), &t->pending);
875 		} while_each_thread(p, t);
876 	} else if (sig == SIGCONT) {
877 		unsigned int why;
878 		/*
879 		 * Remove all stop signals from all queues, wake all threads.
880 		 */
881 		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
882 		t = p;
883 		do {
884 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
885 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
886 			if (likely(!(t->ptrace & PT_SEIZED)))
887 				wake_up_state(t, __TASK_STOPPED);
888 			else
889 				ptrace_trap_notify(t);
890 		} while_each_thread(p, t);
891 
892 		/*
893 		 * Notify the parent with CLD_CONTINUED if we were stopped.
894 		 *
895 		 * If we were in the middle of a group stop, we pretend it
896 		 * was already finished, and then continued. Since SIGCHLD
897 		 * doesn't queue we report only CLD_STOPPED, as if the next
898 		 * CLD_CONTINUED was dropped.
899 		 */
900 		why = 0;
901 		if (signal->flags & SIGNAL_STOP_STOPPED)
902 			why |= SIGNAL_CLD_CONTINUED;
903 		else if (signal->group_stop_count)
904 			why |= SIGNAL_CLD_STOPPED;
905 
906 		if (why) {
907 			/*
908 			 * The first thread which returns from do_signal_stop()
909 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
910 			 * notify its parent. See get_signal_to_deliver().
911 			 */
912 			signal->flags = why | SIGNAL_STOP_CONTINUED;
913 			signal->group_stop_count = 0;
914 			signal->group_exit_code = 0;
915 		}
916 	}
917 
918 	return !sig_ignored(p, sig, force);
919 }
920 
921 /*
922  * Test if P wants to take SIG.  After we've checked all threads with this,
923  * it's equivalent to finding no threads not blocking SIG.  Any threads not
924  * blocking SIG were ruled out because they are not running and already
925  * have pending signals.  Such threads will dequeue from the shared queue
926  * as soon as they're available, so putting the signal on the shared queue
927  * will be equivalent to sending it to one such thread.
928  */
929 static inline int wants_signal(int sig, struct task_struct *p)
930 {
931 	if (sigismember(&p->blocked, sig))
932 		return 0;
933 	if (p->flags & PF_EXITING)
934 		return 0;
935 	if (sig == SIGKILL)
936 		return 1;
937 	if (task_is_stopped_or_traced(p))
938 		return 0;
939 	return task_curr(p) || !signal_pending(p);
940 }
941 
942 static void complete_signal(int sig, struct task_struct *p, int group)
943 {
944 	struct signal_struct *signal = p->signal;
945 	struct task_struct *t;
946 
947 	/*
948 	 * Now find a thread we can wake up to take the signal off the queue.
949 	 *
950 	 * If the main thread wants the signal, it gets first crack.
951 	 * Probably the least surprising to the average bear.
952 	 */
953 	if (wants_signal(sig, p))
954 		t = p;
955 	else if (!group || thread_group_empty(p))
956 		/*
957 		 * There is just one thread and it does not need to be woken.
958 		 * It will dequeue unblocked signals before it runs again.
959 		 */
960 		return;
961 	else {
962 		/*
963 		 * Otherwise try to find a suitable thread.
964 		 */
965 		t = signal->curr_target;
966 		while (!wants_signal(sig, t)) {
967 			t = next_thread(t);
968 			if (t == signal->curr_target)
969 				/*
970 				 * No thread needs to be woken.
971 				 * Any eligible threads will see
972 				 * the signal in the queue soon.
973 				 */
974 				return;
975 		}
976 		signal->curr_target = t;
977 	}
978 
979 	/*
980 	 * Found a killable thread.  If the signal will be fatal,
981 	 * then start taking the whole group down immediately.
982 	 */
983 	if (sig_fatal(p, sig) &&
984 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
985 	    !sigismember(&t->real_blocked, sig) &&
986 	    (sig == SIGKILL || !t->ptrace)) {
987 		/*
988 		 * This signal will be fatal to the whole group.
989 		 */
990 		if (!sig_kernel_coredump(sig)) {
991 			/*
992 			 * Start a group exit and wake everybody up.
993 			 * This way we don't have other threads
994 			 * running and doing things after a slower
995 			 * thread has the fatal signal pending.
996 			 */
997 			signal->flags = SIGNAL_GROUP_EXIT;
998 			signal->group_exit_code = sig;
999 			signal->group_stop_count = 0;
1000 			t = p;
1001 			do {
1002 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1003 				sigaddset(&t->pending.signal, SIGKILL);
1004 				signal_wake_up(t, 1);
1005 			} while_each_thread(p, t);
1006 			return;
1007 		}
1008 	}
1009 
1010 	/*
1011 	 * The signal is already in the shared-pending queue.
1012 	 * Tell the chosen thread to wake up and dequeue it.
1013 	 */
1014 	signal_wake_up(t, sig == SIGKILL);
1015 	return;
1016 }
1017 
1018 static inline int legacy_queue(struct sigpending *signals, int sig)
1019 {
1020 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1021 }
1022 
1023 /*
1024  * map the uid in struct cred into user namespace *ns
1025  */
1026 static inline uid_t map_cred_ns(const struct cred *cred,
1027 				struct user_namespace *ns)
1028 {
1029 	return user_ns_map_uid(ns, cred, cred->uid);
1030 }
1031 
1032 #ifdef CONFIG_USER_NS
1033 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1034 {
1035 	if (current_user_ns() == task_cred_xxx(t, user_ns))
1036 		return;
1037 
1038 	if (SI_FROMKERNEL(info))
1039 		return;
1040 
1041 	info->si_uid = user_ns_map_uid(task_cred_xxx(t, user_ns),
1042 					current_cred(), info->si_uid);
1043 }
1044 #else
1045 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1046 {
1047 	return;
1048 }
1049 #endif
1050 
1051 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1052 			int group, int from_ancestor_ns)
1053 {
1054 	struct sigpending *pending;
1055 	struct sigqueue *q;
1056 	int override_rlimit;
1057 	int ret = 0, result;
1058 
1059 	assert_spin_locked(&t->sighand->siglock);
1060 
1061 	result = TRACE_SIGNAL_IGNORED;
1062 	if (!prepare_signal(sig, t,
1063 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1064 		goto ret;
1065 
1066 	pending = group ? &t->signal->shared_pending : &t->pending;
1067 	/*
1068 	 * Short-circuit ignored signals and support queuing
1069 	 * exactly one non-rt signal, so that we can get more
1070 	 * detailed information about the cause of the signal.
1071 	 */
1072 	result = TRACE_SIGNAL_ALREADY_PENDING;
1073 	if (legacy_queue(pending, sig))
1074 		goto ret;
1075 
1076 	result = TRACE_SIGNAL_DELIVERED;
1077 	/*
1078 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1079 	 * or SIGKILL.
1080 	 */
1081 	if (info == SEND_SIG_FORCED)
1082 		goto out_set;
1083 
1084 	/*
1085 	 * Real-time signals must be queued if sent by sigqueue, or
1086 	 * some other real-time mechanism.  It is implementation
1087 	 * defined whether kill() does so.  We attempt to do so, on
1088 	 * the principle of least surprise, but since kill is not
1089 	 * allowed to fail with EAGAIN when low on memory we just
1090 	 * make sure at least one signal gets delivered and don't
1091 	 * pass on the info struct.
1092 	 */
1093 	if (sig < SIGRTMIN)
1094 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1095 	else
1096 		override_rlimit = 0;
1097 
1098 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1099 		override_rlimit);
1100 	if (q) {
1101 		list_add_tail(&q->list, &pending->list);
1102 		switch ((unsigned long) info) {
1103 		case (unsigned long) SEND_SIG_NOINFO:
1104 			q->info.si_signo = sig;
1105 			q->info.si_errno = 0;
1106 			q->info.si_code = SI_USER;
1107 			q->info.si_pid = task_tgid_nr_ns(current,
1108 							task_active_pid_ns(t));
1109 			q->info.si_uid = current_uid();
1110 			break;
1111 		case (unsigned long) SEND_SIG_PRIV:
1112 			q->info.si_signo = sig;
1113 			q->info.si_errno = 0;
1114 			q->info.si_code = SI_KERNEL;
1115 			q->info.si_pid = 0;
1116 			q->info.si_uid = 0;
1117 			break;
1118 		default:
1119 			copy_siginfo(&q->info, info);
1120 			if (from_ancestor_ns)
1121 				q->info.si_pid = 0;
1122 			break;
1123 		}
1124 
1125 		userns_fixup_signal_uid(&q->info, t);
1126 
1127 	} else if (!is_si_special(info)) {
1128 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1129 			/*
1130 			 * Queue overflow, abort.  We may abort if the
1131 			 * signal was rt and sent by user using something
1132 			 * other than kill().
1133 			 */
1134 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1135 			ret = -EAGAIN;
1136 			goto ret;
1137 		} else {
1138 			/*
1139 			 * This is a silent loss of information.  We still
1140 			 * send the signal, but the *info bits are lost.
1141 			 */
1142 			result = TRACE_SIGNAL_LOSE_INFO;
1143 		}
1144 	}
1145 
1146 out_set:
1147 	signalfd_notify(t, sig);
1148 	sigaddset(&pending->signal, sig);
1149 	complete_signal(sig, t, group);
1150 ret:
1151 	trace_signal_generate(sig, info, t, group, result);
1152 	return ret;
1153 }
1154 
1155 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1156 			int group)
1157 {
1158 	int from_ancestor_ns = 0;
1159 
1160 #ifdef CONFIG_PID_NS
1161 	from_ancestor_ns = si_fromuser(info) &&
1162 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1163 #endif
1164 
1165 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1166 }
1167 
1168 static void print_fatal_signal(struct pt_regs *regs, int signr)
1169 {
1170 	printk("%s/%d: potentially unexpected fatal signal %d.\n",
1171 		current->comm, task_pid_nr(current), signr);
1172 
1173 #if defined(__i386__) && !defined(__arch_um__)
1174 	printk("code at %08lx: ", regs->ip);
1175 	{
1176 		int i;
1177 		for (i = 0; i < 16; i++) {
1178 			unsigned char insn;
1179 
1180 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1181 				break;
1182 			printk("%02x ", insn);
1183 		}
1184 	}
1185 #endif
1186 	printk("\n");
1187 	preempt_disable();
1188 	show_regs(regs);
1189 	preempt_enable();
1190 }
1191 
1192 static int __init setup_print_fatal_signals(char *str)
1193 {
1194 	get_option (&str, &print_fatal_signals);
1195 
1196 	return 1;
1197 }
1198 
1199 __setup("print-fatal-signals=", setup_print_fatal_signals);
1200 
1201 int
1202 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1203 {
1204 	return send_signal(sig, info, p, 1);
1205 }
1206 
1207 static int
1208 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1209 {
1210 	return send_signal(sig, info, t, 0);
1211 }
1212 
1213 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1214 			bool group)
1215 {
1216 	unsigned long flags;
1217 	int ret = -ESRCH;
1218 
1219 	if (lock_task_sighand(p, &flags)) {
1220 		ret = send_signal(sig, info, p, group);
1221 		unlock_task_sighand(p, &flags);
1222 	}
1223 
1224 	return ret;
1225 }
1226 
1227 /*
1228  * Force a signal that the process can't ignore: if necessary
1229  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1230  *
1231  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1232  * since we do not want to have a signal handler that was blocked
1233  * be invoked when user space had explicitly blocked it.
1234  *
1235  * We don't want to have recursive SIGSEGV's etc, for example,
1236  * that is why we also clear SIGNAL_UNKILLABLE.
1237  */
1238 int
1239 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1240 {
1241 	unsigned long int flags;
1242 	int ret, blocked, ignored;
1243 	struct k_sigaction *action;
1244 
1245 	spin_lock_irqsave(&t->sighand->siglock, flags);
1246 	action = &t->sighand->action[sig-1];
1247 	ignored = action->sa.sa_handler == SIG_IGN;
1248 	blocked = sigismember(&t->blocked, sig);
1249 	if (blocked || ignored) {
1250 		action->sa.sa_handler = SIG_DFL;
1251 		if (blocked) {
1252 			sigdelset(&t->blocked, sig);
1253 			recalc_sigpending_and_wake(t);
1254 		}
1255 	}
1256 	if (action->sa.sa_handler == SIG_DFL)
1257 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1258 	ret = specific_send_sig_info(sig, info, t);
1259 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1260 
1261 	return ret;
1262 }
1263 
1264 /*
1265  * Nuke all other threads in the group.
1266  */
1267 int zap_other_threads(struct task_struct *p)
1268 {
1269 	struct task_struct *t = p;
1270 	int count = 0;
1271 
1272 	p->signal->group_stop_count = 0;
1273 
1274 	while_each_thread(p, t) {
1275 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1276 		count++;
1277 
1278 		/* Don't bother with already dead threads */
1279 		if (t->exit_state)
1280 			continue;
1281 		sigaddset(&t->pending.signal, SIGKILL);
1282 		signal_wake_up(t, 1);
1283 	}
1284 
1285 	return count;
1286 }
1287 
1288 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1289 					   unsigned long *flags)
1290 {
1291 	struct sighand_struct *sighand;
1292 
1293 	for (;;) {
1294 		local_irq_save(*flags);
1295 		rcu_read_lock();
1296 		sighand = rcu_dereference(tsk->sighand);
1297 		if (unlikely(sighand == NULL)) {
1298 			rcu_read_unlock();
1299 			local_irq_restore(*flags);
1300 			break;
1301 		}
1302 
1303 		spin_lock(&sighand->siglock);
1304 		if (likely(sighand == tsk->sighand)) {
1305 			rcu_read_unlock();
1306 			break;
1307 		}
1308 		spin_unlock(&sighand->siglock);
1309 		rcu_read_unlock();
1310 		local_irq_restore(*flags);
1311 	}
1312 
1313 	return sighand;
1314 }
1315 
1316 /*
1317  * send signal info to all the members of a group
1318  */
1319 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1320 {
1321 	int ret;
1322 
1323 	rcu_read_lock();
1324 	ret = check_kill_permission(sig, info, p);
1325 	rcu_read_unlock();
1326 
1327 	if (!ret && sig)
1328 		ret = do_send_sig_info(sig, info, p, true);
1329 
1330 	return ret;
1331 }
1332 
1333 /*
1334  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1335  * control characters do (^C, ^Z etc)
1336  * - the caller must hold at least a readlock on tasklist_lock
1337  */
1338 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1339 {
1340 	struct task_struct *p = NULL;
1341 	int retval, success;
1342 
1343 	success = 0;
1344 	retval = -ESRCH;
1345 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1346 		int err = group_send_sig_info(sig, info, p);
1347 		success |= !err;
1348 		retval = err;
1349 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1350 	return success ? 0 : retval;
1351 }
1352 
1353 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1354 {
1355 	int error = -ESRCH;
1356 	struct task_struct *p;
1357 
1358 	rcu_read_lock();
1359 retry:
1360 	p = pid_task(pid, PIDTYPE_PID);
1361 	if (p) {
1362 		error = group_send_sig_info(sig, info, p);
1363 		if (unlikely(error == -ESRCH))
1364 			/*
1365 			 * The task was unhashed in between, try again.
1366 			 * If it is dead, pid_task() will return NULL,
1367 			 * if we race with de_thread() it will find the
1368 			 * new leader.
1369 			 */
1370 			goto retry;
1371 	}
1372 	rcu_read_unlock();
1373 
1374 	return error;
1375 }
1376 
1377 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1378 {
1379 	int error;
1380 	rcu_read_lock();
1381 	error = kill_pid_info(sig, info, find_vpid(pid));
1382 	rcu_read_unlock();
1383 	return error;
1384 }
1385 
1386 static int kill_as_cred_perm(const struct cred *cred,
1387 			     struct task_struct *target)
1388 {
1389 	const struct cred *pcred = __task_cred(target);
1390 	if (cred->user_ns != pcred->user_ns)
1391 		return 0;
1392 	if (cred->euid != pcred->suid && cred->euid != pcred->uid &&
1393 	    cred->uid  != pcred->suid && cred->uid  != pcred->uid)
1394 		return 0;
1395 	return 1;
1396 }
1397 
1398 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1399 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1400 			 const struct cred *cred, u32 secid)
1401 {
1402 	int ret = -EINVAL;
1403 	struct task_struct *p;
1404 	unsigned long flags;
1405 
1406 	if (!valid_signal(sig))
1407 		return ret;
1408 
1409 	rcu_read_lock();
1410 	p = pid_task(pid, PIDTYPE_PID);
1411 	if (!p) {
1412 		ret = -ESRCH;
1413 		goto out_unlock;
1414 	}
1415 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1416 		ret = -EPERM;
1417 		goto out_unlock;
1418 	}
1419 	ret = security_task_kill(p, info, sig, secid);
1420 	if (ret)
1421 		goto out_unlock;
1422 
1423 	if (sig) {
1424 		if (lock_task_sighand(p, &flags)) {
1425 			ret = __send_signal(sig, info, p, 1, 0);
1426 			unlock_task_sighand(p, &flags);
1427 		} else
1428 			ret = -ESRCH;
1429 	}
1430 out_unlock:
1431 	rcu_read_unlock();
1432 	return ret;
1433 }
1434 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1435 
1436 /*
1437  * kill_something_info() interprets pid in interesting ways just like kill(2).
1438  *
1439  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1440  * is probably wrong.  Should make it like BSD or SYSV.
1441  */
1442 
1443 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1444 {
1445 	int ret;
1446 
1447 	if (pid > 0) {
1448 		rcu_read_lock();
1449 		ret = kill_pid_info(sig, info, find_vpid(pid));
1450 		rcu_read_unlock();
1451 		return ret;
1452 	}
1453 
1454 	read_lock(&tasklist_lock);
1455 	if (pid != -1) {
1456 		ret = __kill_pgrp_info(sig, info,
1457 				pid ? find_vpid(-pid) : task_pgrp(current));
1458 	} else {
1459 		int retval = 0, count = 0;
1460 		struct task_struct * p;
1461 
1462 		for_each_process(p) {
1463 			if (task_pid_vnr(p) > 1 &&
1464 					!same_thread_group(p, current)) {
1465 				int err = group_send_sig_info(sig, info, p);
1466 				++count;
1467 				if (err != -EPERM)
1468 					retval = err;
1469 			}
1470 		}
1471 		ret = count ? retval : -ESRCH;
1472 	}
1473 	read_unlock(&tasklist_lock);
1474 
1475 	return ret;
1476 }
1477 
1478 /*
1479  * These are for backward compatibility with the rest of the kernel source.
1480  */
1481 
1482 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1483 {
1484 	/*
1485 	 * Make sure legacy kernel users don't send in bad values
1486 	 * (normal paths check this in check_kill_permission).
1487 	 */
1488 	if (!valid_signal(sig))
1489 		return -EINVAL;
1490 
1491 	return do_send_sig_info(sig, info, p, false);
1492 }
1493 
1494 #define __si_special(priv) \
1495 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1496 
1497 int
1498 send_sig(int sig, struct task_struct *p, int priv)
1499 {
1500 	return send_sig_info(sig, __si_special(priv), p);
1501 }
1502 
1503 void
1504 force_sig(int sig, struct task_struct *p)
1505 {
1506 	force_sig_info(sig, SEND_SIG_PRIV, p);
1507 }
1508 
1509 /*
1510  * When things go south during signal handling, we
1511  * will force a SIGSEGV. And if the signal that caused
1512  * the problem was already a SIGSEGV, we'll want to
1513  * make sure we don't even try to deliver the signal..
1514  */
1515 int
1516 force_sigsegv(int sig, struct task_struct *p)
1517 {
1518 	if (sig == SIGSEGV) {
1519 		unsigned long flags;
1520 		spin_lock_irqsave(&p->sighand->siglock, flags);
1521 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1522 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1523 	}
1524 	force_sig(SIGSEGV, p);
1525 	return 0;
1526 }
1527 
1528 int kill_pgrp(struct pid *pid, int sig, int priv)
1529 {
1530 	int ret;
1531 
1532 	read_lock(&tasklist_lock);
1533 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1534 	read_unlock(&tasklist_lock);
1535 
1536 	return ret;
1537 }
1538 EXPORT_SYMBOL(kill_pgrp);
1539 
1540 int kill_pid(struct pid *pid, int sig, int priv)
1541 {
1542 	return kill_pid_info(sig, __si_special(priv), pid);
1543 }
1544 EXPORT_SYMBOL(kill_pid);
1545 
1546 /*
1547  * These functions support sending signals using preallocated sigqueue
1548  * structures.  This is needed "because realtime applications cannot
1549  * afford to lose notifications of asynchronous events, like timer
1550  * expirations or I/O completions".  In the case of POSIX Timers
1551  * we allocate the sigqueue structure from the timer_create.  If this
1552  * allocation fails we are able to report the failure to the application
1553  * with an EAGAIN error.
1554  */
1555 struct sigqueue *sigqueue_alloc(void)
1556 {
1557 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1558 
1559 	if (q)
1560 		q->flags |= SIGQUEUE_PREALLOC;
1561 
1562 	return q;
1563 }
1564 
1565 void sigqueue_free(struct sigqueue *q)
1566 {
1567 	unsigned long flags;
1568 	spinlock_t *lock = &current->sighand->siglock;
1569 
1570 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1571 	/*
1572 	 * We must hold ->siglock while testing q->list
1573 	 * to serialize with collect_signal() or with
1574 	 * __exit_signal()->flush_sigqueue().
1575 	 */
1576 	spin_lock_irqsave(lock, flags);
1577 	q->flags &= ~SIGQUEUE_PREALLOC;
1578 	/*
1579 	 * If it is queued it will be freed when dequeued,
1580 	 * like the "regular" sigqueue.
1581 	 */
1582 	if (!list_empty(&q->list))
1583 		q = NULL;
1584 	spin_unlock_irqrestore(lock, flags);
1585 
1586 	if (q)
1587 		__sigqueue_free(q);
1588 }
1589 
1590 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1591 {
1592 	int sig = q->info.si_signo;
1593 	struct sigpending *pending;
1594 	unsigned long flags;
1595 	int ret, result;
1596 
1597 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1598 
1599 	ret = -1;
1600 	if (!likely(lock_task_sighand(t, &flags)))
1601 		goto ret;
1602 
1603 	ret = 1; /* the signal is ignored */
1604 	result = TRACE_SIGNAL_IGNORED;
1605 	if (!prepare_signal(sig, t, false))
1606 		goto out;
1607 
1608 	ret = 0;
1609 	if (unlikely(!list_empty(&q->list))) {
1610 		/*
1611 		 * If an SI_TIMER entry is already queue just increment
1612 		 * the overrun count.
1613 		 */
1614 		BUG_ON(q->info.si_code != SI_TIMER);
1615 		q->info.si_overrun++;
1616 		result = TRACE_SIGNAL_ALREADY_PENDING;
1617 		goto out;
1618 	}
1619 	q->info.si_overrun = 0;
1620 
1621 	signalfd_notify(t, sig);
1622 	pending = group ? &t->signal->shared_pending : &t->pending;
1623 	list_add_tail(&q->list, &pending->list);
1624 	sigaddset(&pending->signal, sig);
1625 	complete_signal(sig, t, group);
1626 	result = TRACE_SIGNAL_DELIVERED;
1627 out:
1628 	trace_signal_generate(sig, &q->info, t, group, result);
1629 	unlock_task_sighand(t, &flags);
1630 ret:
1631 	return ret;
1632 }
1633 
1634 /*
1635  * Let a parent know about the death of a child.
1636  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1637  *
1638  * Returns true if our parent ignored us and so we've switched to
1639  * self-reaping.
1640  */
1641 bool do_notify_parent(struct task_struct *tsk, int sig)
1642 {
1643 	struct siginfo info;
1644 	unsigned long flags;
1645 	struct sighand_struct *psig;
1646 	bool autoreap = false;
1647 
1648 	BUG_ON(sig == -1);
1649 
1650  	/* do_notify_parent_cldstop should have been called instead.  */
1651  	BUG_ON(task_is_stopped_or_traced(tsk));
1652 
1653 	BUG_ON(!tsk->ptrace &&
1654 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1655 
1656 	if (sig != SIGCHLD) {
1657 		/*
1658 		 * This is only possible if parent == real_parent.
1659 		 * Check if it has changed security domain.
1660 		 */
1661 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1662 			sig = SIGCHLD;
1663 	}
1664 
1665 	info.si_signo = sig;
1666 	info.si_errno = 0;
1667 	/*
1668 	 * we are under tasklist_lock here so our parent is tied to
1669 	 * us and cannot exit and release its namespace.
1670 	 *
1671 	 * the only it can is to switch its nsproxy with sys_unshare,
1672 	 * bu uncharing pid namespaces is not allowed, so we'll always
1673 	 * see relevant namespace
1674 	 *
1675 	 * write_lock() currently calls preempt_disable() which is the
1676 	 * same as rcu_read_lock(), but according to Oleg, this is not
1677 	 * correct to rely on this
1678 	 */
1679 	rcu_read_lock();
1680 	info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1681 	info.si_uid = map_cred_ns(__task_cred(tsk),
1682 			task_cred_xxx(tsk->parent, user_ns));
1683 	rcu_read_unlock();
1684 
1685 	info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
1686 	info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
1687 
1688 	info.si_status = tsk->exit_code & 0x7f;
1689 	if (tsk->exit_code & 0x80)
1690 		info.si_code = CLD_DUMPED;
1691 	else if (tsk->exit_code & 0x7f)
1692 		info.si_code = CLD_KILLED;
1693 	else {
1694 		info.si_code = CLD_EXITED;
1695 		info.si_status = tsk->exit_code >> 8;
1696 	}
1697 
1698 	psig = tsk->parent->sighand;
1699 	spin_lock_irqsave(&psig->siglock, flags);
1700 	if (!tsk->ptrace && sig == SIGCHLD &&
1701 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1702 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1703 		/*
1704 		 * We are exiting and our parent doesn't care.  POSIX.1
1705 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1706 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1707 		 * automatically and not left for our parent's wait4 call.
1708 		 * Rather than having the parent do it as a magic kind of
1709 		 * signal handler, we just set this to tell do_exit that we
1710 		 * can be cleaned up without becoming a zombie.  Note that
1711 		 * we still call __wake_up_parent in this case, because a
1712 		 * blocked sys_wait4 might now return -ECHILD.
1713 		 *
1714 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1715 		 * is implementation-defined: we do (if you don't want
1716 		 * it, just use SIG_IGN instead).
1717 		 */
1718 		autoreap = true;
1719 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1720 			sig = 0;
1721 	}
1722 	if (valid_signal(sig) && sig)
1723 		__group_send_sig_info(sig, &info, tsk->parent);
1724 	__wake_up_parent(tsk, tsk->parent);
1725 	spin_unlock_irqrestore(&psig->siglock, flags);
1726 
1727 	return autoreap;
1728 }
1729 
1730 /**
1731  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1732  * @tsk: task reporting the state change
1733  * @for_ptracer: the notification is for ptracer
1734  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1735  *
1736  * Notify @tsk's parent that the stopped/continued state has changed.  If
1737  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1738  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1739  *
1740  * CONTEXT:
1741  * Must be called with tasklist_lock at least read locked.
1742  */
1743 static void do_notify_parent_cldstop(struct task_struct *tsk,
1744 				     bool for_ptracer, int why)
1745 {
1746 	struct siginfo info;
1747 	unsigned long flags;
1748 	struct task_struct *parent;
1749 	struct sighand_struct *sighand;
1750 
1751 	if (for_ptracer) {
1752 		parent = tsk->parent;
1753 	} else {
1754 		tsk = tsk->group_leader;
1755 		parent = tsk->real_parent;
1756 	}
1757 
1758 	info.si_signo = SIGCHLD;
1759 	info.si_errno = 0;
1760 	/*
1761 	 * see comment in do_notify_parent() about the following 4 lines
1762 	 */
1763 	rcu_read_lock();
1764 	info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1765 	info.si_uid = map_cred_ns(__task_cred(tsk),
1766 			task_cred_xxx(parent, user_ns));
1767 	rcu_read_unlock();
1768 
1769 	info.si_utime = cputime_to_clock_t(tsk->utime);
1770 	info.si_stime = cputime_to_clock_t(tsk->stime);
1771 
1772  	info.si_code = why;
1773  	switch (why) {
1774  	case CLD_CONTINUED:
1775  		info.si_status = SIGCONT;
1776  		break;
1777  	case CLD_STOPPED:
1778  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1779  		break;
1780  	case CLD_TRAPPED:
1781  		info.si_status = tsk->exit_code & 0x7f;
1782  		break;
1783  	default:
1784  		BUG();
1785  	}
1786 
1787 	sighand = parent->sighand;
1788 	spin_lock_irqsave(&sighand->siglock, flags);
1789 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1790 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1791 		__group_send_sig_info(SIGCHLD, &info, parent);
1792 	/*
1793 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1794 	 */
1795 	__wake_up_parent(tsk, parent);
1796 	spin_unlock_irqrestore(&sighand->siglock, flags);
1797 }
1798 
1799 static inline int may_ptrace_stop(void)
1800 {
1801 	if (!likely(current->ptrace))
1802 		return 0;
1803 	/*
1804 	 * Are we in the middle of do_coredump?
1805 	 * If so and our tracer is also part of the coredump stopping
1806 	 * is a deadlock situation, and pointless because our tracer
1807 	 * is dead so don't allow us to stop.
1808 	 * If SIGKILL was already sent before the caller unlocked
1809 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1810 	 * is safe to enter schedule().
1811 	 */
1812 	if (unlikely(current->mm->core_state) &&
1813 	    unlikely(current->mm == current->parent->mm))
1814 		return 0;
1815 
1816 	return 1;
1817 }
1818 
1819 /*
1820  * Return non-zero if there is a SIGKILL that should be waking us up.
1821  * Called with the siglock held.
1822  */
1823 static int sigkill_pending(struct task_struct *tsk)
1824 {
1825 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1826 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1827 }
1828 
1829 /*
1830  * This must be called with current->sighand->siglock held.
1831  *
1832  * This should be the path for all ptrace stops.
1833  * We always set current->last_siginfo while stopped here.
1834  * That makes it a way to test a stopped process for
1835  * being ptrace-stopped vs being job-control-stopped.
1836  *
1837  * If we actually decide not to stop at all because the tracer
1838  * is gone, we keep current->exit_code unless clear_code.
1839  */
1840 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1841 	__releases(&current->sighand->siglock)
1842 	__acquires(&current->sighand->siglock)
1843 {
1844 	bool gstop_done = false;
1845 
1846 	if (arch_ptrace_stop_needed(exit_code, info)) {
1847 		/*
1848 		 * The arch code has something special to do before a
1849 		 * ptrace stop.  This is allowed to block, e.g. for faults
1850 		 * on user stack pages.  We can't keep the siglock while
1851 		 * calling arch_ptrace_stop, so we must release it now.
1852 		 * To preserve proper semantics, we must do this before
1853 		 * any signal bookkeeping like checking group_stop_count.
1854 		 * Meanwhile, a SIGKILL could come in before we retake the
1855 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1856 		 * So after regaining the lock, we must check for SIGKILL.
1857 		 */
1858 		spin_unlock_irq(&current->sighand->siglock);
1859 		arch_ptrace_stop(exit_code, info);
1860 		spin_lock_irq(&current->sighand->siglock);
1861 		if (sigkill_pending(current))
1862 			return;
1863 	}
1864 
1865 	/*
1866 	 * We're committing to trapping.  TRACED should be visible before
1867 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1868 	 * Also, transition to TRACED and updates to ->jobctl should be
1869 	 * atomic with respect to siglock and should be done after the arch
1870 	 * hook as siglock is released and regrabbed across it.
1871 	 */
1872 	set_current_state(TASK_TRACED);
1873 
1874 	current->last_siginfo = info;
1875 	current->exit_code = exit_code;
1876 
1877 	/*
1878 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1879 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1880 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1881 	 * could be clear now.  We act as if SIGCONT is received after
1882 	 * TASK_TRACED is entered - ignore it.
1883 	 */
1884 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1885 		gstop_done = task_participate_group_stop(current);
1886 
1887 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1888 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1889 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1890 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1891 
1892 	/* entering a trap, clear TRAPPING */
1893 	task_clear_jobctl_trapping(current);
1894 
1895 	spin_unlock_irq(&current->sighand->siglock);
1896 	read_lock(&tasklist_lock);
1897 	if (may_ptrace_stop()) {
1898 		/*
1899 		 * Notify parents of the stop.
1900 		 *
1901 		 * While ptraced, there are two parents - the ptracer and
1902 		 * the real_parent of the group_leader.  The ptracer should
1903 		 * know about every stop while the real parent is only
1904 		 * interested in the completion of group stop.  The states
1905 		 * for the two don't interact with each other.  Notify
1906 		 * separately unless they're gonna be duplicates.
1907 		 */
1908 		do_notify_parent_cldstop(current, true, why);
1909 		if (gstop_done && ptrace_reparented(current))
1910 			do_notify_parent_cldstop(current, false, why);
1911 
1912 		/*
1913 		 * Don't want to allow preemption here, because
1914 		 * sys_ptrace() needs this task to be inactive.
1915 		 *
1916 		 * XXX: implement read_unlock_no_resched().
1917 		 */
1918 		preempt_disable();
1919 		read_unlock(&tasklist_lock);
1920 		preempt_enable_no_resched();
1921 		schedule();
1922 	} else {
1923 		/*
1924 		 * By the time we got the lock, our tracer went away.
1925 		 * Don't drop the lock yet, another tracer may come.
1926 		 *
1927 		 * If @gstop_done, the ptracer went away between group stop
1928 		 * completion and here.  During detach, it would have set
1929 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1930 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1931 		 * the real parent of the group stop completion is enough.
1932 		 */
1933 		if (gstop_done)
1934 			do_notify_parent_cldstop(current, false, why);
1935 
1936 		__set_current_state(TASK_RUNNING);
1937 		if (clear_code)
1938 			current->exit_code = 0;
1939 		read_unlock(&tasklist_lock);
1940 	}
1941 
1942 	/*
1943 	 * While in TASK_TRACED, we were considered "frozen enough".
1944 	 * Now that we woke up, it's crucial if we're supposed to be
1945 	 * frozen that we freeze now before running anything substantial.
1946 	 */
1947 	try_to_freeze();
1948 
1949 	/*
1950 	 * We are back.  Now reacquire the siglock before touching
1951 	 * last_siginfo, so that we are sure to have synchronized with
1952 	 * any signal-sending on another CPU that wants to examine it.
1953 	 */
1954 	spin_lock_irq(&current->sighand->siglock);
1955 	current->last_siginfo = NULL;
1956 
1957 	/* LISTENING can be set only during STOP traps, clear it */
1958 	current->jobctl &= ~JOBCTL_LISTENING;
1959 
1960 	/*
1961 	 * Queued signals ignored us while we were stopped for tracing.
1962 	 * So check for any that we should take before resuming user mode.
1963 	 * This sets TIF_SIGPENDING, but never clears it.
1964 	 */
1965 	recalc_sigpending_tsk(current);
1966 }
1967 
1968 static void ptrace_do_notify(int signr, int exit_code, int why)
1969 {
1970 	siginfo_t info;
1971 
1972 	memset(&info, 0, sizeof info);
1973 	info.si_signo = signr;
1974 	info.si_code = exit_code;
1975 	info.si_pid = task_pid_vnr(current);
1976 	info.si_uid = current_uid();
1977 
1978 	/* Let the debugger run.  */
1979 	ptrace_stop(exit_code, why, 1, &info);
1980 }
1981 
1982 void ptrace_notify(int exit_code)
1983 {
1984 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1985 
1986 	spin_lock_irq(&current->sighand->siglock);
1987 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1988 	spin_unlock_irq(&current->sighand->siglock);
1989 }
1990 
1991 /**
1992  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1993  * @signr: signr causing group stop if initiating
1994  *
1995  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1996  * and participate in it.  If already set, participate in the existing
1997  * group stop.  If participated in a group stop (and thus slept), %true is
1998  * returned with siglock released.
1999  *
2000  * If ptraced, this function doesn't handle stop itself.  Instead,
2001  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2002  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2003  * places afterwards.
2004  *
2005  * CONTEXT:
2006  * Must be called with @current->sighand->siglock held, which is released
2007  * on %true return.
2008  *
2009  * RETURNS:
2010  * %false if group stop is already cancelled or ptrace trap is scheduled.
2011  * %true if participated in group stop.
2012  */
2013 static bool do_signal_stop(int signr)
2014 	__releases(&current->sighand->siglock)
2015 {
2016 	struct signal_struct *sig = current->signal;
2017 
2018 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2019 		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2020 		struct task_struct *t;
2021 
2022 		/* signr will be recorded in task->jobctl for retries */
2023 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2024 
2025 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2026 		    unlikely(signal_group_exit(sig)))
2027 			return false;
2028 		/*
2029 		 * There is no group stop already in progress.  We must
2030 		 * initiate one now.
2031 		 *
2032 		 * While ptraced, a task may be resumed while group stop is
2033 		 * still in effect and then receive a stop signal and
2034 		 * initiate another group stop.  This deviates from the
2035 		 * usual behavior as two consecutive stop signals can't
2036 		 * cause two group stops when !ptraced.  That is why we
2037 		 * also check !task_is_stopped(t) below.
2038 		 *
2039 		 * The condition can be distinguished by testing whether
2040 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2041 		 * group_exit_code in such case.
2042 		 *
2043 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2044 		 * an intervening stop signal is required to cause two
2045 		 * continued events regardless of ptrace.
2046 		 */
2047 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2048 			sig->group_exit_code = signr;
2049 
2050 		sig->group_stop_count = 0;
2051 
2052 		if (task_set_jobctl_pending(current, signr | gstop))
2053 			sig->group_stop_count++;
2054 
2055 		for (t = next_thread(current); t != current;
2056 		     t = next_thread(t)) {
2057 			/*
2058 			 * Setting state to TASK_STOPPED for a group
2059 			 * stop is always done with the siglock held,
2060 			 * so this check has no races.
2061 			 */
2062 			if (!task_is_stopped(t) &&
2063 			    task_set_jobctl_pending(t, signr | gstop)) {
2064 				sig->group_stop_count++;
2065 				if (likely(!(t->ptrace & PT_SEIZED)))
2066 					signal_wake_up(t, 0);
2067 				else
2068 					ptrace_trap_notify(t);
2069 			}
2070 		}
2071 	}
2072 
2073 	if (likely(!current->ptrace)) {
2074 		int notify = 0;
2075 
2076 		/*
2077 		 * If there are no other threads in the group, or if there
2078 		 * is a group stop in progress and we are the last to stop,
2079 		 * report to the parent.
2080 		 */
2081 		if (task_participate_group_stop(current))
2082 			notify = CLD_STOPPED;
2083 
2084 		__set_current_state(TASK_STOPPED);
2085 		spin_unlock_irq(&current->sighand->siglock);
2086 
2087 		/*
2088 		 * Notify the parent of the group stop completion.  Because
2089 		 * we're not holding either the siglock or tasklist_lock
2090 		 * here, ptracer may attach inbetween; however, this is for
2091 		 * group stop and should always be delivered to the real
2092 		 * parent of the group leader.  The new ptracer will get
2093 		 * its notification when this task transitions into
2094 		 * TASK_TRACED.
2095 		 */
2096 		if (notify) {
2097 			read_lock(&tasklist_lock);
2098 			do_notify_parent_cldstop(current, false, notify);
2099 			read_unlock(&tasklist_lock);
2100 		}
2101 
2102 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2103 		schedule();
2104 		return true;
2105 	} else {
2106 		/*
2107 		 * While ptraced, group stop is handled by STOP trap.
2108 		 * Schedule it and let the caller deal with it.
2109 		 */
2110 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2111 		return false;
2112 	}
2113 }
2114 
2115 /**
2116  * do_jobctl_trap - take care of ptrace jobctl traps
2117  *
2118  * When PT_SEIZED, it's used for both group stop and explicit
2119  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2120  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2121  * the stop signal; otherwise, %SIGTRAP.
2122  *
2123  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2124  * number as exit_code and no siginfo.
2125  *
2126  * CONTEXT:
2127  * Must be called with @current->sighand->siglock held, which may be
2128  * released and re-acquired before returning with intervening sleep.
2129  */
2130 static void do_jobctl_trap(void)
2131 {
2132 	struct signal_struct *signal = current->signal;
2133 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2134 
2135 	if (current->ptrace & PT_SEIZED) {
2136 		if (!signal->group_stop_count &&
2137 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2138 			signr = SIGTRAP;
2139 		WARN_ON_ONCE(!signr);
2140 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2141 				 CLD_STOPPED);
2142 	} else {
2143 		WARN_ON_ONCE(!signr);
2144 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2145 		current->exit_code = 0;
2146 	}
2147 }
2148 
2149 static int ptrace_signal(int signr, siginfo_t *info,
2150 			 struct pt_regs *regs, void *cookie)
2151 {
2152 	ptrace_signal_deliver(regs, cookie);
2153 	/*
2154 	 * We do not check sig_kernel_stop(signr) but set this marker
2155 	 * unconditionally because we do not know whether debugger will
2156 	 * change signr. This flag has no meaning unless we are going
2157 	 * to stop after return from ptrace_stop(). In this case it will
2158 	 * be checked in do_signal_stop(), we should only stop if it was
2159 	 * not cleared by SIGCONT while we were sleeping. See also the
2160 	 * comment in dequeue_signal().
2161 	 */
2162 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2163 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2164 
2165 	/* We're back.  Did the debugger cancel the sig?  */
2166 	signr = current->exit_code;
2167 	if (signr == 0)
2168 		return signr;
2169 
2170 	current->exit_code = 0;
2171 
2172 	/*
2173 	 * Update the siginfo structure if the signal has
2174 	 * changed.  If the debugger wanted something
2175 	 * specific in the siginfo structure then it should
2176 	 * have updated *info via PTRACE_SETSIGINFO.
2177 	 */
2178 	if (signr != info->si_signo) {
2179 		info->si_signo = signr;
2180 		info->si_errno = 0;
2181 		info->si_code = SI_USER;
2182 		rcu_read_lock();
2183 		info->si_pid = task_pid_vnr(current->parent);
2184 		info->si_uid = map_cred_ns(__task_cred(current->parent),
2185 				current_user_ns());
2186 		rcu_read_unlock();
2187 	}
2188 
2189 	/* If the (new) signal is now blocked, requeue it.  */
2190 	if (sigismember(&current->blocked, signr)) {
2191 		specific_send_sig_info(signr, info, current);
2192 		signr = 0;
2193 	}
2194 
2195 	return signr;
2196 }
2197 
2198 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2199 			  struct pt_regs *regs, void *cookie)
2200 {
2201 	struct sighand_struct *sighand = current->sighand;
2202 	struct signal_struct *signal = current->signal;
2203 	int signr;
2204 
2205 relock:
2206 	/*
2207 	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2208 	 * While in TASK_STOPPED, we were considered "frozen enough".
2209 	 * Now that we woke up, it's crucial if we're supposed to be
2210 	 * frozen that we freeze now before running anything substantial.
2211 	 */
2212 	try_to_freeze();
2213 
2214 	spin_lock_irq(&sighand->siglock);
2215 	/*
2216 	 * Every stopped thread goes here after wakeup. Check to see if
2217 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2218 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2219 	 */
2220 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2221 		int why;
2222 
2223 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2224 			why = CLD_CONTINUED;
2225 		else
2226 			why = CLD_STOPPED;
2227 
2228 		signal->flags &= ~SIGNAL_CLD_MASK;
2229 
2230 		spin_unlock_irq(&sighand->siglock);
2231 
2232 		/*
2233 		 * Notify the parent that we're continuing.  This event is
2234 		 * always per-process and doesn't make whole lot of sense
2235 		 * for ptracers, who shouldn't consume the state via
2236 		 * wait(2) either, but, for backward compatibility, notify
2237 		 * the ptracer of the group leader too unless it's gonna be
2238 		 * a duplicate.
2239 		 */
2240 		read_lock(&tasklist_lock);
2241 		do_notify_parent_cldstop(current, false, why);
2242 
2243 		if (ptrace_reparented(current->group_leader))
2244 			do_notify_parent_cldstop(current->group_leader,
2245 						true, why);
2246 		read_unlock(&tasklist_lock);
2247 
2248 		goto relock;
2249 	}
2250 
2251 	for (;;) {
2252 		struct k_sigaction *ka;
2253 
2254 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2255 		    do_signal_stop(0))
2256 			goto relock;
2257 
2258 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2259 			do_jobctl_trap();
2260 			spin_unlock_irq(&sighand->siglock);
2261 			goto relock;
2262 		}
2263 
2264 		signr = dequeue_signal(current, &current->blocked, info);
2265 
2266 		if (!signr)
2267 			break; /* will return 0 */
2268 
2269 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2270 			signr = ptrace_signal(signr, info,
2271 					      regs, cookie);
2272 			if (!signr)
2273 				continue;
2274 		}
2275 
2276 		ka = &sighand->action[signr-1];
2277 
2278 		/* Trace actually delivered signals. */
2279 		trace_signal_deliver(signr, info, ka);
2280 
2281 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2282 			continue;
2283 		if (ka->sa.sa_handler != SIG_DFL) {
2284 			/* Run the handler.  */
2285 			*return_ka = *ka;
2286 
2287 			if (ka->sa.sa_flags & SA_ONESHOT)
2288 				ka->sa.sa_handler = SIG_DFL;
2289 
2290 			break; /* will return non-zero "signr" value */
2291 		}
2292 
2293 		/*
2294 		 * Now we are doing the default action for this signal.
2295 		 */
2296 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2297 			continue;
2298 
2299 		/*
2300 		 * Global init gets no signals it doesn't want.
2301 		 * Container-init gets no signals it doesn't want from same
2302 		 * container.
2303 		 *
2304 		 * Note that if global/container-init sees a sig_kernel_only()
2305 		 * signal here, the signal must have been generated internally
2306 		 * or must have come from an ancestor namespace. In either
2307 		 * case, the signal cannot be dropped.
2308 		 */
2309 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2310 				!sig_kernel_only(signr))
2311 			continue;
2312 
2313 		if (sig_kernel_stop(signr)) {
2314 			/*
2315 			 * The default action is to stop all threads in
2316 			 * the thread group.  The job control signals
2317 			 * do nothing in an orphaned pgrp, but SIGSTOP
2318 			 * always works.  Note that siglock needs to be
2319 			 * dropped during the call to is_orphaned_pgrp()
2320 			 * because of lock ordering with tasklist_lock.
2321 			 * This allows an intervening SIGCONT to be posted.
2322 			 * We need to check for that and bail out if necessary.
2323 			 */
2324 			if (signr != SIGSTOP) {
2325 				spin_unlock_irq(&sighand->siglock);
2326 
2327 				/* signals can be posted during this window */
2328 
2329 				if (is_current_pgrp_orphaned())
2330 					goto relock;
2331 
2332 				spin_lock_irq(&sighand->siglock);
2333 			}
2334 
2335 			if (likely(do_signal_stop(info->si_signo))) {
2336 				/* It released the siglock.  */
2337 				goto relock;
2338 			}
2339 
2340 			/*
2341 			 * We didn't actually stop, due to a race
2342 			 * with SIGCONT or something like that.
2343 			 */
2344 			continue;
2345 		}
2346 
2347 		spin_unlock_irq(&sighand->siglock);
2348 
2349 		/*
2350 		 * Anything else is fatal, maybe with a core dump.
2351 		 */
2352 		current->flags |= PF_SIGNALED;
2353 
2354 		if (sig_kernel_coredump(signr)) {
2355 			if (print_fatal_signals)
2356 				print_fatal_signal(regs, info->si_signo);
2357 			/*
2358 			 * If it was able to dump core, this kills all
2359 			 * other threads in the group and synchronizes with
2360 			 * their demise.  If we lost the race with another
2361 			 * thread getting here, it set group_exit_code
2362 			 * first and our do_group_exit call below will use
2363 			 * that value and ignore the one we pass it.
2364 			 */
2365 			do_coredump(info->si_signo, info->si_signo, regs);
2366 		}
2367 
2368 		/*
2369 		 * Death signals, no core dump.
2370 		 */
2371 		do_group_exit(info->si_signo);
2372 		/* NOTREACHED */
2373 	}
2374 	spin_unlock_irq(&sighand->siglock);
2375 	return signr;
2376 }
2377 
2378 /**
2379  * block_sigmask - add @ka's signal mask to current->blocked
2380  * @ka: action for @signr
2381  * @signr: signal that has been successfully delivered
2382  *
2383  * This function should be called when a signal has succesfully been
2384  * delivered. It adds the mask of signals for @ka to current->blocked
2385  * so that they are blocked during the execution of the signal
2386  * handler. In addition, @signr will be blocked unless %SA_NODEFER is
2387  * set in @ka->sa.sa_flags.
2388  */
2389 void block_sigmask(struct k_sigaction *ka, int signr)
2390 {
2391 	sigset_t blocked;
2392 
2393 	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2394 	if (!(ka->sa.sa_flags & SA_NODEFER))
2395 		sigaddset(&blocked, signr);
2396 	set_current_blocked(&blocked);
2397 }
2398 
2399 /*
2400  * It could be that complete_signal() picked us to notify about the
2401  * group-wide signal. Other threads should be notified now to take
2402  * the shared signals in @which since we will not.
2403  */
2404 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2405 {
2406 	sigset_t retarget;
2407 	struct task_struct *t;
2408 
2409 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2410 	if (sigisemptyset(&retarget))
2411 		return;
2412 
2413 	t = tsk;
2414 	while_each_thread(tsk, t) {
2415 		if (t->flags & PF_EXITING)
2416 			continue;
2417 
2418 		if (!has_pending_signals(&retarget, &t->blocked))
2419 			continue;
2420 		/* Remove the signals this thread can handle. */
2421 		sigandsets(&retarget, &retarget, &t->blocked);
2422 
2423 		if (!signal_pending(t))
2424 			signal_wake_up(t, 0);
2425 
2426 		if (sigisemptyset(&retarget))
2427 			break;
2428 	}
2429 }
2430 
2431 void exit_signals(struct task_struct *tsk)
2432 {
2433 	int group_stop = 0;
2434 	sigset_t unblocked;
2435 
2436 	/*
2437 	 * @tsk is about to have PF_EXITING set - lock out users which
2438 	 * expect stable threadgroup.
2439 	 */
2440 	threadgroup_change_begin(tsk);
2441 
2442 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2443 		tsk->flags |= PF_EXITING;
2444 		threadgroup_change_end(tsk);
2445 		return;
2446 	}
2447 
2448 	spin_lock_irq(&tsk->sighand->siglock);
2449 	/*
2450 	 * From now this task is not visible for group-wide signals,
2451 	 * see wants_signal(), do_signal_stop().
2452 	 */
2453 	tsk->flags |= PF_EXITING;
2454 
2455 	threadgroup_change_end(tsk);
2456 
2457 	if (!signal_pending(tsk))
2458 		goto out;
2459 
2460 	unblocked = tsk->blocked;
2461 	signotset(&unblocked);
2462 	retarget_shared_pending(tsk, &unblocked);
2463 
2464 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2465 	    task_participate_group_stop(tsk))
2466 		group_stop = CLD_STOPPED;
2467 out:
2468 	spin_unlock_irq(&tsk->sighand->siglock);
2469 
2470 	/*
2471 	 * If group stop has completed, deliver the notification.  This
2472 	 * should always go to the real parent of the group leader.
2473 	 */
2474 	if (unlikely(group_stop)) {
2475 		read_lock(&tasklist_lock);
2476 		do_notify_parent_cldstop(tsk, false, group_stop);
2477 		read_unlock(&tasklist_lock);
2478 	}
2479 }
2480 
2481 EXPORT_SYMBOL(recalc_sigpending);
2482 EXPORT_SYMBOL_GPL(dequeue_signal);
2483 EXPORT_SYMBOL(flush_signals);
2484 EXPORT_SYMBOL(force_sig);
2485 EXPORT_SYMBOL(send_sig);
2486 EXPORT_SYMBOL(send_sig_info);
2487 EXPORT_SYMBOL(sigprocmask);
2488 EXPORT_SYMBOL(block_all_signals);
2489 EXPORT_SYMBOL(unblock_all_signals);
2490 
2491 
2492 /*
2493  * System call entry points.
2494  */
2495 
2496 /**
2497  *  sys_restart_syscall - restart a system call
2498  */
2499 SYSCALL_DEFINE0(restart_syscall)
2500 {
2501 	struct restart_block *restart = &current_thread_info()->restart_block;
2502 	return restart->fn(restart);
2503 }
2504 
2505 long do_no_restart_syscall(struct restart_block *param)
2506 {
2507 	return -EINTR;
2508 }
2509 
2510 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2511 {
2512 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2513 		sigset_t newblocked;
2514 		/* A set of now blocked but previously unblocked signals. */
2515 		sigandnsets(&newblocked, newset, &current->blocked);
2516 		retarget_shared_pending(tsk, &newblocked);
2517 	}
2518 	tsk->blocked = *newset;
2519 	recalc_sigpending();
2520 }
2521 
2522 /**
2523  * set_current_blocked - change current->blocked mask
2524  * @newset: new mask
2525  *
2526  * It is wrong to change ->blocked directly, this helper should be used
2527  * to ensure the process can't miss a shared signal we are going to block.
2528  */
2529 void set_current_blocked(const sigset_t *newset)
2530 {
2531 	struct task_struct *tsk = current;
2532 
2533 	spin_lock_irq(&tsk->sighand->siglock);
2534 	__set_task_blocked(tsk, newset);
2535 	spin_unlock_irq(&tsk->sighand->siglock);
2536 }
2537 
2538 /*
2539  * This is also useful for kernel threads that want to temporarily
2540  * (or permanently) block certain signals.
2541  *
2542  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2543  * interface happily blocks "unblockable" signals like SIGKILL
2544  * and friends.
2545  */
2546 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2547 {
2548 	struct task_struct *tsk = current;
2549 	sigset_t newset;
2550 
2551 	/* Lockless, only current can change ->blocked, never from irq */
2552 	if (oldset)
2553 		*oldset = tsk->blocked;
2554 
2555 	switch (how) {
2556 	case SIG_BLOCK:
2557 		sigorsets(&newset, &tsk->blocked, set);
2558 		break;
2559 	case SIG_UNBLOCK:
2560 		sigandnsets(&newset, &tsk->blocked, set);
2561 		break;
2562 	case SIG_SETMASK:
2563 		newset = *set;
2564 		break;
2565 	default:
2566 		return -EINVAL;
2567 	}
2568 
2569 	set_current_blocked(&newset);
2570 	return 0;
2571 }
2572 
2573 /**
2574  *  sys_rt_sigprocmask - change the list of currently blocked signals
2575  *  @how: whether to add, remove, or set signals
2576  *  @nset: stores pending signals
2577  *  @oset: previous value of signal mask if non-null
2578  *  @sigsetsize: size of sigset_t type
2579  */
2580 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2581 		sigset_t __user *, oset, size_t, sigsetsize)
2582 {
2583 	sigset_t old_set, new_set;
2584 	int error;
2585 
2586 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2587 	if (sigsetsize != sizeof(sigset_t))
2588 		return -EINVAL;
2589 
2590 	old_set = current->blocked;
2591 
2592 	if (nset) {
2593 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2594 			return -EFAULT;
2595 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2596 
2597 		error = sigprocmask(how, &new_set, NULL);
2598 		if (error)
2599 			return error;
2600 	}
2601 
2602 	if (oset) {
2603 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2604 			return -EFAULT;
2605 	}
2606 
2607 	return 0;
2608 }
2609 
2610 long do_sigpending(void __user *set, unsigned long sigsetsize)
2611 {
2612 	long error = -EINVAL;
2613 	sigset_t pending;
2614 
2615 	if (sigsetsize > sizeof(sigset_t))
2616 		goto out;
2617 
2618 	spin_lock_irq(&current->sighand->siglock);
2619 	sigorsets(&pending, &current->pending.signal,
2620 		  &current->signal->shared_pending.signal);
2621 	spin_unlock_irq(&current->sighand->siglock);
2622 
2623 	/* Outside the lock because only this thread touches it.  */
2624 	sigandsets(&pending, &current->blocked, &pending);
2625 
2626 	error = -EFAULT;
2627 	if (!copy_to_user(set, &pending, sigsetsize))
2628 		error = 0;
2629 
2630 out:
2631 	return error;
2632 }
2633 
2634 /**
2635  *  sys_rt_sigpending - examine a pending signal that has been raised
2636  *			while blocked
2637  *  @set: stores pending signals
2638  *  @sigsetsize: size of sigset_t type or larger
2639  */
2640 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2641 {
2642 	return do_sigpending(set, sigsetsize);
2643 }
2644 
2645 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2646 
2647 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2648 {
2649 	int err;
2650 
2651 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2652 		return -EFAULT;
2653 	if (from->si_code < 0)
2654 		return __copy_to_user(to, from, sizeof(siginfo_t))
2655 			? -EFAULT : 0;
2656 	/*
2657 	 * If you change siginfo_t structure, please be sure
2658 	 * this code is fixed accordingly.
2659 	 * Please remember to update the signalfd_copyinfo() function
2660 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2661 	 * It should never copy any pad contained in the structure
2662 	 * to avoid security leaks, but must copy the generic
2663 	 * 3 ints plus the relevant union member.
2664 	 */
2665 	err = __put_user(from->si_signo, &to->si_signo);
2666 	err |= __put_user(from->si_errno, &to->si_errno);
2667 	err |= __put_user((short)from->si_code, &to->si_code);
2668 	switch (from->si_code & __SI_MASK) {
2669 	case __SI_KILL:
2670 		err |= __put_user(from->si_pid, &to->si_pid);
2671 		err |= __put_user(from->si_uid, &to->si_uid);
2672 		break;
2673 	case __SI_TIMER:
2674 		 err |= __put_user(from->si_tid, &to->si_tid);
2675 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2676 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2677 		break;
2678 	case __SI_POLL:
2679 		err |= __put_user(from->si_band, &to->si_band);
2680 		err |= __put_user(from->si_fd, &to->si_fd);
2681 		break;
2682 	case __SI_FAULT:
2683 		err |= __put_user(from->si_addr, &to->si_addr);
2684 #ifdef __ARCH_SI_TRAPNO
2685 		err |= __put_user(from->si_trapno, &to->si_trapno);
2686 #endif
2687 #ifdef BUS_MCEERR_AO
2688 		/*
2689 		 * Other callers might not initialize the si_lsb field,
2690 		 * so check explicitly for the right codes here.
2691 		 */
2692 		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2693 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2694 #endif
2695 		break;
2696 	case __SI_CHLD:
2697 		err |= __put_user(from->si_pid, &to->si_pid);
2698 		err |= __put_user(from->si_uid, &to->si_uid);
2699 		err |= __put_user(from->si_status, &to->si_status);
2700 		err |= __put_user(from->si_utime, &to->si_utime);
2701 		err |= __put_user(from->si_stime, &to->si_stime);
2702 		break;
2703 	case __SI_RT: /* This is not generated by the kernel as of now. */
2704 	case __SI_MESGQ: /* But this is */
2705 		err |= __put_user(from->si_pid, &to->si_pid);
2706 		err |= __put_user(from->si_uid, &to->si_uid);
2707 		err |= __put_user(from->si_ptr, &to->si_ptr);
2708 		break;
2709 	default: /* this is just in case for now ... */
2710 		err |= __put_user(from->si_pid, &to->si_pid);
2711 		err |= __put_user(from->si_uid, &to->si_uid);
2712 		break;
2713 	}
2714 	return err;
2715 }
2716 
2717 #endif
2718 
2719 /**
2720  *  do_sigtimedwait - wait for queued signals specified in @which
2721  *  @which: queued signals to wait for
2722  *  @info: if non-null, the signal's siginfo is returned here
2723  *  @ts: upper bound on process time suspension
2724  */
2725 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2726 			const struct timespec *ts)
2727 {
2728 	struct task_struct *tsk = current;
2729 	long timeout = MAX_SCHEDULE_TIMEOUT;
2730 	sigset_t mask = *which;
2731 	int sig;
2732 
2733 	if (ts) {
2734 		if (!timespec_valid(ts))
2735 			return -EINVAL;
2736 		timeout = timespec_to_jiffies(ts);
2737 		/*
2738 		 * We can be close to the next tick, add another one
2739 		 * to ensure we will wait at least the time asked for.
2740 		 */
2741 		if (ts->tv_sec || ts->tv_nsec)
2742 			timeout++;
2743 	}
2744 
2745 	/*
2746 	 * Invert the set of allowed signals to get those we want to block.
2747 	 */
2748 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2749 	signotset(&mask);
2750 
2751 	spin_lock_irq(&tsk->sighand->siglock);
2752 	sig = dequeue_signal(tsk, &mask, info);
2753 	if (!sig && timeout) {
2754 		/*
2755 		 * None ready, temporarily unblock those we're interested
2756 		 * while we are sleeping in so that we'll be awakened when
2757 		 * they arrive. Unblocking is always fine, we can avoid
2758 		 * set_current_blocked().
2759 		 */
2760 		tsk->real_blocked = tsk->blocked;
2761 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2762 		recalc_sigpending();
2763 		spin_unlock_irq(&tsk->sighand->siglock);
2764 
2765 		timeout = schedule_timeout_interruptible(timeout);
2766 
2767 		spin_lock_irq(&tsk->sighand->siglock);
2768 		__set_task_blocked(tsk, &tsk->real_blocked);
2769 		siginitset(&tsk->real_blocked, 0);
2770 		sig = dequeue_signal(tsk, &mask, info);
2771 	}
2772 	spin_unlock_irq(&tsk->sighand->siglock);
2773 
2774 	if (sig)
2775 		return sig;
2776 	return timeout ? -EINTR : -EAGAIN;
2777 }
2778 
2779 /**
2780  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2781  *			in @uthese
2782  *  @uthese: queued signals to wait for
2783  *  @uinfo: if non-null, the signal's siginfo is returned here
2784  *  @uts: upper bound on process time suspension
2785  *  @sigsetsize: size of sigset_t type
2786  */
2787 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2788 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2789 		size_t, sigsetsize)
2790 {
2791 	sigset_t these;
2792 	struct timespec ts;
2793 	siginfo_t info;
2794 	int ret;
2795 
2796 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2797 	if (sigsetsize != sizeof(sigset_t))
2798 		return -EINVAL;
2799 
2800 	if (copy_from_user(&these, uthese, sizeof(these)))
2801 		return -EFAULT;
2802 
2803 	if (uts) {
2804 		if (copy_from_user(&ts, uts, sizeof(ts)))
2805 			return -EFAULT;
2806 	}
2807 
2808 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2809 
2810 	if (ret > 0 && uinfo) {
2811 		if (copy_siginfo_to_user(uinfo, &info))
2812 			ret = -EFAULT;
2813 	}
2814 
2815 	return ret;
2816 }
2817 
2818 /**
2819  *  sys_kill - send a signal to a process
2820  *  @pid: the PID of the process
2821  *  @sig: signal to be sent
2822  */
2823 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2824 {
2825 	struct siginfo info;
2826 
2827 	info.si_signo = sig;
2828 	info.si_errno = 0;
2829 	info.si_code = SI_USER;
2830 	info.si_pid = task_tgid_vnr(current);
2831 	info.si_uid = current_uid();
2832 
2833 	return kill_something_info(sig, &info, pid);
2834 }
2835 
2836 static int
2837 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2838 {
2839 	struct task_struct *p;
2840 	int error = -ESRCH;
2841 
2842 	rcu_read_lock();
2843 	p = find_task_by_vpid(pid);
2844 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2845 		error = check_kill_permission(sig, info, p);
2846 		/*
2847 		 * The null signal is a permissions and process existence
2848 		 * probe.  No signal is actually delivered.
2849 		 */
2850 		if (!error && sig) {
2851 			error = do_send_sig_info(sig, info, p, false);
2852 			/*
2853 			 * If lock_task_sighand() failed we pretend the task
2854 			 * dies after receiving the signal. The window is tiny,
2855 			 * and the signal is private anyway.
2856 			 */
2857 			if (unlikely(error == -ESRCH))
2858 				error = 0;
2859 		}
2860 	}
2861 	rcu_read_unlock();
2862 
2863 	return error;
2864 }
2865 
2866 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2867 {
2868 	struct siginfo info;
2869 
2870 	info.si_signo = sig;
2871 	info.si_errno = 0;
2872 	info.si_code = SI_TKILL;
2873 	info.si_pid = task_tgid_vnr(current);
2874 	info.si_uid = current_uid();
2875 
2876 	return do_send_specific(tgid, pid, sig, &info);
2877 }
2878 
2879 /**
2880  *  sys_tgkill - send signal to one specific thread
2881  *  @tgid: the thread group ID of the thread
2882  *  @pid: the PID of the thread
2883  *  @sig: signal to be sent
2884  *
2885  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2886  *  exists but it's not belonging to the target process anymore. This
2887  *  method solves the problem of threads exiting and PIDs getting reused.
2888  */
2889 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2890 {
2891 	/* This is only valid for single tasks */
2892 	if (pid <= 0 || tgid <= 0)
2893 		return -EINVAL;
2894 
2895 	return do_tkill(tgid, pid, sig);
2896 }
2897 
2898 /**
2899  *  sys_tkill - send signal to one specific task
2900  *  @pid: the PID of the task
2901  *  @sig: signal to be sent
2902  *
2903  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2904  */
2905 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2906 {
2907 	/* This is only valid for single tasks */
2908 	if (pid <= 0)
2909 		return -EINVAL;
2910 
2911 	return do_tkill(0, pid, sig);
2912 }
2913 
2914 /**
2915  *  sys_rt_sigqueueinfo - send signal information to a signal
2916  *  @pid: the PID of the thread
2917  *  @sig: signal to be sent
2918  *  @uinfo: signal info to be sent
2919  */
2920 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2921 		siginfo_t __user *, uinfo)
2922 {
2923 	siginfo_t info;
2924 
2925 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2926 		return -EFAULT;
2927 
2928 	/* Not even root can pretend to send signals from the kernel.
2929 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2930 	 */
2931 	if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2932 		/* We used to allow any < 0 si_code */
2933 		WARN_ON_ONCE(info.si_code < 0);
2934 		return -EPERM;
2935 	}
2936 	info.si_signo = sig;
2937 
2938 	/* POSIX.1b doesn't mention process groups.  */
2939 	return kill_proc_info(sig, &info, pid);
2940 }
2941 
2942 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2943 {
2944 	/* This is only valid for single tasks */
2945 	if (pid <= 0 || tgid <= 0)
2946 		return -EINVAL;
2947 
2948 	/* Not even root can pretend to send signals from the kernel.
2949 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2950 	 */
2951 	if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2952 		/* We used to allow any < 0 si_code */
2953 		WARN_ON_ONCE(info->si_code < 0);
2954 		return -EPERM;
2955 	}
2956 	info->si_signo = sig;
2957 
2958 	return do_send_specific(tgid, pid, sig, info);
2959 }
2960 
2961 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2962 		siginfo_t __user *, uinfo)
2963 {
2964 	siginfo_t info;
2965 
2966 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2967 		return -EFAULT;
2968 
2969 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2970 }
2971 
2972 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2973 {
2974 	struct task_struct *t = current;
2975 	struct k_sigaction *k;
2976 	sigset_t mask;
2977 
2978 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2979 		return -EINVAL;
2980 
2981 	k = &t->sighand->action[sig-1];
2982 
2983 	spin_lock_irq(&current->sighand->siglock);
2984 	if (oact)
2985 		*oact = *k;
2986 
2987 	if (act) {
2988 		sigdelsetmask(&act->sa.sa_mask,
2989 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2990 		*k = *act;
2991 		/*
2992 		 * POSIX 3.3.1.3:
2993 		 *  "Setting a signal action to SIG_IGN for a signal that is
2994 		 *   pending shall cause the pending signal to be discarded,
2995 		 *   whether or not it is blocked."
2996 		 *
2997 		 *  "Setting a signal action to SIG_DFL for a signal that is
2998 		 *   pending and whose default action is to ignore the signal
2999 		 *   (for example, SIGCHLD), shall cause the pending signal to
3000 		 *   be discarded, whether or not it is blocked"
3001 		 */
3002 		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3003 			sigemptyset(&mask);
3004 			sigaddset(&mask, sig);
3005 			rm_from_queue_full(&mask, &t->signal->shared_pending);
3006 			do {
3007 				rm_from_queue_full(&mask, &t->pending);
3008 				t = next_thread(t);
3009 			} while (t != current);
3010 		}
3011 	}
3012 
3013 	spin_unlock_irq(&current->sighand->siglock);
3014 	return 0;
3015 }
3016 
3017 int
3018 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3019 {
3020 	stack_t oss;
3021 	int error;
3022 
3023 	oss.ss_sp = (void __user *) current->sas_ss_sp;
3024 	oss.ss_size = current->sas_ss_size;
3025 	oss.ss_flags = sas_ss_flags(sp);
3026 
3027 	if (uss) {
3028 		void __user *ss_sp;
3029 		size_t ss_size;
3030 		int ss_flags;
3031 
3032 		error = -EFAULT;
3033 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3034 			goto out;
3035 		error = __get_user(ss_sp, &uss->ss_sp) |
3036 			__get_user(ss_flags, &uss->ss_flags) |
3037 			__get_user(ss_size, &uss->ss_size);
3038 		if (error)
3039 			goto out;
3040 
3041 		error = -EPERM;
3042 		if (on_sig_stack(sp))
3043 			goto out;
3044 
3045 		error = -EINVAL;
3046 		/*
3047 		 * Note - this code used to test ss_flags incorrectly:
3048 		 *  	  old code may have been written using ss_flags==0
3049 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3050 		 *	  way that worked) - this fix preserves that older
3051 		 *	  mechanism.
3052 		 */
3053 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3054 			goto out;
3055 
3056 		if (ss_flags == SS_DISABLE) {
3057 			ss_size = 0;
3058 			ss_sp = NULL;
3059 		} else {
3060 			error = -ENOMEM;
3061 			if (ss_size < MINSIGSTKSZ)
3062 				goto out;
3063 		}
3064 
3065 		current->sas_ss_sp = (unsigned long) ss_sp;
3066 		current->sas_ss_size = ss_size;
3067 	}
3068 
3069 	error = 0;
3070 	if (uoss) {
3071 		error = -EFAULT;
3072 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3073 			goto out;
3074 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3075 			__put_user(oss.ss_size, &uoss->ss_size) |
3076 			__put_user(oss.ss_flags, &uoss->ss_flags);
3077 	}
3078 
3079 out:
3080 	return error;
3081 }
3082 
3083 #ifdef __ARCH_WANT_SYS_SIGPENDING
3084 
3085 /**
3086  *  sys_sigpending - examine pending signals
3087  *  @set: where mask of pending signal is returned
3088  */
3089 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3090 {
3091 	return do_sigpending(set, sizeof(*set));
3092 }
3093 
3094 #endif
3095 
3096 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3097 /**
3098  *  sys_sigprocmask - examine and change blocked signals
3099  *  @how: whether to add, remove, or set signals
3100  *  @nset: signals to add or remove (if non-null)
3101  *  @oset: previous value of signal mask if non-null
3102  *
3103  * Some platforms have their own version with special arguments;
3104  * others support only sys_rt_sigprocmask.
3105  */
3106 
3107 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3108 		old_sigset_t __user *, oset)
3109 {
3110 	old_sigset_t old_set, new_set;
3111 	sigset_t new_blocked;
3112 
3113 	old_set = current->blocked.sig[0];
3114 
3115 	if (nset) {
3116 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3117 			return -EFAULT;
3118 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3119 
3120 		new_blocked = current->blocked;
3121 
3122 		switch (how) {
3123 		case SIG_BLOCK:
3124 			sigaddsetmask(&new_blocked, new_set);
3125 			break;
3126 		case SIG_UNBLOCK:
3127 			sigdelsetmask(&new_blocked, new_set);
3128 			break;
3129 		case SIG_SETMASK:
3130 			new_blocked.sig[0] = new_set;
3131 			break;
3132 		default:
3133 			return -EINVAL;
3134 		}
3135 
3136 		set_current_blocked(&new_blocked);
3137 	}
3138 
3139 	if (oset) {
3140 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3141 			return -EFAULT;
3142 	}
3143 
3144 	return 0;
3145 }
3146 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3147 
3148 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3149 /**
3150  *  sys_rt_sigaction - alter an action taken by a process
3151  *  @sig: signal to be sent
3152  *  @act: new sigaction
3153  *  @oact: used to save the previous sigaction
3154  *  @sigsetsize: size of sigset_t type
3155  */
3156 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3157 		const struct sigaction __user *, act,
3158 		struct sigaction __user *, oact,
3159 		size_t, sigsetsize)
3160 {
3161 	struct k_sigaction new_sa, old_sa;
3162 	int ret = -EINVAL;
3163 
3164 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3165 	if (sigsetsize != sizeof(sigset_t))
3166 		goto out;
3167 
3168 	if (act) {
3169 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3170 			return -EFAULT;
3171 	}
3172 
3173 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3174 
3175 	if (!ret && oact) {
3176 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3177 			return -EFAULT;
3178 	}
3179 out:
3180 	return ret;
3181 }
3182 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3183 
3184 #ifdef __ARCH_WANT_SYS_SGETMASK
3185 
3186 /*
3187  * For backwards compatibility.  Functionality superseded by sigprocmask.
3188  */
3189 SYSCALL_DEFINE0(sgetmask)
3190 {
3191 	/* SMP safe */
3192 	return current->blocked.sig[0];
3193 }
3194 
3195 SYSCALL_DEFINE1(ssetmask, int, newmask)
3196 {
3197 	int old = current->blocked.sig[0];
3198 	sigset_t newset;
3199 
3200 	siginitset(&newset, newmask & ~(sigmask(SIGKILL) | sigmask(SIGSTOP)));
3201 	set_current_blocked(&newset);
3202 
3203 	return old;
3204 }
3205 #endif /* __ARCH_WANT_SGETMASK */
3206 
3207 #ifdef __ARCH_WANT_SYS_SIGNAL
3208 /*
3209  * For backwards compatibility.  Functionality superseded by sigaction.
3210  */
3211 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3212 {
3213 	struct k_sigaction new_sa, old_sa;
3214 	int ret;
3215 
3216 	new_sa.sa.sa_handler = handler;
3217 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3218 	sigemptyset(&new_sa.sa.sa_mask);
3219 
3220 	ret = do_sigaction(sig, &new_sa, &old_sa);
3221 
3222 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3223 }
3224 #endif /* __ARCH_WANT_SYS_SIGNAL */
3225 
3226 #ifdef __ARCH_WANT_SYS_PAUSE
3227 
3228 SYSCALL_DEFINE0(pause)
3229 {
3230 	while (!signal_pending(current)) {
3231 		current->state = TASK_INTERRUPTIBLE;
3232 		schedule();
3233 	}
3234 	return -ERESTARTNOHAND;
3235 }
3236 
3237 #endif
3238 
3239 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3240 /**
3241  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3242  *	@unewset value until a signal is received
3243  *  @unewset: new signal mask value
3244  *  @sigsetsize: size of sigset_t type
3245  */
3246 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3247 {
3248 	sigset_t newset;
3249 
3250 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3251 	if (sigsetsize != sizeof(sigset_t))
3252 		return -EINVAL;
3253 
3254 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3255 		return -EFAULT;
3256 	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3257 
3258 	current->saved_sigmask = current->blocked;
3259 	set_current_blocked(&newset);
3260 
3261 	current->state = TASK_INTERRUPTIBLE;
3262 	schedule();
3263 	set_restore_sigmask();
3264 	return -ERESTARTNOHAND;
3265 }
3266 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3267 
3268 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3269 {
3270 	return NULL;
3271 }
3272 
3273 void __init signals_init(void)
3274 {
3275 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3276 }
3277 
3278 #ifdef CONFIG_KGDB_KDB
3279 #include <linux/kdb.h>
3280 /*
3281  * kdb_send_sig_info - Allows kdb to send signals without exposing
3282  * signal internals.  This function checks if the required locks are
3283  * available before calling the main signal code, to avoid kdb
3284  * deadlocks.
3285  */
3286 void
3287 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3288 {
3289 	static struct task_struct *kdb_prev_t;
3290 	int sig, new_t;
3291 	if (!spin_trylock(&t->sighand->siglock)) {
3292 		kdb_printf("Can't do kill command now.\n"
3293 			   "The sigmask lock is held somewhere else in "
3294 			   "kernel, try again later\n");
3295 		return;
3296 	}
3297 	spin_unlock(&t->sighand->siglock);
3298 	new_t = kdb_prev_t != t;
3299 	kdb_prev_t = t;
3300 	if (t->state != TASK_RUNNING && new_t) {
3301 		kdb_printf("Process is not RUNNING, sending a signal from "
3302 			   "kdb risks deadlock\n"
3303 			   "on the run queue locks. "
3304 			   "The signal has _not_ been sent.\n"
3305 			   "Reissue the kill command if you want to risk "
3306 			   "the deadlock.\n");
3307 		return;
3308 	}
3309 	sig = info->si_signo;
3310 	if (send_sig_info(sig, info, t))
3311 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3312 			   sig, t->pid);
3313 	else
3314 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3315 }
3316 #endif	/* CONFIG_KGDB_KDB */
3317