1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/security.h> 21 #include <linux/syscalls.h> 22 #include <linux/ptrace.h> 23 #include <linux/signal.h> 24 #include <linux/signalfd.h> 25 #include <linux/ratelimit.h> 26 #include <linux/tracehook.h> 27 #include <linux/capability.h> 28 #include <linux/freezer.h> 29 #include <linux/pid_namespace.h> 30 #include <linux/nsproxy.h> 31 #include <linux/user_namespace.h> 32 #define CREATE_TRACE_POINTS 33 #include <trace/events/signal.h> 34 35 #include <asm/param.h> 36 #include <asm/uaccess.h> 37 #include <asm/unistd.h> 38 #include <asm/siginfo.h> 39 #include <asm/cacheflush.h> 40 #include "audit.h" /* audit_signal_info() */ 41 42 /* 43 * SLAB caches for signal bits. 44 */ 45 46 static struct kmem_cache *sigqueue_cachep; 47 48 int print_fatal_signals __read_mostly; 49 50 static void __user *sig_handler(struct task_struct *t, int sig) 51 { 52 return t->sighand->action[sig - 1].sa.sa_handler; 53 } 54 55 static int sig_handler_ignored(void __user *handler, int sig) 56 { 57 /* Is it explicitly or implicitly ignored? */ 58 return handler == SIG_IGN || 59 (handler == SIG_DFL && sig_kernel_ignore(sig)); 60 } 61 62 static int sig_task_ignored(struct task_struct *t, int sig, bool force) 63 { 64 void __user *handler; 65 66 handler = sig_handler(t, sig); 67 68 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 69 handler == SIG_DFL && !force) 70 return 1; 71 72 return sig_handler_ignored(handler, sig); 73 } 74 75 static int sig_ignored(struct task_struct *t, int sig, bool force) 76 { 77 /* 78 * Blocked signals are never ignored, since the 79 * signal handler may change by the time it is 80 * unblocked. 81 */ 82 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 83 return 0; 84 85 if (!sig_task_ignored(t, sig, force)) 86 return 0; 87 88 /* 89 * Tracers may want to know about even ignored signals. 90 */ 91 return !t->ptrace; 92 } 93 94 /* 95 * Re-calculate pending state from the set of locally pending 96 * signals, globally pending signals, and blocked signals. 97 */ 98 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 99 { 100 unsigned long ready; 101 long i; 102 103 switch (_NSIG_WORDS) { 104 default: 105 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 106 ready |= signal->sig[i] &~ blocked->sig[i]; 107 break; 108 109 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 110 ready |= signal->sig[2] &~ blocked->sig[2]; 111 ready |= signal->sig[1] &~ blocked->sig[1]; 112 ready |= signal->sig[0] &~ blocked->sig[0]; 113 break; 114 115 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 116 ready |= signal->sig[0] &~ blocked->sig[0]; 117 break; 118 119 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 120 } 121 return ready != 0; 122 } 123 124 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 125 126 static int recalc_sigpending_tsk(struct task_struct *t) 127 { 128 if ((t->jobctl & JOBCTL_PENDING_MASK) || 129 PENDING(&t->pending, &t->blocked) || 130 PENDING(&t->signal->shared_pending, &t->blocked)) { 131 set_tsk_thread_flag(t, TIF_SIGPENDING); 132 return 1; 133 } 134 /* 135 * We must never clear the flag in another thread, or in current 136 * when it's possible the current syscall is returning -ERESTART*. 137 * So we don't clear it here, and only callers who know they should do. 138 */ 139 return 0; 140 } 141 142 /* 143 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 144 * This is superfluous when called on current, the wakeup is a harmless no-op. 145 */ 146 void recalc_sigpending_and_wake(struct task_struct *t) 147 { 148 if (recalc_sigpending_tsk(t)) 149 signal_wake_up(t, 0); 150 } 151 152 void recalc_sigpending(void) 153 { 154 if (!recalc_sigpending_tsk(current) && !freezing(current)) 155 clear_thread_flag(TIF_SIGPENDING); 156 157 } 158 159 /* Given the mask, find the first available signal that should be serviced. */ 160 161 #define SYNCHRONOUS_MASK \ 162 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 163 sigmask(SIGTRAP) | sigmask(SIGFPE)) 164 165 int next_signal(struct sigpending *pending, sigset_t *mask) 166 { 167 unsigned long i, *s, *m, x; 168 int sig = 0; 169 170 s = pending->signal.sig; 171 m = mask->sig; 172 173 /* 174 * Handle the first word specially: it contains the 175 * synchronous signals that need to be dequeued first. 176 */ 177 x = *s &~ *m; 178 if (x) { 179 if (x & SYNCHRONOUS_MASK) 180 x &= SYNCHRONOUS_MASK; 181 sig = ffz(~x) + 1; 182 return sig; 183 } 184 185 switch (_NSIG_WORDS) { 186 default: 187 for (i = 1; i < _NSIG_WORDS; ++i) { 188 x = *++s &~ *++m; 189 if (!x) 190 continue; 191 sig = ffz(~x) + i*_NSIG_BPW + 1; 192 break; 193 } 194 break; 195 196 case 2: 197 x = s[1] &~ m[1]; 198 if (!x) 199 break; 200 sig = ffz(~x) + _NSIG_BPW + 1; 201 break; 202 203 case 1: 204 /* Nothing to do */ 205 break; 206 } 207 208 return sig; 209 } 210 211 static inline void print_dropped_signal(int sig) 212 { 213 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 214 215 if (!print_fatal_signals) 216 return; 217 218 if (!__ratelimit(&ratelimit_state)) 219 return; 220 221 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 222 current->comm, current->pid, sig); 223 } 224 225 /** 226 * task_set_jobctl_pending - set jobctl pending bits 227 * @task: target task 228 * @mask: pending bits to set 229 * 230 * Clear @mask from @task->jobctl. @mask must be subset of 231 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 232 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 233 * cleared. If @task is already being killed or exiting, this function 234 * becomes noop. 235 * 236 * CONTEXT: 237 * Must be called with @task->sighand->siglock held. 238 * 239 * RETURNS: 240 * %true if @mask is set, %false if made noop because @task was dying. 241 */ 242 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask) 243 { 244 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 245 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 246 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 247 248 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 249 return false; 250 251 if (mask & JOBCTL_STOP_SIGMASK) 252 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 253 254 task->jobctl |= mask; 255 return true; 256 } 257 258 /** 259 * task_clear_jobctl_trapping - clear jobctl trapping bit 260 * @task: target task 261 * 262 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 263 * Clear it and wake up the ptracer. Note that we don't need any further 264 * locking. @task->siglock guarantees that @task->parent points to the 265 * ptracer. 266 * 267 * CONTEXT: 268 * Must be called with @task->sighand->siglock held. 269 */ 270 void task_clear_jobctl_trapping(struct task_struct *task) 271 { 272 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 273 task->jobctl &= ~JOBCTL_TRAPPING; 274 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 275 } 276 } 277 278 /** 279 * task_clear_jobctl_pending - clear jobctl pending bits 280 * @task: target task 281 * @mask: pending bits to clear 282 * 283 * Clear @mask from @task->jobctl. @mask must be subset of 284 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 285 * STOP bits are cleared together. 286 * 287 * If clearing of @mask leaves no stop or trap pending, this function calls 288 * task_clear_jobctl_trapping(). 289 * 290 * CONTEXT: 291 * Must be called with @task->sighand->siglock held. 292 */ 293 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask) 294 { 295 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 296 297 if (mask & JOBCTL_STOP_PENDING) 298 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 299 300 task->jobctl &= ~mask; 301 302 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 303 task_clear_jobctl_trapping(task); 304 } 305 306 /** 307 * task_participate_group_stop - participate in a group stop 308 * @task: task participating in a group stop 309 * 310 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 311 * Group stop states are cleared and the group stop count is consumed if 312 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 313 * stop, the appropriate %SIGNAL_* flags are set. 314 * 315 * CONTEXT: 316 * Must be called with @task->sighand->siglock held. 317 * 318 * RETURNS: 319 * %true if group stop completion should be notified to the parent, %false 320 * otherwise. 321 */ 322 static bool task_participate_group_stop(struct task_struct *task) 323 { 324 struct signal_struct *sig = task->signal; 325 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 326 327 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 328 329 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 330 331 if (!consume) 332 return false; 333 334 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 335 sig->group_stop_count--; 336 337 /* 338 * Tell the caller to notify completion iff we are entering into a 339 * fresh group stop. Read comment in do_signal_stop() for details. 340 */ 341 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 342 sig->flags = SIGNAL_STOP_STOPPED; 343 return true; 344 } 345 return false; 346 } 347 348 /* 349 * allocate a new signal queue record 350 * - this may be called without locks if and only if t == current, otherwise an 351 * appropriate lock must be held to stop the target task from exiting 352 */ 353 static struct sigqueue * 354 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 355 { 356 struct sigqueue *q = NULL; 357 struct user_struct *user; 358 359 /* 360 * Protect access to @t credentials. This can go away when all 361 * callers hold rcu read lock. 362 */ 363 rcu_read_lock(); 364 user = get_uid(__task_cred(t)->user); 365 atomic_inc(&user->sigpending); 366 rcu_read_unlock(); 367 368 if (override_rlimit || 369 atomic_read(&user->sigpending) <= 370 task_rlimit(t, RLIMIT_SIGPENDING)) { 371 q = kmem_cache_alloc(sigqueue_cachep, flags); 372 } else { 373 print_dropped_signal(sig); 374 } 375 376 if (unlikely(q == NULL)) { 377 atomic_dec(&user->sigpending); 378 free_uid(user); 379 } else { 380 INIT_LIST_HEAD(&q->list); 381 q->flags = 0; 382 q->user = user; 383 } 384 385 return q; 386 } 387 388 static void __sigqueue_free(struct sigqueue *q) 389 { 390 if (q->flags & SIGQUEUE_PREALLOC) 391 return; 392 atomic_dec(&q->user->sigpending); 393 free_uid(q->user); 394 kmem_cache_free(sigqueue_cachep, q); 395 } 396 397 void flush_sigqueue(struct sigpending *queue) 398 { 399 struct sigqueue *q; 400 401 sigemptyset(&queue->signal); 402 while (!list_empty(&queue->list)) { 403 q = list_entry(queue->list.next, struct sigqueue , list); 404 list_del_init(&q->list); 405 __sigqueue_free(q); 406 } 407 } 408 409 /* 410 * Flush all pending signals for a task. 411 */ 412 void __flush_signals(struct task_struct *t) 413 { 414 clear_tsk_thread_flag(t, TIF_SIGPENDING); 415 flush_sigqueue(&t->pending); 416 flush_sigqueue(&t->signal->shared_pending); 417 } 418 419 void flush_signals(struct task_struct *t) 420 { 421 unsigned long flags; 422 423 spin_lock_irqsave(&t->sighand->siglock, flags); 424 __flush_signals(t); 425 spin_unlock_irqrestore(&t->sighand->siglock, flags); 426 } 427 428 static void __flush_itimer_signals(struct sigpending *pending) 429 { 430 sigset_t signal, retain; 431 struct sigqueue *q, *n; 432 433 signal = pending->signal; 434 sigemptyset(&retain); 435 436 list_for_each_entry_safe(q, n, &pending->list, list) { 437 int sig = q->info.si_signo; 438 439 if (likely(q->info.si_code != SI_TIMER)) { 440 sigaddset(&retain, sig); 441 } else { 442 sigdelset(&signal, sig); 443 list_del_init(&q->list); 444 __sigqueue_free(q); 445 } 446 } 447 448 sigorsets(&pending->signal, &signal, &retain); 449 } 450 451 void flush_itimer_signals(void) 452 { 453 struct task_struct *tsk = current; 454 unsigned long flags; 455 456 spin_lock_irqsave(&tsk->sighand->siglock, flags); 457 __flush_itimer_signals(&tsk->pending); 458 __flush_itimer_signals(&tsk->signal->shared_pending); 459 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 460 } 461 462 void ignore_signals(struct task_struct *t) 463 { 464 int i; 465 466 for (i = 0; i < _NSIG; ++i) 467 t->sighand->action[i].sa.sa_handler = SIG_IGN; 468 469 flush_signals(t); 470 } 471 472 /* 473 * Flush all handlers for a task. 474 */ 475 476 void 477 flush_signal_handlers(struct task_struct *t, int force_default) 478 { 479 int i; 480 struct k_sigaction *ka = &t->sighand->action[0]; 481 for (i = _NSIG ; i != 0 ; i--) { 482 if (force_default || ka->sa.sa_handler != SIG_IGN) 483 ka->sa.sa_handler = SIG_DFL; 484 ka->sa.sa_flags = 0; 485 sigemptyset(&ka->sa.sa_mask); 486 ka++; 487 } 488 } 489 490 int unhandled_signal(struct task_struct *tsk, int sig) 491 { 492 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 493 if (is_global_init(tsk)) 494 return 1; 495 if (handler != SIG_IGN && handler != SIG_DFL) 496 return 0; 497 /* if ptraced, let the tracer determine */ 498 return !tsk->ptrace; 499 } 500 501 /* 502 * Notify the system that a driver wants to block all signals for this 503 * process, and wants to be notified if any signals at all were to be 504 * sent/acted upon. If the notifier routine returns non-zero, then the 505 * signal will be acted upon after all. If the notifier routine returns 0, 506 * then then signal will be blocked. Only one block per process is 507 * allowed. priv is a pointer to private data that the notifier routine 508 * can use to determine if the signal should be blocked or not. 509 */ 510 void 511 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 512 { 513 unsigned long flags; 514 515 spin_lock_irqsave(¤t->sighand->siglock, flags); 516 current->notifier_mask = mask; 517 current->notifier_data = priv; 518 current->notifier = notifier; 519 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 520 } 521 522 /* Notify the system that blocking has ended. */ 523 524 void 525 unblock_all_signals(void) 526 { 527 unsigned long flags; 528 529 spin_lock_irqsave(¤t->sighand->siglock, flags); 530 current->notifier = NULL; 531 current->notifier_data = NULL; 532 recalc_sigpending(); 533 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 534 } 535 536 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) 537 { 538 struct sigqueue *q, *first = NULL; 539 540 /* 541 * Collect the siginfo appropriate to this signal. Check if 542 * there is another siginfo for the same signal. 543 */ 544 list_for_each_entry(q, &list->list, list) { 545 if (q->info.si_signo == sig) { 546 if (first) 547 goto still_pending; 548 first = q; 549 } 550 } 551 552 sigdelset(&list->signal, sig); 553 554 if (first) { 555 still_pending: 556 list_del_init(&first->list); 557 copy_siginfo(info, &first->info); 558 __sigqueue_free(first); 559 } else { 560 /* 561 * Ok, it wasn't in the queue. This must be 562 * a fast-pathed signal or we must have been 563 * out of queue space. So zero out the info. 564 */ 565 info->si_signo = sig; 566 info->si_errno = 0; 567 info->si_code = SI_USER; 568 info->si_pid = 0; 569 info->si_uid = 0; 570 } 571 } 572 573 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 574 siginfo_t *info) 575 { 576 int sig = next_signal(pending, mask); 577 578 if (sig) { 579 if (current->notifier) { 580 if (sigismember(current->notifier_mask, sig)) { 581 if (!(current->notifier)(current->notifier_data)) { 582 clear_thread_flag(TIF_SIGPENDING); 583 return 0; 584 } 585 } 586 } 587 588 collect_signal(sig, pending, info); 589 } 590 591 return sig; 592 } 593 594 /* 595 * Dequeue a signal and return the element to the caller, which is 596 * expected to free it. 597 * 598 * All callers have to hold the siglock. 599 */ 600 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 601 { 602 int signr; 603 604 /* We only dequeue private signals from ourselves, we don't let 605 * signalfd steal them 606 */ 607 signr = __dequeue_signal(&tsk->pending, mask, info); 608 if (!signr) { 609 signr = __dequeue_signal(&tsk->signal->shared_pending, 610 mask, info); 611 /* 612 * itimer signal ? 613 * 614 * itimers are process shared and we restart periodic 615 * itimers in the signal delivery path to prevent DoS 616 * attacks in the high resolution timer case. This is 617 * compliant with the old way of self-restarting 618 * itimers, as the SIGALRM is a legacy signal and only 619 * queued once. Changing the restart behaviour to 620 * restart the timer in the signal dequeue path is 621 * reducing the timer noise on heavy loaded !highres 622 * systems too. 623 */ 624 if (unlikely(signr == SIGALRM)) { 625 struct hrtimer *tmr = &tsk->signal->real_timer; 626 627 if (!hrtimer_is_queued(tmr) && 628 tsk->signal->it_real_incr.tv64 != 0) { 629 hrtimer_forward(tmr, tmr->base->get_time(), 630 tsk->signal->it_real_incr); 631 hrtimer_restart(tmr); 632 } 633 } 634 } 635 636 recalc_sigpending(); 637 if (!signr) 638 return 0; 639 640 if (unlikely(sig_kernel_stop(signr))) { 641 /* 642 * Set a marker that we have dequeued a stop signal. Our 643 * caller might release the siglock and then the pending 644 * stop signal it is about to process is no longer in the 645 * pending bitmasks, but must still be cleared by a SIGCONT 646 * (and overruled by a SIGKILL). So those cases clear this 647 * shared flag after we've set it. Note that this flag may 648 * remain set after the signal we return is ignored or 649 * handled. That doesn't matter because its only purpose 650 * is to alert stop-signal processing code when another 651 * processor has come along and cleared the flag. 652 */ 653 current->jobctl |= JOBCTL_STOP_DEQUEUED; 654 } 655 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { 656 /* 657 * Release the siglock to ensure proper locking order 658 * of timer locks outside of siglocks. Note, we leave 659 * irqs disabled here, since the posix-timers code is 660 * about to disable them again anyway. 661 */ 662 spin_unlock(&tsk->sighand->siglock); 663 do_schedule_next_timer(info); 664 spin_lock(&tsk->sighand->siglock); 665 } 666 return signr; 667 } 668 669 /* 670 * Tell a process that it has a new active signal.. 671 * 672 * NOTE! we rely on the previous spin_lock to 673 * lock interrupts for us! We can only be called with 674 * "siglock" held, and the local interrupt must 675 * have been disabled when that got acquired! 676 * 677 * No need to set need_resched since signal event passing 678 * goes through ->blocked 679 */ 680 void signal_wake_up(struct task_struct *t, int resume) 681 { 682 unsigned int mask; 683 684 set_tsk_thread_flag(t, TIF_SIGPENDING); 685 686 /* 687 * For SIGKILL, we want to wake it up in the stopped/traced/killable 688 * case. We don't check t->state here because there is a race with it 689 * executing another processor and just now entering stopped state. 690 * By using wake_up_state, we ensure the process will wake up and 691 * handle its death signal. 692 */ 693 mask = TASK_INTERRUPTIBLE; 694 if (resume) 695 mask |= TASK_WAKEKILL; 696 if (!wake_up_state(t, mask)) 697 kick_process(t); 698 } 699 700 /* 701 * Remove signals in mask from the pending set and queue. 702 * Returns 1 if any signals were found. 703 * 704 * All callers must be holding the siglock. 705 * 706 * This version takes a sigset mask and looks at all signals, 707 * not just those in the first mask word. 708 */ 709 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 710 { 711 struct sigqueue *q, *n; 712 sigset_t m; 713 714 sigandsets(&m, mask, &s->signal); 715 if (sigisemptyset(&m)) 716 return 0; 717 718 sigandnsets(&s->signal, &s->signal, mask); 719 list_for_each_entry_safe(q, n, &s->list, list) { 720 if (sigismember(mask, q->info.si_signo)) { 721 list_del_init(&q->list); 722 __sigqueue_free(q); 723 } 724 } 725 return 1; 726 } 727 /* 728 * Remove signals in mask from the pending set and queue. 729 * Returns 1 if any signals were found. 730 * 731 * All callers must be holding the siglock. 732 */ 733 static int rm_from_queue(unsigned long mask, struct sigpending *s) 734 { 735 struct sigqueue *q, *n; 736 737 if (!sigtestsetmask(&s->signal, mask)) 738 return 0; 739 740 sigdelsetmask(&s->signal, mask); 741 list_for_each_entry_safe(q, n, &s->list, list) { 742 if (q->info.si_signo < SIGRTMIN && 743 (mask & sigmask(q->info.si_signo))) { 744 list_del_init(&q->list); 745 __sigqueue_free(q); 746 } 747 } 748 return 1; 749 } 750 751 static inline int is_si_special(const struct siginfo *info) 752 { 753 return info <= SEND_SIG_FORCED; 754 } 755 756 static inline bool si_fromuser(const struct siginfo *info) 757 { 758 return info == SEND_SIG_NOINFO || 759 (!is_si_special(info) && SI_FROMUSER(info)); 760 } 761 762 /* 763 * called with RCU read lock from check_kill_permission() 764 */ 765 static int kill_ok_by_cred(struct task_struct *t) 766 { 767 const struct cred *cred = current_cred(); 768 const struct cred *tcred = __task_cred(t); 769 770 if (cred->user->user_ns == tcred->user->user_ns && 771 (cred->euid == tcred->suid || 772 cred->euid == tcred->uid || 773 cred->uid == tcred->suid || 774 cred->uid == tcred->uid)) 775 return 1; 776 777 if (ns_capable(tcred->user->user_ns, CAP_KILL)) 778 return 1; 779 780 return 0; 781 } 782 783 /* 784 * Bad permissions for sending the signal 785 * - the caller must hold the RCU read lock 786 */ 787 static int check_kill_permission(int sig, struct siginfo *info, 788 struct task_struct *t) 789 { 790 struct pid *sid; 791 int error; 792 793 if (!valid_signal(sig)) 794 return -EINVAL; 795 796 if (!si_fromuser(info)) 797 return 0; 798 799 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 800 if (error) 801 return error; 802 803 if (!same_thread_group(current, t) && 804 !kill_ok_by_cred(t)) { 805 switch (sig) { 806 case SIGCONT: 807 sid = task_session(t); 808 /* 809 * We don't return the error if sid == NULL. The 810 * task was unhashed, the caller must notice this. 811 */ 812 if (!sid || sid == task_session(current)) 813 break; 814 default: 815 return -EPERM; 816 } 817 } 818 819 return security_task_kill(t, info, sig, 0); 820 } 821 822 /** 823 * ptrace_trap_notify - schedule trap to notify ptracer 824 * @t: tracee wanting to notify tracer 825 * 826 * This function schedules sticky ptrace trap which is cleared on the next 827 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 828 * ptracer. 829 * 830 * If @t is running, STOP trap will be taken. If trapped for STOP and 831 * ptracer is listening for events, tracee is woken up so that it can 832 * re-trap for the new event. If trapped otherwise, STOP trap will be 833 * eventually taken without returning to userland after the existing traps 834 * are finished by PTRACE_CONT. 835 * 836 * CONTEXT: 837 * Must be called with @task->sighand->siglock held. 838 */ 839 static void ptrace_trap_notify(struct task_struct *t) 840 { 841 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 842 assert_spin_locked(&t->sighand->siglock); 843 844 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 845 signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 846 } 847 848 /* 849 * Handle magic process-wide effects of stop/continue signals. Unlike 850 * the signal actions, these happen immediately at signal-generation 851 * time regardless of blocking, ignoring, or handling. This does the 852 * actual continuing for SIGCONT, but not the actual stopping for stop 853 * signals. The process stop is done as a signal action for SIG_DFL. 854 * 855 * Returns true if the signal should be actually delivered, otherwise 856 * it should be dropped. 857 */ 858 static int prepare_signal(int sig, struct task_struct *p, bool force) 859 { 860 struct signal_struct *signal = p->signal; 861 struct task_struct *t; 862 863 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) { 864 /* 865 * The process is in the middle of dying, nothing to do. 866 */ 867 } else if (sig_kernel_stop(sig)) { 868 /* 869 * This is a stop signal. Remove SIGCONT from all queues. 870 */ 871 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending); 872 t = p; 873 do { 874 rm_from_queue(sigmask(SIGCONT), &t->pending); 875 } while_each_thread(p, t); 876 } else if (sig == SIGCONT) { 877 unsigned int why; 878 /* 879 * Remove all stop signals from all queues, wake all threads. 880 */ 881 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending); 882 t = p; 883 do { 884 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 885 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 886 if (likely(!(t->ptrace & PT_SEIZED))) 887 wake_up_state(t, __TASK_STOPPED); 888 else 889 ptrace_trap_notify(t); 890 } while_each_thread(p, t); 891 892 /* 893 * Notify the parent with CLD_CONTINUED if we were stopped. 894 * 895 * If we were in the middle of a group stop, we pretend it 896 * was already finished, and then continued. Since SIGCHLD 897 * doesn't queue we report only CLD_STOPPED, as if the next 898 * CLD_CONTINUED was dropped. 899 */ 900 why = 0; 901 if (signal->flags & SIGNAL_STOP_STOPPED) 902 why |= SIGNAL_CLD_CONTINUED; 903 else if (signal->group_stop_count) 904 why |= SIGNAL_CLD_STOPPED; 905 906 if (why) { 907 /* 908 * The first thread which returns from do_signal_stop() 909 * will take ->siglock, notice SIGNAL_CLD_MASK, and 910 * notify its parent. See get_signal_to_deliver(). 911 */ 912 signal->flags = why | SIGNAL_STOP_CONTINUED; 913 signal->group_stop_count = 0; 914 signal->group_exit_code = 0; 915 } 916 } 917 918 return !sig_ignored(p, sig, force); 919 } 920 921 /* 922 * Test if P wants to take SIG. After we've checked all threads with this, 923 * it's equivalent to finding no threads not blocking SIG. Any threads not 924 * blocking SIG were ruled out because they are not running and already 925 * have pending signals. Such threads will dequeue from the shared queue 926 * as soon as they're available, so putting the signal on the shared queue 927 * will be equivalent to sending it to one such thread. 928 */ 929 static inline int wants_signal(int sig, struct task_struct *p) 930 { 931 if (sigismember(&p->blocked, sig)) 932 return 0; 933 if (p->flags & PF_EXITING) 934 return 0; 935 if (sig == SIGKILL) 936 return 1; 937 if (task_is_stopped_or_traced(p)) 938 return 0; 939 return task_curr(p) || !signal_pending(p); 940 } 941 942 static void complete_signal(int sig, struct task_struct *p, int group) 943 { 944 struct signal_struct *signal = p->signal; 945 struct task_struct *t; 946 947 /* 948 * Now find a thread we can wake up to take the signal off the queue. 949 * 950 * If the main thread wants the signal, it gets first crack. 951 * Probably the least surprising to the average bear. 952 */ 953 if (wants_signal(sig, p)) 954 t = p; 955 else if (!group || thread_group_empty(p)) 956 /* 957 * There is just one thread and it does not need to be woken. 958 * It will dequeue unblocked signals before it runs again. 959 */ 960 return; 961 else { 962 /* 963 * Otherwise try to find a suitable thread. 964 */ 965 t = signal->curr_target; 966 while (!wants_signal(sig, t)) { 967 t = next_thread(t); 968 if (t == signal->curr_target) 969 /* 970 * No thread needs to be woken. 971 * Any eligible threads will see 972 * the signal in the queue soon. 973 */ 974 return; 975 } 976 signal->curr_target = t; 977 } 978 979 /* 980 * Found a killable thread. If the signal will be fatal, 981 * then start taking the whole group down immediately. 982 */ 983 if (sig_fatal(p, sig) && 984 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 985 !sigismember(&t->real_blocked, sig) && 986 (sig == SIGKILL || !t->ptrace)) { 987 /* 988 * This signal will be fatal to the whole group. 989 */ 990 if (!sig_kernel_coredump(sig)) { 991 /* 992 * Start a group exit and wake everybody up. 993 * This way we don't have other threads 994 * running and doing things after a slower 995 * thread has the fatal signal pending. 996 */ 997 signal->flags = SIGNAL_GROUP_EXIT; 998 signal->group_exit_code = sig; 999 signal->group_stop_count = 0; 1000 t = p; 1001 do { 1002 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1003 sigaddset(&t->pending.signal, SIGKILL); 1004 signal_wake_up(t, 1); 1005 } while_each_thread(p, t); 1006 return; 1007 } 1008 } 1009 1010 /* 1011 * The signal is already in the shared-pending queue. 1012 * Tell the chosen thread to wake up and dequeue it. 1013 */ 1014 signal_wake_up(t, sig == SIGKILL); 1015 return; 1016 } 1017 1018 static inline int legacy_queue(struct sigpending *signals, int sig) 1019 { 1020 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1021 } 1022 1023 /* 1024 * map the uid in struct cred into user namespace *ns 1025 */ 1026 static inline uid_t map_cred_ns(const struct cred *cred, 1027 struct user_namespace *ns) 1028 { 1029 return user_ns_map_uid(ns, cred, cred->uid); 1030 } 1031 1032 #ifdef CONFIG_USER_NS 1033 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1034 { 1035 if (current_user_ns() == task_cred_xxx(t, user_ns)) 1036 return; 1037 1038 if (SI_FROMKERNEL(info)) 1039 return; 1040 1041 info->si_uid = user_ns_map_uid(task_cred_xxx(t, user_ns), 1042 current_cred(), info->si_uid); 1043 } 1044 #else 1045 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1046 { 1047 return; 1048 } 1049 #endif 1050 1051 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 1052 int group, int from_ancestor_ns) 1053 { 1054 struct sigpending *pending; 1055 struct sigqueue *q; 1056 int override_rlimit; 1057 int ret = 0, result; 1058 1059 assert_spin_locked(&t->sighand->siglock); 1060 1061 result = TRACE_SIGNAL_IGNORED; 1062 if (!prepare_signal(sig, t, 1063 from_ancestor_ns || (info == SEND_SIG_FORCED))) 1064 goto ret; 1065 1066 pending = group ? &t->signal->shared_pending : &t->pending; 1067 /* 1068 * Short-circuit ignored signals and support queuing 1069 * exactly one non-rt signal, so that we can get more 1070 * detailed information about the cause of the signal. 1071 */ 1072 result = TRACE_SIGNAL_ALREADY_PENDING; 1073 if (legacy_queue(pending, sig)) 1074 goto ret; 1075 1076 result = TRACE_SIGNAL_DELIVERED; 1077 /* 1078 * fast-pathed signals for kernel-internal things like SIGSTOP 1079 * or SIGKILL. 1080 */ 1081 if (info == SEND_SIG_FORCED) 1082 goto out_set; 1083 1084 /* 1085 * Real-time signals must be queued if sent by sigqueue, or 1086 * some other real-time mechanism. It is implementation 1087 * defined whether kill() does so. We attempt to do so, on 1088 * the principle of least surprise, but since kill is not 1089 * allowed to fail with EAGAIN when low on memory we just 1090 * make sure at least one signal gets delivered and don't 1091 * pass on the info struct. 1092 */ 1093 if (sig < SIGRTMIN) 1094 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1095 else 1096 override_rlimit = 0; 1097 1098 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, 1099 override_rlimit); 1100 if (q) { 1101 list_add_tail(&q->list, &pending->list); 1102 switch ((unsigned long) info) { 1103 case (unsigned long) SEND_SIG_NOINFO: 1104 q->info.si_signo = sig; 1105 q->info.si_errno = 0; 1106 q->info.si_code = SI_USER; 1107 q->info.si_pid = task_tgid_nr_ns(current, 1108 task_active_pid_ns(t)); 1109 q->info.si_uid = current_uid(); 1110 break; 1111 case (unsigned long) SEND_SIG_PRIV: 1112 q->info.si_signo = sig; 1113 q->info.si_errno = 0; 1114 q->info.si_code = SI_KERNEL; 1115 q->info.si_pid = 0; 1116 q->info.si_uid = 0; 1117 break; 1118 default: 1119 copy_siginfo(&q->info, info); 1120 if (from_ancestor_ns) 1121 q->info.si_pid = 0; 1122 break; 1123 } 1124 1125 userns_fixup_signal_uid(&q->info, t); 1126 1127 } else if (!is_si_special(info)) { 1128 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1129 /* 1130 * Queue overflow, abort. We may abort if the 1131 * signal was rt and sent by user using something 1132 * other than kill(). 1133 */ 1134 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1135 ret = -EAGAIN; 1136 goto ret; 1137 } else { 1138 /* 1139 * This is a silent loss of information. We still 1140 * send the signal, but the *info bits are lost. 1141 */ 1142 result = TRACE_SIGNAL_LOSE_INFO; 1143 } 1144 } 1145 1146 out_set: 1147 signalfd_notify(t, sig); 1148 sigaddset(&pending->signal, sig); 1149 complete_signal(sig, t, group); 1150 ret: 1151 trace_signal_generate(sig, info, t, group, result); 1152 return ret; 1153 } 1154 1155 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 1156 int group) 1157 { 1158 int from_ancestor_ns = 0; 1159 1160 #ifdef CONFIG_PID_NS 1161 from_ancestor_ns = si_fromuser(info) && 1162 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1163 #endif 1164 1165 return __send_signal(sig, info, t, group, from_ancestor_ns); 1166 } 1167 1168 static void print_fatal_signal(struct pt_regs *regs, int signr) 1169 { 1170 printk("%s/%d: potentially unexpected fatal signal %d.\n", 1171 current->comm, task_pid_nr(current), signr); 1172 1173 #if defined(__i386__) && !defined(__arch_um__) 1174 printk("code at %08lx: ", regs->ip); 1175 { 1176 int i; 1177 for (i = 0; i < 16; i++) { 1178 unsigned char insn; 1179 1180 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1181 break; 1182 printk("%02x ", insn); 1183 } 1184 } 1185 #endif 1186 printk("\n"); 1187 preempt_disable(); 1188 show_regs(regs); 1189 preempt_enable(); 1190 } 1191 1192 static int __init setup_print_fatal_signals(char *str) 1193 { 1194 get_option (&str, &print_fatal_signals); 1195 1196 return 1; 1197 } 1198 1199 __setup("print-fatal-signals=", setup_print_fatal_signals); 1200 1201 int 1202 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1203 { 1204 return send_signal(sig, info, p, 1); 1205 } 1206 1207 static int 1208 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1209 { 1210 return send_signal(sig, info, t, 0); 1211 } 1212 1213 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1214 bool group) 1215 { 1216 unsigned long flags; 1217 int ret = -ESRCH; 1218 1219 if (lock_task_sighand(p, &flags)) { 1220 ret = send_signal(sig, info, p, group); 1221 unlock_task_sighand(p, &flags); 1222 } 1223 1224 return ret; 1225 } 1226 1227 /* 1228 * Force a signal that the process can't ignore: if necessary 1229 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1230 * 1231 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1232 * since we do not want to have a signal handler that was blocked 1233 * be invoked when user space had explicitly blocked it. 1234 * 1235 * We don't want to have recursive SIGSEGV's etc, for example, 1236 * that is why we also clear SIGNAL_UNKILLABLE. 1237 */ 1238 int 1239 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1240 { 1241 unsigned long int flags; 1242 int ret, blocked, ignored; 1243 struct k_sigaction *action; 1244 1245 spin_lock_irqsave(&t->sighand->siglock, flags); 1246 action = &t->sighand->action[sig-1]; 1247 ignored = action->sa.sa_handler == SIG_IGN; 1248 blocked = sigismember(&t->blocked, sig); 1249 if (blocked || ignored) { 1250 action->sa.sa_handler = SIG_DFL; 1251 if (blocked) { 1252 sigdelset(&t->blocked, sig); 1253 recalc_sigpending_and_wake(t); 1254 } 1255 } 1256 if (action->sa.sa_handler == SIG_DFL) 1257 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1258 ret = specific_send_sig_info(sig, info, t); 1259 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1260 1261 return ret; 1262 } 1263 1264 /* 1265 * Nuke all other threads in the group. 1266 */ 1267 int zap_other_threads(struct task_struct *p) 1268 { 1269 struct task_struct *t = p; 1270 int count = 0; 1271 1272 p->signal->group_stop_count = 0; 1273 1274 while_each_thread(p, t) { 1275 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1276 count++; 1277 1278 /* Don't bother with already dead threads */ 1279 if (t->exit_state) 1280 continue; 1281 sigaddset(&t->pending.signal, SIGKILL); 1282 signal_wake_up(t, 1); 1283 } 1284 1285 return count; 1286 } 1287 1288 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1289 unsigned long *flags) 1290 { 1291 struct sighand_struct *sighand; 1292 1293 for (;;) { 1294 local_irq_save(*flags); 1295 rcu_read_lock(); 1296 sighand = rcu_dereference(tsk->sighand); 1297 if (unlikely(sighand == NULL)) { 1298 rcu_read_unlock(); 1299 local_irq_restore(*flags); 1300 break; 1301 } 1302 1303 spin_lock(&sighand->siglock); 1304 if (likely(sighand == tsk->sighand)) { 1305 rcu_read_unlock(); 1306 break; 1307 } 1308 spin_unlock(&sighand->siglock); 1309 rcu_read_unlock(); 1310 local_irq_restore(*flags); 1311 } 1312 1313 return sighand; 1314 } 1315 1316 /* 1317 * send signal info to all the members of a group 1318 */ 1319 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1320 { 1321 int ret; 1322 1323 rcu_read_lock(); 1324 ret = check_kill_permission(sig, info, p); 1325 rcu_read_unlock(); 1326 1327 if (!ret && sig) 1328 ret = do_send_sig_info(sig, info, p, true); 1329 1330 return ret; 1331 } 1332 1333 /* 1334 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1335 * control characters do (^C, ^Z etc) 1336 * - the caller must hold at least a readlock on tasklist_lock 1337 */ 1338 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1339 { 1340 struct task_struct *p = NULL; 1341 int retval, success; 1342 1343 success = 0; 1344 retval = -ESRCH; 1345 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1346 int err = group_send_sig_info(sig, info, p); 1347 success |= !err; 1348 retval = err; 1349 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1350 return success ? 0 : retval; 1351 } 1352 1353 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1354 { 1355 int error = -ESRCH; 1356 struct task_struct *p; 1357 1358 rcu_read_lock(); 1359 retry: 1360 p = pid_task(pid, PIDTYPE_PID); 1361 if (p) { 1362 error = group_send_sig_info(sig, info, p); 1363 if (unlikely(error == -ESRCH)) 1364 /* 1365 * The task was unhashed in between, try again. 1366 * If it is dead, pid_task() will return NULL, 1367 * if we race with de_thread() it will find the 1368 * new leader. 1369 */ 1370 goto retry; 1371 } 1372 rcu_read_unlock(); 1373 1374 return error; 1375 } 1376 1377 int kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1378 { 1379 int error; 1380 rcu_read_lock(); 1381 error = kill_pid_info(sig, info, find_vpid(pid)); 1382 rcu_read_unlock(); 1383 return error; 1384 } 1385 1386 static int kill_as_cred_perm(const struct cred *cred, 1387 struct task_struct *target) 1388 { 1389 const struct cred *pcred = __task_cred(target); 1390 if (cred->user_ns != pcred->user_ns) 1391 return 0; 1392 if (cred->euid != pcred->suid && cred->euid != pcred->uid && 1393 cred->uid != pcred->suid && cred->uid != pcred->uid) 1394 return 0; 1395 return 1; 1396 } 1397 1398 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1399 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, 1400 const struct cred *cred, u32 secid) 1401 { 1402 int ret = -EINVAL; 1403 struct task_struct *p; 1404 unsigned long flags; 1405 1406 if (!valid_signal(sig)) 1407 return ret; 1408 1409 rcu_read_lock(); 1410 p = pid_task(pid, PIDTYPE_PID); 1411 if (!p) { 1412 ret = -ESRCH; 1413 goto out_unlock; 1414 } 1415 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1416 ret = -EPERM; 1417 goto out_unlock; 1418 } 1419 ret = security_task_kill(p, info, sig, secid); 1420 if (ret) 1421 goto out_unlock; 1422 1423 if (sig) { 1424 if (lock_task_sighand(p, &flags)) { 1425 ret = __send_signal(sig, info, p, 1, 0); 1426 unlock_task_sighand(p, &flags); 1427 } else 1428 ret = -ESRCH; 1429 } 1430 out_unlock: 1431 rcu_read_unlock(); 1432 return ret; 1433 } 1434 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1435 1436 /* 1437 * kill_something_info() interprets pid in interesting ways just like kill(2). 1438 * 1439 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1440 * is probably wrong. Should make it like BSD or SYSV. 1441 */ 1442 1443 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1444 { 1445 int ret; 1446 1447 if (pid > 0) { 1448 rcu_read_lock(); 1449 ret = kill_pid_info(sig, info, find_vpid(pid)); 1450 rcu_read_unlock(); 1451 return ret; 1452 } 1453 1454 read_lock(&tasklist_lock); 1455 if (pid != -1) { 1456 ret = __kill_pgrp_info(sig, info, 1457 pid ? find_vpid(-pid) : task_pgrp(current)); 1458 } else { 1459 int retval = 0, count = 0; 1460 struct task_struct * p; 1461 1462 for_each_process(p) { 1463 if (task_pid_vnr(p) > 1 && 1464 !same_thread_group(p, current)) { 1465 int err = group_send_sig_info(sig, info, p); 1466 ++count; 1467 if (err != -EPERM) 1468 retval = err; 1469 } 1470 } 1471 ret = count ? retval : -ESRCH; 1472 } 1473 read_unlock(&tasklist_lock); 1474 1475 return ret; 1476 } 1477 1478 /* 1479 * These are for backward compatibility with the rest of the kernel source. 1480 */ 1481 1482 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1483 { 1484 /* 1485 * Make sure legacy kernel users don't send in bad values 1486 * (normal paths check this in check_kill_permission). 1487 */ 1488 if (!valid_signal(sig)) 1489 return -EINVAL; 1490 1491 return do_send_sig_info(sig, info, p, false); 1492 } 1493 1494 #define __si_special(priv) \ 1495 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1496 1497 int 1498 send_sig(int sig, struct task_struct *p, int priv) 1499 { 1500 return send_sig_info(sig, __si_special(priv), p); 1501 } 1502 1503 void 1504 force_sig(int sig, struct task_struct *p) 1505 { 1506 force_sig_info(sig, SEND_SIG_PRIV, p); 1507 } 1508 1509 /* 1510 * When things go south during signal handling, we 1511 * will force a SIGSEGV. And if the signal that caused 1512 * the problem was already a SIGSEGV, we'll want to 1513 * make sure we don't even try to deliver the signal.. 1514 */ 1515 int 1516 force_sigsegv(int sig, struct task_struct *p) 1517 { 1518 if (sig == SIGSEGV) { 1519 unsigned long flags; 1520 spin_lock_irqsave(&p->sighand->siglock, flags); 1521 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1522 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1523 } 1524 force_sig(SIGSEGV, p); 1525 return 0; 1526 } 1527 1528 int kill_pgrp(struct pid *pid, int sig, int priv) 1529 { 1530 int ret; 1531 1532 read_lock(&tasklist_lock); 1533 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1534 read_unlock(&tasklist_lock); 1535 1536 return ret; 1537 } 1538 EXPORT_SYMBOL(kill_pgrp); 1539 1540 int kill_pid(struct pid *pid, int sig, int priv) 1541 { 1542 return kill_pid_info(sig, __si_special(priv), pid); 1543 } 1544 EXPORT_SYMBOL(kill_pid); 1545 1546 /* 1547 * These functions support sending signals using preallocated sigqueue 1548 * structures. This is needed "because realtime applications cannot 1549 * afford to lose notifications of asynchronous events, like timer 1550 * expirations or I/O completions". In the case of POSIX Timers 1551 * we allocate the sigqueue structure from the timer_create. If this 1552 * allocation fails we are able to report the failure to the application 1553 * with an EAGAIN error. 1554 */ 1555 struct sigqueue *sigqueue_alloc(void) 1556 { 1557 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1558 1559 if (q) 1560 q->flags |= SIGQUEUE_PREALLOC; 1561 1562 return q; 1563 } 1564 1565 void sigqueue_free(struct sigqueue *q) 1566 { 1567 unsigned long flags; 1568 spinlock_t *lock = ¤t->sighand->siglock; 1569 1570 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1571 /* 1572 * We must hold ->siglock while testing q->list 1573 * to serialize with collect_signal() or with 1574 * __exit_signal()->flush_sigqueue(). 1575 */ 1576 spin_lock_irqsave(lock, flags); 1577 q->flags &= ~SIGQUEUE_PREALLOC; 1578 /* 1579 * If it is queued it will be freed when dequeued, 1580 * like the "regular" sigqueue. 1581 */ 1582 if (!list_empty(&q->list)) 1583 q = NULL; 1584 spin_unlock_irqrestore(lock, flags); 1585 1586 if (q) 1587 __sigqueue_free(q); 1588 } 1589 1590 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1591 { 1592 int sig = q->info.si_signo; 1593 struct sigpending *pending; 1594 unsigned long flags; 1595 int ret, result; 1596 1597 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1598 1599 ret = -1; 1600 if (!likely(lock_task_sighand(t, &flags))) 1601 goto ret; 1602 1603 ret = 1; /* the signal is ignored */ 1604 result = TRACE_SIGNAL_IGNORED; 1605 if (!prepare_signal(sig, t, false)) 1606 goto out; 1607 1608 ret = 0; 1609 if (unlikely(!list_empty(&q->list))) { 1610 /* 1611 * If an SI_TIMER entry is already queue just increment 1612 * the overrun count. 1613 */ 1614 BUG_ON(q->info.si_code != SI_TIMER); 1615 q->info.si_overrun++; 1616 result = TRACE_SIGNAL_ALREADY_PENDING; 1617 goto out; 1618 } 1619 q->info.si_overrun = 0; 1620 1621 signalfd_notify(t, sig); 1622 pending = group ? &t->signal->shared_pending : &t->pending; 1623 list_add_tail(&q->list, &pending->list); 1624 sigaddset(&pending->signal, sig); 1625 complete_signal(sig, t, group); 1626 result = TRACE_SIGNAL_DELIVERED; 1627 out: 1628 trace_signal_generate(sig, &q->info, t, group, result); 1629 unlock_task_sighand(t, &flags); 1630 ret: 1631 return ret; 1632 } 1633 1634 /* 1635 * Let a parent know about the death of a child. 1636 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1637 * 1638 * Returns true if our parent ignored us and so we've switched to 1639 * self-reaping. 1640 */ 1641 bool do_notify_parent(struct task_struct *tsk, int sig) 1642 { 1643 struct siginfo info; 1644 unsigned long flags; 1645 struct sighand_struct *psig; 1646 bool autoreap = false; 1647 1648 BUG_ON(sig == -1); 1649 1650 /* do_notify_parent_cldstop should have been called instead. */ 1651 BUG_ON(task_is_stopped_or_traced(tsk)); 1652 1653 BUG_ON(!tsk->ptrace && 1654 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1655 1656 if (sig != SIGCHLD) { 1657 /* 1658 * This is only possible if parent == real_parent. 1659 * Check if it has changed security domain. 1660 */ 1661 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1662 sig = SIGCHLD; 1663 } 1664 1665 info.si_signo = sig; 1666 info.si_errno = 0; 1667 /* 1668 * we are under tasklist_lock here so our parent is tied to 1669 * us and cannot exit and release its namespace. 1670 * 1671 * the only it can is to switch its nsproxy with sys_unshare, 1672 * bu uncharing pid namespaces is not allowed, so we'll always 1673 * see relevant namespace 1674 * 1675 * write_lock() currently calls preempt_disable() which is the 1676 * same as rcu_read_lock(), but according to Oleg, this is not 1677 * correct to rely on this 1678 */ 1679 rcu_read_lock(); 1680 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns); 1681 info.si_uid = map_cred_ns(__task_cred(tsk), 1682 task_cred_xxx(tsk->parent, user_ns)); 1683 rcu_read_unlock(); 1684 1685 info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime); 1686 info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime); 1687 1688 info.si_status = tsk->exit_code & 0x7f; 1689 if (tsk->exit_code & 0x80) 1690 info.si_code = CLD_DUMPED; 1691 else if (tsk->exit_code & 0x7f) 1692 info.si_code = CLD_KILLED; 1693 else { 1694 info.si_code = CLD_EXITED; 1695 info.si_status = tsk->exit_code >> 8; 1696 } 1697 1698 psig = tsk->parent->sighand; 1699 spin_lock_irqsave(&psig->siglock, flags); 1700 if (!tsk->ptrace && sig == SIGCHLD && 1701 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1702 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1703 /* 1704 * We are exiting and our parent doesn't care. POSIX.1 1705 * defines special semantics for setting SIGCHLD to SIG_IGN 1706 * or setting the SA_NOCLDWAIT flag: we should be reaped 1707 * automatically and not left for our parent's wait4 call. 1708 * Rather than having the parent do it as a magic kind of 1709 * signal handler, we just set this to tell do_exit that we 1710 * can be cleaned up without becoming a zombie. Note that 1711 * we still call __wake_up_parent in this case, because a 1712 * blocked sys_wait4 might now return -ECHILD. 1713 * 1714 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1715 * is implementation-defined: we do (if you don't want 1716 * it, just use SIG_IGN instead). 1717 */ 1718 autoreap = true; 1719 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1720 sig = 0; 1721 } 1722 if (valid_signal(sig) && sig) 1723 __group_send_sig_info(sig, &info, tsk->parent); 1724 __wake_up_parent(tsk, tsk->parent); 1725 spin_unlock_irqrestore(&psig->siglock, flags); 1726 1727 return autoreap; 1728 } 1729 1730 /** 1731 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1732 * @tsk: task reporting the state change 1733 * @for_ptracer: the notification is for ptracer 1734 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1735 * 1736 * Notify @tsk's parent that the stopped/continued state has changed. If 1737 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1738 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1739 * 1740 * CONTEXT: 1741 * Must be called with tasklist_lock at least read locked. 1742 */ 1743 static void do_notify_parent_cldstop(struct task_struct *tsk, 1744 bool for_ptracer, int why) 1745 { 1746 struct siginfo info; 1747 unsigned long flags; 1748 struct task_struct *parent; 1749 struct sighand_struct *sighand; 1750 1751 if (for_ptracer) { 1752 parent = tsk->parent; 1753 } else { 1754 tsk = tsk->group_leader; 1755 parent = tsk->real_parent; 1756 } 1757 1758 info.si_signo = SIGCHLD; 1759 info.si_errno = 0; 1760 /* 1761 * see comment in do_notify_parent() about the following 4 lines 1762 */ 1763 rcu_read_lock(); 1764 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns); 1765 info.si_uid = map_cred_ns(__task_cred(tsk), 1766 task_cred_xxx(parent, user_ns)); 1767 rcu_read_unlock(); 1768 1769 info.si_utime = cputime_to_clock_t(tsk->utime); 1770 info.si_stime = cputime_to_clock_t(tsk->stime); 1771 1772 info.si_code = why; 1773 switch (why) { 1774 case CLD_CONTINUED: 1775 info.si_status = SIGCONT; 1776 break; 1777 case CLD_STOPPED: 1778 info.si_status = tsk->signal->group_exit_code & 0x7f; 1779 break; 1780 case CLD_TRAPPED: 1781 info.si_status = tsk->exit_code & 0x7f; 1782 break; 1783 default: 1784 BUG(); 1785 } 1786 1787 sighand = parent->sighand; 1788 spin_lock_irqsave(&sighand->siglock, flags); 1789 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1790 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1791 __group_send_sig_info(SIGCHLD, &info, parent); 1792 /* 1793 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1794 */ 1795 __wake_up_parent(tsk, parent); 1796 spin_unlock_irqrestore(&sighand->siglock, flags); 1797 } 1798 1799 static inline int may_ptrace_stop(void) 1800 { 1801 if (!likely(current->ptrace)) 1802 return 0; 1803 /* 1804 * Are we in the middle of do_coredump? 1805 * If so and our tracer is also part of the coredump stopping 1806 * is a deadlock situation, and pointless because our tracer 1807 * is dead so don't allow us to stop. 1808 * If SIGKILL was already sent before the caller unlocked 1809 * ->siglock we must see ->core_state != NULL. Otherwise it 1810 * is safe to enter schedule(). 1811 */ 1812 if (unlikely(current->mm->core_state) && 1813 unlikely(current->mm == current->parent->mm)) 1814 return 0; 1815 1816 return 1; 1817 } 1818 1819 /* 1820 * Return non-zero if there is a SIGKILL that should be waking us up. 1821 * Called with the siglock held. 1822 */ 1823 static int sigkill_pending(struct task_struct *tsk) 1824 { 1825 return sigismember(&tsk->pending.signal, SIGKILL) || 1826 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1827 } 1828 1829 /* 1830 * This must be called with current->sighand->siglock held. 1831 * 1832 * This should be the path for all ptrace stops. 1833 * We always set current->last_siginfo while stopped here. 1834 * That makes it a way to test a stopped process for 1835 * being ptrace-stopped vs being job-control-stopped. 1836 * 1837 * If we actually decide not to stop at all because the tracer 1838 * is gone, we keep current->exit_code unless clear_code. 1839 */ 1840 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) 1841 __releases(¤t->sighand->siglock) 1842 __acquires(¤t->sighand->siglock) 1843 { 1844 bool gstop_done = false; 1845 1846 if (arch_ptrace_stop_needed(exit_code, info)) { 1847 /* 1848 * The arch code has something special to do before a 1849 * ptrace stop. This is allowed to block, e.g. for faults 1850 * on user stack pages. We can't keep the siglock while 1851 * calling arch_ptrace_stop, so we must release it now. 1852 * To preserve proper semantics, we must do this before 1853 * any signal bookkeeping like checking group_stop_count. 1854 * Meanwhile, a SIGKILL could come in before we retake the 1855 * siglock. That must prevent us from sleeping in TASK_TRACED. 1856 * So after regaining the lock, we must check for SIGKILL. 1857 */ 1858 spin_unlock_irq(¤t->sighand->siglock); 1859 arch_ptrace_stop(exit_code, info); 1860 spin_lock_irq(¤t->sighand->siglock); 1861 if (sigkill_pending(current)) 1862 return; 1863 } 1864 1865 /* 1866 * We're committing to trapping. TRACED should be visible before 1867 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 1868 * Also, transition to TRACED and updates to ->jobctl should be 1869 * atomic with respect to siglock and should be done after the arch 1870 * hook as siglock is released and regrabbed across it. 1871 */ 1872 set_current_state(TASK_TRACED); 1873 1874 current->last_siginfo = info; 1875 current->exit_code = exit_code; 1876 1877 /* 1878 * If @why is CLD_STOPPED, we're trapping to participate in a group 1879 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 1880 * across siglock relocks since INTERRUPT was scheduled, PENDING 1881 * could be clear now. We act as if SIGCONT is received after 1882 * TASK_TRACED is entered - ignore it. 1883 */ 1884 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 1885 gstop_done = task_participate_group_stop(current); 1886 1887 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 1888 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 1889 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 1890 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 1891 1892 /* entering a trap, clear TRAPPING */ 1893 task_clear_jobctl_trapping(current); 1894 1895 spin_unlock_irq(¤t->sighand->siglock); 1896 read_lock(&tasklist_lock); 1897 if (may_ptrace_stop()) { 1898 /* 1899 * Notify parents of the stop. 1900 * 1901 * While ptraced, there are two parents - the ptracer and 1902 * the real_parent of the group_leader. The ptracer should 1903 * know about every stop while the real parent is only 1904 * interested in the completion of group stop. The states 1905 * for the two don't interact with each other. Notify 1906 * separately unless they're gonna be duplicates. 1907 */ 1908 do_notify_parent_cldstop(current, true, why); 1909 if (gstop_done && ptrace_reparented(current)) 1910 do_notify_parent_cldstop(current, false, why); 1911 1912 /* 1913 * Don't want to allow preemption here, because 1914 * sys_ptrace() needs this task to be inactive. 1915 * 1916 * XXX: implement read_unlock_no_resched(). 1917 */ 1918 preempt_disable(); 1919 read_unlock(&tasklist_lock); 1920 preempt_enable_no_resched(); 1921 schedule(); 1922 } else { 1923 /* 1924 * By the time we got the lock, our tracer went away. 1925 * Don't drop the lock yet, another tracer may come. 1926 * 1927 * If @gstop_done, the ptracer went away between group stop 1928 * completion and here. During detach, it would have set 1929 * JOBCTL_STOP_PENDING on us and we'll re-enter 1930 * TASK_STOPPED in do_signal_stop() on return, so notifying 1931 * the real parent of the group stop completion is enough. 1932 */ 1933 if (gstop_done) 1934 do_notify_parent_cldstop(current, false, why); 1935 1936 __set_current_state(TASK_RUNNING); 1937 if (clear_code) 1938 current->exit_code = 0; 1939 read_unlock(&tasklist_lock); 1940 } 1941 1942 /* 1943 * While in TASK_TRACED, we were considered "frozen enough". 1944 * Now that we woke up, it's crucial if we're supposed to be 1945 * frozen that we freeze now before running anything substantial. 1946 */ 1947 try_to_freeze(); 1948 1949 /* 1950 * We are back. Now reacquire the siglock before touching 1951 * last_siginfo, so that we are sure to have synchronized with 1952 * any signal-sending on another CPU that wants to examine it. 1953 */ 1954 spin_lock_irq(¤t->sighand->siglock); 1955 current->last_siginfo = NULL; 1956 1957 /* LISTENING can be set only during STOP traps, clear it */ 1958 current->jobctl &= ~JOBCTL_LISTENING; 1959 1960 /* 1961 * Queued signals ignored us while we were stopped for tracing. 1962 * So check for any that we should take before resuming user mode. 1963 * This sets TIF_SIGPENDING, but never clears it. 1964 */ 1965 recalc_sigpending_tsk(current); 1966 } 1967 1968 static void ptrace_do_notify(int signr, int exit_code, int why) 1969 { 1970 siginfo_t info; 1971 1972 memset(&info, 0, sizeof info); 1973 info.si_signo = signr; 1974 info.si_code = exit_code; 1975 info.si_pid = task_pid_vnr(current); 1976 info.si_uid = current_uid(); 1977 1978 /* Let the debugger run. */ 1979 ptrace_stop(exit_code, why, 1, &info); 1980 } 1981 1982 void ptrace_notify(int exit_code) 1983 { 1984 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1985 1986 spin_lock_irq(¤t->sighand->siglock); 1987 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 1988 spin_unlock_irq(¤t->sighand->siglock); 1989 } 1990 1991 /** 1992 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 1993 * @signr: signr causing group stop if initiating 1994 * 1995 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 1996 * and participate in it. If already set, participate in the existing 1997 * group stop. If participated in a group stop (and thus slept), %true is 1998 * returned with siglock released. 1999 * 2000 * If ptraced, this function doesn't handle stop itself. Instead, 2001 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2002 * untouched. The caller must ensure that INTERRUPT trap handling takes 2003 * places afterwards. 2004 * 2005 * CONTEXT: 2006 * Must be called with @current->sighand->siglock held, which is released 2007 * on %true return. 2008 * 2009 * RETURNS: 2010 * %false if group stop is already cancelled or ptrace trap is scheduled. 2011 * %true if participated in group stop. 2012 */ 2013 static bool do_signal_stop(int signr) 2014 __releases(¤t->sighand->siglock) 2015 { 2016 struct signal_struct *sig = current->signal; 2017 2018 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2019 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2020 struct task_struct *t; 2021 2022 /* signr will be recorded in task->jobctl for retries */ 2023 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2024 2025 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2026 unlikely(signal_group_exit(sig))) 2027 return false; 2028 /* 2029 * There is no group stop already in progress. We must 2030 * initiate one now. 2031 * 2032 * While ptraced, a task may be resumed while group stop is 2033 * still in effect and then receive a stop signal and 2034 * initiate another group stop. This deviates from the 2035 * usual behavior as two consecutive stop signals can't 2036 * cause two group stops when !ptraced. That is why we 2037 * also check !task_is_stopped(t) below. 2038 * 2039 * The condition can be distinguished by testing whether 2040 * SIGNAL_STOP_STOPPED is already set. Don't generate 2041 * group_exit_code in such case. 2042 * 2043 * This is not necessary for SIGNAL_STOP_CONTINUED because 2044 * an intervening stop signal is required to cause two 2045 * continued events regardless of ptrace. 2046 */ 2047 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2048 sig->group_exit_code = signr; 2049 2050 sig->group_stop_count = 0; 2051 2052 if (task_set_jobctl_pending(current, signr | gstop)) 2053 sig->group_stop_count++; 2054 2055 for (t = next_thread(current); t != current; 2056 t = next_thread(t)) { 2057 /* 2058 * Setting state to TASK_STOPPED for a group 2059 * stop is always done with the siglock held, 2060 * so this check has no races. 2061 */ 2062 if (!task_is_stopped(t) && 2063 task_set_jobctl_pending(t, signr | gstop)) { 2064 sig->group_stop_count++; 2065 if (likely(!(t->ptrace & PT_SEIZED))) 2066 signal_wake_up(t, 0); 2067 else 2068 ptrace_trap_notify(t); 2069 } 2070 } 2071 } 2072 2073 if (likely(!current->ptrace)) { 2074 int notify = 0; 2075 2076 /* 2077 * If there are no other threads in the group, or if there 2078 * is a group stop in progress and we are the last to stop, 2079 * report to the parent. 2080 */ 2081 if (task_participate_group_stop(current)) 2082 notify = CLD_STOPPED; 2083 2084 __set_current_state(TASK_STOPPED); 2085 spin_unlock_irq(¤t->sighand->siglock); 2086 2087 /* 2088 * Notify the parent of the group stop completion. Because 2089 * we're not holding either the siglock or tasklist_lock 2090 * here, ptracer may attach inbetween; however, this is for 2091 * group stop and should always be delivered to the real 2092 * parent of the group leader. The new ptracer will get 2093 * its notification when this task transitions into 2094 * TASK_TRACED. 2095 */ 2096 if (notify) { 2097 read_lock(&tasklist_lock); 2098 do_notify_parent_cldstop(current, false, notify); 2099 read_unlock(&tasklist_lock); 2100 } 2101 2102 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2103 schedule(); 2104 return true; 2105 } else { 2106 /* 2107 * While ptraced, group stop is handled by STOP trap. 2108 * Schedule it and let the caller deal with it. 2109 */ 2110 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2111 return false; 2112 } 2113 } 2114 2115 /** 2116 * do_jobctl_trap - take care of ptrace jobctl traps 2117 * 2118 * When PT_SEIZED, it's used for both group stop and explicit 2119 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2120 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2121 * the stop signal; otherwise, %SIGTRAP. 2122 * 2123 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2124 * number as exit_code and no siginfo. 2125 * 2126 * CONTEXT: 2127 * Must be called with @current->sighand->siglock held, which may be 2128 * released and re-acquired before returning with intervening sleep. 2129 */ 2130 static void do_jobctl_trap(void) 2131 { 2132 struct signal_struct *signal = current->signal; 2133 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2134 2135 if (current->ptrace & PT_SEIZED) { 2136 if (!signal->group_stop_count && 2137 !(signal->flags & SIGNAL_STOP_STOPPED)) 2138 signr = SIGTRAP; 2139 WARN_ON_ONCE(!signr); 2140 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2141 CLD_STOPPED); 2142 } else { 2143 WARN_ON_ONCE(!signr); 2144 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2145 current->exit_code = 0; 2146 } 2147 } 2148 2149 static int ptrace_signal(int signr, siginfo_t *info, 2150 struct pt_regs *regs, void *cookie) 2151 { 2152 ptrace_signal_deliver(regs, cookie); 2153 /* 2154 * We do not check sig_kernel_stop(signr) but set this marker 2155 * unconditionally because we do not know whether debugger will 2156 * change signr. This flag has no meaning unless we are going 2157 * to stop after return from ptrace_stop(). In this case it will 2158 * be checked in do_signal_stop(), we should only stop if it was 2159 * not cleared by SIGCONT while we were sleeping. See also the 2160 * comment in dequeue_signal(). 2161 */ 2162 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2163 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2164 2165 /* We're back. Did the debugger cancel the sig? */ 2166 signr = current->exit_code; 2167 if (signr == 0) 2168 return signr; 2169 2170 current->exit_code = 0; 2171 2172 /* 2173 * Update the siginfo structure if the signal has 2174 * changed. If the debugger wanted something 2175 * specific in the siginfo structure then it should 2176 * have updated *info via PTRACE_SETSIGINFO. 2177 */ 2178 if (signr != info->si_signo) { 2179 info->si_signo = signr; 2180 info->si_errno = 0; 2181 info->si_code = SI_USER; 2182 rcu_read_lock(); 2183 info->si_pid = task_pid_vnr(current->parent); 2184 info->si_uid = map_cred_ns(__task_cred(current->parent), 2185 current_user_ns()); 2186 rcu_read_unlock(); 2187 } 2188 2189 /* If the (new) signal is now blocked, requeue it. */ 2190 if (sigismember(¤t->blocked, signr)) { 2191 specific_send_sig_info(signr, info, current); 2192 signr = 0; 2193 } 2194 2195 return signr; 2196 } 2197 2198 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 2199 struct pt_regs *regs, void *cookie) 2200 { 2201 struct sighand_struct *sighand = current->sighand; 2202 struct signal_struct *signal = current->signal; 2203 int signr; 2204 2205 relock: 2206 /* 2207 * We'll jump back here after any time we were stopped in TASK_STOPPED. 2208 * While in TASK_STOPPED, we were considered "frozen enough". 2209 * Now that we woke up, it's crucial if we're supposed to be 2210 * frozen that we freeze now before running anything substantial. 2211 */ 2212 try_to_freeze(); 2213 2214 spin_lock_irq(&sighand->siglock); 2215 /* 2216 * Every stopped thread goes here after wakeup. Check to see if 2217 * we should notify the parent, prepare_signal(SIGCONT) encodes 2218 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2219 */ 2220 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2221 int why; 2222 2223 if (signal->flags & SIGNAL_CLD_CONTINUED) 2224 why = CLD_CONTINUED; 2225 else 2226 why = CLD_STOPPED; 2227 2228 signal->flags &= ~SIGNAL_CLD_MASK; 2229 2230 spin_unlock_irq(&sighand->siglock); 2231 2232 /* 2233 * Notify the parent that we're continuing. This event is 2234 * always per-process and doesn't make whole lot of sense 2235 * for ptracers, who shouldn't consume the state via 2236 * wait(2) either, but, for backward compatibility, notify 2237 * the ptracer of the group leader too unless it's gonna be 2238 * a duplicate. 2239 */ 2240 read_lock(&tasklist_lock); 2241 do_notify_parent_cldstop(current, false, why); 2242 2243 if (ptrace_reparented(current->group_leader)) 2244 do_notify_parent_cldstop(current->group_leader, 2245 true, why); 2246 read_unlock(&tasklist_lock); 2247 2248 goto relock; 2249 } 2250 2251 for (;;) { 2252 struct k_sigaction *ka; 2253 2254 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2255 do_signal_stop(0)) 2256 goto relock; 2257 2258 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2259 do_jobctl_trap(); 2260 spin_unlock_irq(&sighand->siglock); 2261 goto relock; 2262 } 2263 2264 signr = dequeue_signal(current, ¤t->blocked, info); 2265 2266 if (!signr) 2267 break; /* will return 0 */ 2268 2269 if (unlikely(current->ptrace) && signr != SIGKILL) { 2270 signr = ptrace_signal(signr, info, 2271 regs, cookie); 2272 if (!signr) 2273 continue; 2274 } 2275 2276 ka = &sighand->action[signr-1]; 2277 2278 /* Trace actually delivered signals. */ 2279 trace_signal_deliver(signr, info, ka); 2280 2281 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2282 continue; 2283 if (ka->sa.sa_handler != SIG_DFL) { 2284 /* Run the handler. */ 2285 *return_ka = *ka; 2286 2287 if (ka->sa.sa_flags & SA_ONESHOT) 2288 ka->sa.sa_handler = SIG_DFL; 2289 2290 break; /* will return non-zero "signr" value */ 2291 } 2292 2293 /* 2294 * Now we are doing the default action for this signal. 2295 */ 2296 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2297 continue; 2298 2299 /* 2300 * Global init gets no signals it doesn't want. 2301 * Container-init gets no signals it doesn't want from same 2302 * container. 2303 * 2304 * Note that if global/container-init sees a sig_kernel_only() 2305 * signal here, the signal must have been generated internally 2306 * or must have come from an ancestor namespace. In either 2307 * case, the signal cannot be dropped. 2308 */ 2309 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2310 !sig_kernel_only(signr)) 2311 continue; 2312 2313 if (sig_kernel_stop(signr)) { 2314 /* 2315 * The default action is to stop all threads in 2316 * the thread group. The job control signals 2317 * do nothing in an orphaned pgrp, but SIGSTOP 2318 * always works. Note that siglock needs to be 2319 * dropped during the call to is_orphaned_pgrp() 2320 * because of lock ordering with tasklist_lock. 2321 * This allows an intervening SIGCONT to be posted. 2322 * We need to check for that and bail out if necessary. 2323 */ 2324 if (signr != SIGSTOP) { 2325 spin_unlock_irq(&sighand->siglock); 2326 2327 /* signals can be posted during this window */ 2328 2329 if (is_current_pgrp_orphaned()) 2330 goto relock; 2331 2332 spin_lock_irq(&sighand->siglock); 2333 } 2334 2335 if (likely(do_signal_stop(info->si_signo))) { 2336 /* It released the siglock. */ 2337 goto relock; 2338 } 2339 2340 /* 2341 * We didn't actually stop, due to a race 2342 * with SIGCONT or something like that. 2343 */ 2344 continue; 2345 } 2346 2347 spin_unlock_irq(&sighand->siglock); 2348 2349 /* 2350 * Anything else is fatal, maybe with a core dump. 2351 */ 2352 current->flags |= PF_SIGNALED; 2353 2354 if (sig_kernel_coredump(signr)) { 2355 if (print_fatal_signals) 2356 print_fatal_signal(regs, info->si_signo); 2357 /* 2358 * If it was able to dump core, this kills all 2359 * other threads in the group and synchronizes with 2360 * their demise. If we lost the race with another 2361 * thread getting here, it set group_exit_code 2362 * first and our do_group_exit call below will use 2363 * that value and ignore the one we pass it. 2364 */ 2365 do_coredump(info->si_signo, info->si_signo, regs); 2366 } 2367 2368 /* 2369 * Death signals, no core dump. 2370 */ 2371 do_group_exit(info->si_signo); 2372 /* NOTREACHED */ 2373 } 2374 spin_unlock_irq(&sighand->siglock); 2375 return signr; 2376 } 2377 2378 /** 2379 * block_sigmask - add @ka's signal mask to current->blocked 2380 * @ka: action for @signr 2381 * @signr: signal that has been successfully delivered 2382 * 2383 * This function should be called when a signal has succesfully been 2384 * delivered. It adds the mask of signals for @ka to current->blocked 2385 * so that they are blocked during the execution of the signal 2386 * handler. In addition, @signr will be blocked unless %SA_NODEFER is 2387 * set in @ka->sa.sa_flags. 2388 */ 2389 void block_sigmask(struct k_sigaction *ka, int signr) 2390 { 2391 sigset_t blocked; 2392 2393 sigorsets(&blocked, ¤t->blocked, &ka->sa.sa_mask); 2394 if (!(ka->sa.sa_flags & SA_NODEFER)) 2395 sigaddset(&blocked, signr); 2396 set_current_blocked(&blocked); 2397 } 2398 2399 /* 2400 * It could be that complete_signal() picked us to notify about the 2401 * group-wide signal. Other threads should be notified now to take 2402 * the shared signals in @which since we will not. 2403 */ 2404 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2405 { 2406 sigset_t retarget; 2407 struct task_struct *t; 2408 2409 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2410 if (sigisemptyset(&retarget)) 2411 return; 2412 2413 t = tsk; 2414 while_each_thread(tsk, t) { 2415 if (t->flags & PF_EXITING) 2416 continue; 2417 2418 if (!has_pending_signals(&retarget, &t->blocked)) 2419 continue; 2420 /* Remove the signals this thread can handle. */ 2421 sigandsets(&retarget, &retarget, &t->blocked); 2422 2423 if (!signal_pending(t)) 2424 signal_wake_up(t, 0); 2425 2426 if (sigisemptyset(&retarget)) 2427 break; 2428 } 2429 } 2430 2431 void exit_signals(struct task_struct *tsk) 2432 { 2433 int group_stop = 0; 2434 sigset_t unblocked; 2435 2436 /* 2437 * @tsk is about to have PF_EXITING set - lock out users which 2438 * expect stable threadgroup. 2439 */ 2440 threadgroup_change_begin(tsk); 2441 2442 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2443 tsk->flags |= PF_EXITING; 2444 threadgroup_change_end(tsk); 2445 return; 2446 } 2447 2448 spin_lock_irq(&tsk->sighand->siglock); 2449 /* 2450 * From now this task is not visible for group-wide signals, 2451 * see wants_signal(), do_signal_stop(). 2452 */ 2453 tsk->flags |= PF_EXITING; 2454 2455 threadgroup_change_end(tsk); 2456 2457 if (!signal_pending(tsk)) 2458 goto out; 2459 2460 unblocked = tsk->blocked; 2461 signotset(&unblocked); 2462 retarget_shared_pending(tsk, &unblocked); 2463 2464 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2465 task_participate_group_stop(tsk)) 2466 group_stop = CLD_STOPPED; 2467 out: 2468 spin_unlock_irq(&tsk->sighand->siglock); 2469 2470 /* 2471 * If group stop has completed, deliver the notification. This 2472 * should always go to the real parent of the group leader. 2473 */ 2474 if (unlikely(group_stop)) { 2475 read_lock(&tasklist_lock); 2476 do_notify_parent_cldstop(tsk, false, group_stop); 2477 read_unlock(&tasklist_lock); 2478 } 2479 } 2480 2481 EXPORT_SYMBOL(recalc_sigpending); 2482 EXPORT_SYMBOL_GPL(dequeue_signal); 2483 EXPORT_SYMBOL(flush_signals); 2484 EXPORT_SYMBOL(force_sig); 2485 EXPORT_SYMBOL(send_sig); 2486 EXPORT_SYMBOL(send_sig_info); 2487 EXPORT_SYMBOL(sigprocmask); 2488 EXPORT_SYMBOL(block_all_signals); 2489 EXPORT_SYMBOL(unblock_all_signals); 2490 2491 2492 /* 2493 * System call entry points. 2494 */ 2495 2496 /** 2497 * sys_restart_syscall - restart a system call 2498 */ 2499 SYSCALL_DEFINE0(restart_syscall) 2500 { 2501 struct restart_block *restart = ¤t_thread_info()->restart_block; 2502 return restart->fn(restart); 2503 } 2504 2505 long do_no_restart_syscall(struct restart_block *param) 2506 { 2507 return -EINTR; 2508 } 2509 2510 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2511 { 2512 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2513 sigset_t newblocked; 2514 /* A set of now blocked but previously unblocked signals. */ 2515 sigandnsets(&newblocked, newset, ¤t->blocked); 2516 retarget_shared_pending(tsk, &newblocked); 2517 } 2518 tsk->blocked = *newset; 2519 recalc_sigpending(); 2520 } 2521 2522 /** 2523 * set_current_blocked - change current->blocked mask 2524 * @newset: new mask 2525 * 2526 * It is wrong to change ->blocked directly, this helper should be used 2527 * to ensure the process can't miss a shared signal we are going to block. 2528 */ 2529 void set_current_blocked(const sigset_t *newset) 2530 { 2531 struct task_struct *tsk = current; 2532 2533 spin_lock_irq(&tsk->sighand->siglock); 2534 __set_task_blocked(tsk, newset); 2535 spin_unlock_irq(&tsk->sighand->siglock); 2536 } 2537 2538 /* 2539 * This is also useful for kernel threads that want to temporarily 2540 * (or permanently) block certain signals. 2541 * 2542 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2543 * interface happily blocks "unblockable" signals like SIGKILL 2544 * and friends. 2545 */ 2546 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2547 { 2548 struct task_struct *tsk = current; 2549 sigset_t newset; 2550 2551 /* Lockless, only current can change ->blocked, never from irq */ 2552 if (oldset) 2553 *oldset = tsk->blocked; 2554 2555 switch (how) { 2556 case SIG_BLOCK: 2557 sigorsets(&newset, &tsk->blocked, set); 2558 break; 2559 case SIG_UNBLOCK: 2560 sigandnsets(&newset, &tsk->blocked, set); 2561 break; 2562 case SIG_SETMASK: 2563 newset = *set; 2564 break; 2565 default: 2566 return -EINVAL; 2567 } 2568 2569 set_current_blocked(&newset); 2570 return 0; 2571 } 2572 2573 /** 2574 * sys_rt_sigprocmask - change the list of currently blocked signals 2575 * @how: whether to add, remove, or set signals 2576 * @nset: stores pending signals 2577 * @oset: previous value of signal mask if non-null 2578 * @sigsetsize: size of sigset_t type 2579 */ 2580 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2581 sigset_t __user *, oset, size_t, sigsetsize) 2582 { 2583 sigset_t old_set, new_set; 2584 int error; 2585 2586 /* XXX: Don't preclude handling different sized sigset_t's. */ 2587 if (sigsetsize != sizeof(sigset_t)) 2588 return -EINVAL; 2589 2590 old_set = current->blocked; 2591 2592 if (nset) { 2593 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2594 return -EFAULT; 2595 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2596 2597 error = sigprocmask(how, &new_set, NULL); 2598 if (error) 2599 return error; 2600 } 2601 2602 if (oset) { 2603 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2604 return -EFAULT; 2605 } 2606 2607 return 0; 2608 } 2609 2610 long do_sigpending(void __user *set, unsigned long sigsetsize) 2611 { 2612 long error = -EINVAL; 2613 sigset_t pending; 2614 2615 if (sigsetsize > sizeof(sigset_t)) 2616 goto out; 2617 2618 spin_lock_irq(¤t->sighand->siglock); 2619 sigorsets(&pending, ¤t->pending.signal, 2620 ¤t->signal->shared_pending.signal); 2621 spin_unlock_irq(¤t->sighand->siglock); 2622 2623 /* Outside the lock because only this thread touches it. */ 2624 sigandsets(&pending, ¤t->blocked, &pending); 2625 2626 error = -EFAULT; 2627 if (!copy_to_user(set, &pending, sigsetsize)) 2628 error = 0; 2629 2630 out: 2631 return error; 2632 } 2633 2634 /** 2635 * sys_rt_sigpending - examine a pending signal that has been raised 2636 * while blocked 2637 * @set: stores pending signals 2638 * @sigsetsize: size of sigset_t type or larger 2639 */ 2640 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize) 2641 { 2642 return do_sigpending(set, sigsetsize); 2643 } 2644 2645 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2646 2647 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2648 { 2649 int err; 2650 2651 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2652 return -EFAULT; 2653 if (from->si_code < 0) 2654 return __copy_to_user(to, from, sizeof(siginfo_t)) 2655 ? -EFAULT : 0; 2656 /* 2657 * If you change siginfo_t structure, please be sure 2658 * this code is fixed accordingly. 2659 * Please remember to update the signalfd_copyinfo() function 2660 * inside fs/signalfd.c too, in case siginfo_t changes. 2661 * It should never copy any pad contained in the structure 2662 * to avoid security leaks, but must copy the generic 2663 * 3 ints plus the relevant union member. 2664 */ 2665 err = __put_user(from->si_signo, &to->si_signo); 2666 err |= __put_user(from->si_errno, &to->si_errno); 2667 err |= __put_user((short)from->si_code, &to->si_code); 2668 switch (from->si_code & __SI_MASK) { 2669 case __SI_KILL: 2670 err |= __put_user(from->si_pid, &to->si_pid); 2671 err |= __put_user(from->si_uid, &to->si_uid); 2672 break; 2673 case __SI_TIMER: 2674 err |= __put_user(from->si_tid, &to->si_tid); 2675 err |= __put_user(from->si_overrun, &to->si_overrun); 2676 err |= __put_user(from->si_ptr, &to->si_ptr); 2677 break; 2678 case __SI_POLL: 2679 err |= __put_user(from->si_band, &to->si_band); 2680 err |= __put_user(from->si_fd, &to->si_fd); 2681 break; 2682 case __SI_FAULT: 2683 err |= __put_user(from->si_addr, &to->si_addr); 2684 #ifdef __ARCH_SI_TRAPNO 2685 err |= __put_user(from->si_trapno, &to->si_trapno); 2686 #endif 2687 #ifdef BUS_MCEERR_AO 2688 /* 2689 * Other callers might not initialize the si_lsb field, 2690 * so check explicitly for the right codes here. 2691 */ 2692 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO) 2693 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); 2694 #endif 2695 break; 2696 case __SI_CHLD: 2697 err |= __put_user(from->si_pid, &to->si_pid); 2698 err |= __put_user(from->si_uid, &to->si_uid); 2699 err |= __put_user(from->si_status, &to->si_status); 2700 err |= __put_user(from->si_utime, &to->si_utime); 2701 err |= __put_user(from->si_stime, &to->si_stime); 2702 break; 2703 case __SI_RT: /* This is not generated by the kernel as of now. */ 2704 case __SI_MESGQ: /* But this is */ 2705 err |= __put_user(from->si_pid, &to->si_pid); 2706 err |= __put_user(from->si_uid, &to->si_uid); 2707 err |= __put_user(from->si_ptr, &to->si_ptr); 2708 break; 2709 default: /* this is just in case for now ... */ 2710 err |= __put_user(from->si_pid, &to->si_pid); 2711 err |= __put_user(from->si_uid, &to->si_uid); 2712 break; 2713 } 2714 return err; 2715 } 2716 2717 #endif 2718 2719 /** 2720 * do_sigtimedwait - wait for queued signals specified in @which 2721 * @which: queued signals to wait for 2722 * @info: if non-null, the signal's siginfo is returned here 2723 * @ts: upper bound on process time suspension 2724 */ 2725 int do_sigtimedwait(const sigset_t *which, siginfo_t *info, 2726 const struct timespec *ts) 2727 { 2728 struct task_struct *tsk = current; 2729 long timeout = MAX_SCHEDULE_TIMEOUT; 2730 sigset_t mask = *which; 2731 int sig; 2732 2733 if (ts) { 2734 if (!timespec_valid(ts)) 2735 return -EINVAL; 2736 timeout = timespec_to_jiffies(ts); 2737 /* 2738 * We can be close to the next tick, add another one 2739 * to ensure we will wait at least the time asked for. 2740 */ 2741 if (ts->tv_sec || ts->tv_nsec) 2742 timeout++; 2743 } 2744 2745 /* 2746 * Invert the set of allowed signals to get those we want to block. 2747 */ 2748 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2749 signotset(&mask); 2750 2751 spin_lock_irq(&tsk->sighand->siglock); 2752 sig = dequeue_signal(tsk, &mask, info); 2753 if (!sig && timeout) { 2754 /* 2755 * None ready, temporarily unblock those we're interested 2756 * while we are sleeping in so that we'll be awakened when 2757 * they arrive. Unblocking is always fine, we can avoid 2758 * set_current_blocked(). 2759 */ 2760 tsk->real_blocked = tsk->blocked; 2761 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 2762 recalc_sigpending(); 2763 spin_unlock_irq(&tsk->sighand->siglock); 2764 2765 timeout = schedule_timeout_interruptible(timeout); 2766 2767 spin_lock_irq(&tsk->sighand->siglock); 2768 __set_task_blocked(tsk, &tsk->real_blocked); 2769 siginitset(&tsk->real_blocked, 0); 2770 sig = dequeue_signal(tsk, &mask, info); 2771 } 2772 spin_unlock_irq(&tsk->sighand->siglock); 2773 2774 if (sig) 2775 return sig; 2776 return timeout ? -EINTR : -EAGAIN; 2777 } 2778 2779 /** 2780 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 2781 * in @uthese 2782 * @uthese: queued signals to wait for 2783 * @uinfo: if non-null, the signal's siginfo is returned here 2784 * @uts: upper bound on process time suspension 2785 * @sigsetsize: size of sigset_t type 2786 */ 2787 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 2788 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 2789 size_t, sigsetsize) 2790 { 2791 sigset_t these; 2792 struct timespec ts; 2793 siginfo_t info; 2794 int ret; 2795 2796 /* XXX: Don't preclude handling different sized sigset_t's. */ 2797 if (sigsetsize != sizeof(sigset_t)) 2798 return -EINVAL; 2799 2800 if (copy_from_user(&these, uthese, sizeof(these))) 2801 return -EFAULT; 2802 2803 if (uts) { 2804 if (copy_from_user(&ts, uts, sizeof(ts))) 2805 return -EFAULT; 2806 } 2807 2808 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 2809 2810 if (ret > 0 && uinfo) { 2811 if (copy_siginfo_to_user(uinfo, &info)) 2812 ret = -EFAULT; 2813 } 2814 2815 return ret; 2816 } 2817 2818 /** 2819 * sys_kill - send a signal to a process 2820 * @pid: the PID of the process 2821 * @sig: signal to be sent 2822 */ 2823 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 2824 { 2825 struct siginfo info; 2826 2827 info.si_signo = sig; 2828 info.si_errno = 0; 2829 info.si_code = SI_USER; 2830 info.si_pid = task_tgid_vnr(current); 2831 info.si_uid = current_uid(); 2832 2833 return kill_something_info(sig, &info, pid); 2834 } 2835 2836 static int 2837 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 2838 { 2839 struct task_struct *p; 2840 int error = -ESRCH; 2841 2842 rcu_read_lock(); 2843 p = find_task_by_vpid(pid); 2844 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2845 error = check_kill_permission(sig, info, p); 2846 /* 2847 * The null signal is a permissions and process existence 2848 * probe. No signal is actually delivered. 2849 */ 2850 if (!error && sig) { 2851 error = do_send_sig_info(sig, info, p, false); 2852 /* 2853 * If lock_task_sighand() failed we pretend the task 2854 * dies after receiving the signal. The window is tiny, 2855 * and the signal is private anyway. 2856 */ 2857 if (unlikely(error == -ESRCH)) 2858 error = 0; 2859 } 2860 } 2861 rcu_read_unlock(); 2862 2863 return error; 2864 } 2865 2866 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2867 { 2868 struct siginfo info; 2869 2870 info.si_signo = sig; 2871 info.si_errno = 0; 2872 info.si_code = SI_TKILL; 2873 info.si_pid = task_tgid_vnr(current); 2874 info.si_uid = current_uid(); 2875 2876 return do_send_specific(tgid, pid, sig, &info); 2877 } 2878 2879 /** 2880 * sys_tgkill - send signal to one specific thread 2881 * @tgid: the thread group ID of the thread 2882 * @pid: the PID of the thread 2883 * @sig: signal to be sent 2884 * 2885 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2886 * exists but it's not belonging to the target process anymore. This 2887 * method solves the problem of threads exiting and PIDs getting reused. 2888 */ 2889 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 2890 { 2891 /* This is only valid for single tasks */ 2892 if (pid <= 0 || tgid <= 0) 2893 return -EINVAL; 2894 2895 return do_tkill(tgid, pid, sig); 2896 } 2897 2898 /** 2899 * sys_tkill - send signal to one specific task 2900 * @pid: the PID of the task 2901 * @sig: signal to be sent 2902 * 2903 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2904 */ 2905 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 2906 { 2907 /* This is only valid for single tasks */ 2908 if (pid <= 0) 2909 return -EINVAL; 2910 2911 return do_tkill(0, pid, sig); 2912 } 2913 2914 /** 2915 * sys_rt_sigqueueinfo - send signal information to a signal 2916 * @pid: the PID of the thread 2917 * @sig: signal to be sent 2918 * @uinfo: signal info to be sent 2919 */ 2920 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 2921 siginfo_t __user *, uinfo) 2922 { 2923 siginfo_t info; 2924 2925 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2926 return -EFAULT; 2927 2928 /* Not even root can pretend to send signals from the kernel. 2929 * Nor can they impersonate a kill()/tgkill(), which adds source info. 2930 */ 2931 if (info.si_code >= 0 || info.si_code == SI_TKILL) { 2932 /* We used to allow any < 0 si_code */ 2933 WARN_ON_ONCE(info.si_code < 0); 2934 return -EPERM; 2935 } 2936 info.si_signo = sig; 2937 2938 /* POSIX.1b doesn't mention process groups. */ 2939 return kill_proc_info(sig, &info, pid); 2940 } 2941 2942 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 2943 { 2944 /* This is only valid for single tasks */ 2945 if (pid <= 0 || tgid <= 0) 2946 return -EINVAL; 2947 2948 /* Not even root can pretend to send signals from the kernel. 2949 * Nor can they impersonate a kill()/tgkill(), which adds source info. 2950 */ 2951 if (info->si_code >= 0 || info->si_code == SI_TKILL) { 2952 /* We used to allow any < 0 si_code */ 2953 WARN_ON_ONCE(info->si_code < 0); 2954 return -EPERM; 2955 } 2956 info->si_signo = sig; 2957 2958 return do_send_specific(tgid, pid, sig, info); 2959 } 2960 2961 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 2962 siginfo_t __user *, uinfo) 2963 { 2964 siginfo_t info; 2965 2966 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2967 return -EFAULT; 2968 2969 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 2970 } 2971 2972 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2973 { 2974 struct task_struct *t = current; 2975 struct k_sigaction *k; 2976 sigset_t mask; 2977 2978 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2979 return -EINVAL; 2980 2981 k = &t->sighand->action[sig-1]; 2982 2983 spin_lock_irq(¤t->sighand->siglock); 2984 if (oact) 2985 *oact = *k; 2986 2987 if (act) { 2988 sigdelsetmask(&act->sa.sa_mask, 2989 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2990 *k = *act; 2991 /* 2992 * POSIX 3.3.1.3: 2993 * "Setting a signal action to SIG_IGN for a signal that is 2994 * pending shall cause the pending signal to be discarded, 2995 * whether or not it is blocked." 2996 * 2997 * "Setting a signal action to SIG_DFL for a signal that is 2998 * pending and whose default action is to ignore the signal 2999 * (for example, SIGCHLD), shall cause the pending signal to 3000 * be discarded, whether or not it is blocked" 3001 */ 3002 if (sig_handler_ignored(sig_handler(t, sig), sig)) { 3003 sigemptyset(&mask); 3004 sigaddset(&mask, sig); 3005 rm_from_queue_full(&mask, &t->signal->shared_pending); 3006 do { 3007 rm_from_queue_full(&mask, &t->pending); 3008 t = next_thread(t); 3009 } while (t != current); 3010 } 3011 } 3012 3013 spin_unlock_irq(¤t->sighand->siglock); 3014 return 0; 3015 } 3016 3017 int 3018 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 3019 { 3020 stack_t oss; 3021 int error; 3022 3023 oss.ss_sp = (void __user *) current->sas_ss_sp; 3024 oss.ss_size = current->sas_ss_size; 3025 oss.ss_flags = sas_ss_flags(sp); 3026 3027 if (uss) { 3028 void __user *ss_sp; 3029 size_t ss_size; 3030 int ss_flags; 3031 3032 error = -EFAULT; 3033 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) 3034 goto out; 3035 error = __get_user(ss_sp, &uss->ss_sp) | 3036 __get_user(ss_flags, &uss->ss_flags) | 3037 __get_user(ss_size, &uss->ss_size); 3038 if (error) 3039 goto out; 3040 3041 error = -EPERM; 3042 if (on_sig_stack(sp)) 3043 goto out; 3044 3045 error = -EINVAL; 3046 /* 3047 * Note - this code used to test ss_flags incorrectly: 3048 * old code may have been written using ss_flags==0 3049 * to mean ss_flags==SS_ONSTACK (as this was the only 3050 * way that worked) - this fix preserves that older 3051 * mechanism. 3052 */ 3053 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 3054 goto out; 3055 3056 if (ss_flags == SS_DISABLE) { 3057 ss_size = 0; 3058 ss_sp = NULL; 3059 } else { 3060 error = -ENOMEM; 3061 if (ss_size < MINSIGSTKSZ) 3062 goto out; 3063 } 3064 3065 current->sas_ss_sp = (unsigned long) ss_sp; 3066 current->sas_ss_size = ss_size; 3067 } 3068 3069 error = 0; 3070 if (uoss) { 3071 error = -EFAULT; 3072 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) 3073 goto out; 3074 error = __put_user(oss.ss_sp, &uoss->ss_sp) | 3075 __put_user(oss.ss_size, &uoss->ss_size) | 3076 __put_user(oss.ss_flags, &uoss->ss_flags); 3077 } 3078 3079 out: 3080 return error; 3081 } 3082 3083 #ifdef __ARCH_WANT_SYS_SIGPENDING 3084 3085 /** 3086 * sys_sigpending - examine pending signals 3087 * @set: where mask of pending signal is returned 3088 */ 3089 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 3090 { 3091 return do_sigpending(set, sizeof(*set)); 3092 } 3093 3094 #endif 3095 3096 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 3097 /** 3098 * sys_sigprocmask - examine and change blocked signals 3099 * @how: whether to add, remove, or set signals 3100 * @nset: signals to add or remove (if non-null) 3101 * @oset: previous value of signal mask if non-null 3102 * 3103 * Some platforms have their own version with special arguments; 3104 * others support only sys_rt_sigprocmask. 3105 */ 3106 3107 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3108 old_sigset_t __user *, oset) 3109 { 3110 old_sigset_t old_set, new_set; 3111 sigset_t new_blocked; 3112 3113 old_set = current->blocked.sig[0]; 3114 3115 if (nset) { 3116 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3117 return -EFAULT; 3118 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 3119 3120 new_blocked = current->blocked; 3121 3122 switch (how) { 3123 case SIG_BLOCK: 3124 sigaddsetmask(&new_blocked, new_set); 3125 break; 3126 case SIG_UNBLOCK: 3127 sigdelsetmask(&new_blocked, new_set); 3128 break; 3129 case SIG_SETMASK: 3130 new_blocked.sig[0] = new_set; 3131 break; 3132 default: 3133 return -EINVAL; 3134 } 3135 3136 set_current_blocked(&new_blocked); 3137 } 3138 3139 if (oset) { 3140 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3141 return -EFAULT; 3142 } 3143 3144 return 0; 3145 } 3146 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3147 3148 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 3149 /** 3150 * sys_rt_sigaction - alter an action taken by a process 3151 * @sig: signal to be sent 3152 * @act: new sigaction 3153 * @oact: used to save the previous sigaction 3154 * @sigsetsize: size of sigset_t type 3155 */ 3156 SYSCALL_DEFINE4(rt_sigaction, int, sig, 3157 const struct sigaction __user *, act, 3158 struct sigaction __user *, oact, 3159 size_t, sigsetsize) 3160 { 3161 struct k_sigaction new_sa, old_sa; 3162 int ret = -EINVAL; 3163 3164 /* XXX: Don't preclude handling different sized sigset_t's. */ 3165 if (sigsetsize != sizeof(sigset_t)) 3166 goto out; 3167 3168 if (act) { 3169 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3170 return -EFAULT; 3171 } 3172 3173 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3174 3175 if (!ret && oact) { 3176 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3177 return -EFAULT; 3178 } 3179 out: 3180 return ret; 3181 } 3182 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 3183 3184 #ifdef __ARCH_WANT_SYS_SGETMASK 3185 3186 /* 3187 * For backwards compatibility. Functionality superseded by sigprocmask. 3188 */ 3189 SYSCALL_DEFINE0(sgetmask) 3190 { 3191 /* SMP safe */ 3192 return current->blocked.sig[0]; 3193 } 3194 3195 SYSCALL_DEFINE1(ssetmask, int, newmask) 3196 { 3197 int old = current->blocked.sig[0]; 3198 sigset_t newset; 3199 3200 siginitset(&newset, newmask & ~(sigmask(SIGKILL) | sigmask(SIGSTOP))); 3201 set_current_blocked(&newset); 3202 3203 return old; 3204 } 3205 #endif /* __ARCH_WANT_SGETMASK */ 3206 3207 #ifdef __ARCH_WANT_SYS_SIGNAL 3208 /* 3209 * For backwards compatibility. Functionality superseded by sigaction. 3210 */ 3211 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 3212 { 3213 struct k_sigaction new_sa, old_sa; 3214 int ret; 3215 3216 new_sa.sa.sa_handler = handler; 3217 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 3218 sigemptyset(&new_sa.sa.sa_mask); 3219 3220 ret = do_sigaction(sig, &new_sa, &old_sa); 3221 3222 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 3223 } 3224 #endif /* __ARCH_WANT_SYS_SIGNAL */ 3225 3226 #ifdef __ARCH_WANT_SYS_PAUSE 3227 3228 SYSCALL_DEFINE0(pause) 3229 { 3230 while (!signal_pending(current)) { 3231 current->state = TASK_INTERRUPTIBLE; 3232 schedule(); 3233 } 3234 return -ERESTARTNOHAND; 3235 } 3236 3237 #endif 3238 3239 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 3240 /** 3241 * sys_rt_sigsuspend - replace the signal mask for a value with the 3242 * @unewset value until a signal is received 3243 * @unewset: new signal mask value 3244 * @sigsetsize: size of sigset_t type 3245 */ 3246 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 3247 { 3248 sigset_t newset; 3249 3250 /* XXX: Don't preclude handling different sized sigset_t's. */ 3251 if (sigsetsize != sizeof(sigset_t)) 3252 return -EINVAL; 3253 3254 if (copy_from_user(&newset, unewset, sizeof(newset))) 3255 return -EFAULT; 3256 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3257 3258 current->saved_sigmask = current->blocked; 3259 set_current_blocked(&newset); 3260 3261 current->state = TASK_INTERRUPTIBLE; 3262 schedule(); 3263 set_restore_sigmask(); 3264 return -ERESTARTNOHAND; 3265 } 3266 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 3267 3268 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) 3269 { 3270 return NULL; 3271 } 3272 3273 void __init signals_init(void) 3274 { 3275 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 3276 } 3277 3278 #ifdef CONFIG_KGDB_KDB 3279 #include <linux/kdb.h> 3280 /* 3281 * kdb_send_sig_info - Allows kdb to send signals without exposing 3282 * signal internals. This function checks if the required locks are 3283 * available before calling the main signal code, to avoid kdb 3284 * deadlocks. 3285 */ 3286 void 3287 kdb_send_sig_info(struct task_struct *t, struct siginfo *info) 3288 { 3289 static struct task_struct *kdb_prev_t; 3290 int sig, new_t; 3291 if (!spin_trylock(&t->sighand->siglock)) { 3292 kdb_printf("Can't do kill command now.\n" 3293 "The sigmask lock is held somewhere else in " 3294 "kernel, try again later\n"); 3295 return; 3296 } 3297 spin_unlock(&t->sighand->siglock); 3298 new_t = kdb_prev_t != t; 3299 kdb_prev_t = t; 3300 if (t->state != TASK_RUNNING && new_t) { 3301 kdb_printf("Process is not RUNNING, sending a signal from " 3302 "kdb risks deadlock\n" 3303 "on the run queue locks. " 3304 "The signal has _not_ been sent.\n" 3305 "Reissue the kill command if you want to risk " 3306 "the deadlock.\n"); 3307 return; 3308 } 3309 sig = info->si_signo; 3310 if (send_sig_info(sig, info, t)) 3311 kdb_printf("Fail to deliver Signal %d to process %d.\n", 3312 sig, t->pid); 3313 else 3314 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 3315 } 3316 #endif /* CONFIG_KGDB_KDB */ 3317