xref: /openbmc/linux/kernel/signal.c (revision 62ea22c4)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/fs.h>
23 #include <linux/tty.h>
24 #include <linux/binfmts.h>
25 #include <linux/coredump.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/ptrace.h>
29 #include <linux/signal.h>
30 #include <linux/signalfd.h>
31 #include <linux/ratelimit.h>
32 #include <linux/tracehook.h>
33 #include <linux/capability.h>
34 #include <linux/freezer.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/nsproxy.h>
37 #include <linux/user_namespace.h>
38 #include <linux/uprobes.h>
39 #include <linux/compat.h>
40 #include <linux/cn_proc.h>
41 #include <linux/compiler.h>
42 #include <linux/posix-timers.h>
43 #include <linux/livepatch.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/signal.h>
47 
48 #include <asm/param.h>
49 #include <linux/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/siginfo.h>
52 #include <asm/cacheflush.h>
53 #include "audit.h"	/* audit_signal_info() */
54 
55 /*
56  * SLAB caches for signal bits.
57  */
58 
59 static struct kmem_cache *sigqueue_cachep;
60 
61 int print_fatal_signals __read_mostly;
62 
63 static void __user *sig_handler(struct task_struct *t, int sig)
64 {
65 	return t->sighand->action[sig - 1].sa.sa_handler;
66 }
67 
68 static int sig_handler_ignored(void __user *handler, int sig)
69 {
70 	/* Is it explicitly or implicitly ignored? */
71 	return handler == SIG_IGN ||
72 		(handler == SIG_DFL && sig_kernel_ignore(sig));
73 }
74 
75 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
76 {
77 	void __user *handler;
78 
79 	handler = sig_handler(t, sig);
80 
81 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
82 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
83 		return 1;
84 
85 	return sig_handler_ignored(handler, sig);
86 }
87 
88 static int sig_ignored(struct task_struct *t, int sig, bool force)
89 {
90 	/*
91 	 * Blocked signals are never ignored, since the
92 	 * signal handler may change by the time it is
93 	 * unblocked.
94 	 */
95 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
96 		return 0;
97 
98 	/*
99 	 * Tracers may want to know about even ignored signal unless it
100 	 * is SIGKILL which can't be reported anyway but can be ignored
101 	 * by SIGNAL_UNKILLABLE task.
102 	 */
103 	if (t->ptrace && sig != SIGKILL)
104 		return 0;
105 
106 	return sig_task_ignored(t, sig, force);
107 }
108 
109 /*
110  * Re-calculate pending state from the set of locally pending
111  * signals, globally pending signals, and blocked signals.
112  */
113 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
114 {
115 	unsigned long ready;
116 	long i;
117 
118 	switch (_NSIG_WORDS) {
119 	default:
120 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
121 			ready |= signal->sig[i] &~ blocked->sig[i];
122 		break;
123 
124 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
125 		ready |= signal->sig[2] &~ blocked->sig[2];
126 		ready |= signal->sig[1] &~ blocked->sig[1];
127 		ready |= signal->sig[0] &~ blocked->sig[0];
128 		break;
129 
130 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
131 		ready |= signal->sig[0] &~ blocked->sig[0];
132 		break;
133 
134 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
135 	}
136 	return ready !=	0;
137 }
138 
139 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
140 
141 static int recalc_sigpending_tsk(struct task_struct *t)
142 {
143 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
144 	    PENDING(&t->pending, &t->blocked) ||
145 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
146 		set_tsk_thread_flag(t, TIF_SIGPENDING);
147 		return 1;
148 	}
149 	/*
150 	 * We must never clear the flag in another thread, or in current
151 	 * when it's possible the current syscall is returning -ERESTART*.
152 	 * So we don't clear it here, and only callers who know they should do.
153 	 */
154 	return 0;
155 }
156 
157 /*
158  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
159  * This is superfluous when called on current, the wakeup is a harmless no-op.
160  */
161 void recalc_sigpending_and_wake(struct task_struct *t)
162 {
163 	if (recalc_sigpending_tsk(t))
164 		signal_wake_up(t, 0);
165 }
166 
167 void recalc_sigpending(void)
168 {
169 	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
170 	    !klp_patch_pending(current))
171 		clear_thread_flag(TIF_SIGPENDING);
172 
173 }
174 
175 /* Given the mask, find the first available signal that should be serviced. */
176 
177 #define SYNCHRONOUS_MASK \
178 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
179 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
180 
181 int next_signal(struct sigpending *pending, sigset_t *mask)
182 {
183 	unsigned long i, *s, *m, x;
184 	int sig = 0;
185 
186 	s = pending->signal.sig;
187 	m = mask->sig;
188 
189 	/*
190 	 * Handle the first word specially: it contains the
191 	 * synchronous signals that need to be dequeued first.
192 	 */
193 	x = *s &~ *m;
194 	if (x) {
195 		if (x & SYNCHRONOUS_MASK)
196 			x &= SYNCHRONOUS_MASK;
197 		sig = ffz(~x) + 1;
198 		return sig;
199 	}
200 
201 	switch (_NSIG_WORDS) {
202 	default:
203 		for (i = 1; i < _NSIG_WORDS; ++i) {
204 			x = *++s &~ *++m;
205 			if (!x)
206 				continue;
207 			sig = ffz(~x) + i*_NSIG_BPW + 1;
208 			break;
209 		}
210 		break;
211 
212 	case 2:
213 		x = s[1] &~ m[1];
214 		if (!x)
215 			break;
216 		sig = ffz(~x) + _NSIG_BPW + 1;
217 		break;
218 
219 	case 1:
220 		/* Nothing to do */
221 		break;
222 	}
223 
224 	return sig;
225 }
226 
227 static inline void print_dropped_signal(int sig)
228 {
229 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
230 
231 	if (!print_fatal_signals)
232 		return;
233 
234 	if (!__ratelimit(&ratelimit_state))
235 		return;
236 
237 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
238 				current->comm, current->pid, sig);
239 }
240 
241 /**
242  * task_set_jobctl_pending - set jobctl pending bits
243  * @task: target task
244  * @mask: pending bits to set
245  *
246  * Clear @mask from @task->jobctl.  @mask must be subset of
247  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
248  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
249  * cleared.  If @task is already being killed or exiting, this function
250  * becomes noop.
251  *
252  * CONTEXT:
253  * Must be called with @task->sighand->siglock held.
254  *
255  * RETURNS:
256  * %true if @mask is set, %false if made noop because @task was dying.
257  */
258 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
259 {
260 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
261 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
262 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
263 
264 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
265 		return false;
266 
267 	if (mask & JOBCTL_STOP_SIGMASK)
268 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
269 
270 	task->jobctl |= mask;
271 	return true;
272 }
273 
274 /**
275  * task_clear_jobctl_trapping - clear jobctl trapping bit
276  * @task: target task
277  *
278  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
279  * Clear it and wake up the ptracer.  Note that we don't need any further
280  * locking.  @task->siglock guarantees that @task->parent points to the
281  * ptracer.
282  *
283  * CONTEXT:
284  * Must be called with @task->sighand->siglock held.
285  */
286 void task_clear_jobctl_trapping(struct task_struct *task)
287 {
288 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
289 		task->jobctl &= ~JOBCTL_TRAPPING;
290 		smp_mb();	/* advised by wake_up_bit() */
291 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
292 	}
293 }
294 
295 /**
296  * task_clear_jobctl_pending - clear jobctl pending bits
297  * @task: target task
298  * @mask: pending bits to clear
299  *
300  * Clear @mask from @task->jobctl.  @mask must be subset of
301  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
302  * STOP bits are cleared together.
303  *
304  * If clearing of @mask leaves no stop or trap pending, this function calls
305  * task_clear_jobctl_trapping().
306  *
307  * CONTEXT:
308  * Must be called with @task->sighand->siglock held.
309  */
310 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
311 {
312 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
313 
314 	if (mask & JOBCTL_STOP_PENDING)
315 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
316 
317 	task->jobctl &= ~mask;
318 
319 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
320 		task_clear_jobctl_trapping(task);
321 }
322 
323 /**
324  * task_participate_group_stop - participate in a group stop
325  * @task: task participating in a group stop
326  *
327  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
328  * Group stop states are cleared and the group stop count is consumed if
329  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
330  * stop, the appropriate %SIGNAL_* flags are set.
331  *
332  * CONTEXT:
333  * Must be called with @task->sighand->siglock held.
334  *
335  * RETURNS:
336  * %true if group stop completion should be notified to the parent, %false
337  * otherwise.
338  */
339 static bool task_participate_group_stop(struct task_struct *task)
340 {
341 	struct signal_struct *sig = task->signal;
342 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
343 
344 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
345 
346 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
347 
348 	if (!consume)
349 		return false;
350 
351 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
352 		sig->group_stop_count--;
353 
354 	/*
355 	 * Tell the caller to notify completion iff we are entering into a
356 	 * fresh group stop.  Read comment in do_signal_stop() for details.
357 	 */
358 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
359 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
360 		return true;
361 	}
362 	return false;
363 }
364 
365 /*
366  * allocate a new signal queue record
367  * - this may be called without locks if and only if t == current, otherwise an
368  *   appropriate lock must be held to stop the target task from exiting
369  */
370 static struct sigqueue *
371 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
372 {
373 	struct sigqueue *q = NULL;
374 	struct user_struct *user;
375 
376 	/*
377 	 * Protect access to @t credentials. This can go away when all
378 	 * callers hold rcu read lock.
379 	 */
380 	rcu_read_lock();
381 	user = get_uid(__task_cred(t)->user);
382 	atomic_inc(&user->sigpending);
383 	rcu_read_unlock();
384 
385 	if (override_rlimit ||
386 	    atomic_read(&user->sigpending) <=
387 			task_rlimit(t, RLIMIT_SIGPENDING)) {
388 		q = kmem_cache_alloc(sigqueue_cachep, flags);
389 	} else {
390 		print_dropped_signal(sig);
391 	}
392 
393 	if (unlikely(q == NULL)) {
394 		atomic_dec(&user->sigpending);
395 		free_uid(user);
396 	} else {
397 		INIT_LIST_HEAD(&q->list);
398 		q->flags = 0;
399 		q->user = user;
400 	}
401 
402 	return q;
403 }
404 
405 static void __sigqueue_free(struct sigqueue *q)
406 {
407 	if (q->flags & SIGQUEUE_PREALLOC)
408 		return;
409 	atomic_dec(&q->user->sigpending);
410 	free_uid(q->user);
411 	kmem_cache_free(sigqueue_cachep, q);
412 }
413 
414 void flush_sigqueue(struct sigpending *queue)
415 {
416 	struct sigqueue *q;
417 
418 	sigemptyset(&queue->signal);
419 	while (!list_empty(&queue->list)) {
420 		q = list_entry(queue->list.next, struct sigqueue , list);
421 		list_del_init(&q->list);
422 		__sigqueue_free(q);
423 	}
424 }
425 
426 /*
427  * Flush all pending signals for this kthread.
428  */
429 void flush_signals(struct task_struct *t)
430 {
431 	unsigned long flags;
432 
433 	spin_lock_irqsave(&t->sighand->siglock, flags);
434 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
435 	flush_sigqueue(&t->pending);
436 	flush_sigqueue(&t->signal->shared_pending);
437 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
438 }
439 
440 #ifdef CONFIG_POSIX_TIMERS
441 static void __flush_itimer_signals(struct sigpending *pending)
442 {
443 	sigset_t signal, retain;
444 	struct sigqueue *q, *n;
445 
446 	signal = pending->signal;
447 	sigemptyset(&retain);
448 
449 	list_for_each_entry_safe(q, n, &pending->list, list) {
450 		int sig = q->info.si_signo;
451 
452 		if (likely(q->info.si_code != SI_TIMER)) {
453 			sigaddset(&retain, sig);
454 		} else {
455 			sigdelset(&signal, sig);
456 			list_del_init(&q->list);
457 			__sigqueue_free(q);
458 		}
459 	}
460 
461 	sigorsets(&pending->signal, &signal, &retain);
462 }
463 
464 void flush_itimer_signals(void)
465 {
466 	struct task_struct *tsk = current;
467 	unsigned long flags;
468 
469 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
470 	__flush_itimer_signals(&tsk->pending);
471 	__flush_itimer_signals(&tsk->signal->shared_pending);
472 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
473 }
474 #endif
475 
476 void ignore_signals(struct task_struct *t)
477 {
478 	int i;
479 
480 	for (i = 0; i < _NSIG; ++i)
481 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
482 
483 	flush_signals(t);
484 }
485 
486 /*
487  * Flush all handlers for a task.
488  */
489 
490 void
491 flush_signal_handlers(struct task_struct *t, int force_default)
492 {
493 	int i;
494 	struct k_sigaction *ka = &t->sighand->action[0];
495 	for (i = _NSIG ; i != 0 ; i--) {
496 		if (force_default || ka->sa.sa_handler != SIG_IGN)
497 			ka->sa.sa_handler = SIG_DFL;
498 		ka->sa.sa_flags = 0;
499 #ifdef __ARCH_HAS_SA_RESTORER
500 		ka->sa.sa_restorer = NULL;
501 #endif
502 		sigemptyset(&ka->sa.sa_mask);
503 		ka++;
504 	}
505 }
506 
507 int unhandled_signal(struct task_struct *tsk, int sig)
508 {
509 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
510 	if (is_global_init(tsk))
511 		return 1;
512 	if (handler != SIG_IGN && handler != SIG_DFL)
513 		return 0;
514 	/* if ptraced, let the tracer determine */
515 	return !tsk->ptrace;
516 }
517 
518 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
519 			   bool *resched_timer)
520 {
521 	struct sigqueue *q, *first = NULL;
522 
523 	/*
524 	 * Collect the siginfo appropriate to this signal.  Check if
525 	 * there is another siginfo for the same signal.
526 	*/
527 	list_for_each_entry(q, &list->list, list) {
528 		if (q->info.si_signo == sig) {
529 			if (first)
530 				goto still_pending;
531 			first = q;
532 		}
533 	}
534 
535 	sigdelset(&list->signal, sig);
536 
537 	if (first) {
538 still_pending:
539 		list_del_init(&first->list);
540 		copy_siginfo(info, &first->info);
541 
542 		*resched_timer =
543 			(first->flags & SIGQUEUE_PREALLOC) &&
544 			(info->si_code == SI_TIMER) &&
545 			(info->si_sys_private);
546 
547 		__sigqueue_free(first);
548 	} else {
549 		/*
550 		 * Ok, it wasn't in the queue.  This must be
551 		 * a fast-pathed signal or we must have been
552 		 * out of queue space.  So zero out the info.
553 		 */
554 		clear_siginfo(info);
555 		info->si_signo = sig;
556 		info->si_errno = 0;
557 		info->si_code = SI_USER;
558 		info->si_pid = 0;
559 		info->si_uid = 0;
560 	}
561 }
562 
563 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
564 			siginfo_t *info, bool *resched_timer)
565 {
566 	int sig = next_signal(pending, mask);
567 
568 	if (sig)
569 		collect_signal(sig, pending, info, resched_timer);
570 	return sig;
571 }
572 
573 /*
574  * Dequeue a signal and return the element to the caller, which is
575  * expected to free it.
576  *
577  * All callers have to hold the siglock.
578  */
579 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
580 {
581 	bool resched_timer = false;
582 	int signr;
583 
584 	/* We only dequeue private signals from ourselves, we don't let
585 	 * signalfd steal them
586 	 */
587 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
588 	if (!signr) {
589 		signr = __dequeue_signal(&tsk->signal->shared_pending,
590 					 mask, info, &resched_timer);
591 #ifdef CONFIG_POSIX_TIMERS
592 		/*
593 		 * itimer signal ?
594 		 *
595 		 * itimers are process shared and we restart periodic
596 		 * itimers in the signal delivery path to prevent DoS
597 		 * attacks in the high resolution timer case. This is
598 		 * compliant with the old way of self-restarting
599 		 * itimers, as the SIGALRM is a legacy signal and only
600 		 * queued once. Changing the restart behaviour to
601 		 * restart the timer in the signal dequeue path is
602 		 * reducing the timer noise on heavy loaded !highres
603 		 * systems too.
604 		 */
605 		if (unlikely(signr == SIGALRM)) {
606 			struct hrtimer *tmr = &tsk->signal->real_timer;
607 
608 			if (!hrtimer_is_queued(tmr) &&
609 			    tsk->signal->it_real_incr != 0) {
610 				hrtimer_forward(tmr, tmr->base->get_time(),
611 						tsk->signal->it_real_incr);
612 				hrtimer_restart(tmr);
613 			}
614 		}
615 #endif
616 	}
617 
618 	recalc_sigpending();
619 	if (!signr)
620 		return 0;
621 
622 	if (unlikely(sig_kernel_stop(signr))) {
623 		/*
624 		 * Set a marker that we have dequeued a stop signal.  Our
625 		 * caller might release the siglock and then the pending
626 		 * stop signal it is about to process is no longer in the
627 		 * pending bitmasks, but must still be cleared by a SIGCONT
628 		 * (and overruled by a SIGKILL).  So those cases clear this
629 		 * shared flag after we've set it.  Note that this flag may
630 		 * remain set after the signal we return is ignored or
631 		 * handled.  That doesn't matter because its only purpose
632 		 * is to alert stop-signal processing code when another
633 		 * processor has come along and cleared the flag.
634 		 */
635 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
636 	}
637 #ifdef CONFIG_POSIX_TIMERS
638 	if (resched_timer) {
639 		/*
640 		 * Release the siglock to ensure proper locking order
641 		 * of timer locks outside of siglocks.  Note, we leave
642 		 * irqs disabled here, since the posix-timers code is
643 		 * about to disable them again anyway.
644 		 */
645 		spin_unlock(&tsk->sighand->siglock);
646 		posixtimer_rearm(info);
647 		spin_lock(&tsk->sighand->siglock);
648 
649 		/* Don't expose the si_sys_private value to userspace */
650 		info->si_sys_private = 0;
651 	}
652 #endif
653 	return signr;
654 }
655 
656 /*
657  * Tell a process that it has a new active signal..
658  *
659  * NOTE! we rely on the previous spin_lock to
660  * lock interrupts for us! We can only be called with
661  * "siglock" held, and the local interrupt must
662  * have been disabled when that got acquired!
663  *
664  * No need to set need_resched since signal event passing
665  * goes through ->blocked
666  */
667 void signal_wake_up_state(struct task_struct *t, unsigned int state)
668 {
669 	set_tsk_thread_flag(t, TIF_SIGPENDING);
670 	/*
671 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
672 	 * case. We don't check t->state here because there is a race with it
673 	 * executing another processor and just now entering stopped state.
674 	 * By using wake_up_state, we ensure the process will wake up and
675 	 * handle its death signal.
676 	 */
677 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
678 		kick_process(t);
679 }
680 
681 /*
682  * Remove signals in mask from the pending set and queue.
683  * Returns 1 if any signals were found.
684  *
685  * All callers must be holding the siglock.
686  */
687 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
688 {
689 	struct sigqueue *q, *n;
690 	sigset_t m;
691 
692 	sigandsets(&m, mask, &s->signal);
693 	if (sigisemptyset(&m))
694 		return 0;
695 
696 	sigandnsets(&s->signal, &s->signal, mask);
697 	list_for_each_entry_safe(q, n, &s->list, list) {
698 		if (sigismember(mask, q->info.si_signo)) {
699 			list_del_init(&q->list);
700 			__sigqueue_free(q);
701 		}
702 	}
703 	return 1;
704 }
705 
706 static inline int is_si_special(const struct siginfo *info)
707 {
708 	return info <= SEND_SIG_FORCED;
709 }
710 
711 static inline bool si_fromuser(const struct siginfo *info)
712 {
713 	return info == SEND_SIG_NOINFO ||
714 		(!is_si_special(info) && SI_FROMUSER(info));
715 }
716 
717 /*
718  * called with RCU read lock from check_kill_permission()
719  */
720 static int kill_ok_by_cred(struct task_struct *t)
721 {
722 	const struct cred *cred = current_cred();
723 	const struct cred *tcred = __task_cred(t);
724 
725 	if (uid_eq(cred->euid, tcred->suid) ||
726 	    uid_eq(cred->euid, tcred->uid)  ||
727 	    uid_eq(cred->uid,  tcred->suid) ||
728 	    uid_eq(cred->uid,  tcred->uid))
729 		return 1;
730 
731 	if (ns_capable(tcred->user_ns, CAP_KILL))
732 		return 1;
733 
734 	return 0;
735 }
736 
737 /*
738  * Bad permissions for sending the signal
739  * - the caller must hold the RCU read lock
740  */
741 static int check_kill_permission(int sig, struct siginfo *info,
742 				 struct task_struct *t)
743 {
744 	struct pid *sid;
745 	int error;
746 
747 	if (!valid_signal(sig))
748 		return -EINVAL;
749 
750 	if (!si_fromuser(info))
751 		return 0;
752 
753 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
754 	if (error)
755 		return error;
756 
757 	if (!same_thread_group(current, t) &&
758 	    !kill_ok_by_cred(t)) {
759 		switch (sig) {
760 		case SIGCONT:
761 			sid = task_session(t);
762 			/*
763 			 * We don't return the error if sid == NULL. The
764 			 * task was unhashed, the caller must notice this.
765 			 */
766 			if (!sid || sid == task_session(current))
767 				break;
768 		default:
769 			return -EPERM;
770 		}
771 	}
772 
773 	return security_task_kill(t, info, sig, NULL);
774 }
775 
776 /**
777  * ptrace_trap_notify - schedule trap to notify ptracer
778  * @t: tracee wanting to notify tracer
779  *
780  * This function schedules sticky ptrace trap which is cleared on the next
781  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
782  * ptracer.
783  *
784  * If @t is running, STOP trap will be taken.  If trapped for STOP and
785  * ptracer is listening for events, tracee is woken up so that it can
786  * re-trap for the new event.  If trapped otherwise, STOP trap will be
787  * eventually taken without returning to userland after the existing traps
788  * are finished by PTRACE_CONT.
789  *
790  * CONTEXT:
791  * Must be called with @task->sighand->siglock held.
792  */
793 static void ptrace_trap_notify(struct task_struct *t)
794 {
795 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
796 	assert_spin_locked(&t->sighand->siglock);
797 
798 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
799 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
800 }
801 
802 /*
803  * Handle magic process-wide effects of stop/continue signals. Unlike
804  * the signal actions, these happen immediately at signal-generation
805  * time regardless of blocking, ignoring, or handling.  This does the
806  * actual continuing for SIGCONT, but not the actual stopping for stop
807  * signals. The process stop is done as a signal action for SIG_DFL.
808  *
809  * Returns true if the signal should be actually delivered, otherwise
810  * it should be dropped.
811  */
812 static bool prepare_signal(int sig, struct task_struct *p, bool force)
813 {
814 	struct signal_struct *signal = p->signal;
815 	struct task_struct *t;
816 	sigset_t flush;
817 
818 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
819 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
820 			return sig == SIGKILL;
821 		/*
822 		 * The process is in the middle of dying, nothing to do.
823 		 */
824 	} else if (sig_kernel_stop(sig)) {
825 		/*
826 		 * This is a stop signal.  Remove SIGCONT from all queues.
827 		 */
828 		siginitset(&flush, sigmask(SIGCONT));
829 		flush_sigqueue_mask(&flush, &signal->shared_pending);
830 		for_each_thread(p, t)
831 			flush_sigqueue_mask(&flush, &t->pending);
832 	} else if (sig == SIGCONT) {
833 		unsigned int why;
834 		/*
835 		 * Remove all stop signals from all queues, wake all threads.
836 		 */
837 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
838 		flush_sigqueue_mask(&flush, &signal->shared_pending);
839 		for_each_thread(p, t) {
840 			flush_sigqueue_mask(&flush, &t->pending);
841 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
842 			if (likely(!(t->ptrace & PT_SEIZED)))
843 				wake_up_state(t, __TASK_STOPPED);
844 			else
845 				ptrace_trap_notify(t);
846 		}
847 
848 		/*
849 		 * Notify the parent with CLD_CONTINUED if we were stopped.
850 		 *
851 		 * If we were in the middle of a group stop, we pretend it
852 		 * was already finished, and then continued. Since SIGCHLD
853 		 * doesn't queue we report only CLD_STOPPED, as if the next
854 		 * CLD_CONTINUED was dropped.
855 		 */
856 		why = 0;
857 		if (signal->flags & SIGNAL_STOP_STOPPED)
858 			why |= SIGNAL_CLD_CONTINUED;
859 		else if (signal->group_stop_count)
860 			why |= SIGNAL_CLD_STOPPED;
861 
862 		if (why) {
863 			/*
864 			 * The first thread which returns from do_signal_stop()
865 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
866 			 * notify its parent. See get_signal_to_deliver().
867 			 */
868 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
869 			signal->group_stop_count = 0;
870 			signal->group_exit_code = 0;
871 		}
872 	}
873 
874 	return !sig_ignored(p, sig, force);
875 }
876 
877 /*
878  * Test if P wants to take SIG.  After we've checked all threads with this,
879  * it's equivalent to finding no threads not blocking SIG.  Any threads not
880  * blocking SIG were ruled out because they are not running and already
881  * have pending signals.  Such threads will dequeue from the shared queue
882  * as soon as they're available, so putting the signal on the shared queue
883  * will be equivalent to sending it to one such thread.
884  */
885 static inline int wants_signal(int sig, struct task_struct *p)
886 {
887 	if (sigismember(&p->blocked, sig))
888 		return 0;
889 	if (p->flags & PF_EXITING)
890 		return 0;
891 	if (sig == SIGKILL)
892 		return 1;
893 	if (task_is_stopped_or_traced(p))
894 		return 0;
895 	return task_curr(p) || !signal_pending(p);
896 }
897 
898 static void complete_signal(int sig, struct task_struct *p, int group)
899 {
900 	struct signal_struct *signal = p->signal;
901 	struct task_struct *t;
902 
903 	/*
904 	 * Now find a thread we can wake up to take the signal off the queue.
905 	 *
906 	 * If the main thread wants the signal, it gets first crack.
907 	 * Probably the least surprising to the average bear.
908 	 */
909 	if (wants_signal(sig, p))
910 		t = p;
911 	else if (!group || thread_group_empty(p))
912 		/*
913 		 * There is just one thread and it does not need to be woken.
914 		 * It will dequeue unblocked signals before it runs again.
915 		 */
916 		return;
917 	else {
918 		/*
919 		 * Otherwise try to find a suitable thread.
920 		 */
921 		t = signal->curr_target;
922 		while (!wants_signal(sig, t)) {
923 			t = next_thread(t);
924 			if (t == signal->curr_target)
925 				/*
926 				 * No thread needs to be woken.
927 				 * Any eligible threads will see
928 				 * the signal in the queue soon.
929 				 */
930 				return;
931 		}
932 		signal->curr_target = t;
933 	}
934 
935 	/*
936 	 * Found a killable thread.  If the signal will be fatal,
937 	 * then start taking the whole group down immediately.
938 	 */
939 	if (sig_fatal(p, sig) &&
940 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
941 	    !sigismember(&t->real_blocked, sig) &&
942 	    (sig == SIGKILL || !p->ptrace)) {
943 		/*
944 		 * This signal will be fatal to the whole group.
945 		 */
946 		if (!sig_kernel_coredump(sig)) {
947 			/*
948 			 * Start a group exit and wake everybody up.
949 			 * This way we don't have other threads
950 			 * running and doing things after a slower
951 			 * thread has the fatal signal pending.
952 			 */
953 			signal->flags = SIGNAL_GROUP_EXIT;
954 			signal->group_exit_code = sig;
955 			signal->group_stop_count = 0;
956 			t = p;
957 			do {
958 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
959 				sigaddset(&t->pending.signal, SIGKILL);
960 				signal_wake_up(t, 1);
961 			} while_each_thread(p, t);
962 			return;
963 		}
964 	}
965 
966 	/*
967 	 * The signal is already in the shared-pending queue.
968 	 * Tell the chosen thread to wake up and dequeue it.
969 	 */
970 	signal_wake_up(t, sig == SIGKILL);
971 	return;
972 }
973 
974 static inline int legacy_queue(struct sigpending *signals, int sig)
975 {
976 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
977 }
978 
979 #ifdef CONFIG_USER_NS
980 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
981 {
982 	if (current_user_ns() == task_cred_xxx(t, user_ns))
983 		return;
984 
985 	if (SI_FROMKERNEL(info))
986 		return;
987 
988 	rcu_read_lock();
989 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
990 					make_kuid(current_user_ns(), info->si_uid));
991 	rcu_read_unlock();
992 }
993 #else
994 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
995 {
996 	return;
997 }
998 #endif
999 
1000 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1001 			int group, int from_ancestor_ns)
1002 {
1003 	struct sigpending *pending;
1004 	struct sigqueue *q;
1005 	int override_rlimit;
1006 	int ret = 0, result;
1007 
1008 	assert_spin_locked(&t->sighand->siglock);
1009 
1010 	result = TRACE_SIGNAL_IGNORED;
1011 	if (!prepare_signal(sig, t,
1012 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1013 		goto ret;
1014 
1015 	pending = group ? &t->signal->shared_pending : &t->pending;
1016 	/*
1017 	 * Short-circuit ignored signals and support queuing
1018 	 * exactly one non-rt signal, so that we can get more
1019 	 * detailed information about the cause of the signal.
1020 	 */
1021 	result = TRACE_SIGNAL_ALREADY_PENDING;
1022 	if (legacy_queue(pending, sig))
1023 		goto ret;
1024 
1025 	result = TRACE_SIGNAL_DELIVERED;
1026 	/*
1027 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1028 	 * or SIGKILL.
1029 	 */
1030 	if (info == SEND_SIG_FORCED)
1031 		goto out_set;
1032 
1033 	/*
1034 	 * Real-time signals must be queued if sent by sigqueue, or
1035 	 * some other real-time mechanism.  It is implementation
1036 	 * defined whether kill() does so.  We attempt to do so, on
1037 	 * the principle of least surprise, but since kill is not
1038 	 * allowed to fail with EAGAIN when low on memory we just
1039 	 * make sure at least one signal gets delivered and don't
1040 	 * pass on the info struct.
1041 	 */
1042 	if (sig < SIGRTMIN)
1043 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1044 	else
1045 		override_rlimit = 0;
1046 
1047 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1048 	if (q) {
1049 		list_add_tail(&q->list, &pending->list);
1050 		switch ((unsigned long) info) {
1051 		case (unsigned long) SEND_SIG_NOINFO:
1052 			clear_siginfo(&q->info);
1053 			q->info.si_signo = sig;
1054 			q->info.si_errno = 0;
1055 			q->info.si_code = SI_USER;
1056 			q->info.si_pid = task_tgid_nr_ns(current,
1057 							task_active_pid_ns(t));
1058 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1059 			break;
1060 		case (unsigned long) SEND_SIG_PRIV:
1061 			clear_siginfo(&q->info);
1062 			q->info.si_signo = sig;
1063 			q->info.si_errno = 0;
1064 			q->info.si_code = SI_KERNEL;
1065 			q->info.si_pid = 0;
1066 			q->info.si_uid = 0;
1067 			break;
1068 		default:
1069 			copy_siginfo(&q->info, info);
1070 			if (from_ancestor_ns)
1071 				q->info.si_pid = 0;
1072 			break;
1073 		}
1074 
1075 		userns_fixup_signal_uid(&q->info, t);
1076 
1077 	} else if (!is_si_special(info)) {
1078 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1079 			/*
1080 			 * Queue overflow, abort.  We may abort if the
1081 			 * signal was rt and sent by user using something
1082 			 * other than kill().
1083 			 */
1084 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1085 			ret = -EAGAIN;
1086 			goto ret;
1087 		} else {
1088 			/*
1089 			 * This is a silent loss of information.  We still
1090 			 * send the signal, but the *info bits are lost.
1091 			 */
1092 			result = TRACE_SIGNAL_LOSE_INFO;
1093 		}
1094 	}
1095 
1096 out_set:
1097 	signalfd_notify(t, sig);
1098 	sigaddset(&pending->signal, sig);
1099 	complete_signal(sig, t, group);
1100 ret:
1101 	trace_signal_generate(sig, info, t, group, result);
1102 	return ret;
1103 }
1104 
1105 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1106 			int group)
1107 {
1108 	int from_ancestor_ns = 0;
1109 
1110 #ifdef CONFIG_PID_NS
1111 	from_ancestor_ns = si_fromuser(info) &&
1112 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1113 #endif
1114 
1115 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1116 }
1117 
1118 static void print_fatal_signal(int signr)
1119 {
1120 	struct pt_regs *regs = signal_pt_regs();
1121 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1122 
1123 #if defined(__i386__) && !defined(__arch_um__)
1124 	pr_info("code at %08lx: ", regs->ip);
1125 	{
1126 		int i;
1127 		for (i = 0; i < 16; i++) {
1128 			unsigned char insn;
1129 
1130 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1131 				break;
1132 			pr_cont("%02x ", insn);
1133 		}
1134 	}
1135 	pr_cont("\n");
1136 #endif
1137 	preempt_disable();
1138 	show_regs(regs);
1139 	preempt_enable();
1140 }
1141 
1142 static int __init setup_print_fatal_signals(char *str)
1143 {
1144 	get_option (&str, &print_fatal_signals);
1145 
1146 	return 1;
1147 }
1148 
1149 __setup("print-fatal-signals=", setup_print_fatal_signals);
1150 
1151 int
1152 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1153 {
1154 	return send_signal(sig, info, p, 1);
1155 }
1156 
1157 static int
1158 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1159 {
1160 	return send_signal(sig, info, t, 0);
1161 }
1162 
1163 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1164 			bool group)
1165 {
1166 	unsigned long flags;
1167 	int ret = -ESRCH;
1168 
1169 	if (lock_task_sighand(p, &flags)) {
1170 		ret = send_signal(sig, info, p, group);
1171 		unlock_task_sighand(p, &flags);
1172 	}
1173 
1174 	return ret;
1175 }
1176 
1177 /*
1178  * Force a signal that the process can't ignore: if necessary
1179  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1180  *
1181  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1182  * since we do not want to have a signal handler that was blocked
1183  * be invoked when user space had explicitly blocked it.
1184  *
1185  * We don't want to have recursive SIGSEGV's etc, for example,
1186  * that is why we also clear SIGNAL_UNKILLABLE.
1187  */
1188 int
1189 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1190 {
1191 	unsigned long int flags;
1192 	int ret, blocked, ignored;
1193 	struct k_sigaction *action;
1194 
1195 	spin_lock_irqsave(&t->sighand->siglock, flags);
1196 	action = &t->sighand->action[sig-1];
1197 	ignored = action->sa.sa_handler == SIG_IGN;
1198 	blocked = sigismember(&t->blocked, sig);
1199 	if (blocked || ignored) {
1200 		action->sa.sa_handler = SIG_DFL;
1201 		if (blocked) {
1202 			sigdelset(&t->blocked, sig);
1203 			recalc_sigpending_and_wake(t);
1204 		}
1205 	}
1206 	/*
1207 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1208 	 * debugging to leave init killable.
1209 	 */
1210 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1211 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1212 	ret = specific_send_sig_info(sig, info, t);
1213 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1214 
1215 	return ret;
1216 }
1217 
1218 /*
1219  * Nuke all other threads in the group.
1220  */
1221 int zap_other_threads(struct task_struct *p)
1222 {
1223 	struct task_struct *t = p;
1224 	int count = 0;
1225 
1226 	p->signal->group_stop_count = 0;
1227 
1228 	while_each_thread(p, t) {
1229 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1230 		count++;
1231 
1232 		/* Don't bother with already dead threads */
1233 		if (t->exit_state)
1234 			continue;
1235 		sigaddset(&t->pending.signal, SIGKILL);
1236 		signal_wake_up(t, 1);
1237 	}
1238 
1239 	return count;
1240 }
1241 
1242 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1243 					   unsigned long *flags)
1244 {
1245 	struct sighand_struct *sighand;
1246 
1247 	for (;;) {
1248 		/*
1249 		 * Disable interrupts early to avoid deadlocks.
1250 		 * See rcu_read_unlock() comment header for details.
1251 		 */
1252 		local_irq_save(*flags);
1253 		rcu_read_lock();
1254 		sighand = rcu_dereference(tsk->sighand);
1255 		if (unlikely(sighand == NULL)) {
1256 			rcu_read_unlock();
1257 			local_irq_restore(*flags);
1258 			break;
1259 		}
1260 		/*
1261 		 * This sighand can be already freed and even reused, but
1262 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1263 		 * initializes ->siglock: this slab can't go away, it has
1264 		 * the same object type, ->siglock can't be reinitialized.
1265 		 *
1266 		 * We need to ensure that tsk->sighand is still the same
1267 		 * after we take the lock, we can race with de_thread() or
1268 		 * __exit_signal(). In the latter case the next iteration
1269 		 * must see ->sighand == NULL.
1270 		 */
1271 		spin_lock(&sighand->siglock);
1272 		if (likely(sighand == tsk->sighand)) {
1273 			rcu_read_unlock();
1274 			break;
1275 		}
1276 		spin_unlock(&sighand->siglock);
1277 		rcu_read_unlock();
1278 		local_irq_restore(*flags);
1279 	}
1280 
1281 	return sighand;
1282 }
1283 
1284 /*
1285  * send signal info to all the members of a group
1286  */
1287 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1288 {
1289 	int ret;
1290 
1291 	rcu_read_lock();
1292 	ret = check_kill_permission(sig, info, p);
1293 	rcu_read_unlock();
1294 
1295 	if (!ret && sig)
1296 		ret = do_send_sig_info(sig, info, p, true);
1297 
1298 	return ret;
1299 }
1300 
1301 /*
1302  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1303  * control characters do (^C, ^Z etc)
1304  * - the caller must hold at least a readlock on tasklist_lock
1305  */
1306 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1307 {
1308 	struct task_struct *p = NULL;
1309 	int retval, success;
1310 
1311 	success = 0;
1312 	retval = -ESRCH;
1313 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1314 		int err = group_send_sig_info(sig, info, p);
1315 		success |= !err;
1316 		retval = err;
1317 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1318 	return success ? 0 : retval;
1319 }
1320 
1321 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1322 {
1323 	int error = -ESRCH;
1324 	struct task_struct *p;
1325 
1326 	for (;;) {
1327 		rcu_read_lock();
1328 		p = pid_task(pid, PIDTYPE_PID);
1329 		if (p)
1330 			error = group_send_sig_info(sig, info, p);
1331 		rcu_read_unlock();
1332 		if (likely(!p || error != -ESRCH))
1333 			return error;
1334 
1335 		/*
1336 		 * The task was unhashed in between, try again.  If it
1337 		 * is dead, pid_task() will return NULL, if we race with
1338 		 * de_thread() it will find the new leader.
1339 		 */
1340 	}
1341 }
1342 
1343 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1344 {
1345 	int error;
1346 	rcu_read_lock();
1347 	error = kill_pid_info(sig, info, find_vpid(pid));
1348 	rcu_read_unlock();
1349 	return error;
1350 }
1351 
1352 static int kill_as_cred_perm(const struct cred *cred,
1353 			     struct task_struct *target)
1354 {
1355 	const struct cred *pcred = __task_cred(target);
1356 	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1357 	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1358 		return 0;
1359 	return 1;
1360 }
1361 
1362 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1363 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1364 			 const struct cred *cred)
1365 {
1366 	int ret = -EINVAL;
1367 	struct task_struct *p;
1368 	unsigned long flags;
1369 
1370 	if (!valid_signal(sig))
1371 		return ret;
1372 
1373 	rcu_read_lock();
1374 	p = pid_task(pid, PIDTYPE_PID);
1375 	if (!p) {
1376 		ret = -ESRCH;
1377 		goto out_unlock;
1378 	}
1379 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1380 		ret = -EPERM;
1381 		goto out_unlock;
1382 	}
1383 	ret = security_task_kill(p, info, sig, cred);
1384 	if (ret)
1385 		goto out_unlock;
1386 
1387 	if (sig) {
1388 		if (lock_task_sighand(p, &flags)) {
1389 			ret = __send_signal(sig, info, p, 1, 0);
1390 			unlock_task_sighand(p, &flags);
1391 		} else
1392 			ret = -ESRCH;
1393 	}
1394 out_unlock:
1395 	rcu_read_unlock();
1396 	return ret;
1397 }
1398 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1399 
1400 /*
1401  * kill_something_info() interprets pid in interesting ways just like kill(2).
1402  *
1403  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1404  * is probably wrong.  Should make it like BSD or SYSV.
1405  */
1406 
1407 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1408 {
1409 	int ret;
1410 
1411 	if (pid > 0) {
1412 		rcu_read_lock();
1413 		ret = kill_pid_info(sig, info, find_vpid(pid));
1414 		rcu_read_unlock();
1415 		return ret;
1416 	}
1417 
1418 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1419 	if (pid == INT_MIN)
1420 		return -ESRCH;
1421 
1422 	read_lock(&tasklist_lock);
1423 	if (pid != -1) {
1424 		ret = __kill_pgrp_info(sig, info,
1425 				pid ? find_vpid(-pid) : task_pgrp(current));
1426 	} else {
1427 		int retval = 0, count = 0;
1428 		struct task_struct * p;
1429 
1430 		for_each_process(p) {
1431 			if (task_pid_vnr(p) > 1 &&
1432 					!same_thread_group(p, current)) {
1433 				int err = group_send_sig_info(sig, info, p);
1434 				++count;
1435 				if (err != -EPERM)
1436 					retval = err;
1437 			}
1438 		}
1439 		ret = count ? retval : -ESRCH;
1440 	}
1441 	read_unlock(&tasklist_lock);
1442 
1443 	return ret;
1444 }
1445 
1446 /*
1447  * These are for backward compatibility with the rest of the kernel source.
1448  */
1449 
1450 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1451 {
1452 	/*
1453 	 * Make sure legacy kernel users don't send in bad values
1454 	 * (normal paths check this in check_kill_permission).
1455 	 */
1456 	if (!valid_signal(sig))
1457 		return -EINVAL;
1458 
1459 	return do_send_sig_info(sig, info, p, false);
1460 }
1461 
1462 #define __si_special(priv) \
1463 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1464 
1465 int
1466 send_sig(int sig, struct task_struct *p, int priv)
1467 {
1468 	return send_sig_info(sig, __si_special(priv), p);
1469 }
1470 
1471 void
1472 force_sig(int sig, struct task_struct *p)
1473 {
1474 	force_sig_info(sig, SEND_SIG_PRIV, p);
1475 }
1476 
1477 /*
1478  * When things go south during signal handling, we
1479  * will force a SIGSEGV. And if the signal that caused
1480  * the problem was already a SIGSEGV, we'll want to
1481  * make sure we don't even try to deliver the signal..
1482  */
1483 int
1484 force_sigsegv(int sig, struct task_struct *p)
1485 {
1486 	if (sig == SIGSEGV) {
1487 		unsigned long flags;
1488 		spin_lock_irqsave(&p->sighand->siglock, flags);
1489 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1490 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1491 	}
1492 	force_sig(SIGSEGV, p);
1493 	return 0;
1494 }
1495 
1496 int force_sig_fault(int sig, int code, void __user *addr
1497 	___ARCH_SI_TRAPNO(int trapno)
1498 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1499 	, struct task_struct *t)
1500 {
1501 	struct siginfo info;
1502 
1503 	clear_siginfo(&info);
1504 	info.si_signo = sig;
1505 	info.si_errno = 0;
1506 	info.si_code  = code;
1507 	info.si_addr  = addr;
1508 #ifdef __ARCH_SI_TRAPNO
1509 	info.si_trapno = trapno;
1510 #endif
1511 #ifdef __ia64__
1512 	info.si_imm = imm;
1513 	info.si_flags = flags;
1514 	info.si_isr = isr;
1515 #endif
1516 	return force_sig_info(info.si_signo, &info, t);
1517 }
1518 
1519 int send_sig_fault(int sig, int code, void __user *addr
1520 	___ARCH_SI_TRAPNO(int trapno)
1521 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1522 	, struct task_struct *t)
1523 {
1524 	struct siginfo info;
1525 
1526 	clear_siginfo(&info);
1527 	info.si_signo = sig;
1528 	info.si_errno = 0;
1529 	info.si_code  = code;
1530 	info.si_addr  = addr;
1531 #ifdef __ARCH_SI_TRAPNO
1532 	info.si_trapno = trapno;
1533 #endif
1534 #ifdef __ia64__
1535 	info.si_imm = imm;
1536 	info.si_flags = flags;
1537 	info.si_isr = isr;
1538 #endif
1539 	return send_sig_info(info.si_signo, &info, t);
1540 }
1541 
1542 #if defined(BUS_MCEERR_AO) && defined(BUS_MCEERR_AR)
1543 int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1544 {
1545 	struct siginfo info;
1546 
1547 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1548 	clear_siginfo(&info);
1549 	info.si_signo = SIGBUS;
1550 	info.si_errno = 0;
1551 	info.si_code = code;
1552 	info.si_addr = addr;
1553 	info.si_addr_lsb = lsb;
1554 	return force_sig_info(info.si_signo, &info, t);
1555 }
1556 
1557 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1558 {
1559 	struct siginfo info;
1560 
1561 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1562 	clear_siginfo(&info);
1563 	info.si_signo = SIGBUS;
1564 	info.si_errno = 0;
1565 	info.si_code = code;
1566 	info.si_addr = addr;
1567 	info.si_addr_lsb = lsb;
1568 	return send_sig_info(info.si_signo, &info, t);
1569 }
1570 EXPORT_SYMBOL(send_sig_mceerr);
1571 #endif
1572 
1573 #ifdef SEGV_BNDERR
1574 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1575 {
1576 	struct siginfo info;
1577 
1578 	clear_siginfo(&info);
1579 	info.si_signo = SIGSEGV;
1580 	info.si_errno = 0;
1581 	info.si_code  = SEGV_BNDERR;
1582 	info.si_addr  = addr;
1583 	info.si_lower = lower;
1584 	info.si_upper = upper;
1585 	return force_sig_info(info.si_signo, &info, current);
1586 }
1587 #endif
1588 
1589 #ifdef SEGV_PKUERR
1590 int force_sig_pkuerr(void __user *addr, u32 pkey)
1591 {
1592 	struct siginfo info;
1593 
1594 	clear_siginfo(&info);
1595 	info.si_signo = SIGSEGV;
1596 	info.si_errno = 0;
1597 	info.si_code  = SEGV_PKUERR;
1598 	info.si_addr  = addr;
1599 	info.si_pkey  = pkey;
1600 	return force_sig_info(info.si_signo, &info, current);
1601 }
1602 #endif
1603 
1604 /* For the crazy architectures that include trap information in
1605  * the errno field, instead of an actual errno value.
1606  */
1607 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1608 {
1609 	struct siginfo info;
1610 
1611 	clear_siginfo(&info);
1612 	info.si_signo = SIGTRAP;
1613 	info.si_errno = errno;
1614 	info.si_code  = TRAP_HWBKPT;
1615 	info.si_addr  = addr;
1616 	return force_sig_info(info.si_signo, &info, current);
1617 }
1618 
1619 int kill_pgrp(struct pid *pid, int sig, int priv)
1620 {
1621 	int ret;
1622 
1623 	read_lock(&tasklist_lock);
1624 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1625 	read_unlock(&tasklist_lock);
1626 
1627 	return ret;
1628 }
1629 EXPORT_SYMBOL(kill_pgrp);
1630 
1631 int kill_pid(struct pid *pid, int sig, int priv)
1632 {
1633 	return kill_pid_info(sig, __si_special(priv), pid);
1634 }
1635 EXPORT_SYMBOL(kill_pid);
1636 
1637 /*
1638  * These functions support sending signals using preallocated sigqueue
1639  * structures.  This is needed "because realtime applications cannot
1640  * afford to lose notifications of asynchronous events, like timer
1641  * expirations or I/O completions".  In the case of POSIX Timers
1642  * we allocate the sigqueue structure from the timer_create.  If this
1643  * allocation fails we are able to report the failure to the application
1644  * with an EAGAIN error.
1645  */
1646 struct sigqueue *sigqueue_alloc(void)
1647 {
1648 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1649 
1650 	if (q)
1651 		q->flags |= SIGQUEUE_PREALLOC;
1652 
1653 	return q;
1654 }
1655 
1656 void sigqueue_free(struct sigqueue *q)
1657 {
1658 	unsigned long flags;
1659 	spinlock_t *lock = &current->sighand->siglock;
1660 
1661 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1662 	/*
1663 	 * We must hold ->siglock while testing q->list
1664 	 * to serialize with collect_signal() or with
1665 	 * __exit_signal()->flush_sigqueue().
1666 	 */
1667 	spin_lock_irqsave(lock, flags);
1668 	q->flags &= ~SIGQUEUE_PREALLOC;
1669 	/*
1670 	 * If it is queued it will be freed when dequeued,
1671 	 * like the "regular" sigqueue.
1672 	 */
1673 	if (!list_empty(&q->list))
1674 		q = NULL;
1675 	spin_unlock_irqrestore(lock, flags);
1676 
1677 	if (q)
1678 		__sigqueue_free(q);
1679 }
1680 
1681 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1682 {
1683 	int sig = q->info.si_signo;
1684 	struct sigpending *pending;
1685 	unsigned long flags;
1686 	int ret, result;
1687 
1688 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1689 
1690 	ret = -1;
1691 	if (!likely(lock_task_sighand(t, &flags)))
1692 		goto ret;
1693 
1694 	ret = 1; /* the signal is ignored */
1695 	result = TRACE_SIGNAL_IGNORED;
1696 	if (!prepare_signal(sig, t, false))
1697 		goto out;
1698 
1699 	ret = 0;
1700 	if (unlikely(!list_empty(&q->list))) {
1701 		/*
1702 		 * If an SI_TIMER entry is already queue just increment
1703 		 * the overrun count.
1704 		 */
1705 		BUG_ON(q->info.si_code != SI_TIMER);
1706 		q->info.si_overrun++;
1707 		result = TRACE_SIGNAL_ALREADY_PENDING;
1708 		goto out;
1709 	}
1710 	q->info.si_overrun = 0;
1711 
1712 	signalfd_notify(t, sig);
1713 	pending = group ? &t->signal->shared_pending : &t->pending;
1714 	list_add_tail(&q->list, &pending->list);
1715 	sigaddset(&pending->signal, sig);
1716 	complete_signal(sig, t, group);
1717 	result = TRACE_SIGNAL_DELIVERED;
1718 out:
1719 	trace_signal_generate(sig, &q->info, t, group, result);
1720 	unlock_task_sighand(t, &flags);
1721 ret:
1722 	return ret;
1723 }
1724 
1725 /*
1726  * Let a parent know about the death of a child.
1727  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1728  *
1729  * Returns true if our parent ignored us and so we've switched to
1730  * self-reaping.
1731  */
1732 bool do_notify_parent(struct task_struct *tsk, int sig)
1733 {
1734 	struct siginfo info;
1735 	unsigned long flags;
1736 	struct sighand_struct *psig;
1737 	bool autoreap = false;
1738 	u64 utime, stime;
1739 
1740 	BUG_ON(sig == -1);
1741 
1742  	/* do_notify_parent_cldstop should have been called instead.  */
1743  	BUG_ON(task_is_stopped_or_traced(tsk));
1744 
1745 	BUG_ON(!tsk->ptrace &&
1746 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1747 
1748 	if (sig != SIGCHLD) {
1749 		/*
1750 		 * This is only possible if parent == real_parent.
1751 		 * Check if it has changed security domain.
1752 		 */
1753 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1754 			sig = SIGCHLD;
1755 	}
1756 
1757 	clear_siginfo(&info);
1758 	info.si_signo = sig;
1759 	info.si_errno = 0;
1760 	/*
1761 	 * We are under tasklist_lock here so our parent is tied to
1762 	 * us and cannot change.
1763 	 *
1764 	 * task_active_pid_ns will always return the same pid namespace
1765 	 * until a task passes through release_task.
1766 	 *
1767 	 * write_lock() currently calls preempt_disable() which is the
1768 	 * same as rcu_read_lock(), but according to Oleg, this is not
1769 	 * correct to rely on this
1770 	 */
1771 	rcu_read_lock();
1772 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1773 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1774 				       task_uid(tsk));
1775 	rcu_read_unlock();
1776 
1777 	task_cputime(tsk, &utime, &stime);
1778 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1779 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1780 
1781 	info.si_status = tsk->exit_code & 0x7f;
1782 	if (tsk->exit_code & 0x80)
1783 		info.si_code = CLD_DUMPED;
1784 	else if (tsk->exit_code & 0x7f)
1785 		info.si_code = CLD_KILLED;
1786 	else {
1787 		info.si_code = CLD_EXITED;
1788 		info.si_status = tsk->exit_code >> 8;
1789 	}
1790 
1791 	psig = tsk->parent->sighand;
1792 	spin_lock_irqsave(&psig->siglock, flags);
1793 	if (!tsk->ptrace && sig == SIGCHLD &&
1794 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1795 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1796 		/*
1797 		 * We are exiting and our parent doesn't care.  POSIX.1
1798 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1799 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1800 		 * automatically and not left for our parent's wait4 call.
1801 		 * Rather than having the parent do it as a magic kind of
1802 		 * signal handler, we just set this to tell do_exit that we
1803 		 * can be cleaned up without becoming a zombie.  Note that
1804 		 * we still call __wake_up_parent in this case, because a
1805 		 * blocked sys_wait4 might now return -ECHILD.
1806 		 *
1807 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1808 		 * is implementation-defined: we do (if you don't want
1809 		 * it, just use SIG_IGN instead).
1810 		 */
1811 		autoreap = true;
1812 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1813 			sig = 0;
1814 	}
1815 	if (valid_signal(sig) && sig)
1816 		__group_send_sig_info(sig, &info, tsk->parent);
1817 	__wake_up_parent(tsk, tsk->parent);
1818 	spin_unlock_irqrestore(&psig->siglock, flags);
1819 
1820 	return autoreap;
1821 }
1822 
1823 /**
1824  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1825  * @tsk: task reporting the state change
1826  * @for_ptracer: the notification is for ptracer
1827  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1828  *
1829  * Notify @tsk's parent that the stopped/continued state has changed.  If
1830  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1831  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1832  *
1833  * CONTEXT:
1834  * Must be called with tasklist_lock at least read locked.
1835  */
1836 static void do_notify_parent_cldstop(struct task_struct *tsk,
1837 				     bool for_ptracer, int why)
1838 {
1839 	struct siginfo info;
1840 	unsigned long flags;
1841 	struct task_struct *parent;
1842 	struct sighand_struct *sighand;
1843 	u64 utime, stime;
1844 
1845 	if (for_ptracer) {
1846 		parent = tsk->parent;
1847 	} else {
1848 		tsk = tsk->group_leader;
1849 		parent = tsk->real_parent;
1850 	}
1851 
1852 	clear_siginfo(&info);
1853 	info.si_signo = SIGCHLD;
1854 	info.si_errno = 0;
1855 	/*
1856 	 * see comment in do_notify_parent() about the following 4 lines
1857 	 */
1858 	rcu_read_lock();
1859 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1860 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1861 	rcu_read_unlock();
1862 
1863 	task_cputime(tsk, &utime, &stime);
1864 	info.si_utime = nsec_to_clock_t(utime);
1865 	info.si_stime = nsec_to_clock_t(stime);
1866 
1867  	info.si_code = why;
1868  	switch (why) {
1869  	case CLD_CONTINUED:
1870  		info.si_status = SIGCONT;
1871  		break;
1872  	case CLD_STOPPED:
1873  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1874  		break;
1875  	case CLD_TRAPPED:
1876  		info.si_status = tsk->exit_code & 0x7f;
1877  		break;
1878  	default:
1879  		BUG();
1880  	}
1881 
1882 	sighand = parent->sighand;
1883 	spin_lock_irqsave(&sighand->siglock, flags);
1884 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1885 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1886 		__group_send_sig_info(SIGCHLD, &info, parent);
1887 	/*
1888 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1889 	 */
1890 	__wake_up_parent(tsk, parent);
1891 	spin_unlock_irqrestore(&sighand->siglock, flags);
1892 }
1893 
1894 static inline int may_ptrace_stop(void)
1895 {
1896 	if (!likely(current->ptrace))
1897 		return 0;
1898 	/*
1899 	 * Are we in the middle of do_coredump?
1900 	 * If so and our tracer is also part of the coredump stopping
1901 	 * is a deadlock situation, and pointless because our tracer
1902 	 * is dead so don't allow us to stop.
1903 	 * If SIGKILL was already sent before the caller unlocked
1904 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1905 	 * is safe to enter schedule().
1906 	 *
1907 	 * This is almost outdated, a task with the pending SIGKILL can't
1908 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1909 	 * after SIGKILL was already dequeued.
1910 	 */
1911 	if (unlikely(current->mm->core_state) &&
1912 	    unlikely(current->mm == current->parent->mm))
1913 		return 0;
1914 
1915 	return 1;
1916 }
1917 
1918 /*
1919  * Return non-zero if there is a SIGKILL that should be waking us up.
1920  * Called with the siglock held.
1921  */
1922 static int sigkill_pending(struct task_struct *tsk)
1923 {
1924 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1925 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1926 }
1927 
1928 /*
1929  * This must be called with current->sighand->siglock held.
1930  *
1931  * This should be the path for all ptrace stops.
1932  * We always set current->last_siginfo while stopped here.
1933  * That makes it a way to test a stopped process for
1934  * being ptrace-stopped vs being job-control-stopped.
1935  *
1936  * If we actually decide not to stop at all because the tracer
1937  * is gone, we keep current->exit_code unless clear_code.
1938  */
1939 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1940 	__releases(&current->sighand->siglock)
1941 	__acquires(&current->sighand->siglock)
1942 {
1943 	bool gstop_done = false;
1944 
1945 	if (arch_ptrace_stop_needed(exit_code, info)) {
1946 		/*
1947 		 * The arch code has something special to do before a
1948 		 * ptrace stop.  This is allowed to block, e.g. for faults
1949 		 * on user stack pages.  We can't keep the siglock while
1950 		 * calling arch_ptrace_stop, so we must release it now.
1951 		 * To preserve proper semantics, we must do this before
1952 		 * any signal bookkeeping like checking group_stop_count.
1953 		 * Meanwhile, a SIGKILL could come in before we retake the
1954 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1955 		 * So after regaining the lock, we must check for SIGKILL.
1956 		 */
1957 		spin_unlock_irq(&current->sighand->siglock);
1958 		arch_ptrace_stop(exit_code, info);
1959 		spin_lock_irq(&current->sighand->siglock);
1960 		if (sigkill_pending(current))
1961 			return;
1962 	}
1963 
1964 	set_special_state(TASK_TRACED);
1965 
1966 	/*
1967 	 * We're committing to trapping.  TRACED should be visible before
1968 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1969 	 * Also, transition to TRACED and updates to ->jobctl should be
1970 	 * atomic with respect to siglock and should be done after the arch
1971 	 * hook as siglock is released and regrabbed across it.
1972 	 *
1973 	 *     TRACER				    TRACEE
1974 	 *
1975 	 *     ptrace_attach()
1976 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
1977 	 *     do_wait()
1978 	 *       set_current_state()                smp_wmb();
1979 	 *       ptrace_do_wait()
1980 	 *         wait_task_stopped()
1981 	 *           task_stopped_code()
1982 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
1983 	 */
1984 	smp_wmb();
1985 
1986 	current->last_siginfo = info;
1987 	current->exit_code = exit_code;
1988 
1989 	/*
1990 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1991 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1992 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1993 	 * could be clear now.  We act as if SIGCONT is received after
1994 	 * TASK_TRACED is entered - ignore it.
1995 	 */
1996 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1997 		gstop_done = task_participate_group_stop(current);
1998 
1999 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2000 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2001 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2002 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2003 
2004 	/* entering a trap, clear TRAPPING */
2005 	task_clear_jobctl_trapping(current);
2006 
2007 	spin_unlock_irq(&current->sighand->siglock);
2008 	read_lock(&tasklist_lock);
2009 	if (may_ptrace_stop()) {
2010 		/*
2011 		 * Notify parents of the stop.
2012 		 *
2013 		 * While ptraced, there are two parents - the ptracer and
2014 		 * the real_parent of the group_leader.  The ptracer should
2015 		 * know about every stop while the real parent is only
2016 		 * interested in the completion of group stop.  The states
2017 		 * for the two don't interact with each other.  Notify
2018 		 * separately unless they're gonna be duplicates.
2019 		 */
2020 		do_notify_parent_cldstop(current, true, why);
2021 		if (gstop_done && ptrace_reparented(current))
2022 			do_notify_parent_cldstop(current, false, why);
2023 
2024 		/*
2025 		 * Don't want to allow preemption here, because
2026 		 * sys_ptrace() needs this task to be inactive.
2027 		 *
2028 		 * XXX: implement read_unlock_no_resched().
2029 		 */
2030 		preempt_disable();
2031 		read_unlock(&tasklist_lock);
2032 		preempt_enable_no_resched();
2033 		freezable_schedule();
2034 	} else {
2035 		/*
2036 		 * By the time we got the lock, our tracer went away.
2037 		 * Don't drop the lock yet, another tracer may come.
2038 		 *
2039 		 * If @gstop_done, the ptracer went away between group stop
2040 		 * completion and here.  During detach, it would have set
2041 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2042 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2043 		 * the real parent of the group stop completion is enough.
2044 		 */
2045 		if (gstop_done)
2046 			do_notify_parent_cldstop(current, false, why);
2047 
2048 		/* tasklist protects us from ptrace_freeze_traced() */
2049 		__set_current_state(TASK_RUNNING);
2050 		if (clear_code)
2051 			current->exit_code = 0;
2052 		read_unlock(&tasklist_lock);
2053 	}
2054 
2055 	/*
2056 	 * We are back.  Now reacquire the siglock before touching
2057 	 * last_siginfo, so that we are sure to have synchronized with
2058 	 * any signal-sending on another CPU that wants to examine it.
2059 	 */
2060 	spin_lock_irq(&current->sighand->siglock);
2061 	current->last_siginfo = NULL;
2062 
2063 	/* LISTENING can be set only during STOP traps, clear it */
2064 	current->jobctl &= ~JOBCTL_LISTENING;
2065 
2066 	/*
2067 	 * Queued signals ignored us while we were stopped for tracing.
2068 	 * So check for any that we should take before resuming user mode.
2069 	 * This sets TIF_SIGPENDING, but never clears it.
2070 	 */
2071 	recalc_sigpending_tsk(current);
2072 }
2073 
2074 static void ptrace_do_notify(int signr, int exit_code, int why)
2075 {
2076 	siginfo_t info;
2077 
2078 	clear_siginfo(&info);
2079 	info.si_signo = signr;
2080 	info.si_code = exit_code;
2081 	info.si_pid = task_pid_vnr(current);
2082 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2083 
2084 	/* Let the debugger run.  */
2085 	ptrace_stop(exit_code, why, 1, &info);
2086 }
2087 
2088 void ptrace_notify(int exit_code)
2089 {
2090 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2091 	if (unlikely(current->task_works))
2092 		task_work_run();
2093 
2094 	spin_lock_irq(&current->sighand->siglock);
2095 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2096 	spin_unlock_irq(&current->sighand->siglock);
2097 }
2098 
2099 /**
2100  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2101  * @signr: signr causing group stop if initiating
2102  *
2103  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2104  * and participate in it.  If already set, participate in the existing
2105  * group stop.  If participated in a group stop (and thus slept), %true is
2106  * returned with siglock released.
2107  *
2108  * If ptraced, this function doesn't handle stop itself.  Instead,
2109  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2110  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2111  * places afterwards.
2112  *
2113  * CONTEXT:
2114  * Must be called with @current->sighand->siglock held, which is released
2115  * on %true return.
2116  *
2117  * RETURNS:
2118  * %false if group stop is already cancelled or ptrace trap is scheduled.
2119  * %true if participated in group stop.
2120  */
2121 static bool do_signal_stop(int signr)
2122 	__releases(&current->sighand->siglock)
2123 {
2124 	struct signal_struct *sig = current->signal;
2125 
2126 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2127 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2128 		struct task_struct *t;
2129 
2130 		/* signr will be recorded in task->jobctl for retries */
2131 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2132 
2133 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2134 		    unlikely(signal_group_exit(sig)))
2135 			return false;
2136 		/*
2137 		 * There is no group stop already in progress.  We must
2138 		 * initiate one now.
2139 		 *
2140 		 * While ptraced, a task may be resumed while group stop is
2141 		 * still in effect and then receive a stop signal and
2142 		 * initiate another group stop.  This deviates from the
2143 		 * usual behavior as two consecutive stop signals can't
2144 		 * cause two group stops when !ptraced.  That is why we
2145 		 * also check !task_is_stopped(t) below.
2146 		 *
2147 		 * The condition can be distinguished by testing whether
2148 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2149 		 * group_exit_code in such case.
2150 		 *
2151 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2152 		 * an intervening stop signal is required to cause two
2153 		 * continued events regardless of ptrace.
2154 		 */
2155 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2156 			sig->group_exit_code = signr;
2157 
2158 		sig->group_stop_count = 0;
2159 
2160 		if (task_set_jobctl_pending(current, signr | gstop))
2161 			sig->group_stop_count++;
2162 
2163 		t = current;
2164 		while_each_thread(current, t) {
2165 			/*
2166 			 * Setting state to TASK_STOPPED for a group
2167 			 * stop is always done with the siglock held,
2168 			 * so this check has no races.
2169 			 */
2170 			if (!task_is_stopped(t) &&
2171 			    task_set_jobctl_pending(t, signr | gstop)) {
2172 				sig->group_stop_count++;
2173 				if (likely(!(t->ptrace & PT_SEIZED)))
2174 					signal_wake_up(t, 0);
2175 				else
2176 					ptrace_trap_notify(t);
2177 			}
2178 		}
2179 	}
2180 
2181 	if (likely(!current->ptrace)) {
2182 		int notify = 0;
2183 
2184 		/*
2185 		 * If there are no other threads in the group, or if there
2186 		 * is a group stop in progress and we are the last to stop,
2187 		 * report to the parent.
2188 		 */
2189 		if (task_participate_group_stop(current))
2190 			notify = CLD_STOPPED;
2191 
2192 		set_special_state(TASK_STOPPED);
2193 		spin_unlock_irq(&current->sighand->siglock);
2194 
2195 		/*
2196 		 * Notify the parent of the group stop completion.  Because
2197 		 * we're not holding either the siglock or tasklist_lock
2198 		 * here, ptracer may attach inbetween; however, this is for
2199 		 * group stop and should always be delivered to the real
2200 		 * parent of the group leader.  The new ptracer will get
2201 		 * its notification when this task transitions into
2202 		 * TASK_TRACED.
2203 		 */
2204 		if (notify) {
2205 			read_lock(&tasklist_lock);
2206 			do_notify_parent_cldstop(current, false, notify);
2207 			read_unlock(&tasklist_lock);
2208 		}
2209 
2210 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2211 		freezable_schedule();
2212 		return true;
2213 	} else {
2214 		/*
2215 		 * While ptraced, group stop is handled by STOP trap.
2216 		 * Schedule it and let the caller deal with it.
2217 		 */
2218 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2219 		return false;
2220 	}
2221 }
2222 
2223 /**
2224  * do_jobctl_trap - take care of ptrace jobctl traps
2225  *
2226  * When PT_SEIZED, it's used for both group stop and explicit
2227  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2228  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2229  * the stop signal; otherwise, %SIGTRAP.
2230  *
2231  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2232  * number as exit_code and no siginfo.
2233  *
2234  * CONTEXT:
2235  * Must be called with @current->sighand->siglock held, which may be
2236  * released and re-acquired before returning with intervening sleep.
2237  */
2238 static void do_jobctl_trap(void)
2239 {
2240 	struct signal_struct *signal = current->signal;
2241 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2242 
2243 	if (current->ptrace & PT_SEIZED) {
2244 		if (!signal->group_stop_count &&
2245 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2246 			signr = SIGTRAP;
2247 		WARN_ON_ONCE(!signr);
2248 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2249 				 CLD_STOPPED);
2250 	} else {
2251 		WARN_ON_ONCE(!signr);
2252 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2253 		current->exit_code = 0;
2254 	}
2255 }
2256 
2257 static int ptrace_signal(int signr, siginfo_t *info)
2258 {
2259 	/*
2260 	 * We do not check sig_kernel_stop(signr) but set this marker
2261 	 * unconditionally because we do not know whether debugger will
2262 	 * change signr. This flag has no meaning unless we are going
2263 	 * to stop after return from ptrace_stop(). In this case it will
2264 	 * be checked in do_signal_stop(), we should only stop if it was
2265 	 * not cleared by SIGCONT while we were sleeping. See also the
2266 	 * comment in dequeue_signal().
2267 	 */
2268 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2269 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2270 
2271 	/* We're back.  Did the debugger cancel the sig?  */
2272 	signr = current->exit_code;
2273 	if (signr == 0)
2274 		return signr;
2275 
2276 	current->exit_code = 0;
2277 
2278 	/*
2279 	 * Update the siginfo structure if the signal has
2280 	 * changed.  If the debugger wanted something
2281 	 * specific in the siginfo structure then it should
2282 	 * have updated *info via PTRACE_SETSIGINFO.
2283 	 */
2284 	if (signr != info->si_signo) {
2285 		clear_siginfo(info);
2286 		info->si_signo = signr;
2287 		info->si_errno = 0;
2288 		info->si_code = SI_USER;
2289 		rcu_read_lock();
2290 		info->si_pid = task_pid_vnr(current->parent);
2291 		info->si_uid = from_kuid_munged(current_user_ns(),
2292 						task_uid(current->parent));
2293 		rcu_read_unlock();
2294 	}
2295 
2296 	/* If the (new) signal is now blocked, requeue it.  */
2297 	if (sigismember(&current->blocked, signr)) {
2298 		specific_send_sig_info(signr, info, current);
2299 		signr = 0;
2300 	}
2301 
2302 	return signr;
2303 }
2304 
2305 int get_signal(struct ksignal *ksig)
2306 {
2307 	struct sighand_struct *sighand = current->sighand;
2308 	struct signal_struct *signal = current->signal;
2309 	int signr;
2310 
2311 	if (unlikely(current->task_works))
2312 		task_work_run();
2313 
2314 	if (unlikely(uprobe_deny_signal()))
2315 		return 0;
2316 
2317 	/*
2318 	 * Do this once, we can't return to user-mode if freezing() == T.
2319 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2320 	 * thus do not need another check after return.
2321 	 */
2322 	try_to_freeze();
2323 
2324 relock:
2325 	spin_lock_irq(&sighand->siglock);
2326 	/*
2327 	 * Every stopped thread goes here after wakeup. Check to see if
2328 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2329 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2330 	 */
2331 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2332 		int why;
2333 
2334 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2335 			why = CLD_CONTINUED;
2336 		else
2337 			why = CLD_STOPPED;
2338 
2339 		signal->flags &= ~SIGNAL_CLD_MASK;
2340 
2341 		spin_unlock_irq(&sighand->siglock);
2342 
2343 		/*
2344 		 * Notify the parent that we're continuing.  This event is
2345 		 * always per-process and doesn't make whole lot of sense
2346 		 * for ptracers, who shouldn't consume the state via
2347 		 * wait(2) either, but, for backward compatibility, notify
2348 		 * the ptracer of the group leader too unless it's gonna be
2349 		 * a duplicate.
2350 		 */
2351 		read_lock(&tasklist_lock);
2352 		do_notify_parent_cldstop(current, false, why);
2353 
2354 		if (ptrace_reparented(current->group_leader))
2355 			do_notify_parent_cldstop(current->group_leader,
2356 						true, why);
2357 		read_unlock(&tasklist_lock);
2358 
2359 		goto relock;
2360 	}
2361 
2362 	for (;;) {
2363 		struct k_sigaction *ka;
2364 
2365 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2366 		    do_signal_stop(0))
2367 			goto relock;
2368 
2369 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2370 			do_jobctl_trap();
2371 			spin_unlock_irq(&sighand->siglock);
2372 			goto relock;
2373 		}
2374 
2375 		signr = dequeue_signal(current, &current->blocked, &ksig->info);
2376 
2377 		if (!signr)
2378 			break; /* will return 0 */
2379 
2380 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2381 			signr = ptrace_signal(signr, &ksig->info);
2382 			if (!signr)
2383 				continue;
2384 		}
2385 
2386 		ka = &sighand->action[signr-1];
2387 
2388 		/* Trace actually delivered signals. */
2389 		trace_signal_deliver(signr, &ksig->info, ka);
2390 
2391 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2392 			continue;
2393 		if (ka->sa.sa_handler != SIG_DFL) {
2394 			/* Run the handler.  */
2395 			ksig->ka = *ka;
2396 
2397 			if (ka->sa.sa_flags & SA_ONESHOT)
2398 				ka->sa.sa_handler = SIG_DFL;
2399 
2400 			break; /* will return non-zero "signr" value */
2401 		}
2402 
2403 		/*
2404 		 * Now we are doing the default action for this signal.
2405 		 */
2406 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2407 			continue;
2408 
2409 		/*
2410 		 * Global init gets no signals it doesn't want.
2411 		 * Container-init gets no signals it doesn't want from same
2412 		 * container.
2413 		 *
2414 		 * Note that if global/container-init sees a sig_kernel_only()
2415 		 * signal here, the signal must have been generated internally
2416 		 * or must have come from an ancestor namespace. In either
2417 		 * case, the signal cannot be dropped.
2418 		 */
2419 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2420 				!sig_kernel_only(signr))
2421 			continue;
2422 
2423 		if (sig_kernel_stop(signr)) {
2424 			/*
2425 			 * The default action is to stop all threads in
2426 			 * the thread group.  The job control signals
2427 			 * do nothing in an orphaned pgrp, but SIGSTOP
2428 			 * always works.  Note that siglock needs to be
2429 			 * dropped during the call to is_orphaned_pgrp()
2430 			 * because of lock ordering with tasklist_lock.
2431 			 * This allows an intervening SIGCONT to be posted.
2432 			 * We need to check for that and bail out if necessary.
2433 			 */
2434 			if (signr != SIGSTOP) {
2435 				spin_unlock_irq(&sighand->siglock);
2436 
2437 				/* signals can be posted during this window */
2438 
2439 				if (is_current_pgrp_orphaned())
2440 					goto relock;
2441 
2442 				spin_lock_irq(&sighand->siglock);
2443 			}
2444 
2445 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2446 				/* It released the siglock.  */
2447 				goto relock;
2448 			}
2449 
2450 			/*
2451 			 * We didn't actually stop, due to a race
2452 			 * with SIGCONT or something like that.
2453 			 */
2454 			continue;
2455 		}
2456 
2457 		spin_unlock_irq(&sighand->siglock);
2458 
2459 		/*
2460 		 * Anything else is fatal, maybe with a core dump.
2461 		 */
2462 		current->flags |= PF_SIGNALED;
2463 
2464 		if (sig_kernel_coredump(signr)) {
2465 			if (print_fatal_signals)
2466 				print_fatal_signal(ksig->info.si_signo);
2467 			proc_coredump_connector(current);
2468 			/*
2469 			 * If it was able to dump core, this kills all
2470 			 * other threads in the group and synchronizes with
2471 			 * their demise.  If we lost the race with another
2472 			 * thread getting here, it set group_exit_code
2473 			 * first and our do_group_exit call below will use
2474 			 * that value and ignore the one we pass it.
2475 			 */
2476 			do_coredump(&ksig->info);
2477 		}
2478 
2479 		/*
2480 		 * Death signals, no core dump.
2481 		 */
2482 		do_group_exit(ksig->info.si_signo);
2483 		/* NOTREACHED */
2484 	}
2485 	spin_unlock_irq(&sighand->siglock);
2486 
2487 	ksig->sig = signr;
2488 	return ksig->sig > 0;
2489 }
2490 
2491 /**
2492  * signal_delivered -
2493  * @ksig:		kernel signal struct
2494  * @stepping:		nonzero if debugger single-step or block-step in use
2495  *
2496  * This function should be called when a signal has successfully been
2497  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2498  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2499  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2500  */
2501 static void signal_delivered(struct ksignal *ksig, int stepping)
2502 {
2503 	sigset_t blocked;
2504 
2505 	/* A signal was successfully delivered, and the
2506 	   saved sigmask was stored on the signal frame,
2507 	   and will be restored by sigreturn.  So we can
2508 	   simply clear the restore sigmask flag.  */
2509 	clear_restore_sigmask();
2510 
2511 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2512 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2513 		sigaddset(&blocked, ksig->sig);
2514 	set_current_blocked(&blocked);
2515 	tracehook_signal_handler(stepping);
2516 }
2517 
2518 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2519 {
2520 	if (failed)
2521 		force_sigsegv(ksig->sig, current);
2522 	else
2523 		signal_delivered(ksig, stepping);
2524 }
2525 
2526 /*
2527  * It could be that complete_signal() picked us to notify about the
2528  * group-wide signal. Other threads should be notified now to take
2529  * the shared signals in @which since we will not.
2530  */
2531 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2532 {
2533 	sigset_t retarget;
2534 	struct task_struct *t;
2535 
2536 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2537 	if (sigisemptyset(&retarget))
2538 		return;
2539 
2540 	t = tsk;
2541 	while_each_thread(tsk, t) {
2542 		if (t->flags & PF_EXITING)
2543 			continue;
2544 
2545 		if (!has_pending_signals(&retarget, &t->blocked))
2546 			continue;
2547 		/* Remove the signals this thread can handle. */
2548 		sigandsets(&retarget, &retarget, &t->blocked);
2549 
2550 		if (!signal_pending(t))
2551 			signal_wake_up(t, 0);
2552 
2553 		if (sigisemptyset(&retarget))
2554 			break;
2555 	}
2556 }
2557 
2558 void exit_signals(struct task_struct *tsk)
2559 {
2560 	int group_stop = 0;
2561 	sigset_t unblocked;
2562 
2563 	/*
2564 	 * @tsk is about to have PF_EXITING set - lock out users which
2565 	 * expect stable threadgroup.
2566 	 */
2567 	cgroup_threadgroup_change_begin(tsk);
2568 
2569 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2570 		tsk->flags |= PF_EXITING;
2571 		cgroup_threadgroup_change_end(tsk);
2572 		return;
2573 	}
2574 
2575 	spin_lock_irq(&tsk->sighand->siglock);
2576 	/*
2577 	 * From now this task is not visible for group-wide signals,
2578 	 * see wants_signal(), do_signal_stop().
2579 	 */
2580 	tsk->flags |= PF_EXITING;
2581 
2582 	cgroup_threadgroup_change_end(tsk);
2583 
2584 	if (!signal_pending(tsk))
2585 		goto out;
2586 
2587 	unblocked = tsk->blocked;
2588 	signotset(&unblocked);
2589 	retarget_shared_pending(tsk, &unblocked);
2590 
2591 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2592 	    task_participate_group_stop(tsk))
2593 		group_stop = CLD_STOPPED;
2594 out:
2595 	spin_unlock_irq(&tsk->sighand->siglock);
2596 
2597 	/*
2598 	 * If group stop has completed, deliver the notification.  This
2599 	 * should always go to the real parent of the group leader.
2600 	 */
2601 	if (unlikely(group_stop)) {
2602 		read_lock(&tasklist_lock);
2603 		do_notify_parent_cldstop(tsk, false, group_stop);
2604 		read_unlock(&tasklist_lock);
2605 	}
2606 }
2607 
2608 EXPORT_SYMBOL(recalc_sigpending);
2609 EXPORT_SYMBOL_GPL(dequeue_signal);
2610 EXPORT_SYMBOL(flush_signals);
2611 EXPORT_SYMBOL(force_sig);
2612 EXPORT_SYMBOL(send_sig);
2613 EXPORT_SYMBOL(send_sig_info);
2614 EXPORT_SYMBOL(sigprocmask);
2615 
2616 /*
2617  * System call entry points.
2618  */
2619 
2620 /**
2621  *  sys_restart_syscall - restart a system call
2622  */
2623 SYSCALL_DEFINE0(restart_syscall)
2624 {
2625 	struct restart_block *restart = &current->restart_block;
2626 	return restart->fn(restart);
2627 }
2628 
2629 long do_no_restart_syscall(struct restart_block *param)
2630 {
2631 	return -EINTR;
2632 }
2633 
2634 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2635 {
2636 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2637 		sigset_t newblocked;
2638 		/* A set of now blocked but previously unblocked signals. */
2639 		sigandnsets(&newblocked, newset, &current->blocked);
2640 		retarget_shared_pending(tsk, &newblocked);
2641 	}
2642 	tsk->blocked = *newset;
2643 	recalc_sigpending();
2644 }
2645 
2646 /**
2647  * set_current_blocked - change current->blocked mask
2648  * @newset: new mask
2649  *
2650  * It is wrong to change ->blocked directly, this helper should be used
2651  * to ensure the process can't miss a shared signal we are going to block.
2652  */
2653 void set_current_blocked(sigset_t *newset)
2654 {
2655 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2656 	__set_current_blocked(newset);
2657 }
2658 
2659 void __set_current_blocked(const sigset_t *newset)
2660 {
2661 	struct task_struct *tsk = current;
2662 
2663 	/*
2664 	 * In case the signal mask hasn't changed, there is nothing we need
2665 	 * to do. The current->blocked shouldn't be modified by other task.
2666 	 */
2667 	if (sigequalsets(&tsk->blocked, newset))
2668 		return;
2669 
2670 	spin_lock_irq(&tsk->sighand->siglock);
2671 	__set_task_blocked(tsk, newset);
2672 	spin_unlock_irq(&tsk->sighand->siglock);
2673 }
2674 
2675 /*
2676  * This is also useful for kernel threads that want to temporarily
2677  * (or permanently) block certain signals.
2678  *
2679  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2680  * interface happily blocks "unblockable" signals like SIGKILL
2681  * and friends.
2682  */
2683 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2684 {
2685 	struct task_struct *tsk = current;
2686 	sigset_t newset;
2687 
2688 	/* Lockless, only current can change ->blocked, never from irq */
2689 	if (oldset)
2690 		*oldset = tsk->blocked;
2691 
2692 	switch (how) {
2693 	case SIG_BLOCK:
2694 		sigorsets(&newset, &tsk->blocked, set);
2695 		break;
2696 	case SIG_UNBLOCK:
2697 		sigandnsets(&newset, &tsk->blocked, set);
2698 		break;
2699 	case SIG_SETMASK:
2700 		newset = *set;
2701 		break;
2702 	default:
2703 		return -EINVAL;
2704 	}
2705 
2706 	__set_current_blocked(&newset);
2707 	return 0;
2708 }
2709 
2710 /**
2711  *  sys_rt_sigprocmask - change the list of currently blocked signals
2712  *  @how: whether to add, remove, or set signals
2713  *  @nset: stores pending signals
2714  *  @oset: previous value of signal mask if non-null
2715  *  @sigsetsize: size of sigset_t type
2716  */
2717 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2718 		sigset_t __user *, oset, size_t, sigsetsize)
2719 {
2720 	sigset_t old_set, new_set;
2721 	int error;
2722 
2723 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2724 	if (sigsetsize != sizeof(sigset_t))
2725 		return -EINVAL;
2726 
2727 	old_set = current->blocked;
2728 
2729 	if (nset) {
2730 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2731 			return -EFAULT;
2732 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2733 
2734 		error = sigprocmask(how, &new_set, NULL);
2735 		if (error)
2736 			return error;
2737 	}
2738 
2739 	if (oset) {
2740 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2741 			return -EFAULT;
2742 	}
2743 
2744 	return 0;
2745 }
2746 
2747 #ifdef CONFIG_COMPAT
2748 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2749 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2750 {
2751 	sigset_t old_set = current->blocked;
2752 
2753 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2754 	if (sigsetsize != sizeof(sigset_t))
2755 		return -EINVAL;
2756 
2757 	if (nset) {
2758 		sigset_t new_set;
2759 		int error;
2760 		if (get_compat_sigset(&new_set, nset))
2761 			return -EFAULT;
2762 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2763 
2764 		error = sigprocmask(how, &new_set, NULL);
2765 		if (error)
2766 			return error;
2767 	}
2768 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2769 }
2770 #endif
2771 
2772 static int do_sigpending(sigset_t *set)
2773 {
2774 	spin_lock_irq(&current->sighand->siglock);
2775 	sigorsets(set, &current->pending.signal,
2776 		  &current->signal->shared_pending.signal);
2777 	spin_unlock_irq(&current->sighand->siglock);
2778 
2779 	/* Outside the lock because only this thread touches it.  */
2780 	sigandsets(set, &current->blocked, set);
2781 	return 0;
2782 }
2783 
2784 /**
2785  *  sys_rt_sigpending - examine a pending signal that has been raised
2786  *			while blocked
2787  *  @uset: stores pending signals
2788  *  @sigsetsize: size of sigset_t type or larger
2789  */
2790 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2791 {
2792 	sigset_t set;
2793 	int err;
2794 
2795 	if (sigsetsize > sizeof(*uset))
2796 		return -EINVAL;
2797 
2798 	err = do_sigpending(&set);
2799 	if (!err && copy_to_user(uset, &set, sigsetsize))
2800 		err = -EFAULT;
2801 	return err;
2802 }
2803 
2804 #ifdef CONFIG_COMPAT
2805 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2806 		compat_size_t, sigsetsize)
2807 {
2808 	sigset_t set;
2809 	int err;
2810 
2811 	if (sigsetsize > sizeof(*uset))
2812 		return -EINVAL;
2813 
2814 	err = do_sigpending(&set);
2815 	if (!err)
2816 		err = put_compat_sigset(uset, &set, sigsetsize);
2817 	return err;
2818 }
2819 #endif
2820 
2821 enum siginfo_layout siginfo_layout(int sig, int si_code)
2822 {
2823 	enum siginfo_layout layout = SIL_KILL;
2824 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
2825 		static const struct {
2826 			unsigned char limit, layout;
2827 		} filter[] = {
2828 			[SIGILL]  = { NSIGILL,  SIL_FAULT },
2829 			[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
2830 			[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2831 			[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
2832 			[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2833 #if defined(SIGEMT) && defined(NSIGEMT)
2834 			[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
2835 #endif
2836 			[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2837 			[SIGPOLL] = { NSIGPOLL, SIL_POLL },
2838 			[SIGSYS]  = { NSIGSYS,  SIL_SYS },
2839 		};
2840 		if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit))
2841 			layout = filter[sig].layout;
2842 		else if (si_code <= NSIGPOLL)
2843 			layout = SIL_POLL;
2844 	} else {
2845 		if (si_code == SI_TIMER)
2846 			layout = SIL_TIMER;
2847 		else if (si_code == SI_SIGIO)
2848 			layout = SIL_POLL;
2849 		else if (si_code < 0)
2850 			layout = SIL_RT;
2851 		/* Tests to support buggy kernel ABIs */
2852 #ifdef TRAP_FIXME
2853 		if ((sig == SIGTRAP) && (si_code == TRAP_FIXME))
2854 			layout = SIL_FAULT;
2855 #endif
2856 #ifdef FPE_FIXME
2857 		if ((sig == SIGFPE) && (si_code == FPE_FIXME))
2858 			layout = SIL_FAULT;
2859 #endif
2860 	}
2861 	return layout;
2862 }
2863 
2864 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2865 {
2866 	int err;
2867 
2868 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2869 		return -EFAULT;
2870 	if (from->si_code < 0)
2871 		return __copy_to_user(to, from, sizeof(siginfo_t))
2872 			? -EFAULT : 0;
2873 	/*
2874 	 * If you change siginfo_t structure, please be sure
2875 	 * this code is fixed accordingly.
2876 	 * Please remember to update the signalfd_copyinfo() function
2877 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2878 	 * It should never copy any pad contained in the structure
2879 	 * to avoid security leaks, but must copy the generic
2880 	 * 3 ints plus the relevant union member.
2881 	 */
2882 	err = __put_user(from->si_signo, &to->si_signo);
2883 	err |= __put_user(from->si_errno, &to->si_errno);
2884 	err |= __put_user(from->si_code, &to->si_code);
2885 	switch (siginfo_layout(from->si_signo, from->si_code)) {
2886 	case SIL_KILL:
2887 		err |= __put_user(from->si_pid, &to->si_pid);
2888 		err |= __put_user(from->si_uid, &to->si_uid);
2889 		break;
2890 	case SIL_TIMER:
2891 		/* Unreached SI_TIMER is negative */
2892 		break;
2893 	case SIL_POLL:
2894 		err |= __put_user(from->si_band, &to->si_band);
2895 		err |= __put_user(from->si_fd, &to->si_fd);
2896 		break;
2897 	case SIL_FAULT:
2898 		err |= __put_user(from->si_addr, &to->si_addr);
2899 #ifdef __ARCH_SI_TRAPNO
2900 		err |= __put_user(from->si_trapno, &to->si_trapno);
2901 #endif
2902 #ifdef __ia64__
2903 		err |= __put_user(from->si_imm, &to->si_imm);
2904 		err |= __put_user(from->si_flags, &to->si_flags);
2905 		err |= __put_user(from->si_isr, &to->si_isr);
2906 #endif
2907 		/*
2908 		 * Other callers might not initialize the si_lsb field,
2909 		 * so check explicitly for the right codes here.
2910 		 */
2911 #ifdef BUS_MCEERR_AR
2912 		if (from->si_signo == SIGBUS && from->si_code == BUS_MCEERR_AR)
2913 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2914 #endif
2915 #ifdef BUS_MCEERR_AO
2916 		if (from->si_signo == SIGBUS && from->si_code == BUS_MCEERR_AO)
2917 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2918 #endif
2919 #ifdef SEGV_BNDERR
2920 		if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2921 			err |= __put_user(from->si_lower, &to->si_lower);
2922 			err |= __put_user(from->si_upper, &to->si_upper);
2923 		}
2924 #endif
2925 #ifdef SEGV_PKUERR
2926 		if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2927 			err |= __put_user(from->si_pkey, &to->si_pkey);
2928 #endif
2929 		break;
2930 	case SIL_CHLD:
2931 		err |= __put_user(from->si_pid, &to->si_pid);
2932 		err |= __put_user(from->si_uid, &to->si_uid);
2933 		err |= __put_user(from->si_status, &to->si_status);
2934 		err |= __put_user(from->si_utime, &to->si_utime);
2935 		err |= __put_user(from->si_stime, &to->si_stime);
2936 		break;
2937 	case SIL_RT:
2938 		err |= __put_user(from->si_pid, &to->si_pid);
2939 		err |= __put_user(from->si_uid, &to->si_uid);
2940 		err |= __put_user(from->si_ptr, &to->si_ptr);
2941 		break;
2942 	case SIL_SYS:
2943 		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2944 		err |= __put_user(from->si_syscall, &to->si_syscall);
2945 		err |= __put_user(from->si_arch, &to->si_arch);
2946 		break;
2947 	}
2948 	return err;
2949 }
2950 
2951 #ifdef CONFIG_COMPAT
2952 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
2953 			   const struct siginfo *from)
2954 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
2955 {
2956 	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
2957 }
2958 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
2959 			     const struct siginfo *from, bool x32_ABI)
2960 #endif
2961 {
2962 	struct compat_siginfo new;
2963 	memset(&new, 0, sizeof(new));
2964 
2965 	new.si_signo = from->si_signo;
2966 	new.si_errno = from->si_errno;
2967 	new.si_code  = from->si_code;
2968 	switch(siginfo_layout(from->si_signo, from->si_code)) {
2969 	case SIL_KILL:
2970 		new.si_pid = from->si_pid;
2971 		new.si_uid = from->si_uid;
2972 		break;
2973 	case SIL_TIMER:
2974 		new.si_tid     = from->si_tid;
2975 		new.si_overrun = from->si_overrun;
2976 		new.si_int     = from->si_int;
2977 		break;
2978 	case SIL_POLL:
2979 		new.si_band = from->si_band;
2980 		new.si_fd   = from->si_fd;
2981 		break;
2982 	case SIL_FAULT:
2983 		new.si_addr = ptr_to_compat(from->si_addr);
2984 #ifdef __ARCH_SI_TRAPNO
2985 		new.si_trapno = from->si_trapno;
2986 #endif
2987 #ifdef BUS_MCEERR_AR
2988 		if ((from->si_signo == SIGBUS) && (from->si_code == BUS_MCEERR_AR))
2989 			new.si_addr_lsb = from->si_addr_lsb;
2990 #endif
2991 #ifdef BUS_MCEERR_AO
2992 		if ((from->si_signo == SIGBUS) && (from->si_code == BUS_MCEERR_AO))
2993 			new.si_addr_lsb = from->si_addr_lsb;
2994 #endif
2995 #ifdef SEGV_BNDERR
2996 		if ((from->si_signo == SIGSEGV) &&
2997 		    (from->si_code == SEGV_BNDERR)) {
2998 			new.si_lower = ptr_to_compat(from->si_lower);
2999 			new.si_upper = ptr_to_compat(from->si_upper);
3000 		}
3001 #endif
3002 #ifdef SEGV_PKUERR
3003 		if ((from->si_signo == SIGSEGV) &&
3004 		    (from->si_code == SEGV_PKUERR))
3005 			new.si_pkey = from->si_pkey;
3006 #endif
3007 
3008 		break;
3009 	case SIL_CHLD:
3010 		new.si_pid    = from->si_pid;
3011 		new.si_uid    = from->si_uid;
3012 		new.si_status = from->si_status;
3013 #ifdef CONFIG_X86_X32_ABI
3014 		if (x32_ABI) {
3015 			new._sifields._sigchld_x32._utime = from->si_utime;
3016 			new._sifields._sigchld_x32._stime = from->si_stime;
3017 		} else
3018 #endif
3019 		{
3020 			new.si_utime = from->si_utime;
3021 			new.si_stime = from->si_stime;
3022 		}
3023 		break;
3024 	case SIL_RT:
3025 		new.si_pid = from->si_pid;
3026 		new.si_uid = from->si_uid;
3027 		new.si_int = from->si_int;
3028 		break;
3029 	case SIL_SYS:
3030 		new.si_call_addr = ptr_to_compat(from->si_call_addr);
3031 		new.si_syscall   = from->si_syscall;
3032 		new.si_arch      = from->si_arch;
3033 		break;
3034 	}
3035 
3036 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3037 		return -EFAULT;
3038 
3039 	return 0;
3040 }
3041 
3042 int copy_siginfo_from_user32(struct siginfo *to,
3043 			     const struct compat_siginfo __user *ufrom)
3044 {
3045 	struct compat_siginfo from;
3046 
3047 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3048 		return -EFAULT;
3049 
3050 	clear_siginfo(to);
3051 	to->si_signo = from.si_signo;
3052 	to->si_errno = from.si_errno;
3053 	to->si_code  = from.si_code;
3054 	switch(siginfo_layout(from.si_signo, from.si_code)) {
3055 	case SIL_KILL:
3056 		to->si_pid = from.si_pid;
3057 		to->si_uid = from.si_uid;
3058 		break;
3059 	case SIL_TIMER:
3060 		to->si_tid     = from.si_tid;
3061 		to->si_overrun = from.si_overrun;
3062 		to->si_int     = from.si_int;
3063 		break;
3064 	case SIL_POLL:
3065 		to->si_band = from.si_band;
3066 		to->si_fd   = from.si_fd;
3067 		break;
3068 	case SIL_FAULT:
3069 		to->si_addr = compat_ptr(from.si_addr);
3070 #ifdef __ARCH_SI_TRAPNO
3071 		to->si_trapno = from.si_trapno;
3072 #endif
3073 #ifdef BUS_MCEERR_AR
3074 		if ((from.si_signo == SIGBUS) && (from.si_code == BUS_MCEERR_AR))
3075 			to->si_addr_lsb = from.si_addr_lsb;
3076 #endif
3077 #ifdef BUS_MCEER_AO
3078 		if ((from.si_signo == SIGBUS) && (from.si_code == BUS_MCEERR_AO))
3079 			to->si_addr_lsb = from.si_addr_lsb;
3080 #endif
3081 #ifdef SEGV_BNDERR
3082 		if ((from.si_signo == SIGSEGV) && (from.si_code == SEGV_BNDERR)) {
3083 			to->si_lower = compat_ptr(from.si_lower);
3084 			to->si_upper = compat_ptr(from.si_upper);
3085 		}
3086 #endif
3087 #ifdef SEGV_PKUERR
3088 		if ((from.si_signo == SIGSEGV) && (from.si_code == SEGV_PKUERR))
3089 			to->si_pkey = from.si_pkey;
3090 #endif
3091 		break;
3092 	case SIL_CHLD:
3093 		to->si_pid    = from.si_pid;
3094 		to->si_uid    = from.si_uid;
3095 		to->si_status = from.si_status;
3096 #ifdef CONFIG_X86_X32_ABI
3097 		if (in_x32_syscall()) {
3098 			to->si_utime = from._sifields._sigchld_x32._utime;
3099 			to->si_stime = from._sifields._sigchld_x32._stime;
3100 		} else
3101 #endif
3102 		{
3103 			to->si_utime = from.si_utime;
3104 			to->si_stime = from.si_stime;
3105 		}
3106 		break;
3107 	case SIL_RT:
3108 		to->si_pid = from.si_pid;
3109 		to->si_uid = from.si_uid;
3110 		to->si_int = from.si_int;
3111 		break;
3112 	case SIL_SYS:
3113 		to->si_call_addr = compat_ptr(from.si_call_addr);
3114 		to->si_syscall   = from.si_syscall;
3115 		to->si_arch      = from.si_arch;
3116 		break;
3117 	}
3118 	return 0;
3119 }
3120 #endif /* CONFIG_COMPAT */
3121 
3122 /**
3123  *  do_sigtimedwait - wait for queued signals specified in @which
3124  *  @which: queued signals to wait for
3125  *  @info: if non-null, the signal's siginfo is returned here
3126  *  @ts: upper bound on process time suspension
3127  */
3128 static int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
3129 		    const struct timespec *ts)
3130 {
3131 	ktime_t *to = NULL, timeout = KTIME_MAX;
3132 	struct task_struct *tsk = current;
3133 	sigset_t mask = *which;
3134 	int sig, ret = 0;
3135 
3136 	if (ts) {
3137 		if (!timespec_valid(ts))
3138 			return -EINVAL;
3139 		timeout = timespec_to_ktime(*ts);
3140 		to = &timeout;
3141 	}
3142 
3143 	/*
3144 	 * Invert the set of allowed signals to get those we want to block.
3145 	 */
3146 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3147 	signotset(&mask);
3148 
3149 	spin_lock_irq(&tsk->sighand->siglock);
3150 	sig = dequeue_signal(tsk, &mask, info);
3151 	if (!sig && timeout) {
3152 		/*
3153 		 * None ready, temporarily unblock those we're interested
3154 		 * while we are sleeping in so that we'll be awakened when
3155 		 * they arrive. Unblocking is always fine, we can avoid
3156 		 * set_current_blocked().
3157 		 */
3158 		tsk->real_blocked = tsk->blocked;
3159 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3160 		recalc_sigpending();
3161 		spin_unlock_irq(&tsk->sighand->siglock);
3162 
3163 		__set_current_state(TASK_INTERRUPTIBLE);
3164 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3165 							 HRTIMER_MODE_REL);
3166 		spin_lock_irq(&tsk->sighand->siglock);
3167 		__set_task_blocked(tsk, &tsk->real_blocked);
3168 		sigemptyset(&tsk->real_blocked);
3169 		sig = dequeue_signal(tsk, &mask, info);
3170 	}
3171 	spin_unlock_irq(&tsk->sighand->siglock);
3172 
3173 	if (sig)
3174 		return sig;
3175 	return ret ? -EINTR : -EAGAIN;
3176 }
3177 
3178 /**
3179  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3180  *			in @uthese
3181  *  @uthese: queued signals to wait for
3182  *  @uinfo: if non-null, the signal's siginfo is returned here
3183  *  @uts: upper bound on process time suspension
3184  *  @sigsetsize: size of sigset_t type
3185  */
3186 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3187 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
3188 		size_t, sigsetsize)
3189 {
3190 	sigset_t these;
3191 	struct timespec ts;
3192 	siginfo_t info;
3193 	int ret;
3194 
3195 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3196 	if (sigsetsize != sizeof(sigset_t))
3197 		return -EINVAL;
3198 
3199 	if (copy_from_user(&these, uthese, sizeof(these)))
3200 		return -EFAULT;
3201 
3202 	if (uts) {
3203 		if (copy_from_user(&ts, uts, sizeof(ts)))
3204 			return -EFAULT;
3205 	}
3206 
3207 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3208 
3209 	if (ret > 0 && uinfo) {
3210 		if (copy_siginfo_to_user(uinfo, &info))
3211 			ret = -EFAULT;
3212 	}
3213 
3214 	return ret;
3215 }
3216 
3217 #ifdef CONFIG_COMPAT
3218 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
3219 		struct compat_siginfo __user *, uinfo,
3220 		struct compat_timespec __user *, uts, compat_size_t, sigsetsize)
3221 {
3222 	sigset_t s;
3223 	struct timespec t;
3224 	siginfo_t info;
3225 	long ret;
3226 
3227 	if (sigsetsize != sizeof(sigset_t))
3228 		return -EINVAL;
3229 
3230 	if (get_compat_sigset(&s, uthese))
3231 		return -EFAULT;
3232 
3233 	if (uts) {
3234 		if (compat_get_timespec(&t, uts))
3235 			return -EFAULT;
3236 	}
3237 
3238 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3239 
3240 	if (ret > 0 && uinfo) {
3241 		if (copy_siginfo_to_user32(uinfo, &info))
3242 			ret = -EFAULT;
3243 	}
3244 
3245 	return ret;
3246 }
3247 #endif
3248 
3249 /**
3250  *  sys_kill - send a signal to a process
3251  *  @pid: the PID of the process
3252  *  @sig: signal to be sent
3253  */
3254 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3255 {
3256 	struct siginfo info;
3257 
3258 	clear_siginfo(&info);
3259 	info.si_signo = sig;
3260 	info.si_errno = 0;
3261 	info.si_code = SI_USER;
3262 	info.si_pid = task_tgid_vnr(current);
3263 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3264 
3265 	return kill_something_info(sig, &info, pid);
3266 }
3267 
3268 static int
3269 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
3270 {
3271 	struct task_struct *p;
3272 	int error = -ESRCH;
3273 
3274 	rcu_read_lock();
3275 	p = find_task_by_vpid(pid);
3276 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3277 		error = check_kill_permission(sig, info, p);
3278 		/*
3279 		 * The null signal is a permissions and process existence
3280 		 * probe.  No signal is actually delivered.
3281 		 */
3282 		if (!error && sig) {
3283 			error = do_send_sig_info(sig, info, p, false);
3284 			/*
3285 			 * If lock_task_sighand() failed we pretend the task
3286 			 * dies after receiving the signal. The window is tiny,
3287 			 * and the signal is private anyway.
3288 			 */
3289 			if (unlikely(error == -ESRCH))
3290 				error = 0;
3291 		}
3292 	}
3293 	rcu_read_unlock();
3294 
3295 	return error;
3296 }
3297 
3298 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3299 {
3300 	struct siginfo info;
3301 
3302 	clear_siginfo(&info);
3303 	info.si_signo = sig;
3304 	info.si_errno = 0;
3305 	info.si_code = SI_TKILL;
3306 	info.si_pid = task_tgid_vnr(current);
3307 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3308 
3309 	return do_send_specific(tgid, pid, sig, &info);
3310 }
3311 
3312 /**
3313  *  sys_tgkill - send signal to one specific thread
3314  *  @tgid: the thread group ID of the thread
3315  *  @pid: the PID of the thread
3316  *  @sig: signal to be sent
3317  *
3318  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3319  *  exists but it's not belonging to the target process anymore. This
3320  *  method solves the problem of threads exiting and PIDs getting reused.
3321  */
3322 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3323 {
3324 	/* This is only valid for single tasks */
3325 	if (pid <= 0 || tgid <= 0)
3326 		return -EINVAL;
3327 
3328 	return do_tkill(tgid, pid, sig);
3329 }
3330 
3331 /**
3332  *  sys_tkill - send signal to one specific task
3333  *  @pid: the PID of the task
3334  *  @sig: signal to be sent
3335  *
3336  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3337  */
3338 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3339 {
3340 	/* This is only valid for single tasks */
3341 	if (pid <= 0)
3342 		return -EINVAL;
3343 
3344 	return do_tkill(0, pid, sig);
3345 }
3346 
3347 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3348 {
3349 	/* Not even root can pretend to send signals from the kernel.
3350 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3351 	 */
3352 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3353 	    (task_pid_vnr(current) != pid))
3354 		return -EPERM;
3355 
3356 	info->si_signo = sig;
3357 
3358 	/* POSIX.1b doesn't mention process groups.  */
3359 	return kill_proc_info(sig, info, pid);
3360 }
3361 
3362 /**
3363  *  sys_rt_sigqueueinfo - send signal information to a signal
3364  *  @pid: the PID of the thread
3365  *  @sig: signal to be sent
3366  *  @uinfo: signal info to be sent
3367  */
3368 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3369 		siginfo_t __user *, uinfo)
3370 {
3371 	siginfo_t info;
3372 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3373 		return -EFAULT;
3374 	return do_rt_sigqueueinfo(pid, sig, &info);
3375 }
3376 
3377 #ifdef CONFIG_COMPAT
3378 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3379 			compat_pid_t, pid,
3380 			int, sig,
3381 			struct compat_siginfo __user *, uinfo)
3382 {
3383 	siginfo_t info;
3384 	int ret = copy_siginfo_from_user32(&info, uinfo);
3385 	if (unlikely(ret))
3386 		return ret;
3387 	return do_rt_sigqueueinfo(pid, sig, &info);
3388 }
3389 #endif
3390 
3391 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3392 {
3393 	/* This is only valid for single tasks */
3394 	if (pid <= 0 || tgid <= 0)
3395 		return -EINVAL;
3396 
3397 	/* Not even root can pretend to send signals from the kernel.
3398 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3399 	 */
3400 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3401 	    (task_pid_vnr(current) != pid))
3402 		return -EPERM;
3403 
3404 	info->si_signo = sig;
3405 
3406 	return do_send_specific(tgid, pid, sig, info);
3407 }
3408 
3409 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3410 		siginfo_t __user *, uinfo)
3411 {
3412 	siginfo_t info;
3413 
3414 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3415 		return -EFAULT;
3416 
3417 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3418 }
3419 
3420 #ifdef CONFIG_COMPAT
3421 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3422 			compat_pid_t, tgid,
3423 			compat_pid_t, pid,
3424 			int, sig,
3425 			struct compat_siginfo __user *, uinfo)
3426 {
3427 	siginfo_t info;
3428 
3429 	if (copy_siginfo_from_user32(&info, uinfo))
3430 		return -EFAULT;
3431 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3432 }
3433 #endif
3434 
3435 /*
3436  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3437  */
3438 void kernel_sigaction(int sig, __sighandler_t action)
3439 {
3440 	spin_lock_irq(&current->sighand->siglock);
3441 	current->sighand->action[sig - 1].sa.sa_handler = action;
3442 	if (action == SIG_IGN) {
3443 		sigset_t mask;
3444 
3445 		sigemptyset(&mask);
3446 		sigaddset(&mask, sig);
3447 
3448 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3449 		flush_sigqueue_mask(&mask, &current->pending);
3450 		recalc_sigpending();
3451 	}
3452 	spin_unlock_irq(&current->sighand->siglock);
3453 }
3454 EXPORT_SYMBOL(kernel_sigaction);
3455 
3456 void __weak sigaction_compat_abi(struct k_sigaction *act,
3457 		struct k_sigaction *oact)
3458 {
3459 }
3460 
3461 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3462 {
3463 	struct task_struct *p = current, *t;
3464 	struct k_sigaction *k;
3465 	sigset_t mask;
3466 
3467 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3468 		return -EINVAL;
3469 
3470 	k = &p->sighand->action[sig-1];
3471 
3472 	spin_lock_irq(&p->sighand->siglock);
3473 	if (oact)
3474 		*oact = *k;
3475 
3476 	sigaction_compat_abi(act, oact);
3477 
3478 	if (act) {
3479 		sigdelsetmask(&act->sa.sa_mask,
3480 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3481 		*k = *act;
3482 		/*
3483 		 * POSIX 3.3.1.3:
3484 		 *  "Setting a signal action to SIG_IGN for a signal that is
3485 		 *   pending shall cause the pending signal to be discarded,
3486 		 *   whether or not it is blocked."
3487 		 *
3488 		 *  "Setting a signal action to SIG_DFL for a signal that is
3489 		 *   pending and whose default action is to ignore the signal
3490 		 *   (for example, SIGCHLD), shall cause the pending signal to
3491 		 *   be discarded, whether or not it is blocked"
3492 		 */
3493 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3494 			sigemptyset(&mask);
3495 			sigaddset(&mask, sig);
3496 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3497 			for_each_thread(p, t)
3498 				flush_sigqueue_mask(&mask, &t->pending);
3499 		}
3500 	}
3501 
3502 	spin_unlock_irq(&p->sighand->siglock);
3503 	return 0;
3504 }
3505 
3506 static int
3507 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp)
3508 {
3509 	struct task_struct *t = current;
3510 
3511 	if (oss) {
3512 		memset(oss, 0, sizeof(stack_t));
3513 		oss->ss_sp = (void __user *) t->sas_ss_sp;
3514 		oss->ss_size = t->sas_ss_size;
3515 		oss->ss_flags = sas_ss_flags(sp) |
3516 			(current->sas_ss_flags & SS_FLAG_BITS);
3517 	}
3518 
3519 	if (ss) {
3520 		void __user *ss_sp = ss->ss_sp;
3521 		size_t ss_size = ss->ss_size;
3522 		unsigned ss_flags = ss->ss_flags;
3523 		int ss_mode;
3524 
3525 		if (unlikely(on_sig_stack(sp)))
3526 			return -EPERM;
3527 
3528 		ss_mode = ss_flags & ~SS_FLAG_BITS;
3529 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3530 				ss_mode != 0))
3531 			return -EINVAL;
3532 
3533 		if (ss_mode == SS_DISABLE) {
3534 			ss_size = 0;
3535 			ss_sp = NULL;
3536 		} else {
3537 			if (unlikely(ss_size < MINSIGSTKSZ))
3538 				return -ENOMEM;
3539 		}
3540 
3541 		t->sas_ss_sp = (unsigned long) ss_sp;
3542 		t->sas_ss_size = ss_size;
3543 		t->sas_ss_flags = ss_flags;
3544 	}
3545 	return 0;
3546 }
3547 
3548 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3549 {
3550 	stack_t new, old;
3551 	int err;
3552 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3553 		return -EFAULT;
3554 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3555 			      current_user_stack_pointer());
3556 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3557 		err = -EFAULT;
3558 	return err;
3559 }
3560 
3561 int restore_altstack(const stack_t __user *uss)
3562 {
3563 	stack_t new;
3564 	if (copy_from_user(&new, uss, sizeof(stack_t)))
3565 		return -EFAULT;
3566 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer());
3567 	/* squash all but EFAULT for now */
3568 	return 0;
3569 }
3570 
3571 int __save_altstack(stack_t __user *uss, unsigned long sp)
3572 {
3573 	struct task_struct *t = current;
3574 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3575 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3576 		__put_user(t->sas_ss_size, &uss->ss_size);
3577 	if (err)
3578 		return err;
3579 	if (t->sas_ss_flags & SS_AUTODISARM)
3580 		sas_ss_reset(t);
3581 	return 0;
3582 }
3583 
3584 #ifdef CONFIG_COMPAT
3585 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
3586 				 compat_stack_t __user *uoss_ptr)
3587 {
3588 	stack_t uss, uoss;
3589 	int ret;
3590 
3591 	if (uss_ptr) {
3592 		compat_stack_t uss32;
3593 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3594 			return -EFAULT;
3595 		uss.ss_sp = compat_ptr(uss32.ss_sp);
3596 		uss.ss_flags = uss32.ss_flags;
3597 		uss.ss_size = uss32.ss_size;
3598 	}
3599 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3600 			     compat_user_stack_pointer());
3601 	if (ret >= 0 && uoss_ptr)  {
3602 		compat_stack_t old;
3603 		memset(&old, 0, sizeof(old));
3604 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
3605 		old.ss_flags = uoss.ss_flags;
3606 		old.ss_size = uoss.ss_size;
3607 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3608 			ret = -EFAULT;
3609 	}
3610 	return ret;
3611 }
3612 
3613 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3614 			const compat_stack_t __user *, uss_ptr,
3615 			compat_stack_t __user *, uoss_ptr)
3616 {
3617 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
3618 }
3619 
3620 int compat_restore_altstack(const compat_stack_t __user *uss)
3621 {
3622 	int err = do_compat_sigaltstack(uss, NULL);
3623 	/* squash all but -EFAULT for now */
3624 	return err == -EFAULT ? err : 0;
3625 }
3626 
3627 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3628 {
3629 	int err;
3630 	struct task_struct *t = current;
3631 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3632 			 &uss->ss_sp) |
3633 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3634 		__put_user(t->sas_ss_size, &uss->ss_size);
3635 	if (err)
3636 		return err;
3637 	if (t->sas_ss_flags & SS_AUTODISARM)
3638 		sas_ss_reset(t);
3639 	return 0;
3640 }
3641 #endif
3642 
3643 #ifdef __ARCH_WANT_SYS_SIGPENDING
3644 
3645 /**
3646  *  sys_sigpending - examine pending signals
3647  *  @uset: where mask of pending signal is returned
3648  */
3649 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
3650 {
3651 	sigset_t set;
3652 	int err;
3653 
3654 	if (sizeof(old_sigset_t) > sizeof(*uset))
3655 		return -EINVAL;
3656 
3657 	err = do_sigpending(&set);
3658 	if (!err && copy_to_user(uset, &set, sizeof(old_sigset_t)))
3659 		err = -EFAULT;
3660 	return err;
3661 }
3662 
3663 #ifdef CONFIG_COMPAT
3664 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3665 {
3666 	sigset_t set;
3667 	int err = do_sigpending(&set);
3668 	if (!err)
3669 		err = put_user(set.sig[0], set32);
3670 	return err;
3671 }
3672 #endif
3673 
3674 #endif
3675 
3676 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3677 /**
3678  *  sys_sigprocmask - examine and change blocked signals
3679  *  @how: whether to add, remove, or set signals
3680  *  @nset: signals to add or remove (if non-null)
3681  *  @oset: previous value of signal mask if non-null
3682  *
3683  * Some platforms have their own version with special arguments;
3684  * others support only sys_rt_sigprocmask.
3685  */
3686 
3687 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3688 		old_sigset_t __user *, oset)
3689 {
3690 	old_sigset_t old_set, new_set;
3691 	sigset_t new_blocked;
3692 
3693 	old_set = current->blocked.sig[0];
3694 
3695 	if (nset) {
3696 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3697 			return -EFAULT;
3698 
3699 		new_blocked = current->blocked;
3700 
3701 		switch (how) {
3702 		case SIG_BLOCK:
3703 			sigaddsetmask(&new_blocked, new_set);
3704 			break;
3705 		case SIG_UNBLOCK:
3706 			sigdelsetmask(&new_blocked, new_set);
3707 			break;
3708 		case SIG_SETMASK:
3709 			new_blocked.sig[0] = new_set;
3710 			break;
3711 		default:
3712 			return -EINVAL;
3713 		}
3714 
3715 		set_current_blocked(&new_blocked);
3716 	}
3717 
3718 	if (oset) {
3719 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3720 			return -EFAULT;
3721 	}
3722 
3723 	return 0;
3724 }
3725 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3726 
3727 #ifndef CONFIG_ODD_RT_SIGACTION
3728 /**
3729  *  sys_rt_sigaction - alter an action taken by a process
3730  *  @sig: signal to be sent
3731  *  @act: new sigaction
3732  *  @oact: used to save the previous sigaction
3733  *  @sigsetsize: size of sigset_t type
3734  */
3735 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3736 		const struct sigaction __user *, act,
3737 		struct sigaction __user *, oact,
3738 		size_t, sigsetsize)
3739 {
3740 	struct k_sigaction new_sa, old_sa;
3741 	int ret = -EINVAL;
3742 
3743 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3744 	if (sigsetsize != sizeof(sigset_t))
3745 		goto out;
3746 
3747 	if (act) {
3748 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3749 			return -EFAULT;
3750 	}
3751 
3752 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3753 
3754 	if (!ret && oact) {
3755 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3756 			return -EFAULT;
3757 	}
3758 out:
3759 	return ret;
3760 }
3761 #ifdef CONFIG_COMPAT
3762 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3763 		const struct compat_sigaction __user *, act,
3764 		struct compat_sigaction __user *, oact,
3765 		compat_size_t, sigsetsize)
3766 {
3767 	struct k_sigaction new_ka, old_ka;
3768 #ifdef __ARCH_HAS_SA_RESTORER
3769 	compat_uptr_t restorer;
3770 #endif
3771 	int ret;
3772 
3773 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3774 	if (sigsetsize != sizeof(compat_sigset_t))
3775 		return -EINVAL;
3776 
3777 	if (act) {
3778 		compat_uptr_t handler;
3779 		ret = get_user(handler, &act->sa_handler);
3780 		new_ka.sa.sa_handler = compat_ptr(handler);
3781 #ifdef __ARCH_HAS_SA_RESTORER
3782 		ret |= get_user(restorer, &act->sa_restorer);
3783 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3784 #endif
3785 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
3786 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3787 		if (ret)
3788 			return -EFAULT;
3789 	}
3790 
3791 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3792 	if (!ret && oact) {
3793 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3794 			       &oact->sa_handler);
3795 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
3796 					 sizeof(oact->sa_mask));
3797 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3798 #ifdef __ARCH_HAS_SA_RESTORER
3799 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3800 				&oact->sa_restorer);
3801 #endif
3802 	}
3803 	return ret;
3804 }
3805 #endif
3806 #endif /* !CONFIG_ODD_RT_SIGACTION */
3807 
3808 #ifdef CONFIG_OLD_SIGACTION
3809 SYSCALL_DEFINE3(sigaction, int, sig,
3810 		const struct old_sigaction __user *, act,
3811 	        struct old_sigaction __user *, oact)
3812 {
3813 	struct k_sigaction new_ka, old_ka;
3814 	int ret;
3815 
3816 	if (act) {
3817 		old_sigset_t mask;
3818 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3819 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3820 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3821 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3822 		    __get_user(mask, &act->sa_mask))
3823 			return -EFAULT;
3824 #ifdef __ARCH_HAS_KA_RESTORER
3825 		new_ka.ka_restorer = NULL;
3826 #endif
3827 		siginitset(&new_ka.sa.sa_mask, mask);
3828 	}
3829 
3830 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3831 
3832 	if (!ret && oact) {
3833 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3834 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3835 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3836 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3837 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3838 			return -EFAULT;
3839 	}
3840 
3841 	return ret;
3842 }
3843 #endif
3844 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3845 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3846 		const struct compat_old_sigaction __user *, act,
3847 	        struct compat_old_sigaction __user *, oact)
3848 {
3849 	struct k_sigaction new_ka, old_ka;
3850 	int ret;
3851 	compat_old_sigset_t mask;
3852 	compat_uptr_t handler, restorer;
3853 
3854 	if (act) {
3855 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3856 		    __get_user(handler, &act->sa_handler) ||
3857 		    __get_user(restorer, &act->sa_restorer) ||
3858 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3859 		    __get_user(mask, &act->sa_mask))
3860 			return -EFAULT;
3861 
3862 #ifdef __ARCH_HAS_KA_RESTORER
3863 		new_ka.ka_restorer = NULL;
3864 #endif
3865 		new_ka.sa.sa_handler = compat_ptr(handler);
3866 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3867 		siginitset(&new_ka.sa.sa_mask, mask);
3868 	}
3869 
3870 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3871 
3872 	if (!ret && oact) {
3873 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3874 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3875 			       &oact->sa_handler) ||
3876 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3877 			       &oact->sa_restorer) ||
3878 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3879 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3880 			return -EFAULT;
3881 	}
3882 	return ret;
3883 }
3884 #endif
3885 
3886 #ifdef CONFIG_SGETMASK_SYSCALL
3887 
3888 /*
3889  * For backwards compatibility.  Functionality superseded by sigprocmask.
3890  */
3891 SYSCALL_DEFINE0(sgetmask)
3892 {
3893 	/* SMP safe */
3894 	return current->blocked.sig[0];
3895 }
3896 
3897 SYSCALL_DEFINE1(ssetmask, int, newmask)
3898 {
3899 	int old = current->blocked.sig[0];
3900 	sigset_t newset;
3901 
3902 	siginitset(&newset, newmask);
3903 	set_current_blocked(&newset);
3904 
3905 	return old;
3906 }
3907 #endif /* CONFIG_SGETMASK_SYSCALL */
3908 
3909 #ifdef __ARCH_WANT_SYS_SIGNAL
3910 /*
3911  * For backwards compatibility.  Functionality superseded by sigaction.
3912  */
3913 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3914 {
3915 	struct k_sigaction new_sa, old_sa;
3916 	int ret;
3917 
3918 	new_sa.sa.sa_handler = handler;
3919 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3920 	sigemptyset(&new_sa.sa.sa_mask);
3921 
3922 	ret = do_sigaction(sig, &new_sa, &old_sa);
3923 
3924 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3925 }
3926 #endif /* __ARCH_WANT_SYS_SIGNAL */
3927 
3928 #ifdef __ARCH_WANT_SYS_PAUSE
3929 
3930 SYSCALL_DEFINE0(pause)
3931 {
3932 	while (!signal_pending(current)) {
3933 		__set_current_state(TASK_INTERRUPTIBLE);
3934 		schedule();
3935 	}
3936 	return -ERESTARTNOHAND;
3937 }
3938 
3939 #endif
3940 
3941 static int sigsuspend(sigset_t *set)
3942 {
3943 	current->saved_sigmask = current->blocked;
3944 	set_current_blocked(set);
3945 
3946 	while (!signal_pending(current)) {
3947 		__set_current_state(TASK_INTERRUPTIBLE);
3948 		schedule();
3949 	}
3950 	set_restore_sigmask();
3951 	return -ERESTARTNOHAND;
3952 }
3953 
3954 /**
3955  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3956  *	@unewset value until a signal is received
3957  *  @unewset: new signal mask value
3958  *  @sigsetsize: size of sigset_t type
3959  */
3960 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3961 {
3962 	sigset_t newset;
3963 
3964 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3965 	if (sigsetsize != sizeof(sigset_t))
3966 		return -EINVAL;
3967 
3968 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3969 		return -EFAULT;
3970 	return sigsuspend(&newset);
3971 }
3972 
3973 #ifdef CONFIG_COMPAT
3974 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3975 {
3976 	sigset_t newset;
3977 
3978 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3979 	if (sigsetsize != sizeof(sigset_t))
3980 		return -EINVAL;
3981 
3982 	if (get_compat_sigset(&newset, unewset))
3983 		return -EFAULT;
3984 	return sigsuspend(&newset);
3985 }
3986 #endif
3987 
3988 #ifdef CONFIG_OLD_SIGSUSPEND
3989 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3990 {
3991 	sigset_t blocked;
3992 	siginitset(&blocked, mask);
3993 	return sigsuspend(&blocked);
3994 }
3995 #endif
3996 #ifdef CONFIG_OLD_SIGSUSPEND3
3997 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3998 {
3999 	sigset_t blocked;
4000 	siginitset(&blocked, mask);
4001 	return sigsuspend(&blocked);
4002 }
4003 #endif
4004 
4005 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4006 {
4007 	return NULL;
4008 }
4009 
4010 void __init signals_init(void)
4011 {
4012 	/* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
4013 	BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
4014 		!= offsetof(struct siginfo, _sifields._pad));
4015 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4016 
4017 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4018 }
4019 
4020 #ifdef CONFIG_KGDB_KDB
4021 #include <linux/kdb.h>
4022 /*
4023  * kdb_send_sig - Allows kdb to send signals without exposing
4024  * signal internals.  This function checks if the required locks are
4025  * available before calling the main signal code, to avoid kdb
4026  * deadlocks.
4027  */
4028 void kdb_send_sig(struct task_struct *t, int sig)
4029 {
4030 	static struct task_struct *kdb_prev_t;
4031 	int new_t, ret;
4032 	if (!spin_trylock(&t->sighand->siglock)) {
4033 		kdb_printf("Can't do kill command now.\n"
4034 			   "The sigmask lock is held somewhere else in "
4035 			   "kernel, try again later\n");
4036 		return;
4037 	}
4038 	new_t = kdb_prev_t != t;
4039 	kdb_prev_t = t;
4040 	if (t->state != TASK_RUNNING && new_t) {
4041 		spin_unlock(&t->sighand->siglock);
4042 		kdb_printf("Process is not RUNNING, sending a signal from "
4043 			   "kdb risks deadlock\n"
4044 			   "on the run queue locks. "
4045 			   "The signal has _not_ been sent.\n"
4046 			   "Reissue the kill command if you want to risk "
4047 			   "the deadlock.\n");
4048 		return;
4049 	}
4050 	ret = send_signal(sig, SEND_SIG_PRIV, t, false);
4051 	spin_unlock(&t->sighand->siglock);
4052 	if (ret)
4053 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4054 			   sig, t->pid);
4055 	else
4056 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4057 }
4058 #endif	/* CONFIG_KGDB_KDB */
4059